Science.gov

Sample records for modular linear drive

  1. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  2. Linear Back-Drive Differentials

    NASA Technical Reports Server (NTRS)

    Waydo, Peter

    2003-01-01

    Linear back-drive differentials have been proposed as alternatives to conventional gear differentials for applications in which there is only limited rotational motion (e.g., oscillation). The finite nature of the rotation makes it possible to optimize a linear back-drive differential in ways that would not be possible for gear differentials or other differentials that are required to be capable of unlimited rotation. As a result, relative to gear differentials, linear back-drive differentials could be more compact and less massive, could contain fewer complex parts, and could be less sensitive to variations in the viscosities of lubricants. Linear back-drive differentials would operate according to established principles of power ball screws and linear-motion drives, but would utilize these principles in an innovative way. One major characteristic of such mechanisms that would be exploited in linear back-drive differentials is the possibility of designing them to drive or back-drive with similar efficiency and energy input: in other words, such a mechanism can be designed so that a rotating screw can drive a nut linearly or the linear motion of the nut can cause the screw to rotate. A linear back-drive differential (see figure) would include two collinear shafts connected to two parts that are intended to engage in limited opposing rotations. The linear back-drive differential would also include a nut that would be free to translate along its axis but not to rotate. The inner surface of the nut would be right-hand threaded at one end and left-hand threaded at the opposite end to engage corresponding right- and left-handed threads on the shafts. A rotation and torque introduced into the system via one shaft would drive the nut in linear motion. The nut, in turn, would back-drive the other shaft, creating a reaction torque. Balls would reduce friction, making it possible for the shaft/nut coupling on each side to operate with 90 percent efficiency.

  3. A modular approach to linear uncertainty analysis.

    PubMed

    Weathers, J B; Luck, R; Weathers, J W

    2010-01-01

    This paper introduces a methodology to simplify the uncertainty analysis of large-scale problems where many outputs and/or inputs are of interest. The modular uncertainty technique presented here can be utilized to analyze the results spanning a wide range of engineering problems with constant sensitivities within parameter uncertainty bounds. The proposed modular approach provides the same results as the traditional propagation of errors methodology with fewer conceptual steps allowing for a relatively straightforward implementation of a comprehensive uncertainty analysis effort. The structure of the modular technique allows easy integration into most experimental/modeling programs or data acquisition systems. The proposed methodology also provides correlation information between all outputs, thus providing information not easily obtained using the traditional uncertainty process based on analyzing one data reduction equation (DRE)/model at a time. Finally, the paper presents a straightforward methodology to obtain the covariance matrix for the input variables using uncorrelated elemental sources of systematic uncertainties along with uncorrelated sources corresponding to random uncertainties.

  4. Can computational efficiency alone drive the evolution of modularity in neural networks?

    PubMed Central

    Tosh, Colin R.

    2016-01-01

    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means. PMID:27573614

  5. Can computational efficiency alone drive the evolution of modularity in neural networks?

    PubMed

    Tosh, Colin R

    2016-08-30

    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means.

  6. Proceedings of the international conference on maglev and linear drives

    SciTech Connect

    Not Available

    1986-01-01

    This book contains papers presented at a conference on Maglev and linear drives. Topics covered include: Development of superconducting magnets for the Canadian electrodynamic Maglev vehicle; Power supply system to drive HSST - Expo '86; and Thrust and levitation force characteristics of linear synchronous motors.

  7. Split-Stirling-cycle displacer linear-electric drive

    NASA Technical Reports Server (NTRS)

    Ackermann, R. A.; Bhate, S. K.; Byrne, D. V.

    1983-01-01

    The retrofit of a 1/4-W split-Stirling cooler with a linear driven on the displacer was achieved and its performance characterized. The objective of this work was to demonstrate that a small linear motor could be designed to meet the existing envelope specifications of the cooler and that an electric linear drive on the displacer could improve the cooler's reliability and performance. The paper describes the characteristics of this motor and presents cooler test results.

  8. High reliability linear drive device for artificial hearts

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Zhao, Wenxiang; Liu, Guohai; Shen, Yue; Wang, Fangqun

    2012-04-01

    In this paper, a new high reliability linear drive device, termed as stator-permanent-magnet tubular oscillating actuator (SPM-TOA), is proposed for artificial hearts (AHs). The key is to incorporate the concept of two independent phases into this linear AH device, hence achieving high reliability operation. The fault-tolerant teeth are employed to provide the desired decoupling phases in magnetic circuit. Also, as the magnets and the coils are located in the stator, the proposed SPM-TOA takes the definite advantages of robust mover and direct-drive capability. By using the time-stepping finite element method, the electromagnetic characteristics of the proposed SPM-TOA are analyzed, including magnetic field distributions, flux linkages, back- electromotive forces (back-EMFs) self- and mutual inductances, as well as cogging and thrust forces. The results confirm that the proposed SPM-TOA meets the dimension, weight, and force requirements of the AH drive device.

  9. An open source 3-d printed modular micro-drive system for acute neurophysiology.

    PubMed

    Patel, Shaun R; Ghose, Kaushik; Eskandar, Emad N

    2014-01-01

    Current, commercial, electrode micro-drives that allow independent positioning of multiple electrodes are expensive. Custom designed solutions developed by individual laboratories require fabrication by experienced machinists working in well equipped machine shops and are therefore difficult to disseminate into widespread use. Here, we present an easy to assemble modular micro-drive system for acute primate neurophysiology (PriED) that utilizes rapid prototyping (3-d printing) and readily available off the shelf-parts. The use of 3-d printed parts drastically reduces the cost of the device, making it available to labs without the resources of sophisticated machine shops. The direct transfer of designs from electronic files to physical parts also gives researchers opportunities to easily modify and implement custom solutions to specific recording needs. We also demonstrate a novel model of data sharing for the scientific community: a publicly available repository of drive designs. Researchers can download the drive part designs from the repository, print, assemble and then use the drives. Importantly, users can upload their modified designs with annotations making them easily available for others to use. PMID:24736691

  10. An Open Source 3-D Printed Modular Micro-Drive System for Acute Neurophysiology

    PubMed Central

    Eskandar, Emad N.

    2014-01-01

    Current, commercial, electrode micro-drives that allow independent positioning of multiple electrodes are expensive. Custom designed solutions developed by individual laboratories require fabrication by experienced machinists working in well equipped machine shops and are therefore difficult to disseminate into widespread use. Here, we present an easy to assemble modular micro-drive system for acute primate neurophysiology (PriED) that utilizes rapid prototyping (3-d printing) and readily available off the shelf-parts. The use of 3-d printed parts drastically reduces the cost of the device, making it available to labs without the resources of sophisticated machine shops. The direct transfer of designs from electronic files to physical parts also gives researchers opportunities to easily modify and implement custom solutions to specific recording needs. We also demonstrate a novel model of data sharing for the scientific community: a publicly available repository of drive designs. Researchers can download the drive part designs from the repository, print, assemble and then use the drives. Importantly, users can upload their modified designs with annotations making them easily available for others to use. PMID:24736691

  11. A linear chromatic mechanism drives the pupillary response.

    PubMed Central

    Tsujimura, S.; Wolffsohn, J. S.; Gilmartin, B.

    2001-01-01

    Previous studies have shown that a chromatic mechanism can drive pupil responses. The aim of this research was to clarify whether a linear or nonlinear chromatic mechanism drives pupillary responses by using test stimuli of various colours that are defined in cone contrast space. The pupil and accommodation responses evoked by these test stimuli were continuously and simultaneously objectively measured by photorefraction. The results with isochromatic and isoluminant stimuli showed that the accommodative level remained approximately constant (< 0.25 D change in mean level) even when the concurrent pupillary response was large (ca. 0.30 mm). The pupillary response to an isoluminant grating was sustained, delayed (by ca. 60 ms) and larger in amplitude than that for a isochromatic uniform stimulus, which supports previous work suggesting that the chromatic mechanism contributes to the pupillary response. In a second experiment, selected chromatic test gratings were used and isoresponse contours in cone contrast space were obtained. The results showed that the isoresponse contour in cone contrast space is well described (r(2) = 0.99) by a straight line with a positive slope. The results indicate that a /L - M/ linear chromatic mechanism, whereby a signal from the long wavelength cone is subtracted from that of the middle wavelength cone and vice versa, drives pupillary responses. PMID:11674867

  12. Oscillating-Linear-Drive Vacuum Compressor for CO2

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Shimko, Martin

    2005-01-01

    A vacuum compressor has been designed to compress CO2 from approximately equal to 1 psia (approximately equal to 6.9 kPa absolute pressure) to approximately equal to 75 psia (approximately equal to 0.52 MPa), to be insensitive to moisture, to have a long operational life, and to be lightweight, compact, and efficient. The compressor consists mainly of (1) a compression head that includes hydraulic diaphragms, a gas-compression diaphragm, and check valves; and (2) oscillating linear drive that includes a linear motor and a drive spring, through which compression force is applied to the hydraulic diaphragms. The motor is driven at the resonance vibrational frequency of the motor/spring/compression-head system, the compression head acting as a damper that takes energy out of the oscillation. The net effect of the oscillation is to cause cyclic expansion and contraction of the gas-compression diaphragm, and, hence, of the volume bounded by this diaphragm. One-way check valves admit gas into this volume from the low-pressure side during expansion and allow the gas to flow out to the high-pressure side during contraction. Fatigue data and the results of diaphragm stress calculations have been interpreted as signifying that the compressor can be expected to have an operational life of greater than 30 years with a confidence level of 99.9 percent.

  13. Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts.

    PubMed

    Taniguchi, Masahiko; Du, Hai; Lindsey, Jonathan S

    2013-09-23

    A wide variety of cyclic molecular architectures are built of modular subunits and can be formed combinatorially. The mathematics for enumeration of such objects is well-developed yet lacks key features of importance in chemistry, such as specifying (i) the structures of individual members among a set of isomers, (ii) the distribution (i.e., relative amounts) of products, and (iii) the effect of nonequal ratios of reacting monomers on the product distribution. Here, a software program (Cyclaplex) has been developed to determine the number, identity (including isomers), and relative amounts of linear and cyclic architectures from a given number and ratio of reacting monomers. The program includes both mathematical formulas and generative algorithms for enumeration; the latter go beyond the former to provide desired molecular-relevant information and data-mining features. The program is equipped to enumerate four types of architectures: (i) linear architectures with directionality (macroscopic equivalent = electrical extension cords), (ii) linear architectures without directionality (batons), (iii) cyclic architectures with directionality (necklaces), and (iv) cyclic architectures without directionality (bracelets). The program can be applied to cyclic peptides, cycloveratrylenes, cyclens, calixarenes, cyclodextrins, crown ethers, cucurbiturils, annulenes, expanded meso-substituted porphyrin(ogen)s, and diverse supramolecular (e.g., protein) assemblies. The size of accessible architectures encompasses up to 12 modular subunits derived from 12 reacting monomers or larger architectures (e.g. 13-17 subunits) from fewer types of monomers (e.g. 2-4). A particular application concerns understanding the possible heterogeneity of (natural or biohybrid) photosynthetic light-harvesting oligomers (cyclic, linear) formed from distinct peptide subunits.

  14. Directional selection can drive the evolution of modularity in complex traits.

    PubMed

    Melo, Diogo; Marroig, Gabriel

    2015-01-13

    Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.

  15. A 400 KHz line rate 2048 pixel modular SWIR linear array for earth observation applications

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Wouters, Kristof; Gielen, Daphne; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; van der Zanden, Koen; Vermeiren, Jan; Merken, Patrick

    2015-10-01

    In this paper, we report about a family of linear imaging FPAs sensitive in the [0.9 - 1.7um] band, developed for high speed applications such as LIDAR, wavelength references and OCT analyzers and also for earth observation applications. Fast linear FPAs can also be used in a wide variety of terrestrial applications, including high speed sorting, electro- and photo-luminesce and medical applications. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. In principle, this concept can be extended to any multiple of 512 pixels, the limiting factor being the pixel yield of long InGaAs arrays and the CTE differences in the hybrid setup. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long-linear array to run at a high line rate of 400 KHz irrespective of the array length, which limits the line rate in a traditional linear array. The pixel has a pitch of 12.5um. The detector frontend is based on CTIA (Capacitor Trans-impedance Amplifier), having 5 selectable integration capacitors giving full well from 62x103e- (gain0) to 40x106e- (gain4). An auto-zero circuit limits the detector bias non-uniformity to 5-10mV across broad intensity levels, limiting the input referred dark signal noise to 20e-rms for Tint=3ms at room temperature. An on-chip CDS that follows the CTIA facilitates removal of Reset/KTC noise, CTIA offsets and most of the 1/f noise. The measured noise of the ROIC is 35e-rms in gain0. At a master clock rate of 60MHz and a minimum integration time of 1.4us, the FPAs reach the highest line rate of 400 KHz.

  16. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  17. Linear hydraulic drive system for a Stirling engine

    DOEpatents

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  18. The 13th International Conference on Magnetically Levitated Systems and Linear Drives MAGLEV 1993

    NASA Astrophysics Data System (ADS)

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  19. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    SciTech Connect

    Not Available

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  20. Computer Synthesis Approaches of Hyperboloid Gear Drives with Linear Contact

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Kawasaki, Haruhisa

    2014-09-01

    The computer design has improved forming different type software for scientific researches in the field of gearing theory as well as performing an adequate scientific support of the gear drives manufacture. Here are attached computer programs that are based on mathematical models as a result of scientific researches. The modern gear transmissions require the construction of new mathematical approaches to their geometric, technological and strength analysis. The process of optimization, synthesis and design is based on adequate iteration procedures to find out an optimal solution by varying definite parameters. The study is dedicated to accepted methodology in the creation of soft- ware for the synthesis of a class high reduction hyperboloid gears - Spiroid and Helicon ones (Spiroid and Helicon are trademarks registered by the Illinois Tool Works, Chicago, Ill). The developed basic computer products belong to software, based on original mathematical models. They are based on the two mathematical models for the synthesis: "upon a pitch contact point" and "upon a mesh region". Computer programs are worked out on the basis of the described mathematical models, and the relations between them are shown. The application of the shown approaches to the synthesis of commented gear drives is illustrated.

  1. Nonlinear response of a linear chain to weak driving

    NASA Astrophysics Data System (ADS)

    Hennig, D.; Mulhern, C.; Burbanks, A. D.; Schimansky-Geier, L.

    2014-01-01

    We study the escape of a chain of coupled units over the barrier of a metastable potential. It is demonstrated that a very weak external driving field with a suitably chosen frequency suffices to accomplish speedy escape. The latter requires passage through a transition state, the formation of which is triggered by permanent feeding of energy from a phonon background into humps of localized energy and elastic interaction of the arising breather solutions. In fact, cooperativity between the units of the chain entailing coordinated energy transfer is shown to be crucial for enhancing the rate of escape in an extremely effective and low-energy cost way where the effects of entropic localization and breather coalescence conspire.

  2. Improved linear ultrasonic motor performance with square-wave based driving-tip trajectory

    NASA Astrophysics Data System (ADS)

    Le, Adam Y.; Mills, James K.; Benhabib, Beno

    2015-03-01

    This paper proposes the application of a non-sinusoidal periodic excitation voltage to induce a near-square-wave driving tip trajectory in linear ultrasonic motors (LUSMs). A square-wave-based trajectory can deliver superior frictional force to the moving stage in the forward stroke of the driving tip motion and reduced frictional force during the return stroke. This would reduce lost power in the periodic driving tip motion, thereby, increasing the output force and power of the LUSM. An implementation procedure is suggested to achieve the near-square-wave driving tip trajectory. The proposed approach is illustrated through realistic finite-element-based simulations using a bimodal LUSM configuration.

  3. Linear Stepper Actuation Driving Drop Resonance and Modifying Hysteresis.

    PubMed

    Katariya, Mayur; Huynh, So Hung; McMorran, Darren; Lau, Chun Yat; Muradoglu, Murat; Ng, Tuck Wah

    2016-08-23

    In this work, 2 μL water drops are placed on substrates that are created to have a circular hydrophilic region bounded by superhydrophobicity so that they exhibit high contact angles. When the substrate is translated by a linear stepper actuator, the random force components present in the actuator are shown to cause the drop to rock resonantly. When the substrate is translated downward at inclination angles of up to 6° with respect to the horizontal, the contact angle hysteresis increases progressively to a limiting condition. When the substrate is moved up at inclined angles, alternatively, the contact angle hysteresis increases initially to the limiting condition before it is progressively restored to its static state. These behaviors are accounted for by the reversible micro-Cassie to Wenzel wetting state transformations that are made possible by the hierarchical microscale and nanoscale structures present in the superhydrophobic regions.

  4. Solar receiver heliostat reflector having a linear drive and position information system

    DOEpatents

    Horton, Richard H.

    1980-01-01

    A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

  5. FAST modularization framework for wind turbine simulation: full-system linearization

    NASA Astrophysics Data System (ADS)

    Jonkman, J. M.; Jonkman, B. J.

    2016-09-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well- established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  6. Drive Control of an Electric Vehicle by a Non-linear Controller

    NASA Astrophysics Data System (ADS)

    Mubin, Marizan; Ouchi, Shigeto; Anabuki, Masatoshi; Hirata, Hiroshi

    The driving force of automobiles is transmitted by the frictional force between the tires and the road surface. This frictional force is a function of the weight of the car-body and the friction coefficient μ between the tires and the road surface. The friction coefficient μ is also a function of the following parameters: the slip ratio λ determined by the car-body speed and the wheel speed, and the condition of the road surface. Slippage of automobiles which causes much damage often occurs during accelerating and braking. In this paper, we propose a new drive control system which has an effect on acceleration and braking. In the drive control system, a non-linear controller designed by using a Lyapunov function is used. This non-linear controller has two functions: first one is μ control which moves the car-body, another one is λ control. The controller is designed in order that μ and λ work at noslip and with slip respectively. As another controller, a disturbance observer is used for estimating the car-body speed which is difficult to be measured. Then, this lead to the proof of the stability condition of the combined system which consists of two controllers: the non-linear controller and the disturbance observer. Finally, the effectiveness of this control system is proved by a very satisfactory simulation and experimental results for two cases.

  7. Magnetic evaluation of advanced metal-evaporated tape in an advanced linear tape drive

    NASA Astrophysics Data System (ADS)

    Alfano, Anthony D.; Bhushan, Bharat

    2007-01-01

    Demand for increased data storage has resulted in the development of various types of magnetic tapes. To achieve higher recording density, tape manufacturers are developing thin-film tapes, such as advanced metal-evaporated (AME) tape, for use in linear tape drives. In recent studies, these new AME tapes have demonstrated sustainable mechanical durability at low tensions suitable for use in linear tape drives. An evaluation of the magnetic performance of these AME tapes including the impact of tape cupping and initial edge quality was the goal of this study. Head output, dropouts, head-tape interface friction, and lateral tape motion (LTM) were monitored throughout testing. As track widths continue to narrow, LTM has become one of the critical limitations of magnetic performance. To more accurately measure LTM during drive development, a new method involving the output voltage of a head-read element that has been adjusted to be halfway off the recorded track on tape was implemented (LTM M). It is shown that positively cupped AME tapes will result in similar head output and fewer dropouts than the current MP tapes. The negatively cupped AME sample produced the lowest head output data and the highest amount of dropouts of all the tapes evaluated in this investigation. All the tapes evaluated demonstrated similar values of LTM when monitored at the center of the tape. When LTM was monitored at the lower edge of the tape, the positively cupped AME tape with the worst relative edge contour length resulted in the highest LTM M. As found in previous studies, AME tapes produced slightly lower values of coefficient of friction than the MP tapes. From this investigation, positively cupped AME tapes with good initial relative edge contour length are recommended for use in linear tape drives, similar to those used in this study.

  8. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    NASA Astrophysics Data System (ADS)

    Hajari, Sh. Sanaye; Shaker, H.; Doebert, S.

    2015-11-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane.

  9. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  10. Tape edge study in a linear tape drive with single-flanged guides

    NASA Astrophysics Data System (ADS)

    Goldade, Anton V.; Bhushan, Bharat

    2004-05-01

    Improved tape guiding and tape dimensional stability are essential for magnetic tape linear recoding formats to take advantage of vastly increased track density and thereby achieve higher storage capacities. Tape guiding is dependent on numerous parameters, such as type of the guides and tape path geometry, quality of virgin tape edge, drive operating parameters (e.g., tape speed and tape tension), mechanical properties of the tape, and tape geometry (e.g., cupping and curvature). The objective of the present study is to evaluate guiding and tribological performance of single-flanged guides with porous air bearings in a linear tape drive. A comparison of guiding performance of the dual flanged stationary guides and single-flanged guides with porous air bearings is performed. The effect of tape path geometry, drive operating conditions (speed and tension) and tape edge quality of factory-slit tapes on tape guiding are evaluated during short-term tests. A lateral force measurement technique is used to measure the force exerted by the tape edge on the guide flange. A technique for the lateral tape motion measurement is used to study the effect of continuous sliding on tape guiding. Wear tests up to 5000 cycles are conducted and coefficient of friction and lateral tape motion are monitored to study the effect of drive operating conditions (speed and tension), edge quality of factory-slit tapes and tape thickness on tape guiding. Optical microscopy, atomic force microscopy and scanning electron microscopy are employed to study and quantify the quality of tape edge.

  11. Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Rauch, Jeffrey S.

    1994-01-01

    This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.

  12. A rectangle-type linear ultrasonic motor using longitudinal vibration transducers with four driving feet.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2013-04-01

    To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.

  13. Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.

    PubMed

    Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning

    2016-12-01

    This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke.

  14. Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.

    PubMed

    Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning

    2016-12-01

    This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke. PMID:27479230

  15. Torque linearizing hardware for the electric joint motors of a direct-drive robot

    SciTech Connect

    Muir, P.F.; Bryan, J.R.

    1991-12-31

    Many emerging high-performance robot control algorithms require the command of the joint torques; yet no known commercial robots provide such a capability. In this paper, we describe the design, development, testing and application of a VMEbus-based torque linearizing joint interface board (JIB). One JIB resides between the robot control processor and each joint motor amplifier. The JIB provides the control processor with the capability to read the motor position and apply accurate motor torques. The torque command capability derives from the application of a 128k {times} 8 EPROM lookup table for each motor phase. Because joint motor torque is dependent upon the torque command and the motor position, the hardware is designed to utilize the torque command and the current motor position as the address to retrieve the proper pulse-width for the PWM motor amplifier. The table look-up cycle operates independently of the robot controller at a 40KHz rate to provide constant joint torque as the motor rotates. We identify the proper table entries by an automated in situ data collection procedure. Static torque generation results show that the torque deviations are reduced from as much as 76% to below 5% for each of the three direct-drive motors (two are variable reluctance motors and one is brushless DC) on an AdeptTwo robot. These torque deviations are reduced below 2.5% if only the upper 90% of the torque range is considered. The torque deviations of the non-direct-drive joint are reduced by 50%. Dynamic robot edge following experiments show that the robot speed of operation can be more than doubled for a given applied force accuracy by utilizing the joint torque linearizing boards. 8 refs.

  16. Torque linearizing hardware for the electric joint motors of a direct-drive robot

    SciTech Connect

    Muir, P.F.; Bryan, J.R.

    1991-01-01

    Many emerging high-performance robot control algorithms require the command of the joint torques; yet no known commercial robots provide such a capability. In this paper, we describe the design, development, testing and application of a VMEbus-based torque linearizing joint interface board (JIB). One JIB resides between the robot control processor and each joint motor amplifier. The JIB provides the control processor with the capability to read the motor position and apply accurate motor torques. The torque command capability derives from the application of a 128k {times} 8 EPROM lookup table for each motor phase. Because joint motor torque is dependent upon the torque command and the motor position, the hardware is designed to utilize the torque command and the current motor position as the address to retrieve the proper pulse-width for the PWM motor amplifier. The table look-up cycle operates independently of the robot controller at a 40KHz rate to provide constant joint torque as the motor rotates. We identify the proper table entries by an automated in situ data collection procedure. Static torque generation results show that the torque deviations are reduced from as much as 76% to below 5% for each of the three direct-drive motors (two are variable reluctance motors and one is brushless DC) on an AdeptTwo robot. These torque deviations are reduced below 2.5% if only the upper 90% of the torque range is considered. The torque deviations of the non-direct-drive joint are reduced by 50%. Dynamic robot edge following experiments show that the robot speed of operation can be more than doubled for a given applied force accuracy by utilizing the joint torque linearizing boards. 8 refs.

  17. Torque linearizing hardware for the electric joint motors of a direct-drive robot

    NASA Astrophysics Data System (ADS)

    Muir, P. F.; Bryan, J. R.

    Many emerging high-performance robot control algorithms require the command of the joint torques, yet no known commercial robots provide such a capability. We describe the design, development, testing, and application of a VMEbus-based torque linearizing joint interface board (JIB). One JIB resides between the robot control processor and each joint motor amplifier. The JIB provides the control processor with the capability to read the motor position and apply accurate motor torques. The torque command capability derives from the application of a 128k x 8 EPROM lookup table for each motor phase. Because joint motor torque is dependent upon the torque command and the motor position, the hardware is designed to utilize the torque command and the current motor position as the address to retrieve the proper pulse-width for the PWM motor amplifier. The table look-up cycle operates independently of the robot controller at a 40KHz rate to provide constant joint torque as the motor rotates. We identify the proper table entries by an automated in situ data collection procedure. Static torque generation results show that the torque deviations are reduced from as much as 76 percent to below 5 percent for each of the three direct-drive motors (two are variable reluctance motors and one is brushless DC) on an AdeptTwo robot. These torque deviations are reduced below 2.5 percent if only the upper 90 percent of the torque range is considered. The torque deviations of the non-direct-drive joint are reduced by 50 percent. Dynamic robot edge following experiments show that the robot speed of operation can be more than doubled for a given applied force accuracy by utilizing the joint torque linearizing boards.

  18. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  19. Design, analysis and experimental performance of a stepping type piezoelectric linear actuator based on compliant foot driving

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2016-11-01

    A stepping type piezoelectric linear actuator based on compliant foot driving is proposed in this paper. With the help of four piezo-stacks and four compliant feet, the designed actuator can produce large range linear motions in both positive and negative directions with high accuracy. The mechanical structure and the operating principle are discussed. Mohr integration method is used to analyze the deformation of the key component compliant foot. To investigate the working performance, a prototype is fabricated and a series of experiments are carried out. The experimental results indicate that the displacement outputs under various driving voltages and various driving frequencies show good linear relationships with the time. The driving resolution and the maximum output force are 10.98 nm and 43 N, respectively. The displacements deviation between the forward and backward motions within 30 steps is 6.82 μm and the amplitude of the parasitic motions is about 0.638 μm. The experimental results also confirm that the designed actuator can achieve various speeds by changing the driving voltage and driving frequency.

  20. NDT and SHM of Carbon Fiber Composites using Linear Drive MWM-Arrays

    NASA Technical Reports Server (NTRS)

    Washabaugh, Andrew; Martin, Christopher; Lyons, Robert; Grundy, David; Goldfine, Neil; Russell, Richard; Wincheski, Russell

    2012-01-01

    Carbon fiber composites are used in a wide range of structural applications due to their excellent specific strength and stiffness. However, the anisotropic mechanical and electrical properties associated with the fibers within each composite layer present challenges, and opportunities, for Nondestructive Testing (NDT) methods used to characterize and assess the structure condition. This includes composite condition after manufacture (such as fiber orientation and density, porosity, delamination, and bond strength) and during usage (such as damage from impact, fiber breakage, thermal exposure or applied stress). Ultrasonic and thermographic methods can address some of these challenges, but eddy current methods provide an alternative method for composite structures that contain a conducting material, such as carbon fibers or a metallic liner. This presentation reviews recent advances in the development of eddy current sensors and arrays for carbon fiber composite NDT and Structural Health Monitoring (SHM) applications. The focus is on eddy current sensor constructs with linear drive windings, such as MWM -Arrays, that induce currents primarily within the linear fibers of the composite. By combining this type of sensor construct with micromechanical models that relate composite constituent properties to measurable sensor responses, insight is obtained into the volumetric distribution of electrical properties within the composite and the associated manufacturing, damage, or strain conditions. With knowledge of the fiber layup, this MWM-Array technology is able to detect damage and strain/stress as a function of depth and fiber orientation. This work has been funded by NASA, NA V AIR and the Army for applications ranging from composite overwrapped pressure vessels (COPVs) to aircraft structures and rotorcraft blades. This presentation will specifically present background on the MWM-Array technology, results from the micromechanical modeling effort, and results from

  1. Single-Phase Drive Ultrasonic Linear Motor Using a Linked Twin Square Plate Vibrator

    NASA Astrophysics Data System (ADS)

    Yokoyama, Keiji; Tamura, Hideki; Masuda, Kentaro; Takano, Takehiro

    2013-07-01

    A novel linear motion ultrasonic motor, which uses a single resonance mode driven by a single phase and has the same motor characteristics for operation in reverse directions, is developed. An in-plane breathing mode in the square plate is strongly driven by the transverse effect of a piezoelectric ceramic. A stator resonator consists of twin square plates linked by V-shaped beams. Only one side of the square plate can be excited by the resonance of the breathing mode, when the other passive side plate is electrically opened so that the effective elasticities and the resonant frequencies between both plates are different; as a result, the friction edge of the resonator vibrates in a slant locus to move a load slider. The reverse operation is easily obtained by switching the driving side of the square plates. We designed the stator resonator by FEM analysis and fabricated a prototype for our experiment. The prototype motor showed good characteristics, for example, a moving slider velocity of 100 mm/s, a thrust force of 3.5 N, and an efficiency of 30% when the preload was 10 N, the input effective voltage was 5 V, and the input power was 1.2 W.

  2. Adaptive hybrid control for linear piezoelectric ceramic motor drive using diagonal recurrent CMAC network.

    PubMed

    Wai, Rong-Jong; Lin, Chih-Min; Peng, Ya-Fu

    2004-11-01

    This paper presents an adaptive hybrid control system using a diagonal recurrent cerebellar-model-articulation-computer (DRCMAC) network to control a linear piezoelectric ceramic motor (LPCM) driven by a two-inductance two-capacitance (LLCC) resonant inverter. Since the dynamic characteristics and motor parameters of the LPCM are highly nonlinear and time varying, an adaptive hybrid control system is therefore designed based on a hypothetical dynamic model to achieve high-precision position control. The architecture of DRCMAC network is a modified model of a cerebellar-model-articulation-computer (CMAC) network to attain a small number of receptive-fields. The novel idea of this study is that it employs the concept of diagonal recurrent neural network (DRNN) in order to capture the system dynamics and convert the static CMAC into a dynamic one. This adaptive hybrid control system is composed of two parts. One is a DRCMAC network controller that is used to mimic a conventional computed torque control law due to unknown system dynamics, and the other is a compensated controller with bound estimation algorithm that is utilized to recover the residual approximation error for guaranteeing the stable characteristic. The effectiveness of the proposed driving circuit and control system is verified with hardware experiments under the occurrence of uncertainties. In addition, the advantages of the proposed control scheme are indicated in comparison with a traditional integral-proportional (IP) position control system.

  3. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Ayten, B.; Westerhof, E.; the ASDEX Upgrade Team

    2014-07-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al (1989 Phys. Rev. Lett. 62 426). We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in the case of locked islands or when the magnetic island rotation period is longer than the collisional time scale. The non-linear effects result in an overall reduction of the current drive efficiency for this case with absorption of the EC power on the low-field side of the electron cyclotron resonance layer. As a consequence of the non-linear effects, also the stabilizing effect of the ECCD on the island is reduced from linear expectations.

  4. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    SciTech Connect

    Cardinali, A. Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A.

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  5. Proceedings of the IEEE international conference on Maglev and linear drives

    SciTech Connect

    Not Available

    1987-01-01

    These proceedings collect papers on linear induction motors and magnetic levitation. Topics include: linear induction propulsion, eddy current analysis of cryostat outer vessel in superconductive magnetically levitated vehicles, dynamics of maglev vehicles, and high-speed maglev trains.

  6. Dynamics of a belt-drive system using a linear complementarity problem for the belt pulley contact description

    NASA Astrophysics Data System (ADS)

    Čepon, Gregor; Boltežar, Miha

    2009-01-01

    The aim of this study was to develop an efficient and realistic numerical model in order to predict the dynamic response of belt drives. The belt was modeled as a planar beam element based on an absolute nodal coordinate formulation. A viscoelastic material was adopted for the belt and the corresponding damping and stiffness matrices were determined. The belt-pulley contact was formulated as a linear complementarity problem together with a penalty method. This made it possible for us to accurately predict the contact forces, including the stick and slip zones between the belt and the pulley. The belt-drive model was verified by comparing it with the available analytical solutions. A good agreement was found. Finally, the applicability of the method was demonstrated by considering non-steady belt-drive operating conditions.

  7. DNA-programmed modular assembly of cyclic and linear nanoarrays for the synthesis of two-dimensional conducting polymers.

    PubMed

    Chen, Wen; Schuster, Gary B

    2012-01-18

    Nanometer-scale arrays of conducting polymers were prepared on scaffolds of self-assembling DNA modules. A series of DNA oligomers was prepared, each containing six 2,5-bis(2-thienyl)pyrrole (SNS) monomer units linked covalently to N4 atoms of alternating cytosines placed between leading and trailing 12-nucleobase recognition sequences. These DNA modules were encoded so the recognition sequences would uniquely associate through Watson-Crick assembly to form closed-cycle or linear arrays of aligned SNS monomers. The melting behavior and electrophoretic migration of these assemblies showed cooperative formation of multicomponent arrays containing two to five DNA modules (i.e., 12-30 SNS monomers). The treatment of these arrays with horseradish peroxidase and H(2)O(2) resulted in oxidative polymerization of the SNS monomers with concomitant ligation of the DNA modules. The resulting cyclic and linear arrays exhibited chemical and optical properties typical of conducting thiophene-like polymers, with a red-end absorption beyond 1250 nm. AFM images of the cyclic array containing 18 SNS units revealed highly regular 10 nm diameter objects. PMID:22242713

  8. Optimizing the driving function for nonequilibrium free-energy calculations in the linear regime: a variational approach.

    PubMed

    de Koning, Maurice

    2005-03-01

    We consider the issue of optimizing linear-regime nonequilibrium simulations to estimate free-energy differences. In particular, we focus on the problem of finding the best-possible driving function lambda(t) that, for a given thermodynamic path, simulation algorithm, and amount of computational effort, minimizes dissipation. From the fluctuation-dissipation theorem it follows that, in the linear-response regime, the dissipation is controlled by the magnitude and characteristic correlation time of the equilibrium fluctuations in the driving force. As a result, the problem of finding the optimal switching scheme involves the solution of a standard problem in variational calculus: the minimization of a functional with respect to the switching function. In practice, the minimization involves solving the associated Euler-Lagrange equation subject to a set of boundary conditions. As a demonstration we apply the approach to the simple, yet illustrative problem of computing the free-energy difference between two classical harmonic oscillators with very different characteristic frequencies.

  9. Non-Linear Effects on the LH Wave Coupling in Tore Supra and Impact on the LH Current Drive Efficiency

    SciTech Connect

    Ekedahl, A.; Frincu, B.; Goniche, M.; Hillairet, J.; Petrzilka, V.

    2009-11-26

    A strong, non-linear degradation of the Lower Hybrid (LH) wave coupling in Tore Supra can be observed when the LH launcher is screened on both sides by additional side limiters, such as side protections of adjacent Ion Cyclotron (IC) antennas. The power reflection coefficient (RC) at the LH grill mouth is estimated to increase from {approx}20% at low power density (<1 MW/m{sup 2}) up to >40% at high power density (>10 MW/m{sup 2}). Such large RC (>40%) is unacceptably high, in particular for long durations. The screening by the additional side limiters reduces the connection length in front of the LH grill, which results in lower {lambda}{sub n}, {lambda}{sub T}, n{sub e} and T{sub e} at the grill. However, the reduction in ne alone is not enough to explain the non-linear behaviour. Modelling with a code that takes into account a ponderomotive force potential [1], depleting the electron density in front of the grill, shows consistent results. In full non-inductive current drive scenarios, the observed degradation in LH coupling is measurable on the LH current drive efficiency, through the increase in coupled LH power required to maintain V{sub Loop} = 0. These results demonstrate thus the importance of being able to control the LH coupling conditions, in order to optimize the efficiency and power handling of LH systems.

  10. Pile Driving

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  11. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.

    2013-01-01

    To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.

  12. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  13. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

  14. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  15. Amplitude modulation drive to rectangular-plate linear ultrasonic motors with vibrators dimensions 8 mm x 2.16 mm X 1 mm.

    PubMed

    Ming, Yang; Hanson, Ben; Levesley, Martin C; Walker, Peter G; Watterson, Kevin G

    2006-12-01

    In this paper, to exploit the contribution from not only the stators but also from other parts of miniature ultrasonic motors, an amplitude modulation drive is proposed to drive a miniature linear ultrasonic motor consisting of two rectangular piezoelectric ceramic plates. Using finite-element software, the first longitudinal and second lateral-bending frequencies of the vibrator are shown to be very close when its dimensions are 8 mm x 2.16 mm x 1 mm. So one single frequency power should be able to drive the motor. However, in practice the motor is found to be hard to move with a single frequency power because of its small vibration amplitudes and big frequency difference between its longitudinal and bending resonance, which is induced by the boundary condition variation. To drive the motor effectively, an amplitude modulation drive is used by superimposing two signals with nearly the same frequencies, around the resonant frequency of the vibrators of the linear motor. When the amplitude modulation frequency is close to the resonant frequency of the vibrator's surroundings, experimental results show that the linear motor can move back and forward with a maximum thrust force (over 0.016 N) and a maximum velocity (over 50 mm/s).

  16. Modular Synthesizers.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1985-01-01

    Discusses the basics of inexpensive modular synthesizers (which demonstrate various principles of sound). Topics considered include: oscillators and musical range; oscillator waveforms and characteristics; synthesizing simple musical sounds; and modulation and sweeping filter effects. Suggestions for purchasing or building synthesizer components…

  17. Characterising the interaction of individual-wheel drives with traction by linear parameter-varying model: a method for analysing the role of traction in torsional vibrations in wheel drives and active damping

    NASA Astrophysics Data System (ADS)

    Zhun Yeap, Khang; Müller, Steffen

    2016-02-01

    A model-based approach for characterising the interaction of individual-wheel drives with traction is contributed in this article. The primary aim is to investigate the influence of traction on torsional vibration behaviour in the drive train. The essence of this approach lies in reformulating the nonlinear traction behaviour into its differential form, which enables an analytical description of this interaction in its linear parameter-varying model equivalence. Analytical statements on the vibration behaviour for different driving scenarios are inferred from this model and validated with measurement samples from a high-performance electric road vehicle. Subsequent influences of traction on the performance of active damping of torsional vibrations are derived from this model.

  18. Dual-drive LiNbO3 interferometric Mach-Zehnder architecture with extended linear regime for high peak-to-average OFDM-based communication systems.

    PubMed

    Morant, Maria; Llorente, Roberto; Hauden, Jerome; Quinlan, Terence; Mottet, Alexandre; Walker, Stuart

    2011-12-12

    A dual-drive LiNbO(3) architecture modulator with chirp management is proposed and developed offering SFDR > 25 dB in a 1.4 V bias excursion compared to only 0.5 V bias excursion in a conventional Mach-Zehnder electro-optical modulator (MZ-EOM). The architecture effectively extends the linear regime and enables the optical transmission of wireless systems employing orthogonal division multiplexing (OFDM) modulation such as ultra-wide band (UWB) which require high linearity over a broad frequency range due to their high peak-to-average power ratio (PARP). Radio-over-fiber UWB transmission in a passive optical network is experimentally demonstrated employing this technique, exhibiting an enhancement of 2.2 dB in EVM after 57 km SSMF when the dual-drive developed modulator is employed. PMID:22274055

  19. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  20. Modular Certification

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2002-01-01

    Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

  1. Electromagnetic driving units for complex microrobotic systems

    NASA Astrophysics Data System (ADS)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  2. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  3. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  4. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  5. Managing in an age of modularity.

    PubMed

    Baldwin, C Y; Clark, K B

    1997-01-01

    Modularity is a familiar principle in the computer industry. Different companies can independently design and produce components, suck as disk drives or operating software, and those modules will fit together into a complex and smoothly functioning product because the module makers obey a given set of design rules. Modularity in manufacturing is already common in many companies. But now a number of them are beginning to extend the approach into the design of their products and services. Modularity in design should tremendously boost the rate of innovation in many industries as it did in the computer industry. As businesses as diverse as auto manufacturing and financial services move toward modular designs, the authors say, competitive dynamics will change enormously. No longer will assemblers control the final product: suppliers of key modules will gain leverage and even take on responsibility for design rules. Companies will compete either by specifying the dominant design rules (as Microsoft does) or by producing excellent modules (as disk drive maker Quantum does). Leaders in a modular industry will control less, so they will have to watch the competitive environment closely for opportunities to link up with other module makers. They will also need to know more: engineering details that seemed trivial at the corporate level may now play a large part in strategic decisions. Leaders will also become knowledge managers internally because they will need to coordinate the efforts of development groups in order to keep them focused on the modular strategies the company is pursuing.

  6. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  7. Modern Schools? Think Modular!

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1998-01-01

    Examines how modular educational facilities can provide a viable alternative in building construction when speed and safety are key construction issues. Explains the durability of modular structures, their adherence to building codes, and the flexibility that they provide in design and appearance. The advantages to permanent modular construction…

  8. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  9. Modular approach to achieving the next-generation X-ray light source

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Milton, S. V.; Freund, H. P.

    2001-12-01

    A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.

  10. Full characterization of modular values for finite-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ho, Le Bin; Imoto, Nobuyuki

    2016-06-01

    Kedem and Vaidman obtained a relationship between the spin-operator modular value and its weak value for specific coupling strengths [14]. Here we give a general expression for the modular value in the n-dimensional Hilbert space using the weak values up to (n - 1)th order of an arbitrary observable for any coupling strength, assuming non-degenerated eigenvalues. For two-dimensional case, it shows a linear relationship between the weak value and the modular value. We also relate the modular value of the sum of observables to the weak value of their product.

  11. Modular Buildings Buying Guide.

    ERIC Educational Resources Information Center

    Morris, Susan

    1991-01-01

    Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

  12. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  13. Diversity and Unity of Modularity

    ERIC Educational Resources Information Center

    Seok, Bongrae

    2006-01-01

    Since the publication of Fodor's (1983) The Modularity of Mind, there have been quite a few discussions of cognitive modularity among cognitive scientists. Generally, in those discussions, modularity means a property of specialized cognitive processes or a domain-specific body of information. In actuality, scholars understand modularity in many…

  14. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  15. Modular missile borne computers

    NASA Technical Reports Server (NTRS)

    Ramseyer, R.; Arnold, R.; Applewhite, H.; Berg, R.

    1980-01-01

    The modular missile borne computer's architecture with emphasis on how that architecture evolved is discussed. A careful analysis is given of both the physical constraints and the processing requirements.

  16. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  17. Branched modular primers in DNA sequencing

    SciTech Connect

    Mugasimangalam, R.C.; Shmulevitz, M. |; Ramanathan, V.

    1997-08-01

    The need to synthesize new sequencing primers, such as in primer walking, can be eliminated by assembling modular primers from oligonucleotide modules selected from presynthesized libraries. Our earlier modular primers consisted of 5-mers, 6-mers or 7-mers, annealing to the template contiguously with each other. Here we introduce a novel {open_quotes}branched{close_quotes} type of modular primer with a distinctly different specificity mechanism. The concept of a {open_quotes}branched{close_quotes} primer involves modules that are physically linked by annealing to each other as well as to the target, forming a branched structure of the 3-way junction type. While contiguous modular primers are made specific by the preference of the polymerase for longer primer, branched primers, in contrast, owe their specificity to cooperative annealing of their modules to the intended site on the template. This cooperativity of annealing to the template is provided by mutually complementary segments in the two modules that bind each other. Thus the primer-template complex is no longer limited to linear sequences, but acquires another, second dimension giving the modular primer new functionality.

  18. A 15 MHz bandwidth, 60 V{sub pp}, low distortion power amplifier for driving high power piezoelectric transducers

    SciTech Connect

    Capineri, Lorenzo

    2014-10-01

    This paper presents the design and the realization of a linear power amplifier with large bandwidth (15 MHz) capable of driving low impedance ultrasonic transducers. The output current driving capability (up to 5 A) and low distortion makes it suitable for new research applications using high power ultrasound in the medical and industrial fields. The electronic design approach is modular so that the characteristics can be scaled according to specific applications and implementation details for the circuit layout are reported. Finally the characterization of the power amplifier module is presented.

  19. Electric versus hydraulic drives

    SciTech Connect

    Not Available

    1983-01-01

    This volume records the proceedings of a conference organised by the Engineering Manufacturing Industries Division of the Institution of Mechanical Engineers. Topics considered include high performance position control - a review of the current state of developments; hydrostatic drives - present and future; electric drives - present and future trends; electrical and hydraulic drives for heavy industrial robots; the development of an electro-mechanical tilt system for the advanced passenger train; industrial hydraulic ring mains - effective or efficient. the comparison of performance of servo feed-drive systems; overhead crane drives; the future of d.c. servodrives; the choice of actuator for military systems; linear electro-hydraulic actuators; and actuation for industrial robots.

  20. Electrothermal linear actuator

    NASA Technical Reports Server (NTRS)

    Derr, L. J.; Tobias, R. A.

    1969-01-01

    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward.

  1. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  2. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  3. Derivatives of Siegel modular forms and exponential functions

    NASA Astrophysics Data System (ADS)

    Bertrand, D.; Zudilin, W. W.

    2001-08-01

    We show that the differential field generated by Siegel modular forms and the differential field generated by exponentials of polynomials are linearly disjoint over \\mathbb C. Combined with our previous work [3], this provides a complete multidimensional extension of Mahler's theorem on the transcendence degree of the field generated by the exponential function and the derivatives of a modular function. We give two proofs of our result, one purely algebraic, the other analytic, but both based on arguments from differential algebra and on the stability under the action of the symplectic group of the differential field generated by rational and modular functions.

  4. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  5. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  6. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  7. The Evolution of Modular Construction.

    ERIC Educational Resources Information Center

    American School & University, 1993

    1993-01-01

    Explores how the myths of modular construction for schools began; also discusses the advances made in steel and modular construction. The major advantages of using permanent modular construction for schools are highlighted, including its rapid construction, use of standard building materials, financial flexibility, and durability. (GR)

  8. Network modularity promotes cooperation.

    PubMed

    Marcoux, Marianne; Lusseau, David

    2013-05-01

    Cooperation in animals and humans is widely observed even if evolutionary biology theories predict the evolution of selfish individuals. Previous game theory models have shown that cooperation can evolve when the game takes place in a structured population such as a social network because it limits interactions between individuals. Modularity, the natural division of a network into groups, is a key characteristic of all social networks but the influence of this crucial social feature on the evolution of cooperation has never been investigated. Here, we provide novel pieces of evidence that network modularity promotes the evolution of cooperation in 2-person prisoner's dilemma games. By simulating games on social networks of different structures, we show that modularity shapes interactions between individuals favouring the evolution of cooperation. Modularity provides a simple mechanism for the evolution of cooperation without having to invoke complicated mechanisms such as reputation or punishment, or requiring genetic similarity among individuals. Thus, cooperation can evolve over wider social contexts than previously reported.

  9. Modular Perspectives on Bilingualism.

    ERIC Educational Resources Information Center

    Francis, Norbert

    2002-01-01

    This research review traces the current discussion on models of bilingualism to the contributions of Vygotsky and Luria. Proposes that a modular approach to studying the different aspects of bilingual development promises to chart a course toward finding a broader common ground around research findings and interpretations that appear to be…

  10. Modular cleanroom construction success.

    PubMed

    Möllmann, Markus

    2007-09-01

    The completion of a 408 m2 major new aseptic pharmacy unit for the St George's Hospital NHS Trust, London, is a significant example of the benefits of using modern modular construction techniques compared to a traditional cleanroom build. At every stage from concept through project planning to final completion, the use of modules proved to be the most appropriate for the task.

  11. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  12. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  13. Modular NRPSs are monomeric.

    PubMed

    Smith, Stuart

    2002-09-01

    NRPSs, PKSs, and hybrid NRPS/PKSs are modular proteins with similar assembly-line organizations. Although PKSs function as dimers, new data demonstrate that functional NRPSs are monomeric. This discovery has significant implications for engineering artificial assemblies for the production of novel biotherapeutics.

  14. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  15. Modular learning models in forecasting natural phenomena.

    PubMed

    Solomatine, D P; Siek, M B

    2006-03-01

    Modular model is a particular type of committee machine and is comprised of a set of specialized (local) models each of which is responsible for a particular region of the input space, and may be trained on a subset of training set. Many algorithms for allocating such regions to local models typically do this in automatic fashion. In forecasting natural processes, however, domain experts want to bring in more knowledge into such allocation, and to have certain control over the choice of models. This paper presents a number of approaches to building modular models based on various types of splits of training set and combining the models' outputs (hard splits, statistically and deterministically driven soft combinations of models, 'fuzzy committees', etc.). An issue of including a domain expert into the modeling process is also discussed, and new algorithms in the class of model trees (piece-wise linear modular regression models) are presented. Comparison of the algorithms based on modular local modeling to the more traditional 'global' learning models on a number of benchmark tests and river flow forecasting problems shows their higher accuracy and transparency of the resulting models. PMID:16531005

  16. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOEpatents

    Martin, H. Lee; Williams, Daniel M.; Holt, W. Eugene

    1989-01-01

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive.

  17. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  18. Sequenced drive for rotary valves

    DOEpatents

    Mittell, Larry C.

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  19. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  20. Modular hydropower demonstration

    SciTech Connect

    Not Available

    1988-09-01

    The modular approach has been developed for the construction of small hydro projects in order to reduce the costs and to shorten procurement and construction schedules that occur when designs and equipment selection more applicable to large projects are used. The modular approach aims to maximize the use of ''off-the-shelf'' and readily available components. A key feature is the replacement of the conventional purpose-designed hydroelectric turbine by a pump used in reverse as a turbine with fixed blades and vanes. Other features are the use of siphon penstocks, induction generators, prefabricated structures, and automated control equipment. The New York State Energy Research and Development Authority contracted with Acres International Corporation to study two small hydro projects designed and built using the modular approach, and compare each one with an equivalent conventional design. Equipment procurement and installation costs, general construction costs, and energy production were estimated. Economic analyses were prepared. Preliminary data on operation and maintenance was recorded. The methodology and results of the study are contained in this report. 18 figs., 20 tabs.

  1. Autonomous vehicle platforms from modular robotic components

    NASA Astrophysics Data System (ADS)

    Schonlau, William J.

    2004-09-01

    A brief survey of current autonomous vehicle (AV) projects is presented with intent to find common infrastructure or subsystems that can be configured from commercially available modular robotic components, thereby providing developers with greatly reduced timelines and costs and encouraging focus on the selected problem domain. The Modular Manipulator System (MMS) robotic system, based on single degree of freedom rotary and linear modules, is introduced and some approaches to autonomous vehicle configuration and deployment are examined. The modules may be configured to provide articulated suspensions for very rugged terrain and fall recovery, articulated sensors and tooling plus a limited capacity for self repair and self reconfiguration. The MMS on-board visually programmed control software (Model Manager) supports experimentation with novel physical configurations and behavior algorithms via real-time 3D graphics for operations simulation and provides useful subsystems for vision, learning and planning to host intelligent behavior.

  2. Modular Architecture of a Non-Contact Pinch Actuation Micropump

    PubMed Central

    Chee, Pei Song; Arsat, Rashidah; Adam, Tijjani; Hashim, Uda; Rahim, Ruzairi Abdul; Leow, Pei Ling

    2012-01-01

    This paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB) as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA). The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments) and a nominal frequency range (0–80 Hz, with 10 Hz per step increments). The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz.

  3. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, G.F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a 0'' to 1'' transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  4. Modular high speed counter employing edge-triggered code

    DOEpatents

    Vanstraelen, Guy F.

    1993-06-29

    A high speed modular counter (100) utilizing a novel counting method in which the first bit changes with the frequency of the driving clock, and changes in the higher order bits are initiated one clock pulse after a "0" to "1" transition of the next lower order bit. This allows all carries to be known one clock period in advance of a bit change. The present counter is modular and utilizes two types of standard counter cells. A first counter cell determines the zero bit. The second counter cell determines any other higher order bit. Additional second counter cells are added to the counter to accommodate any count length without affecting speed.

  5. Standardized Modular Power Interfaces for Future Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard

    2015-01-01

    Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but

  6. iDriving (Intelligent Driving)

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore » in responses to actual driving conditions to improve fuel efficiency.« less

  7. Robotic hand with modular extensions

    SciTech Connect

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  8. Base drive circuit

    DOEpatents

    Lange, Arnold C.

    1995-01-01

    An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).

  9. Base drive circuit

    DOEpatents

    Lange, A.C.

    1995-04-04

    An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.

  10. Modular biometric system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  11. Development of a modularized seating system to actively manage interface pressure.

    PubMed

    Yu, Chung-Huang; Chou, Tung-Yu; Chen, Cheng-Huan; Chen, Poyin; Wang, Fu-Cheng

    2014-01-01

    Pressure ulcers can be a fatal complication. Many immobile wheelchair users face this threat. Current passive and active cushions do reduce the incidence of pressure ulcers and they have different merits. We proposed an active approach to combine their advantages which is based on the concept that the interface pressure can be changed with different supporting shapes. The purpose of this paper is to verify the proposed approach. With practical applications in mind, we have developed a modular system whose support surface is composed by height-adjustable support elements. Each four-element module was self-contained and composed of force sensors, position sensors, linear actuators, signal conditioners, driving circuits, and signal processors. The modules could be chained and assembled together easily to form different-sized support surfaces. Each support element took up a 3 cm × 3 cm supporting area. The displacement resolution was less than 0.1 mm and the force sensor error was less than 1% in the 2000 g range. Each support element of the system could provide 49 N pushing force (408 mmHg over the 3 cm × 3 cm area) at a speed of 2.36 mm/s. Several verification tests were performed to assess the whole system's feasibility. Further improvements and clinical applications were discussed. In conclusion, this modularized system is capable of actively managing interface pressure in real time. PMID:25098206

  12. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  13. Multimission modular spacecraft (MMS)

    NASA Technical Reports Server (NTRS)

    Falkenhayn, Edward, Jr.

    1988-01-01

    This paper discusses the design requirements for the low-cost standard spacecraft development which has come to be known as the Multimission Modular Spacecraft (MMS). The paper presents the wide range of launch configurations of the MMS users, the population of programs using the MMS, and the cost effectiveness of the MMS concept. The paper addresses the in-orbit serviceability of the design as demonstrated by the successful SMM repair, and the recent selection of MMS for the Explorer Platform, which features in-orbit payload exchanges.

  14. Versatile modular scaffolds

    NASA Technical Reports Server (NTRS)

    Kerley, J.

    1981-01-01

    Movable and fixed modular scaffolds can be tailored to most scaffolding needs by interconnecting only 4 basic structural elements: platforms, rails, vertical-support angles, and stiffener. Standard nuts and bolts are used to join elements, simplifying construction, and reducing costs. Scaffolds are rigid and can be made any length. They are stable on unlevel ground and can extend to well over 50 feet in height. Scaffolds allow for internal elevators and for wheels and air mounts so that same elements can be used for standing or movable scaffold.

  15. Drugged Driving

    MedlinePlus

    ... Infographics » Drugged Driving Drugged Driving Email Facebook Twitter Text Description of Infographic Top Right Figure : In 2009, ... crash than those who don't smoke. Bottom Text: Develop Social Strategies Offer to be a designated ...

  16. Impaired Driving

    MedlinePlus

    ... Risk Factors BAC Effects Prevention Additional Resources How big is the problem? In 2014, 9,967 people ... Driving: A Threat to Everyone (October 2011) Additional Data Drunk Driving State Data and Maps Motor Vehicle ...

  17. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    SciTech Connect

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  18. Modular robotic architecture

    NASA Astrophysics Data System (ADS)

    Smurlo, Richard P.; Laird, Robin T.

    1991-03-01

    The development of control architectures for mobile systems is typically a task undertaken with each new application. These architectures address different operational needs and tend to be difficult to adapt to more than the problem at hand. The development of a flexible and extendible control system with evolutionary growth potential for use on mobile robots will help alleviate these problems and if made widely available will promote standardization and cornpatibility among systems throughout the industry. The Modular Robotic Architecture (MRA) is a generic control systern that meets the above needs by providing developers with a standard set of software hardware tools that can be used to design modular robots (MODBOTs) with nearly unlimited growth potential. The MODBOT itself is a generic creature that must be customized by the developer for a particular application. The MRA facilitates customization of the MODBOT by providing sensor actuator and processing modules that can be configured in almost any manner as demanded by the application. The Mobile Security Robot (MOSER) is an instance of a MODBOT that is being developed using the MRA. Navigational Sonar Module RF Link Control Station Module hR Link Detection Module Near hR Proximi Sensor Module Fluxgate Compass and Rate Gyro Collision Avoidance Sonar Module Figure 1. Remote platform module configuration of the Mobile Security Robot (MOSER). Acoustical Detection Array Stereoscopic Pan and Tilt Module High Level Processing Module Mobile Base 566

  19. Preheating after modular inflation

    NASA Astrophysics Data System (ADS)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  20. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  1. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  2. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2016-11-01

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  3. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  4. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  5. Modular Finite Element Methods Library Version: 1.0

    2010-06-22

    MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.

  6. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  7. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  8. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  9. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  10. Modular Flooring System

    NASA Technical Reports Server (NTRS)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  11. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  12. Modular arctic structures system

    SciTech Connect

    Reusswig, G. H.

    1984-12-04

    A modular and floatable offshore exploration and production platform system for use in shallow arctic waters is disclosed. A concrete base member is floated to the exploration or production site, and ballated into a predredged cavity. The cavity and base are sized to provide a stable horizontal base 30 feet below the mean water/ice plane. An exploration or production platform having a massive steel base is floated to the site and ballasted into position on the base. Together, the platform, base and ballast provide a massive gravity structure that is capable of resisting large ice and wave forces that impinge on the structure. The steel platform has a sloping hourglass profile to deflect horizontal ice loads vertically, and convert the horizontal load to a vertical tensile stress, which assists in breaking the ice as it advances toward the structure.

  13. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  14. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  15. Modular stems in DDH.

    PubMed

    Benazzo, F; Cuzzocrea, F; Stroppa, S; Ravasi, F; Dalla Pria, P

    2007-01-01

    The Modulus (Lima-Lto) system has been created on the association of a conical stem and a modular neck in order to address the so called "difficult hip". Modularity can maximize the options for a correct reconstruction in a total hip replacement of the coxofemoral anatomy as well as biomechanics. Modulus should be used in CDH, primary hip arthritis, the sequelae of osteotomies and in each case in which we face a congenital or acquired hip deformity. The Modulus stem has been commonly utilised in association with the Delta cup (Lima-Lto) with the chance to use big diameter heads (32-36 mm) and ceramic on ceramic coupling. Modulus has been used in association with Delta cup since November 2002. 51 patients affected by CDH have been treated. Clinical and radiographic results can be considered very good. The average evaluation based on Merle D'Aubigné schedule is equal to 17.5 with a significant increase in the results with respect to the preoperatory score (with an average score equal to 10). In the light of the above, Modulus should be considered a valuable system to optimize the results of total hip replacement also in those more complex situations with a modified femoral morphology, allowing the restoration of a normal biomechanics in terms of off-set and anteversion with benefit in terms of stability and length of the implant as well as in terms of satisfaction of the patient as far as limb length and ROM are concerned. The association of Modulus with big diameter heads gives a higher guarantee in terms of duration of the implant and restoration of the functionality in young patients with a serious deformity and increased functional demands.

  16. Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    SciTech Connect

    Gakh, Andrei A; Burnett, Michael N; Trepalin, Sergei V.; Yarkov, Alexander V

    2011-01-01

    In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.

  17. Report on modular hydropower demonstration

    SciTech Connect

    Pelton, F.

    1988-09-01

    This report describes an Energy Authority project to demonstrate the use of modular small hydropower systems at two sites. The project demonstrated that 'off-the-shelf' components can be used to construct a functionally reliable, cost-effective hydropower system at a significant savings over custom-designed systems. A key feature of the modular system is the replacement of the conventional hydroelectric turbine with a pump operated in reverse. Also, the construction of a water-intake system in the dam is replaced with a siphon penstock. Further cost and time savings are gained from the use of a prefabricated powerhouse and automated control equipment. The project demonstrated that modular systems are an attractive option for sites with capacities from under 100 to 500 kilowatts. The modular concept is applicable at about 250 sites Statewide, with a combined capacity of up to 400 MW.

  18. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  19. The modularity of pollination networks

    PubMed Central

    Olesen, Jens M.; Bascompte, Jordi; Dupont, Yoko L.; Jordano, Pedro

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with <50 species were never modular. Both module number and size increased with species number. Each module includes one or a few species groups with convergent trait sets that may be considered as coevolutionary units. Species played different roles with respect to modularity. However, only 15% of all species were structurally important to their network. They were either hubs (i.e., highly linked species within their own module), connectors linking different modules, or both. If these key species go extinct, modules and networks may break apart and initiate cascades of extinction. Thus, species serving as hubs and connectors should receive high conservation priorities. PMID:18056808

  20. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  1. Modular Approach to Spintronics.

    PubMed

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-06-11

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics.

  2. Modular Approach to Spintronics

    PubMed Central

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  3. Fluid cooled vehicle drive module

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  4. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  5. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  6. Distracted Driving

    MedlinePlus

    ... combines all three types of distraction. 3 How big is the problem? Deaths In 2013, 3,154 ... European countries. More A CDC study analyzed 2011 data on distracted driving, including talking on a cell ...

  7. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  8. Designing linear systolic arrays

    SciTech Connect

    Kumar, V.K.P.; Tsai, Y.C. . Dept. of Electrical Engineering)

    1989-12-01

    The authors develop a simple mapping technique to design linear systolic arrays. The basic idea of the technique is to map the computations of a certain class of two-dimensional systolic arrays onto one-dimensional arrays. Using this technique, systolic algorithms are derived for problems such as matrix multiplication and transitive closure on linearly connected arrays of PEs with constant I/O bandwidth. Compared to known designs in the literature, the technique leads to modular systolic arrays with constant hardware in each PE, few control lines, lexicographic data input/output, and improved delay time. The unidirectional flow of control and data in this design assures implementation of the linear array in the known fault models of wafer scale integration.

  9. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  10. Modular assembly of optical nanocircuits

    NASA Astrophysics Data System (ADS)

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-01

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic ‘lumped’ circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  11. Modular assembly of optical nanocircuits.

    PubMed

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-29

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  12. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOEpatents

    Martin, H.L.; Williams, D.M.; Holt, W.E.

    1987-04-21

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive means and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive means. 12 figs.

  13. Modular Firewalls for Storage Areas

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Owens, L. J.

    1986-01-01

    Giant honeycomb structures assembled in modular units. Flammable materials stored in cells. Walls insulated with firebrick to prevent spread of fire among cells. Portable, modular barrier withstands heat of combustion for limited time and confines combustion products horizontally to prevent fire from spreading. Barrier absorbs heat energy by ablation and not meant to be reused. Designed to keep fires from spreading among segments of solid rocket propellant in storage, barrier erected between storage units of other flammable or explosive materials; tanks of petroleum or liquid natural gas. Barrier adequate for most industrial purposes.

  14. Evolution and the Modularity of Mindreading.

    ERIC Educational Resources Information Center

    Moore, Chris

    1996-01-01

    Reviews Baron-Cohen's study of autism and an explanatory theory called modularity of mindreading, which proposed a domain-specific modular psychological model based on evolutionary, developmental, psychopathological, and neurobiological considerations. Enumerates problems with the modularity approach and emphasized the evolution of domain general…

  15. Modularity in Cognition: Framing the Debate

    ERIC Educational Resources Information Center

    Barrett, H. Clark; Kurzban, Robert

    2006-01-01

    Modularity has been the subject of intense debate in the cognitive sciences for more than 2 decades. In some cases, misunderstandings have impeded conceptual progress. Here the authors identify arguments about modularity that either have been abandoned or were never held by proponents of modular views of the mind. The authors review arguments that…

  16. Induction in a Modular Learner.

    ERIC Educational Resources Information Center

    Carroll, Susanne E.

    2002-01-01

    Presents a theory of inductive learning--Autonomous Induction Theory--a form of induction that takes place within the autonomous and modular representational systems of the language faculty. Argues that Autonomous Induction Theory is constrained enough to be taken seriously as a plausible approach to explaining second language acquisition.…

  17. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  18. Teaching Creation: A Modular Approach

    ERIC Educational Resources Information Center

    Bosworth, David A.

    2007-01-01

    The present article describes a modular approach to teaching Genesis 1-3 that values depth over breadth even in an introductory class. The module allows students to learn about the text and its original context by orienting discussion around contemporary issues of practical concern. Specifically, the creation-evolution debates provide an…

  19. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  20. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  1. Modularity and stability in ecological communities

    PubMed Central

    Grilli, Jacopo; Rogers, Tim; Allesina, Stefano

    2016-01-01

    Networks composed of distinct, densely connected subsystems are called modular. In ecology, it has been posited that a modular organization of species interactions would benefit the dynamical stability of communities, even though evidence supporting this hypothesis is mixed. Here we study the effect of modularity on the local stability of ecological dynamical systems, by presenting new results in random matrix theory, which are obtained using a quaternionic parameterization of the cavity method. Results show that modularity can have moderate stabilizing effects for particular parameter choices, while anti-modularity can greatly destabilize ecological networks. PMID:27337386

  2. Quasispecies theory for evolution of modularity.

    PubMed

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  3. Quasispecies Theory for Evolution of Modularity

    PubMed Central

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent. PMID:25679649

  4. Modular hydrodam: concept definition study

    SciTech Connect

    Not Available

    1981-07-01

    The purpose of this investigation was to explore the potential for developing economical new ultra low-head (6 to 10 ft) sites using an innovative concept known as the Modular Hydrodam (MH). This concept combines the benefits of shop fabrication, installation of equipment in truck transportable, waterproof power modules, and prefabricated gate sections that can be located between the power modules. The size and weight of the power module permits it to be fully assembled and checked out in the manufacturer's shop. The module can then be broken down into four pieces and shipped by truck to the site. Once in place, concrete ballast will be added, as necessary, to prevent flotation. The following aspects were investigated: tubular and cross flow turbines; modularized components; the use of a cable support system for horizontal stability of the dam and powerhouse; and construction in the wet as well as in the dry.

  5. Modular industrial robots as the tool of process automation in robotized manufacturing cells

    NASA Astrophysics Data System (ADS)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Recently the number of designed modular machine was increased. The term modular machine is used to denote different types of machinery, equipment and production lines, which are created using modular elements. Modular could be both mechanic elements, and drives, as well as control systems. This method of machine design is more and more popular because it allows obtaining flexible and relatively cheap solutions. So it is worth to develop the concept of modularity in next areas of application. The advantages of modular solutions are: simplification of the structure, standardization of components, and faster assembly process of the complete machine Additional advantages, which is particularly important for manufacturers, are shorter manufacturing times, longer production series and reduced manufacturing costs. Modular designing is also the challenge for designers and the need for a new approach to the design process, to the starting process and to the exploitation process. The purpose for many manufacturers is the standardization of the components used for creating the finished products. This purpose could be realized by the application of standard modules which could be combined together in different ways to create the desired particular construction as much as possible in accordance with the order. This solution is for the producer more favorable than the construction of a large machine whose configuration must be matched to each individual order. In the ideal case each module has its own control system and the full functionality of the modular machine is obtained due to the mutual cooperation of all modules. Such a solution also requires the modular components which create the modular machine are equipped with interfaces compatible one with another to facilitate their communication. The individual components of the machine could be designed, manufactured and used independently and production management task could be divided into subtasks. They could be also

  6. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  7. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  8. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2013-02-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks.

  9. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2014-01-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

  10. Modularity in protein structures: study on all-alpha proteins.

    PubMed

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  11. Modular ulnar head decoupling force: case report.

    PubMed

    Naidu, Sanjiv H; Radin, Alex

    2009-01-01

    Cobalt-chrome modular distal ulnar head replacement arthroplasty is a surgical option to restore stability to the distal radioulnar joint rendered unstable by hemi-resection arthroplasty or a total resection arthroplasty. However, the revision of dislocated modular cobalt-chrome ulnar head implants may pose an important intraoperative challenge. The Morse-taper disassembly force of modular ulnar head implants is not available in the current published literature. We present a case in which tremendous difficulty was encountered while revising a dislocated modular cobalt-chrome distal ulnar head implant. The mean Morse-taper disassembly force of the retrieved modular cobalt-chrome implant was 2958 N +/- 1272. At nearly 4.5 times the average body weight, the modular ulnar head Morse-taper disassembly strength presented a formidable force to overcome intraoperatively.

  12. Modular workcells: modern methods for laboratory automation.

    PubMed

    Felder, R A

    1998-12-01

    Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.

  13. Modular microrobot for swimming in heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Meshkati; Fu, Henry; Kim, Minjun; Drexel University Team; University of Nevada, Reno Team

    2015-11-01

    One of the difficulties in navigating in vivo is to overcome many types of environments. This includes blood vessels of different diameters, fluids with different mechanical properties, and physical barriers. Inspired by conventional modular robotics, we demonstrate modular microrobotics using magnetic particles as the modular units to change size and shape through docking and undocking. Much like the vast variety of microorganisms navigating many different bio-environments, modular microswimmers have the ability to dynamically adapt different environments by reconfiguring the swimmers' physical characteristics. We model the docking as magnetic assembly and undocking mechanisms as deformation by hydrodynamic forces. We characterize the swimming capability of the modular microswimmer with different size and shapes. Finally, we demonstrate modular microrobotics by assembling a three-bead microswimmer into a nine-bead microswimmer, and then disassemble it into several independently swimming microswimmers..

  14. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  15. Reconfigurable driving platforms in CAVE

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Luciano, Cristian; Banerjee, Pat; Knight, James J.

    2003-04-01

    This paper introduces the design of a reconfigurable driving simulator platform for a category of heavy ground vehicles while complying with the ISO 6682 specifications. Basically the steering wheel, pedal, and levers are designed using a linkage to be reconfigurable within a certain zone. Alternatively the platform can be thought of as having a range of configurations such that one is able to put a seat, steering wheel, gas pedal, or levers anywhere within a zone defined by ISO 6682. This platform is intended to be the first such design while fulfilling most of the requirements deemed important at this stage. The design is modular an flexible and can be enhanced in future as more data is collected through studies in actually usng the platform in a VR environment.

  16. Modular stellarator fusion reactor concept

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Krakowski, R. A.

    1981-08-01

    A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an 1 = 2 system with a plasma aspect ratio of 11. The physical basis of the design point is described together with supporting magnetics, coil-force, and stress computations.

  17. Vehicle transfer gear and drive line brake mechanism

    SciTech Connect

    Richards, D.L.; Windish, W.E.

    1986-03-25

    This patent describes a vehicle transfer gear and drive line brake mechanism including a depending gear transfer train and a drive line brake assembly for respectively propelling and stopping movement of a vehicle. The gear transfer train has an output gear connected to an output shaft disposed on a lower axis and the drive line brake assembly is connected to the output shaft and disposed on the lower axis. The improvement described here consists of: housing means for defining an enclosed compartment containing the gear transfer train and the drive line brake assembly in juxtaposed relation and a common lubrication fluid. The housing means includes a main case defining an opening on the lower axis. The drive line brake assembly includes a brake body releasably secured to the case in closing relationship to the opening and annular plates and discs, the drive line brake assembly being modularized and being removable with the brake body from the output shaft independent of the output gear.

  18. Algorithms to detect multiprotein modularity conserved during evolution.

    PubMed

    Hodgkinson, Luqman; Karp, Richard M

    2012-01-01

    Detecting essential multiprotein modules that change infrequently during evolution is a challenging algorithmic task that is important for understanding the structure, function, and evolution of the biological cell. In this paper, we define a measure of modularity for interactomes and present a linear-time algorithm, Produles, for detecting multiprotein modularity conserved during evolution that improves on the running time of previous algorithms for related problems and offers desirable theoretical guarantees. We present a biologically motivated graph theoretic set of evaluation measures complementary to previous evaluation measures, demonstrate that Produles exhibits good performance by all measures, and describe certain recurrent anomalies in the performance of previous algorithms that are not detected by previous measures. Consideration of the newly defined measures and algorithm performance on these measures leads to useful insights on the nature of interactomics data and the goals of previous and current algorithms. Through randomization experiments, we demonstrate that conserved modularity is a defining characteristic of interactomes. Computational experiments on current experimentally derived interactomes for Homo sapiens and Drosophila melanogaster, combining results across algorithms, show that nearly 10 percent of current interactome proteins participate in multiprotein modules with good evidence in the protein interaction data of being conserved between human and Drosophila.

  19. Modular and Orthogonal Synthesis of Hybrid Polymers and Networks

    PubMed Central

    Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao

    2015-01-01

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255

  20. Portable and modularized fluorometer based on optical fiber

    NASA Astrophysics Data System (ADS)

    Yue, WeiWei; Zhang, Lei; Guo, ZhenYa; Jiang, ShouZhen; Bai, ChengJie

    2015-02-01

    A portable and modularized fluorometer based on optical fiber was proposed in this work. The fluorometer included a light emitter diode (LED) light source module (LSM), a sample cell module (SCM), an optical-electrical converter module (OCM) and a signal process module (SAM). The LEDs in LSM were driven by a constant current source to provide stable exciting light with different wavelength. The OCM included a modularized optical filter and used a photomultiplier tube (PMT) to detect fluorescence signal. The SCM was used to locate sample cuvette and could be connected by optical fibers with the LSM and OCM. Via modularized design, the LSM and OCM could both selected and replaced based on different fluorescence dyes. In order to improve the detecting dynamic range of the fluorometer, the SAM could control the light intensity of LED source in LSM, to control the gain of PMT in OCM, and particularly, four channel signal acquisition circuits with different gain were constructed to collect fluorescence signal simultaneously. Fluorescein isothiocyanate (FITC) was selected as sample to test the fluorometer. The fluorometer has shown a high sensitivity with FITC concentration of 10ng/mL and presented a good linearity from 10 ng/mL to 10 μg/mL.

  1. Evaporation mitigation by floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. M.; Peirson, W. L.

    2016-05-01

    Prolonged periods of drought and consequent evaporation from open water bodies in arid parts of Australia continue to be a threat to water availability for agricultural production. Over many parts of Australia, the annual average evaporation exceeds the annual precipitation by more than 5 times. Given its significance, it is surprising that no evaporation mitigation technique has gained widespread adoption to date. High capital and maintenance costs of manufactured products are a significant barrier to implementation. The use of directly recycled clean plastic containers as floating modular devices to mitigate evaporation has been investigated for the first time. A six-month trial at an arid zone site in Australia of this potential cost effective solution has been undertaken. The experiment was performed using clean conventional drinking water bottles as floating modules on the open water surface of 240-L tanks with three varying degrees of covering (nil, 34% and 68%). A systematic reduction in evaporation is demonstrated during the whole study period that is approximately linearly proportional to the covered surface. These results provide a potential foundation for robust evaporation mitigation with the prospect of implementing a cost-optimal design.

  2. Learning modular policies for robotics.

    PubMed

    Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

    2014-01-01

    A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

  3. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  4. Optimal multi-community network modularity for information diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong

    2016-02-01

    Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.

  5. Effects of Modularity, Certification Session and Re-Sits on Examination Performance

    ERIC Educational Resources Information Center

    Vidal Rodeiro, Carmen L.; Nadas, Rita

    2012-01-01

    General Certificates of Secondary Education, known as GCSEs, are organised into modules which can be assessed at the end of the course (linear route) or at different points throughout the course (modular route). This research investigates students' performance in English and mathematics in each assessment route and the effects of certification…

  6. Modular Construction: The Wave of the Future.

    ERIC Educational Resources Information Center

    Savage, Chuck

    1989-01-01

    Modular construction of school buildings offers speed of construction, with 100 percent contractor responsibility for the completed structures. Under negotiated terms, modular projects can be purchased outright or through long-term leasing arrangements that provide ownership at the end of the lease period. (MLF)

  7. Modular Building Institute 2000 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. The articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Elementary K-8 Modular Courtyard"; (2) "School District #33, Chilliwack, BC"; (3) "New Elementary School for Briarwood, NY"; (4) "Addition to Queens Intermediate…

  8. A Modular Laser Graphics Projection System

    NASA Astrophysics Data System (ADS)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  9. A modular data system for Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Frost, W. O.; Emens, F. H.

    1982-01-01

    This overview describes a flexible system of electronic and mechanical building blocks with characteristics and capabilities suitable for construction of a flight-capable experiment data management system. The initial space application of this modular system, called the Spacelab Payload System Modular Electronics (SPSME), is the data system for the Nuclear Radiation Monitor (NRM) on Spacelab Mission 2.

  10. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability. PMID:16197673

  11. A modular approach toward extremely large apertures

    NASA Astrophysics Data System (ADS)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  12. The relative efficiency of modular and non-modular networks of different size.

    PubMed

    Tosh, Colin R; McNally, Luke

    2015-03-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: 'small' and 'large', and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity.

  13. Mechanically Assisted Taper Corrosion in Modular TKA

    PubMed Central

    Arnholt, Christina; MacDonald, Daniel W.; Tohfafarosh, Mariya; Gilbert, Jeremy L.; Rimnac, Clare M.; Kurtz, Steven M.; Klein, Gregg; Mont, Michael A.; Parvizi, Javad; Cates, Harold E.; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Matthew

    2014-01-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. 198 modular components were revised after 3.9±4.2y (range: 0.0–17.5y). Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Flexural rigidity, stem diameter, alloy coupling, patient weight, age and implantation time were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score≥2) was observed in 94/101 of the tapers on the modular femoral components and 90/97 of the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications of fretting and corrosion in TKA remain unclear. PMID:24996586

  14. Mechanically assisted taper corrosion in modular TKA.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Tohfafarosh, Mariya; Gilbert, Jeremy L; Rimnac, Clare M; Kurtz, Steven M; Klein, Gregg; Mont, Michael A; Parvizi, Javad; Cates, Harold E; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Mattheuw

    2014-09-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. One hundred ninety-eight modular components were revised after 3.9±4.2 years of implantation. Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Design features and patient information were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score ≥2) was observed in 94/101 tapers on the modular femoral components and 90/97 tapers on the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications remain unclear.

  15. Development of a Direct Drive Permanent Magnet Generator for Small Wind Turbines

    SciTech Connect

    Chertok, Allan; Hablanian, David; McTaggart, Paul; DOE Project Officer - Keith Bennett

    2004-11-16

    In this program, TIAX performed the conceptual design and analysis of an innovative, modular, direct-drive permanent magnet generator (PMG) for use in small wind turbines that range in power rating from 25 kW to 100 kW. TIAX adapted an approach that has been successfully demonstrated in high volume consumer products such as direct-drive washing machines and portable generators. An electromagnetic model was created and the modular PMG design was compared to an illustrative non-modular design. The resulting projections show that the modular design can achieve significant reductions in size, weight, and manufacturing cost without compromising efficiency. Reducing generator size and weight can also lower the size and weight of other wind turbine components and hence their manufacturing cost.

  16. Anti- (conjugate) linearity

    NASA Astrophysics Data System (ADS)

    Uhlmann, Armin

    2016-03-01

    This is an introduction to antilinear operators. In following Wigner the terminus antilinear is used as it is standard in Physics. Mathematicians prefer to say conjugate linear. By restricting to finite-dimensional complex-linear spaces, the exposition becomes elementary in the functional analytic sense. Nevertheless it shows the amazing differences to the linear case. Basics of antilinearity is explained in sects. 2, 3, 4, 7 and in sect. 1.2: Spectrum, canonical Hermitian form, antilinear rank one and two operators, the Hermitian adjoint, classification of antilinear normal operators, (skew) conjugations, involutions, and acq-lines, the antilinear counterparts of 1-parameter operator groups. Applications include the representation of the Lagrangian Grassmannian by conjugations, its covering by acq-lines. As well as results on equivalence relations. After remembering elementary Tomita-Takesaki theory, antilinear maps, associated to a vector of a two-partite quantum system, are defined. By allowing to write modular objects as twisted products of pairs of them, they open some new ways to express EPR and teleportation tasks. The appendix presents a look onto the rich structure of antilinear operator spaces.

  17. Design of a reconfigurable modular manipulator system

    NASA Technical Reports Server (NTRS)

    Schmitz, D.; Kanade, T.

    1987-01-01

    Using manipulators with a fixed configuration for specific tasks is appropriate when the task requirements are known beforehand. However, in less predictable situations, such as an outdoor construction site or aboard a space station, a manipulator system requires a wide range of capabilities, probably beyond the limitations of a single, fixed-configuration manipulator. To fulfill this need, researchers have been working on a Reconfigurable Modular Manipulator System (RMMS). Researchers have designed and are constructing a prototype RMMS. The prototype currently consists of two joint modules and four link modules. The joints utilize a conventional harmonic drive and torque motor actuator, with a small servo amplifier included in the assembly. A brushless resolver is used to sense the joint position and velocity. For coupling the modules together, a standard electrical connector and V-band clamps for mechanical connection are used, although more sophisticated designs are under way for future versions. The joint design yields an output torque to 50 ft-lbf at joint speeds up to 1 radian/second. The resolver and associated electronics have resolutions of 0.0001 radians, and absolute accuracies of plus or minus 0.001 radians. Manipulators configured from these prototype modules will have maximum reaches in the 0.5 to 2 meter range. The real-time RMMS controller consists of a Motorola 68020 single-board computer which will perform real time servo control and path planning of the manipulator. This single board computer communicates via shared memory with a SUN3 workstation, which serves as a software development system and robot programming environment. Researchers have designed a bus communication network to provide multiplexed communication between the joint modules and the computer controller. The bus supports identification of modules, sensing of joint states, and commands to the joint actuator. This network has sufficient bandwidth to allow servo sampling rates in

  18. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  19. Small Modular Reactors: Institutional Assessment

    SciTech Connect

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  20. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence. PMID:23545837

  1. Integrated Modular Engine technology needs

    NASA Astrophysics Data System (ADS)

    Harmon, Timothy J.; Briley, Gary; Pauckert, Ron; Vilja, John

    1993-06-01

    An Integrated Modular Engine (IME) system conceptual design has been developed for meeting the upper stage propulsion requirements. This design was used to identify key technical areas for further development and demonstration. A number of factors are favorable for introducing advanced technologies: new materials are available, controls and health monitoring are vastly more capable, and new fabrication methods are coming on-line. Furthermore, recent innovative integrated propulsion system architecture designs leverage the benefits throughout the stage. All needed technologies are compatible with near-term initial launch capability around the year 2000. These technologies do not require extensive, time-consuming, or expensive development programs to bring these technologies to fruition. This paper describes those technologies that need to be developed to support an IME development program which would result in an affordable propulsion system applicable to a wide range of missions, i.e., upper stage, space-based, transfer, lunar lander, lunar ascent, and Mars lander propulsion systems.

  2. Analytical Spectroscopy Using Modular Systems

    NASA Astrophysics Data System (ADS)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  3. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence.

  4. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  5. Metal band drives in spacecraft mechanisms

    NASA Astrophysics Data System (ADS)

    Maus, Daryl

    1993-05-01

    Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.

  6. Metal band drives in spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Maus, Daryl

    1993-01-01

    Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.

  7. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  8. Modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program

    SciTech Connect

    Moskowitz, B.S.

    2000-02-01

    This paper describes the modular, object-oriented redesign of a large-scale Monte Carlo neutron transport program. This effort represents a complete 'white sheet of paper' rewrite of the code. In this paper, the motivation driving this project, the design objectives for the new version of the program, and the design choices and their consequences will be discussed. The design itself will also be described, including the important subsystems as well as the key classes within those subsystems.

  9. Size reduction of complex networks preserving modularity

    NASA Astrophysics Data System (ADS)

    Arenas, A.; Duch, J.; Fernández, A.; Gómez, S.

    2007-06-01

    The ubiquity of modular structure in real-world complex networks is the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the non-deterministic polynomial-time hard (NP-hard) class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining their modularity. This size reduction allows use of heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the extremal optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  10. Size reduction of complex networks preserving modularity

    SciTech Connect

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  11. Rational design of efficient modular cells.

    PubMed

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  12. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1992-01-01

    A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.

  13. Safe driving for teens

    MedlinePlus

    Driving and teenagers; Teens and safe driving; Automobile safety - teenage drivers ... Make a Commitment to Safety Teens also need to commit to being safe and responsible drivers in order to improve the odds in their favor. Reckless driving ...

  14. A Modular Approach to Redundant Robot Control

    SciTech Connect

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be `passive control laws`, i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust.

  15. Generalized epidemic process on modular networks.

    PubMed

    Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2014-05-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.

  16. The gravity duals of modular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-01

    In this work, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-like to the causal completion of the region.

  17. A parallel and modular deformable cell Car-Parrinello code

    NASA Astrophysics Data System (ADS)

    Cavazzoni, Carlo; Chiarotti, Guido L.

    1999-12-01

    We have developed a modular parallel code implementing the Car-Parrinello [Phys. Rev. Lett. 55 (1985) 2471] algorithm including the variable cell dynamics [Europhys. Lett. 36 (1994) 345; J. Phys. Chem. Solids 56 (1995) 510]. Our code is written in Fortran 90, and makes use of some new programming concepts like encapsulation, data abstraction and data hiding. The code has a multi-layer hierarchical structure with tree like dependences among modules. The modules include not only the variables but also the methods acting on them, in an object oriented fashion. The modular structure allows easier code maintenance, develop and debugging procedures, and is suitable for a developer team. The layer structure permits high portability. The code displays an almost linear speed-up in a wide range of number of processors independently of the architecture. Super-linear speed up is obtained with a "smart" Fast Fourier Transform (FFT) that uses the available memory on the single node (increasing for a fixed problem with the number of processing elements) as temporary buffer to store wave function transforms. This code has been used to simulate water and ammonia at giant planet conditions for systems as large as 64 molecules for ˜50 ps.

  18. Linear Colliders

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akira; Yokoya, Kaoru

    2015-02-01

    An overview of linear collider programs is given. The history and technical challenges are described and the pioneering electron-positron linear collider, the SLC, is first introduced. For future energy frontier linear collider projects, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) are introduced and their technical features are discussed. The ILC is based on superconducting RF technology and the CLIC is based on two-beam acceleration technology. The ILC collaboration completed the Technical Design Report in 2013, and has come to the stage of "Design to Reality." The CLIC collaboration published the Conceptual Design Report in 2012, and the key technology demonstration is in progress. The prospects for further advanced acceleration technology are briefly discussed for possible long-term future linear colliders.

  19. Linear Colliders

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akira; Yokoya, Kaoru

    An overview of linear collider programs is given. The history and technical challenges are described and the pioneering electron-positron linear collider, the SLC, is first introduced. For future energy frontier linear collider projects, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) are introduced and their technical features are discussed. The ILC is based on superconducting RF technology and the CLIC is based on two-beam acceleration technology. The ILC collaboration completed the Technical Design Report in 2013, and has come to the stage of "Design to Reality." The CLIC collaboration published the Conceptual Design Report in 2012, and the key technology demonstration is in progress. The prospects for further advanced acceleration technology are briefly discussed for possible long-term future linear colliders.

  20. Potential Application of Electrical Signature Analysis Methods for Monitoring Small Modular Reactor Components

    SciTech Connect

    Damiano, Brian; Tucker Jr, Raymond W; Haynes, Howard D

    2010-01-01

    This paper will describe the technical basis behind ESA and why we consider it a viable SMR condition monitoring technology. Concepts are presented of how ESA could be applied to monitor two candidate small modular reactor components: the main coolant pumps and the control rod drives. We believe the general health of these two components can be monitored and trended over time, using ESA methods. Our optimism is based on over two decades of ESA development and testing on a wide variety of components and systems, many of which have similar operational features to the main coolant pumps and control rod drives.

  1. Modular Buildings: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    School Planning & Management, 2001

    2001-01-01

    Highlights the history of the modular classroom industry and emergence of the Modular Building Institute. Analyzes the differences between temporary portable classrooms and permanent modular additions. Also examines the possible influence of modular classrooms on future facility design and the ways that educational facilities officials are saving…

  2. Modular optimization code package: MOZAIK

    NASA Astrophysics Data System (ADS)

    Bekar, Kursat B.

    This dissertation addresses the development of a modular optimization code package, MOZAIK, for geometric shape optimization problems in nuclear engineering applications. MOZAIK's first mission, determining the optimal shape of the D2O moderator tank for the current and new beam tube configurations for the Penn State Breazeale Reactor's (PSBR) beam port facility, is used to demonstrate its capabilities and test its performance. MOZAIK was designed as a modular optimization sequence including three primary independent modules: the initializer, the physics and the optimizer, each having a specific task. By using fixed interface blocks among the modules, the code attains its two most important characteristics: generic form and modularity. The benefit of this modular structure is that the contents of the modules can be switched depending on the requirements of accuracy, computational efficiency, or compatibility with the other modules. Oak Ridge National Laboratory's discrete ordinates transport code TORT was selected as the transport solver in the physics module of MOZAIK, and two different optimizers, Min-max and Genetic Algorithms (GA), were implemented in the optimizer module of the code package. A distributed memory parallelism was also applied to MOZAIK via MPI (Message Passing Interface) to execute the physics module concurrently on a number of processors for various states in the same search. Moreover, dynamic scheduling was enabled to enhance load balance among the processors while running MOZAIK's physics module thus improving the parallel speedup and efficiency. In this way, the total computation time consumed by the physics module is reduced by a factor close to M, where M is the number of processors. This capability also encourages the use of MOZAIK for shape optimization problems in nuclear applications because many traditional codes related to radiation transport do not have parallel execution capability. A set of computational models based on the

  3. A modular BLSS simulation model. [Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    The coordination of material flows in earth's biosphere is largely made possible by the buffering effect of huge material reservoirs. Without similarly-sized buffers, a bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on earth. A related problem in BLSS design is providing an interface between the various life-support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processor or the plants themselves, drive transient responses in the model system, allowing examination of the effectiveness of the system reservoirs as buffers. The results from simulations of this sort will help to determine control strategies and BLSS design requirements. An evolved version of this model could be used as an interactive control aid in a future BLSS.

  4. A Modular, IGBT Driven, Ignitron Switched, Optically Controlled Power Supply

    NASA Astrophysics Data System (ADS)

    Carroll, Evan; von der Linden, Jens; You, Setthivoine

    2013-10-01

    An experiment to investigate the dynamics of canonical flux tubes at the University of Washington uses two high energy pulsed power supplies to generate and sustain the plasma discharge. A modular 240 μF , 12 kV DC capacitor based power supply, discharged by ignitron, has been developed specifically for this application. Design considerations include minimizing inductance, rapid switching, fast rise times, and electrically isolated control. An optically coupled front panel and fast IGBT ignitron drive circuit, sequenced manually or by software, control the charge and discharge of the power supply. A complete, sequenced charge/discharge has been successfully tested with a dummy load, producing a peak current of 100 kA and a rise time of 25 μs . This work was sponsored in part by the US DOE Grant DE-SC0010340.

  5. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  6. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  7. Modular digital holographic fringe data processing system

    NASA Technical Reports Server (NTRS)

    Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.

    1985-01-01

    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.

  8. Modular solar-heating system - design package

    NASA Technical Reports Server (NTRS)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  9. Linear Collisions

    ERIC Educational Resources Information Center

    Walkiewicz, T. A.; Newby, N. D., Jr.

    1972-01-01

    A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)

  10. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-01-01

    Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.

  11. Extended Driving Impairs Nocturnal Driving Performances

    PubMed Central

    Sagaspe, Patricia; Taillard, Jacques; Åkerstedt, Torbjorn; Bayon, Virginie; Espié, Stéphane; Chaumet, Guillaume; Bioulac, Bernard; Philip, Pierre

    2008-01-01

    Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3–5am, 1–5am and 9pm–5am) on open highway. Fourteen young healthy men (mean age [±SD] = 23.4 [±1.7] years) participated Inappropriate line crossings (ILC) in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3–5am) driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05) for the intermediate (1–5am) driving session and by 4.0 (CI, 1.7 to 9.4; P<.001) for the long (9pm–5am) driving session. Compared to the reference session (9–10pm), the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001), 15.4 (CI, 4.6 to 51.5; P<.001) and 24.3 (CI, 7.4 to 79.5; P<.001), respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05) and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01). At night, extended driving impairs driving performances and therefore should be limited. PMID:18941525

  12. Development of a building block design of modular photovoltaic concentrator array fields

    SciTech Connect

    Carmichael, D.C.; Alexander, G.; Noel, G.T.; Scurlock, L.D.; Huss, W.R.; Stickford, G.H.

    1983-08-01

    To reduce the balance-of-system (BOS) costs and site-specific design costs for photovoltaic concentrator array fields, a modular Building Block design has been developed for installing array fields of each of two available concentrator collectors. The array-field subsystems and requirements incorporated in the design analyses include site preparation, foundations, electrical wiring, grounding, lightning protection, electromagnetic interference provisions, and tracking and controls. The Building Block designs developed minimize these array-field BOS costs and serve as standardized units to be used in multiples to construct array fields of various sizes. The detailed drawings and construction specifications prepared for the designs require only minimal design modification and cost for adaption to a specific site and application. The two concentrator collectors for which the modular array-field designs were developed are the linear-focus Fresnel-lens array manufactured by E-Systems, Inc., and the point-focus Fresnel-lens array manufactured by Martin Marietta Aerospace Corporation. Both designs are two-axis tracking and passively cooled. The developed Building Block designs are immediately applicable and reduce the array-field BOS costs and site-specific design costs to a fraction of those experienced in previous installations. The estimated array-field BOS costs (in 1982 dollars) using these modular designs are $0.78/W for the modular field based on the E-Systems array and $1.18/W for the modular field based on the Martin-Marietta array.

  13. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-02-01

    Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

  14. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  15. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  16. Test stations: a modular approach

    NASA Astrophysics Data System (ADS)

    Capone, Benjamin R.; Remillard, Paul; Everett, Jonathan E.

    1996-06-01

    Recent requests for test stations to characterize and evaluate thermal and visible imaging systems have shown remarkable similarities. They contain the usual request for target patterns for the measurement of MRTD, NETD, SiTF for the infrared thermal imager and similar patterns for measuring CTF and SNR for the visible imager. The combined systems almost invariably include some type of laser designator/rangefinder in the total package requiring the need for LOS registration among the various individual units. Similarities also exist in that the requests are for large collimator apertures and focal lengths for projecting the desired signals into the unit under test apertures. Diversified Optical Products, Inc. has developed and is continually improving test station hardware and software to provide modularity in design and versatility in operation while satisfying individual test requirements and maintaining low cost. A high emissivity, DSP controlled, high slew rate, low cost, blackbody source with excellent uniformity and stability has been produced to function as the driver for thermal image target projectors. Several types of sources for producing energy in the visible portion of the spectrum have been evaluated. Software for selection of targets, sources, focus and auto- collimation has been developed and tested.

  17. Coaxial Redundant Drives

    NASA Technical Reports Server (NTRS)

    Brissette, R.

    1983-01-01

    Harmonic drives allow redundancy and high out put torque in small package. If main drive fails, standby drive takes over and produces torque along same axis as main drive. Uses include power units in robot for internal pipeline inspection, manipulators in deep submersible probes or other applications in which redundancy protects against costly failures.

  18. Solar array drive system

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Sturman, J. C.; Stanhouse, R. W.

    1976-01-01

    A solar array drive system consisting of a solar array drive mechanism and the corresponding solar array drive electronics is being developed. The principal feature of the solar array drive mechanism is its bidirectional capability which enables its use in mechanical redundancy. The solar array drive system is of a widely applicable design. This configuration will be tested to determine its acceptability for generic mission sets. Foremost of the testing to be performed is the testing for extended duration.

  19. Modular Homogeneous Chromophore-Catalyst Assemblies.

    PubMed

    Mulfort, Karen L; Utschig, Lisa M

    2016-05-17

    Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate that molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule-nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of

  20. LINEAR ACCELERATOR

    DOEpatents

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  1. New directions in linear accelerators

    SciTech Connect

    Jameson, R.A.

    1984-01-01

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures.

  2. A linear magnetic motor and generator

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  3. Teleoperated Modular Robots for Lunar Operations

    NASA Technical Reports Server (NTRS)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot

  4. Local modularity for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Tao; Zhang, Yan; Hu, Ke; Li, Jian-Ming; Xu, Xiao-Ke; Liu, Cui-Cui; Chen, Shi

    2016-02-01

    Community detection is a topic of interest in the study of complex networks such as the protein-protein interaction networks and metabolic networks. In recent years, various methods were proposed to detect community structures of the networks. Here, a kind of local modularity with tunable parameter is derived from the Newman-Girvan modularity by a special self-loop strategy that depends on the community division of the networks. By the self-loop strategy, one can easily control the definition of modularity, and the resulting modularity can be optimized by using the existing modularity optimization algorithms. The local modularity is used as the target function for community detection, and a self-consistent method is proposed for the optimization of the local modularity. We analyze the behaviors of the local modularity and show the validity of the local modularity in detecting community structures on various networks.

  5. Modular Manufacturing Simulator: Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

  6. Modular Rake of Pitot Probes

    NASA Technical Reports Server (NTRS)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  7. Additional Drive Circuitry for Piezoelectric Screw Motors

    NASA Technical Reports Server (NTRS)

    Smythe, Robert; Palmer, Dean; Gursel, Yekta; Reder, Leonard; Savedra, Raymond

    2004-01-01

    Modules of additional drive circuitry have been developed to enhance the functionality of a family of commercially available positioning motors (Picomotor . or equivalent) that provide linear motion controllable, in principle, to within increments .30 nm. A motor of this type includes a piezoelectric actuator that turns a screw. Unlike traditional piezoelectrically actuated mechanisms, a motor of this type does not rely on the piezoelectric transducer to hold position: the screw does not turn except when the drive signal is applied to the actuator.

  8. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  9. Direct-drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  10. Precision magnetic suspension linear bearing

    NASA Technical Reports Server (NTRS)

    Trumper, David L.; Queen, Michael A.

    1992-01-01

    We have shown the design and analyzed the electromechanics of a linear motor suitable for independently controlling two suspension degrees of freedom. This motor, at least on paper, meets the requirements for driving an X-Y stage of 10 Kg mass with about 4 m/sq sec acceleration, with travel of several hundred millimeters in X and Y, and with reasonable power dissipation. A conceptual design for such a stage is presented. The theoretical feasibility of linear and planar bearings using single or multiple magnetic suspension linear motors is demonstrated.

  11. A new modular multichamber plasma enhanced chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Madan, A.; Rava, P.; Schropp, R. E. I.; von Roedern, B.

    1993-06-01

    The present work reports on a new modular UHV multichamber PECVD system with characteristics which prevent both the incorporation of residual impurities and cross contamination between different layers. A wide range of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) materials have been produced and single junction pin solar cells with an efficiency greater than 10% have been readily obtained with little optimization. The system contains three UHV modular process zones (MPZ's); the MPZ's and a load lock chamber are located around a central isolation and transfer zone which contains the transport mechanism consisting of an arm with radial and linear movement. This configuration allows for introduction of the substrate into the MPZ's in any sequence so that any type of multilayer device can be produced. The interelectrode distance in the MPZ's can be adjusted between 1 and 5 cm. This has been found to be an important parameter in the optimisation of the deposition rate and of the uniformity. The multichamber concept also allows individually optimized deposition temperatures and interelectrode distances for the various layers. The system installed in Utrecht will be employed for further optimization of single junction solar cells and for research and development of stable a-Si:H tandem cells.

  12. A modularized pulse forming line using glass-ceramic slabs.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable. PMID:22938320

  13. A modularized pulse forming line using glass-ceramic slabs.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable.

  14. Computing Linear Mathematical Models Of Aircraft

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Antoniewicz, Robert F.; Krambeer, Keith D.

    1991-01-01

    Derivation and Definition of Linear Aircraft Model (LINEAR) computer program provides user with powerful, and flexible, standard, documented, and verified software tool for linearization of mathematical models of aerodynamics of aircraft. Intended for use in software tool to drive linear analysis of stability and design of control laws for aircraft. Capable of both extracting such linearized engine effects as net thrust, torque, and gyroscopic effects, and including these effects in linear model of system. Designed to provide easy selection of state, control, and observation variables used in particular model. Also provides flexibility of allowing alternate formulations of both state and observation equations. Written in FORTRAN.

  15. A Modular PMAD System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1998-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  16. Modularity and community structure in networks.

    PubMed

    Newman, M E J

    2006-06-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as "modularity" over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.

  17. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design. PMID:25890504

  18. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design.

  19. An Integrated Modular Avionics Development Environment

    NASA Astrophysics Data System (ADS)

    Schoofs, T.; Santos, S.; Tatibana, C.; Anjos, J.; Rufino, J.; Windsor, J.

    2009-05-01

    The ARINC 653 standard has taken a leading role within the aeronautical industry in the development of safety-critical systems based upon the Integrated Modular Avionics (IMA) concept. The related cost savings in reduced integration, verification and validation effort has raised interest in the European space industry for developing a spacecraft IMA approach and for the definition of an ARINC 653-for-Space software framework. As part of this process, it is necessary to establish an effective way to develop, test and analyse on-board applications without having access to the final IMA target platform for all engineers. Target platforms are usually extremely expensive considering hardware and software prices as well as training costs. This paper describes the architecture of an Integrated Modular Avionics Development Environment (IMADE) based on the Linux Operating System and the ARINC 653 simulator for Modular On-Board Applications that was developed by Skysoft Portugal, S.A. In cooperation with ESA, 2007-2008.

  20. Modular categories and 3-manifold invariants

    SciTech Connect

    Tureav, V.G. )

    1992-06-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds.

  1. Modularization Technology in Power Plant Construction

    SciTech Connect

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-07-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  2. Context modularity of human altruism.

    PubMed

    Alexander, Marcus; Christia, Fotini

    2011-12-01

    Whereas altruism drives the evolution of human cooperation, ethno-religious diversity has been considered to obstruct it, leading to poverty, corruption, and war. We argue that current research has failed to properly account for the institutional environment and how it affects the role diversity plays. The emergence of thriving, diverse communities throughout human history suggests that diversity does not always lead to cooperation breakdown. We conducted experiments in Mostar, Bosnia-Herzegovina with Catholic Croats and Muslim Bosniaks at a critical historic moment in the city's postwar history. Using a public goods game, we found that the ability to sanction is key to achieving cooperation in ethno-religiously diverse groups, but that sanctions succeed only in integrated institutional environments and fail in segregated ones. Hence, we show experimentally for the first time in a real-life setting that institutions of integration can unleash human altruism and restore cooperation in the presence of diversity.

  3. A Modular Re-configurable Rover System

    NASA Astrophysics Data System (ADS)

    Bouloubasis, A.; McKee, G.; Active Robotics Lab

    In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability [1]. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs) - modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system. To date, each rover system design is very much task driven for example, the scenario of cooperative transportation of extended payloads [2], comprises two rovers each equipped with a manipulator dedicated to the task [3]. The MTR approach focuses mostly on modularity and upgradeability presenting at the same time a fair amount of internal re-configurability for the sake of rough terrain stability. The rover itself does not carry any scientific instruments or tools. To carry out the scenario mentioned above, the MTR would have to locate and pick-up a TP with the associated manipulator. After the completion of the task the TP could be put away to a storage location enabling the rover to utilize a different Pack. The rover will not only offer mobility to these modules, but also use them as tools, transforming its role and functionality. The advantage of this approach is that instead of sending a large number of rovers to perform a variety of tasks, a smaller number of MTRs could be deployed with a large number of SPs/TPs, offering multiples of the functionality at a reduced payload. Two SPs or TPs (or a combination of) can be carried and deployed. One of the key elements in the design of the four wheeled rover, lies within its suspension system. It comprises a linear actuator located within each leg and also an active differential linking the two shoulders. This novel

  4. Driving and neurodegenerative diseases.

    PubMed

    Uc, Ergun Y; Rizzo, Matthew

    2008-09-01

    The proportion of elderly people in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet neither medical diagnosis nor age alone is reliable enough to predict driver safety or crashes or to revoke the driving privileges of these individuals. Driving research utilizes tools such as questionnaires about driving habits and history, driving simulators, standardized road tests utilizing instrumented vehicles, and state driving records. Research challenges include outlining the evolution of driving safety, understanding the mechanisms of driving impairment, and developing a reliable and efficient standardized test battery for prediction of driver safety in neurodegenerative disorders. This information will enable healthcare providers to advise their patients with neurodegenerative disorders with more certainty, affect policy, and help develop rehabilitative measures for driving. PMID:18713573

  5. Dementia and driving

    MedlinePlus

    ... has dementia , deciding when they can no longer drive may be difficult. They may react in different ... that the person may not be able to drive safely, such as: Forgetting recent events Mood swings ...

  6. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  7. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  8. SLAPP: A systolic linear algebra parallel processor

    SciTech Connect

    Drake, B.L.; Luk, F.T.; Speiser, J.M.; Symanski, J.J.

    1987-07-01

    Systolic array computer architectures provide a means for fast computation of the linear algebra algorithms that form the building blocks of many signal-processing algorithms, facilitating their real-time computation. For applications to signal processing, the systolic array operates on matrices, an inherently parallel view of the data, using numerical linear algebra algorithms that have been suitably parallelized to efficiently utilize the available hardware. This article describes work currently underway at the Naval Ocean Systems Center, San Diego, California, to build a two-dimensional systolic array, SLAPP, demonstrating efficient and modular parallelization of key matric computations for real-time signal- and image-processing problems.

  9. Successes and failures in modular genetic engineering.

    PubMed

    Kittleson, Joshua T; Wu, Gabriel C; Anderson, J Christopher

    2012-08-01

    Synthetic biology relies on engineering concepts such as abstraction, standardization, and decoupling to develop systems that address environmental, clinical, and industrial needs. Recent advances in applying modular design to system development have enabled creation of increasingly complex systems. However, several challenges to module and system development remain, including syntactic errors, semantic errors, parameter mismatches, contextual sensitivity, noise and evolution, and load and stress. To combat these challenges, researchers should develop a framework for describing and reasoning about biological information, design systems with modularity in mind, and investigate how to predictively describe the diverse sources and consequences of metabolic load and stress.

  10. Liouville field, modular forms and elliptic genera

    NASA Astrophysics Data System (ADS)

    Eguchi, Tohru; Sugawara, Yuji; Taormina, Anne

    2007-03-01

    When we describe non-compact or singular Calabi-Yau manifolds by CFT, continuous as well as discrete representations appear in the theory. These representations mix in an intricate way under the modular transformations. In this article, we propose a method of combining discrete and continuous representations so that the resulting combinations have a simpler modular behavior and can be used as conformal blocks of the theory. We compute elliptic genera of ALE spaces and obtain results which agree with those suggested from the decompactification of K3 surface. Consistency of our approach is assured by some remarkable identity of theta functions whose proof, by D. Zagier, is included in an appendix.

  11. Sequential Dependencies in Driving

    ERIC Educational Resources Information Center

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  12. Retrieval analysis of 240 metal-on-metal hip components, comparing modular total hip replacement with hip resurfacing.

    PubMed

    Matthies, A; Underwood, R; Cann, P; Ilo, K; Nawaz, Z; Skinner, J; Hart, A J

    2011-03-01

    This study compared component wear rates and pre-revision blood metal ions levels in two groups of failed metal-on-metal hip arthroplasties: hip resurfacing and modular total hip replacement (THR). There was no significant difference in the median rate of linear wear between the groups for both acetabular (p = 0.4633) and femoral (p = 0.0872) components. There was also no significant difference in the median linear wear rates when failed hip resurfacing and modular THR hips of the same type (ASR and Birmingham hip resurfacing (BHR)) were compared. Unlike other studies of well-functioning hips, there was no significant difference in pre-revision blood metal ion levels between hip resurfacing and modular THR. Edge loading was common in both groups, but more common in the resurfacing group (67%) than in the modular group (57%). However, this was not significant (p = 0.3479). We attribute this difference to retention of the neck in resurfacing of the hip, leading to impingement-type edge loading. This was supported by visual evidence of impingement on the femur. These findings show that failed metal-on-metal hip resurfacing and modular THRs have similar component wear rates and are both associated with raised pre-revision blood levels of metal ions. PMID:21357950

  13. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  14. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2011-10-01 2011-10-01 false Independent modular smoke detecting units....

  15. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2012-10-01 2012-10-01 false Independent modular smoke detecting units....

  16. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2013-10-01 2013-10-01 false Independent modular smoke detecting units....

  17. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2014-10-01 2014-10-01 false Independent modular smoke detecting units....

  18. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2010-10-01 2010-10-01 false Independent modular smoke detecting units....

  19. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  20. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  1. Modular Building Institute 2001 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "An Architect's Perspective: Convincing a Skeptic" (Robert M. Iamello); (2) "66 Portables for San Mateo High" (Steven Williams); (3) "Case Study: Charter Schools"…

  2. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  3. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2016-01-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  4. A robust and modular synthesis of ynamides.

    PubMed

    Mansfield, Steven J; Campbell, Craig D; Jones, Michael W; Anderson, Edward A

    2015-02-25

    A flexible, modular ynamide synthesis is reported that uses trichloroethene as an inexpensive two carbon synthon. A wide range of amides and electrophiles can be converted to the corresponding ynamides, importantly including acyclic carbamates, hindered amides, and aryl amides. This method thus overcomes many of the limitations of other approaches to this useful functionality.

  5. A Modular Communicative Syllabus (2): The Project.

    ERIC Educational Resources Information Center

    Estaire, Sheila

    1982-01-01

    Describes two core syllabi, a communicative one and a grammatical one, and a modular syllabus for elementary ESL courses, with hints for introducing out-of-sequence items. Explains how the syllabi have been designed, what they offer to teachers, and how they have affected first-year teaching as a whole. (Author/MES)

  6. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  7. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  8. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  9. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  10. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  11. Modular Instruction in Higher Education: A Review.

    ERIC Educational Resources Information Center

    Goldschmid, Barbara; Goldschmid, Marcel L.

    This paper reviews the principles, implementation, management, formats, problems, and research in modular instruction. A module is defined as a self-contained, independent unit of a planned series of learning activities designed to help the student accomplish certain well-defined objectives. The learner is able to proceed at his own rate, choose…

  12. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect

    CUNNINGHAM, L.T.

    1999-09-27

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

  13. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  14. Consciousness in SLA: A Modular Perspective

    ERIC Educational Resources Information Center

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  15. What Symbionts Teach us about Modularity

    PubMed Central

    Porcar, Manuel; Latorre, Amparo; Moya, Andrés

    2013-01-01

    The main goal of Synthetic Biology (SB) is to apply engineering principles to biotechnology in order to make life easier to engineer. These engineering principles include modularity: decoupling of complex systems into smaller, orthogonal sub-systems that can be used in a range of different applications. The successful use of modules in engineering is expected to be reproduced in synthetic biological systems. But the difficulties experienced up to date with SB approaches question the short-term feasibility of designing life. Considering the “engineerable” nature of life, here we discuss the existence of modularity in natural living systems, particularly in symbiotic interactions, and compare the behavior of such systems, with those of engineered modules. We conclude that not only is modularity present but it is also common among living structures, and that symbioses are a new example of module-like sub-systems having high similarity with modularly designed ones. However, we also detect and stress fundamental differences between man-made and biological modules. Both similarities and differences should be taken into account in order to adapt SB design to biological laws. PMID:25023877

  16. Modular Building Institute 1999 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Many articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Hightstown High School"; (2) "St. Pius X Parish, Vancouver BC"; (3) "Forrest Street Elementary School"; (4) "Kingman Academy of Learning"; (5) "Women Christian…

  17. Modular Building Institute 2002 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Re-Educating Schools" (Chuck Savage); (2) "Tax-Exempt Financing for Public Schools" (John Kennedy); (3) "Help Us Rebuild America" (Michael Roman); (4) "Case…

  18. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

  19. New Modularization Framework for the FAST Wind Turbine CAE Tool: Preprint

    SciTech Connect

    Jonkman, J.

    2013-01-01

    NREL has recently put considerable effort into improving the overall modularity of its FAST wind turbine aero-hydro-servo-elastic tool to (1) improve the ability to read, implement, and maintain source code; (2) increase module sharing and shared code development across the wind community; (3) improve numerical performance and robustness; and (4) greatly enhance flexibility and expandability to enable further developments of functionality without the need to recode established modules. The new FAST modularization framework supports module-independent inputs, outputs, states, and parameters; states in continuous-time, discrete-time, and in constraint form; loose and tight coupling; independent time and spatial discretizations; time marching, operating-point determination, and linearization; data encapsulation; dynamic allocation; and save/retrieve capability. This paper explains the features of the new FAST modularization framework, as well as the concepts and mathematical background needed to understand and apply it correctly. It is envisioned that the new modularization framework will transform FAST into a powerful, robust, and flexible wind turbine modeling tool with a large number of developers and a range of modeling fidelities across the aerodynamic, hydrodynamic, servo-dynamic, and structural-dynamic components.

  20. A nanoscale linear-to-linear motion converter of graphene.

    PubMed

    Dai, Chunchun; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2016-08-14

    Motion conversion plays an irreplaceable role in a variety of machinery. Although many macroscopic motion converters have been widely used, it remains a challenge to convert motion at the nanoscale. Here we propose a nanoscale linear-to-linear motion converter, made of a flake-substrate system of graphene, which can convert the out-of-plane motion of the substrate into the in-plane motion of the flake. The curvature gradient induced van der Waals potential gradient between the flake and the substrate provides the driving force to achieve motion conversion. The proposed motion converter may have general implications for the design of nanomachinery and nanosensors.

  1. LINEAR ACCELERATOR

    DOEpatents

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  2. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Universal power transistor base drive control unit

    DOEpatents

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  4. Universal power transistor base drive control unit

    DOEpatents

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  5. PRIMUS: autonomous driving robot for military applications

    NASA Astrophysics Data System (ADS)

    Schwartz, Ingo

    2000-07-01

    kilometers in open terrain and on unpaved roads and performed a reconnaissance operation with the built-in RSTA- sensors. PRIMUS-C meets the requirements to drive autonomously and teleoperated in open terrain and on roads. The realized functions can be transfered to any vehicle and adapted to different mission requirements. This means that PRIMUS-C is a universal, modular and vehicle-independent platform for different military applications.

  6. Lectures on magnetohydrodynamical drives

    NASA Astrophysics Data System (ADS)

    Loigom, Villem

    The paper deals with nonconventional types of electrical machines and drives - magnetohydrodynamical (MHD) machines and drives. In cardinal it is based on the research conducted with participation of the author in Tallinn Technical University at the Institute of Electrical Drives and Power Electronics, where the use of magnetohydrodynamical motors and drives in the metallurgical and casting industries have been studied for a long time. Major research interests include the qualities and applications of the induction MHD-drives for set in the motion (pumping, turning, dosing, mixing, etc.) non-ferrous molten metals like Al, Mg, Sn, Pb, Na, K, and their alloys. The first part of the paper describes induction MHD motors and their electrohydraulical qualities. In the second part energy conversion problems are described. Also, on the basis of the analogy between electromechanical and electrohydraulical phenomenas, static and dynamic qualities of MHD drives with induction MHD machines are discussed.

  7. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by

  8. Vehicle drive module having improved EMI shielding

    DOEpatents

    Beihoff, Bruce C.; Kehl, Dennis L.; Gettelfinger, Lee A.; Kaishian, Steven C.; Phillips, Mark G.; Radosevich, Lawrence D.

    2006-11-28

    EMI shielding in an electric vehicle drive is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  9. Vehicle drive module having improved cooling configuration

    DOEpatents

    Radosevich, Lawrence D.; Meyer, Andreas A.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2007-02-13

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. Vehicle drive module having improved terminal design

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  11. Superluminal warp drive

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.

    2007-09-01

    In this Letter we consider a warp drive spacetime resulting from that suggested by Alcubierre when the spaceship can only travel faster than light. Restricting to the two dimensions that retains most of the physics, we derive the thermodynamic properties of the warp drive and show that the temperature of the spaceship rises up as its apparent velocity increases. We also find that the warp drive spacetime can be exhibited in a manifestly cosmological form.

  12. Dual excitation multiphase electrostatic drive

    SciTech Connect

    Niino, Toshiki; Higuchi, Toshiro |; Egawa, Saku

    1995-12-31

    A novel electrostatic drive technology named Dual Excitation Multiphase Electrostatic Drive (DEMED) was presented. A basic DEMED consisted of two plastic films in which 3-phase parallel electrodes were embedded and was driven by a 3-phase ac excitation to the electrodes. Static characteristics of DEMED were calculated and tested and the results agreed very well. Three prototype motors of DEMED were fabricated using commercially available technique. The first prototype consisted of a single slider and stator and generated a linear motion with a slider`s motion range of about 5mm. It weighed 7g and generated a power of 1.6W and a thrust force of 4.4N. The second prototype consisted of 50 layer stack of linear motors, summing their outputs. It weighed 3.6kg and generated a propulsive force of 310N being powered with boosted commercial 3-phase electricity. The third prototype consisted of a rotor and a stator in which electrodes were arranged radially and generated rotational motion. The maximum power of 36mW was generated by the prototype weighing only 260mg for its rotor and stator. From the results of the numerical calculation, a practical design methodology for the motor was determined. An optimal design for a motor employing currently available material and fabrication techniques is provided as an example. Analyses predict that force generation over the interfacial area between the slider and stator of this motor would be 3,900N/m{sup 2}.

  13. Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan

    2015-06-01

    The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow

  14. Diabetes and driving.

    PubMed

    Inkster, B; Frier, B M

    2013-09-01

    The principal safety concern for driving for people treated with insulin or insulin secretagogues is hypoglycaemia, which impairs driving performance. Other complications, such as those causing visual impairment and peripheral neuropathy, are also relevant to medical fitness to drive. Case control studies have suggested that drivers with diabetes pose a modestly increased but acceptable and measurable risk of motor vehicle accidents compared to non-diabetic drivers, but many studies are limited and of poor quality. Factors which have been shown to increase driving risk include previous episodes of severe hypoglycaemia, previous hypoglycaemia while driving, strict glycaemic control (lower HbA1c) and absence of blood glucose monitoring before driving. Impaired awareness of hypoglycaemia may be counteracted by frequent blood glucose testing. The European Union Third directive on driving (2006) has necessitated changes in statutory regulations for driving licences for people with diabetes in all European States, including the UK. Stricter criteria have been introduced for Group 1 vehicle licences while those for Group 2 licences have been relaxed. Insulin-treated drivers can now apply to drive Group 2 vehicles, but in the UK must meet very strict criteria and be assessed by an independent specialist to be issued with a 1-year licence. PMID:23350766

  15. A high-fidelity harmonic drive model.

    SciTech Connect

    Preissner, C.; Royston, T. J.; Shu, D.

    2012-01-01

    In this paper, a new model of the harmonic drive transmission is presented. The purpose of this work is to better understand the transmission hysteresis behavior while constructing a new type of comprehensive harmonic drive model. The four dominant aspects of harmonic drive behavior - nonlinear viscous friction, nonlinear stiffness, hysteresis, and kinematic error - are all included in the model. The harmonic drive is taken to be a black box, and a dynamometer is used to observe the input/output relations of the transmission. This phenomenological approach does not require any specific knowledge of the internal kinematics. In a novel application, the Maxwell resistive-capacitor hysteresis model is applied to the harmonic drive. In this model, sets of linear stiffness elements in series with Coulomb friction elements are arranged in parallel to capture the hysteresis behavior of the transmission. The causal hysteresis model is combined with nonlinear viscous friction and spectral kinematic error models to accurately represent the harmonic drive behavior. Empirical measurements are presented to quantify all four aspects of the transmission behavior. These measurements motivate the formulation of the complete model. Simulation results are then compared to additional measurements of the harmonic drive performance.

  16. Focus drive mechanism for the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Schuster, Ludwig E.

    1988-01-01

    The mechanical design of the compact and robust focus drive apparatus developed for the IUE's scientific instrumentation is based on a novel planetary drive that converts the angular increments of a permanent magnet stepping motor into simultaneous linear displacements of three ball screws supporting the secondary mirror. Significant torque margins are thus produced while yielding exceptionally smooth and reliable operation. Attention is given to mechanical drive materials-selection criteria.

  17. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  18. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  19. Alcohol policies and impaired driving in the United States: Effects of driving- vs. drinking-oriented policies

    PubMed Central

    Xuan, Ziming; Blanchette, Jason G.; Nelson, Toben F.; Heeren, Timothy C.; Nguyen, Thien H.; Naimi, Timothy S.

    2015-01-01

    Aims To test the hypotheses that stronger policy environments are associated with less impaired driving and that driving-oriented and drinking-oriented policy subgroups are independently associated with impaired driving. Design State-level data on 29 policies in 50 states from 2001–2009 were used as lagged exposures in generalized linear regression models to predict self-reported impaired driving. Setting Fifty United States and Washington, D.C. Participants A total of 1,292,245 adults (≥ 18 years old) biennially from 2002–2010. Measures Alcohol Policy Scale scores representing the alcohol policy environment were created by summing policies weighted by their efficacy and degree of implementation by state-year. Past-30-day alcohol-impaired driving from 2002–2010 was obtained from the Behavioral Risk Factor Surveillance System surveys. Findings Higher Alcohol Policy Scale scores are strongly associated with lower state-level prevalence and individual-level risk of impaired driving. After accounting for driving-oriented policies, drinking-oriented policies had a robust independent association with reduced likelihood of impaired driving. Reduced binge drinking mediates the relationship between drinking-oriented policies and impaired driving, and driving-oriented policies reduce the likelihood of impaired driving among binge drinkers. Conclusions Efforts to reduce alcohol-impaired driving should focus on reducing excessive drinking in addition to preventing driving among those who are impaired. PMID:26925185

  20. Introduction to the role of modular symmetries in graphene and other two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Lütken, C. A.

    2015-07-01

    An introduction to the theory of modular symmetries in two-dimensional materials, and its application to 'relativistic' group IV materials like graphene, silicene, germanene and stanene, is given. Universal properties of the magneto-electric Hall effect are extracted by projecting experimental transport data directly onto the phase diagram. When families of data depending on the dominant scale parameter (usually temperature) are available, we can extract flow lines that chart the geometry of the phase diagram, including the location of quantum critical points and phase boundaries connecting these. The universal data are used to identify emergent modular symmetries, which are infinite discrete groups of fractional linear (Möbius) transformations. Such symmetries are extremely rigid, and therefore spawn a host of sharp predictions that are easy to falsify, but so far they have failed to fail. The unique topology of the Fermi surface in the graphene family gives a robust gapless mode with linear dispersion (relativistic Dirac cones) that shifts the spectrum of Landau levels that appear when the material is placed in a strong magnetic field. The modular analysis can be extended to this case, and where reliable data are available, there appears to be agreement. A convincing case for the 'relativistic' quantum Hall group is hampered by the paucity of fractional quantum Hall data, the absence of scaling data and the crossover between different scaling regimes. This is likely to change in the near future, as scaling data for graphene are just now becoming available.

  1. Reading Text While Driving

    PubMed Central

    Horrey, William J.; Hoffman, Joshua D.

    2015-01-01

    Objective In this study, we investigated how drivers adapt secondary-task initiation and time-sharing behavior when faced with fluctuating driving demands. Background Reading text while driving is particularly detrimental; however, in real-world driving, drivers actively decide when to perform the task. Method In a test track experiment, participants were free to decide when to read messages while driving along a straight road consisting of an area with increased driving demands (demand zone) followed by an area with low demands. A message was made available shortly before the vehicle entered the demand zone. We manipulated the type of driving demands (baseline, narrow lane, pace clock, combined), message format (no message, paragraph, parsed), and the distance from the demand zone when the message was available (near, far). Results In all conditions, drivers started reading messages (drivers’ first glance to the display) before entering or before leaving the demand zone but tended to wait longer when faced with increased driving demands. While reading messages, drivers looked more or less off road, depending on types of driving demands. Conclusions For task initiation, drivers avoid transitions from low to high demands; however, they are not discouraged when driving demands are already elevated. Drivers adjust time-sharing behavior according to driving demands while performing secondary tasks. Nonetheless, such adjustment may be less effective when total demands are high. Application This study helps us to understand a driver’s role as an active controller in the context of distracted driving and provides insights for developing distraction interventions. PMID:25850162

  2. Proceedings of the international conference on MAGLEV and linear drives

    SciTech Connect

    Not Available

    1986-01-01

    This book presents the papers given at a conference on levitated trains used in rapid transit systems. Topics considered at the conference included urban and regional applications, European systems, magnetically suspended high speed transport systems, the design of induction motors, operational safety consideration, electrodynamics, dynamic interactions between propulsion and suspension systems, power supplies, and superconducting magnets.

  3. How does the modular organization of entorhinal grid cells develop?

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen

    2014-01-01

    The entorhinal-hippocampal system plays a crucial role in spatial cognition and navigation. Since the discovery of grid cells in layer II of medial entorhinal cortex (MEC), several types of models have been proposed to explain their development and operation; namely, continuous attractor network models, oscillatory interference models, and self-organizing map (SOM) models. Recent experiments revealing the in vivo intracellular signatures of grid cells (Domnisoru et al., 2013; Schmidt-Heiber and Hausser, 2013), the primarily inhibitory recurrent connectivity of grid cells (Couey et al., 2013; Pastoll et al., 2013), and the topographic organization of grid cells within anatomically overlapping modules of multiple spatial scales along the dorsoventral axis of MEC (Stensola et al., 2012) provide strong constraints and challenges to existing grid cell models. This article provides a computational explanation for how MEC cells can emerge through learning with grid cell properties in modular structures. Within this SOM model, grid cells with different rates of temporal integration learn modular properties with different spatial scales. Model grid cells learn in response to inputs from multiple scales of directionally-selective stripe cells (Krupic et al., 2012; Mhatre et al., 2012) that perform path integration of the linear velocities that are experienced during navigation. Slower rates of grid cell temporal integration support learned associations with stripe cells of larger scales. The explanatory and predictive capabilities of the three types of grid cell models are comparatively analyzed in light of recent data to illustrate how the SOM model overcomes problems that other types of models have not yet handled. PMID:24917799

  4. Modularity and community structure in networks

    PubMed Central

    Newman, M. E. J.

    2006-01-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as “modularity” over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets. PMID:16723398

  5. On Fusion Algebras and Modular Matrices

    NASA Astrophysics Data System (ADS)

    Gannon, T.; Walton, M. A.

    We consider the fusion algebras arising in e.g. Wess-Zumino-Witten conformal field theories, affine Kac-Moody algebras at positive integer level, and quantum groups at roots of unity. Using properties of the modular matrix S, we find small sets of primary fields (equivalently, sets of highest weights) which can be identified with the variables of a polynomial realization of the Ar fusion algebra at level k. We prove that for many choices of rank r and level k, the number of these variables is the minimum possible, and we conjecture that it is in fact minimal for most r and k. We also find new, systematic sources of zeros in the modular matrix S. In addition, we obtain a formula relating the entries of S at fixed points, to entries of S at smaller ranks and levels. Finally, we identify the number fields generated over the rationals by the entries of S, and by the fusion (Verlinde) eigenvalues.

  6. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  7. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  8. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John W.; Day, John (Technical Monitor)

    2002-01-01

    The NASA Small Explorer (SMEX) missions have typically had three years between mission definition and launch. This short schedule has posed significant challenges with respect to solar array design and procurement. Typically, the solar panel geometry is frozen prior to going out with a procurement. However, with the SMEX schedule, it has been virtually impossible to freeze the geometry in time to avoid scheduling problems with integrating the solar panels to the spacecraft. A modular solar array architecture was developed to alleviate this problem. This approach involves procuring sufficient modules for multiple missions and assembling the modules onto a solar array framework that is unique to each mission. The modular approach removes the solar array from the critical path of the SMEX integration and testing schedule. It also reduces the cost per unit area of the solar arrays and facilitates the inclusion of experiments involving new solar cell or panel technologies in the SMEX missions.

  9. A modular approach to adaptive structures.

    PubMed

    Pagitz, Markus; Pagitz, Manuel; Hühne, Christian

    2014-01-01

    A remarkable property of nastic, shape changing plants is their complete fusion between actuators and structure. This is achieved by combining a large number of cells whose geometry, internal pressures and material properties are optimized for a given set of target shapes and stiffness requirements. An advantage of such a fusion is that cell walls are prestressed by cell pressures which increases, decreases the overall structural stiffness, weight. Inspired by the nastic movement of plants, Pagitz et al (2012 Bioinspir. Biomim. 7) published a novel concept for pressure actuated cellular structures. This article extends previous work by introducing a modular approach to adaptive structures. An algorithm that breaks down any continuous target shapes into a small number of standardized modules is presented. Furthermore it is shown how cytoskeletons within each cell enhance the properties of adaptive modules. An adaptive passenger seat and an aircrafts leading, trailing edge is used to demonstrate the potential of a modular approach. PMID:25289521

  10. Versatile microrobotics using simple modular subunits

    PubMed Central

    Cheang, U Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-01-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size. PMID:27464852

  11. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  12. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    PubMed

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  13. CosmoSIS: Modular cosmological parameter estimation

    SciTech Connect

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis

  14. CosmoSIS: Modular cosmological parameter estimation

    DOE PAGES

    Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.

    2015-06-09

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less

  15. Versatile microrobotics using simple modular subunits

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Farshad; Kim, Hoyeon; Lee, Kyoungwoo; Fu, Henry Chien; Kim, Min Jun

    2016-07-01

    The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

  16. Maass Forms and Quantum Modular Forms

    NASA Astrophysics Data System (ADS)

    Rolen, Larry

    This thesis describes several new results in the theory of harmonic Maass forms and related objects. Maass forms have recently led to a flood of applications throughout number theory and combinatorics in recent years, especially following their development by the work of Bruinier and Funke the modern understanding Ramanujan's mock theta functions due to Zwegers. The first of three main theorems discussed in this thesis concerns the integrality properties of singular moduli. These are well-known to be algebraic integers, and they play a beautiful role in complex multiplication and explicit class field theory for imaginary quadratic fields. One can also study "singular moduli" for special non-holomorphic functions, which are algebraic but are not necessarily algebraic integers. Here we will explain the phenomenon of integrality properties and provide a sharp bound on denominators of symmetric functions in singular moduli. The second main theme of the thesis concerns Zagier's recent definition of a quantum modular form. Since their definition in 2010 by Zagier, quantum modular forms have been connected to numerous different topics such as strongly unimodal sequences, ranks, cranks, and asymptotics for mock theta functions. Motivated by Zagier's example of the quantum modularity of Kontsevich's "strange" function F(q), we revisit work of Andrews, Jimenez-Urroz, and Ono to construct a natural vector-valued quantum modular form whose components. The final chapter of this thesis is devoted to a study of asymptotics of mock theta functions near roots of unity. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. The theory of mock theta functions has been brought to fruition using the framework of harmonic Maass forms, thanks to Zwegers. Despite this understanding, little attention has been given to Ramanujan's original definition. Here we prove that Ramanujan's examples do indeed satisfy his

  17. Modular test facility for HTS insert coils

    SciTech Connect

    Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2009-10-01

    The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

  18. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  19. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  20. lazar: a modular predictive toxicology framework

    PubMed Central

    Maunz, Andreas; Gütlein, Martin; Rautenberg, Micha; Vorgrimmler, David; Gebele, Denis; Helma, Christoph

    2013-01-01

    lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology. Similar to the read across procedure in toxicological risk assessment, lazar creates local QSAR (quantitative structure–activity relationship) models for each compound to be predicted. Model developers can choose between a large variety of algorithms for descriptor calculation and selection, chemical similarity indices, and model building. This paper presents a high level description of the lazar framework and discusses the performance of example classification and regression models. PMID:23761761

  1. FORTRAN Extensions for Modular Parallel Processing

    1996-01-12

    FORTRAN M is a small set of extensions to FORTRAN that supports a modular approach to the construction of sequential and parallel programs. FORTRAN M programs use channels to plug together processes which may be written in FORTRAN M or FORTRAN 77. Processes communicate by sending and receiving messages on channels. Channels and processes can be created dynamically, but programs remain deterministic unless specialized nondeterministic constructs are used.

  2. Breaking it down, using modular services to improve the NOAA Earth Information System (NEIS)

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Smith, J. S.; Joyce, J.; Hackathorn, E. J.

    2015-12-01

    The NOAA Earth Information System (NEIS) developed by NOAA's Earth System Research Laboratory (ESRL) is a framework providing real-time high performance data discovery, access, and visualization. Along with a ESRL's unique visualization client, TerraViz, this framework provides seamless visualization and integration of data across time and space regardless of data size, physical location, or data format. An enabling technology is the services behind the scenes. The NEIS team has continued research into improving the asynchronous, event driven architecture which supports and drives the performance of the framework. Services are continually evaluated and broken down into smaller, more modular, self contained components. The benefits have been numerous. Through this effort the NEIS team has improved many aspects of the overall framework including performance, fault tolerance, testing coverage, scalability, reliability, and agility. This modular service approach provides the capability to monitor and pinpoint bottlenecks within the framework. Depending on the impact, the service can either be improved or scaled up to meet the requirements. Additionally, the modular nature reduces coupling between various components of the framework allowing individual services to be upgraded without taking down the entire system, decreasing the overall time to respond and fix to problems. This talk will focus on our approach to developing these services to support the NEIS framework and TerraViz, along with discussion on findings, challenges, and future research.

  3. Ocular disease and driving.

    PubMed

    Wood, Joanne M; Black, Alex A

    2016-09-01

    As the driving population ages, the number of drivers with visual impairment resulting from ocular disease will increase given the age-related prevalence of ocular disease. The increase in visual impairment in the driving population has a number of implications for driving outcomes. This review summarises current research regarding the impact of common ocular diseases on driving ability and safety, with particular focus on cataract, glaucoma, age-related macular degeneration, hemianopia and diabetic retinopathy. The evidence considered includes self-reported driving outcomes, driving performance (on-road and simulator-based) and various motor vehicle crash indices. Collectively, this review demonstrates that driving ability and safety are negatively affected by ocular disease; however, further research is needed in this area. Older drivers with ocular disease need to be aware of the negative consequences of their ocular condition and in the case where treatment options are available, encouraged to seek these earlier for optimum driving safety and quality of life benefits. PMID:27156178

  4. Electric vehicles: Driving range

    NASA Astrophysics Data System (ADS)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  5. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  6. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  7. RAMS (Risk Analysis - Modular System) methodology

    SciTech Connect

    Stenner, R.D.; Strenge, D.L.; Buck, J.W.

    1996-10-01

    The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

  8. MACOP modular architecture with control primitives.

    PubMed

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot.

  9. Topological Strings And (Almost) Modular Forms

    SciTech Connect

    Aganagic, Mina; Bouchard, Vincent; Klemm, Albrecht

    2007-05-04

    The B-model topological string theory on a Calabi-Yau threefold X has a symmetry group {Lambda}, generated by monodromies of the periods of X. This acts on the topological string wave function in a natural way, governed by the quantum mechanics of the phase space H{sup 3}(X). We show that, depending on the choice of polarization, the genus g topological string amplitude is either a holomorphic quasi-modular form or an almost holomorphic modular form of weight 0 under {Lambda}. Moreover, at each genus, certain combinations of genus g amplitudes are both modular and holomorphic. We illustrate this for the local Calabi-Yau manifolds giving rise to Seiberg-Witten gauge theories in four dimensions and local IP{sub 2} and IP{sub 1} x IP{sub 1}. As a byproduct, we also obtain a simple way of relating the topological string amplitudes near different points in the moduli space, which we use to give predictions for Gromov-Witten invariants of the orbifold C{sub 3}/ZZ{sub 3}.

  10. Design of traction drives

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Zaretsky, E. V.

    1985-01-01

    Traction drives are among the simplest of all speed-changing mechanisms. Because of their simplicity and their ability to smoothly and continuously adjust speed, they are excellent choices for many drive system applications. They have been used in industrial service for more than 100 years. Today's traction drives have power capacities which rival the best gear and belt drives due to modern traction fluids and highly fatigue-resistant bearing steels. This report summarizes methods to analyze and size traction drives. Lubrication principles, contact kinematics, stress, fatigue life, and performance prediction methods are presented. The effects of the lubricant's traction characteristics on life and power loss are discussed. An example problem is given which illustrates the effects of spin on power loss. Loading mechanism design and the design of nonlubricated friction wheels and rings are also treated.

  11. The Emergence of Modularity in Biological Systems

    PubMed Central

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2015-01-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks. There once were two watchmakers, named Hora and Tempus, who manufactured very fine watches. Both of them were highly regarded, and the phones in their workshops rang frequently — new customers were constantly calling them. However, Hora prospered, while Tempus became poorer and poorer and finally lost his shop. What was the reason? The watches the men made consisted of about 1,000 parts each. Tempus had so constructed his that if he had one partly assembled and had to put it down — to answer the phone say— it immediately fell to pieces and had to be reassembled from the elements. The better the customers liked his watches, the more they phoned him, the more difficult it became for him to find enough uninterrupted time to finish a watch. The watches that Hora made were no less complex than those of Tempus. But he had designed them so that he could put together subassemblies of about ten elements each. Ten of these subassemblies, again, could be put together into a larger subassembly; and a system of ten of the latter sub

  12. Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

  13. Fast wave current drive system design for DIII-D

    SciTech Connect

    deGrassie, J.S.; Callis, R.; Lin-Liu, Y.R.; Moeller, C..; Petty, C.C.; Phelps, D.R.; Pinsker, R.I.; Remsen, D.; Baity, F.W.; Hoffman, D.J.; Taylor, D.J.; Arnold, W.; Martin, S.

    1992-09-01

    DIII-D has a major effort underway to develop the physics and technology of fast wave electron heating and current drive in conjunction with electron cyclotron heating. The present system consists of a four strap antenna driven by one 2 MW transmitter in the 32--60 MHz band. Experiments have been successful in demonstrating the physics of heating and current drive. In order to validate fast wave current drive for future machines a greater power capability is necessary to drive all of the plasma current. Advanced tokamak modeling for DIII-D has indicated that this goal can be met for plasma configurations of interest (i.e. high {beta} VH-mode discharges) with 8 MW of transmitter fast wave capability. It is proposed that four transmitters drive fast wave antennas at three locations in DIII-D to provide the power for current drive and current profile modification. As the next step in acquiring this capability, two modular four strap antennas are in design and the procurement of a high power transmitter in the 30--120 MHz range is in progress. Additionally, innovations in the technology are being investigated, such as the use of a coupled combine antenna to reduce the number of required feedthroughs and to provide for parallel phase velocity variation with a relatively small change in frequency, and the use of fast ferrite tuners to provide millisecond timescale impedance matching. A successful test of a low power fast ferrite prototype was conducted on DIII-D.

  14. Fast wave current drive system design for DIII-D

    SciTech Connect

    deGrassie, J.S.; Callis, R.; Lin-Liu, Y.R.; Moeller, C..; Petty, C.C.; Phelps, D.R.; Pinsker, R.I.; Remsen, D. ); Baity, F.W.; Hoffman, D.J.; Taylor, D.J. ); Arnold, W.; Martin, S. )

    1992-09-01

    DIII-D has a major effort underway to develop the physics and technology of fast wave electron heating and current drive in conjunction with electron cyclotron heating. The present system consists of a four strap antenna driven by one 2 MW transmitter in the 32--60 MHz band. Experiments have been successful in demonstrating the physics of heating and current drive. In order to validate fast wave current drive for future machines a greater power capability is necessary to drive all of the plasma current. Advanced tokamak modeling for DIII-D has indicated that this goal can be met for plasma configurations of interest (i.e. high [beta] VH-mode discharges) with 8 MW of transmitter fast wave capability. It is proposed that four transmitters drive fast wave antennas at three locations in DIII-D to provide the power for current drive and current profile modification. As the next step in acquiring this capability, two modular four strap antennas are in design and the procurement of a high power transmitter in the 30--120 MHz range is in progress. Additionally, innovations in the technology are being investigated, such as the use of a coupled combine antenna to reduce the number of required feedthroughs and to provide for parallel phase velocity variation with a relatively small change in frequency, and the use of fast ferrite tuners to provide millisecond timescale impedance matching. A successful test of a low power fast ferrite prototype was conducted on DIII-D.

  15. Acceptance of drinking and driving and alcohol-involved driving crashes in California

    PubMed Central

    Karriker-Jaffe, Katherine J.; Ragland, David R.; Satariano, William A.; Kelley-Baker, Tara; Lacey, John H.

    2016-01-01

    Background Alcohol-impaired driving accounts for substantial proportion of traffic-related fatalities in the U.S. Risk perceptions for drinking and driving have been associated with various measures of drinking and driving behavior. In an effort to understand how to intervene and to better understand how risk perceptions may be shaped, this study explored whether an objective environmental-level measure (proportion of alcohol-involved driving crashes in one's residential city) were related to individual-level perceptions and behavior. Methods Using data from a 2012 cross-sectional roadside survey of 1,147 weekend nighttime drivers in California, individual-level self-reported acceptance of drinking and driving and past-year drinking and driving were merged with traffic crash data using respondent ZIP codes. Population average logistic regression modeling was conducted for the odds of acceptance of drinking and driving and self-reported, past-year drinking and driving. Results A non-linear relationship between city-level alcohol-involved traffic crashes and individual-level acceptance of drinking and driving was found. Acceptance of drinking and driving did not mediate the relationship between the proportion of alcohol-involved traffic crashes and self-reported drinking and driving behavior. However, it was directly related to behavior among those most likely to drink outside the home. Discussion The present study surveys a particularly relevant population and is one of few drinking and driving studies to evaluate the relationship between an objective environmental-level crash risk measure and individual-level risk perceptions. In communities with both low and high proportions of alcohol-involved traffic crashes there was low acceptance of drinking and driving. This may mean that in communities with low proportions of crashes, citizens have less permissive norms around drinking and driving, whereas in communities with a high proportion of crashes, the incidence of

  16. COAXIAL CONTROL ROD DRIVE MECHANISM FOR NEUTRONIC REACTORS

    DOEpatents

    Fox, R.J.; Oakes, L.C.

    1959-04-14

    A drive mechanism is presented for the control rod or a nuclear reactor. In this device the control rod is coupled to a drive shaft which extends coaxially through the rotor of an electric motor for relative rotation with respect thereto. A gear reduction mehanism is coupled between the rotor and the drive shaft to convert the rotary motion of the motor into linear motion of the shaft with a comparatively great reduction in speed, thereby providing relatively glow linear movement of the shaft and control rod for control purposes.

  17. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  18. Towards a Formal Basis for Modular Safety Cases

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Pai, Ganesh

    2015-01-01

    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE.

  19. The Test Drive

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at NASA's Jet Propulsion Laboratory shows engineers rehearsing the sol 133 (June 8, 2004) drive into 'Endurance' crater by NASA's Mars Exploration Rover Opportunity. Engineers and scientists have recreated the martian surface and slope the rover will encounter using a combination of bare and thinly sand-coated rocks, simulated martian 'blueberries' and a platform tilted at a 25-degree angle. The results of this test convinced engineers that the rover was capable of driving up and down a straight slope before it attempted the actual drive on Mars.

  20. Vision and Driving

    PubMed Central

    Owsley, Cynthia; McGwin, Gerald

    2010-01-01

    Driving is the primary means of personal travel in many countries and is relies heavily on vision for its successful execution. Research over the past few decades has addressed the role of vision in driver safety (motor vehicle collision involvement) and in driver performance (both on-road and using interactive simulators in the laboratory). Here we critically review what is currently known about the role of various aspects of visual function in driving. We also discuss translational research issues on vision screening for licensure and re-licensure and rehabilitation of visually impaired persons who want to drive. PMID:20580907

  1. Drive System Research

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2007-01-01

    An overview of the NASA Glenn Research Center Drive Systems Research will be presented. The primary purpose of this research is to improve performance, reliability, and integrity of aerospace drive systems and space mechanisms. The research is conducted through a combination of in-house, academia, and through contractors. Research is conducted through computer code development and validated through component and system testing. The drive system activity currently has four major thrust areas including: thermal behavior of high speed gearing, health and usage monitoring, advanced components, and space mechanisms.

  2. Polar Direct Drive

    NASA Astrophysics Data System (ADS)

    Skupsky, S.

    2003-10-01

    Direct drive offers the potential of higher target gain on the National Ignition Facility (NIF) than x-ray drive: The initial direct-drive target design had a 1-D gain of 45 and consisted primarily of a pure cryogenic DT shell. Using the expected levels of target and laser nonuniformities for the NIF, two-dimensional (2-D) hydrodynamic simulations predicted target gains around 30.(P.W. McKenty et al.), Phys. Plasmas 8, 2315 (2001). More-recent designs have shown that higher target gains could be obtained by replacing a portion of the DT shell with ``wetted'' CH foam and by using adiabat shaping: (1) Higher-Z material (C) in the foam increases laser absorption by about 40% (from 60% absorption to 85%).(S. Skupsky et al.), in Inertial Fusion Sciences and Applications 2001, edited by K. Tanaka et al. (Elsevier, Paris, 2002), p. 240. (2) Adiabat shaping allows the main portion of the fuel to be placed on a lower adiabat without compromising target stability.(V.N. Goncharov et al.), Phys. Plasmas 10, 1906 (2003). These direct-drive concepts can be tested on the NIF, long before that facility is converted to a direct-drive (spherically symmetric) irradiation configuration. Using the NIF x-ray-drive beam configuration, some of the near-polar beams could be pointed to better illuminate the target's equator. These more-oblique, equatorial beams will have lower absorption and reduced drive efficiency than the polar beams. One strategy to compensate for the difference in polar and equatorial drive is to reduce the irradiation at the poles and employ different pulse shapes to accommodate the time-dependent variations in drive and absorption. This concept of polar direct drive (PDD) has been studied using the 2-D hydrocode DRACO to determine the requirements for achieving ignition and moderate target gain for the NIF. Experiments on the OMEGA laser will examine the effects of oblique irradiation on target drive. Results of simulations for different direct-drive target designs

  3. Cascading failures of interdependent modular small-world networks

    NASA Astrophysics Data System (ADS)

    Zhu, Guowei; Wang, Xianpei; Tian, Meng; Dai, Dangdang; Long, Jiachuan; Zhang, Qilin

    2016-07-01

    Much empirical evidence shows that many real-world networks fall into the broad class of small-world networks and have a modular structure. The modularity has been revealed to have an important effect on cascading failure in isolated networks. However, the corresponding results for interdependent modular small-world networks remain missing. In this paper, we investigate the relationship between cascading failures and the intra-modular rewiring probabilities and inter-modular connections under different coupling preferences, i.e. random coupling with modules (RCWM), assortative coupling in modules (ACIM) and assortative coupling with modules (ACWM). The size of the largest connected component is used to evaluate the robustness from global and local perspectives. Numerical results indicate that increasing intra-modular rewiring probabilities and inter-modular connections can improve the robustness of interdependent modular small-world networks under intra-attacks and inter-attacks. Meanwhile, experiments on three coupling strategies demonstrate that ACIM has a better effect on preventing the cascading failures compared with RCWM and ACWM. These results can be helpful to allocate and optimize the topological structure of interdependent modular small-world networks to improve the robustness of such networks.

  4. Drive program documentation

    NASA Technical Reports Server (NTRS)

    Graham, S.

    1979-01-01

    The program description and user's guide for the Downlist Requirement Integrated Verification and Evaluation (DRIVE) program is provided. The program is used to compare existing telemetry downlist files with updated downlist requirements.

  5. Control rod drive

    DOEpatents

    Hawke, Basil C.

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  6. Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.

    PubMed

    Dorn, Ulrich; Neumann, Daniel; Frank, Mario

    2014-04-01

    This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion.

  7. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  8. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  9. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  10. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  11. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  12. [Cu{sub 4}OCl{sub 6}(DABCO){sub 2}].0.5DABCO.4CH{sub 3}OH ('MFU-5'): Modular synthesis of a zeolite-like metal-organic framework constructed from tetrahedral {l_brace}Cu{sub 4}OCl{sub 6}{r_brace} secondary building units and linear organic linkers

    SciTech Connect

    Liu Yingya; Grzywa, Maciej; Weil, Matthias

    2010-01-15

    A novel metal-organic framework (MOF) based on a tetranuclear copper cluster and a linear organic ligand formulated as [Cu{sub 4}OCl{sub 6}(DABCO){sub 2}].0.5DABCO.4CH{sub 3}OH (denoted as MFU-5, MFU=Metal-Organic Framework, Ulm University; DABCO=1,4-diazabicyclo[2.2.2]octane), was prepared via solvothermal synthesis. In contrast with common MOF synthesis strategies, MFU-5 is assembled from pre-defined molecular secondary building units, i.e. {l_brace}Cu{sub 4}OCl{sub 6}{r_brace} moieties, which become the nodes of the coordination framework. The title compound was characterized by single crystal X-ray diffraction, variable temperature powder diffraction (VT-XRPD), thermal analysis, as well as IR- and UV/Vis spectroscopy. Crystal data for MFU-5: hexagonal, P6/mcc (no. 192), a=25.645(9), c=17.105(11) A, V=9742(8) A{sup 3}, Z=12, 1690 structure factors, R[F{sup 2}>2sigma(F{sup 2})]=0.049. MFU-5 is a 3D metal-organic framework with 1D channels running along the c-axis hosting DABCO and methanol solvent molecules. The framework displays a zeolite-like structure constructed from mso cages, which represents the composite building units in the zeolites SSF, MSO and SZR. Two-fold interpenetration is observed between these building units. TG/DTA-MS and VT-XRPD characterization reveal a stepwise release of methanol and DABCO molecules upon heating, eventually resulting in a structural change into a non-porous material. - Graphical abstract: The metal-organic framework [Cu{sub 4}OCl{sub 6}(DABCO){sub 2}].0.5DABCO.4CH{sub 3}OH (MFU-5) is constructed from a molecular precursor containing {l_brace}Cu{sub 4}OCl{sub 6}{r_brace} secondary building units which become cross-linked into a 3D zeolite-type network with hexagonal symmetry by linear DABCO ligands (DABCO=1,4-diazabicyclo[2.2.2]octane).

  13. Self-driving carsickness.

    PubMed

    Diels, Cyriel; Bos, Jelte E

    2016-03-01

    This paper discusses the predicted increase in the occurrence and severity of motion sickness in self-driving cars. Self-driving cars have the potential to lead to significant benefits. From the driver's perspective, the direct benefits of this technology are considered increased comfort and productivity. However, we here show that the envisaged scenarios all lead to an increased risk of motion sickness. As such, the benefits this technology is assumed to bring may not be capitalised on, in particular by those already susceptible to motion sickness. This can negatively affect user acceptance and uptake and, in turn, limit the potential socioeconomic benefits that this emerging technology may provide. Following a discussion on the causes of motion sickness in the context of self-driving cars, we present guidelines to steer the design and development of automated vehicle technologies. The aim is to limit or avoid the impact of motion sickness and ultimately promote the uptake of self-driving cars. Attention is also given to less well known consequences of motion sickness, in particular negative aftereffects such as postural instability, and detrimental effects on task performance and how this may impact the use and design of self-driving cars. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels.

  14. Dementia and driving.

    PubMed

    O'Neill, D; Neubauer, K; Boyle, M; Gerrard, J; Surmon, D; Wilcock, G K

    1992-04-01

    Many European countries test cars, but not their drivers, as they age. There is evidence to suggest that human factors are more important than vehicular factors as causes of motor crashes. The elderly also are involved in more accidents per distance travelled than middle-aged drivers. As the UK relies on self-certification of health by drivers over the age of 70 years, we examined the driving practices of patients with dementia attending a Memory Clinic. Nearly one-fifth of 329 patients with documented dementia continued to drive after the onset of dementia, and impaired driving ability was noted in two-thirds of these. Their families experienced great difficulty in persuading patients to stop driving, and had to invoke outside help in many cases. Neuropsychological tests did not help to identify those who drove badly while activity of daily living scores were related to driving ability. These findings suggest that many patients with dementia drive in an unsafe fashion after the onset of the illness. The present system of self-certification of health by the elderly for driver-licensing purposes needs to be reassessed.

  15. Self-driving carsickness.

    PubMed

    Diels, Cyriel; Bos, Jelte E

    2016-03-01

    This paper discusses the predicted increase in the occurrence and severity of motion sickness in self-driving cars. Self-driving cars have the potential to lead to significant benefits. From the driver's perspective, the direct benefits of this technology are considered increased comfort and productivity. However, we here show that the envisaged scenarios all lead to an increased risk of motion sickness. As such, the benefits this technology is assumed to bring may not be capitalised on, in particular by those already susceptible to motion sickness. This can negatively affect user acceptance and uptake and, in turn, limit the potential socioeconomic benefits that this emerging technology may provide. Following a discussion on the causes of motion sickness in the context of self-driving cars, we present guidelines to steer the design and development of automated vehicle technologies. The aim is to limit or avoid the impact of motion sickness and ultimately promote the uptake of self-driving cars. Attention is also given to less well known consequences of motion sickness, in particular negative aftereffects such as postural instability, and detrimental effects on task performance and how this may impact the use and design of self-driving cars. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels. PMID:26446454

  16. Hydraulic drive system prevents backlash

    NASA Technical Reports Server (NTRS)

    Acord, J. D.

    1965-01-01

    Hydraulic drive system uses a second drive motor operating at reduced torque. This exerts a relative braking action which eliminates the normal gear train backlash that is intolerable when driving certain heavy loads.

  17. Lightweight composites for modular panelized construction

    NASA Astrophysics Data System (ADS)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  18. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-09-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  19. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-12-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  20. Modular, Parallel Pulse-Shaping Filter Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    Novel architectures based on parallel subconvolution frequency-domain filtering methods have been developed for modular processing rate reduction of discrete-time pulse-shaping filters. Such pulse-shaping is desirable and often necessary to obtain bandwidth efficiency in very-high-rate wireless communications systems. In principle, this processing could be implemented in very-large-scale integrated (VLSI) circuits. Whereas other approaches to digital pulse-shaping are based primarily on time-domain processing concepts, the theory and design rules of the architectures presented here are founded on frequency-domain processing that has advantages in certain systems.

  1. Nucleic acid amplification using modular branched primers

    SciTech Connect

    Ulanovsky, Levy; Raja, Mugasimangalam C.

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  2. Modular Strategies for PET Imaging Agents

    PubMed Central

    Hooker, Jacob M

    2009-01-01

    Summary of Recent Advances In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging. PMID:19880343

  3. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin; Urko, Willam

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  4. Development of modular cable mesh deployable antenna

    NASA Astrophysics Data System (ADS)

    Meguro, Akira; Mitsugi, Jin; Andou, Kazuhide

    1993-03-01

    This report describes a concept and key technologies for the modular mesh deployable antenna. The antenna reflector composed of independently manufactured and tested modules is presented. Each module consists of a mesh surface, a cable network, and a deployable truss structure. The cable network comprises three kinds of cables, surface, tie, and back cables. Adjustment of tie cable lengths improves the surface accuracy. Synchronous deployment truss structures are considered as a supporting structure. Their design method, BBM's (Bread Board Model) and deployment analysis are also explained.

  5. Data Acquisition for Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

    2014-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

  6. New Modular Camera No Ordinary Joe

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Although dubbed 'Little Joe' for its small-format characteristics, a new wavefront sensor camera has proved that it is far from coming up short when paired with high-speed, low-noise applications. SciMeasure Analytical Systems, Inc., a provider of cameras and imaging accessories for use in biomedical research and industrial inspection and quality control, is the eye behind Little Joe's shutter, manufacturing and selling the modular, multi-purpose camera worldwide to advance fields such as astronomy, neurobiology, and cardiology.

  7. Intelligent subsystem interface for modular hardware system

    NASA Technical Reports Server (NTRS)

    Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor); Caffrey, Robert T. (Inventor)

    2000-01-01

    A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

  8. The axion mass in modular invariant supergravity

    SciTech Connect

    Butter, Daniel; Gaillard, Mary K.

    2005-02-09

    When supersymmetry is broken by condensates with a single condensing gauge group, there is a nonanomalous R-symmetry that prevents the universal axion from acquiring a mass. It has been argued that, in the context of supergravity, higher dimension operators will break this symmetry and may generate an axion mass too large to allow the identification of the universal axion with the QCD axion. We show that such contributions to the axion mass are highly suppressed in a class of models where the effective Lagrangian for gaugino and matter condensation respects modular invariance (T-duality).

  9. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  10. TESLA cavity driving with FPGA controller

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krzysztof; Romaniuk, Ryszard; Simrock, Stefan

    2005-09-01

    The digital control of the TESLA (TeV-Energy Superconducting Linear Accelerator) resonator is presented. The laboratory setup of the CHECHIA cavity in DESY-Hamburg has been driven by the FPGA (Field Programmable Gate Array) technology system. This experiment focused attention to the general recognition of the cavity features and projected control methods. The electrical model of the resonator is taken as a consideration origin. The calibration of the signal channel is considered as a key preparation for an efficient cavity driving. The identification of the resonator parameters is confirmed as a proper approach for the required performance: driving on resonance during filling and field stabilization during flattop time with reasonable power consumption. The feed-forward and feedback modes were applied successfully for the CHECHIA cavity driving. Representative results of experiments are presented for different levels of the cavity field gradient.

  11. Links between N-modular redundancy and the theory of error-correcting codes

    NASA Technical Reports Server (NTRS)

    Bobin, V.; Whitaker, S.; Maki, G.

    1992-01-01

    N-Modular Redundancy (NMR) is one of the best known fault tolerance techniques. Replication of a module to achieve fault tolerance is in some ways analogous to the use of a repetition code where an information symbol is replicated as parity symbols in a codeword. Linear Error-Correcting Codes (ECC) use linear combinations of information symbols as parity symbols which are used to generate syndromes for error patterns. These observations indicate links between the theory of ECC and the use of hardware redundancy for fault tolerance. In this paper, we explore some of these links and show examples of NMR systems where identification of good and failed elements is accomplished in a manner similar to error correction using linear ECC's.

  12. Gigahertz resonance characteristics of nanotube linear motor

    NASA Astrophysics Data System (ADS)

    Kang, Jeong-Won; Choi, Young Gyu; Ryu, Gi Han; Won, Chung Sang

    2008-08-01

    We investigated a linear carbon nanotube motor serving as the key building block for nanoscale motion control by using molecular dynamics simulations. This linear nanomotor, is based on the electrostatically telescoping multi-walled carbon-nanotube with ultralow intershell sliding friction, is controlled by the gate potential with the capacitance feedback sensing. The resonant harmonic peaks are induced by the interference between the driving frequencies and its self-frequency. The temperature is very important factor to operate this nanomotor.

  13. GGOPT: an unconstrained non-linear optimizer.

    PubMed

    Bassingthwaighte, J B; Chan, I S; Goldstein, A A; Russak, I B

    1988-01-01

    GGOPT is a derivative-free non-linear optimizer for smooth functions with added noise. If the function values arise from observations or from extensive computations, these errors can be considerable. GGOPT uses an adjustable mesh together with linear least squares to find smoothed values of the function, gradient and Hessian at the center of the mesh. These values drive a descent method that estimates optimal parameters. The smoothed values usually result in increased accuracy.

  14. Mental workload and driving

    PubMed Central

    Paxion, Julie; Galy, Edith; Berthelon, Catherine

    2014-01-01

    The aim of this review is to identify the most representative measures of subjective and objective mental workload in driving, and to understand how the subjective and objective levels of mental workload influence the performance as a function of situation complexity and driving experience, i.e., to verify whether the increase of situation complexity and the lack of experience increase the subjective and physiological levels of mental workload and lead to driving performance impairments. This review will be useful to both researchers designing an experimental study of mental workload and to designers of drivers’ training content. In the first part, we will broach the theoretical approach with two factors of mental workload and performance, i.e., situation complexity and driving experience. Indeed, a low complex situation (e.g., highways), or conversely a high complex situation (e.g., town) can provoke an overload. Additionally, performing the driving tasks implies producing a high effort for novice drivers who have not totally automated the driving activity. In the second part, we will focus on subjective measures of mental workload. A comparison of questionnaires usually used in driving will allow identifying the most appropriate ones as a function of different criteria. Moreover, we will review the empirical studies to verify if the subjective level of mental workload is high in simple and very complex situations, especially for novice drivers compared to the experienced ones. In the third part, we will focus on physiological measures. A comparison of physiological indicators will be realized in order to identify the most correlated to mental workload. An empirical review will also take the effect of situation complexity and experience on these physiological indicators into consideration. Finally, a more nuanced comparison between subjective and physiological measures will be established from the impact on situation complexity and experience. PMID:25520678

  15. Fast estimation of space-robots inertia parameters: A modular mathematical formulation

    NASA Astrophysics Data System (ADS)

    Nabavi Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2016-10-01

    This work aims to propose a new technique that considerably helps enhance time and precision needed to identify "Inertia Parameters (IPs)" of a typical Autonomous Space-Robot (ASR). Operations might include, capturing an unknown Target Space-Object (TSO), "active space-debris removal" or "automated in-orbit assemblies". In these operations generating precise successive commands are essential to the success of the mission. We show how a generalized, repeatable estimation-process could play an effective role to manage the operation. With the help of the well-known Force-Based approach, a new "modular formulation" has been developed to simultaneously identify IPs of an ASR while it captures a TSO. The idea is to reorganize the equations with associated IPs with a "Modular Set" of matrices instead of a single matrix representing the overall system dynamics. The devised Modular Matrix Set will then facilitate the estimation process. It provides a conjugate linear model in mass and inertia terms. The new formulation is, therefore, well-suited for "simultaneous estimation processes" using recursive algorithms like RLS. Further enhancements would be needed for cases the effect of center of mass location becomes important. Extensive case studies reveal that estimation time is drastically reduced which in-turn paves the way to acquire better results.

  16. Stabilization system of a photoinjector drive laser.

    PubMed

    Le Flanchec, V; Blésès, J P; Striby, S; Laget, J P

    1997-11-20

    In the Etude d'un LaSer Accordable linear accelerator, electron bunches consist of trains of picosecond pulses extracted from a photocathode by a drive laser system. The fluctuations of the mean intensity of pulse trains at the output of the laser system are around 3% rms. A feed-forward stabilization system that reduces these fluctuations to better than 0.7% rms for periods of 5 min is presented. PMID:18264399

  17. Stabilization system of a photoinjector drive laser

    NASA Astrophysics Data System (ADS)

    Le Flanchec, Vincent; Blésès, Jean-Paul; Striby, Serge; Laget, Jean-Paul

    1997-11-01

    In the Etude d un LaSer Accordable linear accelerator, electron bunches consist of trains of picosecond pulses extracted from a photocathode by a drive laser system. The fluctuations of the mean intensity of pulse trains at the output of the laser system are around 3% rms. A feed-forward stabilization system that reduces these fluctuations to better than 0.7% rms for periods of 5 min is presented.

  18. Fundamental limitations on 'warp drive' spacetimes

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.; Visser, Matt

    2004-12-01

    'Warp drive' spacetimes are useful as 'gedanken-experiments' that force us to confront the foundations of general relativity, and among other things, to precisely formulate the notion of 'superluminal' communication. After carefully formulating the Alcubierre and Natário warp drive spacetimes, and verifying their non-perturbative violation of the classical energy conditions, we consider a more modest question and apply linearized gravity to the weak-field warp drive, testing the energy conditions to first and second orders of the warp-bubble velocity, v. Since we take the warp-bubble velocity to be non-relativistic, v Lt c, we are not primarily interested in the 'superluminal' features of the warp drive. Instead we focus on a secondary feature of the warp drive that has not previously been remarked upon—the warp drive (if it could be built) would be an example of a 'reaction-less drive'. For both the Alcubierre and Natário warp drives we find that the occurrence of significant energy condition violations is not just a high-speed effect, but that the violations persist even at arbitrarily low speeds. A particularly interesting feature of this construction is that it is now meaningful to think of placing a finite mass spaceship at the centre of the warp bubble, and then see how the energy in the warp field compares with the mass energy of the spaceship. There is no hope of doing this in Alcubierre's original version of the warp field, since by definition the point at the centre of the warp bubble moves on a geodesic and is 'massless'. That is, in Alcubierre's original formalism and in the Natário formalism the spaceship is always treated as a test particle, while in the linearized theory we can treat the spaceship as a finite mass object. For both the Alcubierre and Natário warp drives we find that even at low speeds the net (negative) energy stored in the warp fields must be a significant fraction of the mass of the spaceship.

  19. dendsort: modular leaf ordering methods for dendrogram representations in R.

    PubMed

    Sakai, Ryo; Winand, Raf; Verbeiren, Toni; Moere, Andrew Vande; Aerts, Jan

    2014-01-01

    Dendrograms are graphical representations of binary tree structures resulting from agglomerative hierarchical clustering. In Life Science, a cluster heat map is a widely accepted visualization technique that utilizes the leaf order of a dendrogram to reorder the rows and columns of the data table. The derived linear order is more meaningful than a random order, because it groups similar items together. However, two consecutive items can be quite dissimilar despite proximity in the order. In addition, there are 2 (n-1) possible orderings given n input elements as the orientation of clusters at each merge can be flipped without affecting the hierarchical structure. We present two modular leaf ordering methods to encode both the monotonic order in which clusters are merged and the nested cluster relationships more faithfully in the resulting dendrogram structure. We compare dendrogram and cluster heat map visualizations created using our heuristics to the default heuristic in R and seriation-based leaf ordering methods. We find that our methods lead to a dendrogram structure with global patterns that are easier to interpret, more legible given a limited display space, and more insightful for some cases. The implementation of methods is available as an R package, named "dendsort", from the CRAN package repository. Further examples, documentations, and the source code are available at [https://bitbucket.org/biovizleuven/dendsort/].

  20. Designing the structure and folding pathway of modular topological bionanostructures.

    PubMed

    Ljubetič, A; Drobnak, I; Gradišar, H; Jerala, R

    2016-04-18

    Polypeptides and polynucleotides are programmable natural polymers whose linear sequence can be easily designed and synthesized by the cellular transcription/translation machinery. Nature primarily uses proteins as the molecular machines and nucleic acids as the medium for the manipulation of heritable information. A protein's tertiary structure and function is defined by multiple cooperative weak long-range interactions that have been optimized through evolution. DNA nanotechnology uses orthogonal pairwise interacting modules of complementary nucleic acids as a strategy to construct defined complex 3D structures. A similar approach has recently been applied to protein design, using orthogonal dimerizing coiled-coil segments as interacting modules. When concatenated into a single polypeptide chain, they self-assemble into the 3D structure defined by the topology of interacting modules within the chain. This approach allows the construction of geometric polypeptide scaffolds, bypassing the folding problem of compact proteins by relying on decoupled pairwise interactions. However, the folding pathway still needs to be optimized in order to allow rapid self-assembly under physiological conditions. Again the modularity of designed topological structures can be used to define the rules that guide the folding pathway of long polymers, such as DNA, based on the stability and topology of connected building modules. This approach opens the way towards incorporation of designed foldamers in biological systems and their functionalization. PMID:27001947

  1. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  2. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  3. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-01

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  4. Intelligent modular manipulation for mobile robots

    NASA Astrophysics Data System (ADS)

    Culbertson, John

    2008-04-01

    As mobile robots continue to gain acceptance across a variety of applications within the defense and civilian markets, the number of tasks that these robot platforms are expected to accomplish are expanding. Robot operators are asked to do more with the same platforms - from EOD missions to reconnaissance and inspection operations. Due to the fact that a majority of missions are dangerous in nature, it is critical that users are able to make remote adjustments to the systems to ensure that they are kept out of harm's way. An efficient way to expand the capabilities of existing robot platforms, improve the efficiency of robot missions, and to ultimately improve the operator's safety is to integrate JAUS-enabled Intelligent Modular Manipulation payloads. Intelligent Modular Manipulation payloads include both simple and dexterous manipulator arms with plug-and-play end-effector tools that can be changed based on the specific mission. End-effectors that can be swapped down-range provide an added benefit of decreased time-on-target. The intelligence in these systems comes from semi-autonomous mobile manipulation actions that enable the robot operator to perform manipulation task with the touch of a button on the OCU. RE2 is supporting Unmanned Systems Interoperability by utilizing the JAUS standard as the messaging protocol for all of its manipulation systems. Therefore, they can be easily adapted and integrated onto existing JAUS-enabled robot platforms.

  5. Intelligent Control of Modular Robotic Welding Cell

    SciTech Connect

    Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

    2002-04-01

    Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

  6. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  7. Modular Inverse Reinforcement Learning for Visuomotor Behavior

    PubMed Central

    Rothkopf, Constantin A.; Ballard, Dana H.

    2013-01-01

    In a large variety of situations one would like to have an expressive and accurate model of observed animal or human behavior. While general purpose mathematical models may capture successfully properties of observed behavior, it is desirable to root models in biological facts. Because of ample empirical evidence for reward-based learning in visuomotor tasks we use a computational model based on the assumption that the observed agent is balancing the costs and benefits of its behavior to meet its goals. This leads to using the framework of Reinforcement Learning, which additionally provides well-established algorithms for learning of visuomotor task solutions. To quantify the agent’s goals as rewards implicit in the observed behavior we propose to use inverse reinforcement learning, which quantifies the agent’s goals as rewards implicit in the observed behavior. Based on the assumption of a modular cognitive architecture, we introduce a modular inverse reinforcement learning algorithm that estimates the relative reward contributions of the component tasks in navigation, consisting of following a path while avoiding obstacles and approaching targets. It is shown how to recover the component reward weights for individual tasks and that variability in observed trajectories can be explained succinctly through behavioral goals. It is demonstrated through simulations that good estimates can be obtained already with modest amounts of observation data, which in turn allows the prediction of behavior in novel configurations. PMID:23832417

  8. Modular cell biology: retroactivity and insulation

    PubMed Central

    Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D

    2008-01-01

    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378

  9. Modularized evolution in archaeal methanogens phylogenetic forest.

    PubMed

    Li, Jun; Wong, Chi-Fat; Wong, Mabel Ting; Huang, He; Leung, Frederick C

    2014-12-09

    Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species.

  10. INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL

    SciTech Connect

    Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

    2007-12-01

    With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

  11. Modular adaptive implant based on smart materials.

    PubMed

    Bîzdoacă, N; Tarniţă, Daniela; Tarniţă, D N

    2008-01-01

    Applications of biological methods and systems found in nature to the study and design of engineering systems and modern technology are defined as Bionics. The present paper describes a bionics application of shape memory alloy in construction of orthopedic implant. The main idea of this paper is related to design modular adaptive implants for fractured bones. In order to target the efficiency of medical treatment, the implant has to protect the fractured bone, for the healing period, undertaking much as is possible from the daily usual load of the healthy bones. After a particular stage of healing period is passed, using implant modularity, the load is gradually transferred to bone, assuring in this manner a gradually recover of bone function. The adaptability of this design is related to medical possibility of the physician to made the implant to correspond to patient specifically anatomy. Using a CT realistic numerical bone models, the mechanical simulation of different types of loading of the fractured bones treated with conventional method are presented. The results are commented and conclusions are formulated. PMID:19050799

  12. Modular thermal analyzer routine, volume 1

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Phillips, M. A.; Williams, D. R.

    1972-01-01

    The Modular Thermal Analyzer Routine (MOTAR) is a general thermal analysis routine with strong capabilities for performing thermal analysis of systems containing flowing fluids, fluid system controls (valves, heat exchangers, etc.), life support systems, and thermal radiation situations. Its modular organization permits the analysis of a very wide range of thermal problems for simple problems containing a few conduction nodes to those containing complicated flow and radiation analysis with each problem type being analyzed with peak computational efficiency and maximum ease of use. The organization and programming methods applied to MOTAR achieved a high degree of computer utilization efficiency in terms of computer execution time and storage space required for a given problem. The computer time required to perform a given problem on MOTAR is approximately 40 to 50 percent that required for the currently existing widely used routines. The computer storage requirement for MOTAR is approximately 25 percent more than the most commonly used routines for the most simple problems but the data storage techniques for the more complicated options should save a considerable amount of space.

  13. DynaMod: dynamic functional modularity analysis

    PubMed Central

    Sun, Choong-Hyun; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2010-01-01

    A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions. DynaMod allows the inspection of a wide variety of functional modules such as the biological pathways, transcriptional factor–target gene groups, microRNA–target gene groups, protein complexes and hub networks involved in protein interactome. The statistical significance of dynamic functional modularity is scored based on Z-statistics from the average of mutual information (MI) changes of involved gene pairs under different conditions. Significantly correlated gene pairs among the functional modules are used to generate a correlated network of functional categories. In addition to these main goals, this scoring strategy supports better performance to detect significant genes in microarray analyses, as the scores of correlated genes show the superior characteristics of the significance analysis compared with those of individual genes. DynaMod also offers cross-comparison between different analysis outputs. DynaMod is freely accessible at http://piech.kaist.ac.kr/dynamod. PMID:20460468

  14. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  15. Driving Anger and Driving Behavior in Adults with ADHD

    ERIC Educational Resources Information Center

    Richards, Tracy L.; Deffenbacher, Jerry L.; Rosen, Lee A.; Barkley, Russell A.; Rodricks, Trisha

    2006-01-01

    Objective: This study assesses whether anger in the context of driving is associated with the negative driving outcomes experienced by individuals with ADHD. Method: ADHD adults (n = 56) complete measures of driving anger, driving anger expression, angry thoughts behind the wheel, and aggressive, risky, and crash-related behavior. Results are…

  16. DEDRICK DRIVE, LOOKING NORTH FROM SOUTH END OF DEDRICK DRIVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DEDRICK DRIVE, LOOKING NORTH FROM SOUTH END OF DEDRICK DRIVE NEAR BUILDING 80 - Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  17. Module composition and deployment method on deployable modular-mesh antenna structures

    NASA Astrophysics Data System (ADS)

    Watanabe, Mitsunobu; Meguro, Akira; Mitsugi, Jin; Tsunoda, Hiroaki

    1996-10-01

    A deployable modular-mesh antenna is the concept behind a large space antenna. To ensure reliable deployment, a synchronously deployable truss structure forming a curved reflector surface has been developed. The proposed antenna's main reflector formed by two types of modules using mesh and cable network maintains a sufficient level of rigidity at deployment and deploys with high reliability. Importance has also been placed on the numerical analyses of cables, the mesh, and the truss structures. The truss structure analysis is based on a non-linear finite element method, rather than on multi-body dynamics, so that elastic motions of all truss members during the deployment can easily be handled.

  18. A modular approach for item response theory modeling with the R package flirt.

    PubMed

    Jeon, Minjeong; Rijmen, Frank

    2016-06-01

    The new R package flirt is introduced for flexible item response theory (IRT) modeling of psychological, educational, and behavior assessment data. flirt integrates a generalized linear and nonlinear mixed modeling framework with graphical model theory. The graphical model framework allows for efficient maximum likelihood estimation. The key feature of flirt is its modular approach to facilitate convenient and flexible model specifications. Researchers can construct customized IRT models by simply selecting various modeling modules, such as parametric forms, number of dimensions, item and person covariates, person groups, link functions, etc. In this paper, we describe major features of flirt and provide examples to illustrate how flirt works in practice.

  19. Driving anger in Malaysia.

    PubMed

    Sullman, Mark J M; Stephens, Amanda N; Yong, Michelle

    2014-10-01

    The present study examined the types of situations that cause Malaysian drivers to become angry. The 33-item version of the driver anger scale (Deffenbacher et al., 1994) was used to investigate driver anger amongst a sample of 339 drivers. Confirmatory factor analysis showed that the fit of the original six-factor model (discourtesy, traffic obstructions, hostile gestures, slow driving, illegal driving and police presence), after removing one item and allowing three error pairs to covary, was satisfactory. Female drivers reported more anger, than males, caused by traffic obstruction and hostile gestures. Age was also negatively related to five (discourtesy, traffic obstructions, hostile gestures, slow driving and police presence) of the six factors and also to the total DAS score. Furthermore, although they were not directly related to crash involvement, several of the six forms of driving anger were significantly related to the crash-related conditions of: near misses, loss of concentration, having lost control of a vehicle and being ticketed. Overall the pattern of findings made in the present research were broadly similar to those from Western countries, indicating that the DAS is a valid measure of driving anger even among non-European based cultures.

  20. Manufactured Housing--The Modular Home in Texas.

    ERIC Educational Resources Information Center

    Sindt, Roger P.

    This report deals principally with modular homes (permanently sited structures) although it also presents some recent information on mobile homes. In 1976, modular home construction companies were surveyed in Texas and across the United States to assess the extent of their construction activity and market penetration and to gather some insight…

  1. Understanding the Emergence of Modularity in Neural Systems

    ERIC Educational Resources Information Center

    Bullinaria, John A.

    2007-01-01

    Modularity in the human brain remains a controversial issue, with disagreement over the nature of the modules that exist, and why, when, and how they emerge. It is a natural assumption that modularity offers some form of computational advantage, and hence evolution by natural selection has translated those advantages into the kind of modular…

  2. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... information to the EDGAR system for subsequent inclusion in an electronic filing: (a) Modular submissions. (1... data storage area at any time, not to exceed a total of one megabyte of digital information. If an... business days, the modular submission held in suspense will be deleted from the system. (3) A...

  3. Modular Building Supplement: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    Goodmiller, Brian D.; Schendell, Derek G.

    2003-01-01

    This supplement presents three articles on modular construction that look at: "Fast Track Expansion for a New Jersey School" (involving a modular addition); "Precast Construction Helps Schools Meet Attendance Boom" (precast concrete components are quick, durable, and flexible); and "Airing HVAC Concerns" (poor indoor air quality in prefabricated…

  4. 17 CFR 232.501 - Modular submissions and segmented filings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., EDGAR will suspend the modular submission and notify the electronic filer by electronic mail. After six... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Edgar Functions § 232.501 Modular submissions and segmented filings. An electronic filer may use the following procedures to...

  5. U.S. DRIVE

    SciTech Connect

    2012-03-16

    U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies – BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities – Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.

  6. Ceramic vane drive joint

    DOEpatents

    Smale, Charles H.

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  7. Current drive, anticurrent drive, and balanced injection

    SciTech Connect

    von Goeler, S.; Stevens, J.; Beiersdorfer, P.; Bell, R.; Bernabei, S.; Bitter, M.; Cavallo, A.; Chu, T.K.; Fishman, H.; Hill, K.

    1987-08-01

    In lower hybrid (LH) discharges, the number of suprathermal electrons is limited by the upper bound on the current density from the q = 1 condition, which is caused by the onset of the m = 1 MHD instability. The stored energy of suprathermal electrons, measured in terms of a poloidal beta, scales with plasma current as I/sub p//sup -1/. Potentially, these bounds represent very restrictive conditions for heating in larger machines. Consequently, it seems necessary to perform experiments where the electrons are driven in both directions, parallel and antiparallel to the magnetic field, i.e., bidirectional scenarios like anticurrent drive or balanced injection. Data from PLT relevant to these ideas are discussed. 6 refs., 4 figs.

  8. Modularity Induced Gating and Delays in Neuronal Networks.

    PubMed

    Shein-Idelson, Mark; Cohen, Gilad; Ben-Jacob, Eshel; Hanein, Yael

    2016-04-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  9. Future Concepts for Modular, Intelligent Aerospace Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.; Soeder, James F.

    2004-01-01

    Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

  10. Modularity Induced Gating and Delays in Neuronal Networks

    PubMed Central

    Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael

    2016-01-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  11. Z-Score-Based Modularity for Community Detection in Networks

    PubMed Central

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270

  12. Z-Score-Based Modularity for Community Detection in Networks.

    PubMed

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function.

  13. Modularity Induced Gating and Delays in Neuronal Networks.

    PubMed

    Shein-Idelson, Mark; Cohen, Gilad; Ben-Jacob, Eshel; Hanein, Yael

    2016-04-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition.

  14. LCLS Injector Drive Laser

    SciTech Connect

    Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

    2007-11-02

    Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

  15. Pulsation driving and convection

    NASA Astrophysics Data System (ADS)

    Antoci, Victoria

    2015-08-01

    Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.

  16. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  17. Modular, Reconfigurable, High-Energy Systems Stepping Stones

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Mankins, John C.

    2005-01-01

    Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.

  18. Modular High-Energy Systems for Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Carrington, Connie K.; Marzwell, Neville I.; Mankins, John C.

    2006-01-01

    Modular High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure located in space to support a variety of exploration scenarios as well as provide a supplemental source of energy during peak demands to ground grid systems. Abundant renewable energy at lunar or other locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, electric propulsion, wireless avionics, autonomous in space rendezvous and docking, servicing, and robotic assembly. It would also provide an energy-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper summary a preliminary design concept for a 100-kWe solar-powered satellite system to demonstrate in-flight a variety of advanced technologies, each as a separate payload. These technologies include, but are not limited to state-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging to enable the 100-kW satellite feasible to launch on one existing launch vehicle. Higher voltage arrays and power distribution systems (PDS) reduce or eliminate the need for massive power converters, and could enable direct-drive of high-voltage solar electric thrusters.

  19. Westinghouse Small Modular Reactor nuclear steam supply system design

    SciTech Connect

    Memmott, M. J.; Harkness, A. W.; Van Wyk, J.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam

  20. No Pass, No Drive?

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2001-01-01

    Discusses basis for Kentucky appellate court decision that state's no-pass, no-drive statute did not violate due-process and equal-protection clauses of the Kentucky and federal constitutions, but did violate the federal Family Education Rights and Privacy Act, but nevertheless did not invalidate the statute. Explains why the decision is…

  1. Drive-Through Training

    ERIC Educational Resources Information Center

    Carter, Margie

    2010-01-01

    In this article, the author discusses how the early childhood field's approach to staff training reflects the drive-through, fast-food culture. Year after year directors send their teachers to workshops to get some quick refresher techniques. The author suggests that rather than focusing professional development on topics, focus on observing…

  2. COMMENT: No warp drive

    NASA Astrophysics Data System (ADS)

    Coule, D. H.

    1998-08-01

    The warp drive spacetime of Alcubierre is impossible to set up without first being able to distribute matter at tachyonic speed, put roughly, you need one to make one! However, over small distances, where the energy conditions possibly can be violated, one can envision opening the light-cones to increase the apparent speed of light.

  3. Magnetized drive fluids

    SciTech Connect

    Rosensweig, R.E.; Zahn, M.

    1986-04-01

    A process is described for recovering a first fluid from a porous subterranean formation which comprises injecting a displacement fluid in an effective amount to displace the first fluid, injecting a ferrofluid, applying a magnetic field containing a gradient of field intensity within the formation, driving the displacement fluid through the formation with the ferrofluid and recovering first fluid.

  4. DrivePy

    SciTech Connect

    King, Ryan; Guo, Yi

    2014-08-30

    DrivePy is physics-based drivetrain model that sizes drivetrain components based on aerodynamic and operational loads for use in a systems engineering model. It also calculates costs based on empirical data collected by NREL's National Wind Technology Center.

  5. CSI: Hard Drive

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  6. Teachers with Drive

    ERIC Educational Resources Information Center

    Coggins, Celine; Diffenbaugh, P. K.

    2013-01-01

    For students in U.S. classrooms today, the odds of being assigned to an inexperienced teacher are higher than they have ever been because so many teachers, some in the top 20 percent of effectiveness are leaving the classroom in their first five years. Coggins and Diffenbaugh turn to Daniel Pink's work on drive to determine how to motivate…

  7. Driving While Intoxicated.

    ERIC Educational Resources Information Center

    Brick, John

    Alcohol intoxication increases the risk of highway accidents, the relative risk of crash probability increasing as a function of blood alcohol content (BAC). Because alcohol use is more prevalent than use of other drugs, more is known about the relationship between alcohol use and driving. Most states presume a BAC of .10% to be evidence of drunk…

  8. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  9. Modular designs highlight several new rigs

    SciTech Connect

    Rappold, K.

    1995-12-04

    A new platform drilling rig for offshore Trinidad and two new land rigs for the former Soviet Union feature the latest in drilling and construction technology and modular components for quick rig up/rig down. The Sundowner 801 was mock-up tested in Galveston, TX, a few weeks ago in preparation for its load-out to the Dolphin field offshore Trinidad. Two other new units, UNOC 500 DE series land rigs, were recently constructed and mock-up tested in Ekaterinburg, Russia, for upcoming exploratory work for RAO Gazprom, a large natural gas producer in Russia. These rigs are unique in that they were constructed from new components made both in the US and in Russia. The paper describes all three units.

  10. A modular theory of learning and performance.

    PubMed

    Guilhardi, Paulo; Yi, Linun; Church, Russell M

    2007-08-01

    We describe a theory to account for the acquisition and extinction of response rate (conditioning) and pattern (timing). This modular theory is a development of packet theory (Kirkpatrick, 2002; Kirkpatrick & Church, 2003) that adds a distinction between pattern and strength memories, as well as contributing closed-form equations. We describe the theory using equations related to a flow diagram and illustrate it by an application to an experiment with repeated acquisitions and extinctions of a multiple-cued-interval procedure using rats. The parameter estimates for the theory were based on a calibration sample from the data, and the predictions for different measures of performance on a validation sample from the same data (cross-validation). The theory's predictions were similar to predictions based on the reliability of the behavior.

  11. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, Ralph L.; Widdowson, Mark A.; Mullinex, Harry; Orne, William H.; Looney, Brian B.

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  12. Modular Synthesis of N-Vinyl Benzotriazoles

    PubMed Central

    Singh, Govindra; Kumar, Rakesh; Swett, Jorge; Zajc, Barbara

    2014-01-01

    A modular approach to N1-vinyl benzotriazoles by azide–aryne cycloadditions and Julia–Kocienski reactions is described. Reactions of azidomethyl phenyl-1H-tetrazol-5-yl (PT) sulfide with arynes gave methyl(PT-sulfanyl)-substituted benzotriazoles in 68–89% yields. Oxidation of the sulfides to the sulfones gave the benzotriazole-substituted Julia–Kocienski reagents. Olefination reactions of aldehydes and a ketone with reagents derived from benzyne, 2,3-naphthyne, and 4,5-dimethoxybenzyne precursors proceeded to give various N1-vinyl benzotriazole derivatives. Olefination stereoselectivities are tunable for electron-rich aldehydes, but not for electron-deficient aldehydes and alkanals, where they proceed with good to excellent Z-stereoselectivity. PMID:23915255

  13. Modular telerobot control system for accident response

    NASA Astrophysics Data System (ADS)

    Anderson, Richard J. M.; Shirey, David L.

    1999-08-01

    The Accident Response Mobile Manipulator System (ARMMS) is a teleoperated emergency response vehicle that deploys two hydraulic manipulators, five cameras, and an array of sensors to the scene of an incident. It is operated from a remote base station that can be situated up to four kilometers away from the site. Recently, a modular telerobot control architecture called SMART was applied to ARMMS to improve the precision, safety, and operability of the manipulators on board. Using SMART, a prototype manipulator control system was developed in a couple of days, and an integrated working system was demonstrated within a couple of months. New capabilities such as camera-frame teleoperation, autonomous tool changeout and dual manipulator control have been incorporated. The final system incorporates twenty-two separate modules and implements seven different behavior modes. This paper describes the integration of SMART into the ARMMS system.

  14. Kahler stabilized, modular invariant heterotic string models

    SciTech Connect

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  15. Toward Modular Analysis of Supramolecular Protein Assemblies.

    PubMed

    Kim, Jaehoon; Kim, Jin-Gyun; Yun, Giseok; Lee, Phill-Seung; Kim, Do-Nyun

    2015-09-01

    Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome. PMID:26575921

  16. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  17. The modular nature of trustworthiness detection.

    PubMed

    Bonnefon, Jean-François; Hopfensitz, Astrid; De Neys, Wim

    2013-02-01

    The capacity to trust wisely is a critical facilitator of success and prosperity, and it has been conjectured that people of higher intelligence are better able to detect signs of untrustworthiness from potential partners. In contrast, this article reports five trust game studies suggesting that reading trustworthiness of the faces of strangers is a modular process. Trustworthiness detection from faces is independent of general intelligence (Study 1) and effortless (Study 2). Pictures that include nonfacial features such as hair and clothing impair trustworthiness detection (Study 3) by increasing reliance on conscious judgments (Study 4), but people largely prefer to make decisions from this sort of pictures (Study 5). In sum, trustworthiness detection in an economic interaction is a genuine and effortless ability, possessed in equal amount by people of all cognitive capacities, but whose impenetrability leads to inaccurate conscious judgments and inappropriate informational preferences. PMID:22686638

  18. Modular design of receiver coil arrays.

    PubMed

    De Zanche, Nicola; Massner, Jurek A; Leussler, Christoph; Pruessmann, Klaas P

    2008-07-01

    We describe a modular and hence flexible system for connecting MR surface coils to create a receiver array. Up to 16 individual coils of different size and shape depending on the application are plugged into a connector box that houses the control electronics. Preamplification, matching and detuning circuitry are housed on a circuit board directly attached to each coil loop. Electrical adjustments for tuning or decoupling for each coil configuration are not needed thanks to effective preamplifier decoupling provided through a Pi matching network. Radio-frequency safety and electrically stable cabling are ensured by multiple radio-frequency traps. Array modules for 1.5 and 3 T have been simulated, constructed, tested, and used for imaging experiments.

  19. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect

    Melnik, Sergey; Porter, Mason A.; Mucha, Peter J.; Gleeson, James P.

    2014-06-15

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  20. Lightweight modular instrumentation for planetary applications

    NASA Astrophysics Data System (ADS)

    Joshi, P. B.

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  1. Modular radar hardware for deep space applications

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Foerster, K. P.; Oudot, O.; Perrot, J. L.; Hartner, P.

    The authors describe work carried out under contract to the European Space Agency to investigate modular design approaches for a range of scientific missions. In order to provide meaningful design and performance requirements at the start of the study, three proposed planetary research missions featuring radar sensors were selected. The missions are CASSINI, Comet Nucleus Sample Return, and Mars-98. Under the first phase of the work, common instrument systems and subsystems have been proposed. Under a second phase of the work, a digital subsystem for signal processing and control has been developed which can fulfill the requirements of the various instruments but which is fully reconfigurable through software. The DSP (digital signal processor) architecture based on programmable signal processing cores has been demonstrated through development of breadboard hardware. Tracking and control in the breadboard is achieved through a programmable microprocessor with purpose-developed interfaces.

  2. MODULAR CORE UNITS FOR A NEUTRONIC REACTOR

    DOEpatents

    Gage, J.F. Jr.; Sherer, D.B.

    1964-04-01

    A modular core unit for use in a nuclear reactor is described. Many identical core modules can be placed next to each other to make up a complete core. Such a module includes a cylinder of moderator material surrounding a fuel- containing re-entrant coolant channel. The re-entrant channel provides for the circulation of coolant such as liquid sodium from one end of the core unit, through the fuel region, and back out through the same end as it entered. Thermal insulation surrounds the moderator exterior wall inducing heat to travel inwardly to the coolant channel. Spaces between units may be used to accommodate control rods and support structure, which may be cooled by a secondary gas coolant, independently of the main coolant. (AEC)

  3. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  4. The Modular Modeling System (MMS): User's Manual

    USGS Publications Warehouse

    Leavesley, G.H.; Restrepo, P.J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.

    1996-01-01

    The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.

  5. RSA and its Correctness through Modular Arithmetic

    NASA Astrophysics Data System (ADS)

    Meelu, Punita; Malik, Sitender

    2010-11-01

    To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

  6. Lightweight Modular Instrumentation for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.

    1993-01-01

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  7. Auditory-visual spatial interaction and modularity

    PubMed

    Radeau, M

    1994-02-01

    The results of dealing with the conditions for pairing visual and auditory data coming from spatially separate locations argue for cognitive impenetrability and computational autonomy, the pairing rules being the Gestalt principles of common fate and proximity. Other data provide evidence for pairing with several properties of modular functioning. Arguments for domain specificity are inferred from comparison with audio-visual speech. Suggestion of innate specification can be found in developmental data indicating that the grouping of visual and auditory signals is supported very early in life by the same principles that operate in adults. Support for a specific neural architecture comes from neurophysiological studies of the bimodal (auditory-visual) neurons of the cat superior colliculus. Auditory-visual pairing thus seems to present the four main properties of the Fodorian module.

  8. Generic small modular reactor plant design.

    SciTech Connect

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  9. Integrating automated systems with modular architecture

    SciTech Connect

    Salit, M.L.; Guenther, F.R.; Kramer, G.W. ); Griesmeyer, J.M. )

    1994-03-15

    The modularity project of the Consortium for Automated Analytical Laboratory Systems, or CAALS, has been working to define and produce specifications with which manufacturers of analytical equipment can produce products suited for integration into automated systems. A set of standards that will allow subsystems to be configured into robust, useful, controllable systems in a stylized, consistent manner will facilitate the development and integration process. Such standards could ultimately allow an analytical chemist to select devices from a heterogeneous set of vendors and integrate those devices into a work cell to perform chemical methods without further invention, computer programming, or engineering. Our approach to this formidable task is to view analytical chemistry in an abstract fashion, forming a generic model from the understanding of what it is we do. In this article, we report on the generic model and the integration architecture we have developed to implement it. 6 refs., 3 figs.

  10. Modular, security enclosure and method of assembly

    DOEpatents

    Linker, Kevin L.; Moyer, John W.

    1995-01-01

    A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.

  11. Jargon and Graph Modularity on Twitter

    SciTech Connect

    Dowling, Chase P.; Corley, Courtney D.; Farber, Robert M.; Reynolds, William

    2013-09-01

    The language of conversation is just as dependent upon word choice as it is on who is taking part. Twitter provides an excellent test-bed in which to conduct experiments not only on language usage but on who is using what language with whom. To this end, we combine large scale graph analytical techniques with known socio-linguistic methods. In this article we leverage both expert curated vocabularies and naive mathematical graph analyses to determine if network behavior on Twitter corroborates with the current understanding of language usage. The results reported indicate that, based on networks constructed from user to user communication and communities identified using the Clauset- Newman greedy modularity algorithm we find that more prolific users of these curated vocabularies are concentrated in distinct network communities.

  12. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  13. A modularized pulse programmer for NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Wenping; Bao, Qingjia; Yang, Liang; Chen, Yiqun; Liu, Chaoyang; Qiu, Jianqing; Ye, Chaohui

    2011-02-01

    A modularized pulse programmer for a NMR spectrometer is described. It consists of a networked PCI-104 single-board computer and a field programmable gate array (FPGA). The PCI-104 is dedicated to translate the pulse sequence elements from the host computer into 48-bit binary words and download these words to the FPGA, while the FPGA functions as a sequencer to execute these binary words. High-resolution NMR spectra obtained on a home-built spectrometer with four pulse programmers working concurrently demonstrate the effectiveness of the pulse programmer. Advantages of the module include (1) once designed it can be duplicated and used to construct a scalable NMR/MRI system with multiple transmitter and receiver channels, (2) it is a totally programmable system in which all specific applications are determined by software, and (3) it provides enough reserve for possible new pulse sequences.

  14. Modular System to Enable Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option

  15. Modular hydride beds for mobile applications

    SciTech Connect

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  16. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  17. Modular industrial solar retrofit project (MISR)

    SciTech Connect

    Alvis, R.L.

    1980-01-01

    The intent of this paper is to describe a major Department of Energy (DOE) thrust to bring line-focus solar thermal technology to commercial readiness. This effort is referred to as the MISR Project. The project is based upon the premise that thermal energy is the basic solar thermal system output and that low-temperature, fossil fuel applications are technically the first that should be retrofitted. Experience has shown that modularity in system design and construction offers potential for reducing engineering design costs, reduces manufacturing costs, reduces installation time and expense, and improves system operational reliability. The modular design effort will be sponsored by Sandia National Laboratories with industry doing the final designs. The operational credibility of the systems will be established by allowing selected industrial thermal energy users to purchase MISR systems from suppliers and operate them for two years. Industries will be solicited by DOE/Albuquerque Operations Office to conduct these experiments on a cost sharing basis. The MISR system allowed in the experiments will have been previously qualified for the application. The project is divided into three development phases which represent three design and experiment cycles. The first cycle will use commercially available trough-type solar collectors and will incorporate 5 to 10 experiments of up to 5000 m/sup 2/ of collectors each. The project effort began in March 1980, and the first cycle is to be completed in 1985. Subsequent cycles will begin at 3-year intervals. The project is success oriented, and if the first cycle reaches commercial readiness, the project will be terminated. If not, a second, and possibly a third, development cycle will be conducted.

  18. Modular Control of Treadmill vs Overground Running.

    PubMed

    Oliveira, Anderson Souza; Gizzi, Leonardo; Ketabi, Shahin; Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  19. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  20. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  1. Does habitat variability really promote metabolic network modularity?

    PubMed

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  2. Design of a 7kW power transfer solar array drive mechanism

    NASA Technical Reports Server (NTRS)

    Sheppard, J. G.

    1982-01-01

    With the availability of the Shuttle and the European launcher, Ariane, there will be a continuing trend towards large payload satellite missions requiring high-power, high-inertia, flexible solar arrays. The need arises for a solar array drive with a large power transfer capability which can rotate these solar arrays without disturbing the satellite body pointing. The modular design of such a Solar Array Drive Mechanism (SADM) which is capable of transferring 7kW of power or more is described. Total design flexibility has been achieved, enabling different spacecraft power requirements to be accommodated within the SADM design.

  3. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  4. [The morse taper junction in modular revision hip replacement].

    PubMed

    Gravius, S; Mumme, T; Andereya, S; Maus, U; Müller-Rath, R; Wirtz, D C

    2007-01-01

    Morse taper junctions of modular hip revision replacements are predilection sites for fretting, crevice corrosion, dissociation and breakage of the components. In this report we present the results of a retrieval analysis of a morse taper junction of a MRP-titanium modular revision replacement (MRP-Titanium, Peter Brehm GmbH, Weisendorf, Germany) after 11.5 years of in vivo use. In the context of this case report the significance of morse taper junctions in modular hip revision replacement under consideration of the current literature is also discussed.

  5. A Modular Robotic System with Applications to Space Exploration

    NASA Technical Reports Server (NTRS)

    Hancher, Matthew D.; Hornby, Gregory S.

    2006-01-01

    Modular robotic systems offer potential advantages as versatile, fault-tolerant, cost-effective platforms for space exploration, but a sufficiently mature system is not yet available. We describe the possible applications of such a system, and present prototype hardware intended as a step in the right direction. We also present elements of an automated design and optimization framework aimed at making modular robots easier to design and use, and discuss the results of applying the system to a gait optimization problem. Finally, we discuss the potential near-term applications of modular robotics to terrestrial robotics research.

  6. Focal plane array with modular pixel array components for scalability

    DOEpatents

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  7. Modular supervisory control and coordination of state tree structures

    NASA Astrophysics Data System (ADS)

    Chao, Wujie; Gan, Yongmei; Wang, Zhaoan; Wonham, W. M.

    2013-01-01

    Optimal nonblocking modular supervisory control of discrete-event systems is developed using state tree structures to manage state explosion. The total specification of the system to be controlled is decomposed into several sub-specifications, and a separate optimal (maximally permissive) nonblocking supervisor designed for each. Under an additional global nonblocking condition we directly obtain an optimal nonblocking modular state feedback control for the full system. If that condition fails, i.e. the modular controlled system is blocking, an additional coordinator is adjoined which renders the global controlled behaviour, both nonblocking and optimal.

  8. [Driving ability with multiple sclerosis].

    PubMed

    Küst, J; Dettmers, C

    2014-07-01

    Driving is an important issue for young patients, especially for those whose walking capacity is impaired. Driving might support the patient's social and vocational participation. The question as to whether a patient with multiple sclerosis (MS) is restricted in the ability to drive a car depends on neurological and neuropsychological deficits, self-awareness, insight into deficits and ability to compensate for loss of function. Because of the enormous variability of symptoms in MS the question is highly individualized. A practical driving test under supervision of a driving instructor (possibly accompanied by a neuropsychologist) might be helpful in providing both patient and relatives adequate feedback on driving abilities. PMID:24906536

  9. Advanced Motor Drives Studies

    NASA Technical Reports Server (NTRS)

    Ehsani, M.; Tchamdjou, A.

    1997-01-01

    This report presents an evaluation of advanced motor drive systems as a replacement for the hydrazine fueled APU units. The replacement technology must meet several requirements which are particular to the space applications and the Orbiter in general. Some of these requirements are high efficiency, small size, high power density. In the first part of the study several motors are compared, based on their characteristics and in light of the Orbiter requirements. The best candidate, the brushless DC is chosen because of its particularly good performance with regards to efficiency. Several power electronics drive technologies including the conventional three-phase hard switched and several soft-switched inverters are then presented. In the last part of the study, a soft-switched inverter is analyzed and compared to its conventional hard-switched counterpart. Optimal efficiency is a basic requirement for space applications and the soft-switched technology represents an unavoidable trend for the future.

  10. Forces Driving Chaperone Action.

    PubMed

    Koldewey, Philipp; Stull, Frederick; Horowitz, Scott; Martin, Raoul; Bardwell, James C A

    2016-07-14

    It is still unclear what molecular forces drive chaperone-mediated protein folding. Here, we obtain a detailed mechanistic understanding of the forces that dictate the four key steps of chaperone-client interaction: initial binding, complex stabilization, folding, and release. Contrary to the common belief that chaperones recognize unfolding intermediates by their hydrophobic nature, we discover that the model chaperone Spy uses long-range electrostatic interactions to rapidly bind to its unfolded client protein Im7. Short-range hydrophobic interactions follow, which serve to stabilize the complex. Hydrophobic collapse of the client protein then drives its folding. By burying hydrophobic residues in its core, the client's affinity to Spy decreases, which causes client release. By allowing the client to fold itself, Spy circumvents the need for client-specific folding instructions. This mechanism might help explain how chaperones can facilitate the folding of various unrelated proteins. PMID:27293188

  11. Drive-by-Downloads

    SciTech Connect

    Narvaez, Julia; Endicott-Popovsky, Barbara E.; Seifert, Christian; Aval, Chiraag U.; Frincke, Deborah A.

    2010-02-01

    Abstract: Drive-by-downloads are malware that push, and then execute, malicious code on a client system without the user's consent. The purpose of this paper is to introduce a discussion of the usefulness of antivirus software for detecting the installation of such malware, providing groundwork for future studies. Client honeypots collected drive-by malware which was then evaluated using common antivirus products. Initial analysis showed that most of such antivirus products identified less than 70% of these highly polymorphic malware programs. Also, it was observed that the antivirus products tested, even when successfully detecting this malware, often failed to classify it, leading to the conclusion that further work could involve not only developing new behavioral detection technologies, but also empirical studies that improve general understanding of these threats. Toward that end, one example of malicious code was analyzed behaviorally to provide insight into next steps for the future direction of this research.

  12. Gear Drive Testing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Philadelphia Gear Corporation used two COSMIC computer programs; one dealing with shrink fit analysis and the other with rotor dynamics problems in computerized design and test work. The programs were used to verify existing in-house programs to insure design accuracy by checking its company-developed computer methods against procedures developed by other organizations. Its specialty is in custom units for unique applications, such as Coast Guard ice breaking ships, steel mill drives, coal crusher, sewage treatment equipment and electricity.

  13. Impulsivity and the modular organization of resting-state neural networks.

    PubMed

    Davis, F Caroline; Knodt, Annchen R; Sporns, Olaf; Lahey, Benjamin B; Zald, David H; Brigidi, Bart D; Hariri, Ahmad R

    2013-06-01

    Impulsivity is a complex trait associated with a range of maladaptive behaviors, including many forms of psychopathology. Previous research has implicated multiple neural circuits and neurotransmitter systems in impulsive behavior, but the relationship between impulsivity and organization of whole-brain networks has not yet been explored. Using graph theory analyses, we characterized the relationship between impulsivity and the functional segregation ("modularity") of the whole-brain network architecture derived from resting-state functional magnetic resonance imaging (fMRI) data. These analyses revealed remarkable differences in network organization across the impulsivity spectrum. Specifically, in highly impulsive individuals, regulatory structures including medial and lateral regions of the prefrontal cortex were isolated from subcortical structures associated with appetitive drive, whereas these brain areas clustered together within the same module in less impulsive individuals. Further exploration of the modular organization of whole-brain networks revealed novel shifts in the functional connectivity between visual, sensorimotor, cortical, and subcortical structures across the impulsivity spectrum. The current findings highlight the utility of graph theory analyses of resting-state fMRI data in furthering our understanding of the neurobiological architecture of complex behaviors.

  14. The conceptual design of a robust, compact, modular tokamak reactor based on high-field superconductors

    NASA Astrophysics Data System (ADS)

    Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.

    2012-10-01

    Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.

  15. Axial flux, modular, permanent-magnet generator with a toroidal winding for wind turbine applications

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.; Wan, Y.H.

    1998-07-01

    Permanent-magnet generators have been used for wind turbines for many years. Many small wind turbine manufacturers use direct-drive permanent-magnet generators. For wind turbine generators, the design philosophy must cover the following characteristics: low cost, light weight, low speed, high torque, and variable speed generation. The generator is easy to manufacture and the design can be scaled up for a larger size without major retooling. A modular permanent-magnet generator with axial flux direction was chosen. The permanent magnet used is NdFeB or ferrite magnet with flux guide to focus flux density in the air gap. Each unit module of the generator may consist of one, two, or more phases. Each generator can be expanded to two or more unit modules. Each unit module is built from simple modular poles. The stator winding is formed like a torus. Thus, the assembly process is simplified and the winding insertion in the slot is less tedious. The authors built a prototype of one unit module and performed preliminary tests in the laboratory. Follow up tests will be conducted in the lab to improve the design.

  16. Environmental Crack Driving Force

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-03-01

    The effect of environment on the crack driving force is considered, first by assuming quasistatic extension of a stationary crack and second, by use of stress corrosion cracking (SCC) crack growth rate models developed previously by this author and developed further here. A quasistatic thermodynamic energy balance approach, of the Griffith-Irwin type, is used to develop stationary crack threshold expressions, tilde{J}_c , which represent the conjoint mechanical and electrochemical conditions, below which stationary cracks are stable. Expressions for the electrochemical crack driving force (CDF) were derived using an analysis that is analogous to that used by Irwin to derive his "strain energy release rate," G, which Rice showed as being equivalent to his mechanical CDF, J. The derivations show that electrochemical CDFs both for active path dissolution (APD) and hydrogen embrittlement (HE) mechanisms of SCC are simply proportional to Tafel's electrochemical anodic and cathodic overpotentials, η a and η c, respectively. Phenomenological SCC models based on the kinetics of APD and HE crack growth are used to derive expressions for the kinetic threshold, J scc, below which crack growth cannot be sustained. These models show how independent mechanical and environmental CDFs may act together to drive SCC crack advance. Development of a user-friendly computational tool for calculating Tafel's overpotentials is advocated.

  17. Who's Driving Home?: Assessing Adolescent Drinking and Driving.

    ERIC Educational Resources Information Center

    Swisher, John D.; Bibeau, Daniel

    1987-01-01

    Data from 13,998 students revealed that high percentages of students drank often and that many of these students reported being drunk often. While most students indicated they would prefer not to drive home after drinking, approximately one-third of driving age students indicated they would drive under the influence of alcohol or would ride with…

  18. Dynamic load sharing for conveyor belts with multiple drive stations

    SciTech Connect

    Churchill, F.T.

    1995-05-01

    The characteristics and limitations of multiple drive station belt conveyors are explored and a computational method is presented as a means of providing drive coordination which can skirt some of the limitations. This paper will describe some of the design parameters of concern for belt conveyors, including belt tension and how it varies with load, how the unpredictably non-uniform loading of the belt affects performance, and will explore the relationship of friction between the belt and a drive pulley and how this limits the amount of horsepower which can be transmitted to the belt. The way in which these parameters change in configurations with multiple drives and multiple drive stations is outlined. The two main means of employing booster drives are presented; tripper booster and linear booster. The tripper booster technology is amenable to tension control, in which the torque provided by each drive station is controlled by the tension in the belt measured immediately downstream of the drive station. This approach has proved successful in belt systems with as many as four booster drive stations, operating at belt loads in excess of 3200 tons per hour over 12,000 ft of belt. The linear booster arrangement does not allow a convenient method of measuring belt tension, thus a computational algorithm was devised to take advantage of the geometry of the belt system to control tension of the belt within certain limits without the use of tension feedback. This approach has proven useful in 10,000 foot belt system which has a single booster drive station, operating at loads up to 4000 tons per hour.

  19. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    SciTech Connect

    2001-07-01

    .'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

  20. Result of Modular Necks in Primary Total Hip Arthroplasty with a Average Follow-up of Four Years

    PubMed Central

    Yi, Jemin; Nam, Young Jun; Kim, Keun Woo

    2016-01-01

    Purpose This study aimed to investigate the outcomes of modular neck-utilization in primary total hip arthroplasty (THA). Materials and Methods Thirty patients (34 hips) who had modular stem THA between April 2011 and January 2013 were evaluated. There were 19 men and 11 women with a mean age of 61.2 years at the time of surgery. There were 20 cases of osteonecrosis of femoral head, 7 cases of osteoarthritis, 6 cases of femur neck fracture, and 1 case of rheumatoid arthritis. No patients presented with anatomical deformity of hip. Patients were operated on using a modified Watson-Jones anterolateral approach. All patients underwent clinical and radiological follow-up at 6 weeks, 3, 6, and 12 months, and every year postoperatively. The mean duration of follow-up was 48.2 months (range, 39 to 59 months). Results The average Harris hip score improved from 63.7 to 88.1 at the final follow-up. Radiographically, mean acetabular cup inclination was 45.3°(range, 36°-61°) and anteversion was 21.7°(range, 11°-29°). All were neutral-positioned stems except 5 which were varus-positioned stems. In only 3 cases (8.8%), varus or valgus necks were required. A case of linear femoral fracture occurred intraoperatively and 1 case of dislocation occurred at postoperative 2 weeks. No complications at modular junction were occurred. Conclusion Our study shows that the use of modular necks had favorable clinical and radiographic results. This suggests that the use of modular neck in primary THA without anatomical deformity is safe at a follow-up of 39 months. PMID:27777916