NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Keune, F. A.
1974-01-01
The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.
Social cost considerations and legal constraints in implementing modular integrated utility systems
NASA Technical Reports Server (NTRS)
Lede, N. W.; Dixon, H. W.; King, O.; Hill, D. K.
1974-01-01
Social costs associated with the design, demonstration, and implementation of the Modular Integrated Utility System are considered including the social climate of communities, leadership patterns, conflicts and cleavages, specific developmental values, MIUS utility goal assessment, and the suitability of certian alternative options for use in a program of implementation. General considerations are discussed in the field of socio-technological planning. These include guidelines for understanding the conflict and diversity; some relevant goal choices and ideas useful to planners of the MIUS facility.
Feasibility study of solar energy utilization in modular integrated utility systems
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility and benefits were evaluated of solar thermal energy systems on Integrated Utility Systems. The effort included the identification of potential system concepts, evaluation of hardware status, and performance of weighted system evaluations to select promising system concepts deserving of further study.
NASA Technical Reports Server (NTRS)
Benson, H. E.; Monford, L. G., Jr.
1976-01-01
The results of a study of the application of a modular integrated utility system to six typical building types are compared with the application of a conventional utility system to the same facilities. The effects of varying the size and climatic location of the buildings and the size of the powerplants are presented. Construction details of the six building types (garden apartments, a high rise office building, high rise apartments, a shopping center, a high school, and a hospital) and typical site and floor plans are provided. The environmental effects, the unit size determination, and the market potential are discussed. The cost effectiveness of the various design options is not considered.
NASA Technical Reports Server (NTRS)
Pringle, L. M., Jr.
1974-01-01
Potential ways of providing control and monitoring for the Modular Integrated Utility System (MIUS) program are elaborated. Control and monitoring hardware and operational systems are described. The requirements for the MIUS program and the development requirements are discussed.
NASA Technical Reports Server (NTRS)
Wolfer, B. M.
1977-01-01
Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.
1975-01-01
This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.
NASA Technical Reports Server (NTRS)
1973-01-01
Design and development efforts for a spaceborne modular computer system are reported. An initial baseline description is followed by an interface design that includes definition of the overall system response to all classes of failure. Final versions for the register level designs for all module types were completed. Packaging, support and control executive software, including memory utilization estimates and design verification plan, were formalized to insure a soundly integrated design of the digital computer system.
Intelligent subsystem interface for modular hardware system
NASA Technical Reports Server (NTRS)
Caffrey, Robert T. (Inventor); Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor)
2000-01-01
A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.
General survey of solid-waste management
NASA Technical Reports Server (NTRS)
Reese, T. G.; Wadle, R. C.
1974-01-01
Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.
Program document for Energy Systems Optimization Program 2 (ESOP2). Volume 1: Engineering manual
NASA Technical Reports Server (NTRS)
Hamil, R. G.; Ferden, S. L.
1977-01-01
The Energy Systems Optimization Program, which is used to provide analyses of Modular Integrated Utility Systems (MIUS), is discussed. Modifications to the input format to allow modular inputs in specified blocks of data are described. An optimization feature which enables the program to search automatically for the minimum value of one parameter while varying the value of other parameters is reported. New program option flags for prime mover analyses and solar energy for space heating and domestic hot water are also covered.
Tailor-made resealable micro(bio)reactors providing easy integration of in situ sensors
NASA Astrophysics Data System (ADS)
Viefhues, Martina; Sun, Shiwen; Valikhani, Donya; Nidetzky, Bernd; Vrouwe, Elwin X.; Mayr, Torsten; Bolivar, Juan M.
2017-06-01
Flow microreactors utilizing immobilized enzymes are of great interest in biocatalysis development. Most of the common devices are permanently closed, single-use systems, which allow limited physical and chemical surface modifications and evaluation methods. In this paper we will present resealable flowcells that overcome these limitations and moreover allow a quick and easy integration of sensor systems, because of the use of modular building blocks. The devices were utilized to study the enzyme activity of glucose oxidase immobilized on chemically modified glass surfaces under flow conditions, employing integrated optical oxygen sensors for on-line monitoring.
MIUS integration and subsystems test program
NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Shows, G. C.; Redding, T. E.; Wadle, R. C.; Keough, M. B.; Poradek, J. C.
1976-01-01
The MIUS Integration and Subsystems Test (MIST) facility at the Lyndon B. Johnson Space Center was completed and ready in May 1974 for conducting specific tests in direct support of the Modular Integrated Utility System (MIUS). A series of subsystems and integrated tests was conducted since that time, culminating in a series of 24-hour dynamic tests to further demonstrate the capabilities of the MIUS Program concepts to meet typical utility load profiles for a residential area. Results of the MIST Program are presented which achieved demonstrated plant thermal efficiencies ranging from 57 to 65 percent.
HDU Pressurized Excursion Module (PEM) Prototype Systems Integration
NASA Technical Reports Server (NTRS)
Gill, Tracy R.; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott
2010-01-01
The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a skunk-works approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process included establishment of design standards, negotiation of interfaces between subsystems, and scheduling fit checks and installation activities. A major tool used in integration was a coordinated effort to accurately model all the subsystems using CAD, so that conflicts were identified before physical components came together. Some of the major conclusions showed that up-front modularity that emerged as an artifact of construction, such as the eight 45 degree "pie slices" making up the module whose steel rib edges defined structural mounting and loading points, dictated much of the configurational interfaces between the major subsystems and workstations. Therefore, 'one of the lessons learned included the need to use modularity as a tool for organization in advance, and to work harder to prevent non-critical aspects of the platform from dictating the modularity that may eventually inform the fight system.
Technology evaluation of heating, ventilation, and air conditioning for MIUS application
NASA Technical Reports Server (NTRS)
Gill, W. L.; Keough, M. B.; Rippey, J. O.
1974-01-01
Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.
Technology survey of computer software as applicable to the MIUS project
NASA Technical Reports Server (NTRS)
Fulbright, B. E.
1975-01-01
Existing computer software, available from either governmental or private sources, applicable to modular integrated utility system program simulation is surveyed. Several programs and subprograms are described to provide a consolidated reference, and a bibliography is included. The report covers the two broad areas of design simulation and system simulation.
MIUS Integration and Subsystem Test (MIST) data system
NASA Technical Reports Server (NTRS)
Pringle, L. M.
1977-01-01
A data system for use in testing integrated subsystems of a modular integrated utility system (MIUS) is presented. The MIUS integration and subsystem test (MIST) data system is reviewed from its conception through its checkout and operation as the controlling portion of the MIST facility. The MIST data system provides a real time monitoring and control function that allows for complete evaluation of the performance of the mechanical and electrical subsystems, as well as controls the operation of the various components of the system. In addition to the aforementioned capabilities, the MIST data system provides computerized control of test operations such that minimum manpower is necessary to set up, operate, and shut down subsystems during test periods.
Demonstration Advanced Avionics System (DAAS) function description
NASA Technical Reports Server (NTRS)
Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.
1982-01-01
The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.
Servicer system demonstration plan and capability development
NASA Technical Reports Server (NTRS)
1987-01-01
An orbital maneuvering vehicle (OMV) front end kit is defined which is capable of performing in-situ fluid resupply and modular maintenance of free flying spacecraft based on the integrated orbital servicing system (IOSS) concept. The compatibility of the IOSS to perform gas and fluid umbilical connect and disconnect functions utilizing connect systems currently available or in development is addressed. A series of tasks involving on-orbit servicing and the engineering test unit (ETU) of the on-orbit service were studied. The objective is the advancement of orbital servicing by expanding the Spacecraft Servicing Demonstration Plan (SSDP) to include detail demonstration planning using the Multimission Modular Spacecraft (MMS) and upgrading the ETU control.
Programmable Automated Welding System (PAWS)
NASA Technical Reports Server (NTRS)
Kline, Martin D.
1994-01-01
An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.
MIUS wastewater technology evaluation
NASA Technical Reports Server (NTRS)
Poradek, J. C.
1976-01-01
A modular integrated utility system wastewater-treatment process is described. Research in the field of wastewater treatment is reviewed, treatment processes are specified and evaluated, and recommendations for system use are made. The treatment processes evaluated are in the broad categories of preparatory, primary, secondary, and tertiary treatment, physical-chemical processing, dissolved-solids removal, disinfection, sludge processing, and separate systems. Capital, operating, and maintenance costs are estimated, and extensive references are given.
Waste Management Information System (WMIS) User Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. E. Broz
2008-12-22
This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.
Brown, Kenneth Dewayne [Grain Valley, MO; Dunson, David [Kansas City, MO
2006-08-08
A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.
Brown, Kenneth Dewayne [Grain Valley, MO; Dunson, David [Kansas City, MO
2008-06-03
A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.
Technology survey of electrical power generation and distribution for MIUS application
NASA Technical Reports Server (NTRS)
Gill, W. L.; Redding, T. E.
1975-01-01
Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of constraints and design variables. Features shown in numerical examples include: variability of structural layout and overall shape geometry, static strength and stiffness constraints, local buckling failure, and vibration constraints.
Portable modular detection system
Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA
2009-10-13
Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.
Modular Power Standard for Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Gardner, Brent G.
2016-01-01
Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.
NASA Technical Reports Server (NTRS)
Esper, Jaime; Andary, Jim; Oberright, John; So, Maria; Wegner, Peter; Hauser, Joe
2004-01-01
Modular, Reconfigurable, and Rapid-response (MR(sup 2)) space systems represent a paradigm shift in the way space assets of all sizes are designed, manufactured, integrated, tested, and flown. This paper will describe the MR(sup 2) paradigm in detail, and will include guidelines for its implementation. The Remote Sensing Advanced Technology microsatellite (RSAT) is a proposed flight system test-bed used for developing and implementing principles and best practices for MR(sup 2) spacecraft, and their supporting infrastructure. The initial goal of this test-bed application is to produce a lightweight (approx. 100 kg), production-minded, cost-effective, and scalable remote sensing micro-satellite capable of high performance and broad applicability. Such applications range from future distributed space systems, to sensor-webs, and rapid-response satellite systems. Architectures will be explored that strike a balance between modularity and integration while preserving the MR(sup 2) paradigm. Modularity versus integration has always been a point of contention when approaching a design: whereas one-of-a-kind missions may require close integration resulting in performance optimization, multiple and flexible application spacecraft benefit &om modularity, resulting in maximum flexibility. The process of building spacecraft rapidly (< 7 days), requires a concerted and methodical look at system integration and test processes and pitfalls. Although the concept of modularity is not new and was first developed in the 1970s by NASA's Goddard Space Flight Center (Multi-Mission Modular Spacecraft), it was never modernized and was eventually abandoned. Such concepts as the Rapid Spacecraft Development Office (RSDO) became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years technology has advanced considerably, and the time is ripe to reconsider modularity in its own right, as enabler of R(sup 2), and as a key element of transformational systems. The MR2 architecture provides a competitive advantage over the old modular approach in its rapid response to market needs that are difficult to predict both from the perspectives of evolving technology, as well as mission and application requirements.
A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila.
Wang, Ji-Wu; Beck, Erin S; McCabe, Brian D
2012-01-01
Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues.
NASA Technical Reports Server (NTRS)
Watson, Steve; Orr, Jim; O'Neil, Graham
2004-01-01
A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.
NASA Astrophysics Data System (ADS)
Heavner, M. J.; Fatland, D. R.; Moeller, H.; Hood, E.; Schultz, M.
2007-12-01
The University of Alaska Southeast is currently implementing a sensor web identified as the SouthEast Alaska MOnitoring Network for Science, Telecommunications, Education, and Research (SEAMONSTER). From power systems and instrumentation through data management, visualization, education, and public outreach, SEAMONSTER is designed with modularity in mind. We are utilizing virtual earth infrastructures to enhance both sensor web management and data access. We will describe how the design philosophy of using open, modular components contributes to the exploration of different virtual earth environments. We will also describe the sensor web physical implementation and how the many components have corresponding virtual earth representations. This presentation will provide an example of the integration of sensor webs into a virtual earth. We suggest that IPY sensor networks and sensor webs may integrate into virtual earth systems and provide an IPY legacy easily accessible to both scientists and the public. SEAMONSTER utilizes geobrowsers for education and public outreach, sensor web management, data dissemination, and enabling collaboration. We generate near-real-time auto-updating geobrowser files of the data. In this presentation we will describe how we have implemented these technologies to date, the lessons learned, and our efforts towards greater OGC standard implementation. A major focus will be on demonstrating how geobrowsers have made this project possible.
Rapidly Deployed Modular Telemetry System
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2013-01-01
The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2005-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.
Sustainable, Reliable Mission-Systems Architecture
NASA Technical Reports Server (NTRS)
O'Neil, Graham; Orr, James K.; Watson, Steve
2007-01-01
A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.
Modular microfluidic systems using reversibly attached PDMS fluid control modules
NASA Astrophysics Data System (ADS)
Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin
2013-05-01
The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswami, Hariharan
The DISTINCT project research objective is to develop an innovative N-port power converter for a utility-scale PV system that is modular, compact and cost-effective and that will enable the integration of a high-frequency, high-voltage solid-state transformer. The novelty of the proposed research is the electrical power conversion architecture using an N-port converter system that replaces the output 60Hz transformer with an integrated high-frequency low-weight solid-state transformer reducing power electronics and BOS costs to meet SunShot goals through modularity and direct high-voltage interconnection. A challenge in direct integration with a 13.8kV line is the high voltage handling capacity of the convertersmore » combined with high efficiency operation. The front-end converter for each port is a Neutral-Point Clamped (NPC) Multi-Level dc-dc Dual-Active Bridge (ML-DAB) which allows Maximum Power Point Tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is an inverter with H-bridge configuration or NPC configuration. N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e. 13.8 kV). The cascaded inverters have the inherent advantage of using lower rated devices, smaller filters and low Total Harmonic Distortion (THD) required for PV grid interconnection. Our analysis and simulation results show improved performance on cost, efficiency, service life with zero downtime and THD. A comprehensive control scheme is presented to ensure the maximum power from each port and each phase are sent to the grid. A functional prototype of a 2-port converter with ML-DAB and cascaded H-bridges has been designed, built, and tested in a laboratory setup to verify the target technical metrics. The N-port converter system due to its modular structure with individual control per port can be easily adapted to integrate functionalities that go well beyond the conventional grid support functions and mitigates impacts of forecasted fast ramp downs or ramp ups and single-fault conditions by automatic reconfiguration of the output.« less
Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D
2008-01-01
The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420
Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration
NASA Technical Reports Server (NTRS)
Oeftering, Richard; Soeder, James F.; Beach, Ray
2014-01-01
The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.
AEGIS: a robust and scalable real-time public health surveillance system.
Reis, Ben Y; Kirby, Chaim; Hadden, Lucy E; Olson, Karen; McMurry, Andrew J; Daniel, James B; Mandl, Kenneth D
2007-01-01
In this report, we describe the Automated Epidemiological Geotemporal Integrated Surveillance system (AEGIS), developed for real-time population health monitoring in the state of Massachusetts. AEGIS provides public health personnel with automated near-real-time situational awareness of utilization patterns at participating healthcare institutions, supporting surveillance of bioterrorism and naturally occurring outbreaks. As real-time public health surveillance systems become integrated into regional and national surveillance initiatives, the challenges of scalability, robustness, and data security become increasingly prominent. A modular and fault tolerant design helps AEGIS achieve scalability and robustness, while a distributed storage model with local autonomy helps to minimize risk of unauthorized disclosure. The report includes a description of the evolution of the design over time in response to the challenges of a regional and national integration environment.
Development of Hydro-Informatic Modelling System and its Application
NASA Astrophysics Data System (ADS)
Wang, Z.; Liu, C.; Zheng, H.; Zhang, L.; Wu, X.
2009-12-01
The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.
A Modular Toolset for Recombination Transgenesis and Neurogenetic Analysis of Drosophila
Wang, Ji-Wu; Beck, Erin S.; McCabe, Brian D.
2012-01-01
Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues. PMID:22848718
NASA Technical Reports Server (NTRS)
Celino, V. A.
1977-01-01
An appendix providing the technical data required for computerized control and/or monitoring of selected MIST subsystems is presented. Specific computerized functions to be performed are as follows: (1) Control of the MIST heating load simulator and monitoring of the diesel engine generators' cooling system; (2) Control of the MIST heating load simulator and MIST heating subsystem including the heating load simulator; and (3) Control of the MIST air conditioning load simulator subsystem and the MIST air conditioning subsystem, including cold thermal storage and condenser water flows.
NASA Technical Reports Server (NTRS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-01-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
NASA Astrophysics Data System (ADS)
Pendley, R. D.; Scheidker, E. J.; Levitt, D. S.; Myers, C. R.; Werking, R. D.
1994-11-01
This analysis defines a complete set of ground support functions based on those practiced in real space flight operations during the on-orbit phase of a mission. These functions are mapped against ground support functions currently in use by NASA and DOD. Software components to provide these functions can be hosted on RISC-based work stations and integrated to provide a modular, integrated ground support system. Such modular systems can be configured to provide as much ground support functionality as desired. This approach to ground systems has been widely proposed and prototyped both by government institutions and commercial vendors. The combined set of ground support functions we describe can be used as a standard to evaluate candidate ground systems. This approach has also been used to develop a prototype of a modular, loosely-integrated ground support system, which is discussed briefly. A crucial benefit to a potential user is that all the components are flight-qualified, thus giving high confidence in their accuracy and reliability.
Modular Architecture for Integrated Model-Based Decision Support.
Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen
2018-01-01
Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.
MIUS community conceptual design study
NASA Technical Reports Server (NTRS)
Fulbright, B. E.
1976-01-01
The feasibility, practicality, and applicability of the modular integrated utility systems (MIUS) concept to a satellite new-community development with a population of approximately 100,000 were analyzed. Two MIUS design options, the 29-MIUS-unit (option 1) and the 8-MIUS-unit (option 2) facilities were considered. Each resulted in considerable resource savings when compared to a conventional utility system. Economic analyses indicated that the total cash outlay and operations and maintenance costs for these two options were considerably less than for a conventional system. Computer analyses performed in support of this study provided corroborative data for the study group. An environmental impact assessment was performed to determine whether the MIUS meets or will meet necessary environmental standards. The MIUS can provide improved efficiency in the conservation of natural resources while not adversely affecting the physical environment.
Advanced Modular Power Approach to Affordable, Supportable Space Systems
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond
2013-01-01
Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.
The New Southern FIA Data Compilation System
V. Clark Baldwin; Larry Royer
2001-01-01
In general, the major national Forest Inventory and Analysis annual inventory emphasis has been on data-base design and not on data processing and calculation of various new attributes. Two key programming techniques required for efficient data processing are indexing and modularization. The Southern Research Station Compilation System utilizes modular and indexing...
Toward modular biological models: defining analog modules based on referent physiological mechanisms
2014-01-01
Background Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project’s requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. Results We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. Conclusions This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research. PMID:25123169
Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony
2014-08-16
Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates the feasibility of PMMs and their usefulness across multiple model use cases. The pharmacodynamic response module developed here is robust to changes in model context and flexible in its ability to achieve validation targets in the face of considerable experimental uncertainty. Adopting the modularization methods presented here is expected to facilitate model reuse and integration, thereby accelerating the pace of biomedical research.
Telepathology: design of a modular system.
Brauchli, K; Christen, H; Meyer, P; Haroske, G; Meyer, W; Kunze, K D; Otto, R; Oberholzer, M
2000-01-01
Although telepathology systems have been developed for more than a decade, they are still not a widespread tool for routine diagnostic applications. Lacking interoperability, software that is not satisfying user needs as well as high costs have been identified as reasons. In this paper we would like to demonstrate that with a clear separation of the tasks required for a telepathology application, telepathology systems can be built in a modular way, where many modules can be implemented using standard software components. With such a modular design, systems can be easily adapted to changing user needs and new technological developments and it is easier to integrate modular systems into existing environments.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The paper describes a computer programming system designed to be used for methodology research as well as applications in structural optimization. The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities existing in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of contraints and design variables. Features shown in numerical examples include: (1) variability of structural layout and overall shape geometry, (2) static strength and stiffness constraints, (3) local buckling failure, and (4) vibration constraints. The paper concludes with a review of the further development trends of this programing system.
Integrated solar energy system optimization
NASA Astrophysics Data System (ADS)
Young, S. K.
1982-11-01
The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.
In-orbit assembly mission for the Space Solar Power Station
NASA Astrophysics Data System (ADS)
Cheng, ZhengAi; Hou, Xinbin; Zhang, Xinghua; Zhou, Lu; Guo, Jifeng; Song, Chunlin
2016-12-01
The Space Solar Power Station (SSPS) is a large spacecraft that utilizes solar power in space to supply power to an electric grid on Earth. A large symmetrical integrated concept has been proposed by the China Academy of Space Technology (CAST). Considering its large scale, the SSPS requires a modular design and unitized general interfaces that would be assembled in orbit. Facilities system supporting assembly procedures, which include a Reusable Heavy Lift Launch Vehicle, orbital transfer and space robots, is introduced. An integrated assembly scheme utilizing space robots to realize this platform SSPS concept is presented. This paper tried to give a preliminary discussion about the minimized time and energy cost of the assembly mission under best sequence and route This optimized assembly mission planning allows the SSPS to be built in orbit rapidly, effectively and reliably.
Modular microfluidics for point-of-care protein purifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millet, L. J.; Lucheon, J. D.; Standaert, R. F.
Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less
Modular microfluidics for point-of-care protein purifications.
Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J
2015-04-21
Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.
Modular microfluidics for point-of-care protein purifications
Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; ...
2015-01-01
Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less
Reliability studies of Integrated Modular Engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
NASA Technical Reports Server (NTRS)
Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.
1972-01-01
Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.
Reliability studies of integrated modular engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of Integrated Modular Engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Introduction to the computational structural mechanics testbed
NASA Technical Reports Server (NTRS)
Lotts, C. G.; Greene, W. H.; Mccleary, S. L.; Knight, N. F., Jr.; Paulson, S. S.; Gillian, R. E.
1987-01-01
The Computational Structural Mechanics (CSM) testbed software system based on the SPAR finite element code and the NICE system is described. This software is denoted NICE/SPAR. NICE was developed at Lockheed Palo Alto Research Laboratory and contains data management utilities, a command language interpreter, and a command language definition for integrating engineering computational modules. SPAR is a system of programs used for finite element structural analysis developed for NASA by Lockheed and Engineering Information Systems, Inc. It includes many complementary structural analysis, thermal analysis, utility functions which communicate through a common database. The work on NICE/SPAR was motivated by requirements for a highly modular and flexible structural analysis system to use as a tool in carrying out research in computational methods and exploring computer hardware. Analysis examples are presented which demonstrate the benefits gained from a combination of the NICE command language with a SPAR computational modules.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1992-01-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Astrophysics Data System (ADS)
Hoadley, A. W.; Porter, A. J.
1992-07-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Addressing System Reconfiguration and Incremental Integration within IMA Systems
NASA Astrophysics Data System (ADS)
Ferrero, F.; Rodríques, A. I.
2009-05-01
Recently space industry is paying special attention to Integrated Modular Avionics (IMA) systems due to the benefits that modular concepts could bring to the development of space applications, especially in terms of interoperability, flexibility and software reuse. Two important IMA goals to be highlighted are system reconfiguration, and incremental integration of new functionalities into a pre-existing system. The purpose of this paper is to show how system reconfiguration is conducted based on Allied Standard Avionics Architecture Council (ASAAC) concepts for IMA Systems. Besides, it aims to provide a proposal for addressing the incremental integration concept supported by our experience gained during European Technology Acquisition Program (ETAP) TDP1.7 programme. All these topics will be discussed taking into account safety issues and showing the blueprint as an appropriate technique to support these concepts.
An integrated knowledge system for wind tunnel testing - Project Engineers' Intelligent Assistant
NASA Technical Reports Server (NTRS)
Lo, Ching F.; Shi, George Z.; Hoyt, W. A.; Steinle, Frank W., Jr.
1993-01-01
The Project Engineers' Intelligent Assistant (PEIA) is an integrated knowledge system developed using artificial intelligence technology, including hypertext, expert systems, and dynamic user interfaces. This system integrates documents, engineering codes, databases, and knowledge from domain experts into an enriched hypermedia environment and was designed to assist project engineers in planning and conducting wind tunnel tests. PEIA is a modular system which consists of an intelligent user-interface, seven modules and an integrated tool facility. Hypermedia technology is discussed and the seven PEIA modules are described. System maintenance and updating is very easy due to the modular structure and the integrated tool facility provides user access to commercial software shells for documentation, reporting, or database updating. PEIA is expected to provide project engineers with technical information, increase efficiency and productivity, and provide a realistic tool for personnel training.
Technology Challenges and Opportunities for Very Large In-Space Structural Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2009-01-01
Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
A modular approach to detection and identification of defects in rough lumber
Sang Mook Lee; A. Lynn Abbott; Daniel L. Schmoldt
2001-01-01
This paper describes a prototype scanning system that can automatically identify several important defects on rough hardwood lumber. The scanning system utilizes 3 laser sources and an embedded-processor camera to capture and analyze profile and gray-scale images. The modular approach combines the detection of wane (the curved sides of a board, possibly containing...
NASA Technical Reports Server (NTRS)
Sayers, R. S.
1972-01-01
An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.
Anima: Modular Workflow System for Comprehensive Image Data Analysis
Rantanen, Ville; Valori, Miko; Hautaniemi, Sampsa
2014-01-01
Modern microscopes produce vast amounts of image data, and computational methods are needed to analyze and interpret these data. Furthermore, a single image analysis project may require tens or hundreds of analysis steps starting from data import and pre-processing to segmentation and statistical analysis; and ending with visualization and reporting. To manage such large-scale image data analysis projects, we present here a modular workflow system called Anima. Anima is designed for comprehensive and efficient image data analysis development, and it contains several features that are crucial in high-throughput image data analysis: programing language independence, batch processing, easily customized data processing, interoperability with other software via application programing interfaces, and advanced multivariate statistical analysis. The utility of Anima is shown with two case studies focusing on testing different algorithms developed in different imaging platforms and an automated prediction of alive/dead C. elegans worms by integrating several analysis environments. Anima is a fully open source and available with documentation at www.anduril.org/anima. PMID:25126541
Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components
NASA Astrophysics Data System (ADS)
Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian
2018-03-01
Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.
Long-range strategy for remote sensing: an integrated supersystem
NASA Astrophysics Data System (ADS)
Glackin, David L.; Dodd, Joseph K.
1995-12-01
Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.
Microreactor Development for Martian In-Situ Propellant Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Jamie D.; Brooks, Kriston P.; Wegeng, Robert S.
2007-01-30
The second part of the Martian In-situ Propellant Production (MIPPS) system reviews the development of the Sabatier Reactor (SR). The microchannel SR had integrated cooling channels as well as reaction channels. It was <100cc in volume. The reactor utilized a proprietary catalyst. When operated at 400oC 70-80% CO2 conversion was achieved which enabled ~0.0125 kg CH4/hr production, or 1/8th the target mission. The modular design of the microchannel reactors would enable simple scale up to full scale production for the proposed mission.
Solar energy/utility interface - The technical issues
NASA Astrophysics Data System (ADS)
Tabors, R. D.; White, D. C.
1982-01-01
The technical and economic factors affecting an interface between solar/wind power sources and utilities are examined. Photovoltaic, solar thermal, and wind powered systems are subject to stochastic local climatic variations and as such may require full back-up services from utilities, which are then in a position of having reserve generating power and power lines and equipment which are used only part time. The low reliability which has degraded some economies of scale formerly associated with large, centralized power plants, and the lowered rate of the increase in electricity usage is taken to commend the inclusion of power sources with a modular nature such as is available from solar derived electrical generation. Technical issues for maintaining the quality of grid power and also effectively metering purchased and supplied back-up power as part of a homeostatic system of energy control are discussed. It is concluded that economic considerations, rather than technical issues, bear the most difficulty in integrating solar technologies into the utility network.
Visuomotor coordination and cortical connectivity of modular motor learning.
Burgos, Pablo I; Mariman, Juan J; Makeig, Scott; Rivera-Lillo, Gonzalo; Maldonado, Pedro E
2018-05-15
The ability to transfer sensorimotor skill components to new actions and the capacity to use skill components from whole actions are characteristic of the adaptability of the human sensorimotor system. However, behavioral evidence suggests complex limitations for transfer after combined or modular learning of motor adaptations. Also, to date, only behavioral analysis of the consequences of the modular learning has been reported, with little understanding of the sensorimotor mechanisms of control and the interaction between cortical areas. We programmed a video game with distorted kinematic and dynamic features to test the ability to combine sensorimotor skill components learned modularly (composition) and the capacity to use separate sensorimotor skill components learned in combination (decomposition). We examined motor performance, eye-hand coordination, and EEG connectivity. When tested for integrated learning, we found that combined practice initially performed better than separated practice, but differences disappeared after integrated practice. Separate learning promotes fewer anticipatory control mechanisms (depending more on feedback control), evidenced in a lower gaze leading behavior and in higher connectivity between visual and premotor domains, in comparison with the combined practice. The sensorimotor system can acquire motor modules in a separated or integrated manner. However, the system appears to require integrated practice to coordinate the adaptations with the skill learning and the networks involved in the integrated behavior. This integration seems to be related to the acquisition of anticipatory mechanism of control and with the decrement of feedback control. © 2018 Wiley Periodicals, Inc.
Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki
2015-12-02
Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.
Nemitz, Markus P; Mihaylov, Pavel; Barraclough, Thomas W; Ross, Dylan; Stokes, Adam A
2016-12-01
In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules-or from an external power source-is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems.
NASA Astrophysics Data System (ADS)
Wang, Lei; Fan, Youping; Zhang, Dai; Ge, Mengxin; Zou, Xianbin; Li, Jingjiao
2017-09-01
This paper proposes a method to simulate a back-to-back modular multilevel converter (MMC) HVDC transmission system. In this paper we utilize an equivalent networks to simulate the dynamic power system. Moreover, to account for the performance of converter station, core components of model of the converter station gives a basic model of simulation. The proposed method is applied to an equivalent real power system.
Building blocks of a fish head: Developmental and variational modularity in a complex system.
Lehoux, Caroline; Cloutier, Richard
2015-11-01
Evolution of the vertebrate skull is developmentally constrained by the interactions among its anatomical systems, such as the dermatocranium and the sensory system. The interaction between the dermal bones and lateral line canals has been debated for decades but their morphological integration has never been tested. An ontogenetic series of 97 juvenile and adult Amia calva (Actinopterygii) was used to describe the patterning and modularity of sensory lateral line canals and their integration with supporting cranial bones. Developmental modules were tested for the otic canal and supratemporal commissure by computing correlations in the branching sequence of groups of pores. Landmarks were digitized on 25 specimens to test a priori hypotheses of variational and developmental modularity at the level of canals and dermal bones. Branching sequence suggests a specific patterning supported by significant positive correlations in the sequence of appearance of branches between bilateral sides. Differences in patterning between the otic canal and the supratemporal commissure and tests of modularity with geometric morphometrics suggest that both canals form distinct modules. The integration between bones and canals was insufficient to detect a module. However, both components were not independent. Groups of pores tended to disappear without affecting other groups of pores suggesting that they are quasi-independent units acting as modules. This study provides evidence of a hierarchical organization for the modular sensory system that could explain variation of pattern of canals among species and their association with dermal bones. © 2015 Wiley Periodicals, Inc.
Small reactor power systems for manned planetary surface bases
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.
Intelligent Insight or Blind Arrogance? The Development of an Integrated Information System.
ERIC Educational Resources Information Center
Dubois, Ronald; Freeman, Neil
1991-01-01
The first part in a two-part series about the development of an integrated management information system at Chaminade University (Hawaii) discusses decisions made about the system's integration and transportability, modularization, programing language, and productivity in the first five years. (MSE)
On the classification of weakly integral modular categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruillard, Paul; Galindo, César; Ng, Siu-Hung
In this paper we classify all modular categories of dimension 4m, where m is an odd square-free integer, and all rank 6 and rank 7 weakly integral modular categories. This completes the classification of weakly integral modular categories through rank 7. In particular, our results imply that all integral modular categories of rank at most 7 are pointed (that is, every simple object has dimension 1). All the non-integral (but weakly integral) modular categories of ranks 6 and 7 have dimension 4m, with m an odd square free integer, so their classification is an application of our main result. Themore » classification of rank 7 integral modular categories is facilitated by an analysis of the two group actions on modular categories: the Galois group of the field generated by the entries of the S-matrix and the group of invertible isomorphism classes of objects. We derive some valuable arithmetic consequences from these actions.« less
FunBlocks. A modular framework for AmI system development.
Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos
2012-01-01
The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios.
FunBlocks. A Modular Framework for AmI System Development
Baquero, Rafael; Rodríguez, José; Mendoza, Sonia; Decouchant, Dominique; Papis, Alfredo Piero Mateos
2012-01-01
The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems. FunBlocks provides a framework for the development of AmI systems through the integration of modules loosely joined by means of an event-driven middleware and a module and sensor/actuator catalog. The modular design of the FunBlocks framework allows the development of AmI systems which can be customized to a wide variety of usage scenarios. PMID:23112599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia
2015-04-26
Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less
NASA Technical Reports Server (NTRS)
Badger, Julia M.; Claunch, Charles; Mathis, Frank
2017-01-01
The Modular Autonomous Systems Technology (MAST) framework is a tool for building distributed, hierarchical autonomous systems. Originally intended for the autonomous monitoring and control of spacecraft, this framework concept provides support for variable autonomy, assume-guarantee contracts, and efficient communication between subsystems and a centralized systems manager. MAST was developed at NASA's Johnson Space Center (JSC) and has been applied to an integrated spacecraft example scenario.
Fluid design studies of integrated modular engine system
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce; Carek, Jerry
1993-01-01
A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.
Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.
Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R
2013-01-01
A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.
[Modularization by the open standard. (I)].
Hirano, H
2000-10-01
We are proceeding with the project called "Open LA21 Project" in the course of the clinical laboratory automation toward the 21st century. With the modular system that realizes integration, downsizing, a reasonable price, and is the future course in the clinical testing automation system as well, we aim to establish common standards among manufacturers as the only way to create user friendly market environments where the proper competition exists among the manufacturers. The common standards which are in preparation by the participating companies as "Open module system standards" are the standards which are going to be made public. They are intended to guarantee connection, compatibility of the products in conformity with the standards. In this project, we intend to realize the modular system that integrates each field, such as chemistry, hematology, coagulation/fibrinolysis, immunology, urinalysis in an early stage, and contribute positively to restructuring and upgrading the "raison d'etre" of the 21st century clinical testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kevin; Anasti, William; Fang, Yichuan
The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6more » – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.« less
Time Triggered Protocol (TTP) for Integrated Modular Avionics
NASA Technical Reports Server (NTRS)
Motzet, Guenter; Gwaltney, David A.; Bauer, Guenther; Jakovljevic, Mirko; Gagea, Leonard
2006-01-01
Traditional avionics computing systems are federated, with each system provided on a number of dedicated hardware units. Federated applications are physically separated from one another and analysis of the systems is undertaken individually. Integrated Modular Avionics (IMA) takes these federated functions and integrates them on a common computing platform in a tightly deterministic distributed real-time network of computing modules in which the different applications can run. IMA supports different levels of criticality in the same computing resource and provides a platform for implementation of fault tolerance through hardware and application redundancy. Modular implementation has distinct benefits in design, testing and system maintainability. This paper covers the requirements for fault tolerant bus systems used to provide reliable communication between IMA computing modules. An overview of the Time Triggered Protocol (TTP) specification and implementation as a reliable solution for IMA systems is presented. Application examples in aircraft avionics and a development system for future space application are covered. The commercially available TTP controller can be also be implemented in an FPGA and the results from implementation studies are covered. Finally future direction for the application of TTP and related development activities are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgopolova, Ekaterina A.; Ejegbavwo, Otega A.; Martin, Corey R.
Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures towards fundamental understanding of mechanisms involved in actinide integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials were built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with “unsaturated” metal nodes. The first successfulmore » attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt% in mono- and bi-actinide frameworks with minimal structural density. Overall, combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures, and therefore, shed light on possible optimization of nuclear waste administration.« less
Dolgopolova, Ekaterina A; Ejegbavwo, Otega A; Martin, Corey R; Smith, Mark D; Setyawan, Wahyu; Karakalos, Stavros G; Henager, Charles H; Zur Loye, Hans-Conrad; Shustova, Natalia B
2017-11-22
Growing necessity for efficient nuclear waste management is a driving force for development of alternative architectures toward fundamental understanding of mechanisms involved in actinide (An) integration inside extended structures. In this manuscript, metal-organic frameworks (MOFs) were investigated as a model system for engineering radionuclide containing materials through utilization of unprecedented MOF modularity, which cannot be replicated in any other type of materials. Through the implementation of recent synthetic advances in the MOF field, hierarchical complexity of An-materials was built stepwise, which was only feasible due to preparation of the first examples of actinide-based frameworks with "unsaturated" metal nodes. The first successful attempts of solid-state metathesis and metal node extension in An-MOFs are reported, and the results of the former approach revealed drastic differences in chemical behavior of extended structures versus molecular species. Successful utilization of MOF modularity also allowed us to structurally characterize the first example of bimetallic An-An nodes. To the best of our knowledge, through combination of solid-state metathesis, guest incorporation, and capping linker installation, we were able to achieve the highest Th wt % in mono- and biactinide frameworks with minimal structural density. Overall, the combination of a multistep synthetic approach with homogeneous actinide distribution and moderate solvothermal conditions could make MOFs an exceptionally powerful tool to address fundamental questions responsible for chemical behavior of An-based extended structures and, therefore, shed light on possible optimization of nuclear waste administration.
Overview of the Westinghouse Small Modular Reactor building layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of themore » plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)« less
Distributed utility technology cost, performance, and environmental characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Y; Adelman, S
1995-06-01
Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking informationmore » on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.« less
Modular, Reconfigurable, High-Energy Systems Stepping Stones
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Mankins, John C.
2005-01-01
Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.
Ray, Sumanta; Maulik, Ujjwal
2016-12-20
Detecting perturbation in modular structure during HIV-1 disease progression is an important step to understand stage specific infection pattern of HIV-1 virus in human cell. In this article, we proposed a novel methodology on integration of multiple biological information to identify such disruption in human gene module during different stages of HIV-1 infection. We integrate three different biological information: gene expression information, protein-protein interaction information and gene ontology information in single gene meta-module, through non negative matrix factorization (NMF). As the identified metamodules inherit those information so, detecting perturbation of these, reflects the changes in expression pattern, in PPI structure and in functional similarity of genes during the infection progression. To integrate modules of different data sources into strong meta-modules, NMF based clustering is utilized here. Perturbation in meta-modular structure is identified by investigating the topological and intramodular properties and putting rank to those meta-modules using a rank aggregation algorithm. We have also analyzed the preservation structure of significant GO terms in which the human proteins of the meta-modules participate. Moreover, we have performed an analysis to show the change of coregulation pattern of identified transcription factors (TFs) over the HIV progression stages.
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
Higgins, Victoria; Chan, Man Khun; Nieuwesteeg, Michelle; Hoffman, Barry R; Bromberg, Irvin L; Gornall, Doug; Randell, Edward; Adeli, Khosrow
2016-01-01
The Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) has recently established pediatric age- and sex-specific reference intervals for over 85 biochemical markers on the Abbott Architect system. Previously, CALIPER reference intervals for several biochemical markers were successfully transferred from Abbott assays to Roche, Beckman, Ortho, and Siemens assays. This study further broadens the CALIPER database by performing transference and verification for 52 biochemical assays on the Roche cobas 6000 and the Roche Modular P. Using CLSI C28-A3 and EP9-A2 guidelines, transference of the CALIPER reference intervals was attempted for 16 assays on the Roche cobas 6000 and 36 on the Modular P. Calculated reference intervals were further verified using 100 healthy CALIPER samples. Most assays showed strong correlation between assay systems and were transferable from Abbott to the Roche cobas 6000 (81%) and the Modular P (86%). Bicarbonate and magnesium were not transferable on either system and calcium and prealbumin were not transferable to the Modular P. Of the transferable analytes, 62% and 61% were verified on the cobas 6000 and the Modular P, respectively. This study extends the utility of the CALIPER database to two additional analytical systems, which facilitates the broad application of CALIPER reference intervals at pediatric centers utilizing Roche biochemical assays. Transference studies across different analytical platforms can later be collectively analyzed in an attempt to develop common reference intervals across all clinical chemistry instruments to harmonize laboratory test interpretation in diagnosis and monitoring of pediatric disease. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
A regenerative fuel cell system for modular space station integrated electrical power.
NASA Technical Reports Server (NTRS)
Wynveen, R. A.; Schubert, F. H.
1973-01-01
A regenerative fuel cell system (RFCS) for energy storage aboard the Modular Space Station (MSS) was selected over the battery technique because of lower cost, lower launch weight, lower required solar array area, and its ability to be integrated into the station's reaction control and environmental control and life support subsystems in addition to the electrical power subsystem. The total MSS energy storage requirement was met by dividing it into four equal modular RFCSs, each made up of a fuel cell subsystem, a water electrolysis subsystem, a gas accumulator subassembly, and a water tank subassembly. The weight of each of the four RFCSs varied from 4000 to 7000 lb with the latter being a more maintainable design. The specific energy ranged between 5.6 to 9.4 watt-hr/lb.
Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example
Nemitz, Markus P.; Mihaylov, Pavel; Barraclough, Thomas W.; Ross, Dylan
2016-01-01
Abstract In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules—or from an external power source—is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems. PMID:28078195
Solid-State Fault Current Limiter Development : Design and Testing Update of a 15kV SSCL Power Stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ram Adapa; Mr. Dante Piccone
2012-04-30
ABSTRACT The Solid-State Fault Current Limiter (SSCL) is a promising technology that can be applied to utility power delivery systems to address the problem of increasing fault currents associated with load growth. As demand continues to grow, more power is added to utility system either by increasing generator capacity or by adding distributed generators, resulting in higher available fault currents, often beyond the capabilities of the present infrastructure. The SSCL is power-electronics based equipment designed to work with the present utility system to address this problem. The SSCL monitors the line current and dynamically inserts additional impedance into the linemore » in the event of a fault being detected. The SSCL is based on a modular design and can be configured for 5kV through 69kV systems at nominal current ratings of 1000A to 4000A. Results and Findings This report provides the final test results on the development of 15kV class SSCL single phase power stack. The scope of work included the design of the modular standard building block sub-assemblies, the design and manufacture of the power stack and the testing of the power stack for the key functional tests of continuous current capability and fault current limiting action. Challenges and Objectives Solid-State Current Limiter technology impacts a wide spectrum of utility engineering and operating personnel. It addresses the problems associated with load growth both at Transmission and Distribution class networks. The design concept is pioneering in terms of developing the most efficient and compact power electronics equipment for utility use. The initial test results of the standard building blocks are promising. The independent laboratory tests of the power stack are promising. However the complete 3 phase system needs rigorous testing for performance and reliability. Applications, Values, and Use The SSCL is an intelligent power-electronics device which is modular in design and can provide current limiting or current interrupting capabilities. It can be applied to variety of applications from distribution class to transmission class power delivery grids and networks. It can also be applied to single major commercial and industrial loads and distributed generator supplies. The active switching of devices can be further utilized for protection of substation transformers. The stress on the system can be reduced substantially improving the life of the power system. It minimizes the voltage sag by speedy elimination of heavy fault currents and promises to be an important element of the utility power system. DOE Perspective This development effort is now focused on a 15kV system. This project will help mitigate the challenges of increasing available fault current. DOE has made a major contribution in providing a cost effective SSCL designed to integrate seamlessly into the Transmission and Distribution networks of today and the future. Approach SSCL development program for a 69kV SSCL was initiated which included the use of the Super GTO advanced semiconductor device which won the 2007 R&D100 Award. In the beginning, steps were identified to accomplish the economically viable design of a 69kV class Solid State Current Limiter that is extremely reliable, cost effective, and compact enough to be applied in urban transmission. The prime thrust in design and development was to encompass the 1000A and the 3000A ratings and provide a modular design to cover the wide range of applications. The focus of the project was then shifted to a 15kV class SSCL. The specifications for the 15kV power stack are reviewed. The design changes integrated into the 15kV power stack are discussed. In this Technical Update the complete project is summarized followed by a detailed test report. The power stack independent high voltage laboratory test requirements and results are presented. Keywords Solid State Current Limiter, SSCL, Fault Current Limiter, Fault Current Controller, Power electronics controller, Intelligent power-electronics Device, IED« less
Modular standards for emerging avionics technologies
NASA Astrophysics Data System (ADS)
Radcliffe, B.; Boaz, J.
The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.
Modular Wireless Data-Acquisition and Control System
NASA Technical Reports Server (NTRS)
Perotti, Jose; Lucena, Angel; Medelius, Pedro; Mata, Carlos; Eckhoff, Anthony; Blalock, Norman
2004-01-01
A modular wireless data-acquisition and control system, now in operation at Kennedy Space Center, offers high performance at relatively low cost. The system includes a central station and a finite number of remote stations that communicate with each other through low-power radio frequency (RF) links. Designed to satisfy stringent requirements for reliability, integrity of data, and low power consumption, this system could be reproduced and adapted to use in a broad range of settings.
Modular workcells: modern methods for laboratory automation.
Felder, R A
1998-12-01
Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Il S.; Yu, Yong H.; Son, Hyoung M.
2006-07-01
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with topmore » subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)« less
NASA Technical Reports Server (NTRS)
By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic
1994-01-01
This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, J.; Kucukboyaci, V. N.; Nguyen, L.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less
Modular avionics packaging standardization
NASA Astrophysics Data System (ADS)
Austin, M.; McNichols, J. K.
The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.
Integration of multi-interface conversion channel using FPGA for modular photonic network
NASA Astrophysics Data System (ADS)
Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.
2010-09-01
The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.
Modular, Reconfigurable, High-Energy Technology Development
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe
2006-01-01
The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed containing software models representing the technologies being matured in the laboratory demos. The testbed would have also included models for non-MRHE developed subsystems such as electric propulsion, so that end-to-end performance could have been assessed. This paper presents an overview of the MRHE Phase I activities at MSFC and its contractor partners. One of the major Phase I accomplishments is the assembly demonstration in the Lockheed Martin Advanced Technology Center (LMATC) Robot-Satellite facility, in which three robot-satellites successfully demonstrated rendezvous & docking, self-assembly, reconfiguration, adaptable GN&C, deployment, and interfaces between modules. Phase I technology maturation results from ENTECH include material recommendations for radiation hardened Stretched Lens Array (SLA) concentrator lenses, and a design concept and test results for a hi-voltage PV receiver. UAH's accomplishments include Supertube heatpipe test results, which support estimates of thermal conductivities at 30,000 times that of an equivalent silver rod. MSFC performed systems trades and developed a preliminary concept design for a 100kW-class modular reconfigurable solar electric propulsion transport vehicle, and Boeing Phantom Works in Huntsville performed assembly and rendezvous and docking trades. A concept animation video was produced by SAIC, wllich showed rendezvous and docking and SLA-square-rigger deployment in LEO.
MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit
Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R.; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer
2012-01-01
MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/. PMID:23082188
MOCAT: a metagenomics assembly and gene prediction toolkit.
Kultima, Jens Roat; Sunagawa, Shinichi; Li, Junhua; Chen, Weineng; Chen, Hua; Mende, Daniel R; Arumugam, Manimozhiyan; Pan, Qi; Liu, Binghang; Qin, Junjie; Wang, Jun; Bork, Peer
2012-01-01
MOCAT is a highly configurable, modular pipeline for fast, standardized processing of single or paired-end sequencing data generated by the Illumina platform. The pipeline uses state-of-the-art programs to quality control, map, and assemble reads from metagenomic samples sequenced at a depth of several billion base pairs, and predict protein-coding genes on assembled metagenomes. Mapping against reference databases allows for read extraction or removal, as well as abundance calculations. Relevant statistics for each processing step can be summarized into multi-sheet Excel documents and queryable SQL databases. MOCAT runs on UNIX machines and integrates seamlessly with the SGE and PBS queuing systems, commonly used to process large datasets. The open source code and modular architecture allow users to modify or exchange the programs that are utilized in the various processing steps. Individual processing steps and parameters were benchmarked and tested on artificial, real, and simulated metagenomes resulting in an improvement of selected quality metrics. MOCAT can be freely downloaded at http://www.bork.embl.de/mocat/.
The Design of Modular Web-Based Collaboration
NASA Astrophysics Data System (ADS)
Intapong, Ploypailin; Settapat, Sittapong; Kaewkamnerdpong, Boonserm; Achalakul, Tiranee
Online collaborative systems are popular communication channels as the systems allow people from various disciplines to interact and collaborate with ease. The systems provide communication tools and services that can be integrated on the web; consequently, the systems are more convenient to use and easier to install. Nevertheless, most of the currently available systems are designed according to some specific requirements and cannot be straightforwardly integrated into various applications. This paper provides the design of a new collaborative platform, which is component-based and re-configurable. The platform is called the Modular Web-based Collaboration (MWC). MWC shares the same concept as computer supported collaborative work (CSCW) and computer-supported collaborative learning (CSCL), but it provides configurable tools for online collaboration. Each tool module can be integrated into users' web applications freely and easily. This makes collaborative system flexible, adaptable and suitable for online collaboration.
MEMS Technology for Space Applications
NASA Technical Reports Server (NTRS)
vandenBerg, A.; Spiering, V. L.; Lammerink, T. S. J.; Elwenspoek, M.; Bergveld, P.
1995-01-01
Micro-technology enables the manufacturing of all kinds of components for miniature systems or micro-systems, such as sensors, pumps, valves, and channels. The integration of these components into a micro-electro-mechanical system (MEMS) drastically decreases the total system volume and mass. These properties, combined with the increasing need for monitoring and control of small flows in (bio)chemical experiments, makes MEMS attractive for space applications. The level of integration and applied technology depends on the product demands and the market. The ultimate integration is process integration, which results in a one-chip system. An example of process integration is a dosing system of pump, flow sensor, micromixer, and hybrid feedback electronics to regulate the flow. However, for many applications, a hybrid integration of components is sufficient and offers the advantages of design flexibility and even the exchange of components in the case of a modular set up. Currently, we are working on hybrid integration of all kinds of sensors (physical and chemical) and flow system modules towards a modular system; the micro total analysis system (micro TAS). The substrate contains electrical connections as in a printed circuit board (PCB) as well as fluid channels for a circuit channel board (CCB) which, when integrated, form a mixed circuit board (MCB).
Modular reservoir concept for MEMS-based transdermal drug delivery systems
NASA Astrophysics Data System (ADS)
Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.
2014-11-01
While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.
NASA Astrophysics Data System (ADS)
Conklin, John Albert
This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.
Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon
2017-03-06
Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.
Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel
NASA Technical Reports Server (NTRS)
Hunter, Don J.; Halpert, Gerald
1999-01-01
As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.
ERIC Educational Resources Information Center
Ezra, Elishai; Nahmias, Yaakov
2015-01-01
The advent of integrated multidisciplinary research has given rise to some of the most important breakthroughs of our time, but has also set significant challenges to the current educational paradigm. Current academic education often limits cross-discipline discussion, depends on close-ended problems, and restricts utilization of interdisciplinary…
Design/cost tradeoff studies. Earth Observatory Satellite system definition study (EOS)
NASA Technical Reports Server (NTRS)
1974-01-01
The results of design/cost tradeoff studies conducted during the Earth Observatory Satellite system definition studies are presented. The studies are concerned with the definition of a basic modular spacecraft capable of supporting a variety of operational and/or research and development missions, with the deployment either by conventional launch vehicles or by means of the space shuttle. The three levels investigated during the study are: (1) subsystem tradeoffs, (2) spacecraft tradeoffs, and (3) system tradeoffs. The range of requirements which the modular concept must span is discussed. The mechanical, thermal, power, data and electromagnetic compatibility aspects of modularity are analyzed. Other data are provided for the observatory design concept, the payloads, integration and test, the ground support equipment, and ground data management systems.
Anastasiadis, K; Antonitsis, P; Argiriadou, H; Deliopoulos, A; Grosomanidis, V; Tossios, P
2015-04-01
Minimally invasive extracorporeal circulation (MiECC) has been developed in an attempt to integrate all advances in cardiopulmonary bypass technology in one closed circuit that shows improved biocompatibility and minimizes the systemic detrimental effects of CPB. Despite well-evidenced clinical advantages, penetration of MiECC technology into clinical practice is hampered by concerns raised by perfusionists and surgeons regarding air handling together with blood and volume management during CPB. We designed a modular MiECC circuit, bearing an accessory circuit for immediate transition to an open system that can be used in every adult cardiac surgical procedure, offering enhanced safety features. We challenged this modular circuit in a series of 50 consecutive patients. Our results showed that the modular AHEPA circuit design offers 100% technical success rate in a cohort of random, high-risk patients who underwent complex procedures, including reoperation and valve and aortic surgery, together with emergency cases. This pilot study applies to the real world and prompts for further evaluation of modular MiECC systems through multicentre trials. © The Author(s) 2015.
Unified Simulation and Analysis Framework for Deep Space Navigation Design
NASA Technical Reports Server (NTRS)
Anzalone, Evan; Chuang, Jason; Olsen, Carrie
2013-01-01
As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.
The Modular Modeling System (MMS): A toolbox for water- and environmental-resources management
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.; Hay, L.E.; ,
2005-01-01
The increasing complexity of water- and environmental-resource problems require modeling approaches that incorporate knowledge from a broad range of scientific and software disciplines. To address this need, the U.S. Geological Survey (USGS) has developed the Modular Modeling System (MMS). MMS is an integrated system of computer software for model development, integration, and application. Its modular design allows a high level of flexibility and adaptability to enable modelers to incorporate their own software into a rich array of built-in models and modeling tools. These include individual process models, tightly coupled models, loosely coupled models, and fully- integrated decision support systems. A geographic information system (GIS) interface, the USGS GIS Weasel, has been integrated with MMS to enable spatial delineation and characterization of basin and ecosystem features, and to provide objective parameter-estimation methods for models using available digital data. MMS provides optimization and sensitivity-analysis tools to analyze model parameters and evaluate the extent to which uncertainty in model parameters affects uncertainty in simulation results. MMS has been coupled with the Bureau of Reclamation object-oriented reservoir and river-system modeling framework, RiverWare, to develop models to evaluate and apply optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. This decision support system approach has been developed, tested, and implemented in the Gunnison, Yakima, San Joaquin, Rio Grande, and Truckee River basins of the western United States. MMS is currently being coupled with the U.S. Forest Service model SIMulating Patterns and Processes at Landscape Scales (SIMPPLLE) to assess the effects of alternative vegetation-management strategies on a variety of hydrological and ecological responses. Initial development and testing of the MMS-SIMPPLLE integration is being conducted on the Colorado Plateau region of the western United Sates.
Product modular design incorporating preventive maintenance issues
NASA Astrophysics Data System (ADS)
Gao, Yicong; Feng, Yixiong; Tan, Jianrong
2016-03-01
Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.
Knowledge based translation and problem solving in an intelligent individualized instruction system
NASA Technical Reports Server (NTRS)
Jung, Namho; Biegel, John E.
1994-01-01
An Intelligent Individualized Instruction I(sup 3) system is being built to provide computerized instruction. We present the roles of a translator and a problem solver in an intelligent computer system. The modular design of the system provides for easier development and allows for future expansion and maintenance. CLIPS modules and classes are utilized for the purpose of the modular design and inter module communications. CLIPS facts and rules are used to represent the system components and the knowledge base. CLIPS provides an inferencing mechanism to allow the I(sup 3) system to solve problems presented to it in English.
Modelling Biogeochemistry Across Domains with The Modular System for Shelves and Coasts (MOSSCO)
NASA Astrophysics Data System (ADS)
Burchard, H.; Lemmen, C.; Hofmeister, R.; Knut, K.; Nasermoaddeli, M. H.; Kerimoglu, O.; Koesters, F.; Wirtz, K.
2016-02-01
Coastal biogeochemical processes extend from the atmosphere through the water column and the epibenthos into the ocean floor, laterally they are determined by freshwater inflows and open water exchange, and in situ they are mediated by physical, chemical and biological interactions. We use the new Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de) to obtain an integrated view of coastal biogeochemistry. MOSSCO is a coupling framework that builds on existing coupling technologies like the Earth System Modeling Framework (ESMF, for domain-coupling) and the Framework for Aquatic Biogeochemistry (FABM, for process coupling). MOSSCO facilitates the communication about and the integration of existing and of new process models into a threedimensional regional coastal modelling context. In the MOSSCO concept, the integrating framework imposes very few restrictions on contributed data or models; in fact, there is no distinction made between data and models. The few requirements are: (1) principle coupleability, i.e. access to I/O and timing information in submodels, which has recently been referred to as the Basic Model Interface (BMI) (2) open source/open data access and licencing and (3) communication of metadata, such as spatiotemporal information, naming conventions, and physical units. These requirements suffice to integrate different models and data sets into the MOSSCO infrastructure and subsequently built a modular integrated modeling tool that can span a diversity of processes and domains. Here, we demonstrate a MOSSCO application for the southern North Sea, where atmospheric deposition, biochemical processing in the water column and the ocean floor, lateral nutrient replenishment, and wave- and current-dependent remobilization from sediments are accounted for by modular components. A multi-annual simulation yields realistic succession of the spatial gradients of dissolved nutrients, of chlorophyll variability and gross primary production rates and of benthic denitrification rates for this intriguing coastal system.
Modular experimental platform for science and applications
NASA Technical Reports Server (NTRS)
Hill, A. S.
1984-01-01
A modularized, standardized spacecraft bus, known as MESA, suitable for a variety of science and applications missions is discussed. The basic bus consists of a simple structural arrangement housing attitude control, telemetry/command, electrical power, propulsion and thermal control subsystems. The general arrangement allows extensive subsystem adaptation to mission needs. Kits provide for the addition of tape recorders, increased power levels and propulsion growth. Both 3-axis and spin stabilized flight proven attitude control subsystems are available. The MESA bus can be launched on Ariane, as a secondary payload for low cost, or on the STS with a PAM-D or other suitable upper stage. Multi-spacecraft launches are possible with either booster. Launch vehicle integration is simple and cost-effective. The low cost of the MESA bus is achieved by the extensive utilization of existing subsystem design concepts and equipment, and efficient program management and test integration techniques.
Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation
NASA Astrophysics Data System (ADS)
Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.
1981-10-01
The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.
Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation
NASA Technical Reports Server (NTRS)
Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.
1981-01-01
The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.
Lee, Seungjae; Park, Jaeseong; Kwak, Euishin; Shon, Sudeok; Kang, Changhoon; Choi, Hosoon
2017-01-01
Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured. PMID:28772622
Accurate, predictable, repeatable micro-assembly technology for polymer, microfluidic modules.
Lee, Tae Yoon; Han, Kyudong; Barrett, Dwhyte O; Park, Sunggook; Soper, Steven A; Murphy, Michael C
2018-01-01
A method for the design, construction, and assembly of modular, polymer-based, microfluidic devices using simple micro-assembly technology was demonstrated to build an integrated fluidic system consisting of vertically stacked modules for carrying out multi-step molecular assays. As an example of the utility of the modular system, point mutation detection using the ligase detection reaction (LDR) following amplification by the polymerase chain reaction (PCR) was carried out. Fluid interconnects and standoffs ensured that temperatures in the vertically stacked reactors were within ± 0.2 C° at the center of the temperature zones and ± 1.1 C° overall. The vertical spacing between modules was confirmed using finite element models (ANSYS, Inc., Canonsburg, PA) to simulate the steady-state temperature distribution for the assembly. Passive alignment structures, including a hemispherical pin-in-hole, a hemispherical pin-in-slot, and a plate-plate lap joint, were developed using screw theory to enable accurate exactly constrained assembly of the microfluidic reactors, cover sheets, and fluid interconnects to facilitate the modular approach. The mean mismatch between the centers of adjacent through holes was 64 ± 7.7 μm, significantly reducing the dead volume necessary to accommodate manufacturing variation. The microfluidic components were easily assembled by hand and the assembly of several different configurations of microfluidic modules for executing the assay was evaluated. Temperatures were measured in the desired range in each reactor. The biochemical performance was comparable to that obtained with benchtop instruments, but took less than 45 min to execute, half the time.
NASA Technical Reports Server (NTRS)
Seasly, Elaine
2015-01-01
To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.
Auto-Generated Semantic Processing Services
NASA Technical Reports Server (NTRS)
Davis, Rodney; Hupf, Greg
2009-01-01
Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.
Electronic control circuits: A compilation
NASA Technical Reports Server (NTRS)
1973-01-01
A compilation of technical R and D information on circuits and modular subassemblies is presented as a part of a technology utilization program. Fundamental design principles and applications are given. Electronic control circuits discussed include: anti-noise circuit; ground protection device for bioinstrumentation; temperature compensation for operational amplifiers; hybrid gatling capacitor; automatic signal range control; integrated clock-switching control; and precision voltage tolerance detector.
Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S
2012-02-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.
Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.
2012-01-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659
2010-02-01
System (ACABA) MA 1973 Armored Vest M1955 Body Armor- Armored Vest M1955 USMC M1955 Armored Vest and the Proposed Titanium Nylon Improved... Laser - MILES Multiple Integrated Laser Engagement System in an Operational Environment (MILES) MA 1980 SAW M249 Rifle- 5.56mm- Machine Gun- SAW M249...Weapon System MA 1993 MCF MCF Modular Causeway Ferry (MCF) MA 1993 MDS NBC- Decon- MDS Modular Decontamination System (MDS) MA 1993 MELIOS Laser
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2017-01-01
SUMMARY To facilitate investigation of diverse rodent behaviours in rodents’ home cages, we have developed an integrated modular platform, the SmartCage™ system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner.The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables.The SmartCage™ detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods.In conclusion, the SmartCage™ system provides an automated and accurate tool to quantify various rodent behaviours in a ‘stress-free’ environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. PMID:22540540
Modular telerobot control system for accident response
NASA Astrophysics Data System (ADS)
Anderson, Richard J. M.; Shirey, David L.
1999-08-01
The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.
The Modular Modeling System (MMS): User's Manual
Leavesley, G.H.; Restrepo, Pedro J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.
1996-01-01
The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, Charlie; Crook, Jerry
1997-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.
2013-09-30
the performance of operational and climate models, as well as for understanding local problems such as pollutant dispersal and biological...Mapping System (SWIMS) and Modular Microstructure Profiler (MMP) Matthew H. Alford Applied Physics Laboratory 1013 NE 40th Street Seattle, WA...in Juan de Fuca Submarine Canyon . Measurements were successful. In the next few weeks we will be testing MMP from our local work boat, the R/V Jack
NASA Astrophysics Data System (ADS)
Chakon, Ofir; Or, Yizhar
2017-08-01
Underactuated robotic locomotion systems are commonly represented by nonholonomic constraints where in mixed systems, these constraints are also combined with momentum evolution equations. Such systems have been analyzed in the literature by exploiting symmetries and utilizing advanced geometric methods. These works typically assume that the shape variables are directly controlled, and obtain the system's solutions only via numerical integration. In this work, we demonstrate utilization of the perturbation expansion method for analyzing a model example of mixed locomotion system—the twistcar toy vehicle, which is a variant of the well-studied roller-racer model. The system is investigated by assuming small-amplitude oscillatory inputs of either steering angle (kinematic) or steering torque (mechanical), and explicit expansions for the system's solutions under both types of actuation are obtained. These expressions enable analyzing the dependence of the system's dynamic behavior on the vehicle's structural parameters and actuation type. In particular, we study the reversal in direction of motion under steering angle oscillations about the unfolded configuration, as well as influence of the choice of actuation type on convergence properties of the motion. Some of the findings are demonstrated qualitatively by reporting preliminary motion experiments with a modular robotic prototype of the vehicle.
Clinical application of a modular ankle robot for stroke rehabilitation.
Forrester, Larry W; Roy, Anindo; Goodman, Ronald N; Rietschel, Jeremy; Barton, Joseph E; Krebs, Hermano Igo; Macko, Richard F
2013-01-01
Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance.
Clinical application of a modular ankle robot for stroke rehabilitation
Forrester, Larry W.; Roy, Anindo; Goodman, Ronald N.; Rietschel, Jeremy; Barton, Joseph E.; Krebs, Hermano Igo; Macko, Richard F.
2015-01-01
Background Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Objectives Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. Methods An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Results Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Conclusions Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance. PMID:23949045
Standardized Modular Power Interfaces for Future Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard
2015-01-01
Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but an essential part of defining physical building blocks of modular power. This presentation describes the AMPS projects progress towards standardized modular power interfaces.
Integrating Innovation: Keeping the Leading Edge
2015-08-01
access inside Army com- mand posts. Commercial innovation also can be built directly into our con- tract structure. Just as today’s smartphones ...moving to publish detailed guidance this year on how gov- ernment and industry partners will comply with the Modular Open Systems Architecture...which outlines design principles and interface characteristics allowing for modular hardware While the Army cannot predict the future or design
Modular closed-loop control of diabetes.
Patek, S D; Magni, L; Dassau, E; Karvetski, C; Toffanin, C; De Nicolao, G; Del Favero, S; Breton, M; Man, C Dalla; Renard, E; Zisser, H; Doyle, F J; Cobelli, C; Kovatchev, B P
2012-11-01
Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called "artificial pancreas," modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient's basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability.
Morphological Integration of the Modern Human Mandible during Ontogeny
Polanski, Joshua M.
2011-01-01
Craniofacial integration is prevalent in anatomical modernity research. Little investigation has been done on mandibular integration. Integration patterns were quantified in a longitudinal modern human sample of mandibles. This integration pattern is one of modularization between the alveolar and muscle attachment regions, but with age-specific differences. The ascending ramus and nonalveolar portions of the corpus remain integrated throughout ontogeny. The alveolar region is dynamic, becoming modularized according to the needs of the mandible at a particular developmental stage. Early in ontogeny, this modularity reflects the need for space for the developing dentition; later, modularity is more reflective of mastication. The overall pattern of modern human mandibular integration follows the integration pattern seen in other mammals, including chimpanzees. Given the differences in craniofacial integration patterns between humans and chimpanzees, but the similarities in mandibular integration, it is likely that the mandible has played the more passive role in hominin skull evolution. PMID:21716741
Experimenting Maintenance of Flight Software in an Integrated Modular Avionics for Space
NASA Astrophysics Data System (ADS)
Hardy, Johan; Laroche, Thomas; Creten, Philippe; Parisis, Paul; Hiller, Martin
2014-08-01
This paper presents an experiment of Flight Software partitioning in an Integrated Modular Avionics for Space (IMA-SP) system. This experiment also tackles the maintenance aspects of IMA-SP systems. The presented case study is PROBA-2 Flight Software. The paper addresses and discusses the following subjects: On-Board Software Maintenance in IMA- SP, boot strategy for Time and Space Partitioning, considerations about the ground segment related to On-Board Software Maintenance in IMA-SP, and architectural impacts of Time and Space Partitioning for PROBA software's. Finally, this paper presents the results and the achievements of the study and it appeals at further perspectives for IMA-SP and Time and Space Partitioning.
Preliminary candidate advanced avionics system for general aviation
NASA Technical Reports Server (NTRS)
Mccalla, T. M.; Grismore, F. L.; Greatline, S. E.; Birkhead, L. M.
1977-01-01
An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered.
Numerical orbit generators of artificial earth satellites
NASA Astrophysics Data System (ADS)
Kugar, H. K.; Dasilva, W. C. C.
1984-04-01
A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.
Automated multiplex genome-scale engineering in yeast
Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin
2017-01-01
Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
Integrated decision support systems for regulatory applications benefit from standardindustry practices such as code reuse, test-driven development, and modularization. Theseapproaches make meeting the federal government’s goals of transparency, efficiency, and quality assurance ...
Hagen, R. W.; Ambos, H. D.; Browder, M. W.; Roloff, W. R.; Thomas, L. J.
1979-01-01
The Clinical Physiologic Research System (CPRS) developed from our experience in applying computers to medical instrumentation problems. This experience revealed a set of applications with a commonality in data acquisition, analysis, input/output, and control needs that could be met by a portable system. The CPRS demonstrates a practical methodology for integrating commercial instruments with distributed modular elements of local design in order to make facile responses to changing instrumentation needs in clinical environments. ImagesFigure 3
NASA Technical Reports Server (NTRS)
Esper, Jaime
2004-01-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem "module" or "box" components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic "upgrade infrastructure" needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of prequalified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
NASA Astrophysics Data System (ADS)
Esper, Jaime
2005-02-01
In order to execute the Vision for Space Exploration, we must find ways to reduce cost, system complexity, design, build, and test times, and at the same time increase flexibility to satisfy multiple functions. Modular, Adaptive, Reconfigurable System (MARS) technologies promise to set the stage for the delivery of system elements that form the building blocks of increasingly ambitious missions involving humans and robots. Today, space systems are largely specialized and built on a case-by-case basis. The notion of modularity however, is nothing new to NASA. The 1970's saw the development of the Multi-Mission Modular spacecraft (MMS). From 1980 to 1992 at least six satellites were built under this paradigm, and included such Goddard Space Flight Center missions as SSM, EUVE, UARS, and Landsat 4 and 5. Earlier versions consisted of standard subsystem ``module'' or ``box'' components that could be replaced within a structure based on predefined form factors. Although the primary motivation for MMS was faster/cheaper integration and test, standardization of interfaces, and ease of incorporating new subsystem technology, it lacked the technology maturity and programmatic ``upgrade infrastructure'' needed to satisfy varied mission requirements, and ultimately it lacked user buy-in. Consequently, it never evolved and was phased out. Such concepts as the Rapid Spacecraft Development Office (RSDO) with its regularly updated catalogue of pre-qualified busses became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years since MMS inception, technology has advanced considerably and now modularity can be extended beyond the traditional MMS module or box to cover levels of integration, from the chip, card, box, subsystem, to the space system and to the system-of-systems. This paper will present the MARS architecture, cast within the historical context of MMS. Its application will be highlighted by comparing a state-of-the-art point design vs. a MARS-enabled lunar mission, as a representative robotic case design.
Individual differences and time-varying features of modular brain architecture.
Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong
2017-05-15
Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
InSb arrays with CCD readout for 1.0- to 5.5-microns infrared applications
NASA Technical Reports Server (NTRS)
Phillips, J. D.; Scorso, J. B.; Thom, R. D.
1976-01-01
There were two approaches for fabricating indium antimonide (InSb) arrays with CCD readout discussed. The hybrid approach integrated InSb detectors and silicon CCDs in a modular assembly via an advanced interconnection technology. In the monolithic approach, the InSb infrared detectors and the CCD readout were integrated on the same InSb chip. Both approaches utilized intrinsic (band-to-band) photodetection with the attendant advantages over extrinsic detectors. The status of each of these detector readout concepts, with pertinent performance characteristics, was presented.
González-José, Rolando; Charlin, Judith
2012-01-01
The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as "near decomposable units" in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way.
González-José, Rolando; Charlin, Judith
2012-01-01
The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way. PMID:23094104
NASA Technical Reports Server (NTRS)
Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.
1991-01-01
This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.
Modular Heat Exchanger With Integral Heat Pipe
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
1992-01-01
Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.
An introduction to the Astro Edge solar array
NASA Technical Reports Server (NTRS)
Spence, B. R.; Marks, G. W.
1994-01-01
The Astro Edge solar array is a new and innovative low concentrator power generating system which has been developed for applications requiring high specific power, high stiffness, low risk, light modular construction which utilizes conventional materials and technology, and standard photovoltaic solar cells and laydown processes. Mechanisms, restraint/release devices, wiring harnesses, substrates, and support structures are designed to be simple, functional, lightweight, and modular. A brief overview of the Astro Edge solar array is discussed.
Telerobotic controller development
NASA Technical Reports Server (NTRS)
Otaguro, W. S.; Kesler, L. O.; Land, Ken; Rhoades, Don
1987-01-01
To meet NASA's space station's needs and growth, a modular and generic approach to robotic control which provides near-term implementation with low development cost and capability for growth into more autonomous systems was developed. The method uses a vision based robotic controller and compliant hand integrated with the Remote Manipulator System arm on the Orbiter. A description of the hardware and its system integration is presented.
Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin
2012-07-01
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.
A "place n play" modular pump for portable microfluidic applications.
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-03-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device.
A “place n play” modular pump for portable microfluidic applications
Li, Gang; Luo, Yahui; Chen, Qiang; Liao, Lingying; Zhao, Jianlong
2012-01-01
This paper presents an easy-to-use, power-free, and modular pump for portable microfluidic applications. The pump module is a degassed particle desorption polydimethylsiloxane (PDMS) slab with an integrated mesh-shaped chamber, which can be attached on the outlet port of microfluidic device to absorb the air in the microfluidic system and then to create a negative pressure for driving fluid. Different from the existing monolithic degassed PDMS pumps that are generally restricted to limited pumping capacity and are only compatible with PDMS-based microfluidic devices, this pump can offer various possible configures of pumping power by varying the geometries of the pump or by combining different pump modules and can also be employed in any material microfluidic devices. The key advantage of this pump is that its operation only requires the user to place the degassed PDMS slab on the outlet ports of microfluidic devices. To help design pumps with a suitable pumping performance, the effect of pump module geometry on its pumping capacity is also investigated. The results indicate that the performance of the degassed PDMS pump is strongly dependent on the surface area of the pump chamber, the exposure area and the volume of the PDMS pump slab. In addition, the initial volume of air in the closed microfluidic system and the cross-linking degree of PDMS also affect the performance of the degassed PDMS pump. Finally, we demonstrated the utility of this modular pumping method by applying it to a glass-based microfluidic device and a PDMS-based protein crystallization microfluidic device. PMID:22685507
Threat assessment and sensor management in a modular architecture
NASA Astrophysics Data System (ADS)
Page, S. F.; Oldfield, J. P.; Islip, S.; Benfold, B.; Brandon, R.; Thomas, P. A.; Stubbins, D. J.
2016-10-01
Many existing asset/area protection systems, for example those deployed to protect critical national infrastructure, are comprised of multiple sensors such as EO/IR, radar, and Perimeter Intrusion Detection Systems (PIDS), loosely integrated with a central Command and Control (C2) system. Whilst some sensors provide automatic event detection and C2 systems commonly provide rudimentary multi-sensor rule based alerting, the performance of such systems is limited by the lack of deep integration and autonomy. As a result, these systems have a high degree of operator burden. To address these challenges, an architectural concept termed "SAPIENT" was conceived. SAPIENT is based on multiple Autonomous Sensor Modules (ASMs) connected to a High-Level Decision Making Module (HLDMM) that provides data fusion, situational awareness, alerting, and sensor management capability. The aim of the SAPIENT concept is to allow for the creation of a surveillance system, in a modular plug-and-play manner, that provides high levels of autonomy, threat detection performance, and reduced operator burden. This paper considers the challenges associated with developing an HLDMM aligned with the SAPIENT concept, through the discussion of the design of a realised HLDMM. Particular focus is drawn to how high levels of system level performance can be achieved whilst retaining modularity and flexibility. A number of key aspects of our HLDMM are presented, including an integrated threat assessment and sensor management framework, threat sequence matching, and ASM trust modelling. The results of real-world testing of the HLDMM, in conjunction with multiple Laser, Radar, and EO/IR sensors, in representative semi-urban environments, are discussed.
Evolving BioAssay Ontology (BAO): modularization, integration and applications
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets. PMID:25093074
Evolving BioAssay Ontology (BAO): modularization, integration and applications.
Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets.
Modular Rocket Engine Control Software (MRECS)
NASA Technical Reports Server (NTRS)
Tarrant, C.; Crook, J.
1998-01-01
The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.
Modular, Autonomous Command and Data Handling Software with Built-In Simulation and Test
NASA Technical Reports Server (NTRS)
Cuseo, John
2012-01-01
The spacecraft system that plays the greatest role throughout the program lifecycle is the Command and Data Handling System (C&DH), along with the associated algorithms and software. The C&DH takes on this role as cost driver because it is the brains of the spacecraft and is the element of the system that is primarily responsible for the integration and interoperability of all spacecraft subsystems. During design and development, many activities associated with mission design, system engineering, and subsystem development result in products that are directly supported by the C&DH, such as interfaces, algorithms, flight software (FSW), and parameter sets. A modular system architecture has been developed that provides a means for rapid spacecraft assembly, test, and integration. This modular C&DH software architecture, which can be targeted and adapted to a wide variety of spacecraft architectures, payloads, and mission requirements, eliminates the current practice of rewriting the spacecraft software and test environment for every mission. This software allows missionspecific software and algorithms to be rapidly integrated and tested, significantly decreasing time involved in the software development cycle. Additionally, the FSW includes an Onboard Dynamic Simulation System (ODySSy) that allows the C&DH software to support rapid integration and test. With this solution, the C&DH software capabilities will encompass all phases of the spacecraft lifecycle. ODySSy is an on-board simulation capability built directly into the FSW that provides dynamic built-in test capabilities as soon as the FSW image is loaded onto the processor. It includes a six-degrees- of-freedom, high-fidelity simulation that allows complete closed-loop and hardware-in-the-loop testing of a spacecraft in a ground processing environment without any additional external stimuli. ODySSy can intercept and modify sensor inputs using mathematical sensor models, and can intercept and respond to actuator commands. ODySSy integration is unique in that it allows testing of actual mission sequences on the flight vehicle while the spacecraft is in various stages of assembly, test, and launch operations all without any external support equipment or simulators. The ODySSy component of the FSW significantly decreases the time required for integration and test by providing an automated, standardized, and modular approach to integrated avionics and component interface and functional verification. ODySSy further provides the capability for on-orbit support in the form of autonomous mission planning and fault protection.
NASA Technical Reports Server (NTRS)
Thate, Robert
2012-01-01
The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped onto durable, commercially available drywall carts for storage and/or transportation. This method of storage and transportation makes it very convenient and safe when handling large quantities of modules.
Modular Closed-Loop Control of Diabetes
Magni, L.; Dassau, E.; Hughes-Karvetski, C.; Toffanin, C.; De Nicolao, G.; Del Favero, S.; Breton, M.; Man, C. Dalla; Renard, E.; Zisser, H.; Doyle, F. J.; Cobelli, C.; Kovatchev, B. P.
2015-01-01
Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called “artificial pancreas,” modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient’s basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability. PMID:22481809
Environmental Systems Test Stand
NASA Astrophysics Data System (ADS)
Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.
A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.
Gyrocopter-Based Remote Sensing Platform
NASA Astrophysics Data System (ADS)
Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.
2015-04-01
In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.
Integrated Solar-Energy-Harvesting and -Storage Device
NASA Technical Reports Server (NTRS)
whitacre, Jay; Fleurial, Jean-Pierre; Mojarradi, Mohammed; Johnson, Travis; Ryan, Margaret Amy; Bugga, Ratnakumar; West, William; Surampudi, Subbarao; Blosiu, Julian
2004-01-01
A modular, integrated, completely solid-state system designed to harvest and store solar energy is under development. Called the power tile, the hybrid device consists of a photovoltaic cell, a battery, a thermoelectric device, and a charge-control circuit that are heterogeneously integrated to maximize specific energy capacity and efficiency. Power tiles could be used in a variety of space and terrestrial environments and would be designed to function with maximum efficiency in the presence of anticipated temperatures, temperature gradients, and cycles of sunlight and shadow. Because they are modular in nature, one could use a single power tile or could construct an array of as many tiles as needed. If multiple tiles are used in an array, the distributed and redundant nature of the charge control and distribution hardware provides an extremely fault-tolerant system. The figure presents a schematic view of the device.
Xiao, Bailu; Hang, Lijun; Mei, Jun; ...
2014-09-04
This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less
Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin
2018-01-01
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
Burgio, Gaëtan; Baylac, Michel; Heyer, Evelyne; Montagutelli, Xavier
2012-01-01
Morphological integration and modularity within semi-autonomous modules are essential mechanisms for the evolution of morphological traits. However, the genetic makeup responsible for the control of variational modularity is still relatively unknown. In our study, we tested the hypothesis that the genetic variation for mandible shape clustered into two morphogenetic components: the alveolar group and the ascending ramus. We used the mouse as a model system to investigate genetics determinants of mandible shape. To do this, we used a combination of geometric morphometric tools and a set of 18 interspecific recombinant congenic strains (IRCS) derived from the distantly related species, Mus spretus SEG/Pas and Mus musculus C57BL/6. Quantitative trait loci (QTL) analysis comparing mandible morphometry between the C57BL/6 and the IRCSs identified 42 putative SEG/Pas segments responsible for the genetic variation. The magnitude of the QTL effects was dependent on the proportion of SEG/Pas genome inherited. Using a multivariate correlation coefficient adapted for modularity assessment and a two-block partial least squares analysis to explore the morphological integration, we found that these QTL clustered into two well-integrated morphogenetic groups, corresponding to the ascending ramus and the alveolar region. Together, these results provide evidence that the mouse mandible is subjected to genetic coordination in a modular manner. PMID:23050236
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
NASA Astrophysics Data System (ADS)
Fehr, Thorsten; Herrmann, Manfred
2015-06-01
The proposed Quartet Theory of Human Emotions by Koelsch and co-workers [11] adumbrates evidence from various scientific sources to integrate and assign the psychological concepts of 'affect' and 'emotion' to four brain circuits or to four neuronal core systems for affect-processing in the brain. The authors differentiate between affect and emotion and assign several facultative, or to say modular, psychological domains and principles of information processing, such as learning and memory, antecedents of affective activity, emotion satiation, cognitive complexity, subjective quality feelings, degree of conscious appraisal, to different affect systems. Furthermore, they relate orbito-frontal brain structures to moral affects as uniquely human, and the hippocampus to attachment-related affects. An additional feature of the theory describes 'emotional effector-systems' for motor-related processes (e.g., emotion-related actions), physiological arousal, attention and memory that are assumed to be cross-linked with the four proposed affect systems. Thus, higher principles of emotional information processing, but also modular affect-related issues, such as moral and attachment related affects, are thought to be handled by these four different physiological sub-systems that are on the other side assumed to be highly interwoven at both physiological and functional levels. The authors also state that the proposed sub-systems have many features in common, such as the selection and modulation of biological processes related to behaviour, perception, attention and memory. The latter aspect challenges an ongoing discussion about the mind-body problem: To which degree do the proposed sub-systems 'sufficiently' cover the processing of complex modular or facultative emotional/affective and/or cognitive phenomena? There are current models and scientific positions that almost completely reject the idea that modular psychological phenomena are handled by a distinct selection of regional brain systems or neural modules, but rather suggest highly complex and cross-linked neural networks individually shaped by livelong learning and experience [e.g., 6,7,10,13]. This holds in particular true for complex emotional phenomena such as aggression or empathy in social interaction [8,13]. It thus remains questionable, whether - beyond primary sensory and motor-processing - a small number of modular sub-systems sufficiently cover the organisation of specific phenomenological and social features of perception and behaviour [7,10].
Autonomous, agile micro-satellites and supporting technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breitfeller, E; Dittman, M D; Gaughan, R J
1999-07-19
This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSatmore » with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail.« less
Nanosatellite program at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, D.A.; Kern, J.P.; Schoeneman, J.L.
1999-11-11
The concept of building extremely small satellites which, either independently or as a collective, can perform missions which are comparable to their much larger cousins, has fascinated scientists and engineers for several years now. In addition to the now commonplace microelectronic integrated circuits, the more recent advent of technologies such as photonic integrated circuits (PIC's) and micro-electromechanical systems (MEMS) have placed such a goal within their grasp. Key to the acceptance of this technology will be the ability to manufacture these very small satellites in quantity without sacrificing their performance or versatility. In support of its nuclear treaty verification, proliferationmore » monitoring and other remote sensing missions, Sandia National laboratories has had a 35-year history of providing highly capable systems, densely packaged for unintrusive piggyback missions on government satellites. As monitoring requirements have become more challenging and remote sensing technologies become more sophisticated, packaging greater capability into these systems has become a requirement. Likewise, dwindling budgets are pushing satellite programs toward smaller and smaller platforms, reinforcing the need for smaller, cheaper satellite systems. In the next step of its miniaturization plan, Sandia has begun development of technologies for a highly integrated miniature satellite. The focus of this development is to achieve nanosat or smaller dimensions while maintaining significant capability utilizing semiconductor wafer-level integration and, at the same time promoting affordability through modular generic construction.« less
Hasske, Eva; Beil, Michael; Keller, Katrin
2017-01-01
Objective: The aim of the Medical Academy Waldbreitbach is to connect individual and organisational requirements in order to promote an appropriate and multi-locational development of medical competency in the face of the continuously evolving challenges of clinical practice. Integral processes in this are the reduction of organisational learning barriers and the successive integration of competency-oriented learning events in the structures of personnel and organisational development. The modular system for the further development of doctors’ skills serves here as a supplementary and recommendation system for both existing curricula and those defined by regulatory organisations and professional associations. Methods: The Medical Academy’s modular system has a two-dimensional structure. In addition to the axis of biography orientation, the model orients itself around issues relating to the needs of a doctor in any individual professional position, as well as with whom he comes into contact and where his primary challenges lie. In order to achieve better integration in day-to-day routine and a needs-specific orientation of content, the modular system provides a combination of “one, two or three day and two- three- or four-hour training units” depending upon the topic. The transfer of experiential knowledge with the aid of practical exercises is a central element of the didactic model. Results: Through the combined use of summative and formative assessment, the significance of a dialogue-orientated approach in both planning and in the organisational process was highlighted. In feedback discussions and quantitative evaluation sheets, participants identified in particular cross-generational knowledge sharing as a central element for the development of personal values alongside the interdisciplinary transfer of knowledge. The combination of specialist and interdisciplinary topics, for example on team processes or communication, is frequently emphasised, indicating that this had been taught insufficiently and impractically during medical school. Longitudinal evaluations of continuous course units support this, so that the reinforcement of informal learning processes through feedback and exchange of experience is established as an effective and integral learning pattern within the modular system. Conclusion: The of the modular system of the Medical Academy Waldbreitbach – as an institution of the Marienhaus Hospitals Ltd. – is to develop the knowledge, ability and motivation of doctors both individually and professionally. Here, an equally high demand is placed upon the advancement of individual dispositions, attitudes and values, as well as on specialised topics, in order to promote/develop solutions-based and overall medical activity. PMID:29085885
Hasske, Eva; Beil, Michael; Keller, Katrin
2017-01-01
Objective: The aim of the Medical Academy Waldbreitbach is to connect individual and organisational requirements in order to promote an appropriate and multi-locational development of medical competency in the face of the continuously evolving challenges of clinical practice. Integral processes in this are the reduction of organisational learning barriers and the successive integration of competency-oriented learning events in the structures of personnel and organisational development. The modular system for the further development of doctors' skills serves here as a supplementary and recommendation system for both existing curricula and those defined by regulatory organisations and professional associations. Methods: The Medical Academy's modular system has a two-dimensional structure. In addition to the axis of biography orientation, the model orients itself around issues relating to the needs of a doctor in any individual professional position, as well as with whom he comes into contact and where his primary challenges lie. In order to achieve better integration in day-to-day routine and a needs-specific orientation of content, the modular system provides a combination of "one, two or three day and two- three- or four-hour training units" depending upon the topic. The transfer of experiential knowledge with the aid of practical exercises is a central element of the didactic model. Results: Through the combined use of summative and formative assessment, the significance of a dialogue-orientated approach in both planning and in the organisational process was highlighted. In feedback discussions and quantitative evaluation sheets, participants identified in particular cross-generational knowledge sharing as a central element for the development of personal values alongside the interdisciplinary transfer of knowledge. The combination of specialist and interdisciplinary topics, for example on team processes or communication, is frequently emphasised, indicating that this had been taught insufficiently and impractically during medical school. Longitudinal evaluations of continuous course units support this, so that the reinforcement of informal learning processes through feedback and exchange of experience is established as an effective and integral learning pattern within the modular system. Conclusion: The of the modular system of the Medical Academy Waldbreitbach - as an institution of the Marienhaus Hospitals Ltd. - is to develop the knowledge, ability and motivation of doctors both individually and professionally. Here, an equally high demand is placed upon the advancement of individual dispositions, attitudes and values, as well as on specialised topics, in order to promote/develop solutions-based and overall medical activity.
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
Run Environment and Data Management for Earth System Models
NASA Astrophysics Data System (ADS)
Widmann, H.; Lautenschlager, M.; Fast, I.; Legutke, S.
2009-04-01
The Integrating Model and Data Infrastructure (IMDI) developed and maintained by the Model and Data Group (M&D) comprises the Standard Compile Environment (SCE) and the Standard Run Environment (SRE). The IMDI software has a modular design, which allows to combine and couple a suite of model components and as well to execute the tasks independently and on various platforms. Furthermore the modular structure enables the extension to new model combinations and new platforms. The SRE presented here enables the configuration and performance of earth system model experiments from model integration up to storage and visualization of data. We focus on recently implemented tasks such as synchronous data base filling, graphical monitoring and automatic generation of meta data in XML forms during run time. As well we address the capability to run experiments in heterogeneous IT environments with different computing systems for model integration, data processing and storage. These features are demonstrated for model configurations and on platforms used in current or upcoming projects, e.g. MILLENNIUM or IPCC AR5.
NASA Astrophysics Data System (ADS)
Lemmen, Carsten; Hofmeister, Richard; Klingbeil, Knut; Hassan Nasermoaddeli, M.; Kerimoglu, Onur; Burchard, Hans; Kösters, Frank; Wirtz, Kai W.
2018-03-01
Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de), a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF) and on the Framework for Aquatic Biogeochemical Models (FABM). It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.
Engineering Design Handbook: Timing Systems and Components
1975-12-01
23-1 23-2 Modular Components 23-2 23—3 Integrated Circuits 23—2 23—4 Matching Techniques 23-5 23-5 DC and AC Systems 23-7 23-6 Hybrid...Assembly Illustrating Modular Design . . 23—4 23-3 Characteristics of the Source 23—6 23—4 Characteristics of the Load 23—6 23—5 Matching Source and...4-1 INTRODUCTION There is a continuous demand for increased precision and accuracy in frequency control. Today fast time pulses are used in
NASA Astrophysics Data System (ADS)
Fajingbesi, F. E.; Midi, N. S.; Khan, S.
2017-06-01
Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.
Modular Integrated Stackable Layers (MISL) 1.1 Design Specification. Design Guideline Document
NASA Technical Reports Server (NTRS)
Yim, Hester J.
2012-01-01
This document establishes the design guideline of the Modular Instrumentation Data Acquisition (MI-DAQ) system in utilization of several designs available in EV. The MI- DAQ provides the options to the customers depending on their system requirements i.e. a 28V interface power supply, a low power battery operated system, a low power microcontroller, a higher performance microcontroller, a USB interface, a Ethernet interface, a wireless communication, various sensor interfaces, etc. Depending on customer's requirements, the each functional board can be stacked up from a bottom level of power supply to a higher level of stack to provide user interfaces. The stack up of boards are accomplished by a predefined and standardized power bus and data bus connections which are included in this document along with other physical and electrical guidelines. This guideline also provides information for a new design options. This specification is the product of a collaboration between NASA/JSC/EV and Texas A&M University. The goal of the collaboration is to open source the specification and allow outside entities to design, build, and market modules that are compatible with the specification. NASA has designed and is using numerous modules that are compatible to this specification. A limited number of these modules will also be released as open source designs to support the collaboration. The released designs are listed in the Applicable Documents.
Neutronics Analysis of SMART Small Modular Reactor using SRAC 2006 Code
NASA Astrophysics Data System (ADS)
Ramdhani, Rahmi N.; Prastyo, Puguh A.; Waris, Abdul; Widayani; Kurniadi, Rizal
2017-07-01
Small modular reactors (SMRs) are part of a new generation of nuclear reactor being developed worldwide. One of the advantages of SMR is the flexibility to adopt the advanced design concepts and technology. SMART (System integrated Modular Advanced ReacTor) is a small sized integral type PWR with a thermal power of 330 MW that has been developed by KAERI (Korea Atomic Energy Research Institute). SMART core consists of 57 fuel assemblies which are based on the well proven 17×17 array that has been used in Korean commercial PWRs. SMART is soluble boron free, and the high initial reactivity is mainly controlled by burnable absorbers. The goal of this study is to perform neutronics evaluation of SMART core with UO2 as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2006 code with JENDL 3.3 as nuclear data library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
Teleoperated Modular Robots for Lunar Operations
NASA Technical Reports Server (NTRS)
Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason
2004-01-01
Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot software and hardware, particularly automation software. Ready access to these simulators could provide opportunities for contest-driven development ala RoboCup (http://www.robocup.org/). Licensing of module designs could provide opportunities in the toy market and for spin-off applications.
Control, responses and modularity of cellular regulatory networks: a control analysis perspective.
Bruggeman, F J; Snoep, J L; Westerhoff, H V
2008-11-01
Cells adapt to changes in environmental conditions through the concerted action of signalling, gene expression and metabolic subsystems. The authors will discuss a theoretical framework addressing such integrated systems. This 'hierarchical analysis' was first developed as an extension to a metabolic control analysis. It builds on the phenomenon that often the communication between signalling, gene expression and metabolic subsystems is almost exclusively via regulatory interactions and not via mass flow interactions. This allows for the treatment of the said subsystems as 'levels' in a hierarchical view of the organisation of the molecular reaction network of cells. Such a hierarchical approach has as a major advantage that levels can be analysed conceptually in isolation of each other (from a local intra-level perspective) and at a later stage integrated via their interactions (from a global inter-level perspective). Hereby, it allows for a modular approach with variable scope. A number of different approaches have been developed for the analysis of hierarchical systems, for example hierarchical control analysis and modular response analysis. The authors, here, review these methods and illustrate the strength of these types of analyses using a core model of a system with gene expression, metabolic and signal transduction levels.
Integrated phenotypes: understanding trait covariation in plants and animals
Armbruster, W. Scott; Pélabon, Christophe; Bolstad, Geir H.; Hansen, Thomas F.
2014-01-01
Integration and modularity refer to the patterns and processes of trait interaction and independence. Both terms have complex histories with respect to both conceptualization and quantification, resulting in a plethora of integration indices in use. We review briefly the divergent definitions, uses and measures of integration and modularity and make conceptual links to allometry. We also discuss how integration and modularity might evolve. Although integration is generally thought to be generated and maintained by correlational selection, theoretical considerations suggest the relationship is not straightforward. We caution here against uncontrolled comparisons of indices across studies. In the absence of controls for trait number, dimensionality, homology, development and function, it is difficult, or even impossible, to compare integration indices across organisms or traits. We suggest that care be invested in relating measurement to underlying theory or hypotheses, and that summative, theory-free descriptors of integration generally be avoided. The papers that follow in this Theme Issue illustrate the diversity of approaches to studying integration and modularity, highlighting strengths and pitfalls that await researchers investigating integration in plants and animals. PMID:25002693
Mission Control Technologies: A New Way of Designing and Evolving Mission Systems
NASA Technical Reports Server (NTRS)
Trimble, Jay; Walton, Joan; Saddler, Harry
2006-01-01
Current mission operations systems are built as a collection of monolithic software applications. Each application serves the needs of a specific user base associated with a discipline or functional role. Built to accomplish specific tasks, each application embodies specialized functional knowledge and has its own data storage, data models, programmatic interfaces, user interfaces, and customized business logic. In effect, each application creates its own walled-off environment. While individual applications are sometimes reused across multiple missions, it is expensive and time consuming to maintain these systems, and both costly and risky to upgrade them in the light of new requirements or modify them for new purposes. It is even more expensive to achieve new integrated activities across a set of monolithic applications. These problems impact the lifecycle cost (especially design, development, testing, training, maintenance, and integration) of each new mission operations system. They also inhibit system innovation and evolution. This in turn hinders NASA's ability to adopt new operations paradigms, including increasingly automated space systems, such as autonomous rovers, autonomous onboard crew systems, and integrated control of human and robotic missions. Hence, in order to achieve NASA's vision affordably and reliably, we need to consider and mature new ways to build mission control systems that overcome the problems inherent in systems of monolithic applications. The keys to the solution are modularity and interoperability. Modularity will increase extensibility (evolution), reusability, and maintainability. Interoperability will enable composition of larger systems out of smaller parts, and enable the construction of new integrated activities that tie together, at a deep level, the capabilities of many of the components. Modularity and interoperability together contribute to flexibility. The Mission Control Technologies (MCT) Project, a collaboration of multiple NASA Centers, led by NASA Ames Research Center, is building a framework to enable software to be assembled from flexible collections of components and services.
Flexible distributed architecture for semiconductor process control and experimentation
NASA Astrophysics Data System (ADS)
Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.
1997-01-01
Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.
VEVI: A Virtual Reality Tool For Robotic Planetary Explorations
NASA Technical Reports Server (NTRS)
Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik
1994-01-01
The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.
Robot Electronics Architecture
NASA Technical Reports Server (NTRS)
Garrett, Michael; Magnone, Lee; Aghazarian, Hrand; Baumgartner, Eric; Kennedy, Brett
2008-01-01
An electronics architecture has been developed to enable the rapid construction and testing of prototypes of robotic systems. This architecture is designed to be a research vehicle of great stability, reliability, and versatility. A system according to this architecture can easily be reconfigured (including expanded or contracted) to satisfy a variety of needs with respect to input, output, processing of data, sensing, actuation, and power. The architecture affords a variety of expandable input/output options that enable ready integration of instruments, actuators, sensors, and other devices as independent modular units. The separation of different electrical functions onto independent circuit boards facilitates the development of corresponding simple and modular software interfaces. As a result, both hardware and software can be made to expand or contract in modular fashion while expending a minimum of time and effort.
Earth Observatory Satellite system definition study. Report 7: EOS system definition report
NASA Technical Reports Server (NTRS)
1974-01-01
The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.
Shadowfax: Moving mesh hydrodynamical integration code
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert
2016-05-01
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
Methods and Systems for Authorizing an Effector Command in an Integrated Modular Environment
NASA Technical Reports Server (NTRS)
Sunderland, Dean E. (Inventor); Ahrendt, Terry J. (Inventor); Moore, Tim (Inventor)
2013-01-01
Methods and systems are provided for authorizing a command of an integrated modular environment in which a plurality of partitions control actions of a plurality of effectors is provided. A first identifier, a second identifier, and a third identifier are determined. The first identifier identifies a first partition of the plurality of partitions from which the command originated. The second identifier identifies a first effector of the plurality of effectors for which the command is intended. The third identifier identifies a second partition of the plurality of partitions that is responsible for controlling the first effector. The first identifier and the third identifier are compared to determine whether the first partition is the same as the second partition for authorization of the command.
Developing an Integration Infrastructure for Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan
2014-01-01
Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.
Scheduling Independent Partitions in Integrated Modular Avionics Systems
Du, Chenglie; Han, Pengcheng
2016-01-01
Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013
Integrated multisensor perimeter detection systems
NASA Astrophysics Data System (ADS)
Kent, P. J.; Fretwell, P.; Barrett, D. J.; Faulkner, D. A.
2007-10-01
The report describes the results of a multi-year programme of research aimed at the development of an integrated multi-sensor perimeter detection system capable of being deployed at an operational site. The research was driven by end user requirements in protective security, particularly in threat detection and assessment, where effective capability was either not available or prohibitively expensive. Novel video analytics have been designed to provide robust detection of pedestrians in clutter while new radar detection and tracking algorithms provide wide area day/night surveillance. A modular integrated architecture based on commercially available components has been developed. A graphical user interface allows intuitive interaction and visualisation with the sensors. The fusion of video, radar and other sensor data provides the basis of a threat detection capability for real life conditions. The system was designed to be modular and extendable in order to accommodate future and legacy surveillance sensors. The current sensor mix includes stereoscopic video cameras, mmWave ground movement radar, CCTV and a commercially available perimeter detection cable. The paper outlines the development of the system and describes the lessons learnt after deployment in a pilot trial.
Ontology driven integration platform for clinical and translational research
Mirhaji, Parsa; Zhu, Min; Vagnoni, Mattew; Bernstam, Elmer V; Zhang, Jiajie; Smith, Jack W
2009-01-01
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described. PMID:19208190
A Modular Aerospike Engine Design Using Additive Manufacturing
NASA Technical Reports Server (NTRS)
Peugeot, John; Garcia, Chance; Burkhardt, Wendel
2014-01-01
A modular aerospike engine concept has been developed with the objective of demonstrating the viability of the aerospike design using additive manufacturing techniques. The aerospike system is a self-compensating design that allows for optimal performance over the entire flight regime and allows for the lowest possible mass vehicle designs. At low altitudes, improvements in Isp can be traded against chamber pressure, staging, and payload. In upper stage applications, expansion ratio and engine envelope can be traded against nozzle efficiency. These features provide flexibility to the System Designer optimizing a complete vehicle stage. The aerospike concept is a good example of a component that has demonstrated improved performance capability, but traditionally has manufacturing requirements that are too expensive and complex to use in a production vehicle. In recent years, additive manufacturing has emerged as a potential method for improving the speed and cost of building geometrically complex components in rocket engines. It offers a reduction in tooling overhead and significant improvements in the integration of the designer and manufacturing method. In addition, the modularity of the engine design provides the ability to perform full scale testing on the combustion devices outside of the full engine configuration. The proposed design uses a hydrocarbon based gas-generator cycle, with plans to take advantage of existing powerhead hardware while focusing DDT&E resources on manufacturing and sub-system testing of the combustion devices. The major risks for the modular aerospike concept lie in the performance of the propellant feed system, the structural integrity of the additive manufactured components, and the aerodynamic efficiency of the exhaust flow.
Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems
NASA Astrophysics Data System (ADS)
Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.
1982-09-01
Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.
NASA Astrophysics Data System (ADS)
Seamon, E.; Gessler, P. E.; Flathers, E.
2015-12-01
The creation and use of large amounts of data in scientific investigations has become common practice. Data collection and analysis for large scientific computing efforts are not only increasing in volume as well as number, the methods and analysis procedures are evolving toward greater complexity (Bell, 2009, Clarke, 2009, Maimon, 2010). In addition, the growth of diverse data-intensive scientific computing efforts (Soni, 2011, Turner, 2014, Wu, 2008) has demonstrated the value of supporting scientific data integration. Efforts to bridge this gap between the above perspectives have been attempted, in varying degrees, with modular scientific computing analysis regimes implemented with a modest amount of success (Perez, 2009). This constellation of effects - 1) an increasing growth in the volume and amount of data, 2) a growing data-intensive science base that has challenging needs, and 3) disparate data organization and integration efforts - has created a critical gap. Namely, systems of scientific data organization and management typically do not effectively enable integrated data collaboration or data-intensive science-based communications. Our research efforts attempt to address this gap by developing a modular technology framework for data science integration efforts - with climate variation as the focus. The intention is that this model, if successful, could be generalized to other application areas. Our research aim focused on the design and implementation of a modular, deployable technology architecture for data integration. Developed using aspects of R, interactive python, SciDB, THREDDS, Javascript, and varied data mining and machine learning techniques, the Modular Data Response Framework (MDRF) was implemented to explore case scenarios for bio-climatic variation as they relate to pacific northwest ecosystem regions. Our preliminary results, using historical NETCDF climate data for calibration purposes across the inland pacific northwest region (Abatzoglou, Brown, 2011), show clear ecosystems shifting over a ten-year period (2001-2011), based on multiple supervised classifier methods for bioclimatic indicators.
Recent Technology Advances in Distributed Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis
2017-01-01
This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.
Modular open RF architecture: extending VICTORY to RF systems
NASA Astrophysics Data System (ADS)
Melber, Adam; Dirner, Jason; Johnson, Michael
2015-05-01
Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with welldefined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves significant size, weight and power (SWaP) savings by allowing hardware such as power amplifiers and antennas to be shared across systems. By separating signal conditioning from the processing that implements the actual radio application, MORA exposes previously inaccessible architecture points, providing system integrators with the flexibility to insert third-party capabilities to address technical challenges and emerging requirements. MORA leverages the Vehicular Integration for Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)/EW Interoperability (VICTORY) framework. This paper concludes by discussing how MORA, VICTORY and other standards such as OpenVPX are being leveraged by the U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development, and Engineering Center (CERDEC) to define a converged architecture enabling rapid technology insertion, interoperability and reduced SWaP.
Application of polyimide actuator rod seals
NASA Technical Reports Server (NTRS)
Watermann, A. W.; Gay, B. F.; Robinson, E. D.; Srinath, S. K.; Nelson, W. G.
1972-01-01
Development of polyimide two-stage hydraulic actuator rod seals for application in high-performance aircraft was accomplished. The significant portion of the effort was concentrated on optimization of the chevron and K-section second-stage seal geometries to satisfy the requirements for operation at 450 K (350 F) with dynamic pressure loads varying between 200 psig steady-state and 1500 psig impulse cycling. Particular significance was placed on reducing seal gland dimension by efficiently utilizing the fatigue allowables of polyimide materials. Other objectives included investigation of pressure balancing techniques for first-stage polyimide rod seals for 4000 psig 450 K(350 F) environment and fabrication of a modular retainer for the two-stage combination. Seals were fabricated in 0.0254 m (1.0in.) and 0.0635 m (2.5in.) sizes and tested for structural integrity, frictional resistance, and endurance life. Test results showed that carefully designed second stages using polyimides could be made to satisfy the dynamic return pressure requirements of applications in high-performance aircraft. High wear under full system pressure indicated that further research is necessary to obtain an acceptable first-stage design. The modular retainer was successfully tested and showed potential for new actuator applications.
Integrated modular teaching in dermatology for undergraduate students: A novel approach
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-01-01
Context: Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. Aims: The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. Settings and Design: This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. Materials and Methods: A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. Results: It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Conclusions: Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation. PMID:25165641
Integrated modular teaching in dermatology for undergraduate students: A novel approach.
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-07-01
Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation.
Bischoff, Guido; Böröcz, Zoltan; Proll, Christian; Kleinheinz, Johannes; von Bally, Gert; Dirksen, Dieter
2007-08-01
Optical topometric 3D sensors such as laser scanners and fringe projection systems allow detailed digital acquisition of human body surfaces. For many medical applications, however, not only the current shape is important, but also its changes, e.g., in the course of surgical treatment. In such cases, time delays of several months between subsequent measurements frequently occur. A modular 3D coordinate measuring system based on the fringe projection technique is presented that allows 3D coordinate acquisition including calibrated color information, as well as the detection and visualization of deviations between subsequent measurements. In addition, parameters describing the symmetry of body structures are determined. The quantitative results of the analysis may be used as a basis for objective documentation of surgical therapy. The system is designed in a modular way, and thus, depending on the object of investigation, two or three cameras with different capabilities in terms of resolution and color reproduction can be utilized to optimize the set-up.
Terrain following of arbitrary surfaces using a high intensity LED proximity sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
1992-01-01
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
Modular Expression Language for Ordinary Differential Equation Editing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, Robert C.
MELODEEis a system for describing systems of initial value problem ordinary differential equations, and a compiler for the language that produces optimized code to integrate the differential equations. Features include rational polynomial approximation for expensive functions and automatic differentiation for symbolic jacobians
NASA Technical Reports Server (NTRS)
Turner, D. N.
1981-01-01
The reusable manned Space Shuttle has made new and innovative payload planning a reality and opened the door to a variety of payload concepts formerly unavailable in routine space operations. In order to define the payload characteristics and program strategies, current Shuttle-oriented programs are presented: NASA's Space Telescope, the Long Duration Exposure Facility, the West German Shuttle Pallet Satellite, and the Goddard Space Flight Center's Multimission Modular Spacecraft. Commonality of spacecraft design and adaptation for specific mission roles minimizes payload program development and STS integration costs. Commonality of airborne support equipment assures the possibility of multiple program space operations with the Shuttle. On-orbit maintenance and repair was suggested for the module and system levels. Program savings from 13 to over 50% were found obtainable by the Shuttle over expendable launch systems, and savings from 17 to 45% were achievable by introducing reuse into the Shuttle-oriented programs.
Research gaps and technology needs in development of PHM for passive AdvSMR components
NASA Astrophysics Data System (ADS)
Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.
2014-02-01
Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.
CAGI: Computer Aided Grid Interface. A work in progress
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Yu, Tzu-Yi; Vaughn, David
1992-01-01
Progress realized in the development of a Computer Aided Grid Interface (CAGI) software system in integrating CAD/CAM geometric system output and/or Interactive Graphics Exchange Standard (IGES) files, geometry manipulations associated with grid generation, and robust grid generation methodologies is presented. CAGI is being developed in a modular fashion and will offer fast, efficient and economical response to geometry/grid preparation, allowing the ability to upgrade basic geometry in a step-by-step fashion interactively and under permanent visual control along with minimizing the differences between the actual hardware surface descriptions and corresponding numerical analog. The computer code GENIE is used as a basis. The Non-Uniform Rational B-Splines (NURBS) representation of sculptured surfaces is utilized for surface grid redistribution. The computer aided analysis system, PATRAN, is adapted as a CAD/CAM system. The progress realized in NURBS surface grid generation, the development of IGES transformer, and geometry adaption using PATRAN will be presented along with their applicability to grid generation associated with rocket propulsion applications.
System support software for the Space Ultrareliable Modular Computer (SUMC)
NASA Technical Reports Server (NTRS)
Hill, T. E.; Hintze, G. C.; Hodges, B. C.; Austin, F. A.; Buckles, B. P.; Curran, R. T.; Lackey, J. D.; Payne, R. E.
1974-01-01
The highly transportable programming system designed and implemented to support the development of software for the Space Ultrareliable Modular Computer (SUMC) is described. The SUMC system support software consists of program modules called processors. The initial set of processors consists of the supervisor, the general purpose assembler for SUMC instruction and microcode input, linkage editors, an instruction level simulator, a microcode grid print processor, and user oriented utility programs. A FORTRAN 4 compiler is undergoing development. The design facilitates the addition of new processors with a minimum effort and provides the user quasi host independence on the ground based operational software development computer. Additional capability is provided to accommodate variations in the SUMC architecture without consequent major modifications in the initial processors.
NASA Astrophysics Data System (ADS)
Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.
1981-10-01
Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.
New Approach to Road Construction in Oil-Producing Regions of Western Siberia
NASA Astrophysics Data System (ADS)
Piirainen, V. Y.; Estrin, Y.
2017-10-01
This article presents, as a polemic exercise, a new approach to road construction in marshland areas of oil and gas producing regions of Western Siberia. The approach is based on the use of novel modular elements that can be assembled into an integral structure by means of topological interlocking. The use of modern superlight concrete in conjunction with the new design systems based on the modular principle opens up new avenues to solving problems of road construction in regions with unstable, boggy soils.
Quinto-Sánchez, Mirsha; Muñoz-Muñoz, Francesc; Gomez-Valdes, Jorge; Cintas, Celia; Navarro, Pablo; Cerqueira, Caio Cesar Silva de; Paschetta, Carolina; de Azevedo, Soledad; Ramallo, Virginia; Acuña-Alonzo, Victor; Adhikari, Kaustubh; Fuentes-Guajardo, Macarena; Hünemeier, Tábita; Everardo, Paola; de Avila, Francisco; Jaramillo, Claudia; Arias, Williams; Gallo, Carla; Poletti, Giovani; Bedoya, Gabriel; Bortolini, Maria Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Rosique, Javier; Ruiz-Linares, Andres; Gonzalez-Jose, Rolando
2018-01-17
Facial asymmetries are usually measured and interpreted as proxies to developmental noise. However, analyses focused on its developmental and genetic architecture are scarce. To advance on this topic, studies based on a comprehensive and simultaneous analysis of modularity, morphological integration and facial asymmetries including both phenotypic and genomic information are needed. Here we explore several modularity hypotheses on a sample of Latin American mestizos, in order to test if modularity and integration patterns differ across several genomic ancestry backgrounds. To do so, 4104 individuals were analyzed using 3D photogrammetry reconstructions and a set of 34 facial landmarks placed on each individual. We found a pattern of modularity and integration that is conserved across sub-samples differing in their genomic ancestry background. Specifically, a signal of modularity based on functional demands and organization of the face is regularly observed across the whole sample. Our results shed more light on previous evidence obtained from Genome Wide Association Studies performed on the same samples, indicating the action of different genomic regions contributing to the expression of the nose and mouth facial phenotypes. Our results also indicate that large samples including phenotypic and genomic metadata enable a better understanding of the developmental and genetic architecture of craniofacial phenotypes.
Experimental Verification and Integration of a Next Generation Smart Power Management System
NASA Astrophysics Data System (ADS)
Clemmer, Tavis B.
With the increase in energy demand by the residential community in this country and the diminishing fossil fuel resources being used for electric energy production there is a need for a system to efficiently manage power within a residence. The Smart Green Power Node (SGPN) is a next generation energy management system that automates on-site energy production, storage, consumption, and grid usage to yield the most savings for both the utility and the consumer. Such a system automatically manages on-site distributed generation sources such as a PhotoVoltaic (PV) input and battery storage to curtail grid energy usage when the price is high. The SGPN high level control features an advanced modular algorithm that incorporates weather data for projected PV generation, battery health monitoring algorithms, user preferences for load prioritization within the home in case of an outage, Time of Use (ToU) grid power pricing, and status of on-site resources to intelligently schedule and manage power flow between the grid, loads, and the on-site resources. The SGPN has a scalable, modular architecture such that it can be customized for user specific applications. This drove the topology for the SGPN which connects on-site resources at a low voltage DC microbus; a two stage bi-directional inverter/rectifier then couples the AC load and residential grid connect to on-site generation. The SGPN has been designed, built, and is undergoing testing. Hardware test results obtained are consistent with the design goals set and indicate that the SGPN is a viable system with recommended changes and future work.
A modular microfluidic architecture for integrated biochemical analysis.
Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang
2005-07-12
Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.
ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Blanford; E. Keldrauk; M. Laufer
2010-09-20
Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less
An integrated environment for tactical guidance research and evaluation
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Mcmanus, John W.
1990-01-01
NASA-Langley's Tactical Guidance Research and Evaluation System (TGRES) constitutes an integrated environment for the development of tactical guidance algorithms and evaluating the effects of novel technologies; the modularity of the system allows easy modification or replacement of system elements in order to conduct evaluations of alternative technologies. TGRES differs from existing systems in its capitalization on AI programming techniques for guidance-logic implementation. Its ability to encompass high-fidelity, six-DOF simulation models will facilitate the analysis of complete aircraft dynamics.
DISTRIBUTED CONTROL AND DA FOR ATLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. SCUDDER; ET AL
1999-05-01
The control system for the Atlas pulsed power generator being built at Los Alamos National Laboratory will utilize a significant level of distributed control. Other principal design characteristics include noise immunity, modularity and use of commercial products wherever possible. The data acquisition system is tightly coordinated with the control system. Both share a common database server and a fiber-optic ethernet communications backbone.
Spacelab software development and integration concepts study report. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
1973-01-01
Software considerations were developed for incorporation in the spacelab systems design, and include management concepts for top-down structured programming, composite designs for modular programs, and team management methods for production programming.
A Sensor Middleware for integration of heterogeneous medical devices.
Brito, M; Vale, L; Carvalho, P; Henriques, J
2010-01-01
In this paper, the architecture of a modular, service-oriented, Sensor Middleware for data acquisition and processing is presented. The described solution was developed with the purpose of solving two increasingly relevant problems in the context of modern pHealth systems: i) to aggregate a number of heterogeneous, off-the-shelf, devices from which clinical measurements can be acquired and ii) to provide access and integration with an 802.15.4 network of wearable sensors. The modular nature of the Middleware provides the means to easily integrate pre-processing algorithms into processing pipelines, as well as new drivers for adding support for new sensor devices or communication technologies. Tests performed with both real and artificially generated data streams show that the presented solution is suitable for use both in a Windows PC or a Windows Mobile PDA with minimal overhead.
Modular data acquisition system and its use in gas-filled detector readout at ESRF
NASA Astrophysics Data System (ADS)
Sever, F.; Epaud, F.; Poncet, F.; Grave, M.; Rey-Bakaikoa, V.
1996-09-01
Since 1992, 18 ESRF beamlines are open to users. Although the data acquisition requirements vary a lot from one beamline to another, we are trying to implement a modular data acquisition system architecture that would fit with the maximum number of acquisition projects at ESRF. Common to all of these systems are large acquisition memories and the requirement to visualize the data during an acquisition run and to transfer them quickly after the run to safe storage. We developed a general memory API handling the acquisition memory and its organization and another library that provides calls for transferring the data over TCP/IP sockets. Interesting utility programs using these libraries are the `online display' program and the `data transfer' program. The data transfer program as well as an acquisition control program rely on our well-established `device server model', which was originally designed for the machine control system and then successfully reused in beamline control systems. In the second half of this paper, the acquisition system for a 2D gas-filled detector is presented, which is one of the first concrete examples using the proposed modular data acquisition architecture.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2006-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications
NASA Technical Reports Server (NTRS)
Ivancic, William D.
2007-01-01
Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.
Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.
2008-01-01
The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.
MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael
1998-01-01
MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.
Design and Development of a Low-Cost Aerial Mobile Mapping System for Multi-Purpose Applications
NASA Astrophysics Data System (ADS)
Acevedo Pardo, C.; Farjas Abadía, M.; Sternberg, H.
2015-08-01
The research project with the working title "Design and development of a low-cost modular Aerial Mobile Mapping System" was formed during the last year as the result from numerous discussions and considerations with colleagues from the HafenCity University Hamburg, Department Geomatics. The aim of the project is to design a sensor platform which can be embedded preferentially on an UAV, but also can be integrated on any adaptable vehicle. The system should perform a direct scanning of surfaces with a laser scanner and supported through sensors for determining the position and attitude of the platform. The modular design allows his extension with other sensors such as multispectral cameras, digital cameras or multiple cameras systems.
Assessing the techno-economics of modular hybrid solar thermal systems
NASA Astrophysics Data System (ADS)
Lim, Jin Han; Chinnici, Alfonso; Dally, Bassam; Nathan, Graham
2017-06-01
A techno-economic assessment was performed on modular hybrid solar thermal (in particular, solar power tower) systems with combustion from natural gas as backup to provide a continuous supply of electricity. Two different configurations were compared, i.e. a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device, and a Solar Gas Hybrid (SGH), which is a reference hybrid solar thermal system with a standalone solar-only cavity receiver and a backup boiler. The techno-economic benefits were assessed by varying the size of the modular components, i.e. the heliostat field and the solar receivers. It was found that for modularization to be cost effective requires more than the increased learning from higher production of a larger number of smaller units, such as access to alternative, lower-cost manufacturing methods and/or the use of a low melting point Heat Transfer Fluid (HTF) such as sodium to reduce parasitic losses. In particular, for a plant with 30 units of 1MWth modules, the Levelized Cost of Electricity is competitive compared with a single unit of 30MWth after ˜100 plants are installed for both the HSRC and SGH if the systems employ the use of sodium as the heat transfer fluid.
NASA Astrophysics Data System (ADS)
Fan, Haifeng
2011-12-01
The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low switching loss and conduction loss are must-haves for high efficiency, while bidirectional power flow capability is a must for power management requirement. To address the demand, the phase-shift dual-halfbridge (DHB) is proposed as the constituent module of ISOP configuration for MV application. The proposed ISOP DHB converter employs zero-voltage-switching (ZVS) technique combined with LV MOSFETs to achieve low switching and conduction losses under high frequency operation, and therefore high efficiency and high power density, and bidirectional power flow as well. Secondly, a large load range of high efficiency is desired rather than only a specific load point due to the continuous operation and large load variation range of utility application, which is of high importance because of the rising energy cost. This work proposes a novel DHB converter with an adaptive commutation inductor. By utilizing an adaptive inductor as the main energy transfer element, the output power can be controlled by not only the phase shift but also the commutation inductance, which allows the circulating energy to be optimized for different load conditions to maintain ZVS under light load conditions and minimize additional conduction losses under heavy load conditions as well. As a result, the efficiency at both light and heavy load can be significantly improved compared with the conventional DHB converter, and therefore extended high-efficiency range can be achieved. In addition, current stress of switch devices can be reduced. The theoretical analysis is presented and validated by the experimental results on a 50 kHz, 1 kW dc-dc converter module. Thirdly, input-voltage sharing and output-current sharing are critical to assure the advantages of the ISOP modular configuration. To solve this issue, an identically distributed control scheme is proposed in this work. The proposed control scheme, using only one distributed voltage loop to realize both input-voltage and output-current sharing, provides plug-and-play capability, possible high-level fault tolerance, and easy implementation. Another unique advantage of the proposed ISOP DHB converter is the power rating can be easily extended further by directly connecting multiple ISOP DHB converters in input-parallel-outparallel (IPOP) while no additional control is needed. The proposed control scheme is elaborated using the large-signal average model. Further, the stability of the control schemes is analyzed in terms of the constituent modules' topology as well as the configuration, and then an important fact that the stability of control scheme depends on not only the configuration but also the constituent module topology is first revealed in this work. Finally, the simulation and experimental results of an ISOP DHB converter consisting of three modules are presented to verify the proposed control scheme and the high frequency high efficiency operation.
A phase one AR/C system design
NASA Technical Reports Server (NTRS)
Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises
1991-01-01
The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.
Crew appliance computer program manual, volume 1
NASA Technical Reports Server (NTRS)
Russell, D. J.
1975-01-01
Trade studies of numerous appliance concepts for advanced spacecraft galley, personal hygiene, housekeeping, and other areas were made to determine which best satisfy the space shuttle orbiter and modular space station mission requirements. Analytical models of selected appliance concepts not currently included in the G-189A Generalized Environmental/Thermal Control and Life Support Systems (ETCLSS) Computer Program subroutine library were developed. The new appliance subroutines are given along with complete analytical model descriptions, solution methods, user's input instructions, and validation run results. The appliance components modeled were integrated with G-189A ETCLSS models for shuttle orbiter and modular space station, and results from computer runs of these systems are presented.
Integrated Control System Engineering Support.
1984-12-01
interference susceptibility. " Study multiplex bus loading requirements. Flight Control Software 0 " Demonstrate efficiencies of modular software and...Major technical thrusts include the development of: (a) task-tailored mutimode con- trol laws incorporating direct force and weapon line pointing
The Rechargeable, Renewable School
ERIC Educational Resources Information Center
Gale, Joseph
1974-01-01
The Piscataway (New Jersey) high school uses recessed windows and an integrated heat recovery system, made possible by its modular design, to conserve energy. Available from: New Jersey School Boards Association, P.O. Box 909, Trenton, New Jersey 08605. (Author/MLF)
Integrated nuclear data utilisation system for innovative reactors.
Yamano, N; Hasegawa, A; Kato, K; Igashira, M
2005-01-01
A five-year research and development project on an integrated nuclear data utilisation system was initiated in 2002, for developing innovative nuclear energy systems such as accelerator-driven systems. The integrated nuclear data utilisation system will be constructed as a modular code system, which consists of two sub-systems: the nuclear data search and plotting sub-system, and the nuclear data processing and utilisation sub-system. The system will be operated with a graphical user interface in order to enable easy utilisation through the Internet by both nuclear design engineers and nuclear data evaluators. This paper presents an overview of the integrated nuclear data utilisation system, describes the development of a prototype system to examine the operability of the user interface and discusses specifications of the two sub-systems.
Modular uncooled video engines based on a DSP processor
NASA Astrophysics Data System (ADS)
Schapiro, F.; Milstain, Y.; Aharon, A.; Neboshchik, A.; Ben-Simon, Y.; Kogan, I.; Lerman, I.; Mizrahi, U.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Gazit, R.
2011-06-01
The market demand for low SWaP (Size, Weight and Power) uncooled engines keeps growing. Low SWaP is especially critical in battery-operated applications such as goggles and Thermal Weapon Sights. A new approach for the design of the engines was implemented by SCD to optimize size and power consumption at system level. The new approach described in the paper, consists of: 1. A modular hardware design that allows the user to define the exact level of integration needed for his system 2. An "open architecture" based on the OMAPTM530 DSP that allows the integrator to take advantage of unused hardware (FPGA) and software (DSP) resources, for implementation of additional algorithms or functionality. The approach was successfully implemented on the first generation of 25μm pitch BIRD detectors, and more recently on the new, 640 x480, 17 μm pitch detector.
A proposal of optimal sampling design using a modularity strategy
NASA Astrophysics Data System (ADS)
Simone, A.; Giustolisi, O.; Laucelli, D. B.
2016-08-01
In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.
Analysis of In-Space Assembly of Modular Systems
NASA Technical Reports Server (NTRS)
Moses, Robert W.; VanLaak, James; Johnson, Spencer L.; Chytka, Trina M.; Reeves, John D.; Todd, B. Keith; Moe, Rud V.; Stambolian, Damon B.
2005-01-01
Early system-level life cycle assessments facilitate cost effective optimization of system architectures to enable implementation of both modularity and in-space assembly, two key Exploration Systems Research & Technology (ESR&T) Strategic Challenges. Experiences with the International Space Station (ISS) demonstrate that the absence of this rigorous analysis can result in increased cost and operational risk. An effort is underway, called Analysis of In-Space Assembly of Modular Systems, to produce an innovative analytical methodology, including an evolved analysis toolset and proven processes in a collaborative engineering environment, to support the design and evaluation of proposed concepts. The unique aspect of this work is that it will produce the toolset, techniques and initial products to analyze and compare the detailed, life cycle costs and performance of different implementations of modularity for in-space assembly. A multi-Center team consisting of experienced personnel from the Langley Research Center, Johnson Space Center, Kennedy Space Center, and the Goddard Space Flight Center has been formed to bring their resources and experience to this development. At the end of this 30-month effort, the toolset will be ready to support the Exploration Program with an integrated assessment strategy that embodies all life-cycle aspects of the mission from design and manufacturing through operations to enable early and timely selection of an optimum solution among many competing alternatives. Already there are many different designs for crewed missions to the Moon that present competing views of modularity requiring some in-space assembly. The purpose of this paper is to highlight the approach for scoring competing designs.
Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.
2004-01-01
The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for endangered species, and optimizing operations within the constraints of multiple objectives such as power generation, irrigation, and water conservation. This decision support system approach is being developed, tested, and implemented in the Gunni-son, Yakima, San Juan, Rio Grande, and Truckee River basins of the western United States. Copyright ASCE 2004.
MAPI: towards the integrated exploitation of bioinformatics Web Services.
Ramirez, Sergio; Karlsson, Johan; Trelles, Oswaldo
2011-10-27
Bioinformatics is commonly featured as a well assorted list of available web resources. Although diversity of services is positive in general, the proliferation of tools, their dispersion and heterogeneity complicate the integrated exploitation of such data processing capacity. To facilitate the construction of software clients and make integrated use of this variety of tools, we present a modular programmatic application interface (MAPI) that provides the necessary functionality for uniform representation of Web Services metadata descriptors including their management and invocation protocols of the services which they represent. This document describes the main functionality of the framework and how it can be used to facilitate the deployment of new software under a unified structure of bioinformatics Web Services. A notable feature of MAPI is the modular organization of the functionality into different modules associated with specific tasks. This means that only the modules needed for the client have to be installed, and that the module functionality can be extended without the need for re-writing the software client. The potential utility and versatility of the software library has been demonstrated by the implementation of several currently available clients that cover different aspects of integrated data processing, ranging from service discovery to service invocation with advanced features such as workflows composition and asynchronous services calls to multiple types of Web Services including those registered in repositories (e.g. GRID-based, SOAP, BioMOBY, R-bioconductor, and others).
Modular design of H - synchrotrons for radiation therapy
NASA Astrophysics Data System (ADS)
Martin, R. L.
1989-04-01
A modular synchrotron for accelerating H - ions and a proton beam delivery system are being developed for radiation therapy with protons under SBIR grants from the National Cancer Institute. The advantage proposed for accelerating H - ions and utilizing charge exchange as a slow extraction mechanism lies in enhanced control of the extracted beam current, important for beam delivery with raster scanning for 3D dose contouring of a tumor site. Under these grants prototype magnets and vacuum systems are being constructed, appropriate H - sources are being developed and beam experiments will be carried out to demonstrate some of the key issues of this concept. The status of this program is described along with a discussion of a relatively inexpensive beam delivery system and a proposed program for its development.
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
1983-01-01
Test results are given for a 5 kW stack and initial results for an integrated, grid connected system operating from methanol fuel. Site selection criteria are presented for future demonstration of a 50 or 100 kW OS/IES. Preliminary results are also given with approximate internal rates of return to the building owner. Progress in development and construction of a 50 kW modular methanol/steam reformer is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.« less
Modular thermal analyzer routine, volume 1
NASA Technical Reports Server (NTRS)
Oren, J. A.; Phillips, M. A.; Williams, D. R.
1972-01-01
The Modular Thermal Analyzer Routine (MOTAR) is a general thermal analysis routine with strong capabilities for performing thermal analysis of systems containing flowing fluids, fluid system controls (valves, heat exchangers, etc.), life support systems, and thermal radiation situations. Its modular organization permits the analysis of a very wide range of thermal problems for simple problems containing a few conduction nodes to those containing complicated flow and radiation analysis with each problem type being analyzed with peak computational efficiency and maximum ease of use. The organization and programming methods applied to MOTAR achieved a high degree of computer utilization efficiency in terms of computer execution time and storage space required for a given problem. The computer time required to perform a given problem on MOTAR is approximately 40 to 50 percent that required for the currently existing widely used routines. The computer storage requirement for MOTAR is approximately 25 percent more than the most commonly used routines for the most simple problems but the data storage techniques for the more complicated options should save a considerable amount of space.
Bolden, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon; ...
2015-01-01
Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. Although it is unlikely to entirely replace fossil fuel systems, the incorporation of alternative energy systems that produce fewer emissions and utilize fewer resources may prove useful in furthering sustainable energy practices. Nuclear and Renewable Energy Integration (NREI) represents one potential, alternative system and is comprised of both nuclear and renewable technologies coupled with energy storage and industrial process heat applications. This article reviews the fundamentals of sustainability and its drivers, defines the necessary scope for analyzing energy systems, details widely used sustainabilitymore » metrics, and assesses sustainability through the sustainability efficiency factor (SEF) based on the core pillars of economy, environment, and society—all of which aim to promote future sustainable development. The assessment is performed for an NREI system comprised of a small modular reactor (SMR), where a portion of the heat generated is utilized for hydrogen production through high-temperature steam electrolysis (HTSE). The global warming potential for NREI is compared to the typical emissions observed for hydrogen production via steam methane reforming and are estimated to yield 92.6% fewer grams of CO 2-equivalent per kilogram of hydrogen produced. Furthermore, the calculated SEF for NREI is 22.2% higher than steam methane reforming. Because SMR designs are at varying design, developmental, and deployment stages, a method of estimating economics is presented to demonstrate the differences observed between first-of-a-kind (FOAK) and nth-of-a-kind (NOAK) units, as well as the resulting total capital investment cost. Lastly, a comprehensive list of considerations necessary for future energy system development was enumerated based on four core assessment areas: technical feasibility, environmental impact, economic feasibility and impact, and socio-political impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolden, Lauren; Sabharwall, Piyush; Bragg-Sitton, Shannon
Global energy needs are primarily being met with fossil fuel plants in both developed and developing nations. Although it is unlikely to entirely replace fossil fuel systems, the incorporation of alternative energy systems that produce fewer emissions and utilize fewer resources may prove useful in furthering sustainable energy practices. Nuclear and Renewable Energy Integration (NREI) represents one potential, alternative system and is comprised of both nuclear and renewable technologies coupled with energy storage and industrial process heat applications. This article reviews the fundamentals of sustainability and its drivers, defines the necessary scope for analyzing energy systems, details widely used sustainabilitymore » metrics, and assesses sustainability through the sustainability efficiency factor (SEF) based on the core pillars of economy, environment, and society—all of which aim to promote future sustainable development. The assessment is performed for an NREI system comprised of a small modular reactor (SMR), where a portion of the heat generated is utilized for hydrogen production through high-temperature steam electrolysis (HTSE). The global warming potential for NREI is compared to the typical emissions observed for hydrogen production via steam methane reforming and are estimated to yield 92.6% fewer grams of CO 2-equivalent per kilogram of hydrogen produced. Furthermore, the calculated SEF for NREI is 22.2% higher than steam methane reforming. Because SMR designs are at varying design, developmental, and deployment stages, a method of estimating economics is presented to demonstrate the differences observed between first-of-a-kind (FOAK) and nth-of-a-kind (NOAK) units, as well as the resulting total capital investment cost. Lastly, a comprehensive list of considerations necessary for future energy system development was enumerated based on four core assessment areas: technical feasibility, environmental impact, economic feasibility and impact, and socio-political impacts.« less
Integrated Evaluation of Closed Loop Air Revitalization System Components
NASA Technical Reports Server (NTRS)
Murdock, K.
2010-01-01
NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.
Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)
NASA Astrophysics Data System (ADS)
Ashcraft, Todd W.; Atac, Robert
2012-06-01
Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.
Development of SPIES (Space Intelligent Eyeing System) for smart vehicle tracing and tracking
NASA Astrophysics Data System (ADS)
Abdullah, Suzanah; Ariffin Osoman, Muhammad; Guan Liyong, Chua; Zulfadhli Mohd Noor, Mohd; Mohamed, Ikhwan
2016-06-01
SPIES or Space-based Intelligent Eyeing System is an intelligent technology which can be utilized for various applications such as gathering spatial information of features on Earth, tracking system for the movement of an object, tracing system to trace the history information, monitoring driving behavior, security and alarm system as an observer in real time and many more. SPIES as will be developed and supplied modularly will encourage the usage based on needs and affordability of users. SPIES are a complete system with camera, GSM, GPS/GNSS and G-Sensor modules with intelligent function and capabilities. Mainly the camera is used to capture pictures and video and sometimes with audio of an event. Its usage is not limited to normal use for nostalgic purpose but can be used as a reference for security and material of evidence when an undesirable event such as crime occurs. When integrated with space based technology of the Global Navigational Satellite System (GNSS), photos and videos can be recorded together with positioning information. A product of the integration of these technologies when integrated with Information, Communication and Technology (ICT) and Geographic Information System (GIS) will produce innovation in the form of information gathering methods in still picture or video with positioning information that can be conveyed in real time via the web to display location on the map hence creating an intelligent eyeing system based on space technology. The importance of providing global positioning information is a challenge but overcome by SPIES even in areas without GNSS signal reception for the purpose of continuous tracking and tracing capability
Modular High-Energy Systems for Solar Power Satellites
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.
2006-01-01
Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.
A study of compositional verification based IMA integration method
NASA Astrophysics Data System (ADS)
Huang, Hui; Zhang, Guoquan; Xu, Wanmeng
2018-03-01
The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.
NASA Technical Reports Server (NTRS)
Studor, George
2010-01-01
The presentation reviews what is meant by the term 'fly-by-wireless', common problems and motivation, provides recent examples, and examines NASA's future and basis for collaboration. The vision is to minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus areas are system engineering and integration methods to reduce cables and connectors, vehicle provisions for modularity and accessibility, and a 'tool box' of alternatives to wired connectivity.
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
NASA Technical Reports Server (NTRS)
Rakoczy, John; Heater, Daniel; Lee, Ashley
2013-01-01
Marshall Space Flight Center's (MSFC) Small Projects Rapid Integration and Test Environment (SPRITE) is a Hardware-In-The-Loop (HWIL) facility that provides rapid development, integration, and testing capabilities for small projects (CubeSats, payloads, spacecraft, and launch vehicles). This facility environment focuses on efficient processes and modular design to support rapid prototyping, integration, testing and verification of small projects at an affordable cost, especially compared to larger type HWIL facilities. SPRITE (Figure 1) consists of a "core" capability or "plant" simulation platform utilizing a graphical programming environment capable of being rapidly re-configured for any potential test article's space environments, as well as a standard set of interfaces (i.e. Mil-Std 1553, Serial, Analog, Digital, etc.). SPRITE also allows this level of interface testing of components and subsystems very early in a program, thereby reducing program risk.
Scholes, Edwin
2008-01-01
Ethology is rooted in the idea that behavior is composed of discrete units and sub-units that can be compared among taxa in a phylogenetic framework. This means that behavior, like morphology and genes, is inherently modular. Yet, the concept of modularity is not well integrated into how we envision the behavioral components of phenotype. Understanding ethological modularity, and its implications for animal phenotype organization and evolution, requires that we construct interpretive schemes that permit us to examine it. In this study, I describe the structure and composition of a complex part of the behavioral phenotype of Parotia lawesii Ramsay, 1885--a bird of paradise (Aves: Paradisaeidae) from the forests of eastern New Guinea. I use archived voucher video clips, photographic ethograms, and phenotype ontology diagrams to describe the modular units comprising courtship at various levels of integration. Results show P. lawesii to have 15 courtship and mating behaviors (11 males, 4 females) hierarchically arranged within a complex seven-level structure. At the finest level examined, male displays are comprised of 49 modular sub-units (elements) differentially employed to form more complex modular units (phases and versions) at higher-levels of integration. With its emphasis on hierarchical modularity, this study provides an important conceptual framework for understanding courtship-related phenotypic complexity and provides a solid basis for comparative study of the genus Parotia.
Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator
NASA Astrophysics Data System (ADS)
Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe
2013-08-01
Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653 impact was analyzed. Requirements and architecture for space domain were defined [3][4] and System Executive platforms (based on Xtratum, Pike OS, and AIR) were developed with RTEMS as Guest OS. This paper focuses on the demonstrator developed by Astrium as part of IMA SP project. This demonstrator has the objective to confirm operational software partitioning feasibility above Xtratum System Executive Platform with acceptable CPU overhead.
MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph W. Geisinger, Ph.D.
ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the developmentmore » of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.« less
Conceptual design study for an advanced cab and visual system, volume 1
NASA Technical Reports Server (NTRS)
Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.
1980-01-01
A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.
Modular Integrated Stackable Layers (MISL) MI_MSP430A Board Design Document (BDD)
NASA Technical Reports Server (NTRS)
Yim, Hester
2013-01-01
This is a board-level design document for Modular Integrated Stackable Layers (MISL) MI_MSP430A board (PIN MSP430F5438A). The Board Design Document (BDD) contains the description, features of microcontroller, electrical and mechanical design, and drawings.
Transitioning to Integrated Modular Avionics with a Mission Management System
2000-10-01
software structure, which is based on the use of a of interchangeable processing modules of a limited COTS Real - Time Operating System . number of...open standardised interfaces system hardware or the Real - Time Operating System directly supports the use of COTS components, which implementation, to...System RTOS Real - Time Operating System SMBP System Management Blueprint Interface SMOS System Management to Operating System Interface Figure 2: The ASAAC
Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J
2011-11-01
This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Marri, Hussain B.; McGaughey, Ronald; Gunasekaran, Angappa
2000-10-01
Globalization can have a dramatic impact on manufacturing sector due to the fact that the majority of establishments in this industry are small to medium manufacturing companies. The role of Small and Medium Enterprises (SMEs) in the national economy has been emphasized all over the world, considering their contribution to the total manufacturing output and employment opportunities. The lack of marketing forces to regulate the operation of SMEs has been a fundamental cause of low efficiency for a long time. Computer Integrated Manufacturing (CIM) is emerging as one of the most promising opportunities for shrinking the time delays in information transfer and reducing manufacturing costs. CIM is the architecture for integrating the engineering, marketing and manufacturing functions through information system technologies. SMEs in general have not made full use of new technologies although their investments in CIM technology tended to be wider in scale and scope. Most of the SMEs only focus on the short-term benefit, but overlook a long- term and fundamental development on applications of new technologies. With the help of suitable information systems, modularity and low cost solutions, SMEs can compete in the global market. Considering the importance of marketing, information system, modularity and low cost solutions in the implementation of CIM in SMEs, a model has been developed and studied with the help of an empirical study conducted with British SMEs to facilitate the adoption of CIM. Finally, a summary of findings and recommendations are presented.
Nickel-hydrogen battery integration study for the Multimission Modular Spacecraft
NASA Technical Reports Server (NTRS)
Mueller, V. C.
1980-01-01
A study has been performed to determine the feasibility of using nickel-hydrogen batteries as replacements for the nickel-cadmium batteries currently used for energy storage in the Multimission Modular Spacecraft under a contract with NASA Goddard Space Flight Center. The battery configuration was selected such that it meets volumetric and mounting constraints of the existing battery location, interfaces electrically with existing power conditioning and distribution equipment, and maintains acceptable cell operating temperatures. The battery contains 21, 50 ampere-hour cells in a cast aluminum structural frame. Cells used in the battery design are those developed under the Air Force's Aero Propulsion Laboratory funding and direction. Modifications of the thermal control system were necessary to increase the average output power capability of the Modular Power Subsystem.
Integrating Streaming Media to Web-based Learning: A Modular Approach.
ERIC Educational Resources Information Center
Miltenoff, Plamen
2000-01-01
Explains streaming technology and discusses how to integrate it into Web-based instruction based on experiences at St. Cloud State University (Minnesota). Topics include a modular approach, including editing, copyright concerns, digitizing, maintenance, and continuing education needs; the role of the library; and how streaming can enhance…
Theory for the Emergence of Modularity in Complex Systems
NASA Astrophysics Data System (ADS)
Deem, Michael; Park, Jeong-Man
2013-03-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased
A modular assembly method of a feed and thruster system for Cubesats
NASA Astrophysics Data System (ADS)
Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko
2010-11-01
A modular assembly method for devices based on micro system technology is presented. The assembly method forms the foundation for a miniaturized feed and thruster system as part of a micro propulsion unit working as a simple blow-down system of a rocket engine. The micro rocket is designed to be used for constellation maintenance of Cubesats, which measure 10 × 10 × 10 cm and have a mass less than 1 kg. The feed and thruster system contains an active valve, control electronics, a particle filter and an axisymmetric converging-diverging nozzle, all fabricated as separate modules. A novel method is used to integrate these modules by placing them on or in a glass tube package. The assembly method is shown to be a valid method but the valve module needs to be improved considerably.
NASA Technical Reports Server (NTRS)
Vyhnalek, Brian E.; Tedder, Sarah A.; Nappier, Jennifer M.
2018-01-01
Space-to-ground photon-counting optical communication links supporting high data rates over large distances require enhanced ground receiver sensitivity in order to reduce the mass and power burden on the spacecraft transmitter. Superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated to offer superior performance in detection efficiency, timing resolution, and count rates over semiconductor photodetectors, and are a suitable technology for high photon efficiency links. Recently photon detectors based on superconducting nanowires have become commercially available, and we have assessed the characteristics and performance of one such commercial system as a candidate for potential utilization in ground receiver designs. The SNSPD system features independent channels which can be added modularly, and we analyze the scalability of the system to support different data rates, as well as consider coupling concepts and issues as the number of channels increases.
Integrated Avionics System (IAS)
NASA Technical Reports Server (NTRS)
Hunter, D. J.
2001-01-01
As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.
High-power VCSEL systems and applications
NASA Astrophysics Data System (ADS)
Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich
2015-03-01
Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.
Modular space station phase B extension preliminary system design. Volume 7: Ancillary studies
NASA Technical Reports Server (NTRS)
Jones, A. L.
1972-01-01
Sortie mission analysis and reduced payloads size impact studies are presented. In the sortie mission analysis, a modular space station oriented experiment program to be flown by the space shuttle during the period prior to space station IOC is discussed. Experiments are grouped into experiment packages. Mission payloads are derived by grouping experiment packages and by adding support subsystems and structure. The operational and subsystems analyses of these payloads are described. Requirements, concepts, and shuttle interfaces are integrated. The sortie module/station module commonality and a sortie laboratory concept are described. In the payloads size analysis, the effect on the modular space station concept of reduced diameter and reduced length of the shuttle cargo bay is discussed. Design concepts are presented for reduced sizes of 12 by 60 ft, 14 by 40 ft, and 12 by 40 ft. Comparisons of these concepts with the modular station (14 by 60 ft) are made to show the impact of payload size changes.
Initial guidelines and estimates for a power system with inertial (flywheel) energy storage
NASA Technical Reports Server (NTRS)
Slifer, L. W., Jr.
1980-01-01
The starting point for the assessment of a spacecraft power system utilizing inertial (flywheel) energy storage. Both general and specific guidelines are defined for the assessment of a modular flywheel system, operationally similar to but with significantly greater capability than the multimission modular spacecraft (MMS) power system. Goals for the flywheel system are defined in terms of efficiently train estimates and mass estimates for the system components. The inertial storage power system uses a 5 kw-hr flywheel storage component at 50 percent depth of discharge (DOD). It is capable of supporting an average load of 3 kw, including a peak load of 7.5 kw for 10 percent of the duty cycle, in low earth orbit operation. The specific power goal for the system is 10 w/kg, consisting of a 56w/kg (end of life) solar array, a 21.7 w-hr/kg (at 50 percent DOD) flywheel, and 43 w/kg power processing (conditioning, control and distribution).
Re-emergence of modular brain networks in stroke recovery.
Siegel, Joshua S; Seitzman, Benjamin A; Ramsey, Lenny E; Ortega, Mario; Gordon, Evan M; Dosenbach, Nico U F; Petersen, Steven E; Shulman, Gordon L; Corbetta, Maurizio
2018-04-01
Studies of stroke have identified local reorganization in perilesional tissue. However, because the brain is highly networked, strokes also broadly alter the brain's global network organization. Here, we assess brain network structure longitudinally in adult stroke patients using resting state fMRI. The topology and boundaries of cortical regions remain grossly unchanged across recovery. In contrast, the modularity of brain systems i.e. the degree of integration within and segregation between networks, was significantly reduced sub-acutely (n = 107), but partially recovered by 3 months (n = 85), and 1 year (n = 67). Importantly, network recovery correlated with recovery from language, spatial memory, and attention deficits, but not motor or visual deficits. Finally, in-depth single subject analyses were conducted using tools for visualization of changes in brain networks over time. This exploration indicated that changes in modularity during successful recovery reflect specific alterations in the relationships between different networks. For example, in a patient with left temporo-parietal stroke and severe aphasia, sub-acute loss of modularity reflected loss of association between frontal and temporo-parietal regions bi-hemispherically across multiple modules. These long-distance connections then returned over time, paralleling aphasia recovery. This work establishes the potential importance of normalization of large-scale modular brain systems in stroke recovery. Copyright © 2017. Published by Elsevier Ltd.
SCORPION II persistent surveillance system update
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jon
2010-04-01
This paper updates the improvements and benefits demonstrated in the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron Campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal and enables integration of over fifty different Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to feeding COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
Wilfrid Schroeder; Evan Ellicott; Charles Ichoku; Luke Ellison; Matthew B. Dickinson; Roger D. Ottmar; Craig Clements; Dianne Hall; Vincent Ambrosia; Robert Kremens
2013-01-01
Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near-coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge...
Modular jet impingement assemblies with passive and active flow control for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh
2016-09-13
Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.
Modular Software Interfaces for Revolutionary Flexibility in Space Operations
NASA Technical Reports Server (NTRS)
Glass, Brian; Braham, Stephen; Pollack, Jay
2005-01-01
To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.
An integrated set of UNIX based system tools at control room level
NASA Astrophysics Data System (ADS)
Potepan, F.; Scafuri, C.; Bortolotto, C.; Surace, G.
1994-12-01
The design effort of providing a simple point-and-click approach to the equipment access has led to the definition and realization of a modular set of software tools to be used at the ELETTRA control room level. Point-to-point equipment access requires neither programming nor specific knowledge of the control system architecture. The development and integration of communication, graphic, editing and global database modules are described in depth, followed by a report of their use in the first commissioning period.
Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication.
Morgan, Alex J L; Hidalgo San Jose, Lorena; Jamieson, William D; Wymant, Jennifer M; Song, Bing; Stephens, Phil; Barrow, David A; Castell, Oliver K
2016-01-01
The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components.
Preliminary design study of a baseline MIUS
NASA Technical Reports Server (NTRS)
Wolfer, B. M.; Shields, V. E.; Rippey, J. O.; Roberts, H. L.; Wadle, R. C.; Wallin, S. P.; Gill, W. L.; White, E. H.; Monzingo, R.
1977-01-01
Results of a conceptual design study to establish a baseline design for a modular integrated utility system (MIUS) are presented. The system concept developed a basis for evaluating possible projects to demonstrate an MIUS. For the baseline study, climate conditions for the Washington, D.C., area were used. The baseline design is for a high density apartment complex of 496 dwelling units with a planned full occupancy of approximately 1200 residents. Environmental considerations and regulations for the MIUS installation are discussed. Detailed cost data for the baseline MIUS are given together with those for design and operating variations under climate conditions typified by Las Vegas, Nevada, Houston, Texas, and Minneapolis, Minnesota. In addition, results of an investigation of size variation effects, for 300 and 1000 unit apartment complexes, are presented. Only conceptual aspects of the design are discussed. Results regarding energy savings and costs are intended only as trend information and for use in relative comparisons. Alternate heating, ventilation, and air conditioning concepts are considered in the appendix.
Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication
Morgan, Alex J. L.; Hidalgo San Jose, Lorena; Jamieson, William D.; Wymant, Jennifer M.; Song, Bing; Stephens, Phil
2016-01-01
The uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved. The utility of the 3D printed microfluidic devices is illustrated by encapsulating dental pulp stem cells within alginate droplets; cell viability assays show the vast majority of cells remain live, and device transparency is sufficient for single cell imaging. The accessibility of these devices is further enhanced through fabrication of integrated ports and by the introduction of a Lego®-like modular system facilitating rapid prototyping whilst offering the potential for novices to build microfluidic systems from a database of microfluidic components. PMID:27050661
Distributed Engine Control Empirical/Analytical Verification Tools
NASA Technical Reports Server (NTRS)
DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan
2013-01-01
NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique capabilities to study the effects of a given change to the control system in the context of the distributed paradigm. The simulation tool can support treatment of all components within the control system, both virtual and real; these include communication data network, smart sensor and actuator nodes, centralized control system (FADEC full authority digital engine control), and the aircraft engine itself. The DECsim tool can allow simulation-based prototyping of control laws, control architectures, and decentralization strategies before hardware is integrated into the system. With the configuration specified, the simulator allows a variety of key factors to be systematically assessed. Such factors include control system performance, reliability, weight, and bandwidth utilization.
Modular Pulsed Plasma Electric Propulsion System for Cubesats
NASA Technical Reports Server (NTRS)
Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood
2014-01-01
Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.
Integrated Modular Teaching of Human Biology for Primary Care Practitioners
ERIC Educational Resources Information Center
Glasgow, Michael S.
1977-01-01
Describes the use of integrated modular teaching of the human biology component of the Health Associate Program at Johns Hopkins University, where the goal is to develop an understanding of the sciences as applied to primary care. Discussion covers the module sequence, the human biology faculty, goals of the human biology faculty, laboratory…
A consortium approach to commercialized Westinghouse solid oxide fuel cell technology
NASA Astrophysics Data System (ADS)
Casanova, Allan
Westinghouse is developing its tubular solid oxide fuel cells (SOFCs) for a variety of applications in stationary power generation markets. By pressurizing a SOFC and integrating it with a gas turbine (GT), power systems with efficiencies as high as 70-75% can be obtained. The first such system will be tested in 1998. Because of their extraordinarily high efficiency (60-70%) even in small sizes the first SOFC products to be offered are expected to be integrated SOFC/GT power systems in the 1-7 MW range, for use in the emerging distributed generation (DG) market segment. Expansion into larger sizes will follow later. Because of their modularity, environmental friendliness and expected cost effectiveness, and because of a worldwide thrust towards utility deregulation, a ready market is forecasted for baseload distributed generation. Assuming Westinghouse can complete its technology development and reach its cost targets, the integrated SOFC/GT power system is seen as a product with tremendous potential in the emerging distributed generation market. While Westinghouse has been a leader in the development of power generation technology for over a century, it does not plan to manufacture small gas turbines. However, GTs small enough to integrate with SOFCs and address the 1-7 MW market are generally available from various manufacturers. Westinghouse will need access to a new set of customers as it brings baseload plants to the present small market mix of emergency and peaking power applications. Small cogeneration applications, already strong in some parts of the world, are also gaining ground everywhere. Small GT manufacturers already serve this market, and alliances and partnerships can enhance SOFC commercialization. Utilities also serve the DG market, especially those that have set up energy service companies and seek to grow beyond the legal and geographical confines of their current regulated business. Because fuel cells in general are a new product, because small baseload applications are a new segment, and because deregulation will continue to shake up the mature traditional power generation market, the commercial risks of launching a new product at this time are unique and considerable. Hence, a collaborative approach to commercialization is deemed desirable and appropriate, and collaboration with GT manufacturers and utilities will be addressed in this paper.
1993-08-20
UNLIMITED. SYSTEMS ENGINEERING DIVISION AERONAUTICAL SYSTEMS CENTER AIR FORCE MATERIEL COMMAND WRIGHT PATTERSON AFB OH 45433-7126 YOITCE When Government...BASINGER Progatl anager Team Leader Special Programs Divsion Special Programs Division JAMES J. O’CONNELL Chief, Systems Engineering Division Training...ADDRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER Aeronautical Systems Center Systems Engineering Division ASC-TR-94-50 10 Bldg 11 2240 B St
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyer, James M.; Schoenung, Susan M.
2008-02-01
The work documented in this report represents another step in the ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Energy Storage Systems (ESS) Program. This study uses updated cost and performance information for modular energy storage (MES) developed for this study to evaluate four prospective value propositions for MES. The four potentially attractive value propositions are defined by a combination of well-known benefits that are associated with electricity generation, delivery, and use. The value propositions evaluated are: (1) transportable MES for electric utilitymore » transmission and distribution (T&D) equipment upgrade deferral and for improving local power quality, each in alternating years, (2) improving local power quality only, in all years, (3) electric utility T&D deferral in year 1, followed by electricity price arbitrage in following years; plus a generation capacity credit in all years, and (4) electric utility end-user cost management during times when peak and critical peak pricing prevail.« less
Feasibility of a medium-size central cogenerated energy facility, energy management memorandum
NASA Astrophysics Data System (ADS)
Porter, R. W.
1982-09-01
The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.
Modular high speed counter employing edge-triggered code
Vanstraelen, Guy F.
1993-06-29
A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.
Modular high speed counter employing edge-triggered code
Vanstraelen, G.F.
1993-06-29
A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.
Developing a modular architecture for creation of rule-based clinical diagnostic criteria.
Hong, Na; Pathak, Jyotishman; Chute, Christopher G; Jiang, Guoqian
2016-01-01
With recent advances in computerized patient records system, there is an urgent need for producing computable and standards-based clinical diagnostic criteria. Notably, constructing rule-based clinical diagnosis criteria has become one of the goals in the International Classification of Diseases (ICD)-11 revision. However, few studies have been done in building a unified architecture to support the need for diagnostic criteria computerization. In this study, we present a modular architecture for enabling the creation of rule-based clinical diagnostic criteria leveraging Semantic Web technologies. The architecture consists of two modules: an authoring module that utilizes a standards-based information model and a translation module that leverages Semantic Web Rule Language (SWRL). In a prototype implementation, we created a diagnostic criteria upper ontology (DCUO) that integrates ICD-11 content model with the Quality Data Model (QDM). Using the DCUO, we developed a transformation tool that converts QDM-based diagnostic criteria into Semantic Web Rule Language (SWRL) representation. We evaluated the domain coverage of the upper ontology model using randomly selected diagnostic criteria from broad domains (n = 20). We also tested the transformation algorithms using 6 QDM templates for ontology population and 15 QDM-based criteria data for rule generation. As the results, the first draft of DCUO contains 14 root classes, 21 subclasses, 6 object properties and 1 data property. Investigation Findings, and Signs and Symptoms are the two most commonly used element types. All 6 HQMF templates are successfully parsed and populated into their corresponding domain specific ontologies and 14 rules (93.3 %) passed the rule validation. Our efforts in developing and prototyping a modular architecture provide useful insight into how to build a scalable solution to support diagnostic criteria representation and computerization.
A modular case-mix classification system for medical rehabilitation illustrated.
Stineman, M G; Granger, C V
1997-01-01
The authors present a modular set of patient classification systems designed for medical rehabilitation that predict resource use and outcomes for clinically similar groups of individuals. The systems, based on the Functional Independence Measure, are referred to as Function-Related Groups (FIM-FRGs). Using data from 23,637 lower extremity fracture patients from 458 inpatient medical rehabilitation facilities, 1995 benchmarks are provided and illustrated for length of stay, functional outcome, and discharge to home and skilled nursing facilities (SNFs). The FIM-FRG modules may be used in parallel to study interactions between resource use and quality and could ultimately yield an integrated strategy for payment and outcomes measurement. This could position the rehabilitation community to take a pioneering role in the application of outcomes-based clinical indicators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newmarker, Marc; Campbell, Mark
2012-03-16
Design, validate at prototype level, and then demonstrate a full size, 800 MWht Thermal Energy Storage (TES) system based on Phase Changing Material (PCM) TES modules with round trip efficiency in excess of 93%. The PCM TES module would be the building block of a TES system which can be deployed at costs inline with the DOE benchmark of 2020. The development of a reliable, unsophisticated, modular, and scalable TES system designed to be massmanufactured utilizing advanced automated fabrication and assembly processes and field installed in the most cost-effective configuration could facilitate the attainment of a Levelized Cost of Energymore » (LCOE) of $.07/kWh by 2015. It was believed that the DOE targets can be attained by finding the best combinationTES module size, its optimal integration in the power cycle, and readily available PCM. Work under this project ultimately focused on the development and performance evaluation of a 100kWht prototype heat exchanger. The design utilizes a commercially available heat exchanger product to create a unique latent heat PCM storage module. The novel ideal associated with this technology is the inclusion of an agitation mechanism that is activated during the discharge process to improve heat transfer. The prototype unit did not meet the performance goals estimated through modeling, nor did the estimated costs of the system fall in line with the goals established by DOE.« less
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
Lead/acid batteries in systems to improve power quality
NASA Astrophysics Data System (ADS)
Taylor, P.; Butler, P.; Nerbun, W.
Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.
The first satellite laser echoes recorded on the streak camera
NASA Technical Reports Server (NTRS)
Hamal, Karel; Prochazka, Ivan; Kirchner, Georg; Koidl, F.
1993-01-01
The application of the streak camera with the circular sweep for the satellite laser ranging is described. The Modular Streak Camera system employing the circular sweep option was integrated into the conventional Satellite Laser System. The experimental satellite tracking and ranging has been performed. The first satellite laser echo streak camera records are presented.
USDA-ARS?s Scientific Manuscript database
AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...
USDA-ARS?s Scientific Manuscript database
AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic and water quality (H/WQ) simulation components under the Java Connection Framework (JCF) and the Object Modeling System (OMS) environmental modeling framework. AgES-W is implicitly scala...
NASA Astrophysics Data System (ADS)
Yang, Mei; Jiao, Fengjun; Li, Shulian; Li, Hengqiang; Chen, Guangwen
2015-08-01
A self-sustained, complete and miniaturized methanol fuel processor has been developed based on modular integration and microreactor technology. The fuel processor is comprised of one methanol oxidative reformer, one methanol combustor and one two-stage CO preferential oxidation unit. Microchannel heat exchanger is employed to recover heat from hot stream, miniaturize system size and thus achieve high energy utilization efficiency. By optimized thermal management and proper operation parameter control, the fuel processor can start up in 10 min at room temperature without external heating. A self-sustained state is achieved with H2 production rate of 0.99 Nm3 h-1 and extremely low CO content below 25 ppm. This amount of H2 is sufficient to supply a 1 kWe proton exchange membrane fuel cell. The corresponding thermal efficiency of whole processor is higher than 86%. The size and weight of the assembled reactors integrated with microchannel heat exchangers are 1.4 L and 5.3 kg, respectively, demonstrating a very compact construction of the fuel processor.
NASA Technical Reports Server (NTRS)
Meston, R. D.; Schall, M. R., Jr.; Brockman, C. L.; Bender, W. H.
1972-01-01
All analyses and tradeoffs conducted to establish the MSS operations and crew activities are discussed. The missions and subsystem integrated analyses that were completed to assure compatibility of program elements and consistency with program objectives are presented.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Systems design and systems optimization studies are conducted which consider plant size, annual capacity factors, and startup time as variables. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.
A Formal Model of Partitioning for Integrated Modular Avionics
NASA Technical Reports Server (NTRS)
DiVito, Ben L.
1998-01-01
The aviation industry is gradually moving toward the use of integrated modular avionics (IMA) for civilian transport aircraft. An important concern for IMA is ensuring that applications are safely partitioned so they cannot interfere with one another. We have investigated the problem of ensuring safe partitioning and logical non-interference among separate applications running on a shared Avionics Computer Resource (ACR). This research was performed in the context of ongoing standardization efforts, in particular, the work of RTCA committee SC-182, and the recently completed ARINC 653 application executive (APEX) interface standard. We have developed a formal model of partitioning suitable for evaluating the design of an ACR. The model draws from the mathematical modeling techniques developed by the computer security community. This report presents a formulation of partitioning requirements expressed first using conventional mathematical notation, then formalized using the language of SRI'S Prototype Verification System (PVS). The approach is demonstrated on three candidate designs, each an abstraction of features found in real systems.
NASA Technical Reports Server (NTRS)
Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.
1986-01-01
Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.
A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2005-01-01
Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.
Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation
Rodriguez Salazar, Leopoldo; Cobano, Jose A.; Ollero, Anibal
2016-01-01
This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz. Predictions show a convergence time with a 95% confidence interval of approximately 30 s. PMID:28025531
Small UAS-Based Wind Feature Identification System Part 1: Integration and Validation.
Rodriguez Salazar, Leopoldo; Cobano, Jose A; Ollero, Anibal
2016-12-23
This paper presents a system for identification of wind features, such as gusts and wind shear. These are of particular interest in the context of energy-efficient navigation of Small Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and a novel algorithm to generate wind field predictions. Estimations are based on the integration of an off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions use atmospheric models to characterize the wind field with different statistical analyses. During the prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from previous flights in order to enhance the approximations. Wind estimates are classified and fitted into a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping and scale parameters of the distribution, which are employed to determine the most probable wind speed at a certain position. The system uses this information to characterize a wind shear or a discrete gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge of the wind features is crucial for computing energy-efficient trajectories with low cost and payload. Therefore, the system provides a solution that does not require any additional sensors. The system architecture presents a modular decentralized approach, in which the main parts of the system are separated in modules and the exchange of information is managed by a communication handler to enhance upgradeability and maintainability. Validation is done providing preliminary results of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights, performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at 0.4 Hz . Predictions show a convergence time with a 95% confidence interval of approximately 30 s .
Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces
Hussain, N.; Salimi, P.
2014-01-01
The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. The operational reliability, the minimum risk of failure, and the maintenance and repair characteristics are determined and the commercial system design is defined.
An adaptive neural swarm approach for intrusion defense in ad hoc networks
NASA Astrophysics Data System (ADS)
Cannady, James
2011-06-01
Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.
Microcomputer software development facilities
NASA Technical Reports Server (NTRS)
Gorman, J. S.; Mathiasen, C.
1980-01-01
A more efficient and cost effective method for developing microcomputer software is to utilize a host computer with high-speed peripheral support. Application programs such as cross assemblers, loaders, and simulators are implemented in the host computer for each of the microcomputers for which software development is a requirement. The host computer is configured to operate in a time share mode for multiusers. The remote terminals, printers, and down loading capabilities provided are based on user requirements. With this configuration a user, either local or remote, can use the host computer for microcomputer software development. Once the software is developed (through the code and modular debug stage) it can be downloaded to the development system or emulator in a test area where hardware/software integration functions can proceed. The microcomputer software program sources reside in the host computer and can be edited, assembled, loaded, and then downloaded as required until the software development project has been completed.
Three-dimensional fit-to-flow microfluidic assembly.
Chen, Arnold; Pan, Tingrui
2011-12-01
Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.
A 100 kW-Class Technology Demonstrator for Space Solar Power
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe; Day, Greg
2004-01-01
A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class fiee-flying platform suitable for flight demonstration of technology experiments. Recent space solar power (SSP) studies by NASA have taken a stepping stones approach that lead to the gigawatt systems necessary to cost-effectively deliver power from space. These steps start with a 100 kW-class satellite, leading to a 500 kW and then a 1 MW-class platform. Later steps develop a 100 M W bus that could eventually lead to a 1-2 GW pilot plant for SSP. Our studies have shown that a modular approach is cost effective. Modular designs include individual laser-power-beaming satellites that fly in constellations or that are autonomously assembled into larger structures at geosynchronous orbit (GEO). Microwave power-beamed approaches are also modularized into large numbers of identical units of solar arrays, power converters, or supporting structures for arrays and microwave transmitting antennas. A cost-effective approach to launching these modular units is to use existing Earth-to-orbit (ETO) launch systems, in which the modules are dropped into low Earth orbit (LEO) and then the modules perform their own orbit transfer to GEO using expendable solar arrays to power solar electric thrusters. At GEO, the modules either rendezvous and are assembled robotically into larger platforms, or are deployed into constellations of identical laser power-beaming satellites. Since solar electric propulsion by the modules is cost-effective for both self-transport of the modules from LEO to GEO, and for on-orbit stationkeeping and repositioning capability during the satellite's lifetime, this technology is also critical in technology development for SSP. The 100 kW-class technology demonstrator will utilize advanced solar power collection and generation technologies, power management and distribution, advanced thermal management, and solar electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100 kW satellite feasible for launch on one existing launch vehicle. Early SSP studies showed that a major percentage of the on-orbit mass for power-beaming satellites was from massive power converters at the solar arrays, at the bus, at the power transmitter, or at combinations of these locations. Higher voltage mays and power management and distribution (PMAD) systems reduce or eliminate the need for many of these massive power converters, and could enable direct-drive of high-voltage solar electric thrusters. Lightweight, highly efficient thermal management systems are a critical technology that must be developed and flown for SSP feasibility. Large amounts of power on satellites imply that large amounts of waste heat will need to be managed. In addition, several of the more innovative lightweight configurations proposed for SSP satellites take advantage of solar concentrators that are intractable without advanced thermal management technologies for the solar arrays. These thermal management systems include efficient interfaces with the WPT systems or other high-power technology experiments, lightweight deployable radiators that can be easily integrated into satellite buses, and efficient reliable thermal distribution systems that can pipe heat from the technology experiments to the radiators. In addition to demonstrating the integration and use of these mission-ctical technologies, the 100 kw-class satellite will provide a large experiment deck for a portfolio of technology experiments. Current plans for this technology demonstrator allow 2000 kg of payload capability and up to 100 kW of power. The technology experiments could include one or more wireless power transmission demonstrations, either to the Earth s surface or to a suitable space-based receiver. Technology experiments to quantify the on-orbit performance of critical technologies for SSP or space exploration are welcomed. In addition, the technology experiments provide an opportunity for international cooperation, to advance technology readiness levels of SSP technologies that require flight demonstration. This paper will present the preliminary design for a 100 kW solar-powered satellite and a variety of technology experiments that may be suitable for flight demonstration. In addition, a space-to-Earth-surface WPT experiment will be discussed.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.
1998-04-21
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.
Solid oxide fuel cell generator with removable modular fuel cell stack configurations
Gillett, James E.; Dederer, Jeffrey T.; Zafred, Paolo R.; Collie, Jeffrey C.
1998-01-01
A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. George C. Vradis; Dr. Hagen Schempf
2003-04-01
This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows formore » the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.« less
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.
2005-02-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
PEO CS&CSS 2011: Advanced Planning Brief to Industry
2011-10-28
technologically-advanced, proven equipment to enable and support the projection of Forces worldwide. • Modular Fuel Systems (MFS) • JAB • Fort Devens ... Fort Devens Base Camp Integration Lab Force Sustainment Systems 28 OCT 2011 22 PEO CS&CSS - APBI Force Sustainment Systems • Lifecycle Challenges...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naas, A. E.; Solden, L. M.; Norbeck, A. D.
Background In Nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here, we combine metaomics and enzymology to identify and describe a novel Bacteroidetes family (UMH11) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. Results The first metabolic reconstruction of UMH11-affiliated genome bins, with a particular focus on the provisionally named UParaporphyromonas polyenzymogenes, illustrated their capacity to degrade various lignocellulosicmore » substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human-gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific Type 9 secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from UP. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected UP. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. Conclusion We propose that UP. olyenzymogenes genotypes and other UMH11 members actively degrade plant biomass in the rumen of cows, sheep, and most likely other ruminants, utilizing singular and multi-domain catalytic CAZymes secreted through the T9SS. The discovery of a prominent role of multi-modular cellulases in the Gramnegative Bacteroidetes, together with similar findings for Gram-positive cellulosomal bacteria (Ruminococcus flavefaciens) and anaerobic fungi (Orpinomyces sp.), suggests that complex enzymes are essential and have evolved within all major cellulolytic dominions inherent to the rumen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naas, A. E.; Solden, L. M.; Norbeck, A. D.
Abstract. Background In nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here in this paper, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family (“Candidatus MH11”) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. Results. The first metabolic reconstruction of Ca. MH11-affiliated genome bins, with a particular focus on the provisionally named “Candidatus Paraporphyromonas polyenzymogenes”,more » illustrated their capacity to degrade various lignocellulosic substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific type IX secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from Ca. P. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected Ca. P. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. Conclusion. We propose that Ca. P. polyenzymogene genotypes and other Ca. MH11 members actively degrade plant biomass in the rumen of cows, sheep and most likely other ruminants, utilizing singular and multi-domain catalytic CAZymes secreted through the T9SS. The discovery of a prominent role of multi-modular cellulases in the Gram-negative Bacteroidetes, together with similar findings for Gram-positive cellulosomal bacteria (Ruminococcus flavefaciens) and anaerobic fungi (Orpinomyces sp.), suggests that complex enzymes are essential and have evolved within all major cellulolytic dominions inherent to the rumen.« less
Naas, A. E.; Solden, L. M.; Norbeck, A. D.; ...
2018-03-01
Abstract. Background In nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here in this paper, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family (“Candidatus MH11”) composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. Results. The first metabolic reconstruction of Ca. MH11-affiliated genome bins, with a particular focus on the provisionally named “Candidatus Paraporphyromonas polyenzymogenes”,more » illustrated their capacity to degrade various lignocellulosic substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific type IX secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from Ca. P. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected Ca. P. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. Conclusion. We propose that Ca. P. polyenzymogene genotypes and other Ca. MH11 members actively degrade plant biomass in the rumen of cows, sheep and most likely other ruminants, utilizing singular and multi-domain catalytic CAZymes secreted through the T9SS. The discovery of a prominent role of multi-modular cellulases in the Gram-negative Bacteroidetes, together with similar findings for Gram-positive cellulosomal bacteria (Ruminococcus flavefaciens) and anaerobic fungi (Orpinomyces sp.), suggests that complex enzymes are essential and have evolved within all major cellulolytic dominions inherent to the rumen.« less
Naas, A E; Solden, L M; Norbeck, A D; Brewer, H; Hagen, L H; Heggenes, I M; McHardy, A C; Mackie, R I; Paša-Tolić, L; Arntzen, M Ø; Eijsink, V G H; Koropatkin, N M; Hess, M; Wrighton, K C; Pope, P B
2018-03-01
In nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family ("Candidatus MH11") composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa. The first metabolic reconstruction of Ca. MH11-affiliated genome bins, with a particular focus on the provisionally named "Candidatus Paraporphyromonas polyenzymogenes", illustrated their capacity to degrade various lignocellulosic substrates via comprehensive inventories of singular and multi-modular carbohydrate active enzymes (CAZymes). Closer examination revealed an absence of archetypical polysaccharide utilization loci found in human gut microbiota. Instead, we identified many multi-modular CAZymes putatively secreted via the Bacteroidetes-specific type IX secretion system (T9SS). This included cellulases with two or more catalytic domains, which are modular arrangements that are unique to Bacteroidetes species studied to date. Core metabolic proteins from Ca. P. polyenzymogenes were detected in metaproteomic data and were enriched in rumen-incubated plant biomass, indicating that active saccharification and fermentation of complex carbohydrates could be assigned to members of this novel family. Biochemical analysis of selected Ca. P. polyenzymogenes CAZymes further iterated the cellulolytic activity of this hitherto uncultured bacterium towards linear polymers, such as amorphous and crystalline cellulose as well as mixed linkage β-glucans. We propose that Ca. P. polyenzymogene genotypes and other Ca. MH11 members actively degrade plant biomass in the rumen of cows, sheep and most likely other ruminants, utilizing singular and multi-domain catalytic CAZymes secreted through the T9SS. The discovery of a prominent role of multi-modular cellulases in the Gram-negative Bacteroidetes, together with similar findings for Gram-positive cellulosomal bacteria (Ruminococcus flavefaciens) and anaerobic fungi (Orpinomyces sp.), suggests that complex enzymes are essential and have evolved within all major cellulolytic dominions inherent to the rumen.
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.
2017-10-03
The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.
Quantization of Poisson Manifolds from the Integrability of the Modular Function
NASA Astrophysics Data System (ADS)
Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.
2014-10-01
We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
Li, Siwei; Ding, Wentao; Zhang, Xueli; Jiang, Huifeng; Bi, Changhao
2016-01-01
Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.
Integration of an open interface PC scene generator using COTS DVI converter hardware
NASA Astrophysics Data System (ADS)
Nordland, Todd; Lyles, Patrick; Schultz, Bret
2006-05-01
Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.
Architecture of a wireless Personal Assistant for telemedical diabetes care.
García-Sáez, Gema; Hernando, M Elena; Martínez-Sarriegui, Iñaki; Rigla, Mercedes; Torralba, Verónica; Brugués, Eulalia; de Leiva, Alberto; Gómez, Enrique J
2009-06-01
Advanced information technologies joined to the increasing use of continuous medical devices for monitoring and treatment, have made possible the definition of a new telemedical diabetes care scenario based on a hand-held Personal Assistant (PA). This paper describes the architecture, functionality and implementation of the PA, which communicates different medical devices in a personal wireless network. The PA is a mobile system for patients with diabetes connected to a telemedical center. The software design follows a modular approach to make the integration of medical devices or new functionalities independent from the rest of its components. Physicians can remotely control medical devices from the telemedicine server through the integration of the Common Object Request Broker Architecture (CORBA) and mobile GPRS communications. Data about PA modules' usage and patients' behavior evaluation come from a pervasive tracing system implemented into the PA. The PA architecture has been technically validated with commercially available medical devices during a clinical experiment for ambulatory monitoring and expert feedback through telemedicine. The clinical experiment has allowed defining patients' patterns of usage and preferred scenarios and it has proved the Personal Assistant's feasibility. The patients showed high acceptability and interest in the system as recorded in the usability and utility questionnaires. Future work will be devoted to the validation of the system with automatic control strategies from the telemedical center as well as with closed-loop control algorithms.
2016-06-01
between contract writing systems and the associated accounting and logistics systems. Employing this modular plug and play approach simplifies system...Automated Contract Preparation System (ACPS), Integrated Technical Item Management (ITIMP), and EProcurement are the contract writing systems that...research was on the DOD contract writing systems (CWS). This JAP seeks to report on the progress of DOD business system modernization efforts and
Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres
NASA Technical Reports Server (NTRS)
Corey, Kenneth A.
2001-01-01
In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.
Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres
NASA Technical Reports Server (NTRS)
Corey, Kenneth A.
2002-01-01
In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.
Communication Simulations for Power System Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.
2013-05-29
New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systemsmore » will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.« less
NASA Astrophysics Data System (ADS)
Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold
2009-04-01
Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.
ERIC Educational Resources Information Center
Stotter, Philip L.; Culp, George H.
An experimental course in organic chemistry utilized computer-assisted instructional (CAI) techniques. The CAI lessons provided tutorial drill and practice and simulated experiments and reactions. The Conversational Language for Instruction and Computing was used, along with a CDC 6400-6600 system; students scheduled and completed the lessons at…
NASA Technical Reports Server (NTRS)
Knezovich, F. M.
1976-01-01
A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.
ERIC Educational Resources Information Center
Wayte, Gillian; Wayte, Nick
1990-01-01
Examines why art and design educators resist the modularization of degree-level courses. Identifies key characteristics of art education in England through an ethnographic study. Discusses government policy and rationales for modular and integrated courses. Concludes that the holistic approach to education allows students to expound and develop…
On the modular structure of the genus-one Type II superstring low energy expansion
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Green, Michael B.; Vanhove, Pierre
2015-08-01
The analytic contribution to the low energy expansion of Type II string amplitudes at genus-one is a power series in space-time derivatives with coefficients that are determined by integrals of modular functions over the complex structure modulus of the world-sheet torus. These modular functions are associated with world-sheet vacuum Feynman diagrams and given by multiple sums over the discrete momenta on the torus. In this paper we exhibit exact differential and algebraic relations for a certain infinite class of such modular functions by showing that they satisfy Laplace eigenvalue equations with inhomogeneous terms that are polynomial in non-holomorphic Eisenstein series. Furthermore, we argue that the set of modular functions that contribute to the coefficients of interactions up to order are linear sums of functions in this class and quadratic polynomials in Eisenstein series and odd Riemann zeta values. Integration over the complex structure results in coefficients of the low energy expansion that are rational numbers multiplying monomials in odd Riemann zeta values.
Progress toward Modular UAS for Geoscience Applications
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Clark, M. A.; Comstock, R. J.; Fladeland, M.; Gascot, H., III; Haig, T. H.; Lam, S. J.; Mazhari, A. A.; Palomares, R. R.; Pinsker, E. A.; Prathipati, R. T.; Sagaga, J.; Thurling, J. S.; Travers, S. V.
2017-12-01
Small Unmanned Aerial Systems (UAS) have become accepted tools for geoscience, ecology, agriculture, disaster response, land management, and industry. A variety of consumer UAS options exist as science and engineering payload platforms, but their incompatibilities with one another contribute to high operational costs compared with those of piloted aircraft. This research explores the concept of modular UAS, demonstrating airframes that can be reconfigured in the field for experimental optimization, to enable multi-mission support, facilitate rapid repair, or respond to changing field conditions. Modular UAS is revolutionary in allowing aircraft to be optimized around the payload, reversing the conventional wisdom of designing the payload to accommodate an unmodifiable aircraft. UAS that are reconfigurable like Legos™ are ideal for airborne science service providers, system integrators, instrument designers and end users to fulfill a wide range of geoscience experiments. Modular UAS facilitate the adoption of open-source software and rapid prototyping technology where design reuse is important in the context of a highly regulated industry like aerospace. The industry is now at a stage where consolidation, acquisition, and attrition will reduce the number of small manufacturers, with a reduction of innovation and motivation to reduce costs. Modularity leads to interface specifications, which can evolve into de facto or formal standards which contain minimum (but sufficient) details such that multiple vendors can then design to those standards and demonstrate interoperability. At that stage, vendor coopetition leads to robust interface standards, interoperability standards and multi-source agreements which in turn drive costs down significantly.
Design of an Ada expert system shell for the VHSIC avionic modular flight processor
NASA Technical Reports Server (NTRS)
Fanning, F. Jesse
1992-01-01
The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.
IVHM Framework for Intelligent Integration for Vehicle Health Management
NASA Technical Reports Server (NTRS)
Paris, Deidre; Trevino, Luis C.; Watson, Michael D.
2005-01-01
Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, is the process of assessing, preserving, and restoring system functionality across flight and techniques with sensor and communication technologies for spacecraft that can generate responses through detection, diagnosis, reasoning, and adapt to system faults in support of Integrated Intelligent Vehicle Management (IIVM). These real-time responses allow the IIVM to modify the affected vehicle subsystem(s) prior to a catastrophic event. Furthermore, this framework integrates technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Recent investments in avionics, health management, and controls have been directed towards IIVM. As this concept has matured, it has become clear that IIVM requires the same sensors and processing capabilities as the real-time avionics functions to support diagnosis of subsystem problems. New sensors have been proposed, in addition to augment the avionics sensors to support better system monitoring and diagnostics. As the designs have been considered, a synergy has been realized where the real-time avionics can utilize sensors proposed for diagnostics and prognostics to make better real-time decisions in response to detected failures. IIVM provides for a single system allowing modularity of functions and hardware across the vehicle. The framework that supports IIVM consists of 11 major on-board functions necessary to fully manage a space vehicle maintaining crew safety and mission objectives. These systems include the following: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle Mission Planning, Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations.
Triple products of Eisenstein series
NASA Astrophysics Data System (ADS)
Venkatesh, Anil
In this thesis, we construct a Massey triple product on the Deligne cohomology of the modular curve with coefficients in symmetric powers of the standard representation of the modular group. This result is obtained by constructing a Massey triple product on the extension groups in the category of admissible variations of mixed Hodge structure over the modular curve, which induces the desired construction on Deligne cohomology. The result extends Brown's construction of the cup product on Deligne cohomology to a higher cohomological product. Massey triple products on Deligne cohomology have been previously investigated by Deninger, who considered Deligne cohomology with trivial real coefficients. By working over the reals, Deninger was able to compute cohomology exclusively with differential forms. In this work, Deligne cohomology is studied over the rationals, which introduces an obstruction to applying Deninger's results. The obstruction arises from the fact that the integration map from the de Rham complex to the Eilenberg-MacLane complex of the modular group is not an algebra homomorphism. We compute the correction terms of the integration map as regularized iterated integrals of Eisenstein series, and show that these integrals arise in the cup product and Massey triple product on Deligne cohomology.
Modular Hydropower Engineering and Pilot Scale Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesser, Phillip C.
Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, themore » castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously« less
NASA Technical Reports Server (NTRS)
Littell, Justin Anderson (Inventor); Street, Jon P. (Inventor)
2017-01-01
The modular fixturing system of the present invention is modular, reusable and capable of significant customization, both in terms of system radius and system height, allowing it to be arranged and rearranged in numerous unique configurations. The system includes multiple modular stanchions having stanchion shafts and stanchion feet that removably attach to apertures in a table. Angle brackets attached to the modular stanchions support shelves. These shelves in turn provide support to work pieces during fabrication processes such as welding.
MIRIADS: miniature infrared imaging applications development system description and operation
NASA Astrophysics Data System (ADS)
Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.
2001-10-01
A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.
Transformational Systems Concepts and Technologies for Our Future in Space
NASA Technical Reports Server (NTRS)
Howell, J. T.; George,P.; Mankins, J. C. (Editor); Christensen, C. B.
2004-01-01
NASA is constantly searching for new ideas and approaches yielding opportunities for assuring maximum returns on space infrastructure investments. Perhaps the idea of transformational innovation in developing space systems is long overdue. However, the concept of utilizing modular space system designs combined with stepping-stone development processes has merit and promises to return several times the original investment since each new space system or component is not treated as a unique and/or discrete design and development challenge. New space systems can be planned and designed so that each builds on the technology of previous systems and provides capabilities to support future advanced systems. Subsystems can be designed to use common modular components and achieve economies of scale, production, and operation. Standards, interoperability, and "plug and play" capabilities, when implemented vigorously and consistently, will result in systems that can be upgraded effectively with new technologies. This workshop explored many building-block approaches via way of example across a broad spectrum of technology discipline areas for potentially transforming space systems and inspiring future innovation. Details describing the workshop structure, process, and results are contained in this Conference Publication.
High performance VLSI telemetry data systems
NASA Technical Reports Server (NTRS)
Chesney, J.; Speciale, N.; Horner, W.; Sabia, S.
1990-01-01
NASA's deployment of major space complexes such as Space Station Freedom (SSF) and the Earth Observing System (EOS) will demand increased functionality and performance from ground based telemetry acquisition systems well above current system capabilities. Adaptation of space telemetry data transport and processing standards such as those specified by the Consultative Committee for Space Data Systems (CCSDS) standards and those required for commercial ground distribution of telemetry data, will drive these functional and performance requirements. In addition, budget limitations will force the requirement for higher modularity, flexibility, and interchangeability at lower cost in new ground telemetry data system elements. At NASA's Goddard Space Flight Center (GSFC), the design and development of generic ground telemetry data system elements, over the last five years, has resulted in significant solutions to these problems. This solution, referred to as the functional components approach includes both hardware and software components ready for end user application. The hardware functional components consist of modern data flow architectures utilizing Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to meet a range of data rate requirements up to 300 Mbps. Real-time operating system software components support both embedded local software intelligence, and overall system control, status, processing, and interface requirements. These components, hardware and software, form the superstructure upon which project specific elements are added to complete a telemetry ground data system installation. This paper describes the functional components approach, some specific component examples, and a project example of the evolution from VLSI component, to basic board level functional component, to integrated telemetry data system.
Miniature modular microwave end-to-end receiver
NASA Technical Reports Server (NTRS)
Sukamto, Lin M. (Inventor); Cooley, Thomas W. (Inventor); Janssen, Michael A. (Inventor); Parks, Gary S. (Inventor)
1993-01-01
An end-to-end microwave receiver system contained in a single miniature hybrid package mounted on a single heatsink is presented. It includes an input end connected to a microwave receiver antenna and an output end which produces a digital count proportional to the amplitude of a signal of a selected microwave frequency band received at the antenna and corresponding to one of the water vapor absorption lines near frequencies of 20 GHz or 30 GHz. The hybrid package is on the order of several centimeters in length and a few centimeters in height and width. The package includes an L-shaped carrier having a base surface, a vertical wall extending up from the base surface and forming a corner therewith, and connection pins extending through the vertical wall. Modular blocks rest on the base surface against the vertical wall and support microwave monolithic integrated circuits on top surfaces thereof connected to the external connection pins. The modular blocks lie end-to-end on the base surface so as to be modularly removable by sliding along the base surface beneath the external connection pins away from the vertical wall.
Modeling of Kerena Emergency Condenser
NASA Astrophysics Data System (ADS)
Bryk, Rafał; Schmidt, Holger; Mull, Thomas; Wagner, Thomas; Ganzmann, Ingo; Herbst, Oliver
2017-12-01
KERENA is an innovative boiling water reactor concept equipped with several passive safety systems. For the experimental verification of performance of the systems and for codes validation, the Integral Test Stand Karlstein (INKA) was built in Karlstein, Germany. The emergency condenser (EC) system transfers heat from the reactor pressure vessel (RPV) to the core flooding pool in case of water level decrease in the RPV. EC is composed of a large number of slightly inclined tubes. During accident conditions, steam enters into the tubes and condenses due to the contact of the tubes with cold water at the secondary side. The condensed water flows then back to the RPV due to gravity. In this paper two approaches for modeling of condensation in slightly inclined tubes are compared and verified against experiments. The first approach is based on the flow regime map. Depending on the regime, heat transfer coefficient is calculated according to specific semi-empirical correlation. The second approach uses a general, fully-empirical correlation. The models are developed with utilization of the object-oriented Modelica language and the open-source OpenModelica environment. The results are compared with data obtained during a large scale integral test, simulating loss of coolant accident performed at Integral Test Stand Karlstein (INKA). The comparison shows a good agreement.Due to the modularity of models, both of them may be used in the future in systems incorporating condensation in horizontal or slightly inclined tubes. Depending on his preferences, the modeller may choose one-equation based approach or more sophisticated model composed of several exchangeable semi-empirical correlations.
SCORPION II persistent surveillance system with universal gateway
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jonathan; Brunck, Albert
2009-05-01
This paper addresses improvements and benefits derived from the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal, backward compatible, and enables integration of over forty Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to being fed to COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system Gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali
2010-12-01
The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
IntellWheels: modular development platform for intelligent wheelchairs.
Braga, Rodrigo Antonio Marques; Petry, Marcelo; Reis, Luis Paulo; Moreira, António Paulo
2011-01-01
Intelligent wheelchairs (IWs) can become an important solution to the challenge of assisting individuals who have disabilities and are thus unable to perform their daily activities using classic powered wheelchairs. This article describes the concept and design of IntellWheels, a modular platform to facilitate the development of IWs through a multiagent system paradigm. In fact, modularity is achieved not only in the software perspective, but also through a generic hardware framework that was designed to fit, in a straightforward manner, almost any commercial powered wheelchair. Experimental results demonstrate the successful integration of all modules in the platform, providing safe motion to the IW. Furthermore, the results achieved with a prototype running in autonomous mode in simulated and mixed-reality environments also demonstrate the potential of our approach. Although some future research is still necessary to fully accomplish our objectives, preliminary tests have shown that IntellWheels will effectively reduce users' limitations, offering them a much more independent life.
Topological dimension tunes activity patterns in hierarchical modular networks
NASA Astrophysics Data System (ADS)
Safari, Ali; Moretti, Paolo; Muñoz, Miguel A.
2017-11-01
Connectivity patterns of relevance in neuroscience and systems biology can be encoded in hierarchical modular networks (HMNs). Recent studies highlight the role of hierarchical modular organization in shaping brain activity patterns, providing an excellent substrate to promote both segregation and integration of neural information. Here, we propose an extensive analysis of the critical spreading rate (or ‘epidemic’ threshold)—separating a phase with endemic persistent activity from one in which activity ceases—on diverse HMNs. By employing analytical and computational techniques we determine the nature of such a threshold and scrutinize how it depends on general structural features of the underlying HMN. We critically discuss the extent to which current graph-spectral methods can be applied to predict the onset of spreading in HMNs and, most importantly, we elucidate the role played by the network topological dimension as a relevant and unifying structural parameter, controlling the epidemic threshold.
A modular method for evaluating the performance of picture archiving and communication systems.
Sanders, W H; Kant, L A; Kudrimoti, A
1993-08-01
Modeling can be used to predict the performance of picture archiving and communication system (PACS) configurations under various load conditions at an early design stage. This is important because choices made early in the design of a system can have a significant impact on the performance of the resulting implementation. Because PACS consist of many types of components, it is important to do such evaluations in a modular manner, so that alternative configurations and designs can be easily investigated. Stochastic activity networks (SANs) and reduced base model construction methods can aid in doing this. SANs are a model type particularly suited to the evaluation of systems in which several activities may be in progress concurrently, and each activity may affect the others through the results of its completion. Together with SANs, reduced base model construction methods provide a means to build highly modular models, in which models of particular components can be easily reused. In this article, we investigate the use of SANs and reduced base model construction techniques in evaluating PACS. Construction and solution of the models is done using UltraSAN, a graphic-oriented software tool for model specification, analysis, and simulation. The method is illustrated via the evaluation of a realistically sized PACS for a typical United States hospital of 300 to 400 beds, and the derivation of system response times and component utilizations.
Space Biology Initiative. Trade Studies, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are the subjects of this report are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves as a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Space Biology Initiative. Trade Studies, volume 1
NASA Technical Reports Server (NTRS)
1989-01-01
The six studies which are addressed are entitled: Design Modularity and Commonality; Modification of Existing Hardware (COTS) vs. New Hardware Build Cost Analysis; Automation Cost vs. Crew Utilization; Hardware Miniaturization versus Cost; Space Station Freedom/Spacelab Modules Compatibility vs. Cost; and Prototype Utilization in the Development of Space Hardware. The product of these six studies was intended to provide a knowledge base and methodology that enables equipment produced for the Space Biology Initiative program to meet specific design and functional requirements in the most efficient and cost effective form consistent with overall mission integration parameters. Each study promulgates rules of thumb, formulas, and matrices that serves has a handbook for the use and guidance of designers and engineers in design, development, and procurement of Space Biology Initiative (SBI) hardware and software.
Block-Module Electric Machines of Alternating Current
NASA Astrophysics Data System (ADS)
Zabora, I.
2018-03-01
The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).
An instrumental puzzle: the modular integration of AOLI
NASA Astrophysics Data System (ADS)
López, Roberto L.; Velasco, Sergio; Colodro-Conde, Carlos; Valdivia, Juan J. F.; Puga, Marta; Oscoz, Alejandro; Rebolo, Rafael; MacKay, Craig; Pérez-Garrido, Antonio; Rodríguez-Ramos, Luis Fernando; Rodríguez-Ramos, José Manuel M.; King, David; Labadie, Lucas; Muthusubramanian, Balaji; Rodríguez-Coira, Gustavo
2016-08-01
The Adaptive Optics Lucky Imager, AOLI, is an instrument developed to deliver the highest spatial resolution ever obtained in the visible, 20 mas, from ground-based telescopes. In AOLI a new philosophy of instrumental prototyping has been applied, based on the modularization of the subsystems. This modular concept offers maximum flexibility regarding the instrument, telescope or the addition of future developments.
Stocker, Gernot; Rieder, Dietmar; Trajanoski, Zlatko
2004-03-22
ClusterControl is a web interface to simplify distributing and monitoring bioinformatics applications on Linux cluster systems. We have developed a modular concept that enables integration of command line oriented program into the application framework of ClusterControl. The systems facilitate integration of different applications accessed through one interface and executed on a distributed cluster system. The package is based on freely available technologies like Apache as web server, PHP as server-side scripting language and OpenPBS as queuing system and is available free of charge for academic and non-profit institutions. http://genome.tugraz.at/Software/ClusterControl
Computational System For Rapid CFD Analysis In Engineering
NASA Technical Reports Server (NTRS)
Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.
1995-01-01
Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.
Sbardella, Emilia; Isidori, Andrea M; Woods, Conor P; Argese, Nicola; Tomlinson, Jeremy W; Shine, Brian; Jafar-Mohammadi, Bahram; Grossman, Ashley B
2017-02-01
The short ACTH stimulation test (250 μg) is the dynamic test most frequently used to assess adrenal function. It is possible that a single basal cortisol could be used to predict the dynamic response, but research has been hampered by the use of different assays and thresholds. To propose a morning baseline cortisol criterion of three of the most commonly used modern cortisol immunoassays - Advia Centaur (Siemens), Architect (Abbott) and the Roche Modular System (Roche) - that could predict adrenal sufficiency. Observational, retrospective cross-sectional study at two centres. Retrospective analysis of the results of 1019 Short Synacthen tests (SSTs) with the Advia Centaur, 449 SSTs with the Architect and 2050 SSTs with the Roche Modular System assay. Serum cortisol levels were measured prior to injection of 250 μg Synacthen and after 30 min. Overall, we were able to collate data from a total of 3518 SSTs in 3571 patients. Using receiver-operator curve analysis, baseline cortisol levels for predicting passing the SST with 100% specificity were 358 nmol/l for Siemens, 336 nmol/l for Abbott and 506 nmol/l for Roche. Utilizing these criteria, 589, 158 and 578 SSTs, respectively, for Siemens, Abbott and Roche immunoassays could have been avoided. We have defined assay-specific morning cortisol levels that are able to predict the integrity of the hypothalamo-pituitary-adrenal axis. We propose that this represents a valid tool for the initial assessment of adrenal function and has the potential to obviate the need for dynamic testing in a significant number of patients. © 2016 John Wiley & Sons Ltd.
GeneGuard: A modular plasmid system designed for biosafety.
Wright, Oliver; Delmans, Mihails; Stan, Guy-Bart; Ellis, Tom
2015-03-20
Synthetic biology applications in biosensing, bioremediation, and biomining envision the use of engineered microbes beyond a contained laboratory. Deployment of such microbes in the environment raises concerns of unchecked cellular proliferation or unwanted spread of synthetic genes. While antibiotic-resistant plasmids are the most utilized vectors for introducing synthetic genes into bacteria, they are also inherently insecure, acting naturally to propagate DNA from one cell to another. To introduce security into bacterial synthetic biology, we here took on the task of completely reformatting plasmids to be dependent on their intended host strain and inherently disadvantageous for others. Using conditional origins of replication, rich-media compatible auxotrophies, and toxin-antitoxin pairs we constructed a mutually dependent host-plasmid platform, called GeneGuard. In this, replication initiators for the R6K or ColE2-P9 origins are provided in trans by a specified host, whose essential thyA or dapA gene is translocated from a genomic to a plasmid location. This reciprocal arrangement is stable for at least 100 generations without antibiotic selection and is compatible for use in LB medium and soil. Toxin genes ζ or Kid are also employed in an auxiliary manner to make the vector disadvantageous for strains not expressing their antitoxins. These devices, in isolation and in concert, severely reduce unintentional plasmid propagation in E. coli and B. subtilis and do not disrupt the intended E. coli host's growth dynamics. Our GeneGuard system comprises several versions of modular cargo-ready vectors, along with their requisite genomic integration cassettes, and is demonstrated here as an efficient vector for heavy-metal biosensors.
Towards an Open, Distributed Software Architecture for UxS Operations
NASA Technical Reports Server (NTRS)
Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Allen, B. Danette
2015-01-01
To address the growing need to evaluate, test, and certify an ever expanding ecosystem of UxS platforms in preparation of cultural integration, NASA Langley Research Center's Autonomy Incubator (AI) has taken on the challenge of developing a software framework in which UxS platforms developed by third parties can be integrated into a single system which provides evaluation and testing, mission planning and operation, and out-of-the-box autonomy and data fusion capabilities. This software framework, named AEON (Autonomous Entity Operations Network), has two main goals. The first goal is the development of a cross-platform, extensible, onboard software system that provides autonomy at the mission execution and course-planning level, a highly configurable data fusion framework sensitive to the platform's available sensor hardware, and plug-and-play compatibility with a wide array of computer systems, sensors, software, and controls hardware. The second goal is the development of a ground control system that acts as a test-bed for integration of the proposed heterogeneous fleet, and allows for complex mission planning, tracking, and debugging capabilities. The ground control system should also be highly extensible and allow plug-and-play interoperability with third party software systems. In order to achieve these goals, this paper proposes an open, distributed software architecture which utilizes at its core the Data Distribution Service (DDS) standards, established by the Object Management Group (OMG), for inter-process communication and data flow. The design decisions proposed herein leverage the advantages of existing robotics software architectures and the DDS standards to develop software that is scalable, high-performance, fault tolerant, modular, and readily interoperable with external platforms and software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’smore » new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.« less
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
NASA Technical Reports Server (NTRS)
Holl, R. J.
1979-01-01
The development and design of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Thermal and stress analyses are performed on the collector subsystem, energy storage subsystem, energy transport subsystem, the power conversion subsystem, and the plant control subsystem.
A neural network with modular hierarchical learning
NASA Technical Reports Server (NTRS)
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
Fast modular data acquisition system for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.
2014-11-01
A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.
A networked modular hardware and software system for MRI-guided robotic prostate interventions
NASA Astrophysics Data System (ADS)
Su, Hao; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Cole, Gregory; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare; Fischer, Gregory S.
2012-02-01
Magnetic resonance imaging (MRI) provides high resolution multi-parametric imaging, large soft tissue contrast, and interactive image updates making it an ideal modality for diagnosing prostate cancer and guiding surgical tools. Despite a substantial armamentarium of apparatuses and systems has been developed to assist surgical diagnosis and therapy for MRI-guided procedures over last decade, the unified method to develop high fidelity robotic systems in terms of accuracy, dynamic performance, size, robustness and modularity, to work inside close-bore MRI scanner still remains a challenge. In this work, we develop and evaluate an integrated modular hardware and software system to support the surgical workflow of intra-operative MRI, with percutaneous prostate intervention as an illustrative case. Specifically, the distinct apparatuses and methods include: 1) a robot controller system for precision closed loop control of piezoelectric motors, 2) a robot control interface software that connects the 3D Slicer navigation software and the robot controller to exchange robot commands and coordinates using the OpenIGTLink open network communication protocol, and 3) MRI scan plane alignment to the planned path and imaging of the needle as it is inserted into the target location. A preliminary experiment with ex-vivo phantom validates the system workflow, MRI-compatibility and shows that the robotic system has a better than 0.01mm positioning accuracy.
NASA Astrophysics Data System (ADS)
Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.
2013-09-01
Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current state-of-practice numerical integration methods. It is shown that MCPI is capable of out-performing the state-of-practice in terms of computational cost and accuracy.
Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility
Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon
2015-01-01
This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets. PMID:26594263
Plug-in nanoliter pneumatic liquid dispenser with nozzle design flexibility.
Choi, In Ho; Kim, Hojin; Lee, Sanghyun; Baek, Seungbum; Kim, Joonwon
2015-11-01
This paper presents a novel plug-in nanoliter liquid dispensing system with a plug-and-play interface for simple and reversible, yet robust integration of the dispenser. A plug-in type dispenser was developed to facilitate assembly and disassembly with an actuating part through efficient modularization. The entire process for assembly and operation of the plug-in dispenser is performed via the plug-and-play interface in less than a minute without loss of dispensing quality. The minimum volume of droplets pneumatically dispensed using the plug-in dispenser was 124 nl with a coefficient of variation of 1.6%. The dispensed volume increased linearly with the nozzle size. Utilizing this linear relationship, two types of multinozzle dispensers consisting of six parallel channels (emerging from an inlet) and six nozzles were developed to demonstrate a novel strategy for volume gradient dispensing at a single operating condition. The droplet volume dispensed from each nozzle also increased linearly with nozzle size, demonstrating that nozzle size is a dominant factor on dispensed volume, even for multinozzle dispensing. Therefore, the proposed plug-in dispenser enables flexible design of nozzles and reversible integration to dispense droplets with different volumes, depending on the application. Furthermore, to demonstrate the practicality of the proposed dispensing system, we developed a pencil-type dispensing system as an alternative to a conventional pipette for rapid and reliable dispensing of minute volume droplets.
Software-Defined Avionics and Mission Systems in Future Vertical Lift Aircraft
2015-03-01
military rotorcraft in the service of the United States Joint services have yet to benefit significantly from this technology. At long last, that may...Despite the demonstrated success of IMA systems in commercial airliners such as the Airbus A380 and the Boeing 787, military rotorcraft in the...8 4. Integrated Modular Avionics (IMA) – Generation One ..................9 5. Military IMA
NASA Technical Reports Server (NTRS)
Serlemitsos, Aristides T.; Warner, Brent A.; Sansebastian, Marcelino; Kunes, Evan
1990-01-01
Recent developments concerning the performance and reliability of a spaceworthy adiabatic demagnetization refrigerator (ADR) for the AXAF X-ray spectrometer are considered. They include a procedure for growing the salt pill around a harness made up of 6080 gold-plated copper wires, a totally modular gas gap heat switch, and a suspension system utilizing Kevlar fibers.
Modified modular imaging system designed for a sounding rocket experiment
NASA Astrophysics Data System (ADS)
Veach, Todd J.; Scowen, Paul A.; Beasley, Matthew; Nikzad, Shouleh
2012-09-01
We present the design and system calibration results from the fabrication of a charge-coupled device (CCD) based imaging system designed using a modified modular imager cell (MIC) used in an ultraviolet sounding rocket mission. The heart of the imaging system is the MIC, which provides the video pre-amplifier circuitry and CCD clock level filtering. The MIC is designed with standard four-layer FR4 printed circuit board (PCB) with surface mount and through-hole components for ease of testing and lower fabrication cost. The imager is a 3.5k by 3.5k LBNL p-channel CCD with enhanced quantum efficiency response in the UV using delta-doping technology at JPL. The recently released PCIe/104 Small-Cam CCD controller from Astronomical Research Cameras, Inc (ARC) performs readout of the detector. The PCIe/104 Small-Cam system has the same capabilities as its larger PCI brethren, but in a smaller form factor, which makes it ideally suited for sub-orbital ballistic missions. The overall control is then accomplished using a PCIe/104 computer from RTD Embedded Technologies, Inc. The design, fabrication, and testing was done at the Laboratory for Astronomical and Space Instrumentation (LASI) at Arizona State University. Integration and flight calibration are to be completed at the University of Colorado Boulder before integration into CHESS.
Waterway wide area tactical coverage and homing (WaterWATCH) program overview
NASA Astrophysics Data System (ADS)
Driggers, Gerald; Cleveland, Tammy; Araujo, Lisa; Spohr, Robert; Umansky, Mark
2008-04-01
The Congressional and Army sponsored WaterWATCH TM Program has developed and demonstrated a fully integrated shallow water port and facility monitoring system. It provides fully automated monitoring of domains above and below the surface of the water using primarily off-the-shelf sensors and software. The system is modular, open architecture and IP based, and elements can be mixed and matched to adapt to specific applications. The sensors integrated into the WaterWATCH TM system include cameras, radar, passive and active sonar, and various motion detectors. The sensors were chosen based on extensive requirements analyses and tradeoffs. Descriptions of the system and individual sensors are provided, along with data from modular and system level testing. Camera test results address capabilities and limitations associated with using "smart" image analysis software with stressing environmental issues such as bugs, darkness, rain and snow. Radar issues addressed include achieving range and resolution requirements. The passive sonar capability to provide near 100% true positives with zero false positives is demonstrated. Testing results are also presented to show that inexpensive active sonar can be effective against divers with or without SCUBA gear and that false alarms due to fish can be minimized. A simple operator interface has also been demonstrated.
NASA Technical Reports Server (NTRS)
Hickman, J. M.; Bloomfield, H. S.
1989-01-01
Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, and estimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.
NASA Technical Reports Server (NTRS)
Hickman, J. M.; Bloomfield, H. S.
1989-01-01
Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, andestimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.
Westinghouse modular grinding process - improvement for follow on processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehrmann, Henning
2013-07-01
In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompactionmore » (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)« less
How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure
NASA Technical Reports Server (NTRS)
Jones, Corey
2013-01-01
This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.
Processes and Strategies for Implementation of Learning Modules in a Nursing Curriculum
ERIC Educational Resources Information Center
Swendsen, Leslee; And Others
1977-01-01
Explains the processes and strategies utilized by the faculty at the University of California, San Francisco, School of Nursing, to implement modularization in the undergraduate nursing program. Presents goals for modularization and discusses problems and constraints encountered during the implementation. Available from: Journal of…
SECIMTools: a suite of metabolomics data analysis tools.
Kirpich, Alexander S; Ibarra, Miguel; Moskalenko, Oleksandr; Fear, Justin M; Gerken, Joseph; Mi, Xinlei; Ashrafi, Ali; Morse, Alison M; McIntyre, Lauren M
2018-04-20
Metabolomics has the promise to transform the area of personalized medicine with the rapid development of high throughput technology for untargeted analysis of metabolites. Open access, easy to use, analytic tools that are broadly accessible to the biological community need to be developed. While technology used in metabolomics varies, most metabolomics studies have a set of features identified. Galaxy is an open access platform that enables scientists at all levels to interact with big data. Galaxy promotes reproducibility by saving histories and enabling the sharing workflows among scientists. SECIMTools (SouthEast Center for Integrated Metabolomics) is a set of Python applications that are available both as standalone tools and wrapped for use in Galaxy. The suite includes a comprehensive set of quality control metrics (retention time window evaluation and various peak evaluation tools), visualization techniques (hierarchical cluster heatmap, principal component analysis, modular modularity clustering), basic statistical analysis methods (partial least squares - discriminant analysis, analysis of variance, t-test, Kruskal-Wallis non-parametric test), advanced classification methods (random forest, support vector machines), and advanced variable selection tools (least absolute shrinkage and selection operator LASSO and Elastic Net). SECIMTools leverages the Galaxy platform and enables integrated workflows for metabolomics data analysis made from building blocks designed for easy use and interpretability. Standard data formats and a set of utilities allow arbitrary linkages between tools to encourage novel workflow designs. The Galaxy framework enables future data integration for metabolomics studies with other omics data.
ERIC Educational Resources Information Center
Bulut, Ergin
2010-01-01
This article scrutinizes the transformation of vocational training in Turkey. Entertaining the question, "Why did the vocational high schools become an issue in the country all of a sudden?", it aims to cover the social and economic dynamics behind this transformation. Establishing the link between Turkey's integration with the global…
2003-07-01
volunteer was asked to report wearing Battle Dress Uniform or Under Armor Undergarment) because the reflective markers used for motion capture needed to be...data collection sessions wearing Under Armor Undergarment, combat boots, integrated body armor and Scorpion helmet. Subjects were given time to
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Briscoe, Jeri M.
2005-01-01
Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a manned spacecraft. These systems include spacecraft navigation and attitude control, propulsion, automated docking, vehicle health management and life support. ISAACC can integrate local critical subsystem health management with subsystems performing long term health monitoring. The ISAACC system and its relationship to ISHM will be presented.
NASA Astrophysics Data System (ADS)
Gengenbach, Ulrich K.; Hofmann, Andreas; Engelhardt, Friedhelm; Scharnowell, Rudolf; Koehler, Bernd
2001-10-01
A large number of microgrippers has been developed in industry and academia. Although the importance of hybrid integration techniques and hence the demand for assembly tools grows continuously a large part of these developments has not yet been used in industrial production. The first grippers developed for microassembly were basically vacuum grippers and downscaled tweezers. Due to increasingly complex assembly tasks more and more functionality such as sensing or additional functions such as adhesive dispensing has been integrated into gripper systems over the last years. Most of these gripper systems are incompatible since there exists no standard interface to the assembly machine and no standard for the internal modules and interfaces. Thus these tools are not easily interchangeable between assembly machines and not easily adaptable to assembly tasks. In order to alleviate this situation a construction kit for modular microgrippers is being developed. It is composed of modules with well defined interfaces that can be combined to build task specific grippers. An abstract model of a microgripper is proposed as a tool to structure the development of the construction kit. The modular concept is illustrated with prototypes.
Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun
2017-11-07
For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.
Path to Market for Compact Modular Fusion Power Cores
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Baerny, Jennifer K.; Mattor, Nathan; Stoulil, Don; Miller, Ronald; Marston, Theodore
2012-08-01
The benefits of an energy source whose reactants are plentiful and whose products are benign is hard to measure, but at no time in history has this energy source been more needed. Nuclear fusion continues to promise to be this energy source. However, the path to market for fusion systems is still regularly a matter for long-term (20 + year) plans. This white paper is intended to stimulate discussion of faster commercialization paths, distilling guidance from investors, utilities, and the wider energy research community (including from ARPA-E). There is great interest in a small modular fusion system that can be developed quickly and inexpensively. A simple model shows how compact modular fusion can produce a low cost development path by optimizing traditional systems that burn deuterium and tritium, operating not only at high magnetic field strength, but also by omitting some components that allow for the core to become more compact and easier to maintain. The dominant hurdles to the development of low cost, practical fusion systems are discussed, primarily in terms of the constraints placed on the cost of development stages in the private sector. The main finding presented here is that the bridge from DOE Office of Science to the energy market can come at the Proof of Principle development stage, providing the concept is sufficiently compact and inexpensive that its development allows for a normal technology commercialization path.
Quasispecies theory for evolution of modularity.
Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W
2015-01-01
Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoekman, S. Kent; Broch, Broch; Robbins, Curtis
The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solarmore » thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Petrie, L.M.; Westfall, R.M.
SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. The manual is divided into three volumes: Volume 1--for the control module documentation; Volume 2--for functional module documentation; and Volume 3--for documentation of the data libraries and subroutine libraries.« less
Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection.
Yoon, Jeongah; Si, Yaguang; Nolan, Ryan; Lee, Kyongbum
2007-09-15
The rational decomposition of biochemical networks into sub-structures has emerged as a useful approach to study the design of these complex systems. A biochemical network is characterized by an inhomogeneous connectivity distribution, which gives rise to several organizational features, including modularity. To what extent the connectivity-based modules reflect the functional organization of the network remains to be further explored. In this work, we examine the influence of physiological perturbations on the modular organization of cellular metabolism. Modules were characterized for two model systems, liver and adipocyte primary metabolism, by applying an algorithm for top-down partition of directed graphs with non-uniform edge weights. The weights were set by the engagement of the corresponding reactions as expressed by the flux distribution. For the base case of the fasted rat liver, three modules were found, carrying out the following biochemical transformations: ketone body production, glucose synthesis and transamination. This basic organization was further modified when different flux distributions were applied that describe the liver's metabolic response to whole body inflammation. For the fully mature adipocyte, only a single module was observed, integrating all of the major pathways needed for lipid storage. Weaker levels of integration between the pathways were found for the early stages of adipocyte differentiation. Our results underscore the inhomogeneous distribution of both connectivity and connection strengths, and suggest that global activity data such as the flux distribution can be used to study the organizational flexibility of cellular metabolism. Supplementary data are available at Bioinformatics online.
Hripcsak, George
1997-01-01
Abstract An information system architecture defines the components of a system and the interfaces among the components. A good architecture is essential for creating an Integrated Advanced Information Management System (IAIMS) that works as an integrated whole yet is flexible enough to accommodate many users and roles, multiple applications, changing vendors, evolving user needs, and advancing technology. Modularity and layering promote flexibility by reducing the complexity of a system and by restricting the ways in which components may interact. Enterprise-wide mediation promotes integration by providing message routing, support for standards, dictionary-based code translation, a centralized conceptual data schema, business rule implementation, and consistent access to databases. Several IAIMS sites have adopted a client-server architecture, and some have adopted a three-tiered approach, separating user interface functions, application logic, and repositories. PMID:9067884
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
Modular cathode assemblies and methods of using the same for electrochemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less
Modular cathode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2014-12-02
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
A reconfigurable, wearable, wireless ECG system.
Borromeo, S; Rodriguez-Sanchez, C; Machado, F; Hernandez-Tamames, J A; de la Prieta, R
2007-01-01
New emerging concepts as "wireless hospital", "mobile healthcare" or "wearable telemonitoring" require the development of bio-signal acquisition devices to be easily integrated into the clinical routine. In this work, we present a new system for Electrocardiogram (ECG) acquisition and its processing, with wireless transmission on demand (either the complete ECG or only one alarm message, just in case a pathological heart rate detected). Size and power consumption are optimized in order to provide mobility and comfort to the patient. We have designed a modular hardware system and an autonomous platform based on a Field-Programmable Gate Array (FPGA) for developing and debugging. The modular approach allows to redesign the system in an easy way. Its adaptation to a new biomedical signal would only need small changes on it. The hardware system is composed of three layers that can be plugged/unplugged: communication layer, processing layer and sensor layer. In addition, we also present a general purpose end-user application developed for mobile phones or Personal Digital Assistant devices (PDAs).
NASA Astrophysics Data System (ADS)
Kaniyantethu, Shaji
2011-06-01
This paper discusses the many features and composed technologies in Firestorm™ - a Distributed Collaborative Fires and Effects software. Modern response management systems capitalize on the capabilities of a plethora of sensors and its output for situational awareness. Firestorm utilizes a unique networked lethality approach by integrating unmanned air and ground vehicles to provide target handoff and sharing of data between humans and sensors. The system employs Bayesian networks for track management of sensor data, and distributed auction algorithms for allocating targets and delivering the right effect without information overload to the Warfighter. Firestorm Networked Effects Component provides joint weapon-target pairing, attack guidance, target selection standards, and other fires and effects components. Moreover, the open and modular architecture allows for easy integration with new data sources. Versatility and adaptability of the application enable it to devise and dispense a suitable response to a wide variety of scenarios. Recently, this application was used for detecting and countering a vehicle intruder with the help of radio frequency spotter sensor, command driven cameras, remote weapon system, portable vehicle arresting barrier, and an unmanned aerial vehicle - which confirmed the presence of the intruder, as well as provided lethal/non-lethal response and battle damage assessment. The completed demonstrations have proved Firestorm's™ validity and feasibility to predict, detect, neutralize, and protect key assets and/or area against a variety of possible threats. The sensors and responding assets can be deployed with numerous configurations to cover the various terrain and environmental conditions, and can be integrated to a number of platforms.
Blakes, Jonathan; Twycross, Jamie; Romero-Campero, Francisco Jose; Krasnogor, Natalio
2011-12-01
The Infobiotics Workbench is an integrated software suite incorporating model specification, simulation, parameter optimization and model checking for Systems and Synthetic Biology. A modular model specification allows for straightforward creation of large-scale models containing many compartments and reactions. Models are simulated either using stochastic simulation or numerical integration, and visualized in time and space. Model parameters and structure can be optimized with evolutionary algorithms, and model properties calculated using probabilistic model checking. Source code and binaries for Linux, Mac and Windows are available at http://www.infobiotics.org/infobiotics-workbench/; released under the GNU General Public License (GPL) version 3. Natalio.Krasnogor@nottingham.ac.uk.
NASA Technical Reports Server (NTRS)
Borowski, S.; Clark, J.; Sefcik, R.; Corban, R.; Alexander, S.
1995-01-01
The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common' NTR-based moon/Mars STS, examines performance sensitivities resulting from different 'mission mode' assumptions, and quantifies potential schedule and cost benefits resulting from this modular moon/Mars NTR vehicle approach.
Rapid Application of Space Effects for the Small Satellites Systems and Services Symposium
NASA Technical Reports Server (NTRS)
Tsairides, Demosthenes; Finley, Charles; Moretti, George
2016-01-01
NASA Ames Research Center (ARC) has engaged Military Branches, the Department of Defense, and other Government Agencies in successful partnerships to design, develop, deliver and support various space effects capabilities and space vehicles on timeline of need. Contracts with Industry are in place to execute operational and enabler missions using physical and informational infrastructures including Responsive Manufacturing capabilities and Digital Assurance. The intent is to establish a secure, web-enabled "store front" for ordering and delivering any capabilities required as defined by the users and directed by NASA ARC and Partner Organizations. The capabilities are envisioned to cover a broad range and include 6U CubeSats, 50-100 kg Space Vehicles, Modular Space Vehicle architecture variations, as well as rapid payload integration on various Bus options. The paper will discuss the efforts underway to demonstrate autonomous manufacturing of low-volume, high-value assets, to validate the ability of autonomous digital techniques to provide Mission Assurance, and to demonstrate cost savings through the identification, characterization, and utilization of Responsive Space components. The culmination of this effort will be the integration of several 6U satellites and their launch in 2016.
COMETWATCHERS: Bringing Research into the Undergraduate Astronomy Curriculum
NASA Astrophysics Data System (ADS)
Womack, M.
2000-05-01
Integrating research with education has been an evolving process for me and the "Cometwatchers", the students with whom I work. What started as a totally extracurricular activity, has become well-integrated into St. Cloud State Univerity's upper-division courses on Solar System Astronomy and Observational Astronomy. Maintaining a collaboration with six to eight students is a challenge that is made easier and more efficient when we modularize the projects, utilize each person's expertise, hold weekly meetings, require students to write guides and manuals to instruct others, and require students to write up and present their work at meetings. This also helps students to identify and evaluate their contributions to the research. Here I profile the research component in two courses at SCSU that use a student-run optical observatory equipped with a 0.4-m telescope, CCD, UBVRI photometry filters and a fiber-optic spectrograph. Results from some focused research projects are also discussed, including an optical imaging archive of Comet Hale-Bopp, derivation of dust expansion velocities from comet images, analysis of the visible light-curve of comet Hale-Bopp, spectral analysis of millimeter-wavelength ``datacubes" of HCO+ and of other carbon-bearing molecular spectra in comet Hale-Bopp.
Modular container assembled from fiber reinforced thermoplastic sandwich panels
Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman
2007-12-25
An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.
Martinez, Christopher M; Sparks, John S
2017-09-01
Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Software Considerations for Subscale Flight Testing of Experimental Control Laws
NASA Technical Reports Server (NTRS)
Murch, Austin M.; Cox, David E.; Cunningham, Kevin
2009-01-01
The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.
NASA Technical Reports Server (NTRS)
Dreisbach, R. L. (Editor)
1979-01-01
The input data and execution control statements for the ATLAS integrated structural analysis and design system are described. It is operational on the Control Data Corporation (CDC) 6600/CYBER computers in a batch mode or in a time-shared mode via interactive graphic or text terminals. ATLAS is a modular system of computer codes with common executive and data base management components. The system provides an extensive set of general-purpose technical programs with analytical capabilities including stiffness, stress, loads, mass, substructuring, strength design, unsteady aerodynamics, vibration, and flutter analyses. The sequence and mode of execution of selected program modules are controlled via a common user-oriented language.
NASA Technical Reports Server (NTRS)
Drews, Michael E.; Covington, Al (Technical Monitor)
1994-01-01
The Life Support Flight Program is evaluating regenerative technologies, including those that utilize higher plants, as a means to reduce resupply over long duration space missions. Constructed to assist in the evaluation process is the CELSS Test Facility Engineering Development Unit (CTF-EDU) an environmentally closed (less than 1% mass and thermal leakage) technology test bed. This ground based fully functional prototype is currently configured to support crop growth, utilizing the power, volume and mass resources allocated for two space station racks. Sub-system technologies were selected considering their impact on available resources, their ability to minimize integration issues, and their degree of modularity. Gas specific mass handling is a key sub-system technology for both biological and physical/chemical life support technologies. The CTF-EDU requires such a system to accommodate non-linear oxygen production from crops, by enabling the control system to change and sustain partial pressure set points in the growth volume. Electrochemical cells are one of the technologies that were examined for oxygen handling in the CTF-EDU. They have been additionally considered to meet other regenerative life support functions, such as oxygen generation, the production of potable water from composite waste streams, and for having the potential to integrate life support functions with those of propulsion and energy storage. An oxygen removal system based on an electrochemical cell was chosen for the EDU due to it's low power, volume and mass requirements (10W, 0.000027 cu m, 4.5 kg) and because of the minimal number of integration considerations. Unlike it's competitors, the system doesn't require post treatments of its byproducts, or heat and power intensive regenerations, that also mandate system redundancy or cycling. The EDUs oxygen removal system only requires two resources, which are already essential to controlled plant growth: electricity and water. Additionally, the amount of oxygen that is removed from the EDU is directly proportional to the cell input current via Faraday's constant, potentially allowing for a mol/electron measurement of photosynthetic rate. The currently operative oxygen removal system has maintained reduced oxygen set points within the EDU, and preparation is underway to verify of the accuracy of electrochemical measurement of oxygen production and hence, photosynthesis. This paper examines the working principles of the electrochemical cell, outlines the overall design of the oxygen removal system and its integration with other EDU subsystems, and summarizes test results obtained over crop growth cycles in the CTF-EDU.
A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems
Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...
2017-05-17
A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less
A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duman, Turgay; Marti, Shilpa; Moonem, M. A.
A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less
A Unique Photon Bombardment System for Space Applications
NASA Technical Reports Server (NTRS)
Klein, E. J.
1993-01-01
The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.
MISSION: Mission and Safety Critical Support Environment. Executive overview
NASA Technical Reports Server (NTRS)
Mckay, Charles; Atkinson, Colin
1992-01-01
For mission and safety critical systems it is necessary to: improve definition, evolution and sustenance techniques; lower development and maintenance costs; support safe, timely and affordable system modifications; and support fault tolerance and survivability. The goal of the MISSION project is to lay the foundation for a new generation of integrated systems software providing a unified infrastructure for mission and safety critical applications and systems. This will involve the definition of a common, modular target architecture and a supporting infrastructure.
A HUMAN AUTOMATION INTERACTION CONCEPT FOR A SMALL MODULAR REACTOR CONTROL ROOM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Blanc, Katya; Spielman, Zach; Hill, Rachael
Many advanced nuclear power plant (NPP) designs incorporate higher degrees of automation than the existing fleet of NPPs. Automation is being introduced or proposed in NPPs through a wide variety of systems and technologies, such as advanced displays, computer-based procedures, advanced alarm systems, and computerized operator support systems. Additionally, many new reactor concepts, both full scale and small modular reactors, are proposing increased automation and reduced staffing as part of their concept of operations. However, research consistently finds that there is a fundamental tradeoff between system performance with increased automation and reduced human performance. There is a need to addressmore » the question of how to achieve high performance and efficiency of high levels of automation without degrading human performance. One example of a new NPP concept that will utilize greater degrees of automation is the SMR concept from NuScale Power. The NuScale Power design requires 12 modular units to be operated in one single control room, which leads to a need for higher degrees of automation in the control room. Idaho National Laboratory (INL) researchers and NuScale Power human factors and operations staff are working on a collaborative project to address the human performance challenges of increased automation and to determine the principles that lead to optimal performance in highly automated systems. This paper will describe this concept in detail and will describe an experimental test of the concept. The benefits and challenges of the approach will be discussed.« less
Integration of passive driver-assistance systems with on-board vehicle systems
NASA Astrophysics Data System (ADS)
Savchenko, V. V.; Poddubko, S. N.
2018-02-01
Implementation in OIAS such functions as driver’s state monitoring and high-precision calculation of the current navigation coordinates of the vehicle, modularity of the OIAS construction and the possible increase in the functionality through integration with other onboard systems has a promising development future. The development of intelligent transport systems and their components allows setting and solving fundamentally new tasks for the safety of human-to-machine transport systems, and the automatic analysis of heterogeneous information flows provides a synergistic effect. The analysis of cross-modal information exchange in human-machine transport systems, from uniform methodological points of view, will allow us, with an accuracy acceptable for solving applied problems, to form in real time an integrated assessment of the state of the basic components of the human-to-machine system and the dynamics in changing situation-centered environment, including the external environment, in their interrelations.
Solar heating and cooling system for an office building at Reedy Creek Utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-08-01
This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water withmore » a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linstadt, E.
1985-10-01
The COW, or Console On Wheels, is the primary operator interface to the SLC accelerator control system. A hardware and software description of the COW, a microcomputer based system with a color graphics display output and touchpanel and knob inputs, is given. The ease of development and expandability, due to both the modular nature of the hardware and the multitasking, interrupt driven software running in the COW, are described. Integration of the COW into the SLCNET communications network and SLC Control system is detailed.
Modular separation-based fiber-optic sensors for remote in situ monitoring.
Dickens, J; Sepaniak, M
2000-02-01
A modular separation-based fiber-optic sensor (SBFOS) with an integrated electronically controlled injection device is described for potential use in remote environmental monitoring. An SBFOS is a chemical monitor that integrates the separation selectivity and versatility afforded by capillary electrophoresis with the remote and high sensitivity capabilities of fiber-optic-based laser-induced fluorescence sensing. The detection module of the SBFOS accommodates all essential sensing components for dual-optical fiber, on-capillary fluorescence detection. An injection module, similar to injection platforms on micro-analysis chips, is also integrated to the SBFOS. The injection module allows for electronically controlled injection of the sample onto the separation capillary. The design and operational characteristics of the modular SBFOS are discussed in this paper. A micellar electrokinetic capillary chromatography mode of separation is employed to evaluate the potential of the sensor for in situ monitoring of neutral toxins (aflatoxins). The analytical figures of merit for the modular SBFOS include analysis times of between 5 and 10 min, separation efficiencies of approximately 10(4) theoretical plates, detection limits for aflatoxins in the mid-to-low nanomolar range, and controllable operation that results in sensor performance that is largely immune to sample matrix effects.
Modularity and the spread of perturbations in complex dynamical systems
NASA Astrophysics Data System (ADS)
Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Modularity and the spread of perturbations in complex dynamical systems.
Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M
2015-12-01
We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.
Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1.
Kweon, Ohgew; Kim, Seong-Jae; Holland, Ricky D; Chen, Hongyan; Kim, Dae-Wi; Gao, Yuan; Yu, Li-Rong; Baek, Songjoon; Baek, Dong-Heon; Ahn, Hongsik; Cerniglia, Carl E
2011-09-01
This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.
An Analysis of Attendance Patterns in the Experimental Food Service System at Travis Air Force Base
1974-12-01
Food Service System Study was undertaken to develop wideranging improvements in current Air Force food service operations. Of particular concern was the need to increase consumer attendance and utilization of the dining facilities. A number of changes were implemented during the experiment including menu modifications, dining hall renovations, and the introduction of three new food service operations - a modular fast food unit, a flight line facility, and an ethnic, specialty meal service provided by one of the renovated dining
Future Concepts for Modular, Intelligent Aerospace Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.; Soeder, James F.
2004-01-01
Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.
Modular space station Phase B extension preliminary performance specification. Volume 2: Project
NASA Technical Reports Server (NTRS)
1971-01-01
The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renew, Jay; Hansen, Tim
Southern Research Institute (Southern) teamed with partners Novus Energy Technologies (Novus), Carus Corporation (Carus), and Applied Membrane Technology, Inc. (AMT) to develop an innovative Geothermal ThermoElectric Generation (G-TEG) system specially designed to both generate electricity and extract high-value lithium (Li) from low-temperature geothermal brines. The process combined five modular technologies including – silica removal, nanofiltration (NF), membrane distillation (MD), Mn-oxide sorbent for Li recovery, and TEG. This project provides a proof of concept for each of these technologies. The first step in the process is silica precipitation through metal addition and pH adjustment to prevent downstream scaling in membrane processes.more » Next, the geothermal brine is concentrated with the first of a two stage MD system. The first stage MD system is made of a high-temperature material to withstand geothermal brine temperatures up to 150C.° The first stage MD is integrated with a G-TEG module for simultaneous energy generation. The release of energy from the MD permeate drives heat transfer across the TE module, producing electricity. The first stage MD concentrate is then treated utilizing an NF system to remove Ca 2+ and Mg 2+. The NF concentrate will be disposed in the well by reinjection. The NF permeate undergoes concentration in a second stage of MD (polymeric material) to further concentrate Li in the NF permeate and enhance the efficiency of the downstream Li recovery process utilizing a Mn-oxide sorbent. Permeate from both the stages of the MD can be beneficially utilized as the permeates will contain less contaminants than the feed water. The concentrated geothermal brines are then contacted with the Mn-oxide sorbent. After Li from the geothermal brine is adsorbed on the sorbent, HCl is then utilized to regenerate the sorbent and recover the Li. The research and development project showed that the Si removal goal (>80%) could be achieved by increasing the pH of the brine and adding Fe 3+ under several scenarios. The NF was also successful in achieving significant Ca 2+ and Mg 2+ removal (~80%) while retaining most Li in the permeate for high strength brines. MD experiments showed that geothermal brines could be significantly concentrated with little fouling due to pre-treatment.« less
Echegaray, Sebastian; Bakr, Shaimaa; Rubin, Daniel L; Napel, Sandy
2017-10-06
The aim of this study was to develop an open-source, modular, locally run or server-based system for 3D radiomics feature computation that can be used on any computer system and included in existing workflows for understanding associations and building predictive models between image features and clinical data, such as survival. The QIFE exploits various levels of parallelization for use on multiprocessor systems. It consists of a managing framework and four stages: input, pre-processing, feature computation, and output. Each stage contains one or more swappable components, allowing run-time customization. We benchmarked the engine using various levels of parallelization on a cohort of CT scans presenting 108 lung tumors. Two versions of the QIFE have been released: (1) the open-source MATLAB code posted to Github, (2) a compiled version loaded in a Docker container, posted to DockerHub, which can be easily deployed on any computer. The QIFE processed 108 objects (tumors) in 2:12 (h/mm) using 1 core, and 1:04 (h/mm) hours using four cores with object-level parallelization. We developed the Quantitative Image Feature Engine (QIFE), an open-source feature-extraction framework that focuses on modularity, standards, parallelism, provenance, and integration. Researchers can easily integrate it with their existing segmentation and imaging workflows by creating input and output components that implement their existing interfaces. Computational efficiency can be improved by parallelizing execution at the cost of memory usage. Different parallelization levels provide different trade-offs, and the optimal setting will depend on the size and composition of the dataset to be processed.
A high-efficiency electromechanical battery
NASA Astrophysics Data System (ADS)
Post, Richard F.; Fowler, T. K.; Post, Stephen F.
1993-03-01
In our society there is a growing need for efficient cost-effective means for storing electrical energy. The electric auto is a prime example. Storage systems for the electric utilities, and for wind or solar power, are other examples. While electrochemical cells could in principle supply these needs, the existing E-C batteries have well-known limitations. This article addresses an alternative, the electromechanical battery (EMB). An EMB is a modular unit consisting of an evacuated housing containing a fiber-composite rotor. The rotor is supported by magnetic bearings and contains an integrally mounted permanent magnet array. This article addresses design issues for EMBs with rotors made up of nested cylinders. Issues addressed include rotational stability, stress distributions, generator/motor power and efficiency, power conversion, and cost. It is concluded that the use of EMBs in electric autos could result in a fivefold reduction (relative to the IC engine) in the primary energy input required for urban driving, with a concomitant major positive impact on our economy and on air pollution.
Integrating biofiltration with SVE: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesley, M.P.; Rangan, C.R.
1996-12-01
A prototype integrated soil vacuum extraction/biofiltration system has been designed and installed at a gasoline contaminated LUST site in southern Delaware. The prototype system remediates contaminated moisture entrained in the air stream, employs automatic water level controls in the filters, and achieves maximum vapor extraction and VOC destruction efficiency with an optimum power input. In addition, the valving and piping layout allows the direction of air flow through the filters to be reversed at a given time interval, which minimizes biofouling, thereby increasing efficiency by minimizing the need for frequent cleaning. This integrated system achieves constant VOC destruction rates ofmore » 40 to 70% while maintaining optimal VOC removal rates from the subsurface. The modular design allows for easy mobilization, setup and demobilization at state-lead LUST sites throughout Delaware.« less
GAMBIT: the global and modular beyond-the-standard-model inference tool
NASA Astrophysics Data System (ADS)
Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian
2017-11-01
We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.
Multimodular biocatalysts for natural product assembly
NASA Astrophysics Data System (ADS)
Schwarzer, Dirk; Marahiel, Mohamed A.
2001-03-01
Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.
Development and Deployment Assessment of a Melt-Down Proof Modular Micro Reactor (MDP-MMR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman I.; Venneri, Francesco
The objective of this project is to perform feasibility assessment and technology gap analysis and establish a development roadmap for an innovative and highly compact Micro Modular Reactor (MMR) concept that integrates power production, power conversion and electricity generation in a single unit. The MMR is envisioned to use fully ceramic micro-encapsulated (FCM) fuel, a particularly robust form of TRISO fuel, and to be gas-cooled (e.g., He or CO 2) and capable of generating power in the range of 10 to 40 MW-thermal. It is designed to be absolutely melt-down proof (MDP) under all circumstances including complete loss of coolantmore » scenarios with no possible release of radioactive material, to be factory produced, to have a cycle length of greater than 20 years, and to be highly proliferation resistant. In addition, it will be transportable, retrievable and suitable for use in remote areas. As such, the MDP-MMR will represent a versatile reactor concept that is suitable for use in various applications including electricity generation, process heat utilization and propulsion.« less
The High Field Path to Practical Fusion Energy
NASA Astrophysics Data System (ADS)
Mumgaard, Robert; Whyte, D.; Greenwald, M.; Hartwig, Z.; Brunner, D.; Sorbom, B.; Marmar, E.; Minervini, J.; Bonoli, P.; Irby, J.; Labombard, B.; Terry, J.; Vieira, R.; Wukitch, S.
2017-10-01
We propose a faster, lower cost development path for fusion energy enabled by high temperature superconductors, devices at high magnetic field, innovative technologies and modern approaches to technology development. Timeliness, scale, and economic-viability are the drivers for fusion energy to combat climate change and aid economic development. The opportunities provided by high-temperature superconductors, innovative engineering and physics, and new organizational structures identified over the last few years open new possibilities for realizing practical fusion energy that could meet mid-century de-carbonization needs. We discuss re-factoring the fusion energy development path with an emphasis on concrete risk retirement strategies utilizing a modular approach based on the high-field tokamak that leverages the broader tokamak physics understanding of confinement, stability, and operational limits. Elements of this plan include development of high-temperature superconductor magnets, simplified immersion blankets, advanced long-leg divertors, a compact divertor test tokamak, efficient current drive, modular construction, and demountable magnet joints. An R&D plan culminating in the construction of an integrated pilot plant and test facility modeled on the ARC concept is presented.
NASA Astrophysics Data System (ADS)
Chowdhury, Md Mukul
With the increased practice of modularization and prefabrication, the construction industry gained the benefits of quality management, improved completion time, reduced site disruption and vehicular traffic, and improved overall safety and security. Whereas industrialized construction methods, such as modular and manufactured buildings, have evolved over decades, core techniques used in prefabrication plants vary only slightly from those employed in traditional site-built construction. With a focus on energy and cost efficient modular construction, this research presents the development of a simulation, measurement and optimization system for energy consumption in the manufacturing process of modular construction. The system is based on Lean Six Sigma principles and loosely coupled system operation to identify the non-value adding tasks and possible causes of low energy efficiency. The proposed system will also include visualization functions for demonstration of energy consumption in modular construction. The benefits of implementing this system include a reduction in the energy consumption in production cost, decrease of energy cost in the production of lean-modular construction, and increase profit. In addition, the visualization functions will provide detailed information about energy efficiency and operation flexibility in modular construction. A case study is presented to validate the reliability of the system.
Wang, Baojun; Barahona, Mauricio; Buck, Martin
2013-01-01
Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411
NASA Technical Reports Server (NTRS)
Cary, Everett; Smith, Danford
2004-01-01
The GSFC Mission Services Evolution Center (GMSEC) was established in 2001 to coordinate ground and flight data systems development and services at NASA's Goddard Space Flight Center (GSFC). GMSEC system architecture represents a new way to build the next generation systems to be used for a variety of missions for years to come. The old approach was to find or build the best products available and integrate them into a reusable system to meet everyone's needs. The new approach assumes that needs, products, and technology will change.
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The development of uniform computer program standards and conventions for the modular space station is discussed. The accomplishments analyzed are: (1) development of computer program specification hierarchy, (2) definition of computer program development plan, and (3) recommendations for utilization of all operating on-board space station related data processing facilities.
Borzacchiello, Maria Teresa; Torrieri, Vincenzo; Nijkamp, Peter
2009-11-01
This paper offers the description of an integrated information system framework for the assessment of transportation planning and management. After an introductory exposition, in the first part of the paper, a broad overview of international experiences regarding information systems on transportation is given, focusing in particular on the relationship between transportation system's performance monitoring and the decision-making process, and on the importance of this connection in the evaluation and planning process, in Italian and European cases. Next, the methodological design of an information system to support efficient and sustainable transportation planning and management aiming to integrate inputs from several different data sources is presented. The resulting framework deploys modular and integrated databases which include data stemming from different national or regional data banks and which integrate information belonging to different transportation fields. For this reason, it allows public administrations to account for many strategic elements that influence their decisions regarding transportation, both from a systemic and infrastructural point of view.
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
NASA Technical Reports Server (NTRS)
1976-01-01
A representative set of payloads for both science and applications disciplines were selected that would ensure a realistic and statistically significant estimate of equipment utilization. The selected payloads were analyzed to determine the applicability of Nuclear Instrumentation Modular (NIM)/Computer Automated Measurement Control (CAMAC) equipment in satisfying their data acquisition and control requirements. The analyses results were combined with the comparable results from related studies to arrive at an overall assessment of the applicability and commonality of NIM/CAMAC equipment usage across the spectrum of payloads.
NASA Astrophysics Data System (ADS)
Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas
2016-03-01
Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.
Design considerations for a servo optical projection system
NASA Astrophysics Data System (ADS)
Nadalsky, Michael; Allen, Daniel; Bien, Joseph
1987-01-01
The present servooptical projection system (SOPS) furnishes 'out-the-window' scenery for a pilot-training flight simulator; attention is given to the parametric tradeoffs made in the SOPS' optical design, as well as to its mechanical packaging and the servonetwork performance of the unit as integrated into a research/training helicopter flight simulator. The final SOPS configuration is a function of scan head design, assembly modularity, image deterioration method, and focal lengths and relative apertures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loflin, Leonard; McRimmon, Beth
2014-12-18
This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.
NASA Astrophysics Data System (ADS)
Wu, Huijun; Wang, Hao; Lü, Linyuan
Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures. PMID:25295187
Zygomalas, Apollon; Giokas, Konstantinos; Koutsouris, Dimitrios
2014-01-01
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.
Modular Isotopic Thermoelectric Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, Alfred
1981-01-01
Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linstadt, E.
1985-04-01
The COW, or Console On Wheels, is the primary operator interface to the SLC accelerator control system. A hardware and software description of the COW, a microcomputer based system with a color graphics display output and touch-panel and knob inputs, is given. The ease of development and expandability, due to both the modular nature of the hardware and the multitasking, interrupt driven software running in the COW, are described. Integration of the COW into the SLCNET communications network and SLC Control system is detailed.
Modular and Reusable Power System Design for the BRRISON Balloon Telescope
NASA Astrophysics Data System (ADS)
Truesdale, Nicholas A.
High altitude balloons are emerging as low-cost alternatives to orbital satellites in the field of telescopic observation. The near-space environment of balloons allows optics to perform near their diffraction limit. In practice, this implies that a telescope similar to the Hubble Space Telescope could be flown for a cost of tens of millions as opposed to billions. While highly feasible, the design of a balloon telescope to rival Hubble is limited by funding. Until a prototype is proven and more support for balloon science is gained, projects remain limited in both hardware costs and man hours. Thus, to effectively create and support balloon payloads, engineering designs must be efficient, modular, and if possible reusable. This thesis focuses specifically on a modular power system design for the BRRISON comet-observing balloon telescope. Time- and cost-saving techniques are developed that can be used for future missions. A modular design process is achieved through the development of individual circuit elements that span a wide range of capabilities. Circuits for power conversion, switching and sensing are designed to be combined in any configuration. These include DC-DC regulators, MOSFET drivers for switching, isolated switches, current sensors and voltage sensing ADCs. Emphasis is also given to commercially available hardware. Pre-fabricated DC-DC converters and an Arduino microcontroller simplify the design process and offer proven, cost-effective performance. The design of the BRRISON power system is developed from these low-level circuits elements. A board for main power distribution supports the majority of flight electronics, and is extensible to additional hardware in future applications. An ATX computer power supply is developed, allowing the use of a commercial ATX motherboard as the flight computer. The addition of new capabilities is explored in the form of a heater control board. Finally, the power system as a whole is described, and its overall performance analyzed. The success of the BRRISON power system during testing and flight proves its utility, both for BRRISON and for future balloon telescopes.
Modular Knowledge Representation and Reasoning in the Semantic Web
NASA Astrophysics Data System (ADS)
Serafini, Luciano; Homola, Martin
Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.
Deaner, Matthew; Holzman, Allison; Alper, Hal S
2018-04-16
Metabolic engineering typically utilizes a suboptimal step-wise gene target optimization approach to parse a highly connected and regulated cellular metabolism. While the endonuclease-null CRISPR/Cas system has enabled gene expression perturbations without genetic modification, it has been mostly limited to small sets of gene targets in eukaryotes due to inefficient methods to assemble and express large sgRNA operons. In this work, we develop a TEF1p-tRNA expression system and demonstrate that the use of tRNAs as splicing elements flanking sgRNAs provides higher efficiency than both Pol III and ribozyme-based expression across a variety of single sgRNA and multiplexed contexts. Next, we devise and validate a scheme to allow modular construction of tRNA-sgRNA (TST) operons using an iterative Type IIs digestion/ligation extension approach, termed CRISPR-Ligation Extension of sgRNA Operons (LEGO). This approach enables facile construction of large TST operons. We demonstrate this utility by constructing a metabolic rewiring prototype for 2,3-butanediol production in 2 distinct yeast strain backgrounds. These results demonstrate that our approach can act as a surrogate for traditional genetic modification on a much shorter design-cycle timescale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modular Approach to Launch Vehicle Design Based on a Common Core Element
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike
2010-01-01
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
GASP-PL/I Simulation of Integrated Avionic System Processor Architectures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Brent, G. A.
1978-01-01
A development study sponsored by NASA was completed in July 1977 which proposed a complete integration of all aircraft instrumentation into a single modular system. Instead of using the current single-function aircraft instruments, computers compiled and displayed inflight information for the pilot. A processor architecture called the Team Architecture was proposed. This is a hardware/software approach to high-reliability computer systems. A follow-up study of the proposed Team Architecture is reported. GASP-PL/1 simulation models are used to evaluate the operating characteristics of the Team Architecture. The problem, model development, simulation programs and results at length are presented. Also included are program input formats, outputs and listings.
Lightweight, Flexible, Thin, Integrated Solar-Power Packs
NASA Technical Reports Server (NTRS)
Hanson, Robert R.
2004-01-01
Lightweight, flexible, thin, one-piece, solar-power packs are undergoing development. Each power pack of this type is a complete, modular, integrated power-supply system comprising three power subsystems that, in conventional practice, have been constructed as separate units and connected to each other by wires. These power packs are amenable to a variety of uses: For example, they could be laminated to the tops of tents and other shelters to provide or augment power for portable electronic equipment in the field, and they could be used as power sources for such small portable electronic systems as radio transceivers (including data relays and cellular telephones), laptop computers, video camcorders, and Global Positioning System receivers.
Terminological reference of a knowledge-based system: the data dictionary.
Stausberg, J; Wormek, A; Kraut, U
1995-01-01
The development of open and integrated knowledge bases makes new demands on the definition of the used terminology. The definition should be realized in a data dictionary separated from the knowledge base. Within the works done at a reference model of medical knowledge, a data dictionary has been developed and used in different applications: a term definition shell, a documentation tool and a knowledge base. The data dictionary includes that part of terminology, which is largely independent of a certain knowledge model. For that reason, the data dictionary can be used as a basis for integrating knowledge bases into information systems, for knowledge sharing and reuse and for modular development of knowledge-based systems.
Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle
NASA Technical Reports Server (NTRS)
Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael
2009-01-01
The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.
Local modular Hamiltonians from the quantum null energy condition
NASA Astrophysics Data System (ADS)
Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin
2018-03-01
The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .
Combining analysis with optimization at Langley Research Center. An evolutionary process
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1982-01-01
The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.
nZEB Renovation of Multi-Storey Building with Prefabricated Modular Panels
NASA Astrophysics Data System (ADS)
Pihelo, P.; Kalamees, T.; Kuusk, K.
2017-10-01
Reduction of energy use in buildings in EU is expected to be reached with help of fulfilling of requirements of low and nearly-zero energy buildings (nZEB) policy. The efficient way to accomplish the purpose of the nZEB is to apply the integrated design process, considering the long-term sustainability and building costs as a one setup. The multi-storey large concrete element building is renovated to nZEB as a Horizon2020 MORE-CONNECT project pilot in Tallinn. The study of that project includes complex of measures: hygrothermal measurements and analysis, highly insulated facade and roof elements, the full modernisation of heating and ventilation systems. Ventilation ducts are installed into the modular panels to minimize supply ductworks in apartments. Roof panels include solar panels and collectors for renewable energy production. All technical systems will be equipped with monitoring systems and data will be logged periodically. The designed thermal transmittance is U≤0.11W/m2K for walls, U≤0.10W/m2K for roof and U≤0.80W/m2K for windows and external doors. The analyse, design and renovation process of the integrated nZEB design method gave us a unique experience, showing weak links in the chain and helping to prevent faults in the whole process in the future.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel supercomputers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Development and Applications of a Modular Parallel Process for Large Scale Fluid/Structures Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Byun, Chansup; Kwak, Dochan (Technical Monitor)
2001-01-01
A modular process that can efficiently solve large scale multidisciplinary problems using massively parallel super computers is presented. The process integrates disciplines with diverse physical characteristics by retaining the efficiency of individual disciplines. Computational domain independence of individual disciplines is maintained using a meta programming approach. The process integrates disciplines without affecting the combined performance. Results are demonstrated for large scale aerospace problems on several supercomputers. The super scalability and portability of the approach is demonstrated on several parallel computers.
Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen
2009-01-01
We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.
Performance evaluation of a modular detector unit for X-ray computed tomography.
Guo, Zhe; Tang, Zhiwei; Wang, Xinzeng; Deng, Mingliang; Hu, Guangshu; Zhang, Hui
2013-04-18
A research prototype CT scanner is currently under development in our lab. One of the key components in this project is the CT detector. This paper describes the design and performance evaluation of the modular CT detector unit for our proposed scanner. It consists of a Photodiode Array Assembly which captures irradiating X-ray photons and converts the energy into electrical current, and a mini Data Acquisition System which performs current integration and converts the analog signal into digital samples. The detector unit can be easily tiled together to form a CT detector. Experiments were conducted to characterize the detector performance both at the single unit level and system level. The noise level, linearity and uniformity of the proposed detector unit were reported and initial imaging studies were also presented which demonstrated the potential application of the proposed detector unit in actual CT scanners.
An application specific integrated circuit based multi-anode microchannel array readout system
NASA Technical Reports Server (NTRS)
Smeins, Larry G.; Stechman, John M.; Cole, Edward H.
1991-01-01
Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.
Modular and Orthogonal Synthesis of Hybrid Polymers and Networks
Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao
2015-01-01
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255
Modular Biopower System Providing Combined Heat and Power for DoD Installations
2013-12-01
ISSUES ......................................................................................... 41 8.4 GASIFIER SHELL INTEGRITY...review of DoD installations revealed that 170 of them had access to significant amounts of woody biomass materials within a 25-mile radius and an...DESCRIPTION The technology uses a downdraft gasification process to convert the energy trapped in biomass into a synthesis gas that is cooled, filtered
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
NASA Technical Reports Server (NTRS)
Gerber, C. R.
1972-01-01
The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.
An integrated dexterous robotic testbed for space applications
NASA Technical Reports Server (NTRS)
Li, Larry C.; Nguyen, Hai; Sauer, Edward
1992-01-01
An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.
ENEL overall PWR plant models and neutronic integrated computing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedroni, G.; Pollachini, L.; Vimercati, G.
1987-01-01
To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed bymore » means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses.« less
Robust Software Architecture for Robots
NASA Technical Reports Server (NTRS)
Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael
2009-01-01
Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.
Modularity: An Application of General Systems Theory to Military Force Development
2005-01-01
1999). Context, modularity, and the cultural constitution of development. In P. Lloyd & C. Fernyhough (Eds.), Lev Vygotsky : Critical assessments...of General Systems Theory to Military Force Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Prescribed by ANSI Std Z39-18 MODULARITY: AN APPLICATION OF GENERAL SYSTEMS THEORY TO MILITARY FORCE DEVELOPMENT 279 R SEARCH MODULARITY: AN APPLICATION OF
Completing the puzzle: AOLI full-commissioning fresh results and AIV innovations
NASA Astrophysics Data System (ADS)
Velasco, S.; Colodro-Conde, C.; López, R. L.; Oscoz, A.; Valdivia, J. J. F.; Rebolo, R.; Femenía, B.; King, D. L.; Labadie, L.; Mackay, C.; Muthusubramanian, B.; Pérez-Garrido, A.; Puga, M.; Rodríguez-Coira, G.; Rodríguez-Ramos, L. F.; Rodríguez-Ramos, J. M.
2017-03-01
The Adaptive Optics Lucky Imager (AOLI) is a new instrument designed to combine adaptive optics (AO) and lucky imaging (LI) techniques to deliver high spatial resolution in the visible, about 20 mas, from ground-based telescopes. Here we present details of the integration and verification phases explaining the defiance that we have faced and the innovative and versatile solution of modular integration for each of its subsystems that we have developed. Modularity seems a clue key for opto-mechanical integration success in the extremely-big telescopes era. We present here the very fresh preliminary results after its first fully-working observing run on the WHT.
Lunar lander and return propulsion system trade study
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Moreland, Robert; Sanders, Gerald B.; Robertson, Edward A.; Amidei, David; Mulholland, John
1993-01-01
This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.
Multi-kilowatt modularized spacecraft power processing system development
NASA Technical Reports Server (NTRS)
Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.
1975-01-01
A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.
NASA Technical Reports Server (NTRS)
Traub, W. A.
1984-01-01
The first physical demonstration of the principle of image reconstruction using a set of images from a diffraction-blurred elongated aperture is reported. This is an optical validation of previous theoretical and numerical simulations of the COSMIC telescope array (coherent optical system of modular imaging collectors). The present experiment utilizes 17 diffraction blurred exposures of a laboratory light source, as imaged by a lens covered by a narrow-slit aperture; the aperture is rotated 10 degrees between each exposure. The images are recorded in digitized form by a CCD camera, Fourier transformed, numerically filtered, and added; the sum is then filtered and inverse Fourier transformed to form the final image. The image reconstruction process is found to be stable with respect to uncertainties in values of all physical parameters such as effective wavelength, rotation angle, pointing jitter, and aperture shape. Future experiments will explore the effects of low counting rates, autoguiding on the image, various aperture configurations, and separated optics.
Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling
NASA Astrophysics Data System (ADS)
Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.
2017-12-01
With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.
Development of real-time software environments for NASA's modern telemetry systems
NASA Technical Reports Server (NTRS)
Horner, Ward; Sabia, Steve
1989-01-01
An effort has been made to maintain maximum performance and flexibility for NASA-Goddard's VLSI telemetry system elements through the development of two real-time systems: (1) the Base System Environment, which supports generic system integration and furnishes the basic porting of various manufacturers' cards, and (2) the Modular Environment for Data Systems, which supports application-specific developments and furnishes designers with a set of tested generic library functions that can be employed to speed up the development of such application-specific real-time codes. The performance goals and design rationale for these two systems are discussed.
Highly integrated system solutions for air conditioning.
Bartz, Horst
2002-08-01
Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.
Oxygen production System Models for Lunar ISRU
NASA Technical Reports Server (NTRS)
Santiago-Maldonado, Edgardo
2007-01-01
In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.
Energy Systems Integration News | Energy Systems Integration Facility |
technologies and business models help utilities and tech companies address integrate distributed energy invaders: Disruptive technologies crowding the utility space" at the Utilities in a Time of Change and Franyutti, Vice-President, Energy Business Group, Mexichem
Kim, Hyoungkyu; Hudetz, Anthony G.; Lee, Joseph; Mashour, George A.; Lee, UnCheol; Avidan, Michael S.
2018-01-01
The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain. PMID:29503611
Kim, Hyoungkyu; Hudetz, Anthony G; Lee, Joseph; Mashour, George A; Lee, UnCheol
2018-01-01
The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain.
Advantages of a Modular Mars Surface Habitat Approach
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin
2018-01-01
Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.
Hufnagel, Hansjörg; Huebner, Ansgar; Gülch, Carina; Güse, Katharina; Abell, Chris; Hollfelder, Florian
2009-06-07
We present a modular system of microfluidic PDMS devices designed to incorporate the steps necessary for cell biological assays based on mammalian tissue culture 'on-chip'. The methods described herein include the on-chip immobilization and culturing of cells as well as their manipulation by transfection. Assessment of cell viability by flow cytrometry suggests low attrition rates (<3%) and excellent growth properties in the device for up to 7 days for CHO-K1 cells. To demonstrate that key procedures from the repertoire of cell biology are possible in this format, transfection of a reporter gene (encoding green fluorescent protein) was carried out. The modular design enables efficient detachment and recollection of cells and allows assessment of the success of transfection achieved on-chip. The transfection levels (20%) are comparable to standard large scale procedures and more than 500 cells could be transfected. Finally, cells are transferred into microfluidic microdoplets, where in principle a wide range of subsequent assays can be carried out at the single cell level in droplet compartments. The procedures developed for this modular device layout further demonstrate that commonly used methods in cell biology involving mammalian cells can be reliably scaled down to allow single cell investigations in picolitre volumes.
Westinghouse Small Modular Reactor balance of plant and supporting systems design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memmott, M. J.; Stansbury, C.; Taylor, C.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operationmore » of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)« less
Size variation, growth strategies, and the evolution of modularity in the mammalian skull.
Porto, Arthur; Shirai, Leila Teruko; de Oliveira, Felipe Bandoni; Marroig, Gabriel
2013-11-01
Allometry is a major determinant of within-population patterns of association among traits and, therefore, a major component of morphological integration studies. Even so, the influence of size variation over evolutionary change has been largely unappreciated. Here, we explore the interplay between allometric size variation, modularity, and life-history strategies in the skull from representatives of 35 mammalian families. We start by removing size variation from within-species data and analyzing its influence on integration magnitudes, modularity patterns, and responses to selection. We also carry out a simulation in which we artificially alter the influence of size variation in within-taxa matrices. Finally, we explore the relationship between size variation and different growth strategies. We demonstrate that a large portion of the evolution of modularity in the mammalian skull is associated to the evolution of growth strategies. Lineages with highly altricial neonates have adult variation patterns dominated by size variation, leading to high correlations among traits regardless of any underlying modular process and impacting directly their potential to respond to selection. Greater influence of size variation is associated to larger intermodule correlations, less individualized modules, and less flexible responses to natural selection. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.