Science.gov

Sample records for modular multifunctional protein

  1. [ALR, the multifunctional protein].

    PubMed

    Balogh, Tibor; Szarka, András

    2015-03-29

    ALR is a mystic protein. It has a so called "long" 22 kDa and a "short" 15 kDa forms. It has been described after partial hepatectomy and it has just been considered as a key protein of liver regeneration. At the beginning of the 21st century it has been revealed that the "long" form is localized in the mitochondrial intermembrane space and it is an element of the mitochondrial protein import and disulphide relay system. Several proteins of the substrates of the mitochondrial disulphide relay system are necessary for the proper function of the mitochondria, thus any mutation of the ALR gene leads to mitochondrial diseases. The "short" form of ALR functions as a secreted extracellular growth factor and it promotes the protection, regeneration and proliferation of hepatocytes. The results gained on the recently generated conditional ALR mutant mice suggest that ALR can play an important role in the pathogenesis of alcoholic and non-alcoholic steatosis. Since the serum level of ALR is modified in several liver diseases it can be a promising marker molecule in laboratory diagnostics. PMID:25796277

  2. Multifunctional Microtubule-Associated Proteins in Plants

    PubMed Central

    Krtková, Jana; Benáková, Martina; Schwarzerová, Kateřina

    2016-01-01

    Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes. PMID:27148302

  3. Multifunctional protein: cardiac ankyrin repeat protein*

    PubMed Central

    Zhang, Na; Xie, Xiao-jie; Wang, Jian-an

    2016-01-01

    Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases. PMID:27143260

  4. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms.

  5. Modularity in protein structures: study on all-alpha proteins.

    PubMed

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  6. Toward Modular Analysis of Supramolecular Protein Assemblies.

    PubMed

    Kim, Jaehoon; Kim, Jin-Gyun; Yun, Giseok; Lee, Phill-Seung; Kim, Do-Nyun

    2015-09-01

    Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome. PMID:26575921

  7. Linker design for the modular assembly of multifunctional and targeted platinum(ii)-containing anticancer agents.

    PubMed

    Ding, S; Bierbach, U

    2016-08-16

    A versatile and efficient modular synthetic platform was developed for assembling multifunctional conjugates and targeted forms of platinum-(benz)acridines, a class of highly cytotoxic DNA-targeted hybrid agents. The synthetic strategy involved amide coupling between succinyl ester-modified platinum compounds (P1, P2) and a set of 11 biologically relevant primary and secondary amines (N1-N11). To demonstrate the feasibility and versatility of the approach, a structurally and functionally diverse range of amines was introduced. These include biologically active molecules, such as rucaparib (a PARP inhibitor), E/Z-endoxifen (an estrogen receptor antagonist), and a quinazoline-based tyrosine kinase inhibitor. Micro-scale reactions in Eppendorf tubes or on 96-well plates were used to screen for optimal coupling conditions in DMF solution with carbodiimide-, uronium-, and phosphonium-based compounds, as well as other common coupling reagents. Reactions with the phosphonium-based coupling reagent PyBOP produced the highest yields and gave the cleanest conversions. Furthermore, it was demonstrated that the chemistry can also be performed in aqueous media and is amenable to parallel synthesis based on multiple consecutive reactions in DMF in a "one-tube" format. In-line LC-MS was used to assess the stability of the conjugates in physiologically relevant buffers. Hydrolysis of the conjugates occurs at the ester moiety and is facilitated by the aquated metal moiety under low-chloride ion conditions. The rate of ester cleavage greatly depends on the nature of the amine component. Potential applications of the linker technology are discussed. PMID:27251881

  8. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  9. The Semantics of the Modular Architecture of Protein Structures.

    PubMed

    Hleap, Jose Sergio; Blouin, Christian

    2016-01-01

    Protein structures can be conceptualized as context-aware self-organizing systems. One of its emerging properties is a modular architecture. Such modular architecture has been identified as domains and defined as its units of evolution and function. However, this modular architecture is not exclusively defined by domains. Also, the definition of a domain is an ongoing debate. Here we propose differentiating structural, evolutionary and functional domains as distinct concepts. Defining domains or modules is confounded by diverse definitions of the concept, and also by other elements inherent to protein structures. An apparent hierarchy in protein structure architecture is one of these elements, where lower level interactions may create noise for the definition of higher levels. Diverse modularity-molding factors such as folding, function, and selection, can have a misleading effect when trying to define a given type of module. It is thus important to keep in mind this complexity when defining modularity in protein structures and interpreting the outcome modularity inference approaches.

  10. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  11. Multifunctional cationic peptide fractions from flaxseed protein hydrolysates.

    PubMed

    Udenigwe, Chibuike C; Aluko, Rotimi E

    2012-03-01

    The aim of this work was to determine the multifunctional properties of flaxseed protein-derived cationic peptide fractions. Alcalase hydrolysis of flaxseed protein fractions liberated cationic peptides, which were separated into two major fractions (FI and FII) by chromatography using a cation-exchange column. Due to their cationic property, the peptide fractions bound and inactivated calmodulin (CaM, a negatively charged enzyme activator protein) with concomitant inhibition of CaM-dependent phosphodiesterase (CaMPDE); this activity was substantially reduced as CaM concentration increased. Enzyme kinetics studies showed competitive inhibition of CaMPDE by FI and FII with enzyme-inhibitor dissociation constants of 0.0202 and 0.0511 mg/ml, respectively. Only the FII peptides showed multifunctional activities by inhibiting CaMPDE, angiotensin converting enzyme (ACE) and renin. Separation of FII peptides by reverse phase HPLC resulted in eight fractions (FII-2 to FII-9) that inhibited the activities of CaMPDE, ACE, and renin but this multifunctional activity was more pronounced in FII-6. From LC-MS analysis, identified peptides present in FII fraction had molecular size range of 330-735 Da, which suggests potential for increased absorption. Potential peptide sequences were identified for each of the HPLC fractions and shown to contain either lysine or arginine as the positively charged amino acid residue. The multifunctional properties of the cationic peptide fractions can potentially enhance their use in targeting multiple symptoms of cardiovascular disease, considering that the excessive levels of CaM, CaMPDE, renin and ACE play important roles in enhancing progression and intensity of chronic human diseases. PMID:22327315

  12. Ureases as multifunctional toxic proteins: A review.

    PubMed

    Carlini, Celia R; Ligabue-Braun, Rodrigo

    2016-02-01

    Ureases are metalloenzymes that hydrolyze urea into ammonia and carbon dioxide. They were the first enzymes to be crystallized and, with them, the notion that enzymes are proteins became accepted. Novel toxic properties of ureases that are independent of their enzyme activity have been discovered in the last three decades. Since our first description of the neurotoxic properties of canatoxin, an isoform of the jack bean urease, which appeared in Toxicon in 1981, about one hundred articles have been published on "new" properties of plant and microbial ureases. Here we review the present knowledge on the non-enzymatic properties of ureases. Plant ureases and microbial ureases are fungitoxic to filamentous fungi and yeasts by a mechanism involving fungal membrane permeabilization. Plant and at least some bacterial ureases have potent insecticidal effects. This entomotoxicity relies partly on an internal peptide released upon proteolysis of ingested urease by insect digestive enzymes. The intact protein and its derived peptide(s) are neurotoxic to insects and affect a number of other physiological functions, such as diuresis, muscle contraction and immunity. In mammal models some ureases are acutely neurotoxic upon injection, at least partially by enzyme-independent effects. For a long time bacterial ureases have been recognized as important virulence factors of diseases by urease-producing microorganisms. Ureases activate exocytosis in different mammalian cells recruiting eicosanoids and Ca(2+)-dependent pathways, even when their ureolytic activity is blocked by an irreversible inhibitor. Ureases are chemotactic factors recognized by neutrophils (and some bacteria), activating them and also platelets into a pro-inflammatory "status". Secretion-induction by ureases may play a role in fungal and bacterial diseases in humans and other animals. The now recognized "moonlighting" properties of these proteins have renewed interest in ureases for their biotechnological

  13. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  14. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing. PMID:26781542

  15. Phylogenetic analysis of modularity in protein interaction networks

    PubMed Central

    Erten, Sinan; Li, Xin; Bebek, Gurkan; Li, Jing; Koyutürk, Mehmet

    2009-01-01

    Background In systems biology, comparative analyses of molecular interactions across diverse species indicate that conservation and divergence of networks can be used to understand functional evolution from a systems perspective. A key characteristic of these networks is their modularity, which contributes significantly to their robustness, as well as adaptability. Consequently, analysis of modular network structures from a phylogenetic perspective may be useful in understanding the emergence, conservation, and diversification of functional modularity. Results In this paper, we propose a phylogenetic framework for analyzing network modules, with applications that extend well beyond network-based phylogeny reconstruction. Our approach is based on identification of modular network components from each network separately, followed by projection of these modules onto the networks of other species to compare different networks. Subsequently, we use the conservation of various modules in each network to assess the similarity between different networks. Compared to traditional methods that rely on topological comparisons, our approach has key advantages in (i) avoiding intractable graph comparison problems in comparative network analysis, (ii) accounting for noise and missing data through flexible treatment of network conservation, and (iii) providing insights on the evolution of biological systems through investigation of the evolutionary trajectories of network modules. We test our method, MOPHY, on synthetic data generated by simulation of network evolution, as well as existing protein-protein interaction data for seven diverse species. Comprehensive experimental results show that MOPHY is promising in reconstructing evolutionary histories of extant networks based on conservation of modularity, it is highly robust to noise, and outperforms existing methods that quantify network similarity in terms of conservation of network topology. Conclusion These results establish

  16. Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation

    PubMed Central

    Davis, Nicolynn E.; Ding, Sheng; Forster, Ryan; Pinkas, Daniel M.; Barron, Annelise E.

    2012-01-01

    Biomaterials that mimic the extracellular matrix in both modularity and crosslinking chemistry have the potential to recapitulate the instructive signals that ultimately control cell fate. Toward this goal, modular protein polymer-based hydrogels were created through genetic engineering and enzymatic crosslinking. Animal derived tissue transglutaminase (tTG) and recombinant human transglutaminase (hTG) enzymes were used for coupling two classes of protein polymers containing either lysine or glutamine, which have the recognition substrates for enzymatic crosslinking, evenly spaced along the protein backbone. Utilizing tTG under physiological conditions, crosslinking occurred within two minutes, as determined by particle tracking microrheology. Hydrogel composition impacted the elastic storage modulus of the gel over 4-fold and also influenced microstructure and degree of swelling, but did not appreciably effect degradation by plasmin. Mouse 3T3 and primary human fibroblasts were cultured in both 2- and 3-dimensions without a decrease in cell viability and displayed spreading in 2D. The properties of these gels, which are controlled through the specific nature of the protein polymer precursors, render these gels valuable for in situ therapies. Furthermore, the modular hydrogel composition allows tailoring of mechanical and physical properties for specific tissue engineering applications. PMID:20609472

  17. Mining the Modular Structure of Protein Interaction Networks

    PubMed Central

    Furlong, Laura Inés; Chernomoretz, Ariel

    2015-01-01

    Background Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. Methodology We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera’s cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. Results As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge. PMID:25856434

  18. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

    PubMed

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X

    2016-10-01

    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired.

  19. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

    PubMed

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X

    2016-10-01

    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired. PMID:27424213

  20. Modular microfluidics for point-of-care protein purifications

    SciTech Connect

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  1. Atomic force microscopy reveals the mechanical design of a modular protein

    NASA Astrophysics Data System (ADS)

    Li, Hongbin; Oberhauser, Andres F.; Fowler, Susan B.; Clarke, Jane; Fernandez, Julio M.

    2000-06-01

    Tandem modular proteins underlie the elasticity of natural adhesives, cell adhesion proteins, and muscle proteins. The fundamental unit of elastic proteins is their individually folded modules. Here, we use protein engineering to construct multimodular proteins composed of Ig modules of different mechanical strength. We examine the mechanical properties of the resulting tandem modular proteins by using single protein atomic force microscopy. We show that by combining modules of known mechanical strength, we can generate proteins with novel elastic properties. Our experiments reveal the simple mechanical design of modular proteins and open the way for the engineering of elastic proteins with defined mechanical properties, which can be used in tissue and fiber engineering.

  2. Designed Modular Proteins as Scaffolds To Stabilize Fluorescent Nanoclusters.

    PubMed

    Couleaud, Pierre; Adan-Bermudez, Sergio; Aires, Antonio; Mejías, Sara H; Sot, Begoña; Somoza, Alvaro; Cortajarena, Aitziber L

    2015-12-14

    Proteins have been used as templates to stabilize fluorescent metal nanoclusters thus obtaining stable fluorescent structures, and their fluorescent properties being modulated by the type of protein employed. Designed consensus tetratricopeptide repeat (CTPR) proteins are suited candidates as templates for the stabilization of metal nanoclusters due to their modular structural and functional properties. Here, we have studied the ability of CTPR proteins to stabilize fluorescent gold nanoclusters giving rise to designed functional hybrid nanostructures. First, we have investigated the influence of the number of CTPR units, as well as the presence of cysteine residues in the CTPR protein, on the fluorescent properties of the protein-stabilized gold nanoclusters. Synthetic protocols to retain the protein structure and function have been developed, since the structural and functional integrity of the protein template is critical for further applications. Finally, as a proof-of-concept, a CTPR module with specific binding capabilities has been used to stabilize gold nanoclusters with positive results. Remarkably, the protein-stabilized gold nanocluster obtained combines both the fluorescence properties of the nanoclusters and the functional properties of the protein. The fluorescence changes in nanoclusters fluorescence have been successfully used as a sensor to detect when the specific ligand was recognized by the CTPR module.

  3. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems.

    PubMed

    Niyonsaba, François; Nagaoka, Isao; Ogawa, Hideoki; Okumura, Ko

    2009-01-01

    In addition to the physical barrier of the stratum corneum, cutaneous innate immunity also includes the release of various humoral mediators, such as cytokines and chemokines, recruitment and activation of phagocytes, and the production of antimicrobial proteins/peptides (AMPs). AMPs form an innate epithelial chemical shield, which provides a front-line component in innate immunity to inhibit microbial invasion; however, this might be an oversimplification of the diverse functions of these molecules. In fact, apart from exhibiting a broad spectrum of microbicidal properties, it is increasingly evident that AMPs display additional activities that are related to the stimulation and modulation of the cutaneous immune system. These diverse functions include chemoattraction and activation of immune and/or inflammatory cells, the production and release of cytokines and chemokines, acceleration of angiogenesis, promotion of wound healing, neutralization of harmful microbial products, and bridging of both innate and adaptive immunity. Thus, better understanding of the functions of AMPs in skin and identification of their signaling mechanisms may offer new strategies for the development of potential therapeutics for the treatment of infection- and/or inflammation-related skin diseases. Here, we briefly outline the structure, regulation of expression, and multifunctional roles of principal skin-derived AMPs.

  4. Modular microfluidics for point-of-care protein purifications

    DOE PAGES

    Millet, L. J.; Lucheon, J. D.; Standaert, R. F.; Retterer, S. T.; Doktycz, M. J.

    2015-01-01

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured tomore » suit a variety of fluidic operations or biochemical processes. In conclusion, we demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.« less

  5. Subcellular Dynamics of Multifunctional Protein Regulation: Mechanisms of GAPDH Intracellular Translocation

    PubMed Central

    Sirover, Michael A.

    2012-01-01

    Multidimensional proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibit distinct activities unrelated to their originally identified functions. Apart from glycolysis, GAPDH participates in iron metabolism, membrane trafficking, histone biosynthesis, the maintenance of DNA integrity and receptor mediated cell signaling. Further, multifunctional proteins exhibit distinct changes in their subcellular localization reflecting their new activities. As such, GAPDH is not only a cytosolic protein but is localized in the membrane, the nucleus, polysomes, the ER and the Golgi. In addition, although the initial subcellular localizations of multifunctional proteins may be of significance, dynamic changes in intracellular distribution may occur as a consequence of those new activities. As such, regulatory mechanisms may exist through which cells control multifunctional protein expression as a function of their subcellular localization. The temporal sequence through which subcellular translocation and the acquisition of new GAPDH functions is considered as well as post-translational modification as a basis for its intracellular transport. PMID:22388977

  6. Protein linguistics - a grammar for modular protein assembly?

    PubMed

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  7. Split green fluorescent protein as a modular binding partner for protein crystallization

    SciTech Connect

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.; Terwilliger, Thomas C. Waldo, Geoffrey S.

    2013-12-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.

  8. Modular synthetic inverters from zinc finger proteins and small RNAs

    DOE PAGES

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; Arcak, Murat; Keasling, Jay D.; Rao, Christopher V.

    2016-02-17

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. In conclusion, our chosenmore » parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.« less

  9. Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs

    PubMed Central

    Hsia, Justin; Holtz, William J.; Maharbiz, Michel M.; Arcak, Murat; Keasling, Jay D.

    2016-01-01

    Synthetic zinc finger proteins (ZFPs) can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA) to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three “off the shelf” ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. Our chosen parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here. PMID:26886888

  10. Modularity of a carbon-fixing protein organelle.

    PubMed

    Bonacci, Walter; Teng, Poh K; Afonso, Bruno; Niederholtmeyer, Henrike; Grob, Patricia; Silver, Pamela A; Savage, David F

    2012-01-10

    Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures. PMID:22184212

  11. Ribosomal Protein S3: A Multifunctional Target of Attaching/Effacing Bacterial Pathogens

    PubMed Central

    Gao, Xiaofei; Hardwidge, Philip R.

    2011-01-01

    The extraribosomal functions of ribosomal proteins have drawn significant recent attention. Ribosomal protein S3 (RPS3), a component of the eukaryotic 40S ribosomal subunit, is a multifunctional protein that regulates DNA repair, apoptosis, and the innate immune response to bacterial infection. Here we the review the latest findings about RPS3 extraribosomal functions, with special emphasis on their relation to microbial pathogenesis and enteropathogenic Escherichia coli. PMID:21738525

  12. Protein cofactor competition regulates the action of a multifunctional RNA helicase in different pathways.

    PubMed

    Heininger, Annika U; Hackert, Philipp; Andreou, Alexandra Z; Boon, Kum-Loong; Memet, Indira; Prior, Mira; Clancy, Anne; Schmidt, Bernhard; Urlaub, Henning; Schleiff, Enrico; Sloan, Katherine E; Deckers, Markus; Lührmann, Reinhard; Enderlein, Jörg; Klostermeier, Dagmar; Rehling, Peter; Bohnsack, Markus T

    2016-01-01

    A rapidly increasing number of RNA helicases are implicated in several distinct cellular processes, however, the modes of regulation of multifunctional RNA helicases and their recruitment to different target complexes have remained unknown. Here, we show that the distribution of the multifunctional DEAH-box RNA helicase Prp43 between its diverse cellular functions can be regulated by the interplay of its G-patch protein cofactors. We identify the orphan G-patch protein Cmg1 (YLR271W) as a novel cofactor of Prp43 and show that it stimulates the RNA binding and ATPase activity of the helicase. Interestingly, Cmg1 localizes to the cytoplasm and to the intermembrane space of mitochondria and its overexpression promotes apoptosis. Furthermore, our data reveal that different G-patch protein cofactors compete for interaction with Prp43. Changes in the expression levels of Prp43-interacting G-patch proteins modulate the cellular localization of Prp43 and G-patch protein overexpression causes accumulation of the helicase in the cytoplasm or nucleoplasm. Overexpression of several G-patch proteins also leads to defects in ribosome biogenesis that are consistent with withdrawal of the helicase from this pathway. Together, these findings suggest that the availability of cofactors and the sequestering of the helicase are means to regulate the activity of multifunctional RNA helicases and their distribution between different cellular processes. PMID:26821976

  13. ThermoTRP channels as modular proteins with allosteric gating.

    PubMed

    Latorre, Ramon; Brauchi, Sebastian; Orta, Gerardo; Zaelzer, Cristián; Vargas, Guillermo

    2007-01-01

    . Caspani, P.A. Heppenstall, Direct activation of the ion channel TRPA1 by Ca(2+), Nat. Neurosci. 10 (2007) 277-279]. These stimuli include voltage, pH, agonist binding, and temperature. Understanding how each of these distinct physiological signals regulate channel opening will be informative about the mechanical linkages that can act either independently or in concert to influence channel activation. In this paper we show that thermoTRP channel-forming proteins are modular in the sense that certain structure or structures (modules) confer temperature-dependent regulation, whereas others confer voltage-dependent regulation. We also discuss the thermodynamic basis of heat and cold activation in an effort to elucidate what confer to these channels the capability to be gated by temperature directly. PMID:17499848

  14. Multifunctional nanoreactor for comprehensive characterization of membrane proteins based on surface functionalized mesoporous foams.

    PubMed

    Fang, Xiaoni; Qiao, Liang; Yan, Guoquan; Yang, Pengyuan; Liu, Baohong

    2015-09-15

    An integrated protocol is proposed here for efficient analysis of membrane proteins based on surface functionalized mesoporous graphene foams (MGF). The inherent hydrophobic nature of MGF and surface modification with hydrophilic chitosan (CS) make it highly suitable for the enrichment of hydrophobic membrane proteins from organic solvent, while remaining well-dispersed in aqueous solution for subsequent proteolysis. Therefore, such a multifunctional reactor ensures a facile solvent adjustment route. Furthermore, as a chitosan modified nanoporous reactor, it also provides a biocompatible nanoenvironment that can maintain the stability and activity of enzymes to realize efficient in situ digestion of the enriched membrane proteins. The concept was first proved with a standard hydrophobic membrane protein, bacteriorhodopsin, where a high number of identified peptides and amino acid sequence coverage were achieved even at extremely low protein concentration. The mesoporous reaction system was further applied to the analysis of complex real-case proteome samples, where 931 membrane proteins were identified in triplicate analyses by 2D LC-MS/MS. In contrast, with in-solution proteolysis, only 73 membrane proteins were identified from the same sample by the same 2D LC-MS/MS. The identified membrane proteins by the MGF-CS protocol include many biomarkers of the cell line. These results suggest that the multifunctional MGF-CS protocol is of great value to facilitate the comprehensive characterization of membrane proteins in the proteome research. PMID:26305297

  15. Analyzing the roles of multi-functional proteins in cells: the case of arrestins and GRKs

    PubMed Central

    Gurevich, Vsevolod V.; Gurevich, Eugenia V.

    2016-01-01

    Most proteins have multiple functions. Obviously, conventional methods of manipulating the level of the protein of interest in the cell, such as over-expression, knockout or knockdown, affect all of its functions simultaneously. The key advantage of these methods is that over-expression, knockout or knockdown does not require any knowledge of the molecular mechanisms of the function(s) of the protein of interest. The disadvantage is that these approaches are inadequate to elucidate the role of an individual function of the protein in a particular cellular process. An alternative is the use of re-engineered proteins, in which a single function is eliminated or enhanced. The use of mono-functional elements of a multi-functional protein can also yield cleaner answers. This approach requires detailed knowledge of the structural basis of each function of the protein in question. Thus, a lot of preliminary structure-function work is necessary to make it possible. However, when this information is available, replacing the protein of interest with a mutant in which individual functions are modified can shed light on the biological role of those particular functions. Here we illustrate this point using the example of protein kinases, most of which have additional non-enzymatic functions, as well as arrestins, known multi-functional signaling regulators in the cell. PMID:26453028

  16. Modular Broad-Host-Range Expression Vectors for Single-Protein and Protein Complex Purification

    PubMed Central

    Fodor, Barna D.; Kovács, Ákos T.; Csáki, Róbert; Hunyadi-Gulyás, Éva; Klement, Éva; Maróti, Gergely; Mészáros, Lívia S.; Medzihradszky, Katalin F.; Rákhely, Gábor; Kovács, Kornél L.

    2004-01-01

    A set of modular broad-host-range expression vectors with various affinity tags (six-His-tag, FLAG-tag, Strep-tag II, T7-tag) was created. The complete nucleotide sequences of the vectors are known, and these small vectors can be mobilized by conjugation. They are useful in the purification of proteins and protein complexes from gram-negative bacterial species. The plasmids were easily customized for Thiocapsa roseopersicina, Rhodobacter capsulatus, and Methylococcus capsulatus by inserting an appropriate promoter. These examples demonstrate the versatility and flexibility of the vectors. The constructs harbor the T7 promoter for easy overproduction of the desired protein in an appropriate Escherichia coli host. The vectors were useful in purifying different proteins from T. roseopersicina. The FLAG-tag-Strep-tag II combination was utilized for isolation of the HynL-HypC2 protein complex involved in hydrogenase maturation. These tools should be useful for protein purification and for studying protein-protein interactions in a range of bacterial species. PMID:14766546

  17. Soy-Protein-Based Nanofabrics for Highly Efficient and Multifunctional Air Filtration.

    PubMed

    Souzandeh, Hamid; Johnson, Kyle S; Wang, Yu; Bhamidipaty, Keshava; Zhong, Wei-Hong

    2016-08-10

    Proteins are well-known by their numerous active functional groups along the polypeptide chain. The variety of functional groups of proteins provides a great potential for proteins to interact with airborne pollutants with varying surface properties. However, to our knowledge, a successful demonstration of this potential has not been reported before. In this work, soy protein, a type of abundant plant protein, has been employed for the first time to fabricate multifunctional air-filtration materials. To take advantage of the functional groups of soy protein for air filtration, the soy protein was first well denatured to unfold the polypeptide chains and then fabricated into nanofibers with the help of poly(vinyl alcohol). It was found that the resultant nanofabrics showed high filtration efficiency not only for airborne particulates with a broad range of size but also for various toxic gaseous chemicals (e.g., formaldehyde and carbon monoxide), a capability that has not been realized by conventional air-filtering materials. This study indicates that protein-based nanofabrics are promising nanomaterials for multifunctional air-filtration applications.

  18. Destabilase-lysozyme of medicinal leech. Multifunctionality of recombinant protein.

    PubMed

    Zavalova, L L; Lazarev, V N; Levitsky, S A; Yudina, T G; Baskova, I P

    2010-09-01

    Preparation and purification of a recombinant protein are described along with characteristics of its specific (for ε-(γ-Glu)-Lys and D-dimer substrates) and nonspecific (for L-γ-Glu-pNA) isopeptidase activities; the absence of peptidase function for α-(α-Glu)-Lys substrate is noted. It is shown that the protein exhibits muramidase (cell walls of Micrococcus lysodeikticus) and specific glycosidase activities. The latter was determined towards the fluorogenic substrate 4-methylumbelliferyl-tetra-N-acetyl-β-chitotetraoxide. Antimicrobial activity of recombinant destabilase-lysozyme protein (recDest-Lys) and its 11-membered amphipathic peptide was revealed towards cells of the strict anaerobic Archaean Methanosarcina barkeri, whose cell walls contain no murein. Possible mechanisms of the effect of recDest-Lys on these cells are discussed.

  19. Split green fluorescent protein as a modular binding partner for protein crystallization.

    PubMed

    Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O; Terwilliger, Thomas C; Waldo, Geoffrey S

    2013-12-01

    A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.

  20. Split green fluorescent protein as a modular binding partner for protein crystallization

    PubMed Central

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2013-01-01

    A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-­strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization. PMID:24311592

  1. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments.

    PubMed

    Liu, Allan Yi; Zheng, Hong; Ouyang, Gaoliang

    2014-07-01

    The behavior and fate of cells in tissues largely rely upon their cross-talk with the tissue microenvironment including neighboring cells, the extracellular matrix (ECM), and soluble cues from the local and systemic environments. Dysregulation of tissue microenvironment can drive various inflammatory diseases and tumors. The ECM is a crucial component of tissue microenvironment. ECM proteins can not only modulate tissue microenvironment but also regulate the behavior of surrounding cells and the homeostasis of tissues. As a nonstructural ECM protein, periostin is generally present at low levels in most adult tissues; however, periostin is often highly expressed at sites of injury or inflammation and in tumors within adult organisms. Current evidence demonstrates that periostin actively contributes to tissue injury, inflammation, fibrosis and tumor progression. Here, we summarize the roles of periostin in inflammatory and tumor microenvironments.

  2. Human pyruvate kinase M2: a multifunctional protein.

    PubMed

    Gupta, Vibhor; Bamezai, Rameshwar N K

    2010-11-01

    Glycolysis, a central metabolic pathway, harbors evolutionary conserved enzymes that modulate and potentially shift the cellular metabolism on requirement. Pyruvate kinase, which catalyzes the last but rate-limiting step of glycolysis, is expressed in four isozymic forms, depending on the tissue requirement. M2 isoform (PKM2) is exclusively expressed in embryonic and adult dividing/tumor cells. This tetrameric allosterically regulated isoform is intrinsically designed to downregulate its activity by subunit dissociation (into dimer), which results in partial inhibition of glycolysis at the last step. This accumulates all upstream glycolytic intermediates as an anabolic feed for synthesis of lipids and nucleic acids, whereas reassociation of PKM2 into active tetramer replenishes the normal catabolism as a feedback after cell division. In addition, involvement of this enzyme in a variety of pathways, protein-protein interactions, and nuclear transport suggests its potential to perform multiple nonglycolytic functions with diverse implications, although multidimensional role of this protein is as yet not fully explored. This review aims to provide an overview of the involvement of PKM2 in various physiological pathways with possible functional implications. PMID:20857498

  3. E2 protein cage as a multifunctional nanoplatform

    NASA Astrophysics Data System (ADS)

    Dalmau Mallorqui, Merce

    Caged protein systems such as viral capsids, heat shock proteins, and ferritin are spherical structures that occur naturally in living organisms and are a growing class of biomimetic templates used to create new materials in nanotechnology. Such systems have been proposed as general drug carriers since they form highly symmetric nanoscale architectures that offer the potential to be tailored according to the desired application. Within this framework, this dissertation focuses on the design and development of a new drug delivery nanoplatform based on the E2 subunit of the pyruvate dehydrogenase protein from Bacillus stearothermophilus. This scaffold forms a 25-nm nanocapsule structure with a hollow cavity. We produced a variant of this protein consisting only of the structural core, and found the thermostability of this self-assembled scaffold to be unusually high, with an onset unfolding temperature of 81.1 +/- 0.9°C and an apparent midpoint unfolding temperature of 91.4 +/- 1.4°C. To evaluate the potential of this scaffold for encapsulation of guest molecules in the internal cavity, we made variants which altered the physicochemical properties of the hollow internal surface. These mutants, yielding up to 240 mutations within this cavity, assembled into correct architectures and exhibited high thermostability that was also comparable to the wild-type scaffold. To show the applicability of this scaffold we coupled two drug-like small molecules to the internal cavity. We also developed a new strategy for encapsulation of small hydrophobic drug molecules. This method is based on hydrophobic differences between the interior cavity and the external buffer to nucleate drug-like agents inside the protein cage. We demonstrate that internal mutations can introduce non-native functionality and enable molecular encapsulation within the cavity while still retaining the dodecahedral structure. Another surface amenable to modifications is the interface between subunits. Such

  4. The Legionella pneumophila Chaperonin - An Unusual Multifunctional Protein in Unusual Locations.

    PubMed

    Garduño, Rafael A; Chong, Audrey; Nasrallah, Gheyath K; Allan, David S

    2011-01-01

    The Legionella pneumophila chaperonin, high temperature protein B (HtpB), was discovered as a highly immunogenic antigen, only a few years after the identification of L. pneumophila as the causative agent of Legionnaires' disease. As its counterparts in other bacterial pathogens, HtpB did not initially receive further attention, particularly because research was focused on a few model chaperonins that were used to demonstrate that chaperonins are essential stress proteins, present in all cellular forms of life and involved in helping other proteins to fold. However, chaperonins have recently attracted increasing interest, particularly after several reports confirmed their multifunctional nature and the presence of multiple chaperonin genes in numerous bacterial species. It is now accepted that bacterial chaperonins are capable of playing a variety of protein folding-independent roles. HtpB is clearly a multifunctional chaperonin that according to its location in the bacterial cell, or in the L. pneumophila-infected cell, plays different roles. HtpB exposed on the bacterial cell surface can act as an invasion factor for non-phagocytic cells, whereas the HtpB released in the host cell can act as an effector capable of altering organelle trafficking, the organization of actin microfilaments and cell signaling pathways. The road to discover the multifunctional nature of HtpB has been exciting and here we provide a historical perspective of the key findings linked to such discovery, as well as a summary of the experimental work (old and new) performed in our laboratory. Our current understanding has led us to propose that HtpB is an ancient protein that L. pneumophila uses as a key molecular tool important to the intracellular establishment of this fascinating pathogen. PMID:21713066

  5. Multifunctional Ca2+/calmodulin-dependent protein kinase is necessary for nuclear envelope breakdown

    PubMed Central

    1990-01-01

    The role of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in nuclear envelope breakdown (NEB) was investigated in sea urchin eggs. The eggs contain a 56-kD polypeptide which appears to be a homologue of neuronal CaM kinase. For example, it undergoes Ca2+/calmodulin-dependent autophosphorylation that converts it to a Ca2(+)-independent species, a hallmark of multifunctional CaM kinase. It is homologous to the alpha subunit of rat brain CaM kinase. Autophosphorylation and substrate phosphorylation by the sea urchin egg kinase are inhibited in vitro by CaMK(273-302), a synthetic peptide corresponding to the autoinhibitory domain of the neuronal CaM kinase. This peptide inhibited NEB when microinjected into sea urchin eggs. Only one mAb to the neuronal enzyme immunoprecipitated the 56-kD polypeptide. Only this antibody blocked or significantly delayed NEB when microinjected into sea urchin eggs. These results suggest that sea urchin eggs contain multifunctional CaM kinase, and that this enzyme is involved in the control of NEB during mitotic division. PMID:2229172

  6. Simple topological features reflect dynamics and modularity in protein interaction networks.

    PubMed

    Pritykin, Yuri; Singh, Mona

    2013-01-01

    The availability of large-scale protein-protein interaction networks for numerous organisms provides an opportunity to comprehensively analyze whether simple properties of proteins are predictive of the roles they play in the functional organization of the cell. We begin by re-examining an influential but controversial characterization of the dynamic modularity of the S. cerevisiae interactome that incorporated gene expression data into network analysis. We analyse the protein-protein interaction networks of five organisms, S. cerevisiae, H. sapiens, D. melanogaster, A. thaliana, and E. coli, and confirm significant and consistent functional and structural differences between hub proteins that are co-expressed with their interacting partners and those that are not, and support the view that the former tend to be intramodular whereas the latter tend to be intermodular. However, we also demonstrate that in each of these organisms, simple topological measures are significantly correlated with the average co-expression of a hub with its partners, independent of any classification, and therefore also reflect protein intra- and inter- modularity. Further, cross-interactomic analysis demonstrates that these simple topological characteristics of hub proteins tend to be conserved across organisms. Overall, we give evidence that purely topological features of static interaction networks reflect aspects of the dynamics and modularity of interactomes as well as previous measures incorporating expression data, and are a powerful means for understanding the dynamic roles of hubs in interactomes. PMID:24130468

  7. Structure and Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity.

    PubMed

    Hansen, Simon; Tremmel, Dirk; Madhurantakam, Chaithanya; Reichen, Christian; Mittl, Peer R E; Plückthun, Andreas

    2016-03-16

    Natural armadillo repeat proteins (nArmRP) like importin-α or β-catenin bind their target peptides such that each repeat interacts with a dipeptide unit within the stretched target peptide. However, this modularity is imperfect and also restricted to short peptide stretches of usually four to six consecutive amino acids. Here we report the development and characterization of a regularized and truly modular peptide-specific binding protein, based on designed armadillo repeat proteins (dArmRP), binding to peptides of alternating lysine and arginine residues (KR)n. dArmRP were obtained from nArmRP through cycles of extensive protein engineering, which rendered them more uniform. This regularity is reflected in the consistent binding of dArmRP to (KR)-peptides, where affinities depend on the lengths of target peptides and the number of internal repeats in a very systematic manner, thus confirming the modularity of the interaction. This exponential dependency between affinity and recognition length suggests that each module adds a constant increment of binding energy to sequence-specific recognition. This relationship was confirmed by comprehensive mutagenesis studies that also reveal the importance of individual peptide side chains. The 1.83 Å resolution crystal structure of a dArmRP with five identical internal repeats in complex with the cognate (KR)5 peptide proves a modular binding mode, where each dipeptide is recognized by one internal repeat. The confirmation of this true modularity over longer peptide stretches lays the ground for the design of binders with different specificities and tailored affinities by the assembly of dipeptide-specific modules based on armadillo repeats. PMID:26878586

  8. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  9. [PPR proteins--modular factors regulating expression of organellar genomes].

    PubMed

    Zapisek, Bartosz; Piątkowski, Jakub

    2015-01-01

    PPR proteins make up the most numerous family of RNA-binding proteins identified to date. They localize almost exclusively to plastids and mitochondria of eukaryotic organisms. The most striking feature of this family is the expansion of PPR protein-encoding genes in vascular plants, which likely coincided with plants colonizing land. PPR proteins participate in stabilizing, editing, splicing, degradation and processing of policistronic transcripts, as well as translation activation in mitochondria and plastids. Although the number of PPR proteins in non-plant organisms is significantly smaller than in plants, they still play a crucial role in regulating the expression of mtDNA. Disruptions of PPR protein-encoding genes usually result in severe phenotypic consequences. Plant PPR proteins bind RNA in a sequence-specific manner, where a single PPR motif recognizes an individual nucleotide in a given sequence. This opens up possibilities for engineering de novo synthetic protein sequences that would interact with precisely determined organellar sequences, thus enabling modulation of mtDNA and ctDNA expression.

  10. Computer-aided design of modular protein devices: Boolean AND gene activation

    NASA Astrophysics Data System (ADS)

    Salis, H.; Kaznessis, Y. N.

    2006-12-01

    Many potentially useful synthetic gene networks require the expression of an engineered gene if and only if two different DNA-binding proteins exist in sufficient concentration. While some natural and engineered systems activate gene expression according to a logical AND-like behavior, they often utilize allosteric or cooperative protein-protein interactions, rendering their components unsuitable for a toolbox of modular parts for use in multiple applications. Here, we develop a quantitative model to demonstrate that a small system of interacting fusion proteins, called a protein device, can activate an engineered gene according to the Boolean AND behavior while using only modular protein domains and DNA sites. The fusion proteins are created from transactivating, DNA-binding, non-DNA binding, and protein-protein interaction domains along with the corresponding peptide ligands. Using a combined kinetic and thermodynamic model, we identify the characteristics of the molecular components and their rates of constitutive production that maximize the fidelity of AND behavior. These AND protein devices facilitate the creation of complex genetic programs and may be used to create gene therapies, biosensors and other biomedical and biotechnological applications that turn on gene expression only when multiple DNA-binding proteins are simultaneously present.

  11. Modular coherence of protein dynamics in yeast cell polarity system

    PubMed Central

    Gao, Juntao Tony; Guimerà, Roger; Li, Hua; Pinto, Inês Mendes; Sales-Pardo, Marta; Wai, Stephanie C.; Rubinstein, Boris; Li, Rong

    2011-01-01

    In this study, we investigated on a systems level how complex protein interactions underlying cell polarity in yeast determine the dynamic association of proteins with the polar cortical domain (PCD) where they localize and perform morphogenetic functions. We constructed a network of physical interactions among >100 proteins localized to the PCD. This network was further divided into five robust modules correlating with distinct subprocesses associated with cell polarity. Based on this reconstructed network, we proposed a simple model that approximates a PCD protein's molecular residence time as the sum of the characteristic time constants of the functional modules with which it interacts, weighted by the number of edges forming these interactions. Regression analyses showed excellent fitting of the model with experimentally measured residence times for a large subset of the PCD proteins. The model is able to predict residence times using small training sets. Our analysis also revealed a scaffold protein that imposes a local constraint of dynamics for certain interacting proteins. PMID:21502521

  12. Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities.

    PubMed Central

    Ziegelin, G; Scherzinger, E; Lurz, R; Lanka, E

    1993-01-01

    alpha Protein of satellite phage P4 of Escherichia coli is multifunctional in P4 replication with three activities. First, the protein (subunit M(r) = 84,900) complexes specifically the P4 origin and the cis replication region required for replication. alpha Protein interacts with all six type I repeats (TGTTCACC) present in the origin. Second, associated with the alpha protein is a DNA helicase activity that is fueled by hydrolysis of a nucleoside 5' triphosphate. All common NTPs except UTP and dTTP can serve as cofactors. Strand separation of partial duplexes containing tailed ends that resemble a replication fork is preferred, although a preformed fork is not absolutely required for the enzyme to invade and unwind duplex DNA. alpha Protein catalyzes unwinding in the 3'-5' direction with respect to the strand it has bound. Finally, the primase activity already demonstrated for alpha protein is due to synthesis of RNA primers. In vitro, alpha protein generates di- to pentaribonucleotides on single-stranded phage fd DNA. The predominant product is the dimer pppApG, on which most of the longer oligoribonucleotides are based. Using DNA oligonucleotides of defined sequence as templates, synthesis of pppApG was also detectable. To date, among prokaryotic and eukaryotic replication systems, gp alpha is the only protein known that combines three activities on one single polypeptide chain. Images PMID:8253092

  13. Multifunctional Transmembrane Protein Ligands for Cell-Specific Targeting of Plasma Membrane-Derived Vesicles.

    PubMed

    Zhao, Chi; Busch, David J; Vershel, Connor P; Stachowiak, Jeanne C

    2016-07-01

    Liposomes and nanoparticles that bind selectively to cell-surface receptors can target specific populations of cells. However, chemical conjugation of ligands to these particles is difficult to control, frequently limiting ligand uniformity and complexity. In contrast, the surfaces of living cells are decorated with highly uniform populations of sophisticated transmembrane proteins. Toward harnessing cellular capabilities, here it is demonstrated that plasma membrane vesicles (PMVs) derived from donor cells can display engineered transmembrane protein ligands that precisely target cells on the basis of receptor expression. These multifunctional targeting proteins incorporate (i) a protein ligand, (ii) an intrinsically disordered protein spacer to make the ligand sterically accessible, and (iii) a fluorescent protein domain that enables quantification of the ligand density on the PMV surface. PMVs that display targeting proteins with affinity for the epidermal growth factor receptor (EGFR) bind at increasing concentrations to breast cancer cells that express increasing levels of EGFR. Further, as an example of the generality of this approach, PMVs expressing a single-domain antibody against green fluorescence protein (eGFP) bind to cells expressing eGFP-tagged receptors with a selectivity of ≈50:1. The results demonstrate the versatility of PMVs as cell targeting systems, suggesting diverse applications from drug delivery to tissue engineering. PMID:27294846

  14. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    SciTech Connect

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  15. Toxoplasma gondii transmembrane microneme proteins and their modular design

    PubMed Central

    Sheiner, Lilach; Santos, Joana M.; Klages, Natacha; Parussini, Fabiola; Jemmely, Noelle; Friedrich, Nikolas; Ward, Gary E.; Soldati-Favre, Dominique

    2010-01-01

    Summary Host cell invasion by the Apicomplexa critically relies on regulated secretion of transmembrane micronemal proteins (TM-MICs). Toxoplasma gondii possesses functionally non-redundant MICs complexes that participate in gliding motility, host cell attachment, moving junction formation, rhoptry secretion and invasion. The TM-MICs are released onto the parasite’s surface as complexes capable of interacting with host cell receptors. Additionally, TgMIC2 simultaneously connects to the actomyosin system via binding to aldolase. During invasion these adhesive complexes are shed from the surface notably via intramembrane cleavage of the TM-MICs by a rhomboid protease. Some TM-MICs act as escorters and assure trafficking of the complexes to the micronemes. We have investigated the properties of TgMIC6, TgMIC8, TgMIC8.2, TgAMA1 and the new micronemal protein TgMIC16 with respect to interaction with aldolase, susceptibility to rhomboid cleavage and presence of trafficking signals. We conclude that several TM-MICs lack targeting information within their C-terminal domains, indicating that trafficking depends on yet unidentified proteins interacting with their ectodomains. Most TM-MICs serve as substrates for a rhomboid protease and some of them are able to bind to aldolase. We also show that the residues responsible for binding to aldolase are essential for TgAMA1 but dispensable forTgMIC6 function during invasion. PMID:20545864

  16. Targeted Multifunctional Multimodal Protein-Shell Microspheres as Cancer Imaging Contrast Agents

    PubMed Central

    John, Renu; Nguyen, Freddy T.; Kolbeck, Kenneth J.; Chaney, Eric J.; Marjanovic, Marina; Suslick, Kenneth S.; Boppart, Stephen A.

    2012-01-01

    Purpose In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications. Procedures A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to αvβ3 integrin receptors that are over-expressed in tumors and atherosclerotic lesions. Results These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres. Conclusions Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance. PMID:21298354

  17. Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterials

    PubMed Central

    Malho, Jani-Markus; Arola, Suvi; Laaksonen, Päivi; Szilvay, Géza R; Ikkala, Olli; Linder, Markus B

    2015-01-01

    Molecular biomimetic models suggest that proteins in the soft matrix of nanocomposites have a multimodular architecture. Engineered proteins were used together with nanofibrillated cellulose (NFC) to show how this type of architecture leads to function. The proteins consist of two cellulose-binding modules (CBM) separated by 12-, 24-, or 48-mer linkers. Engineering the linkers has a considerable effects on the interaction between protein and NFC in both wet colloidal state and a dry film. The protein optionally incorporates a multimerizing hydrophobin (HFB) domain connected by another linker. The modular structure explains effects in the hydrated gel state, as well as the deformation of composite materials through stress distribution and crosslinking. Based on this work, strategies can be suggested for tuning the mechanical properties of materials through the coupling of protein modules and their interlinking architectures. PMID:26305491

  18. Multifunctional 8-hydroxyquinoline-appended cyclodextrins as new inhibitors of metal-induced protein aggregation.

    PubMed

    Oliveri, Valentina; Attanasio, Francesco; Puglisi, Antonino; Spencer, John; Sgarlata, Carmelo; Vecchio, Graziella

    2014-07-14

    Mounting evidence suggests a pivotal role of metal imbalances in protein misfolding and amyloid diseases. As such, metal ions represent a promising therapeutic target. In this context, the synthesis of chelators that also contain complementary functionalities to combat the multifactorial nature of neurodegenerative diseases is a highly topical issue. We report two new 8-hydroxyquinoline-appended cyclodextrins and highlight their multifunctional properties, including their Cu(II) and Zn(II) binding abilities, and capacity to act as antioxidants and metal-induced antiaggregants. In particular, the latter property has been applied in the development of an effective assay that exploits the formation of amyloid fibrils when β-lactoglobulin A is heated in the presence of metal ions.

  19. Repeat protein engineering: creating functional nanostructures/biomaterials from modular building blocks.

    PubMed

    Main, Ewan R G; Phillips, Jonathan J; Millership, Charlotte

    2013-10-01

    There is enormous interest in molecular self-assembly and the development of biological systems to form smart nanostructures for biotechnology (so-called 'bottom-up fabrications'). Repeat proteins are ideal choices for development of such systems as they: (i) possess a relatively simple relationship between sequence, structure and function; (ii) are modular and non-globular in structure; (iii) act as diverse scaffolds for the mediation of a diverse range of protein-protein interactions; and (iv) have been extensively studied and successfully engineered and designed. In the present review, we summarize recent advances in the use of engineered repeat proteins in the self-assembly of novel materials, nanostructures and biosensors. In particular, we show that repeat proteins are excellent monomeric programmable building blocks that can be triggered to associate into a range of morphologies and can readily be engineered as stimuli-responsive biofunctional materials.

  20. Mem-ADSVM: A two-layer multi-label predictor for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-06-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. However, most of the existing membrane-protein predictors have the following problems: (1) they do not predict whether a given protein is a membrane protein or not; (2) they are limited to predicting membrane proteins with single-label functional types but ignore those with multi-functional types; and (3) there is still much room for improvement for their performance. To address these problems, this paper proposes a two-layer multi-label predictor, namely Mem-ADSVM, which can identify membrane proteins (Layer I) and their multi-functional types (Layer II). Specifically, given a query protein, its associated gene ontology (GO) information is retrieved by searching a compact GO-term database with its homologous accession number. Subsequently, the GO information is classified by a binary support vector machine (SVM) classifier to determine whether it is a membrane protein or not. If yes, it will be further classified by a multi-label multi-class SVM classifier equipped with an adaptive-decision (AD) scheme to determine to which functional type(s) it belongs. Experimental results show that Mem-ADSVM significantly outperforms state-of-the-art predictors in terms of identifying both membrane proteins and their multi-functional types. This paper also suggests that the two-layer prediction architecture is better than the one-layer for prediction performance. For reader׳s convenience, the Mem-ADSVM server is available online at http://bioinfo.eie.polyu.edu.hk/MemADSVMServer/. PMID:27000774

  1. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2

    PubMed Central

    Berntsson, Ronnie P.-A.; Odegrip, Richard; Sehlén, Wilhelmina; Skaar, Karin; Svensson, Linda M.; Massad, Tariq; Högbom, Martin; Haggård-Ljungquist, Elisabeth; Stenmark, Pål

    2014-01-01

    The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer. PMID:24259428

  2. Organization of a multifunctional protein in pyrimidine biosynthesis. A domain hypersensitive to proteolysis.

    PubMed

    Rumsby, P C; Campbell, P C; Niswander, L A; Davidson, J N

    1984-01-15

    When the multifunctional protein that catalyses the first three steps of pyrimidine biosynthesis in hamster cells is treated with staphylococcal V8 proteinase, a single cleavage takes place. The activities of carbamoyl-phosphate synthetase (EC 6.3.5.5), aspartate carbamoyltransferase (EC 2.1.3.2) and dihydro-orotase (EC 3.5.2.3) and the allosteric inhibition by UTP are unaffected. One fragment, of Mr 182000, has the first and third enzyme activities, whereas the other fragment, of Mr 42000, has aspartate carbamoyltransferase activity and an aggregation site. A similar small fragment is observed in protein digested with low concentrations of trypsin. A similar large fragment is seen after digestion with trypsin and as the predominating form of this protein in certain mutants defective in pyrimidine biosynthesis. These results indicate that a region located adjacent to the aspartate carbamoyltransferase domain is hypersensitive to proteinase action in vitro and may also be sensitive to proteolysis in vivo. PMID:6365086

  3. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  4. Induction of Multifunctional Broadly Reactive T Cell Responses by a Plasmodium vivax Circumsporozoite Protein Recombinant Chimera.

    PubMed

    Cabrera-Mora, Monica; Fonseca, Jairo Andres; Singh, Balwan; Oliveira-Ferreira, Joseli; Lima-Junior, Josué da Costa; Calvo-Calle, J Mauricio; Moreno, Alberto

    2015-09-01

    Plasmodium vivax is the most widespread species of Plasmodium, causing up to 50% of the malaria cases occurring outside sub-Saharan Africa. An effective vaccine is essential for successful control and potential eradication. A well-characterized vaccine candidate is the circumsporozoite protein (CSP). Preclinical and clinical trials have shown that both antibodies and cellular immune responses have been correlated with protection induced by immunization with CSP. On the basis of our reported approach of developing chimeric Plasmodium yoelii proteins to enhance protective efficacy, we designed PvRMC-CSP, a recombinant chimeric protein based on the P. vivax CSP (PvCSP). In this engineered protein, regions of the PvCSP predicted to contain human T cell epitopes were genetically fused to an immunodominant B cell epitope derived from the N-terminal region I and to repeat sequences representing the two types of PvCSP repeats. The chimeric protein was expressed in soluble form with high yield. As the immune response to PvCSP has been reported to be genetically restricted in the murine model, we tested the immunogenicity of PvRMC-CSP in groups of six inbred strains of mice. PvRMC-CSP was able to induce robust antibody responses in all the mouse strains tested. Synthetic peptides representing the allelic forms of the P. vivax CSP were also recognized to a similar extent regardless of the mouse strain. Furthermore, the immunization regimen induced high frequencies of multifunctional CD4(+) and CD8(+) PvRMC-CSP-specific T cells. The depth and breadth of the immune responses elicited suggest that immunization with PvRMC-CSP can circumvent the genetic restriction of the immune response to P. vivax CSP. Interestingly, PvRMC-CSP was also recognized by naturally acquired antibodies from individuals living in areas where malaria is endemic. These features make PvRMC-CSP a promising vaccine candidate for further development.

  5. Structural basis for the modular recognition of single-stranded RNA by PPR proteins.

    PubMed

    Yin, Ping; Li, Quanxiu; Yan, Chuangye; Liu, Ying; Liu, Junjie; Yu, Feng; Wang, Zheng; Long, Jiafu; He, Jianhua; Wang, Hong-Wei; Wang, Jiawei; Zhu, Jian-Kang; Shi, Yigong; Yan, Nieng

    2013-12-01

    Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45 Å, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.

  6. Structural basis for the modular recognition of single-stranded RNA by PPR proteins

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Li, Quanxiu; Yan, Chuangye; Liu, Ying; Liu, Junjie; Yu, Feng; Wang, Zheng; Long, Jiafu; He, Jianhua; Wang, Hong-Wei; Wang, Jiawei; Zhu, Jian-Kang; Shi, Yigong; Yan, Nieng

    2013-12-01

    Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45Å, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.

  7. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression.

    PubMed Central

    Rao, N K; Shi, G P; Chapman, H A

    1995-01-01

    Binding of urokinase to the glycolipid-anchored urokinase receptor (uPAR) has been implicated in macrophage differentiation. However, no biochemical markers of differentiation have yet been directly linked to uPAR occupancy. As extensive changes in proteolytic profile characterize monocytic differentiation, we have examined the role of uPAR occupancy on protease expression by differentiating phagocytes. Antibodies to either urokinase or to uPAR that prevent receptor binding inhibited induction of cathepsin B in cultured monocytes and both cathepsin B and 92-kD gelatinase mRNA and protein in phorbol diester-stimulated myeloid cells. Mannosamine, an inhibitor of glycolipid anchor assembly, also blocked protease expression. Anti-catalytic urokinase antibodies, excess inactive urokinase, or aprotinin had no effect, indicating that receptor occupancy per se regulated protease expression. Antibodies to the integrins CD11a and CD29 or to the glycolipid-anchored proteins CD14 and CD55 also had no effect. Protease induction was independent of matrix attachment. Antibodies to urokinase or uPAR affected neither the decrease in cathepsin G nor the increase in tumor necrosis factor-alpha in phorbol ester-stimulated cells. These data establish that uPAR is a multifunctional receptor, not only promoting pericellular proteolysis and matrix attachment, but also effecting cysteine- and metallo-protease expression during macrophage differentiation. Images PMID:7615819

  8. Efficient cell-specific uptake of binding proteins into the cytoplasm through engineered modular transport systems.

    PubMed

    Verdurmen, Wouter P R; Luginbühl, Manuel; Honegger, Annemarie; Plückthun, Andreas

    2015-02-28

    Through advances in protein scaffold engineering and selection technologies, highly specific binding proteins, which fold under reducing conditions, can be generated against virtually all targets. Despite tremendous therapeutic opportunities, intracellular applications are hindered by difficulties associated with achieving cytosolic delivery, compounded by even correctly measuring it. Here, we addressed cytosolic delivery systematically through the development of a biotin ligase-based assay that objectively quantifies cytosolic delivery in a generic fashion. We developed modular transport systems that consist of a designed ankyrin repeat protein (DARPin) for receptor targeting and a different DARPin for intracellular recognition and a bacterial toxin-derived component for cytosolic translocation. We show that both anthrax pores and the translocation domain of Pseudomonas exotoxin A (ETA) efficiently deliver DARPins into the cytosol. We found that the cargo must not exceed a threshold thermodynamic stability for anthrax pores, which can be addressed by engineering, while the ETA pathway does not appear to have this restriction.

  9. A Multifunctional Protein Encoded by Turkey Herpesvirus Suppresses RNA Silencing in Nicotiana benthamiana▿

    PubMed Central

    Jing, Xiu-li; Fan, Mei-na; Jia, Gang; Liu, Lan-wei; Ma, Lin; Zheng, Cheng-chao; Zhu, Xiao-ping; Liu, Hong-mei; Wang, Xiao-yun

    2011-01-01

    Many plant and animal viruses counteract RNA silencing-mediated defense by encoding diverse RNA silencing suppressors. We characterized HVT063, a multifunctional protein encoded by turkey herpesvirus (HVT), as a silencing suppressor in coinfiltration assays with green fluorescent protein transgenic Nicotiana benthamiana line 16c. Our results indicated that HVT063 could strongly suppress both local and systemic RNA silencing induced by either sense RNA or double-stranded RNA (dsRNA). HVT063 could reverse local silencing, but not systemic silencing, in newly emerging leaves. The local silencing suppression activity of HVT063 was also verified using the heterologous vector PVX. Further, single alanine substitution of arginine or lysine residues of the HVT063 protein showed that each selected single amino acid contributed to the suppression activity of HVT063 and region 1 (residues 138 to 141) was more important, because three of four single amino acid mutations in this region could abolish the silencing suppressor activity of HVT063. Moreover, HVT063 seemed to induce a cell death phenotype in the infiltrated leaf region, and the HVT063 dilutions could decrease the silencing suppressor activity and alleviate the cell death phenotype. Collectively, these results suggest that HVT063 functions as a viral suppressor of RNA silencing that targets a downstream step of the dsRNA formation in the RNA silencing process. Positively charged amino acids in HVT063, such as arginine and lysine, might contribute to the suppressor activity by boosting the interaction between HVT063 and RNA, since HVT063 has been demonstrated to be an RNA binding protein. PMID:21957299

  10. Purification of Regucalcin from the Seminal Vesicular Fluid: A Calcium Binding Multi-Functional Protein.

    PubMed

    Harikrishna, P; Shende, A M; Reena, K K; Thomas, Jobin; Bhure, S K

    2016-08-01

    Regucalcin is a multi-functional protein having roles in calcium homeostasis as well as in anti-apoptotic, anti-prolific and anti-oxidative functions. Recently, it has been reported from the male reproductive tract, but its role in male reproduction needs further investigation; for which the native regucalcin of reproductive origin will be more appropriate. The gel exclusion chromatography followed by diethyl aminoethane cellulose chromatography and two-dimentional cellulose acetate membrane electrophoresis used for its purification are time consuming and less specific. Here, the regucalcin gene from buffalo testis has been cloned, expressed and purified in recombinant form, and subsequently used for raising hyper-immune serum. The Western blot of seminal vesicular fluid probed with anti-regucalcin polyclonal and monoclonal antibodies showed the presence of 28 and 34 kDa bands specific to regucalcin. Further, an affinity matrix has been prepared using anti-regucalcin polyclonal antibodies. An immuno-affinity chromatography method has been standardized to isolate regucalcin from seminal vesicular fluid. The initial complexity of the protein mixture in the seminal vesicular fluid has been reduced by a heat coagulation step. The purified protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band at 68 kDa that has been further confirmed as regucalcin by Liquid chromatography-mass spectrometry/mass spectrometry. The RGN purified from seminal vesicular fluid will be more appropriate for studying its possible role in male reproduction, especially sperm cell capacitation, hyperactivation, acrosome reaction and cryopreservation. The study can be applied in purifying regucalcin from different tissues or species with minor modifications in the methodology. PMID:27460579

  11. Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency.

    PubMed

    De Munter, Stephanie; Verheijden, Simon; Vanderstuyft, Esther; Malheiro, Ana Rita; Brites, Pedro; Gall, David; Schiffmann, Serge N; Baes, Myriam

    2016-10-01

    The cerebellar pathologies in peroxisomal diseases underscore that these organelles are required for the normal development and maintenance of the cerebellum, but the mechanisms have not been resolved. Here we investigated the origins of the early-onset coordination impairment in a mouse model with neural selective deficiency of multifunctional protein-2, the central enzyme of peroxisomal β-oxidation. At the age of 4weeks, Nestin-Mfp2(-/-) mice showed impaired motor learning on the accelerating rotarod and underperformed on the balance beam test. The gross morphology of the cerebellum and Purkinje cell arborization were normal. However, electrophysiology revealed a reduced Purkinje cell firing rate, a decreased excitability and an increased membrane capacitance. The distribution of climbing and parallel fiber synapses on Purkinje cells was immature and was accompanied by an increased spine length. Despite normal myelination, Purkinje cell axon degeneration was evident from the occurrence of axonal swellings containing accumulated organelles. In conclusion, the electrical activity, axonal integrity and wiring of Purkinje cells are exquisitely dependent on intact peroxisomal β-oxidation in neural cells. PMID:27353294

  12. Early-onset Purkinje cell dysfunction underlies cerebellar ataxia in peroxisomal multifunctional protein-2 deficiency.

    PubMed

    De Munter, Stephanie; Verheijden, Simon; Vanderstuyft, Esther; Malheiro, Ana Rita; Brites, Pedro; Gall, David; Schiffmann, Serge N; Baes, Myriam

    2016-10-01

    The cerebellar pathologies in peroxisomal diseases underscore that these organelles are required for the normal development and maintenance of the cerebellum, but the mechanisms have not been resolved. Here we investigated the origins of the early-onset coordination impairment in a mouse model with neural selective deficiency of multifunctional protein-2, the central enzyme of peroxisomal β-oxidation. At the age of 4weeks, Nestin-Mfp2(-/-) mice showed impaired motor learning on the accelerating rotarod and underperformed on the balance beam test. The gross morphology of the cerebellum and Purkinje cell arborization were normal. However, electrophysiology revealed a reduced Purkinje cell firing rate, a decreased excitability and an increased membrane capacitance. The distribution of climbing and parallel fiber synapses on Purkinje cells was immature and was accompanied by an increased spine length. Despite normal myelination, Purkinje cell axon degeneration was evident from the occurrence of axonal swellings containing accumulated organelles. In conclusion, the electrical activity, axonal integrity and wiring of Purkinje cells are exquisitely dependent on intact peroxisomal β-oxidation in neural cells.

  13. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    Hudmon, Andy; Schulman, Howard

    2002-06-15

    Ca2+/calmodulin (CaM)-dependent protein kinase (CaMKII) is a ubiquitous mediator of Ca2+-linked signalling that phosphorylates a wide range of substrates to co-ordinate and regulate Ca2+-mediated alterations in cellular function. The transmission of information by the kinase from extracellular stimuli and the intracellular Ca2+ rise is not passive. Rather, its multimeric structure and autoregulation enable this enzyme to participate actively in the sensitivity, timing and location of its action. CaMKII can: (i) be activated in a Ca2+-spike frequency-dependent manner; (ii) become independent of its initial Ca2+/CaM activators; and (iii) undergo a 'molecular switch-like' behaviour, which is crucial for certain forms of learning and memory. CaMKII is derived from a family of four homologous but distinct genes, with over 30 alternatively spliced isoforms described at present. These isoforms possess diverse developmental and anatomical expression patterns, as well as subcellular localization. Six independent catalytic/autoregulatory domains are connected by a narrow stalk-like appendage to each hexameric ring within the dodecameric structure. Ca2+/CaM binding activates the enzyme by disinhibiting the autoregulatory domain; this process initiates an intra-holoenzyme autophosphorylation reaction that induces complex changes in the enzyme's sensitivity to Ca2+/CaM, including the generation of Ca2+/CaM-independent (autonomous) activity and marked increase in affinity for CaM. The role of CaMKII in Ca2+ signal transduction is shaped by its autoregulation, isoenzymic type and subcellular localization. The molecular determinants and mechanisms producing these processes are discussed as they relate to the structure-function of this multifunctional protein kinase. PMID:11931644

  14. Non-Carrier Nanoparticles Adjuvant Modular Protein Vaccine in a Particle-Dependent Manner

    PubMed Central

    Seth, Arjun; Ritchie, Fiona K.; Wibowo, Nani; Lua, Linda H. L.; Middelberg, Anton P. J.

    2015-01-01

    Nanoparticles are increasingly used to adjuvant vaccine formulations due to their biocompatibility, ease of manufacture and the opportunity to tailor their size, shape, and physicochemical properties. The efficacy of similarly-sized silica (Si-OH), poly (D,L-lactic-co-glycolic acid) (PLGA) and poly caprolactone (PCL) nanoparticles (nps) to adjuvant recombinant capsomere presenting antigenic M2e modular peptide from Influenza A virus (CapM2e) was investigated in vivo. Formulation of CapM2e with Si-OH or PLGA nps significantly boosted the immunogenicity of modular capsomeres, even though CapM2e was not actively attached to the nanoparticles prior to injection (i.e., formulation was by simple mixing). In contrast, PCL nps showed no significant adjuvant effect using this simple-mixing approach. The immune response induced by CapM2e alone or formulated with nps was antibody-biased with very high antigen-specific antibody titer and less than 20 cells per million splenocytes secreting interferon gamma. Modification of silica nanoparticle surface properties through amine functionalization and pegylation did not lead to significant changes in immune response. This study confirms that simple mixing-based formulation can lead to effective adjuvanting of antigenic protein, though with antibody titer dependent on nanoparticle physicochemical properties. PMID:25756283

  15. Fluorogen activating protein-affibody probes: modular, no-wash measurement of epidermal growth factor receptors.

    PubMed

    Wang, Yi; Telmer, Cheryl A; Schmidt, Brigitte F; Franke, Josef D; Ort, Stephan; Arndt-Jovin, Donna J; Bruchez, Marcel P

    2015-01-21

    Fluorescence is essential for dynamic live cell imaging, and affinity reagents are required for quantification of endogenous proteins. Various fluorescent dyes can report on different aspects of biological trafficking, but must be independently conjugated to affinity reagents and characterized for specific biological readouts. Here we present the characterization of a new modular platform for small anti-EGFR affinity probes for studying rapid changes in receptor pools. A protein domain (FAP dL5**) that binds to malachite-green (MG) derivatives for fluorescence activation was expressed as a recombinant fusion to one or two copies of the compact EGFR binding affibody ZEGFR:1907. This is a recombinant and fluorogenic labeling reagent for native EGFR molecules. In vitro fluorescence assays demonstrated that the binding of these dyes to the FAP-affibody fusions produced thousand-fold fluorescence enhancements, with high binding affinity and fast association rates. Flow cytometry assays and fluorescence microscopy demonstrated that these probes label endogenous EGFR on A431 cells without disruption of EGFR function, and low nanomolar surface Kd values were observed with the double-ZEGFR:1907 constructs. The application of light-harvesting fluorogens (dyedrons) significantly improved the detected fluorescence signal. Altering the order of addition of the ligand, probe, and dyes allowed differentiation between surface and endocytotic pools of receptors to reveal the rapid dynamics of endocytic trafficking. Therefore, FAP/affibody coupling provides a new approach to construct compact and modular affinity probes that label endogenous proteins on living cells and can be used for studying rapid changes in receptor pools involved in trafficking. PMID:25490520

  16. Analysis of heat kernel highlights the strongly modular and heat-preserving structure of proteins

    NASA Astrophysics Data System (ADS)

    Livi, Lorenzo; Maiorino, Enrico; Pinna, Andrea; Sadeghian, Alireza; Rizzi, Antonello; Giuliani, Alessandro

    2016-01-01

    In this paper, we study the structure and dynamical properties of protein contact networks with respect to other biological networks, together with simulated archetypal models acting as probes. We consider both classical topological descriptors, such as modularity and statistics of the shortest paths, and different interpretations in terms of diffusion provided by the discrete heat kernel, which is elaborated from the normalized graph Laplacians. A principal component analysis shows high discrimination among the network types, by considering both the topological and heat kernel based vector characterizations. Furthermore, a canonical correlation analysis demonstrates the strong agreement among those two characterizations, providing thus an important justification in terms of interpretability for the heat kernel. Finally, and most importantly, the focused analysis of the heat kernel provides a way to yield insights on the fact that proteins have to satisfy specific structural design constraints that the other considered networks do not need to obey. Notably, the heat trace decay of an ensemble of varying-size proteins denotes subdiffusion, a peculiar property of proteins.

  17. Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy

    PubMed Central

    Negro-Demontel, María Luciana; Saccardo, Paolo; Giacomini, Cecilia; Yáñez-Muñoz, Rafael Joaquín; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Peluffo, Hugo

    2014-01-01

    Traumatic brain injury (TBI) remains as one of the leading causes of mortality and morbidity worldwide and there are no effective treatments currently available. Gene therapy applications have emerged as important alternatives for the treatment of diverse nervous system injuries. New strategies are evolving with the notion that each particular pathological condition may require a specific vector. Moreover, the lack of detailed comparative studies between different vectors under similar conditions hampers the selection of an ideal vector for a given pathological condition. The potential use of lentiviral vectors versus several modular protein-based nanovectors was compared using a controlled cortical impact model of TBI under the same gene therapy conditions. We show that variables such as protein/DNA ratio, incubation volume, and presence of serum or chloroquine in the transfection medium impact on both nanovector formation and transfection efficiency in vitro. While lentiviral vectors showed GFP protein 1 day after TBI and increased expression at 14 days, nanovectors showed stable and lower GFP transgene expression from 1 to 14 days. No toxicity after TBI by any of the vectors was observed as determined by resulting levels of IL-1β or using neurological sticky tape test. In fact, both vector types induced functional improvement per se. PMID:26015985

  18. Multifunctional nanocrystals

    DOEpatents

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2010-06-22

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  19. Multifunctional nanocrystals

    SciTech Connect

    Klimov, Victor I.; Hollingsworth, Jennifer A.; Crooker, Scott A.; Kim, Hyungrak

    2007-08-28

    Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.

  20. Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties.

    PubMed

    Garcia-Mora, Patricia; Peñas, Elena; Frias, Juana; Martínez-Villaluenga, Cristina

    2014-05-01

    The aim of this study was to produce multifunctional hydrolysates from lentil protein concentrates. Four different proteases (Alcalase, Savinase, Protamex, and Corolase 7089) and different hydrolysis times were evaluated for their degree and pattern of proteolysis and their angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activities. Alcalase and Savinase showed the highest proteolytic effectiveness (P ≤ 0.05), which resulted in higher yield of peptides. The hydrolysate produced by Savinase after 2 h of hydrolysis (S2) displayed the highest ACE-inhibitory (IC50 = 0.18 mg/mL) and antioxidant activity (1.22 μmol of Trolox equiv/mg of protein). Subsequent reverse-phase HPLC-tandem mass spectrometric analysis of 3 kDa permeates of S2 showed 32 peptides, mainly derived from convicilin, vicilin, and legumin containing bioactive amino acid sequences, which makes them potential contributors to ACE-inhibitory and antioxidant activities detected. The ACE-inhibitory and antioxidant activities of S2 were significantly improved after in vitro gastrointestinal digestion (P ≤ 0.05). Multifunctional hydrolysates could encourage value-added utilization of lentil proteins for the formulation of functional foods and nutraceuticals.

  1. A modular toolkit to inhibit proline-rich motif–mediated protein–protein interactions

    PubMed Central

    Opitz, Robert; Müller, Matthias; Reuter, Cédric; Barone, Matthias; Soicke, Arne; Roske, Yvette; Piotukh, Kirill; Huy, Peter; Beerbaum, Monika; Wiesner, Burkhard; Beyermann, Michael; Schmieder, Peter; Freund, Christian; Volkmer, Rudolf; Oschkinat, Hartmut; Schmalz, Hans-Günther; Kühne, Ronald

    2015-01-01

    Small-molecule competitors of protein–protein interactions are urgently needed for functional analysis of large-scale genomics and proteomics data. Particularly abundant, yet so far undruggable, targets include domains specialized in recognizing proline-rich segments, including Src-homology 3 (SH3), WW, GYF, and Drosophila enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Here, we present a modular strategy to obtain an extendable toolkit of chemical fragments (ProMs) designed to replace pairs of conserved prolines in recognition motifs. As proof-of-principle, we developed a small, selective, peptidomimetic inhibitor of Ena/VASP EVH1 domain interactions. Highly invasive MDA MB 231 breast-cancer cells treated with this ligand showed displacement of VASP from focal adhesions, as well as from the front of lamellipodia, and strongly reduced cell invasion. General applicability of our strategy is illustrated by the design of an ErbB4-derived ligand containing two ProM-1 fragments, targeting the yes-associated protein 1 (YAP1)-WW domain with a fivefold higher affinity. PMID:25848013

  2. A modular approach to the design of protein-based smart gels.

    PubMed

    Grove, Tijana Z; Forster, Jason; Pimienta, Genaro; Dufresne, Eric; Regan, Lynne

    2012-07-01

    The modular nature of repeat proteins makes them a versatile platform for the design of smart materials with predetermined properties. Here, we present a general strategy for combining protein modules with specified stability and function into arrays for the assembly of stimuli-responsive gels. We have designed tetratricopeptide repeat (TPR) arrays which contain peptide-binding modules that specify the strength and reversibility of network crosslinking in combination with spacer modules that specify crosslinking geometry and overall stability of the array. By combining such arrays with multivalent peptide ligands, self-supporting stimuli-responsive gels are formed. Using microrheology, we characterized the kinetics of gelation as a function of concentration and stoichiometry of the components. We also show that such gels are effective in encapsulating and releasing small molecules. Moreover, TPR gels alone are fully compatible with cell growth, whereas gels loaded with an anticancer compound release the compound, resulting in cell death. Thus, we have demonstrated that this new class of tunable biomaterials is ripe for further development as tissue engineering and drug delivery platform.

  3. Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins

    NASA Astrophysics Data System (ADS)

    Liljeström, Ville; Mikkilä, Joona; Kostiainen, Mauri A.

    2014-07-01

    Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary solids that consist of crystalline arrays of native biomacromolecules. We electrostatically assembled cowpea chlorotic mottle virus particles and avidin proteins into heterogeneous crystals, where the virus particles adopt a non-close-packed body-centred cubic arrangement held together by avidin. Importantly, the whole preparation process takes place at room temperature in a mild aqueous medium allowing the processing of delicate biological building blocks into ordered structures with lattice constants in the nanometre range. Furthermore, the use of avidin-biotin interaction allows highly selective pre- or post-functionalization of the protein crystals in a modular way with different types of functional units, such as fluorescent dyes, enzymes and plasmonic nanoparticles.

  4. A modular approach to the design of protein-based smart gels.

    PubMed

    Grove, Tijana Z; Forster, Jason; Pimienta, Genaro; Dufresne, Eric; Regan, Lynne

    2012-07-01

    The modular nature of repeat proteins makes them a versatile platform for the design of smart materials with predetermined properties. Here, we present a general strategy for combining protein modules with specified stability and function into arrays for the assembly of stimuli-responsive gels. We have designed tetratricopeptide repeat (TPR) arrays which contain peptide-binding modules that specify the strength and reversibility of network crosslinking in combination with spacer modules that specify crosslinking geometry and overall stability of the array. By combining such arrays with multivalent peptide ligands, self-supporting stimuli-responsive gels are formed. Using microrheology, we characterized the kinetics of gelation as a function of concentration and stoichiometry of the components. We also show that such gels are effective in encapsulating and releasing small molecules. Moreover, TPR gels alone are fully compatible with cell growth, whereas gels loaded with an anticancer compound release the compound, resulting in cell death. Thus, we have demonstrated that this new class of tunable biomaterials is ripe for further development as tissue engineering and drug delivery platform. PMID:22328209

  5. Arc is a flexible modular protein capable of reversible self-oligomerization

    PubMed Central

    Myrum, Craig; Baumann, Anne; Bustad, Helene J.; Flydal, Marte Innselset; Mariaule, Vincent; Alvira, Sara; Cuéllar, Jorge; Haavik, Jan; Soulé, Jonathan; Valpuesta, José Maria; Márquez, José Antonio; Martinez, Aurora; Bramham, Clive R.

    2015-01-01

    The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes. PMID:25748042

  6. Multifunctional cellulase and hemicellulase

    DOEpatents

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  7. A modular approach to multifunctional polypeptide/ceramic fluorapatite-based self-assembled system in affinity chromatography for the purification of human Immunoglobulin G.

    PubMed

    Islam, Tuhidul; Fernández-Lahore, Marcelo

    2015-03-01

    The multifunctional bone sialoprotein/apatite (AP) self-assembled systems in the mineralized tissues show a pathway for the noncovalent immobilization of ligands on the AP chromatographic matrix. A model approach is presented here regarding the physical immobilization of ligands on the ceramic fluorapatite (CFT) matrix for the purification of human Immunoglobulin G (hIgG). The peptide pIC, HWRGWV-KPRSVSG, composed of a hIgG-specific peptide, HWRGWV (pLI), and a CFT-specific peptide, KPRSVSG (pTC), was synthesized and subjected to physicochemical characterization. A circular dichroism study showed that pIC possesses a flexible structural feature, which is significant in terms of its multifunctional activities. With the current approach, hIgG will be retained selectively by the self-assembled pIC/CFT column, while other biomolecules will pass through the column without being interacted. Therefore, the chromatographic conditions that are the key factors for the successful implementation of this technique were optimized as a function of the composition and pH of the mobile phase. Here, 115 mM sodium chloride (NaCl) in 20 mM sodium phosphate, pH 7.4, was used as the binding buffer, and the elution was performed with 225 mM NaCl in 20 mM sodium phosphate containing 0.3% w/v sodium acetate at pH 6. The binding capacity of the pIC/CFT column was 21.5 mg hIgG/ml matrix with a ligand density of 18.8 µmol/ml, and the binding capacity of the column increased with the increment of ligand density. Afterward, the applicability of a spacer arm between pLI and pTC was also verified. The hIgG-binding capacity of the column decreased with the increment in size of the spacer. In conclusion, the peptide-mediated self-assembled biomimetic system can be used as an alternative to the chemical immobilization of ligands in order to prevent unwanted consequences that result from some of the conventional ligand coupling chemistry.

  8. A modular approach to multifunctional polypeptide/ceramic fluorapatite-based self-assembled system in affinity chromatography for the purification of human Immunoglobulin G.

    PubMed

    Islam, Tuhidul; Fernández-Lahore, Marcelo

    2015-03-01

    The multifunctional bone sialoprotein/apatite (AP) self-assembled systems in the mineralized tissues show a pathway for the noncovalent immobilization of ligands on the AP chromatographic matrix. A model approach is presented here regarding the physical immobilization of ligands on the ceramic fluorapatite (CFT) matrix for the purification of human Immunoglobulin G (hIgG). The peptide pIC, HWRGWV-KPRSVSG, composed of a hIgG-specific peptide, HWRGWV (pLI), and a CFT-specific peptide, KPRSVSG (pTC), was synthesized and subjected to physicochemical characterization. A circular dichroism study showed that pIC possesses a flexible structural feature, which is significant in terms of its multifunctional activities. With the current approach, hIgG will be retained selectively by the self-assembled pIC/CFT column, while other biomolecules will pass through the column without being interacted. Therefore, the chromatographic conditions that are the key factors for the successful implementation of this technique were optimized as a function of the composition and pH of the mobile phase. Here, 115 mM sodium chloride (NaCl) in 20 mM sodium phosphate, pH 7.4, was used as the binding buffer, and the elution was performed with 225 mM NaCl in 20 mM sodium phosphate containing 0.3% w/v sodium acetate at pH 6. The binding capacity of the pIC/CFT column was 21.5 mg hIgG/ml matrix with a ligand density of 18.8 µmol/ml, and the binding capacity of the column increased with the increment of ligand density. Afterward, the applicability of a spacer arm between pLI and pTC was also verified. The hIgG-binding capacity of the column decreased with the increment in size of the spacer. In conclusion, the peptide-mediated self-assembled biomimetic system can be used as an alternative to the chemical immobilization of ligands in order to prevent unwanted consequences that result from some of the conventional ligand coupling chemistry. PMID:25663265

  9. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion

    PubMed Central

    Caine, Jennifer A.; Coburn, Jenifer

    2016-01-01

    Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick–mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.

  10. A Modular Method for the High-Yield Synthesis of Site-Specific Protein-Polymer Therapeutics.

    PubMed

    Pang, Yan; Liu, Jinyao; Qi, Yizhi; Li, Xinghai; Chilkoti, Ashutosh

    2016-08-22

    A versatile method is described to engineer precisely defined protein/peptide-polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin-like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme-mediated ligation; and 3) attachment of a polymer by a click reaction with near-quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water-soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide-polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide-polymer conjugates for therapeutic use and other applications. PMID:27439953

  11. Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications

    PubMed Central

    Lee, Moo-Seung; Koo, Sunwoo; Jeong, Dae Gwin; Tesh, Vernon L.

    2016-01-01

    Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins. PMID:26999205

  12. Allosteric regulation and substrate channeling in multifunctional pyrimidine biosynthetic complexes: analysis of isolated domains and yeast-mammalian chimeric proteins.

    PubMed

    Serre, V; Guy, H; Liu, X; Penverne, B; Hervé, G; Evans, D

    1998-08-14

    The initial steps of pyrimidine biosynthesis in yeast and mammals are catalyzed by large multifunctional proteins of similar size, sequence and domain structure, but appreciable functional differences. The mammalian protein, CAD, has carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities. The yeast protein, ura2, catalyzes the first two reactions and has a domain, called pDHO, which is homologous to mammalian DHOase, but is inactive. In CAD, only CPSase is regulated, whereas both CPSase and ATCase in the yeast protein are inhibited by UTP. These functional differences were explored by constructing a series of mammalian yeast chimeras. The isolated ATCase domain is catalytically active, but is not regulated. The inclusion of the yeast sequences homologous to the mammalian regulatory domain (B3) and the intervening pDHO domain did not confer regulation. Chimeric proteins in which the homologous regions of the mammalian protein were replaced by the corresponding domains of ura2 exhibited full catalytic activity, as well regulation of the CPSase, but not the ATCase, activities. The yeast B3 subdomain confers UTP sensitivity on the mammalian CPSase, suggesting that it is the locus of CPSase regulation in ura2. Taken together, these results indicate that there are regulatory site(s) in ura2. Channeling is impaired in all the chimeric complexes and completely abolished in the chimera in which the pDHO domain of yeast is replaced by the mammalian DHO domain. PMID:9698553

  13. The Adenovirus L4-22K Protein Is Multifunctional and Is an Integral Component of Crucial Aspects of Infection

    PubMed Central

    Wu, Kai; Orozco, Diana

    2012-01-01

    A variety of cellular and viral processes are coordinately regulated during adenovirus (Ad) infection to achieve optimal virus production. The Ad late gene product L4-22K has been associated with disparate activities during infection, including the regulation of late gene expression, viral DNA packaging, and infectious virus production. We generated and characterized two L4-22K mutant viruses to further explore L4-22K functions during viral infection. Our results show that L4-22K is indeed important for temporal control of viral gene expression not only because it activates late gene expression but also because it suppresses early gene expression. We also show that the L4-22K protein binds to viral packaging sequences in vivo and is essential to recruit two other packaging proteins, IVa2 and L1-52/55K, to this region. The elimination of L4-22K gave rise to the production of only empty virus capsids and not mature virions, which confirms that the L4-22K protein is required for Ad genome packaging. Finally, L4-22K contributes to adenovirus-induced cell death by regulating the expression of the adenovirus death protein. Thus, the adenovirus L4-22K protein is multifunctional and an integral component of crucial aspects of infection. PMID:22811519

  14. Evidence for a novel biological role for the multifunctional β-1,3-glucan binding protein in shrimp.

    PubMed

    Goncalves, Priscila; Vernal, Javier; Rosa, Rafael Diego; Yepiz-Plascencia, Gloria; de Souza, Claudia Regina Batista; Barracco, Margherita Anna; Perazzolo, Luciane Maria

    2012-07-01

    β-1,3-Glucan binding proteins (βGBPs) are soluble pattern recognition proteins/receptors that bind to β-1,3-glucans from fungi cell walls. In crustaceans, βGBPs are abundant plasmatic proteins produced by the hepatopancreas, and have been proved to play multiple biological functions. Here, we purified and characterized novel members of the βGBP family from the hemolymph of two Brazilian shrimps, Farfantepenaeus paulensis (FpβGBP) and Litopenaeus schmitti (LsβGBP). As observed for other crustacean species, FpβGBP and LsβGBP are monomeric proteins (∼100kDa) able to enhance the activation of the prophenoloxidase system, a potent antimicrobial defense conserved in arthropods. More interestingly, we provided here evidence for a novel biological activity for shrimp βGBPs: the agglutination of fungal cells. Finally, we investigated the modulation of the βGBP gene in F. paulensis shrimps experimentally infected with a cognate fungal pathogen, Fusarium solani. From our expression data, βGBP gene is constitutively expressed in hepatopancreas and not modulated upon a non-lethal fungal infection. Herein, we have improved our knowledge about the βGBP family by the characterization of a novel biological role for this multifunctional protein in shrimp.

  15. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity.

    PubMed

    Boyken, Scott E; Chen, Zibo; Groves, Benjamin; Langan, Robert A; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason M; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H; Baker, David

    2016-05-01

    In nature, structural specificity in DNA and proteins is encoded differently: In DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here, we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen-bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen-bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen-bond networks with atomic accuracy enables the programming of protein interaction specificity for a broad range of synthetic biology applications; more generally, our results demonstrate that, even with the tremendous diversity observed in nature, there are fundamentally new modes of interaction to be discovered in proteins. PMID:27151862

  16. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity.

    PubMed

    Boyken, Scott E; Chen, Zibo; Groves, Benjamin; Langan, Robert A; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason M; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H; Baker, David

    2016-05-01

    In nature, structural specificity in DNA and proteins is encoded differently: In DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here, we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen-bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen-bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen-bond networks with atomic accuracy enables the programming of protein interaction specificity for a broad range of synthetic biology applications; more generally, our results demonstrate that, even with the tremendous diversity observed in nature, there are fundamentally new modes of interaction to be discovered in proteins.

  17. Bacterial proteasome and PafA, the pup ligase, interact to form a modular protein tagging and degradation machine.

    PubMed

    Forer, Nadav; Korman, Maayan; Elharar, Yifat; Vishkautzan, Marina; Gur, Eyal

    2013-12-17

    Proteasome-containing bacteria possess a tagging system that directs proteins to proteasomal degradation by conjugating them to a prokaryotic ubiquitin-like protein (Pup). A single ligating enzyme, PafA, is responsible for Pup conjugation to lysine side chains of protein substrates. As Pup is recognized by the regulatory subunit of the proteasome, Pup functions as a degradation tag. Pup presents overlapping regions for binding of the proteasome and PafA. It was, therefore, unclear whether Pup binding by the proteasome regulatory subunit, Mpa, and by PafA are mutually exclusive events. The work presented here provides evidence for the simultaneous interaction of Pup with both Mpa and PafA. Surprisingly, we found that PafA and Mpa can form a complex both in vitro and in vivo. Our results thus suggest that PafA and the proteasome can function as a modular machine for the tagging and degradation of cytoplasmic proteins. PMID:24228735

  18. Generation of multifunctional murine monoclonal antibodies specifically directed to the VP1unique region protein of human parvovirus B19.

    PubMed

    Drechsler, Maik D; Obermeier, Ingrid; Döring, Yvonne; Lackner, Karl J; Modrow, Susanne; von Landenberg, Philipp

    2008-01-01

    Little is known about the VP1unique region (VP1u), a part of one major capsid protein of human parvovirus B19 (B19), concerning its involvement in viral replication and infection cycle. Showing a phospholipase A2 (PLA2)-like activity, which is discussed to be necessary for viral release from host cell, its precise function remains unclear. The purpose of this study was to generate multifunctional monoclonal antibodies (mabs) for different applications that may be useful in investigating VP1u's relevance. To establish antiVP1u antibodies, spleen cells from Balb/c mice immunized with purified recombinant viral protein were used for generating antibody-producing hybridoma cell lines. Usability of the antibodies was tested in enzyme-linked immunosorbent assay (ELISA), Western-blot analysis, immunofluorescence and an inhibition assay of enzymatic activity of PLA2. Three hybridoma cell lines secreting mab's specifically directed against the VP1u protein of B19 could be generated and functioned in every screening method used in this study. These antibodies are helpful tools for investigations in B19 research and diagnosis. Furthermore, the antibodies could help in gaining a deeper understanding of VP1u's role in viral replication and infection especially in the importance of its constitutive PLA2-like activity.

  19. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import

    PubMed Central

    Paila, Yamuna D; Richardson, Lynn GL; Inoue, Hitoshi; Parks, Elizabeth S; McMahon, James; Inoue, Kentaro; Schnell, Danny J

    2016-01-01

    Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI: http://dx.doi.org/10.7554/eLife.12631.001 PMID:26999824

  20. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import.

    PubMed

    Paila, Yamuna D; Richardson, Lynn Gl; Inoue, Hitoshi; Parks, Elizabeth S; McMahon, James; Inoue, Kentaro; Schnell, Danny J

    2016-01-01

    Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. PMID:26999824

  1. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses.

    PubMed

    Lee, Sangmin; Chung, Jeong Min; Yun, Hyung Joong; Won, Jonghan; Jung, Hyun Suk

    2016-01-22

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16-1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions.

  2. Scalable Production of a Multifunctional Protein (TSG-6) That Aggregates with Itself and the CHO Cells That Synthesize It

    PubMed Central

    Kim, Dong-Ki; Choi, Hosoon; Nishida, Hidetaka; Oh, Joo Youn; Gregory, Carl; Lee, Ryang Hwa; Yu, Ji Min; Watanabe, Jun; An, Su Yeon; Bartosh, Thomas J.; Prockop, Darwin J.

    2016-01-01

    TNF-α stimulated gene/protein 6 (TNFAIP6/TSG-6) is a multifunctional protein that has a number of potential therapeutic applications. Experiments and clinical trials with TSG-6, however, have been limited by the technical difficulties of producing the recombinant protein. We prepared stable clones of CHO cells that expressed recombinant human TSG-6 (rhTSG-6) as a secreted glycoprotein. Paradoxically, both cell number and protein production decreased dramatically when the clones were expanded. The decreases occurred because the protein aggregated the synthesizing CHO cells by binding to the brush border of hyaluronan that is found around many cultured cells. In addition, the rhTSG-6 readily self-aggregated. To address these problems, we added to the medium an inhibitor of hyaluronan synthesis and heparin to compete with the binding of TSG-6 to hyaluronan. Also, we optimized the composition of the culture medium, and transferred the CHO cells from a spinner culture system to a bioreactor that controlled pH and thereby decreased pH-dependent binding properties of the protein. With these and other improvements in the culture conditions, we obtained 57.0 mg ± 9.16 S.D. of rhTSG-6 in 5 or 6 liter of medium. The rhTSG-6 accounted for 18.0% ± 3.76 S.D. of the total protein in the medium. We then purified the protein with a Ni-chelate column that bound the His tag engineered into the C-terminus of the protein followed by an anion exchange column. The yield of the purified monomeric rhTSG-6 was 4.1 mg to 5.6 mg per liter of culture medium. After intravenous injection into mice, the protein had a longer plasma half-life than commercially available rhTSG-6 isolated from a mammalian cell lysate, apparently because it was recovered as a secreted glycoprotein. The bioactivity of the rhTSG-6 in suppressing inflammation was demonstrated in a murine model. PMID:26793973

  3. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.

    PubMed

    Moxley, Michael A; Becker, Donald F

    2012-01-10

    The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli catalyzes the oxidation of proline to glutamate in two reaction steps using separate proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains. Here, the kinetic mechanism of PRODH in PutA is studied by stopped-flow kinetics to determine microscopic rate constants for the proline:ubiquinone oxidoreductase mechanism. Stopped-flow data for proline reduction of the flavin cofactor (reductive half-reaction) and oxidation of reduced flavin by CoQ(1) (oxidative half-reaction) were best-fit by a double exponential from which maximum observable rate constants and apparent equilibrium dissociation constants were determined. Flavin semiquinone was not observed in the reductive or oxidative reactions. Microscopic rate constants for steps in the reductive and oxidative half-reactions were obtained by globally fitting the stopped-flow data to a simulated mechanism that includes a chemical step followed by an isomerization event. A microscopic rate constant of 27.5 s(-1) was determined for proline reduction of the flavin cofactor followed by an isomerization step of 2.2 s(-1). The isomerization step is proposed to report on a previously identified flavin-dependent conformational change [Zhang, W. et al. (2007) Biochemistry 46, 483-491] that is important for PutA functional switching but is not kinetically relevant to the in vitro mechanism. Using CoQ(1), a soluble analogue of ubiquinone, a rate constant of 5.4 s(-1) was obtained for the oxidation of flavin, thus indicating that this oxidative step is rate-limiting for k(cat) during catalytic turnover. Steady-state kinetic constants calculated from the microscopic rate constants agree with the experimental k(cat) and k(cat)/K(m) parameters.

  4. Protein kinase CK2 phosphorylation regulates the interaction of Kaposi's sarcoma-associated herpesvirus regulatory protein ORF57 with its multifunctional partner hnRNP K

    PubMed Central

    Malik, Poonam; Clements, J. Barklie

    2004-01-01

    ORF57 protein of Kaposi's sarcoma-associated herpesvirus has a counterpart in all herpesvirus of mammals and birds and regulates gene expression at transcriptional and post-transcriptional levels. ORF57 was capable of self-interaction and bound a rapidly migrating form of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a multifunctional cellular protein involved in gene expression. In virus infected cell extracts, ORF57 was present in a complex with hnRNP K that had protein kinase CK2 activity, and was phosphorylated by CK2. Different regions of ORF57 bound both catalytic α/α′ and regulatory β subunits of CK2. CK2 modification enhanced the ORF57–hnRNP K interaction, and may regulate the presence and activities of components in the complex. We suggest that ORF57 and hnRNP K interaction may modulate ORF57-mediated regulation of viral gene expression. Herpesviral ORF57 (Rhadinovirus) and ICP27 (Simplexvirus) proteins both interact with hnRNP K and CK2 implying that adaptation of the ancestral hnRNP K and CK2 to associate with viral regulatory ancestor protein likely pre-dates divergence of these Herpesviridae genera that occurred 200 million years ago. PMID:15486205

  5. Frequency of factor H-binding protein modular groups and susceptibility to cross-reactive bactericidal activity in invasive meningococcal isolates.

    PubMed

    Pajon, Rolando; Beernink, Peter T; Harrison, Lee H; Granoff, Dan M

    2010-02-25

    Meningococcal factor H-binding protein (fHbp) is a promising vaccine candidate that elicits serum bactericidal antibodies in humans. Based on sequence variability of the entire protein, fHbp has been divided into three variant groups or two sub-families. We recently reported that the fHbp architecture was modular, consisting of five variable segments, each encoded by genes from one of two lineages. Based on combinations of segments from different lineages, all 70 known fHbp sequence variants could be classified into one of six modular groups. In this study, we analyzed sequences of 172 new fHbp variants that were available from public databases. All but three variants could be classified into one of the six previously described modular groups. Among systematically collected invasive group B isolates from the U.S. and Europe, modular group I overall was most common (60%) but group IV (natural chimeras) accounted for 23% of UK isolates and <1% of U.S. isolates (P<0.0001). Mouse antisera to recombinant fHbp from each of the modular groups showed modular group-specific bactericidal activity against strains with low fHbp expression but had broader activity against strains with higher fHbp expression. Thus both modular group and relative expression of fHbp affected strain susceptibility to anti-fHbp bactericidal activity. The results confirmed the modular architecture of fHbp and underscored its importance for the design of broadly protective group B vaccines in different regions.

  6. Polarized Defense Against Fungal Pathogens Is Mediated by the Jacalin-Related Lectin Domain of Modular Poaceae-Specific Proteins.

    PubMed

    Weidenbach, Denise; Esch, Lara; Möller, Claudia; Hensel, Goetz; Kumlehn, Jochen; Höfle, Caroline; Hückelhoven, Ralph; Schaffrath, Ulrich

    2016-04-01

    Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we characterized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad-spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses revealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense. PMID:26708413

  7. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation

    PubMed Central

    Luan, Yi; Lengyel, Peter; Liu, Chuan-Ju

    2015-01-01

    The interferon-inducible p200 family comprises a group of homologous mouse and human proteins. Most of these have an N-terminal DAPIN domain and one or two partially conserved, 200 amino acid long C-terminal domains (designated as 200X domain). These proteins play important roles in the regulation of cell proliferation, tissue differentiation, apoptosis and senescence. p200 family proteins are involved also in autoimmunity and the control of tumor growth. These proteins function by binding to various target proteins (e.g. transcription factors, signaling proteins, oncoproteins and tumor suppressor proteins) and modulating target activity. This review concentrates on p204, a murine member of the family and its roles in regulating cell proliferation, cell and tissue differentiation (e.g. of skeletal muscle myotubes, beating cardiac myocytes, osteoblasts, chondrocytes and macrophages) and signaling by Ras proteins. The expression of p204 in various tissues as promoted by tissue-specific transcription factors, its distribution among subcellular compartments, and the controls of these features are also discussed. PMID:19027346

  8. The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression

    PubMed Central

    Zhang, Caiguo; Zhang, Fan

    2015-01-01

    Eukaryotic genome encodes numerous WD40 repeat proteins, which generally function as platforms of protein-protein interactions and are involved in numerous biological process, such as signal transduction, gene transcriptional regulation, protein modifications, cytoskeleton assembly, vesicular trafficking, DNA damage and repair, cell death and cell cycle progression. Among these diverse functions, genome integrity maintenance and cell cycle progression are extremely important as deregulation of them is clinically linked to uncontrolled proliferative diseases such as cancer. Thus, we mainly summarize and discuss the recent understanding of WD40 proteins and their molecular mechanisms linked to genome stability and cell cycle progression in this review, thereby demonstrating their pervasiveness and importance in cellular networks. PMID:25653723

  9. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase

    PubMed Central

    Jacobs, Dave; Glossip, Danielle; Xing, Heming; Muslin, Anthony J.; Kornfeld, Kerry

    1999-01-01

    MAP kinases phosphorylate specific groups of substrate proteins. Here we show that the amino acid sequence FXFP is an evolutionarily conserved docking site that mediates ERK MAP kinase binding to substrates in multiple protein families. FXFP and the D box, a different docking site, form a modular recognition system, as they can function independently or in combination. FXFP is specific for ERK, whereas the D box mediates binding to ERK and JNK MAP kinase, suggesting that the partially overlapping substrate specificities of ERK and JNK result from recognition of shared and unique docking sites. These findings enabled us to predict new ERK substrates and design peptide inhibitors of ERK that functioned in vitro and in vivo. PMID:9925641

  10. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum.

    PubMed

    Jagannathan, Sujatha; Hsu, Jack C-C; Reid, David W; Chen, Qiang; Thompson, Will J; Moseley, Arthur M; Nicchitta, Christopher V

    2014-09-12

    Signal sequence-encoding mRNAs undergo translation-dependent localization to the endoplasmic reticulum (ER) and at the ER are anchored via translation on Sec61-bound ribosomes. Recent investigations into the composition and membrane association characteristics of ER-associated mRNAs have, however, revealed both ribosome-dependent (indirect) and ribosome-independent (direct) modes of mRNA association with the ER. These findings raise important questions regarding our understanding of how mRNAs are selected, localized, and anchored to the ER. Using semi-intact tissue culture cells, we performed a polysome solubilization screen and identified conditions that distinguish polysomes engaged in the translation of distinct cohorts of mRNAs. To gain insight into the molecular basis of direct mRNA anchoring to the ER, we performed RNA-protein UV photocross-linking studies in rough microsomes and demonstrate that numerous ER integral membrane proteins display RNA binding activity. Quantitative proteomic analyses of HeLa cytosolic and ER-bound polysome fractions identified translocon components as selective polysome-interacting proteins. Notably, the Sec61 complex was highly enriched in polysomes engaged in the translation of endomembrane organelle proteins, whereas translocon accessory proteins, such as ribophorin I, were present in all subpopulations of ER-associated polysomes. Analyses of the protein composition of oligo(dT)-selected UV photocross-linked ER protein-RNA adducts identified Sec61α,β and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected roles for the protein translocation and modification machinery in mRNA anchoring to the ER. In summary, we propose that multiple mechanisms of mRNA and ribosome association with ER operate to enable an mRNA transcriptome-wide function for the ER in protein synthesis.

  11. Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres.

    PubMed

    Liu, Yating; Li, Yan; Wei, Yun

    2014-12-01

    Magnetic particles with suitable surface modification are capable of binding proteins selectively, and magnetic separations have advantages of rapidity, convenience, and high selectivity. In this paper, new magnetic nanoparticles modified with imidazolium ionic liquid (Fe3O4 @SiO2 @ILs) were successfully fabricated. N-Methylimidazolium was immobilized onto silica-coated magnetic nanoparticles via γ-chloropropyl modification as a magnetic nanoadsorbent for heme protein separation. The particle size was about 90 nm without significant aggregation during the preparation process. Hemoglobin as one of heme proteins used in this experiment was compared with other nonheme proteins. It has been found that the magnetic nanoparticles can be used for more rapid, efficient, and specific adsorption of hemoglobin with a binding capacity as high as 5.78 mg/mg. In comparison with other adsorption materials of proteins in the previous reports, Fe3 O4 @SiO2 @ILs magnetic nanoparticles exhibit the excellent performance in isolation of heme proteins with higher binding capacity and selectivity. In addition, a short separation time makes the functionalized nanoparticles suitable for purifying unstable proteins, as well as having other potential applications in a variety of biomedical fields.

  12. Expression of the multifunctional Y-box protein, YB-1, in myofibroblasts of the infarcted rat heart

    SciTech Connect

    Kamalov, German; Varma, Balwantkumar R.; Lu Li; Sun Yao; Weber, Karl T.; Guntaka, Ramareddy V. . E-mail: rguntaka@utmem.edu

    2005-08-19

    Intracellular signaling mechanisms regulating the turnover of {alpha}-SMA-positive myofibroblasts (myoFbs) at the site of myocardial infarction (MI) are poorly understood. Y-Box (YB)-1, a multifunctional protein, may be involved in regulation of proliferation, migration and apoptosis of myoFbs. Our objective was to study the expression of YB-1 in the infarcted rat heart and its localization in myoFbs. On days 3-28 following MI, we monitored YB-1 expression and its colocalization with {alpha}-SMA, and proliferation markers PCNA and Ki-67 in infarcted tissue by Western blot, immunohistochemistry, and immunofluorescent double-labeling. YB-1 is barely detectable in normal myocardium. At the infarct site, however, YB-1 is markedly elevated from day 3 post-MI concomitant with the induction of cell proliferation. MyoFbs are the major source of YB-1 and retain it up to day 28 post-MI. We suggest early expression of YB-1 promotes proliferation and migration of myoFbs, whereas prolonged expression may be responsible for scar formation.

  13. Multifunctionality of PIWI proteins in control of germline stem cell fate.

    PubMed

    Yakushev, E Y; Sokolova, O A; Gvozdev, V A; Klenov, M S

    2013-06-01

    PIWI proteins interacting with specific type of small RNAs (piRNAs) repress transposable elements in animals. Besides, they have been shown to participate in various cellular processes: in the regulation of heterochromatin formation including telomere structures, in the control of translation and the cell cycle, and in DNA rearrangements. PIWI proteins were first identified by their roles in the self-renewal of germline stem cells. PIWI protein functions are not limited to gonadogenesis, but the role in determining the fate of stem cells is their specific feature conserved throughout the evolution of animals. Molecular mechanisms underlying these processes are far from being understood. This review focuses on the role of PIWI proteins in the control of maintenance and proliferation of germinal stem cells and its relation to the known function of PIWI in transposon repression. PMID:23980885

  14. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein

    SciTech Connect

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.; Andersen, John F.

    2009-04-07

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describe the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.

  15. Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects.

    PubMed

    Takahashi, Daisuke; Garcia, Brandon L; Kanost, Michael R

    2015-11-10

    The autoactivation of an initiating serine protease upon binding of pattern recognition proteins to pathogen surfaces is a crucial step in eliciting insect immune responses such as the activation of Toll and prophenoloxidase pathways. However, the molecular mechanisms responsible for autoactivation of the initiating protease remains poorly understood. Here, we investigated the molecular basis for the autoactivation of hemolymph protease 14 (HP14), an initiating protease in hemolymph of Manduca sexta, upon the binding of β-1,3-glucan by its recognition protein, βGRP2. Biochemical analysis using HP14 zymogen (proHP14), βGRP2, and the recombinant proteins as truncated forms showed that the amino-terminal modular low-density lipoprotein receptor class A (LA) domains within HP14 are required for proHP14 autoactivation that is stimulated by its interaction with βGRP2. Consistent with this result, recombinant LA domains inhibit the activation of proHP14 and prophenoloxidase, likely by competing with the interaction between βGRP2 and LA domains within proHP14. Using surface plasmon resonance, we demonstrated that immobilized LA domains directly interact with βGRP2 in a calcium-dependent manner and that high-affinity interaction requires the C-terminal glucanase-like domain of βGRP2. Importantly, the affinity of LA domains for βGRP2 increases nearly 100-fold in the presence of β-1,3-glucan. Taken together, these results present the first experimental evidence to our knowledge that LA domains of an insect modular protease and glucanase-like domains of a βGRP mediate their interaction, and that this binding is essential for the protease autoactivation. Thus, our study provides important insight into the molecular basis underlying the initiation of protease cascade in insect immune responses. PMID:26504233

  16. Initiating protease with modular domains interacts with β-glucan recognition protein to trigger innate immune response in insects

    PubMed Central

    Takahashi, Daisuke; Garcia, Brandon L.; Kanost, Michael R.

    2015-01-01

    The autoactivation of an initiating serine protease upon binding of pattern recognition proteins to pathogen surfaces is a crucial step in eliciting insect immune responses such as the activation of Toll and prophenoloxidase pathways. However, the molecular mechanisms responsible for autoactivation of the initiating protease remains poorly understood. Here, we investigated the molecular basis for the autoactivation of hemolymph protease 14 (HP14), an initiating protease in hemolymph of Manduca sexta, upon the binding of β-1,3-glucan by its recognition protein, βGRP2. Biochemical analysis using HP14 zymogen (proHP14), βGRP2, and the recombinant proteins as truncated forms showed that the amino-terminal modular low-density lipoprotein receptor class A (LA) domains within HP14 are required for proHP14 autoactivation that is stimulated by its interaction with βGRP2. Consistent with this result, recombinant LA domains inhibit the activation of proHP14 and prophenoloxidase, likely by competing with the interaction between βGRP2 and LA domains within proHP14. Using surface plasmon resonance, we demonstrated that immobilized LA domains directly interact with βGRP2 in a calcium-dependent manner and that high-affinity interaction requires the C-terminal glucanase-like domain of βGRP2. Importantly, the affinity of LA domains for βGRP2 increases nearly 100-fold in the presence of β-1,3-glucan. Taken together, these results present the first experimental evidence to our knowledge that LA domains of an insect modular protease and glucanase-like domains of a βGRP mediate their interaction, and that this binding is essential for the protease autoactivation. Thus, our study provides important insight into the molecular basis underlying the initiation of protease cascade in insect immune responses. PMID:26504233

  17. Multifunctional RNA Processing Protein SRm160 Induces Apoptosis and Regulates Eye and Genital Development in Drosophila

    PubMed Central

    Fan, Yu-Jie; Gittis, Aryn H.; Juge, François; Qiu, Chen; Xu, Yong-Zhen; Rabinow, Leonard

    2014-01-01

    SRm160 is an SR-like protein implicated in multiple steps of RNA processing and nucleocytoplasmic export. Although its biochemical functions have been extensively described, its genetic interactions and potential participation in signaling pathways remain largely unknown, despite the fact that it is highly phosphorylated in both mammalian cells and Drosophila. To begin elucidating the functions of the protein in signaling and its potential role in developmental processes, we characterized mutant and overexpression SRm160 phenotypes in Drosophila and their interactions with the locus encoding the LAMMER protein kinase, Doa. SRm160 mutations are recessive lethal, while its overexpression generates phenotypes including roughened eyes and highly disorganized internal eye structure, which are due at least in part to aberrantly high levels of apoptosis. SRm160 is required for normal somatic sex determination, since its alleles strongly enhance a subtle sex transformation phenotype induced by Doa kinase alleles. Moreover, modification of SRm160 by DOA kinase appears to be necessary for its activity, since Doa alleles suppress phenotypes induced by SRm160 overexpression in the eye and enhance those in genital discs. Modification of SRm160 may occur through direct interaction because DOA kinase phosphorylates it in vitro. Remarkably, SRm160 protein was concentrated in the nuclei of precellular embryos but was very rapidly excluded from nuclei or degraded coincident with cellularization. Also of interest, transcripts are restricted almost exclusively to the developing nervous system in mature embryos. PMID:24907259

  18. Multifunctional RNA processing protein SRm160 induces apoptosis and regulates eye and genital development in Drosophila.

    PubMed

    Fan, Yu-Jie; Gittis, Aryn H; Juge, François; Qiu, Chen; Xu, Yong-Zhen; Rabinow, Leonard

    2014-08-01

    SRm160 is an SR-like protein implicated in multiple steps of RNA processing and nucleocytoplasmic export. Although its biochemical functions have been extensively described, its genetic interactions and potential participation in signaling pathways remain largely unknown, despite the fact that it is highly phosphorylated in both mammalian cells and Drosophila. To begin elucidating the functions of the protein in signaling and its potential role in developmental processes, we characterized mutant and overexpression SRm160 phenotypes in Drosophila and their interactions with the locus encoding the LAMMER protein kinase, Doa. SRm160 mutations are recessive lethal, while its overexpression generates phenotypes including roughened eyes and highly disorganized internal eye structure, which are due at least in part to aberrantly high levels of apoptosis. SRm160 is required for normal somatic sex determination, since its alleles strongly enhance a subtle sex transformation phenotype induced by Doa kinase alleles. Moreover, modification of SRm160 by DOA kinase appears to be necessary for its activity, since Doa alleles suppress phenotypes induced by SRm160 overexpression in the eye and enhance those in genital discs. Modification of SRm160 may occur through direct interaction because DOA kinase phosphorylates it in vitro. Remarkably, SRm160 protein was concentrated in the nuclei of precellular embryos but was very rapidly excluded from nuclei or degraded coincident with cellularization. Also of interest, transcripts are restricted almost exclusively to the developing nervous system in mature embryos. PMID:24907259

  19. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication

    PubMed Central

    Seo, Jun-Young; Yaneva, Rakina; Cresswell, Peter

    2011-01-01

    Summary Viperin is an interferon-inducible protein that inhibits the replication of a variety of viruses by apparently diverse mechanisms. In some circumstances it also plays a role in intracellular signaling pathways. Its expression in mitochondria, revealed by infection with human cytomegalovirus, also affects cellular metabolic pathways. We review here the current status of our understanding of this unusual molecule. PMID:22177558

  20. Multifunctional nanoparticle-protein conjugates with controllable bioactivity and pH responsiveness

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Xue, Lulu; Yuan, Yuqi; Pan, Jingjing; Zhang, Chenjie; Wang, Hongwei; Brash, John L.; Yuan, Lin; Chen, Hong

    2016-02-01

    The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion. This approach has considerable potential in areas such as controlled delivery and release of drugs, biosensing, and biocatalysis.The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes ``on/off''-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion

  1. Structure of the C-Terminal Domain of the Multifunctional ICP27 Protein from Herpes Simplex Virus 1

    PubMed Central

    Dahlroth, Sue-Li; Rajakannan, Venkatachalam; Ho, Hai Ting; Cornvik, Tobias

    2015-01-01

    ABSTRACT Herpesviruses are nuclear-replicating viruses that have successfully evolved to evade the immune system of humans, establishing lifelong infections. ICP27 from herpes simplex virus is a multifunctional regulatory protein that is functionally conserved in all known human herpesviruses. It has the potential to interact with an array of cellular proteins, as well as intronless viral RNAs. ICP27 plays an essential role in viral transcription, nuclear export of intronless RNAs, translation of viral transcripts, and virion host shutoff function. It has also been implicated in several signaling pathways and the prevention of apoptosis. Although much is known about its central role in viral replication and infection, very little is known about the structure and mechanistic properties of ICP27 and its homologs. We present the first crystal structure of ICP27 C-terminal domain at a resolution of 2.0 Å. The structure reveals the C-terminal half of ICP27 to have a novel fold consisting of α-helices and long loops, along with a unique CHCC-type of zinc-binding motif. The two termini of this domain extend from the central core and hint to possibilities of making interactions. ICP27 essential domain is capable of forming self-dimers as seen in the structure, which is confirmed by analytical ultracentrifugation study. Preliminary in vitro phosphorylation assays reveal that this domain may be regulated by cellular kinases. IMPORTANCE ICP27 is a key regulatory protein of the herpes simplex virus and has functional homologs in all known human herpesviruses. Understanding the structure of this protein is a step ahead in deciphering the mechanism by which the virus thrives. In this study, we present the first structure of the C-terminal domain of ICP27 and describe its novel features. We critically analyze the structure and compare our results to the information available form earlier studies. This structure can act as a guide in future experimental designs and can add to a

  2. Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target.

    PubMed

    Naz, Huma; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-05-01

    The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases. PMID:26773169

  3. Multifunctional nanoparticle-protein conjugates with controllable bioactivity and pH responsiveness.

    PubMed

    Liu, Feng; Xue, Lulu; Yuan, Yuqi; Pan, Jingjing; Zhang, Chenjie; Wang, Hongwei; Brash, John L; Yuan, Lin; Chen, Hong

    2016-02-21

    The modulation of protein activity is of significance for disease therapy, molecular diagnostics, and tissue engineering. Nanoparticles offer a new platform for the preparation of protein conjugates with improved protein properties. In the present work, Escherichia coli (E. coli) inorganic pyrophosphatase (PPase) and poly(methacrylic acid) (PMAA) were attached together to gold nanoparticles (AuNPs), forming AuNP-PPase-PMAA conjugates having controllable multi-biofunctionalities and responsiveness to pH. By treating with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and regulating the pH, the bioactivity of the conjugate becomes "on/off"-switchable. In addition, by taking advantage of the ability of AuNPs to undergo reversible aggregation/dispersion, the conjugates can be recycled and reused multiple times; and due to the shielding effect of the PMAA, the conjugated enzyme has high resistance to protease digestion. This approach has considerable potential in areas such as controlled delivery and release of drugs, biosensing, and biocatalysis. PMID:26840617

  4. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail.

    PubMed

    Amendt, B A; Sutherland, L B; Russo, A F

    1999-10-01

    Pitx2 is a newly described bicoid-like homeodomain transcription factor that is defective in Rieger syndrome and shows a striking leftward developmental asymmetry. We have previously shown that Pitx2 (also called Ptx2 and RIEG) transactivates a reporter gene containing a bicoid enhancer and synergistically transactivates the prolactin promoter in the presence of the POU homeodomain protein Pit-1. In this report, we focused on the C-terminal region which is mutated in some Rieger patients and contains a highly conserved 14-amino-acid element. Deletion analysis of Pitx2 revealed that the C-terminal 39-amino-acid tail represses DNA binding activity and is required for Pitx2-Pit-1 interaction and Pit-1 synergism. Pit-1 interaction with the Pitx2 C terminus masks the inhibitory effect and promotes increased DNA binding activity. Interestingly, cotransfection of an expression vector encoding the C-terminal 39 amino acids of Pitx2 specifically inhibits Pitx2 transactivation activity. In contrast, the C-terminal 39-amino-acid peptide interacts with Pitx2 to increase its DNA binding activity. These data suggest that the C-terminal tail intrinsically inhibits the Pitx2 protein and that this inhibition can be overcome by interaction with other transcription factors to allow activation during development. PMID:10490637

  5. Multifunctional Role of the Pitx2 Homeodomain Protein C-Terminal Tail

    PubMed Central

    Amendt, Brad A.; Sutherland, Lillian B.; Russo, Andrew F.

    1999-01-01

    Pitx2 is a newly described bicoid-like homeodomain transcription factor that is defective in Rieger syndrome and shows a striking leftward developmental asymmetry. We have previously shown that Pitx2 (also called Ptx2 and RIEG) transactivates a reporter gene containing a bicoid enhancer and synergistically transactivates the prolactin promoter in the presence of the POU homeodomain protein Pit-1. In this report, we focused on the C-terminal region which is mutated in some Rieger patients and contains a highly conserved 14-amino-acid element. Deletion analysis of Pitx2 revealed that the C-terminal 39-amino-acid tail represses DNA binding activity and is required for Pitx2-Pit-1 interaction and Pit-1 synergism. Pit-1 interaction with the Pitx2 C terminus masks the inhibitory effect and promotes increased DNA binding activity. Interestingly, cotransfection of an expression vector encoding the C-terminal 39 amino acids of Pitx2 specifically inhibits Pitx2 transactivation activity. In contrast, the C-terminal 39-amino-acid peptide interacts with Pitx2 to increase its DNA binding activity. These data suggest that the C-terminal tail intrinsically inhibits the Pitx2 protein and that this inhibition can be overcome by interaction with other transcription factors to allow activation during development. PMID:10490637

  6. Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers.

    PubMed

    Meier, Christoph; Welland, Mark E

    2011-10-10

    Amyloid nanofibers derived from hen egg white lysozyme were processed into macroscopic fibers in a wet-spinning process based on interfacial polyion complexation using a polyanionic polysaccharide as cross-linker. As a result of their amyloid nanostructure, the hierarchically self-assembled protein fibers have a stiffness of up to 14 GPa and a tensile strength of up to 326 MPa. Fine-tuning of the polyelectrolytic interactions via pH allows to trigger the release of small molecules, as demonstrated with riboflavin-5'-phophate. The amyloid fibrils, highly oriented within the gellan gum matrix, were mineralized with calcium phosphate, mimicking the fibrolamellar structure of bone. The formed mineral crystals are highly oriented along the nanofibers, thus resulting in a 9-fold increase in fiber stiffness.

  7. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle

    PubMed Central

    Hergeth, Sonja P; Schneider, Robert

    2015-01-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. PMID:26474902

  8. Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer

    PubMed Central

    Akkiprik, Mustafa; Feng, Yumei; Wang, Huamin; Chen, Kexin; Hu, Limei; Sahin, Aysegul; Krishnamurthy, Savitri; Ozer, Ayse; Hao, Xishan; Zhang, Wei

    2008-01-01

    The insulin-like growth factor axis, which has been shown to protect cells from apoptosis, plays an essential role in normal cell physiology and in cancer development. The family of insulin-like growth factor binding proteins (IGFBPs) has been shown to have a diverse spectrum of functions in cell growth, death, motility, and tissue remodeling. Among the six IGFBP family members, IGFBP-5 has recently been shown to play an important role in the biology of breast cancer, especially in breast cancer metastasis; however, the exact mechanisms of action remain obscure and sometimes paradoxical. An in-depth understanding of IGFBP-5 would shed light on its potential role as a target for breast cancer therapeutics. PMID:18710598

  9. The sarcomeric protein nebulin: another multifunctional giant in charge of muscle strength optimization.

    PubMed

    Ottenheijm, Coen A C; Granzier, Henk; Labeit, Siegfried

    2012-01-01

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been successful in explaining many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Whereas the role of titin rapidly progressed, nebulin's role in muscle structure and function remained long nebulous. An important feature of muscle structure and function that has remained relatively obscure concerns the mechanisms that are involved in regulating thin filament length. Filament length is an important aspect of muscle function as force production is proportional to the amount of overlap between thick and thin filaments. Recent advances, due in part to the generation of nebulin KO models, reveal that nebulin plays an important role in the regulation of thin filament length, most likely by stabilizing F-actin assemblies. Another structural feature of skeletal muscle that has been incompletely understood concerns the mechanisms involved in maintaining Z-disk structure and the regular lateral alignment of adjacent sarcomeres during contraction. Recent studies indicate that nebulin is part of a protein complex that mechanically links adjacent myofibrils. In addition to these structural roles in support of myofibrillar force generation, nebulin has been also shown to regulate directly muscle contraction at the level of individual crossbridges: cycling kinetics and the calcium sensitivity of force producing crossbridges is enhanced in the presence of nebulin. Thus, these recent data all point to nebulin being important for muscle force optimization. Consequently, muscle weakness as the lead symptom develops in the case of patients with nemaline myopathy that have mutations in the nebulin gene. Here, we discuss these important novel insights into the role of nebulin in skeletal muscle function. PMID:22375125

  10. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles

    PubMed Central

    Vannucci, Luca; Falvo, Elisabetta; Fornara, Manuela; Di Micco, Patrizio; Benada, Oldrich; Krizan, Jiri; Svoboda, Jan; Hulikova-Capkova, Katarina; Morea, Veronica; Boffi, Alberto; Ceci, Pierpaolo

    2012-01-01

    Background Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. Methods Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. Results Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. Conclusion By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment

  11. CASP11--An Evaluation of a Modular BCL::Fold-Based Protein Structure Prediction Pipeline.

    PubMed

    Fischer, Axel W; Heinze, Sten; Putnam, Daniel K; Li, Bian; Pino, James C; Xia, Yan; Lopez, Carlos F; Meiler, Jens

    2016-01-01

    In silico prediction of a protein's tertiary structure remains an unsolved problem. The community-wide Critical Assessment of Protein Structure Prediction (CASP) experiment provides a double-blind study to evaluate improvements in protein structure prediction algorithms. We developed a protein structure prediction pipeline employing a three-stage approach, consisting of low-resolution topology search, high-resolution refinement, and molecular dynamics simulation to predict the tertiary structure of proteins from the primary structure alone or including distance restraints either from predicted residue-residue contacts, nuclear magnetic resonance (NMR) nuclear overhauser effect (NOE) experiments, or mass spectroscopy (MS) cross-linking (XL) data. The protein structure prediction pipeline was evaluated in the CASP11 experiment on twenty regular protein targets as well as thirty-three 'assisted' protein targets, which also had distance restraints available. Although the low-resolution topology search module was able to sample models with a global distance test total score (GDT_TS) value greater than 30% for twelve out of twenty proteins, frequently it was not possible to select the most accurate models for refinement, resulting in a general decay of model quality over the course of the prediction pipeline. In this study, we provide a detailed overall analysis, study one target protein in more detail as it travels through the protein structure prediction pipeline, and evaluate the impact of limited experimental data.

  12. The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase.

    PubMed

    Liu, Na-Nv; Duan, Xiao-Lei; Ai, Xia; Yang, Yan-Tao; Li, Ming; Dou, Shuo-Xing; Rety, Stephane; Deprez, Eric; Xi, Xu-Guang

    2015-10-15

    ScPif1 DNA helicase is the prototypical member of a 5'-to-3' helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5'-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA-RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo. PMID:26384418

  13. The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase.

    PubMed

    Liu, Na-Nv; Duan, Xiao-Lei; Ai, Xia; Yang, Yan-Tao; Li, Ming; Dou, Shuo-Xing; Rety, Stephane; Deprez, Eric; Xi, Xu-Guang

    2015-10-15

    ScPif1 DNA helicase is the prototypical member of a 5'-to-3' helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5'-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA-RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.

  14. Spider wrapping silk fibre architecture arising from its modular soluble protein precursor

    PubMed Central

    Tremblay, Marie-Laurence; Xu, Lingling; Lefèvre, Thierry; Sarker, Muzaddid; Orrell, Kathleen E.; Leclerc, Jérémie; Meng, Qing; Pézolet, Michel; Auger, Michèle; Liu, Xiang-Qin; Rainey, Jan K.

    2015-01-01

    Spiders store spidroins in their silk glands as high concentration aqueous solutions, spinning these dopes into fibres with outstanding mechanical properties. Aciniform (or wrapping) silk is the toughest spider silk and is devoid of the short amino acid sequence motifs characteristic of the other spidroins. Using solution-state NMR spectroscopy, we demonstrate that the 200 amino acid Argiope trifasciata AcSp1 repeat unit contrasts with previously characterized spidroins, adopting a globular 5-helix bundle flanked by intrinsically disordered N- and C-terminal tails. Split-intein-mediated segmental NMR-active isotope-enrichment allowed unambiguous demonstration of modular and malleable “beads-on-a-string” concatemeric behaviour. Concatemers form fibres upon manual drawing with silk-like morphology and mechanical properties, alongside secondary structuring and orientation consistent with native AcSp1 fibres. AcSp1 structural stability varies locally, with the fifth helix denaturing most readily. The structural transition of aciniform spidroin from a mostly α-helical dope to a mixed α-helix/β-sheet-containing fibre can be directly related to spidroin architecture and stability. PMID:26112753

  15. Analysis of the Linker Region Joining the Adenylation and Carrier Protein Domains of the Modular Non-Ribosomal Peptide Synthetases

    PubMed Central

    Miller, Bradley R.; Sundlov, Jesse A.; Drake, Eric J.; Makin, Thomas A.; Gulick, Andrew M.

    2014-01-01

    Non-Ribosomal Peptide Synthetases (NRPSs) are multi-modular proteins capable of producing important peptide natural products. Using an assembly-line process the amino acid substrate and peptide intermediates are passed between the active sites of different catalytic domains of the NRPS while bound covalently to a peptidyl carrier protein (PCP) domain. Examination of the linker sequences that join the NRPS adenylation and PCP domains identified several conserved proline residues that are not found in standalone adenylation domains. We examined the roles of these proline residues and neighboring conserved sequences through mutagenesis and biochemical analysis of the reaction catalyzed by the adenylation domain and the fully reconstituted NRPS pathway. In particular, we identified a conserved LPxP motif at the start of the adenylation-PCP linker. The LPxP motif interacts with a region on the adenylation domain to stabilize a critical catalytic lysine residue belonging to the A10 motif that immediately precedes the linker. Further, this interaction with the C-terminal sub-domain of the adenylation domain may coordinate movement of the PCP with the conformational change of the adenylation domain. Through this work, we extend the conserved A10 motif of the adenylation domain and identify residues that enable proper adenylation domain function. PMID:24975514

  16. A Modular Approach To Study Protein Adsorption on Surface Modified Hydroxyapatite.

    PubMed

    Ozhukil Kollath, Vinayaraj; Van den Broeck, Freya; Fehér, Krisztina; Martins, José C; Luyten, Jan; Traina, Karl; Mullens, Steven; Cloots, Rudi

    2015-07-13

    Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces. PMID:26096378

  17. A Modular Approach To Study Protein Adsorption on Surface Modified Hydroxyapatite.

    PubMed

    Ozhukil Kollath, Vinayaraj; Van den Broeck, Freya; Fehér, Krisztina; Martins, José C; Luyten, Jan; Traina, Karl; Mullens, Steven; Cloots, Rudi

    2015-07-13

    Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces.

  18. A modular perspective of protein structures: application to fragment based loop modeling.

    PubMed

    Fernandez-Fuentes, Narcis; Fiser, Andras

    2013-01-01

    Proteins can be decomposed into supersecondary structure modules. We used a generic definition of supersecondary structure elements, so-called Smotifs, which are composed of two flanking regular secondary structures connected by a loop, to explore the evolution and current variety of structure building blocks. Here, we discuss recent observations about the saturation of Smotif geometries in protein structures and how it opens new avenues in protein structure modeling and design. As a first application of these observations we describe our loop conformation modeling algorithm, ArchPred that takes advantage of Smotifs classification. In this application, instead of focusing on specific loop properties the method narrows down possible template conformations in other, often not homologous structures, by identifying the most likely supersecondary structure environment that cradles the loop. Beyond identifying the correct starting supersecondary structure geometry, it takes into account information of fit of anchor residues, sterical clashes, match of predicted and observed dihedral angle preferences, and local sequence signal.

  19. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  20. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

  1. Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene

    NASA Astrophysics Data System (ADS)

    Hayashi, Cheryl Y.; Lewis, Randolph V.

    2000-02-01

    Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.

  2. The elastic free energy of a tandem modular protein under force.

    PubMed

    Valle-Orero, Jessica; Eckels, Edward C; Stirnemann, Guillaume; Popa, Ionel; Berkovich, Ronen; Fernandez, Julio M

    2015-05-01

    Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins.

  3. Secondary Structural Change Can Occur Diffusely and Not Modularly during Protein Folding and Unfolding Reactions.

    PubMed

    Malhotra, Pooja; Udgaonkar, Jayant B

    2016-05-11

    A major goal of protein folding studies is to understand the structural basis of the coupling between stabilizing interactions, which leads to cooperative conformational change. The goal is challenging because of the difficulty in simultaneously measuring global cooperativity by determining population distributions of the conformations present, and the structures of these conformations. Here, hydrogen exchange (HX) into the small protein monellin was carried out under conditions where structure-opening is rate limiting for most backbone amide sites. Detection by mass spectrometry allowed characterization of not only segment-specific structure-opening rates but also the cooperativity of unfolding of the different secondary structural segments of the protein. The segment-specific pattern of HX reveals that the backbone hydrogen-bonding network disassembles in a structurally diffuse, asynchronous manner. A comparison of the site-specific transient opening rates of secondary and tertiary structure in the protein provides a structural rationale for the observation that unfolding is hierarchical and describable by exponential kinetics, despite being diffuse. Since unfolding was studied in native conditions, the sequence of events during folding in the same conditions will be the reverse of the sequence of events observed during unfolding. Hence, the formation of secondary structural units during folding would also occur in a non-cooperative, diffuse, and asynchronous manner. PMID:27093885

  4. The elastic free energy of a tandem modular protein under force.

    PubMed

    Valle-Orero, Jessica; Eckels, Edward C; Stirnemann, Guillaume; Popa, Ionel; Berkovich, Ronen; Fernandez, Julio M

    2015-05-01

    Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins. PMID:25796331

  5. Modular organization and identification of a mononuclear iron-binding site within the NifU protein.

    PubMed

    Agar, J N; Yuvaniyama, P; Jack, R F; Cash, V L; Smith, A D; Dean, D R; Johnson, M K

    2000-04-01

    The NifS and NifU nitrogen fixation-specific gene products are required for the full activation of both the Fe-protein and MoFe-protein of nitrogenase from Azotobacter vinelandii. Because the two nitrogenase component proteins both require the assembly of [Fe-S]-containing clusters for their activation, it has been suggested that NifS and NifU could have complementary functions in the mobilization of sulfur and iron necessary for nitrogenase-specific [Fe-S] cluster assembly. The NifS protein has been shown to have cysteine desulfurase activity and can be used to supply sulfide for the in vitro catalytic formation of [Fe-S] clusters. The NifU protein was previously purified and shown to be a homodimer with a [2Fe-2S] cluster in each subunit. In the present work, primary sequence comparisons, amino acid substitution experiments, and optical and resonance Raman spectroscopic characterization of recombinantly produced NifU and NifU fragments are used to show that NifU has a modular structure. One module is contained in approximately the N-terminal third of NifU and is shown to provide a labile rubredoxin-like ferric-binding site. Cysteine residues Cys35, Cys62, and Cys106 are necessary for binding iron in the rubredoxin-like mode and visible extinction coefficients indicate that up to one ferric ion can be bound per NifU monomer. The second module is contained in approximately the C-terminal half of NifU and provides the [2Fe-2S] cluster-binding site. Cysteine residues Cys137, Cys139, Cys172, and Cys175 provide ligands to the [2Fe-2S] cluster. The cysteines involved in ligating the mononuclear Fe in the rubredoxin-like site and those that provide the [2Fe-2S] cluster ligands are all required for the full physiological function of NifU. The only two other cysteines contained within NifU, Cys272 and Cys275, are not necessary for iron binding at either site, nor are they required for the full physiological function of NifU. The results provide the basis for a model where

  6. Multifunctional imaging nanoprobes

    PubMed Central

    Jarzyna, Peter A.; Gianella, Anita; Skajaa, Torjus; Knudsen, Gitte; Deddens, Lisette H.; Cormode, David P.; Fayad, Zahi A.; Mulder, Willem J. M.

    2011-01-01

    Multifunctional imaging nanoprobes have proven to be of great value in the research of pathological processes, as well as the assessment of the delivery, fate, and therapeutic potential of encapsulated drugs. Moreover, such probes may potentially support therapy schemes by the exploitation of their own physical properties, e.g., through thermal ablation. This review will present four classes of nanoparticulate imaging probes used in this area: multifunctional probes (1) that can be tracked with at least three different and complementary imaging techniques, (2) that carry a drug and have bimodal imaging properties, (3) that are employed for nucleic acid delivery and imaging, and (4) imaging probes with capabilities that can be used for thermal ablation. We will highlight several examples where the suitable combination of different (bio)materials like polymers, inorganic nanocrystals, fluorophores, proteins/peptides, and lipids can be tailored to manufacture multifunctional probes to accomplish nanomaterials of each of the aforementioned classes. Moreover, it will be demonstrated how multimodality imaging approaches improve our understanding of in vivo nanoparticle behavior and efficacy at different levels, ranging from the subcellular level to the whole body. PMID:20039335

  7. Modular NRPSs are monomeric.

    PubMed

    Smith, Stuart

    2002-09-01

    NRPSs, PKSs, and hybrid NRPS/PKSs are modular proteins with similar assembly-line organizations. Although PKSs function as dimers, new data demonstrate that functional NRPSs are monomeric. This discovery has significant implications for engineering artificial assemblies for the production of novel biotherapeutics.

  8. Modular Assembly of Protein Building Blocks to Create Precisely-Defined Megamolecules

    PubMed Central

    Modica, Justin A.; Skarpathiotis, Stratos; Mrksich, Milan

    2013-01-01

    Enzyme promoted assembly offers a simple and straightforward means to construct monodisperse molecular objects too large for classical organic synthesis and too small for top-down techniques. This communication outlines the design and construction of a heterobifunctional protein building block, HaloTag-cutinase, that reacts rapidly and selectively with an appropriately functionalized small molecule linker; and describes the step-wise combination of these building blocks to generate a 300 kDa “megamolecule” that is precisely-defined with respect to domain orientation, connectivity, and composition. PMID:23070998

  9. Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals

    PubMed Central

    Bae, Young-An; Cai, Guo-Bin; Kim, Seon-Hee; Zo, Young-Gun; Kong, Yoon

    2009-01-01

    Background Phospholipid hydroperoxide glutathione peroxidases (PHGPx), the most abundant isoforms of GPx families, interfere directly with hydroperoxidation of lipids. Biochemical properties of these proteins vary along with their donor organisms, which has complicated the phylogenetic classification of diverse PHGPx-like proteins. Despite efforts for comprehensive analyses, the evolutionary aspects of GPx genes in invertebrates remain largely unknown. Results We isolated GPx homologs via in silico screening of genomic and/or expressed sequence tag databases of eukaryotic organisms including protostomian species. Genes showing strong similarity to the mammalian PHGPx genes were commonly found in all genomes examined. GPx3- and GPx7-like genes were additionally detected from nematodes and platyhelminths, respectively. The overall distribution of the PHGPx-like proteins with different biochemical properties was biased across taxa; selenium- and glutathione (GSH)-dependent proteins were exclusively detected in platyhelminth and deuterostomian species, whereas selenium-independent and thioredoxin (Trx)-dependent enzymes were isolated in the other taxa. In comparison of genomic organization, the GSH-dependent PHGPx genes showed a conserved architectural pattern, while their Trx-dependent counterparts displayed complex exon-intron structures. A codon for the resolving Cys engaged in reductant binding was found to be substituted in a series of genes. Selection pressure to maintain the selenocysteine codon in GSH-dependent genes also appeared to be relaxed during their evolution. With the dichotomized fashion in genomic organizations, a highly polytomic topology of their phylogenetic trees implied that the GPx genes have multiple evolutionary intermediate forms. Conclusion Comparative analysis of invertebrate GPx genes provides informative evidence to support the modular pathways of GPx evolution, which have been accompanied with sporadic expansion/deletion and exon

  10. Disabled-2: A modular scaffold protein with multifaceted functions in signaling.

    PubMed

    Finkielstein, Carla V; Capelluto, Daniel G S

    2016-07-01

    Disabled-2 (Dab2) is a multimodular scaffold protein with signaling roles in the domains of cell growth, trafficking, differentiation, and homeostasis. Emerging evidences place Dab2 as a novel modulator of cell-cell interaction; however, its mode of action has remained largely elusive. In this review, we highlight the relevance of Dab2 function in cell signaling and development and provide the most recent and comprehensive analysis of Dab2's action as a mediator of homotypical and heterotypical interactions. Accordingly, Dab-2 controls the extent of platelet aggregation through various motifs within its N-terminus. Dab2 interacts with the cytosolic tail of the integrin receptor blocking inside-out signaling, whereas extracellular Dab2 competes with fibrinogen for integrin αIIb β3 receptor binding and, thus, modulates outside-in signaling. An additional level of regulation results from Dab2's association with cell surface lipids, an event that defines the extent of cell-cell interactions. As a multifaceted regulator, Dab2 acts as a mediator of endocytosis through its association with the [FY]xNPx[YF] motifs of internalized cell surface receptors, phosphoinositides, and clathrin. Other emerging roles of Dab2 include its participation in developmental mechanisms required for tissue formation and in modulation of immune responses. This review highlights the various novel mechanisms by which Dab2 mediates an array of signaling events with vast physiological consequences. PMID:27417122

  11. Modular Synthesizers.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1985-01-01

    Discusses the basics of inexpensive modular synthesizers (which demonstrate various principles of sound). Topics considered include: oscillators and musical range; oscillator waveforms and characteristics; synthesizing simple musical sounds; and modulation and sweeping filter effects. Suggestions for purchasing or building synthesizer components…

  12. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  13. Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein.

    PubMed

    Zhao, Jun; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2014-09-01

    Multifunctional injectable thermo-/pH-responsive hydrogels as release systems for the oral delivery of small molecule drugs and the local delivery of protein are presented. The injectable interpenetrating polymer network (IPN) hydrogels based on poly(ethylene glycol) methacrylate, N-isopropylacrylamide, and methacrylated alginate were prepared by using ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED) as a redox initiator system at body temperature, and the obtained hydrogels overcame the instability of calcium cross-linked alginate hydrogels under physiological conditions. The hydrogels showed good mechanical strength by rheometer and exhibited temperature and pH sensitivity by a swelling test. Diclofenac sodium (DCS) as a model for small molecule water-soluble anti-inflammatory drugs and bovine serum albumin (BSA) as a model for protein drugs were encapsulated in situ in the hydrogel. The DCS and BSA release results indicated that these hydrogels, as carriers, have great potential for use in the oral delivery of small molecule drugs and for long-term localized protein release. Furthermore, the cytotoxicity of these hydrogels was studied via live/dead viability and alamarBlue assays using adipose tissue-derived mesenchymal stem cells. PMID:25102223

  14. Design and characterization of a modular membrane protein anchor to functionalize the moss Physcomitrella patens with extracellular catalytic and/or binding activities.

    PubMed

    Morath, Volker; Truong, Dong-Jiunn Jeffery; Albrecht, Florian; Polte, Ingmar; Ciccone, Rosario Adriano; Funke, Louise Friederike; Reichart, Leonie; Wolf, Christopher Guy; Brunner, Andreas-David; Fischer, Katrin; Schneider, Philipp Constantin; Brüggenthies, Johanna Barbara; Fröhlich, Fabian; Wiedemann, Gertrud; Reski, Ralf; Skerra, Arne

    2014-12-19

    Heterologous enzymes and binding proteins were secreted by the moss Physcomitrella patens or anchored extracellularly on its cell membrane in order to functionalize the apoplast as a biochemical reaction compartment. This modular membrane anchoring system utilizes the signal peptide and the transmembrane segment of the somatic embryogenesis receptor-like kinase (SERK), which were identified in a comprehensive bioinformatic analysis of the P. patens genome. By fusing the soluble enzyme NanoLuc luciferase to the signal peptide, its secretion capability was confirmed in vivo. The membrane localization of hybrid proteins comprising the SERK signal peptide, NanoLuc or other functional modules, the SERK transmembrane anchor, and a C-terminal GFP reporter was demonstrated using fluorescence microscopy as well as site-specific proteolytic release of the extracellular enzyme domain. Our membrane anchoring system enables the expression of various functional proteins in the apoplast of P. patens, empowering this photoautotrophic organism for biotechnological applications.

  15. A Modular Bioplatform Based on a Versatile Supramolecular Multienzyme Complex Directly Attached to Graphene.

    PubMed

    Alshammari, Abeer; Posner, Mareike G; Upadhyay, Abhishek; Marken, Frank; Bagby, Stefan; Ilie, Adelina

    2016-08-17

    Developing generic strategies for building adaptable or multifunctional bioplatforms is challenging, in particular because protein immobilization onto surfaces often causes loss of protein function and because multifunctionality usually necessitates specific combinations of heterogeneous elements. Here, we introduce a generic, modular bioplatform construction strategy that uses cage-like supramolecular multienzyme complexes as highly adaptable building blocks immobilized directly and noncovalently on graphene. Thermoplasma acidophilum dihydrolipoyl acyltransferase (E2) supramolecular complexes organize as a monolayer or can be controllably transferred onto graphene, preserving their supramolecular form with specific molecular recognition capability and capacity for engineering multifunctionality. This E2-graphene platform can bind enzymes (here, E1, E2's physiological partner) without loss of enzyme function; in this test case, E1 catalytic activity was detected on E2-graphene over 6 orders of magnitude in substrate concentration. The E2-graphene platform can be multiplexed via patterned cotransfer of differently modified E2 complexes. As the E2 complexes are robust and highly customizable, E2-graphene is a platform onto which multiple functionalities can be built.

  16. Quasispecies theory for evolution of modularity.

    PubMed

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  17. Quasispecies Theory for Evolution of Modularity

    PubMed Central

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent. PMID:25679649

  18. Thick-walled carbon composite multifunctional structures

    NASA Astrophysics Data System (ADS)

    Haake, John M.; Jacobs, Jack H.; McIlroy, Bruce E.

    1997-06-01

    Satellite programs are moving in the direction of smaller and lighter structures. Technological advances have permitted more sophisticated equipment to be consolidated into compact spaces. Micro-satellites, between 10 and 100 kg, will incorporate micro-electric devices into the lay-up of the satellite structure. These structures will be designed to carry load, provide thermal control, enhance damping, and include integrated passive electronics. These multifunctional structures offer lighter weight, reduced volume, and a 'smarter' overall package for incorporation of sensors, electronics, fiber optics, powered appendages or active components. McDonnell Douglas Corporation (MDC) has applied technology from the synthesis and processing of intelligent cost effective structures (SPICES) and independent research and development (IRAD) programs to the modular instrument support system (MISS) for multifunctional space structures and micro-satellites. The SPICES program was funded by the Defense Advanced Research Projects Agency (DARPA) to develop affordable manufacturing processes for smart materials to be used in vibration control, and the MISS program was funded by NASA-Langley. The MISS program was conceived to develop concepts and techniques to make connections between different multifunctional structures. MDA fabricated a trapezoidal carbon composite structure out of IM7/977-3 tape prepreg. Flex circuits, thermal and optical conduits were embedded to realize a utility modular connector. These provide electrical, thermal, optical and mechanical connections between micro- satellite components. A quick disconnect mount was also developed to accommodate a variety of devices such as solar arrays, power sources, thermal transfer and vibration control modules.

  19. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.

    PubMed

    Höller, Roland P M; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish

    2016-06-28

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies.

  20. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties

    PubMed Central

    Höller, Roland P. M.; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas

    2016-01-01

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies. PMID:26982386

  1. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.

    PubMed

    Höller, Roland P M; Dulle, Martin; Thomä, Sabrina; Mayer, Martin; Steiner, Anja Maria; Förster, Stephan; Fery, Andreas; Kuttner, Christian; Chanana, Munish

    2016-06-28

    We present a bottom-up assembly route for a large-scale organization of plasmonic nanoparticles (NPs) into three-dimensional (3D) modular assemblies with core/satellite structure. The protein-assisted assembly of small spherical gold or silver NPs with a hydrophilic protein shell (as satellites) onto larger metal NPs (as cores) offers high modularity in sizes and composition at high satellite coverage (close to the jamming limit). The resulting dispersions of metal/metal nanoclusters exhibit high colloidal stability and therefore allow for high concentrations and a precise characterization of the nanocluster architecture in dispersion by small-angle X-ray scattering (SAXS). Strong near-field coupling between the building blocks results in distinct regimes of dominant satellite-to-satellite and core-to-satellite coupling. High robustness against satellite disorder was proved by UV/vis diffuse reflectance (integrating sphere) measurements. Generalized multiparticle Mie theory (GMMT) simulations were employed to describe the electromagnetic coupling within the nanoclusters. The close correlation of structure and optical property allows for the rational design of core/satellite nanoclusters with tailored plasmonics and well-defined near-field enhancement, with perspectives for applications such as surface-enhanced spectroscopies. PMID:26982386

  2. The structure of the folded domain from the signature multifunctional protein ICP27 from herpes simplex virus-1 reveals an intertwined dimer

    PubMed Central

    Tunnicliffe, Richard B.; Schacht, Mitchell; Levy, Colin; Jowitt, Thomas A.; Sandri-Goldin, Rozanne M.; Golovanov, Alexander P.

    2015-01-01

    Herpesviruses cause life-long infections by evading the host immune system and establishing latent infections. All mammalian herpesviruses express an essential multifunctional protein that is typified by ICP27 encoded by Herpes Simplex Virus 1. The only region that is conserved among the diverse members of the ICP27 family is a predicted globular domain that has been termed the ICP27 homology domain. Here we present the first crystal structure of the ICP27 homology domain, solved to 1.9 Å resolution. The protein is a homo-dimer, adopting a novel intertwined fold with one CHCC zinc-binding site per monomer. The dimerization, which was independently confirmed by SEC-MALS and AUC, is stabilized by an extensive network of intermolecular contacts, and a domain-swap involving the two N-terminal helices and C-terminal tails. Each monomer contains a lid motif that can clamp the C-terminal tail of its dimeric binding partner against its globular core, without forming any distinct secondary structure elements. The binding interface was probed with point mutations, none of which had a noticeable effect on dimer formation; however deletion of the C-terminal tail region prevented dimer formation in vivo. The structure provides a template for future biochemical studies and modelling of ICP27 homologs from other herpesviruses. PMID:26062451

  3. Construction of a green fluorescent protein (GFP)-marked multifunctional pesticide-degrading bacterium for simultaneous degradation of organophosphates and γ-hexachlorocyclohexane.

    PubMed

    Yang, Chao; Liu, Ruihua; Yuan, Yulan; Liu, Jianli; Cao, Xiangyu; Qiao, Chuanling; Song, Cunjiang

    2013-02-13

    An autofluorescent whole-cell biocatalyst capable of simultaneously degrading organophosphates (OPs) and γ-hexachlorocyclohexane (γ-HCH) was constructed by display of organophosphorus hydrolase (OPH) and green fluorescent protein (GFP) fusion on the cell surface of a γ-HCH-degrading Sphingobium japonicum UT26 using the truncated ice nucleation protein (INPNC) as an anchoring motif. The surface localization of INPNC-OPH-GFP fusion was verified by cell fractionation, Western blot, proteinase accessibility, and immunofluorescence microscopy. Surface display of macromolecular OPH-GFP fusion (63 kDa) neither inhibits cell growth nor affects cell viability. In sterile and nonsterile soil samples, a mixture of parathion (100 mg kg(-1)) and γ-HCH (10 mg kg(-1)) could be degraded completely within 15 days when inoculated with the engineered UT26, and the strain could be easily monitored by fluorescence during bioremediation. These results indicate that the engineered UT26 is a promising multifunctional bacterium that could be used for the bioremediation of environments contaminated with multiple pesticides.

  4. Modular shield

    DOEpatents

    Snyder, Keith W.

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  5. Local modularity for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Tao; Zhang, Yan; Hu, Ke; Li, Jian-Ming; Xu, Xiao-Ke; Liu, Cui-Cui; Chen, Shi

    2016-02-01

    Community detection is a topic of interest in the study of complex networks such as the protein-protein interaction networks and metabolic networks. In recent years, various methods were proposed to detect community structures of the networks. Here, a kind of local modularity with tunable parameter is derived from the Newman-Girvan modularity by a special self-loop strategy that depends on the community division of the networks. By the self-loop strategy, one can easily control the definition of modularity, and the resulting modularity can be optimized by using the existing modularity optimization algorithms. The local modularity is used as the target function for community detection, and a self-consistent method is proposed for the optimization of the local modularity. We analyze the behaviors of the local modularity and show the validity of the local modularity in detecting community structures on various networks.

  6. Modular Certification

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2002-01-01

    Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

  7. SdrI of Staphylococcus saprophyticus is a multifunctional protein: localization of the fibronectin-binding site.

    PubMed

    Sakinç, Türkân; Kleine, Britta; Michalski, Nadine; Kaase, Martin; Gatermann, Sören G

    2009-11-01

    Staphylococcus saprophyticus, an important cause of urinary tract infections in young women, expresses the surface protein SdrI, a member of the serine-aspartate repeat (SD) protein family. Here we analyse the fibronectin-binding ability of SdrI, as S. saprophyticus is known to bind fibronectin and there is no known SD protein with this function. This protein does not contain the binding motif typical for fibronectin-binding proteins. Using recombinant fragments of SdrI, we localized the binding domain in the A region and show that SdrI bound to the N-terminal 30-kDa fragment of fibronectin. The fibronectin-binding function was shown in the natural host using an SdrI knockout mutant that showed decreased binding to fibronectin compared with wild-type strain 7108.

  8. Photoresponsive polymer nanocarriers with multifunctional cargo.

    PubMed

    Swaminathan, Subramani; Garcia-Amorós, Jaume; Fraix, Aurore; Kandoth, Noufal; Sortino, Salvatore; Raymo, Françisco M

    2014-06-21

    Nanoparticles with photoresponsive character can be assembled from amphiphilic macromolecular components and hydrophobic chromophores. In aqueous solutions, the hydrophobic domains of these species associate to produce spontaneously nanosized hosts with multiple photoresponsive guests in their interior. The modularity of this supramolecular approach to nanostructured assemblies permits the co-encapsulation of distinct subsets of guests within the very same host. In turn, the entrapped guests can be designed to interact upon light excitation and exchange electrons, energy or protons. Such photoinduced processes permit the engineering of properties into these supramolecular constructs that would otherwise be impossible to replicate with the separate components. Alternatively, noninteracting guests with distinct functions can be entrapped in these supramolecular containers to ensure multifunctional character. In fact, biocompatible luminescent probes with unique photochemical and photophysical signatures have already emerged from these fascinating investigations. Thus, polymer nanocarriers can become invaluable supramolecular scaffolds for the realization of multifunctional and photoresponsive tools for a diversity of biomedical applications. PMID:24306531

  9. Borrelia recurrentis Employs a Novel Multifunctional Surface Protein with Anti-Complement, Anti-Opsonic and Invasive Potential to Escape Innate Immunity

    PubMed Central

    Grosskinsky, Sonja; Schott, Melanie; Brenner, Christiane; Cutler, Sally J.; Kraiczy, Peter; Zipfel, Peter F.; Simon, Markus M.; Wallich, Reinhard

    2009-01-01

    Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever. PMID:19308255

  10. Quantitative Fragmentome Mapping Reveals Novel, Domain-specific Partners for the Modular Protein RepoMan (Recruits PP1 Onto Mitotic Chromatin at Anaphase)*

    PubMed Central

    Prévost, Michèle; Chamousset, Delphine; Nasa, Isha; Freele, Emily; Morrice, Nick; Moorhead, Greg; Trinkle-Mulcahy, Laura

    2013-01-01

    RepoMan is a protein phosphatase 1 (PP1) regulatory subunit that targets the phosphatase to key substrates throughout the cell cycle. Most work to date has focused on the mitotic roles of RepoMan/PP1, although equally important interphase role(s) have been demonstrated. Initial mapping of the interactome of nuclear RepoMan, both endogenous and tagged, was complicated by various factors, including antibody cross-reactivity and low sensitivity of the detection of chromatin-associated partners above the high background of proteins that bind nonspecifically to affinity matrices. We therefore adapted the powerful combination of fluorescence imaging with labeling-based quantitative proteomics to map the “fragmentomes” of specific regions of RepoMan. These regions demonstrate distinct localization patterns and turnover dynamics that reflect underlying binding events. The increased sensitivity and signal-to-noise ratio provided by this unique approach facilitated identification of a large number of novel RepoMan interactors, several of which were rigorously validated in follow-up experiments, including the association of RepoMan/PP1 with a specific PP2A-B56γ complex, interaction with ribosomal proteins and import factors involved in their nucleocytoplasmic transport and interaction with proteins involved in the response to DNA damage. This same strategy can be used to investigate the cellular roles of other modular proteins. PMID:23362328

  11. Galactose-decorated reduction-sensitive degradable chimaeric polymersomes as a multifunctional nanocarrier to efficiently chaperone apoptotic proteins into hepatoma cells.

    PubMed

    Wang, Xiaoyan; Sun, Huanli; Meng, Fenghua; Cheng, Ru; Deng, Chao; Zhong, Zhiyuan

    2013-08-12

    multifunctional platform for efficient intracellular protein delivery.

  12. Purification, characterization and modular organization of a cellulose-binding protein, CBP105, a processive beta-1,4-endoglucanase from Cellulomonas flavigena.

    PubMed

    Mejia-Castillo, Teresa; Hidalgo-Lara, Maria Eugenia; Brieba, Luis G; Ortega-Lopez, Jaime

    2008-04-01

    A cellulose-binding protein of 105 kDa (CBP105) from Cellulomonas flavigena was purified and its gene was cloned. CBP105 is a processive endoglucanase with maximum activity on carboxymethyl cellulose (CMC) at pH 7.5 and 60 degrees C. Limited proteolysis suggested that CBP105 is composed of one catalytic domain (CD) and two carbohydrate-binding modules (CBM). The nucleotide sequence of the cbp105 gene (AY729806) indicates that CBP105 is a modular enzyme with a family 9 glycoside hydrolase CD linked to a family 3 CBM, two fibronectin III-like domains and a family 2 CBM. This structural organization may be responsible for CBP105 processive CMC degradation.

  13. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans.

    PubMed

    Choy, Henry A; Kelley, Melissa M; Croda, Julio; Matsunaga, James; Babbitt, Jane T; Ko, Albert I; Picardeau, Mathieu; Haake, David A

    2011-01-01

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react

  14. Identification of the regulatory domain of the mammalian multifunctional protein CAD by the construction of an Escherichia coli hamster hybrid carbamyl-phosphate synthetase.

    PubMed

    Liu, X; Guy, H I; Evans, D R

    1994-11-01

    Carbamyl-phosphate synthetases from different organisms have similar catalytic mechanisms and amino acid sequences, but their structural organization, sub-unit structure, and mode of regulation can be very different. Escherichia coli carbamyl-phosphate synthetase (CPSase), a monofunctional protein consisting of amido-transferase and synthetase subunits, is allosterically inhibited by UMP and activated by NH3, IMP, and ornithine. In contrast, mammalian CPSase II, part of the large multifunctional polypeptide, CAD, is inhibited by UTP and activated by 5-phosphoribosyl-1-pyrophosphate (PRPP). Previous photoaffinity labeling studies of E. coli CPSase showed that allosteric effectors bind near the carboxyl-terminal end of the synthetase subunit. This region of the molecule may be a regulatory subdomain common to all CPSases. An E. coli mammalian hybrid CPSase gene has been constructed and expressed in E. coli. The hybrid consists of the E. coli CPSase synthetase catalytic subdomains, residues 1-900 of the 1073 residue polypeptide, fused to the amino-terminal end of the putative 190-residue regulatory subdomain of the mammalian protein. The hybrid CPSase had normal activity, but was no longer regulated by the prokaryotic allosteric effectors. Instead, the glutamine- and ammonia-dependent CPSase activities and both ATP-dependent partial reactions were activated by PRPP and inhibited by UTP, indicating that the binding sites of both of these ligands are located in a regulatory region at the carboxyl-terminal end of the CPSase domain of CAD. The apparent ligand dissociation constants and extent of inhibition by UTP are similar in the hybrid and the wild type mammalian protein, but PRPP binds 4-fold more weakly to the hybrid. The allosteric ligands affected the steady state kinetic parameters of the hybrid differently, suggesting that while the linkage between the catalytic and regulatory subdomains has been preserved, there may be qualitative differences in interdomain

  15. ATP-binding sites in brain p97/VCP (valosin-containing protein), a multifunctional AAA ATPase.

    PubMed Central

    Zalk, Ran; Shoshan-Barmatz, Varda

    2003-01-01

    VCP (valosin-containing protein) or p97 is a member of the AAA family (ATPases associated with a variety of cellular activities family), a diverse group of proteins sharing a key conserved AAA module containing duplicate putative ATP-binding sites. Although the functions of the AAA family are related to their putative ATP-binding sites, the binding of ATP to these sites has not yet been demonstrated. In the present study, the ATP-binding site(s) of brain VCP was characterized using the photoreactive ATP analogue, BzATP [3'- O -(4-benzoylbenzoyl)ATP]. Photo-activation of Bz-[alpha-(32)P]ATP resulted in its covalent binding to a 97-kDa purified soluble or membrane-associated protein, identified by amino acid sequencing as VCP. Bz-[alpha-(32)P]ATP covalently bound to the purified homo-hexameric VCP with an apparent high affinity (74-111 nM). A molar stoichiometry of 2.23+/-0.14 BzATP bound per homo-hexameric VCP (n =6) was determined using different methods for analysis of radiolabelling and protein determination. Nucleotides inhibited the binding of Bz-[alpha-(32)P]ATP to VCP with the following efficiency: BzATP>ATP>ADP>>adenosine 5'-[beta,gamma-imido]triphosphate>or=adenosine 5'-[beta,gamma-methylene]triphosphate, whereas AMP, GTP and CTP were ineffective. VCP was observed to possess very low ATPase activity, with nucleotide specificity similar to that for BzATP binding. Conformational changes induced by an alternating site mechanism for ATP binding are suggested as a molecular mechanism for coupling ATP binding to the diverse activities of the AAA family. PMID:12747802

  16. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    PubMed

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-01-01

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  17. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  18. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  19. The Multifunctional PE_PGRS11 Protein from Mycobacterium tuberculosis Plays a Role in Regulating Resistance to Oxidative Stress*

    PubMed Central

    Chaturvedi, Rashmi; Bansal, Kushagra; Narayana, Yeddula; Kapoor, Nisha; Sukumar, Namineni; Togarsimalemath, Shambhuprasad Kotresh; Chandra, Nagasuma; Mishra, Saurabh; Ajitkumar, Parthasarathi; Joshi, Beenu; Katoch, Vishwa Mohan; Patil, Shripad A.; Balaji, Kithiganahalli N.

    2010-01-01

    Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress. PMID:20558725

  20. Multifunctional layered magnetic composites.

    PubMed

    Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas; Cölfen, Helmut

    2015-01-01

    A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158

  1. Multifunctional layered magnetic composites

    PubMed Central

    Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas

    2015-01-01

    Summary A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158

  2. Lightweight composites for modular panelized construction

    NASA Astrophysics Data System (ADS)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction

  3. Disorder in Milk Proteins: α-Lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular "Oil Container" in the Anti-Tumorigenic Drugs, Liprotides.

    PubMed

    Uversky, Vladimir N; Permyakov, Serge E; Breydo, Leonid; Redwan, Elrashdy M; Almehdar, Hussein A; Permyakov, Eugene A

    2016-07-15

    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an "oil container" or cargo for the delivery of oleic acid to the cell membranes.

  4. Multifunctionality in molecular magnetism.

    PubMed

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  5. A Modular, DNA-Based Beacon for Single-Step Fluorescence Detection of Antibodies and Other Proteins.

    PubMed

    Ranallo, Simona; Rossetti, Marianna; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2015-11-01

    A versatile platform for the one-step fluorescence detection of both monovalent and multivalent proteins has been developed. This system is based on a conformation-switching stem-loop DNA scaffold that presents a small-molecule, polypeptide, or nucleic-acid recognition element on each of its two stem strands. The steric strain associated with the binding of one (multivalent) or two (monovalent) target molecules to these elements opens the stem, enhancing the emission of an attached fluorophore/quencher pair. The sensors respond rapidly (<10 min) and selectively, enabling the facile detection of specific proteins even in complex samples, such as blood serum. The versatility of the platform was demonstrated by detecting five bivalent proteins (four antibodies and the chemokine platelet-derived growth factor) and two monovalent proteins (a Fab fragment and the transcription factor TBP) with low nanomolar detection limits and no detectable cross-reactivity.

  6. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  7. Modern Schools? Think Modular!

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1998-01-01

    Examines how modular educational facilities can provide a viable alternative in building construction when speed and safety are key construction issues. Explains the durability of modular structures, their adherence to building codes, and the flexibility that they provide in design and appearance. The advantages to permanent modular construction…

  8. An experimental approach to testing modular evolution: directed replacement of alpha-helices in a bacterial protein.

    PubMed Central

    DuBose, R F; Hartl, D L

    1989-01-01

    We have used oligonucleotide site-directed mutagenesis to ask whether certain structural motifs in proteins are determined mainly by local interactions among amino acids. Multiple consecutive amino acids in three alpha-helices in the alkaline phosphatase (EC 3.1.3.1) of Escherichia coli have been replaced with helical sequences from four other sources. Altogether, 12 distinct helical replacements were created, 9 of which retain enzymatic activity. Most short stretches of helical sequence can be replaced with unrelated helical sequences without eliminating enzyme activity. Replacements of the carboxyl half of an alpha-helix are less harmful than those of the amino half, and the two together are synergistic rather than additive. These results are consistent with the hypothesis that proteins originally evolved by the assembly of small functional folding units. Images PMID:2690081

  9. Development of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations

    PubMed Central

    Rose, Honor M.; Witte, Christopher; Rossella, Federica; Klippel, Stefan; Freund, Christian; Schröder, Leif

    2014-01-01

    Magnetic resonance imaging (MRI) is seriously limited when aiming for visualization of targeted contrast agents. Images are reconstructed from the weak diamagnetic properties of the sample and require an abundant molecule like water as the reporter. Micromolar to millimolar concentrations of conventional contrast agents are needed to generate image contrast, thus excluding many molecular markers as potential targets. To address this limitation, we developed and characterized a functional xenon NMR biosensor that can identify a specific cell surface marker by targeted 129Xe MRI. Cells expressing the cell surface protein CD14 can be spatially distinguished from control cells with incorporation of as little as 20 nM of the xenon MRI readout unit, cryptophane-A. Cryptophane-A serves as a chemical host for hyperpolarized nuclei and facilitates the sensitivity enhancement achieved by xenon MRI. Although this paper describes the application of a CD14-specific biosensor, the construct has been designed in a versatile, modular fashion. This allows for quick and easy adaptation of the biosensor to any cell surface target for which there is a specific antibody. In addition, the modular design facilitates the creation of a multifunctional probe that incorporates readout modules for different detection methods, such as fluorescence, to complement the primary MRI readout. This modular antibody-based approach not only offers a practical technique with which to screen targets, but one which can be readily applied as the xenon MRI field moves closer to molecular imaging applications in vivo. PMID:25071165

  10. Multifunctional non-viral delivery systems based on conjugated polymers.

    PubMed

    Yang, Gaomai; Lv, Fengting; Wang, Bing; Liu, Libing; Yang, Qiong; Wang, Shu

    2012-12-01

    Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.

  11. Transcriptional activation by the sexual pheromone and wounding: a new gene family from Volvox encoding modular proteins with (hydroxy)proline-rich and metalloproteinase homology domains.

    PubMed

    Hallmann, A; Amon, P; Godl, K; Heitzer, M; Sumper, M

    2001-06-01

    The green alga Volvox represents the simplest kind of multicellular organism: it is composed of only two cell types, somatic and reproductive, making it suitable as a model system. The sexual development of males and females of Volvox carteri is triggered by a sex-inducing pheromone at a concentration of < 10-16 M. Early biochemical responses to the pheromone involve structural modifications within the extracellular matrix (ECM). By differential screenings of cDNA libraries made from mRNAs of pheromone-treated Volvox, four novel genes were identified that encode four closely related Volvox metalloproteinases that we use to define a new protein family, the VMPs. The existence of several features common to matrix glycoproteins, such as signal peptides, a (hydroxy)proline content of 12-25%, and Ser(Pro)2-4 repeats, suggest an extracellular localization of the VMPs within the ECM. Synthesis of VMP cDNAs is triggered not only by the sex-inducing pheromone, but also by wounding, and is restricted to the somatic cell type. Sequence comparisons suggest that the VMPs are members of the MB clan of zinc-dependent matrix metalloproteinases, although the putative zinc binding site of all VMPs is QEXXHXXGXXH rather than HEXXHXXGXXH. The presence of glutamine instead of histidine in the zinc binding motif suggests a novel family, or even clan, of peptidases. Like the matrixin family of human collagenases, Volvox VMPs exhibit a modular structure: they possess a metalloproteinase homology domain and a (hydroxy)proline-rich domain, and one of them, VMP4, also has two additional domains. Metalloproteinases seem to be crucial for biochemical modifications of the ECM during development or after wounding in the lower eukaryote Volvox with only two cell types, just as in higher organisms. PMID:11489172

  12. Multifunctional nanoparticles composite for MALDI-MS: Cd2+-doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDI-MS analysis.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2010-12-01

    For the first time, we utilized multifunctional nanoparticles composite (NPs composite) for matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis of peptides and proteins. Multiwalled carbon nanotubes doped with Cd(2+) ions and modified with cadmium sulfide NPs were synthesized by a chemical reduction method at room temperature. The multifunctional NPs composite applied for the analysis of peptides and microwave-digested proteins in the atmospheric pressure matrix-assisted laser desorption/ionization ion-trap and MALDI time-of-flight (TOF) mass spectrometry (MS) was successfully demonstrated. The maximum detection sensitivity for peptides in MALDI-MS was achieved by the adsorption of negatively charged peptides onto the surfaces of NP composite through electrostatic interactions. The optimal conditions of peptide mixtures were obtained at 20 min of incubation time using 1 mg of NPs composite when the pH of the sample solution was kept higher than the pI values of peptides. The potentiality of the NP composite in the preconcentration of peptides was compared with that of the individual NP by calculating the preconcentration factors (PF) and found that the NPs composite showed a 4-6 times of PF than the other NPs. In addition, the NPs composite was also applied as heat-absorbing materials for efficient microwave tryptic digestion of cytochrome c and lysozyme from milk protein in MALDI-TOF-MS analysis. We believe that the use of NPs composite technique would be an efficient and powerful preconcentrating tool for MALDI-MS for the study of proteome research. PMID:21053343

  13. Modular Buildings Buying Guide.

    ERIC Educational Resources Information Center

    Morris, Susan

    1991-01-01

    Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

  14. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  15. Contractive multifunctions, fixed point inclusions and iterated multifunction systems

    NASA Astrophysics Data System (ADS)

    Kunze, H. E.; La Torre, D.; Vrscay, E. R.

    2007-06-01

    We study the properties of multifunction operators that are contractive in the Covitz-Nadler sense. In this situation, such operators T possess fixed points satisfying the relation x[set membership, variant]Tx. We introduce an iterative method involving projections that guarantees convergence from any starting point x0[set membership, variant]X to a point x[set membership, variant]XT, the set of all fixed points of a multifunction operator T. We also prove a continuity result for fixed point sets XT as well as a "generalized collage theorem" for contractive multifunctions. These results can then be used to solve inverse problems involving contractive multifunctions. Two applications of contractive multifunctions are introduced: (i) integral inclusions and (ii) iterated multifunction systems.

  16. On particle ionization/enrichment of multifunctional nanoprobes: washing/separation-free, acceleration and enrichment of microwave-assisted tryptic digestion of proteins via bare TiO2 nanoparticles in ESI-MS and comparing to MALDI-MS.

    PubMed

    Wu, Hui-Fen; Agrawal, Kavita; Shrivas, Kamlesh; Lee, Yi-Hsien

    2010-12-01

    A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.

  17. Multifunctional nanocomposite materials

    SciTech Connect

    Roy, R.; Komarneni, S.

    1991-11-01

    Objective is to examine the low temperature nanocomposite route in the synthesis of multifunctional materials using two-dimensional clays as hosts. After about 8 months, a significant advance was made in the design and synthesis of novel nanocomposite materials, which are nanometal intercalated clays prepared by a low temperature route. A layered V[sub 2]O[sub 5] gel has been made hydrothermally and its cation exchange properties measured. Several pillared clays have also been synthesized and characterized.

  18. The Rocketdyne Multifunction Tester. Part 1: Test Method

    NASA Technical Reports Server (NTRS)

    Murphy, Brian T.; Scharrer, Joseph K.; Sutton, Robert F.

    1991-01-01

    The Rocketdyne Multifunction Tester is a general purpose test apparatus which utilizes axial and radial magnetic bearings as shaft excitation devices. The tester is modular in design so that different seal and bearing packages can be tested on the same test stand. The tester will be used for rotordynamic coefficient extraction, as well as life and fluid/material compatibility evaluations. Use of a magnetic bearing as a shaft excitation device opens up many possibilities for shaft excitation and rotordynamic coefficient extraction. In addition to describing the basic apparatus, some of the excitation and extraction methods are described. Some of the excitation methods to be discussed include random, aperiodic, harmonic, impulse and chirp.

  19. Diversity and Unity of Modularity

    ERIC Educational Resources Information Center

    Seok, Bongrae

    2006-01-01

    Since the publication of Fodor's (1983) The Modularity of Mind, there have been quite a few discussions of cognitive modularity among cognitive scientists. Generally, in those discussions, modularity means a property of specialized cognitive processes or a domain-specific body of information. In actuality, scholars understand modularity in many…

  20. The hydroxymethyldihydropterin pyrophosphokinase domain of the multifunctional folic acid synthesis Fas protein of Pneumocystis carinii expressed as an independent enzyme in Escherichia coli: refolding and characterization of the recombinant enzyme.

    PubMed

    Ballantine, S P; Volpe, F; Delves, C J

    1994-08-01

    The folic acid synthesis (Fas) protein of Pneumocystis carinii is a multifunctional enzyme containing dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (PPPK), and dihydropteroate synthase activities. Isolation of the stretch of fas cDNA shown by amino acid similarity to the bacterial counterparts to code for PPPK activity (fasC domain) is described. FasC was expressed to high levels in Escherichia coli inclusion bodies using an inducible tac promoter expression system. Solubilization of the inclusion bodies in 6 M guanidine hydrochloride and refolding of the recombinant protein yielded enzymatically active PPPK which was purified to homogeneity by anion-exchange and gel-filtration chromatography. Sequence analysis showed that the first 13 amino acids of the purified protein were in agreement with those predicted from the DNA sequence and, furthermore, that the amino-terminal methionine had been removed. The enzyme is active in the monomeric form, exhibiting maximum activity at around pH 8.0. Isoelectric focusing gave a pI of 9.1. The Km value for 6-hydroxymethyl-7,8-dihydropterin was 3.6 microM in 50 mM Tris buffer, pH 8.2. The production of independently folded, active P. carinii PPPK will allow detailed biochemical and structural studies, increasing our understanding of this enzyme domain.

  1. Modular missile borne computers

    NASA Technical Reports Server (NTRS)

    Ramseyer, R.; Arnold, R.; Applewhite, H.; Berg, R.

    1980-01-01

    The modular missile borne computer's architecture with emphasis on how that architecture evolved is discussed. A careful analysis is given of both the physical constraints and the processing requirements.

  2. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  3. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  4. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  5. Templated biomimetic multifunctional coatings

    NASA Astrophysics Data System (ADS)

    Sun, Chih-Hung; Gonzalez, Adriel; Linn, Nicholas C.; Jiang, Peng; Jiang, Bin

    2008-02-01

    We report a bioinspired templating technique for fabricating multifunctional optical coatings that mimic both unique functionalities of antireflective moth eyes and superhydrophobic cicada wings. Subwavelength-structured fluoropolymer nipple arrays are created by a soft-lithography-like process. The utilization of fluoropolymers simultaneously enhances the antireflective performance and the hydrophobicity of the replicated films. The specular reflectivity matches the optical simulation using a thin-film multilayer model. The dependence of the size and the crystalline ordering of the replicated nipples on the resulting antireflective properties have also been investigated by experiment and modeling. These biomimetic materials may find important technological application in self-cleaning antireflection coatings.

  6. Voluntary initiation of movement: multifunctional integration of subjective agency

    PubMed Central

    Grüneberg, Patrick; Kadone, Hideki; Suzuki, Kenji

    2015-01-01

    This paper investigates subjective agency (SA) as a special type of efficacious action consciousness. Our central claims are, firstly, that SA is a conscious act of voluntarily initiating bodily motion. Secondly, we argue that SA is a case of multifunctional integration of behavioral functions being analogous to multisensory integration of sensory modalities. This is based on new perspectives on the initiation of action opened up by recent advancements in robot assisted neuro-rehabilitation which depends on the active participation of the patient and yields experimental evidence that there is SA in terms of a conscious act of voluntarily initiating bodily motion (phenomenal performance). Conventionally, action consciousness has been considered as a sense of agency (SoA). According to this view, the conscious subject merely echoes motor performance and does not cause bodily motion. Depending on sensory input, SoA is implemented by means of unifunctional integration (binding) and inevitably results in non-efficacious action consciousness. In contrast, SA comes as a phenomenal performance which causes motion and builds on multifunctional integration. Therefore, the common conception of the brain should be shifted toward multifunctional integration in order to allow for efficacious action consciousness. For this purpose, we suggest the heterarchic principle of asymmetric reciprocity and neural operators underlying SA. The general idea is that multifunctional integration allows conscious acts to be simultaneously implemented with motor behavior so that the resulting behavior (SA) comes as efficacious action consciousness. Regarding the neural implementation, multifunctional integration rather relies on operators than on modular functions. A robotic case study and possible experimental setups with testable hypotheses building on SA are presented. PMID:26052308

  7. Voluntary initiation of movement: multifunctional integration of subjective agency.

    PubMed

    Grüneberg, Patrick; Kadone, Hideki; Suzuki, Kenji

    2015-01-01

    This paper investigates subjective agency (SA) as a special type of efficacious action consciousness. Our central claims are, firstly, that SA is a conscious act of voluntarily initiating bodily motion. Secondly, we argue that SA is a case of multifunctional integration of behavioral functions being analogous to multisensory integration of sensory modalities. This is based on new perspectives on the initiation of action opened up by recent advancements in robot assisted neuro-rehabilitation which depends on the active participation of the patient and yields experimental evidence that there is SA in terms of a conscious act of voluntarily initiating bodily motion (phenomenal performance). Conventionally, action consciousness has been considered as a sense of agency (SoA). According to this view, the conscious subject merely echoes motor performance and does not cause bodily motion. Depending on sensory input, SoA is implemented by means of unifunctional integration (binding) and inevitably results in non-efficacious action consciousness. In contrast, SA comes as a phenomenal performance which causes motion and builds on multifunctional integration. Therefore, the common conception of the brain should be shifted toward multifunctional integration in order to allow for efficacious action consciousness. For this purpose, we suggest the heterarchic principle of asymmetric reciprocity and neural operators underlying SA. The general idea is that multifunctional integration allows conscious acts to be simultaneously implemented with motor behavior so that the resulting behavior (SA) comes as efficacious action consciousness. Regarding the neural implementation, multifunctional integration rather relies on operators than on modular functions. A robotic case study and possible experimental setups with testable hypotheses building on SA are presented.

  8. Voluntary initiation of movement: multifunctional integration of subjective agency.

    PubMed

    Grüneberg, Patrick; Kadone, Hideki; Suzuki, Kenji

    2015-01-01

    This paper investigates subjective agency (SA) as a special type of efficacious action consciousness. Our central claims are, firstly, that SA is a conscious act of voluntarily initiating bodily motion. Secondly, we argue that SA is a case of multifunctional integration of behavioral functions being analogous to multisensory integration of sensory modalities. This is based on new perspectives on the initiation of action opened up by recent advancements in robot assisted neuro-rehabilitation which depends on the active participation of the patient and yields experimental evidence that there is SA in terms of a conscious act of voluntarily initiating bodily motion (phenomenal performance). Conventionally, action consciousness has been considered as a sense of agency (SoA). According to this view, the conscious subject merely echoes motor performance and does not cause bodily motion. Depending on sensory input, SoA is implemented by means of unifunctional integration (binding) and inevitably results in non-efficacious action consciousness. In contrast, SA comes as a phenomenal performance which causes motion and builds on multifunctional integration. Therefore, the common conception of the brain should be shifted toward multifunctional integration in order to allow for efficacious action consciousness. For this purpose, we suggest the heterarchic principle of asymmetric reciprocity and neural operators underlying SA. The general idea is that multifunctional integration allows conscious acts to be simultaneously implemented with motor behavior so that the resulting behavior (SA) comes as efficacious action consciousness. Regarding the neural implementation, multifunctional integration rather relies on operators than on modular functions. A robotic case study and possible experimental setups with testable hypotheses building on SA are presented. PMID:26052308

  9. Designing ECM-mimetic Materials Using Protein Engineering

    PubMed Central

    Cai, Lei; Heilshorn, Sarah C.

    2014-01-01

    The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704

  10. Poly(I:C) is an effective adjuvant for antibody and multi-functional CD4+ T cell responses to Plasmodium falciparum circumsporozoite protein (CSP) and αDEC-CSP in Non Human Primates

    PubMed Central

    Tewari, Kavita; Flynn, Barbara J.; Boscardin, Silvia B.; Kastenmueller, Kathrin; Salazar, Andres M.; Anderson, Charles A.; Soundarapandian, Velu; Ahumada, Adriana; Keler, Tibor; Hoffman, Stephen L.; Nussenzweig, Michel C.; Steinman, Ralph M.; Seder, Robert A.

    2010-01-01

    Development of a fully effective vaccine against the pre-erythrocytic stage of malaria infection will likely require induction of both humoral and cellular immune responses. Protein based vaccines can elicit such broad-based immunity depending on the adjuvant and how the protein is formulated. Here to assess these variables, non-human primates (NHP) were immunized three times with Plasmodium falciparum (Pf) circumsporozoite protein (CSP) or CSP cloned into MG38, a monoclonal antibody that targets DEC-205 (αDEC-CSP), an endocytic receptor on dendritic cells (DCs). Both vaccines were administered with or without poly(I:C) as adjuvant. Following three immunizations, the magnitude and quality of cytokine secreting CD4+ T cells were comparable between CSP + poly(I:C) and αDEC-CSP + poly(I:C) groups with both regimens eliciting multi-functional cytokine responses. However, NHP immunized with CSP + poly(I:C) had significantly higher serum titers of CSP-specific IgG antibodies and indirect immunofluorescent antibody (IFA) titers against Pf sporozoites. Furthermore, sera from both CSP or αDEC-CSP + poly(I:C) immunized animals limited sporozoite invasion of a hepatocyte cell line (HC04) in vitro. To determine whether CSP-specific responses could be enhanced, all NHP primed with CSP or αDEC-CSP + poly(I:C) were boosted with a single dose of 150,000 irradiated Pf sporozoites (PfSPZ) intravenously. Remarkably, boosting had no effect on the CSP-specific immunity. Finally, immunization with CSP + poly-ICLC reduced malaria parasite burden in the liver in an experimental mouse model. Taken together, these data showing that poly(I:C) is an effective adjuvant for inducing potent antibody and Th1 immunity with CSP based vaccines offers a potential alternative to the existing protein based pre-erythrocytic vaccines. PMID:20846528

  11. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence. PMID:23545837

  12. Modular generation of fluorescent phycobiliproteins.

    PubMed

    Wu, Xian-Jun; Chang, Kun; Luo, Juan; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong

    2013-06-01

    Phycobiliproteins are brightly-fluorescent light-harvesting pigments for photosynthesis in cyanobacteria and red algae. They are also of interest as fluorescent biomarkers, but their heterologous generation in vivo has previously required multiple transformations. We report here a modular approach that requires only two DNA segments. The first codes for the apo-protein. The second codes for fusions capable of chromophore biosynthesis and its covalent attachment to the apo-protein; it contains the genes of heme oxygenase, a bilin reductase, and a chromophore lyase. Phycobiliproteins containing phycoerythrobilin (λ(fluor) ~ 560 nm), phycourobilin (λ(fluor) ~ 500 nm), phycocyanobilin (λ(fluor) ~ 630 nm) or phycoviolobilin (λ(fluor) ~ 580 nm) were obtained in high yield in E. coli. This approach facilitates chromophorylation studies of phycobiliproteins, as well as their use for fluorescence labeling based on their high fluorescence.

  13. Hierarchical multifunctional nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  14. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  15. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  16. Multi-functional windows

    NASA Astrophysics Data System (ADS)

    Nag, Nagendra; Goldman, Lee M.; Balasubramanian, Sreeram; Sastri, Suri

    2013-06-01

    The requirements for modern aircraft are driving the need for conformal windows for future sensor systems. However, limitations on optical systems and the physical properties of optically transparent materials currently limit the geometry of existing windows and window assemblies to faceted assemblies of flat windows held in weight bearing frames. Novel material systems will have to be developed which combine different materials (e.g. ductile metals with transparent ceramics) into structures that combine transparency with structural integrity. Surmet's demonstrated ability to produce novel transparent ceramic/metal structures will allow us to produce such structures in the types of conformal shapes required for future aircraft applications. Furthermore, the ability to incorporate transparencies into such structures also holds out the promise of creating multi-functional windows which provide a broad range of capabilities that might include RF antennas and de-icing in addition to transparency. Recent results in this area will be presented.

  17. Modular total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Karny, M.; Rykaczewski, K. P.; Fijałkowska, A.; Rasco, B. C.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Goetz, K. C.; Miller, D.; Zganjar, E. F.

    2016-11-01

    The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full γ energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy γ-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a γ-coincidence technique in data analysis as well as β-delayed neutron observation.

  18. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  19. Functional group diversity increases with modularity in complex food webs.

    PubMed

    Montoya, D; Yallop, M L; Memmott, J

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web.

  20. Functional group diversity increases with modularity in complex food webs

    PubMed Central

    Montoya, D.; Yallop, M.L.; Memmott, J.

    2015-01-01

    Biodiversity increases the ability of ecosystems to provide multiple functions. Most studies report a positive relationship between species richness and the number of ecosystem functions. However, it is not known whether the number of functional groups is related to the structure of the underlying species interaction network. Here we present food web data from 115 salt marsh islands and show that network structure is associated with the number of functional groups present. Functional group diversity is heterogeneously distributed across spatial scales, with some islands hosting more functional groups than others. Functional groups form modules within the community so that food webs with more modular architectures have more functional group diversity. Further, in communities with different interaction types, modularity can be seen as the multifunctional equivalent of trophic complementarity. Collectively, these findings reveal spatial heterogeneity in the number of functional groups that emerges from patterns in the structure of the food web. PMID:26059871

  1. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2003-11-18

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  2. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-01-30

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  3. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-02-13

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein. including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  4. The Evolution of Modular Construction.

    ERIC Educational Resources Information Center

    American School & University, 1993

    1993-01-01

    Explores how the myths of modular construction for schools began; also discusses the advances made in steel and modular construction. The major advantages of using permanent modular construction for schools are highlighted, including its rapid construction, use of standard building materials, financial flexibility, and durability. (GR)

  5. A multifunctional bioconjugate module for versatile photoaffinity labeling and click chemistry of RNA

    PubMed Central

    Kellner, Stefanie; Seidu-Larry, Salifu; Burhenne, Jürgen; Motorin, Yuri; Helm, Mark

    2011-01-01

    A multifunctional reagent based on a coumarin scaffold was developed for derivatization of naive RNA. The alkylating agent N3BC [7-azido-4-(bromomethyl)coumarin], obtained by Pechmann condensation, is selective for uridine. N3BC and its RNA conjugates are pre-fluorophores which permits controlled modular and stepwise RNA derivatization. The success of RNA alkylation by N3BC can be monitored by photolysis of the azido moiety, which generates a coumarin fluorophore that can be excited with UV light of 320 nm. The azidocoumarin-modified RNA can be flexibly employed in structure-function studies. Versatile applications include direct use in photo-crosslinking studies to cognate proteins, as demonstrated with tRNA and RNA fragments from the MS2 phage and the HIV genome. Alternatively, the azide function can be used for further derivatization by click-chemistry. This allows e.g. the introduction of an additional fluorophore for excitation with visible light. PMID:21646334

  6. Network modularity promotes cooperation.

    PubMed

    Marcoux, Marianne; Lusseau, David

    2013-05-01

    Cooperation in animals and humans is widely observed even if evolutionary biology theories predict the evolution of selfish individuals. Previous game theory models have shown that cooperation can evolve when the game takes place in a structured population such as a social network because it limits interactions between individuals. Modularity, the natural division of a network into groups, is a key characteristic of all social networks but the influence of this crucial social feature on the evolution of cooperation has never been investigated. Here, we provide novel pieces of evidence that network modularity promotes the evolution of cooperation in 2-person prisoner's dilemma games. By simulating games on social networks of different structures, we show that modularity shapes interactions between individuals favouring the evolution of cooperation. Modularity provides a simple mechanism for the evolution of cooperation without having to invoke complicated mechanisms such as reputation or punishment, or requiring genetic similarity among individuals. Thus, cooperation can evolve over wider social contexts than previously reported.

  7. Modular invariant inflation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-01

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile, a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential Vht, but it also has a non-negligible deviation from Vht. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.

  8. Modular Perspectives on Bilingualism.

    ERIC Educational Resources Information Center

    Francis, Norbert

    2002-01-01

    This research review traces the current discussion on models of bilingualism to the contributions of Vygotsky and Luria. Proposes that a modular approach to studying the different aspects of bilingual development promises to chart a course toward finding a broader common ground around research findings and interpretations that appear to be…

  9. Modular cleanroom construction success.

    PubMed

    Möllmann, Markus

    2007-09-01

    The completion of a 408 m2 major new aseptic pharmacy unit for the St George's Hospital NHS Trust, London, is a significant example of the benefits of using modern modular construction techniques compared to a traditional cleanroom build. At every stage from concept through project planning to final completion, the use of modules proved to be the most appropriate for the task.

  10. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  11. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  12. Enzyme screening with synthetic multifunctional pores: Focus on biopolymers

    PubMed Central

    Sordé, Nathalie; Das, Gopal; Matile, Stefan

    2003-01-01

    This report demonstrates that a single set of identical synthetic multifunctional pores can detect the activity of many different enzymes. Enzymes catalyzing either synthesis or degradation of DNA (exonuclease III or polymerase I), RNA (RNase A), polysaccharides (heparinase I, hyaluronidase, and galactosyltransferase), and proteins (papain, ficin, elastase, subtilisin, and pronase) are selected to exemplify this key characteristic of synthetic multifunctional pore sensors. Because anionic, cationic, and neutral substrates can gain access to the interior of complementarily functionalized pores, such pores can be the basis for very user-friendly screening of a broad range of enzymes. PMID:14530413

  13. Multifunctional silk-tropoelastin biomaterial systems

    PubMed Central

    Ghezzi, Chiara E.; Rnjak-Kovacina, Jelena; Weiss, Anthony S.; Kaplan, David L.

    2015-01-01

    New multifunctional, degradable, polymeric biomaterial systems would provide versatile platforms to address cell and tissue needs in both in vitro and in vivo environments. While protein-based composites or alloys are the building blocks of biological organisms, similar systems have not been largely exploited to dates to generate ad hoc biomaterials able to control and direct biological functions, by recapitulating their inherent structural and mechanical complexities. Therefore, we have recently proposed silk-tropoelastin material platforms able to conjugate a mechanically robust and durable protein, silk, to a highly flexible and biologically active protein, tropoelastin. This review focuses on the elucidation of the interactions between silk and tropoelastin in order to control material structure, properties, and ultimately functions. In addition, an approach is provided for novel material designs to provide tools to control biological outcomes via surface roughness, elasticity, and net charge for neuronal and mesenchymal stem cell-based tissue engineering. PMID:26005219

  14. Cloning and sequencing of the low-affinity penicillin-binding protein 3r-encoding gene of Enterococcus hirae S185: modular design and structural organization of the protein.

    PubMed

    Piras, G; Raze, D; el Kharroubi, A; Hastir, D; Englebert, S; Coyette, J; Ghuysen, J M

    1993-05-01

    The clinical isolate Enterococcus hirae S185 has a peculiar mode of resistance to penicillin in that it possesses two low-affinity penicillin-binding proteins (PBPs): the 71-kDa PBP5, also found in other enterococci, and the 77-kDa PBP3r. The two PBPs have the same low affinity for the drug and are immunochemically related to each other. The PBP3r-encoding gene has been cloned and sequenced, and the derived amino acid sequence has been compared by computer-assisted hydrophobic cluster analysis with that of the low-affinity PBP5 of E. hirae R40, the low-affinity PBP2' of Staphylococcus aureus, and the PBP2 of Escherichia coli used as the standard of reference of the high-M(r) PBPs of class B. On the basis of the shapes, sizes, and distributions of the hydrophobic and nonhydrophobic clusters along the sequences and the linear amino acid alignments derived from this analysis, the dyad PBP3r-PBP5 has an identity index of 78.5%, the triad PBP3r-PBP5-PBP2' has an identity index of 29%, and the tetrad PBP3r-PBP5-PBP2'-PBP2 (of E. coli) has an identity index of 13%. In spite of this divergence, the low-affinity PBPs are of identical modular design and possess the nine amino acid groupings (boxes) typical of the N-terminal and C-terminal domains of the high-M(r) PBPs of class B. At variance with the latter PBPs, however, the low-affinity PBPs have an additional approximately 110-amino-acid polypeptide stretch that is inserted between the amino end of the N-terminal domain and the carboxy end of the membrane anchor. While the enterococcal PBP5 gene is chromosome borne, the PBP3r gene appears to be physically linked to the erm gene, which confers resistance to erythromycin and is known to be plasmid borne in almost all the Streptococcus spp. examined. PMID:8491705

  15. Rearrangements of mycoreovirus 1 S1, S2 and S3 induced by the multifunctional protein p29 encoded by the prototypic hypovirus Cryphonectria hypovirus 1 strain EP713.

    PubMed

    Tanaka, Toru; Sun, Liying; Tsutani, Kouhei; Suzuki, Nobuhiro

    2011-08-01

    Mycoreovirus 1 (MyRV1), a member of the family Reoviridae possessing a genome consisting of 11 dsRNA segments (S1-S11), infects the chestnut blight fungus and reduces its virulence (hypovirulence). Studies have previously demonstrated reproducible induction of intragenic rearrangements of MyRV1 S6 (S6L: almost full-length duplication) and S10 (S10ss: internal deletion of three-quarters of the ORF), mediated by the multifunctional protein p29 encoded by the prototype hypovirus, Cryphonectria hypovirus 1 (CHV1) strain EP713, of the family Hypoviridae with ssRNA genomes. The current study showed that CHV1 p29 also induced rearrangements of the three largest MyRV1 segments, S1, S2 and S3, which encode structural proteins. These rearranged segments involved in-frame extensions of almost two-thirds of the ORFs (S1L, S2L and S3L, respectively), which is rare for a reovirus rearrangement. MyRV1 variants carrying S1L, S2L or S3L always contained S10ss (MyRV1/S1L+S10ss2, MyRV1/S2L+S10ss2 or MyRV1/S3L+S10ss2). Levels of mRNAs for the rearranged and co-existing unaltered genome segments in fungal colonies infected with each of the MyRV1 variants appeared to be comparable to those for the corresponding normal segments in wild-type MyRV1-infected colonies, suggesting that the rearranged segments were fully competent for packaging and transcription. Protein products of the rearranged segments were detectable in fungal colonies infected with S2L MyRV1/S2L+S10ss2 and S3L MyRV1/S3L+S10ss2, whilst S1L-encoded protein remained undetectable. S1L, S2L and S3L were associated with enhancement of the aerial hyphae growth rate. This study has provided additional examples of MyRV1 intragenic rearrangements induced by p29, and suggests that normal S1, S2 and S3 are required for the symptoms caused by MyRV1.

  16. ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is involved in biotic and abiotic stresses.

    PubMed

    Liu, Yang; Wang, Li; Xing, Xin; Sun, Liping; Pan, Jiaowen; Kong, Xiangpei; Zhang, Maoying; Li, Dequan

    2013-06-01

    Late embryogenesis abundant (LEA) proteins accumulate to high levels during the late stage of seed maturation and in response to water deficit, and are involved in protecting higher plants from damage caused by environmental stresses, especially drought. In the present study, a novel maize (Zea mays L.) group 3 LEA gene, ZmLEA3, was identified and later characterized using transgenic tobacco plants to investigate its functions in abiotic and biotic stresses. Transcript accumulation demonstrated that ZmLEA3 was induced in leaves by high salinity, low temperature, osmotic and oxidative stress as well as by signaling molecules such as ABA, salicylic acid (SA) and methyl jasmonate (MeJA). The transcript of ZmLEA3 could also be induced by pathogens [Pseudomonas syringae pv. tomato DC3000 (pst dc3000)]. ZmLEA3 is located in the cytosol and the nucles. Further study indicated that the ZmLEA3 protein could bind Mn(2+), Fe(3+), Cu(2+) and Zn(2+). Overexpression of ZmLEA3 in transgenic tobacco (Nicotiana tabacum) and yeast (GS115) conferred tolerance to osmotic and oxidative stresses. Interestingly, we also found that overexpression of ZmLEA3 in transgenic tobacco increased the hypersensitive cell death triggered by pst dc3000 and enhanced the expression of PR1a, PR2 and PR4 when compared with the wild type. Thus, we proposed that the ZmLEA3 protein plays a role in protecting plants from damage by protecting protein structure and binding metals under osmotic and oxidative stresses. In addition, ZmLEA3 may also enhance transgenic plant tolerance to biotic stress.

  17. Modular hydropower demonstration

    SciTech Connect

    Not Available

    1988-09-01

    The modular approach has been developed for the construction of small hydro projects in order to reduce the costs and to shorten procurement and construction schedules that occur when designs and equipment selection more applicable to large projects are used. The modular approach aims to maximize the use of ''off-the-shelf'' and readily available components. A key feature is the replacement of the conventional purpose-designed hydroelectric turbine by a pump used in reverse as a turbine with fixed blades and vanes. Other features are the use of siphon penstocks, induction generators, prefabricated structures, and automated control equipment. The New York State Energy Research and Development Authority contracted with Acres International Corporation to study two small hydro projects designed and built using the modular approach, and compare each one with an equivalent conventional design. Equipment procurement and installation costs, general construction costs, and energy production were estimated. Economic analyses were prepared. Preliminary data on operation and maintenance was recorded. The methodology and results of the study are contained in this report. 18 figs., 20 tabs.

  18. Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis

    PubMed Central

    Cameron, Elizabeth A.; Kwiatkowski, Kurt J.; Lee, Byung-Hoo; Hamaker, Bruce R.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. PMID:25205092

  19. Modularity Enhances the Rate of Evolution in a Rugged Fitness Landscape

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Park, Jeong-Man; Chen, Man; Deem, Michael

    2015-03-01

    Biological systems are modular, and this modularity affects the evolution of biological systems over time and in different environments. We here develop a theory for the dynamics of evolution in a rugged, modular fitness landscape. We show analytically how horizontal gene transfer couples to the modularity in the system and leads to more rapid rates of evolution at short times. The model, in general, analytically demonstrates a selective pressure for the prevalence of modularity in biology. We use this model to show how the evolution of the influenza virus is affected by the modularity of the proteins that are recognized by the human immune system. A modular model of the fitness landscape of the virus better fits the observed virus evolution data. This research was supported by the US National Institutes of Health under Grant 1 R01 GM 100468-01. JMP was also supported by the National Research Foundation of Korea Grant (NRF-2013R1A1A2006983).

  20. Modularity Enhances the Rate of Evolution in a Rugged Fitness Landscape

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Park, Jeong-Man; Chen, Man; Deem, Michael

    Biological systems are modular, and this modularity affects the evolution of biological systems over time and in different environments. We here develop a theory for the dynamics of evolution in a rugged, modular fitness landscape. We show analytically how horizontal gene transfer couples to the modularity in the system and leads to more rapid rates of evolution at short times. The model, in general, analytically demonstrates a selective pressure for the prevalence of modularity in biology. We use this model to show how the evolution of the influenza virus is affected by the modularity of the proteins that are recognized by the human immune system. A modular model of the fitness landscape of the virus better fits the observed virus evolution data.

  1. Modularity enhances the rate of evolution in a rugged fitness landscape

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Man; Chen, Man; Wang, Dong; Deem, Michael W.

    2015-04-01

    Biological systems are modular, and this modularity affects the evolution of biological systems over time and in different environments. We here develop a theory for the dynamics of evolution in a rugged, modular fitness landscape. We show analytically how horizontal gene transfer couples to the modularity in the system and leads to more rapid rates of evolution at short times. The model, in general, analytically demonstrates a selective pressure for the prevalence of modularity in biology. We use this model to show how the evolution of the influenza virus is affected by the modularity of the proteins that are recognized by the human immune system. Approximately 25% of the observed rate of fitness increase of the virus could be ascribed to a modular viral landscape.

  2. Modularity enhances the rate of evolution in a rugged fitness landscape.

    PubMed

    Park, Jeong-Man; Chen, Man; Wang, Dong; Deem, Michael W

    2015-03-19

    Biological systems are modular, and this modularity affects the evolution of biological systems over time and in different environments. We here develop a theory for the dynamics of evolution in a rugged, modular fitness landscape. We show analytically how horizontal gene transfer couples to the modularity in the system and leads to more rapid rates of evolution at short times. The model, in general, analytically demonstrates a selective pressure for the prevalence of modularity in biology. We use this model to show how the evolution of the influenza virus is affected by the modularity of the proteins that are recognized by the human immune system. Approximately 25% of the observed rate of fitness increase of the virus could be ascribed to a modular viral landscape.

  3. Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria

    PubMed Central

    García-Descalzo, Laura; Alcazar, Alberto; Baquero, Fernando

    2010-01-01

    Heat shock protein 90 (HSP90) is a conserved molecular chaperone that functions as part of complexes in which different client proteins target it to diverse sets of substrates. In this paper, HSP90 complexes were investigated in γ-proteobacteria from mild (Shewanella oneidensis) and cold environments (Shewanella frigidimarina and Psychrobacter frigidicola), to determine changes in HSP90 interactions with client proteins in response to the adaptation to cold environments. HSP90 participation in cold adaptation was determined using the specific inhibitor 17-allylamino-geldanamycin. Then, HSP90 was immunoprecipitated from bacterial cultures, and the proteins in HSP90 complexes were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. According to HSP90-associated protein analysis, only 15 common proteins were found in both species from the same genus, S. oneidensis and S. frigidimarina, whereas a significant higher number of common proteins were found in both psychrophilic species S. frigidimarina and P. frigidicola 21 (p < 0.001). Only two HSP90-interacting proteins, the chaperone proteins DnaK and GroEL, were common to the three species. Interestingly, some proteins related to energy metabolism (isocitrate lyase, succinyl-CoA synthetase, alcohol dehydrogenase, NAD(+) synthase, and malate dehydrogenase) and some translation factors only interacted with HSP90 in psychrophilic bacteria. We can conclude that HSP90 and HSP90-associated proteins might take part in the mechanism of adaptation to cold environments, and interestingly, organisms living in similar environments conserve similar potential HSP90 interactors in opposition to phylogenetically closely related organisms of the same genus but from different environments. PMID:20890740

  4. Pirin1 (PRN1) is a multifunctional protein that regulates quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of Arabidopsis thaliana.

    PubMed

    Orozco-Nunnelly, Danielle A; Muhammad, Durreshahwar; Mezzich, Raquel; Lee, Bao-Shiang; Jayathilaka, Lasanthi; Kaufman, Lon S; Warpeha, Katherine M

    2014-01-01

    Pirins are cupin-fold proteins, implicated in apoptosis and cellular stress in eukaryotic organisms. Pirin1 (PRN1) plays a role in seed germination and transcription of a light- and ABA-regulated gene under specific conditions in the model plant system Arabidopsis thaliana. Herein, we describe that PRN1 possesses previously unreported functions that can profoundly affect early growth, development, and stress responses. In vitro-translated PRN1 possesses quercetinase activity. When PRN1 was incubated with G-protein-α subunit (GPA1) in the inactive conformation (GDP-bound), quercetinase activity was observed. Quercetinase activity was not observed when PRN1 was incubated with GPA1 in the active form (GTP-bound). Dark-grown prn1 mutant seedlings produced more quercetin after UV (317 nm) induction, compared to levels observed in wild type (WT) seedlings. prn1 mutant seedlings survived a dose of high-energy UV (254 nm) radiation that killed WT seedlings. prn1 mutant seedlings grown for 3 days in continuous white light display disoriented hypocotyl growth compared to WT, but hypocotyls of dark-grown prn1 seedlings appeared like WT. prn1 mutant seedlings transformed with GFP constructs containing the native PRN1 promoter and full ORF (PRN1::PRN1-GFP) were restored to WT responses, in that they did not survive UV (254 nm), and there was no significant hypocotyl disorientation in response to white light. prn1 mutants transformed with PRN1::PRN1-GFP were observed by confocal microscopy, where expression in the cotyledon epidermis was largely localized to the nucleus, adjacent to the nucleus, and diffuse and punctate expression occurred within some cells. WT seedlings transformed with the 35S::PRN1-GFP construct exhibited widespread expression in the epidermis of the cotyledon, also with localization in the nucleus. PRN1 may play a critical role in cellular quercetin levels and influence light- or hormonal-directed early development.

  5. Pirin1 (PRN1) Is a Multifunctional Protein that Regulates Quercetin, and Impacts Specific Light and UV Responses in the Seed-to-Seedling Transition of Arabidopsis thaliana

    PubMed Central

    Orozco-Nunnelly, Danielle A.; Muhammad, DurreShahwar; Mezzich, Raquel; Lee, Bao-Shiang; Jayathilaka, Lasanthi; Kaufman, Lon S.; Warpeha, Katherine M.

    2014-01-01

    Pirins are cupin-fold proteins, implicated in apoptosis and cellular stress in eukaryotic organisms. Pirin1 (PRN1) plays a role in seed germination and transcription of a light- and ABA-regulated gene under specific conditions in the model plant system Arabidopsis thaliana. Herein, we describe that PRN1 possesses previously unreported functions that can profoundly affect early growth, development, and stress responses. In vitro-translated PRN1 possesses quercetinase activity. When PRN1 was incubated with G-protein-α subunit (GPA1) in the inactive conformation (GDP-bound), quercetinase activity was observed. Quercetinase activity was not observed when PRN1 was incubated with GPA1 in the active form (GTP-bound). Dark-grown prn1 mutant seedlings produced more quercetin after UV (317 nm) induction, compared to levels observed in wild type (WT) seedlings. prn1 mutant seedlings survived a dose of high-energy UV (254 nm) radiation that killed WT seedlings. prn1 mutant seedlings grown for 3 days in continuous white light display disoriented hypocotyl growth compared to WT, but hypocotyls of dark-grown prn1 seedlings appeared like WT. prn1 mutant seedlings transformed with GFP constructs containing the native PRN1 promoter and full ORF (PRN1::PRN1-GFP) were restored to WT responses, in that they did not survive UV (254 nm), and there was no significant hypocotyl disorientation in response to white light. prn1 mutants transformed with PRN1::PRN1-GFP were observed by confocal microscopy, where expression in the cotyledon epidermis was largely localized to the nucleus, adjacent to the nucleus, and diffuse and punctate expression occurred within some cells. WT seedlings transformed with the 35S::PRN1-GFP construct exhibited widespread expression in the epidermis of the cotyledon, also with localization in the nucleus. PRN1 may play a critical role in cellular quercetin levels and influence light- or hormonal-directed early development. PMID:24705271

  6. The Impact of Multifunctional Genes on "Guilt by Association" Analysis

    PubMed Central

    Gillis, Jesse; Pavlidis, Paul

    2011-01-01

    Many previous studies have shown that by using variants of “guilt-by-association”, gene function predictions can be made with very high statistical confidence. In these studies, it is assumed that the “associations” in the data (e.g., protein interaction partners) of a gene are necessary in establishing “guilt”. In this paper we show that multifunctionality, rather than association, is a primary driver of gene function prediction. We first show that knowledge of the degree of multifunctionality alone can produce astonishingly strong performance when used as a predictor of gene function. We then demonstrate how multifunctionality is encoded in gene interaction data (such as protein interactions and coexpression networks) and how this can feed forward into gene function prediction algorithms. We find that high-quality gene function predictions can be made using data that possesses no information on which gene interacts with which. By examining a wide range of networks from mouse, human and yeast, as well as multiple prediction methods and evaluation metrics, we provide evidence that this problem is pervasive and does not reflect the failings of any particular algorithm or data type. We propose computational controls that can be used to provide more meaningful control when estimating gene function prediction performance. We suggest that this source of bias due to multifunctionality is important to control for, with widespread implications for the interpretation of genomics studies. PMID:21364756

  7. Multifunctional Thin Film Biomatrice Biosensor in a Degradable Scaffold Containing Bone Morphogenetic Protein-2 (BMP-2) for Controlled Release in Skeletal Tissue Engineering

    NASA Astrophysics Data System (ADS)

    McDaniel, Harvey; Lomax, Linda

    2001-03-01

    Bone morphonogenetic proteins (BMP-2) have been under investigation for three decades. Deminerialized bone and extracts of deminerialized bone are o steoinductive with a temporal sequence of bone induction. Native and recombi nant BMP's have shown the ability, thru growth and differentiative factors t o induce de novo bone formation both invitro and invivo. Their principle fun ction is to induce transformation of undifferentiated mesenchymal cells into osteoblasts. Native and recombinant BMP's, when purified and used without carrier disp erse after implantation and exert no effect on bone induction. The delivery system provides the missing component to successsfully applying osteogenic p roteins for clinical need. Biological and physio-chemical properties are str ictly adhered tofor a successful delivery system. The BMP delivery system ca rrier for osteo inductive payload provided; 1)non tumorgenic genecity, 2) no n immunogenecity, 3) water insoluble, 4) biosorbability with predictable enz ymatic degradation, and 5) an optimized surface for compatibility, cell migr ation and attachment with a negative surface change that encouraged target c ell attachment. Being a controlled Release System, it binded the proteins wi th predictible BMP released kinetics. Porosity with interconnecting voids pr otected the BMP from noon specific proteolysis and promoted rapid vascular a nd mesenchymal invasion. Far wide ranging clinical applications of mechanica l and biofunctional requirements were met with the BMP delivery system. Cohe sion and malleability were reqiured forcontour augmentation, and reconstruct ion of the discontinuity defects, prevented dislocation and retained the sha pe and bone replaced the system. Biological systems have elastic activity associated with them. The activi ty was current associated with a time dependant biological/biochemical react ion (enzymic activity). Bioelectric phoenomena associated with charged molec ules in a biologic structure caused

  8. Complex evolutionary relationships among four classes of modular RNA-binding splicing regulators in eukaryotes: the hnRNP, SR, ELAV-like and CELF proteins.

    PubMed

    Tang, Yue Hang; Han, Siew Ping; Kassahn, Karin S; Skarshewski, Adam; Rothnagel, Joseph A; Smith, Ross

    2012-12-01

    Alternative RNA splicing in multicellular organisms is regulated by a large group of proteins of mainly unknown origin. To predict the functions of these proteins, classification of their domains at the sequence and structural level is necessary. We have focused on four groups of splicing regulators, the heterogeneous nuclear ribonucleoprotein (hnRNP), serine-arginine (SR), embryonic lethal, abnormal vision (ELAV)-like, and CUG-BP and ETR-like factor (CELF) proteins, that show increasing diversity among metazoa. Sequence and phylogenetic analyses were used to obtain a broader understanding of their evolutionary relationships. Surprisingly, when we characterised sequence similarities across full-length sequences and conserved domains of ten metazoan species, we found some hnRNPs were more closely related to SR, ELAV-like and CELF proteins than to other hnRNPs. Phylogenetic analyses and the distribution of the RRM domains suggest that these proteins diversified before the last common ancestor of the metazoans studied here through domain acquisition and duplication to create genes of mixed evolutionary origin. We propose that these proteins were derived independently rather than through the expansion of a single protein family. Our results highlight inconsistencies in the current classification system for these regulators, which does not adequately reflect their evolutionary relationships, and suggests that a domain-based classification scheme may have more utility.

  9. The multifunctional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell-cycle arrest.

    PubMed

    Atkins, Katelyn M; Thomas, Laura L; Barroso-González, Jonathan; Thomas, Laurel; Auclair, Sylvain; Yin, Jun; Kang, Hyeog; Chung, Jay H; Dikeakos, Jimmy D; Thomas, Gary

    2014-09-11

    SIRT1 regulates the DNA damage response by deacetylating p53, thereby repressing p53 transcriptional output. Here, we demonstrate that the sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate the DNA damage response. PACS-2 knockdown cells failed to efficiently undergo p53-induced cell-cycle arrest in response to DNA damage. Accordingly, p53 acetylation was reduced both in PACS-2 knockdown cells and thymocytes from Pacs-2(-/-) mice, thereby blunting induction of the cyclin-dependent kinase inhibitor p21 (CDKN1A). The SIRT1 inhibitor EX-527 or SIRT1 knockdown restored p53 acetylation and p21 induction as well as p21-dependent cell-cycle arrest in PACS-2 knockdown cells. Trafficking studies revealed that cytoplasmic PACS-2 shuttled to the nucleus, where it interacted with SIRT1 and repressed SIRT1-mediated p53 deacetylation. Correspondingly, in vitro assays demonstrated that PACS-2 directly inhibited SIRT1-catalyzed p53 deacetylation. Together, these findings identify PACS-2 as an in vivo mediator of the SIRT1-p53-p21 axis that modulates the DNA damage response.

  10. The multi-functional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell cycle arrest

    PubMed Central

    Atkins, Katelyn M.; Thomas, Laura L.; Barroso-González, Jonathan; Thomas, Laurel; Auclair, Sylvain; Yin, Jun; Kang, Hyeog; Chung, Jay H.; Dikeakos, Jimmy D.; Thomas, Gary

    2014-01-01

    SUMMARY SIRT1 regulates the DNA damage response by deacetylating p53, thereby repressing p53 transcriptional output. Here we demonstrate that the sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate the DNA damage response. PACS-2 knockdown cells failed to efficiently undergo p53-induced cell cycle arrest in response to DNA damage. Accordingly, p53 acetylation was reduced both in PACS-2 knockdown cells and thymocytes from Pacs-2−/− mice, thereby blunting induction of the cyclin-dependent kinase inhibitor p21 (CDKN1A). The SIRT1 inhibitor EX-527 or SIRT1 knockdown restored p53 acetylation and p21 induction as well as p21-dependent cell cycle arrest in PACS-2 knockdown cells. Trafficking studies revealed cytoplasmic PACS-2 shuttled to the nucleus where it interacted with SIRT1 and repressed SIRT1-mediated p53 deacetylation. Correspondingly, in vitro assays demonstrated PACS-2 directly inhibited SIRT1-catalyzed p53 deacetylation. Together, these findings identify PACS-2 as an in vivo mediator of the SIRT1—p53—p21 axis that modulates the DNA damage response. PMID:25159152

  11. Robotic hand with modular extensions

    SciTech Connect

    Salisbury, Curt Michael; Quigley, Morgan

    2015-01-20

    A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.

  12. Identification of multifunctional peptides from human milk.

    PubMed

    Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K

    2014-06-01

    Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry.

  13. Modular biometric system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  14. Multifunction laser source for ground and airborne applications

    NASA Astrophysics Data System (ADS)

    Crépy, Bruno

    2011-06-01

    Multiple ground and airborne vehicles could share common and multifunctional laser modules. The host system constraints and requirements have similarities making a laser modular concept interesting. Among the desired functions, the core ones are the designation and the rangefinding capabilities. A diode pumped laser source at 1μm with a switchable OPO stage for wavelength conversion fully satisfies the designation and rangefinding tasks. Over the last years, CILAS has developed the key technologies for the improvement of the main system parameters with the imperative constraints to be International Traffic in Arm Regulations Free (ITAR Free). Particularly, this novel architecture avoids thermo electric cooler (TEC) generally used to stabilise the wavelength of the laser diode pump source within the entire operational thermal range.

  15. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  16. Multimission modular spacecraft (MMS)

    NASA Technical Reports Server (NTRS)

    Falkenhayn, Edward, Jr.

    1988-01-01

    This paper discusses the design requirements for the low-cost standard spacecraft development which has come to be known as the Multimission Modular Spacecraft (MMS). The paper presents the wide range of launch configurations of the MMS users, the population of programs using the MMS, and the cost effectiveness of the MMS concept. The paper addresses the in-orbit serviceability of the design as demonstrated by the successful SMM repair, and the recent selection of MMS for the Explorer Platform, which features in-orbit payload exchanges.

  17. Versatile modular scaffolds

    NASA Technical Reports Server (NTRS)

    Kerley, J.

    1981-01-01

    Movable and fixed modular scaffolds can be tailored to most scaffolding needs by interconnecting only 4 basic structural elements: platforms, rails, vertical-support angles, and stiffener. Standard nuts and bolts are used to join elements, simplifying construction, and reducing costs. Scaffolds are rigid and can be made any length. They are stable on unlevel ground and can extend to well over 50 feet in height. Scaffolds allow for internal elevators and for wheels and air mounts so that same elements can be used for standing or movable scaffold.

  18. Complex modular structure of large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  19. Multi-functional composite structures

    DOEpatents

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2010-04-27

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  20. Multi-functional composite structures

    DOEpatents

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  1. Multifunctional reactive nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  2. Modular robotic architecture

    NASA Astrophysics Data System (ADS)

    Smurlo, Richard P.; Laird, Robin T.

    1991-03-01

    The development of control architectures for mobile systems is typically a task undertaken with each new application. These architectures address different operational needs and tend to be difficult to adapt to more than the problem at hand. The development of a flexible and extendible control system with evolutionary growth potential for use on mobile robots will help alleviate these problems and if made widely available will promote standardization and cornpatibility among systems throughout the industry. The Modular Robotic Architecture (MRA) is a generic control systern that meets the above needs by providing developers with a standard set of software hardware tools that can be used to design modular robots (MODBOTs) with nearly unlimited growth potential. The MODBOT itself is a generic creature that must be customized by the developer for a particular application. The MRA facilitates customization of the MODBOT by providing sensor actuator and processing modules that can be configured in almost any manner as demanded by the application. The Mobile Security Robot (MOSER) is an instance of a MODBOT that is being developed using the MRA. Navigational Sonar Module RF Link Control Station Module hR Link Detection Module Near hR Proximi Sensor Module Fluxgate Compass and Rate Gyro Collision Avoidance Sonar Module Figure 1. Remote platform module configuration of the Mobile Security Robot (MOSER). Acoustical Detection Array Stereoscopic Pan and Tilt Module High Level Processing Module Mobile Base 566

  3. Preheating after modular inflation

    NASA Astrophysics Data System (ADS)

    Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

    2009-12-01

    We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

  4. Modular radiochemistry synthesis system

    SciTech Connect

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  5. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  6. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, Michael R.; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2016-11-01

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  7. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  8. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  9. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  10. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles.

    PubMed

    Pesarrodona, Mireia; Ferrer-Miralles, Neus; Unzueta, Ugutz; Gener, Petra; Tatkiewicz, Witold; Abasolo, Ibane; Ratera, Imma; Veciana, Jaume; Schwartz, Simó; Villaverde, Antonio; Vazquez, Esther

    2014-10-01

    CD44 is a multifunctional cell surface protein involved in proliferation and differentiation, angiogenesis and signaling. The expression of CD44 is up-regulated in several types of human tumors and particularly in cancer stem cells, representing an appealing target for drug delivery in the treatment of cancer. We have explored here several protein ligands of CD44 for the construction of self-assembling modular proteins designed to bind and internalize target cells. Among five tested ligands, two of them (A5G27 and FNI/II/V) drive the formation of protein-only, ring-shaped nanoparticles of about 14 nm that efficiently bind and penetrate CD44(+) cells by an endosomal route. The potential of these newly designed nanoparticles is evaluated regarding the need of biocompatible nanostructured materials for drug delivery in CD44-linked conditions.

  11. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  12. MUC16/CA125 in the Context of Modular Proteins with an Annotated Role in Adhesion-Related Processes: In Silico Analysis

    PubMed Central

    Jankovic, Miroslava; Mitic, Ninoslav

    2012-01-01

    Mucin 16 (MUC16) is a type I transmembrane protein, the extracellular portion of which is shed after proteolytic degradation and is denoted as CA125 antigen, a well known tumor marker for ovarian cancer. Regarding its polypeptide and glycan structures, as yet there is no detailed insight into their heterogeneity and ligand properties, which may greatly influence its function and biomarker potential. This study was aimed at obtaining further insight into the biological capacity of MUC16/CA125, using in silico analysis of corresponding mucin sequences, including similarity searches as well as GO (gene ontology)-based function prediction. The results obtained pointed to the similarities within extracellular serine/threonine rich regions of MUC16 to sequences of proteins expressed in evolutionary distant taxa, all having in common an annotated role in adhesion-related processes. Specifically, a homology to conserved domains from the family of herpesvirus major outer envelope protein (BLLF1) was found. In addition, the possible involvement of MUC16/CA125 in carbohydrate-binding interactions or cellular transport of protein/ion was suggested. PMID:22949868

  13. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  14. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  15. The Emergence of Modularity in Biological Systems

    PubMed Central

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2015-01-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks. There once were two watchmakers, named Hora and Tempus, who manufactured very fine watches. Both of them were highly regarded, and the phones in their workshops rang frequently — new customers were constantly calling them. However, Hora prospered, while Tempus became poorer and poorer and finally lost his shop. What was the reason? The watches the men made consisted of about 1,000 parts each. Tempus had so constructed his that if he had one partly assembled and had to put it down — to answer the phone say— it immediately fell to pieces and had to be reassembled from the elements. The better the customers liked his watches, the more they phoned him, the more difficult it became for him to find enough uninterrupted time to finish a watch. The watches that Hora made were no less complex than those of Tempus. But he had designed them so that he could put together subassemblies of about ten elements each. Ten of these subassemblies, again, could be put together into a larger subassembly; and a system of ten of the latter sub

  16. Modular Flooring System

    NASA Technical Reports Server (NTRS)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped

  17. Studies in Multifunctional Drug Development: Preparation and Evaluation of 11beta-Substituted Estradiol-Drug Conjugates, Cell Membrane Targeting Imaging Agents, and Target Multifunctional Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dao, KinhLuan Lenny D.

    Cancer is the second leading cause of death after cardiovascular disease in the United State. Despite extensive research in development of antitumor drugs, most of these therapeutic entities often possess nonspecific toxicity, thus they can only be used to treat tumors in higher doses or more frequently. Because of the cytotoxicity and severe side effects, the drug therapeutic window normally is limited. Beside the toxicity issue, antitumor drug are also not selectively taken up by tumor cells, thus the necessitating concentrations that would eradicate the tumor can often not be used. In addition, tumor cells tend to develop resistance against the anticancer drugs after prolonged treatment. Therefore, alleviating the systemic cytotoxicity and side effects, improving in tumor selectivity, high potency, and therapeutic efficacy are still major obstacles in the area of anticancer drug development. A more promising approach for developing a selective agent for cancer is to conjugate a potent therapeutic drug, or an imaging agent with a targeting group, such as antibody or a high binding-specificity small molecule, that selectively recognize the overexpressed antigens or proteins on tumor cells. My research combines several approaches to describe this strategy via using different targeting molecules to different diseases, as well as different potent cytotoxic drugs for different therapies. Three studies related to the preparation and biological evaluation of new therapeutic agents, such as estradiol-drug hybrids, cell membrane targeted molecular imaging agents, and multifunctional NPs will be discussed. The preliminary results of these studies indicated that our new reagents achieved their initial objectives and can be further improved for optimized synthesis and in vivo experiments. The first study describes the method in which we employed a modular assembly approach to synthesize a novel 11beta-substituted steroidal anti-estrogen. The key intermediate was synthesized

  18. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications.

    PubMed

    Gao, Jinhao; Gu, Hongwei; Xu, Bing

    2009-08-18

    The combination of nanotechnology and molecular biology has developed into an emerging research area: nanobiotechnology. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional magnetic nanoparticles. Currently, there are two strategies to fabricate magnetic nanoparticle-based multifunctional nanostructures. The first, molecular functionalization, involves attaching antibodies, proteins, and dyes to the magnetic nanoparticles. The other method integrates the magnetic nanoparticles with other functional nanocomponents, such as quantum dots (QDs) or metallic nanoparticles. Because they can exhibit several features synergistically and deliver more than one function simultaneously, such multifunctional magnetic nanoparticles could have unique advantages in biomedical applications. In this Account, we review examples of the design and biomedical application of multifunctional magnetic nanoparticles. After their conjugation with proper ligands, antibodies, or proteins, the biofunctional magnetic nanoparticles exhibit highly selective binding. These results indicate that such nanoparticles could be applied to biological medical problems such as protein purification, bacterial detection, and toxin decorporation. The hybrid nanostructures, which combine magnetic nanoparticles with other nanocomponents, exhibit paramagnetism alongside features such as fluorescence or enhanced optical contrast. Such structures could provide a platform for enhanced medical imaging and controlled drug delivery. We expect that the combination of unique structural

  19. Multifunctional RNA Nanoparticles

    PubMed Central

    2015-01-01

    Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA–DNA hybrids aimed to conditionally activate multiple split functionalities inside cells. PMID:25267559

  20. Modular small hydro configuration

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Smaller sites (those under 750 kilowatts) which previously were not attractive to develop using equipment intended for application at larger scale sites, were the focal point in the conception of a system which utilizes standard industrial components which are generally available within short procurement times. Such components were integrated into a development scheme for sites having 20 feet to 150 feet of head. The modular small hydro configuration maximizes the use of available components and minimizes modification of existing civil works. A key aspect of the development concept is the use of a vertical turbine multistage pump, used in the reverse mode as a hydraulic turbine. The configuration allows for automated operation and control of the hydroelectric facilities with sufficient flexibility for inclusion of potential hydroelectric sites into dispersed storage and generation (DSG) utility grid systems.

  1. Modular arctic structures system

    SciTech Connect

    Reusswig, G. H.

    1984-12-04

    A modular and floatable offshore exploration and production platform system for use in shallow arctic waters is disclosed. A concrete base member is floated to the exploration or production site, and ballated into a predredged cavity. The cavity and base are sized to provide a stable horizontal base 30 feet below the mean water/ice plane. An exploration or production platform having a massive steel base is floated to the site and ballasted into position on the base. Together, the platform, base and ballast provide a massive gravity structure that is capable of resisting large ice and wave forces that impinge on the structure. The steel platform has a sloping hourglass profile to deflect horizontal ice loads vertically, and convert the horizontal load to a vertical tensile stress, which assists in breaking the ice as it advances toward the structure.

  2. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  3. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  4. Transglutaminase type 2: A multifunctional protein chaperone?

    PubMed Central

    Rossin, Federica; D’Eletto, Manuela; Farrace, Maria Grazia; Piacentini, Mauro

    2014-01-01

    Macroautophagy selectively degrades dysfunctional mitochondria by a process known as mitophagy. The purpose of the study published in Cell Death and Differentiation was to investigate the involvement of transglutaminase 2 (TG2) in the turnover and degradation of damaged mitochondria and its effects on cell metabolism. PMID:27308365

  5. Modular stems in DDH.

    PubMed

    Benazzo, F; Cuzzocrea, F; Stroppa, S; Ravasi, F; Dalla Pria, P

    2007-01-01

    The Modulus (Lima-Lto) system has been created on the association of a conical stem and a modular neck in order to address the so called "difficult hip". Modularity can maximize the options for a correct reconstruction in a total hip replacement of the coxofemoral anatomy as well as biomechanics. Modulus should be used in CDH, primary hip arthritis, the sequelae of osteotomies and in each case in which we face a congenital or acquired hip deformity. The Modulus stem has been commonly utilised in association with the Delta cup (Lima-Lto) with the chance to use big diameter heads (32-36 mm) and ceramic on ceramic coupling. Modulus has been used in association with Delta cup since November 2002. 51 patients affected by CDH have been treated. Clinical and radiographic results can be considered very good. The average evaluation based on Merle D'Aubigné schedule is equal to 17.5 with a significant increase in the results with respect to the preoperatory score (with an average score equal to 10). In the light of the above, Modulus should be considered a valuable system to optimize the results of total hip replacement also in those more complex situations with a modified femoral morphology, allowing the restoration of a normal biomechanics in terms of off-set and anteversion with benefit in terms of stability and length of the implant as well as in terms of satisfaction of the patient as far as limb length and ROM are concerned. The association of Modulus with big diameter heads gives a higher guarantee in terms of duration of the implant and restoration of the functionality in young patients with a serious deformity and increased functional demands.

  6. Effective Design of Multifunctional Peptides by Combining Compatible Functions

    PubMed Central

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A.; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-01-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf. PMID:27096600

  7. Effective Design of Multifunctional Peptides by Combining Compatible Functions.

    PubMed

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-04-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.

  8. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains

    PubMed Central

    1996-01-01

    Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line. PMID:8603916

  9. Multifunctional nanocomposite materials. Progress report

    SciTech Connect

    Roy, R.; Komarneni, S.

    1991-11-01

    Objective is to examine the low temperature nanocomposite route in the synthesis of multifunctional materials using two-dimensional clays as hosts. After about 8 months, a significant advance was made in the design and synthesis of novel nanocomposite materials, which are nanometal intercalated clays prepared by a low temperature route. A layered V{sub 2}O{sub 5} gel has been made hydrothermally and its cation exchange properties measured. Several pillared clays have also been synthesized and characterized.

  10. Multifunctional Cascaded Metamaterials: Integrated Transmitarrays

    NASA Astrophysics Data System (ADS)

    Elsakka, Amr A.; Asadchy, Viktar S.; Faniayeu, Ihar A.; Tcvetkova, Svetlana N.; Tretyakov, Sergei A.

    2016-10-01

    Control of electromagnetic waves using engineered materials is very important in a wide range of applications, therefore there is always a continuous need for new and more efficient solutions. Known natural and artificial materials and surfaces provide a particular functionality in the frequency range they operate but cast a "shadow" and produce reflections at other frequencies. Here, we introduce a concept of multifunctional engineered materials that possess different predetermined functionalities at different frequencies. Such response can be accomplished by cascading metasurfaces (thin composite layers) that are designed to perform a single operation at the desired frequency and are transparent elsewhere. Previously, out-of-band transparent metasurfaces for control over reflection and absorption were proposed. In this paper, to complete the full set of functionalities for wave control, we synthesize transmitarrays that tailor transmission in a desired way, being "invisible" beyond the operational band. The designed transmitarrays for wavefront shaping and anomalous refraction are tested numerically and experimentally. To demonstrate our concept of multifunctional engineered materials, we have designed a cascade of three metasurfaces that performs three different functions for waves at different frequencies. Remarkably, applied to volumetric metamaterials, our concept can enable a single composite possessing desired multifunctional response.

  11. Implantable, multifunctional, bioresorbable optics

    PubMed Central

    Tao, Hu; Kainerstorfer, Jana M.; Siebert, Sean M.; Pritchard, Eleanor M.; Sassaroli, Angelo; Panilaitis, Bruce J. B.; Brenckle, Mark A.; Amsden, Jason J.; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-01-01

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  12. Implantable, multifunctional, bioresorbable optics.

    PubMed

    Tao, Hu; Kainerstorfer, Jana M; Siebert, Sean M; Pritchard, Eleanor M; Sassaroli, Angelo; Panilaitis, Bruce J B; Brenckle, Mark A; Amsden, Jason J; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L; Omenetto, Fiorenzo G

    2012-11-27

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  13. Report on modular hydropower demonstration

    SciTech Connect

    Pelton, F.

    1988-09-01

    This report describes an Energy Authority project to demonstrate the use of modular small hydropower systems at two sites. The project demonstrated that 'off-the-shelf' components can be used to construct a functionally reliable, cost-effective hydropower system at a significant savings over custom-designed systems. A key feature of the modular system is the replacement of the conventional hydroelectric turbine with a pump operated in reverse. Also, the construction of a water-intake system in the dam is replaced with a siphon penstock. Further cost and time savings are gained from the use of a prefabricated powerhouse and automated control equipment. The project demonstrated that modular systems are an attractive option for sites with capacities from under 100 to 500 kilowatts. The modular concept is applicable at about 250 sites Statewide, with a combined capacity of up to 400 MW.

  14. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  15. The modularity of pollination networks

    PubMed Central

    Olesen, Jens M.; Bascompte, Jordi; Dupont, Yoko L.; Jordano, Pedro

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with <50 species were never modular. Both module number and size increased with species number. Each module includes one or a few species groups with convergent trait sets that may be considered as coevolutionary units. Species played different roles with respect to modularity. However, only 15% of all species were structurally important to their network. They were either hubs (i.e., highly linked species within their own module), connectors linking different modules, or both. If these key species go extinct, modules and networks may break apart and initiate cascades of extinction. Thus, species serving as hubs and connectors should receive high conservation priorities. PMID:18056808

  16. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  17. Modular Approach to Spintronics.

    PubMed

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-06-11

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics.

  18. Modular Approach to Spintronics

    PubMed Central

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  19. Shortened OR time and decreased patient risk through use of a modular surgical instrument with artificial intelligence.

    PubMed

    Miller, David J; Nelson, Carl A; Oleynikov, Dmitry

    2009-05-01

    With a limited number of access ports, minimally invasive surgery (MIS) often requires the complete removal of one tool and reinsertion of another. Modular or multifunctional tools can be used to avoid this step. In this study, soft computing techniques are used to optimally arrange a modular tool's functional tips, allowing surgeons to deliver treatment of improved quality in less time, decreasing overall cost. The investigators watched University Medical Center surgeons perform MIS procedures (e.g., cholecystectomy and Nissen fundoplication) and recorded the procedures to digital video. The video was then used to analyze the types of instruments used, the duration of each use, and the function of each instrument. These data were aggregated with fuzzy logic techniques using four membership functions to quantify the overall usefulness of each tool. This allowed subsequent optimization of the arrangement of functional tips within the modular tool to decrease overall time spent changing instruments during simulated surgical procedures based on the video recordings. Based on a prototype and a virtual model of a multifunction laparoscopic tool designed by the investigators that can interchange six different instrument tips through the tool's shaft, the range of tool change times is approximately 11-13 s. Using this figure, estimated time savings for the procedures analyzed ranged from 2.5 to over 32 min, and on average, total surgery time can be reduced by almost 17% by using the multifunction tool.

  20. Locally rare species influence grassland ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-05-19

    Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. PMID:27114572

  1. Locally rare species influence grassland ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-05-19

    Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.

  2. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  3. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  4. DynaMod: dynamic functional modularity analysis

    PubMed Central

    Sun, Choong-Hyun; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2010-01-01

    A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions. DynaMod allows the inspection of a wide variety of functional modules such as the biological pathways, transcriptional factor–target gene groups, microRNA–target gene groups, protein complexes and hub networks involved in protein interactome. The statistical significance of dynamic functional modularity is scored based on Z-statistics from the average of mutual information (MI) changes of involved gene pairs under different conditions. Significantly correlated gene pairs among the functional modules are used to generate a correlated network of functional categories. In addition to these main goals, this scoring strategy supports better performance to detect significant genes in microarray analyses, as the scores of correlated genes show the superior characteristics of the significance analysis compared with those of individual genes. DynaMod also offers cross-comparison between different analysis outputs. DynaMod is freely accessible at http://piech.kaist.ac.kr/dynamod. PMID:20460468

  5. Membrane-type 1 matrix metalloproteinase cytoplasmic tail-binding protein-1 is a new member of the Cupin superfamily. A possible multifunctional protein acting as an invasion suppressor down-regulated in tumors.

    PubMed

    Uekita, Takamasa; Gotoh, Isamu; Kinoshita, Takeshi; Itoh, Yoshifumi; Sato, Hiroshi; Shiomi, Takayuki; Okada, Yasunori; Seiki, Motoharu

    2004-03-26

    Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) is an enzyme that promotes tumor cell invasion in tissues. Although the proteolytic activity of MT1-MMP is indispensable for invasion, it is also regulated by functions of the cytoplasmic tail. In this study we obtained a new human gene whose product binds to the tail sequence in yeast. The product, MTCBP-1, is a 19-kDa protein that belongs to the newly proposed Cupin superfamily composed of proteins with diverse functions. MTCBP-1 expressed in cells formed a complex with MT1-MMP and co-localized at the membrane. It was also detected in both the cytoplasm and nucleus, where MT1-MMP does not exist. In human tumor cell lines MTCBP-1 expression was significantly low compared with non-transformed fibroblasts, and enforced expression of MTCBP-1 inhibited the activity of MT1-MMP in promoting cell migration and invasion. MTCBP-1 showed significant homology to the bacterial aci-reductone dioxygenase, which is an enzyme in methionine metabolism. The C-terminal part of MTCBP-1 is identical to Sip-L, which is reported to be important for human hepatitis C virus replication. Thus, MTCBP-1 may have multiple functions other than the regulation of MT1-MMP, which presumably depends on the subcellular compartment.

  6. Electrospun multifunctional tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wang, Min

    2014-03-01

    Tissue engineering holds great promises in providing successful treatments of human body tissue loss that current methods are unable to treat or unable to achieve satisfactory clinical outcomes. In scaffold-based tissue engineering, a highperformance scaffold underpins the success of a tissue engineering strategy and a major direction in the field is to create multifunctional tissue engineering scaffolds for enhanced biological performance and for regenerating complex body tissues. Electrospinning can produce nanofibrous scaffolds that are highly desirable for tissue engineering. The enormous interest in electrospinning and electrospun fibrous structures by the science, engineering and medical communities has led to various developments of the electrospinning technology and wide investigations of electrospun products in many industries, including biomedical engineering, over the past two decades. It is now possible to create novel, multicomponent tissue engineering scaffolds with multiple functions. This article provides a concise review of recent advances in the R & D of electrospun multifunctional tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of electrospun multicomponent scaffolds with multiple functions.

  7. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  8. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  9. Modular assembly of optical nanocircuits

    NASA Astrophysics Data System (ADS)

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-01

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic ‘lumped’ circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  10. Modular assembly of optical nanocircuits.

    PubMed

    Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

    2014-05-29

    A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

  11. Modular Firewalls for Storage Areas

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Owens, L. J.

    1986-01-01

    Giant honeycomb structures assembled in modular units. Flammable materials stored in cells. Walls insulated with firebrick to prevent spread of fire among cells. Portable, modular barrier withstands heat of combustion for limited time and confines combustion products horizontally to prevent fire from spreading. Barrier absorbs heat energy by ablation and not meant to be reused. Designed to keep fires from spreading among segments of solid rocket propellant in storage, barrier erected between storage units of other flammable or explosive materials; tanks of petroleum or liquid natural gas. Barrier adequate for most industrial purposes.

  12. Multifunctional surfaces produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2015-01-01

    In this study, we create a multifunctional metal surface by producing a hierarchical nano/microstructure with femtosecond laser pulses. The multifunctional surface exhibits combined effects of dramatically enhanced broadband absorption, superhydrophobicity, and self-cleaning. The superhydrophobic effect is demonstrated by a falling water droplet repelled away from a structured surface with 30% of the droplet kinetic energy conserved, while the self-cleaning effect is shown by each water droplet taking away a significant amount of dust particles on the altered surface. The multifunctional surface is useful for light collection and water/dust repelling.

  13. Modular organization of the PDZ domains in the human discs-large protein suggests a mechanism for coupling PDZ domain-binding proteins to ATP and the membrane cytoskeleton

    PubMed Central

    1996-01-01

    The human homologue (hDIg) of the Drosophila discs-large tumor suppressor (DIg) is a multidomain protein consisting of a carboxyl- terminal guanylate kinase-like domain, an SH3 domain, and three slightly divergent copies of the PDZ (DHR/GLGF) domain. Here have examined the structural organization of the three PDZ domains of hDIg using a combination of protease digestion and in vitro binding measurements. Our results show that the PDZ domains are organized into two conformationally stable modules one (PDZ, consisting of PDZ domains 1 and 2, and the other (PDZ) corresponding to the third PDZ domain. Using amino acid sequencing and mass spectrometry, we determined the boundaries of the PDZ domains after digestion with endoproteinase Asp- N, trypsin, and alpha-chymotrypsin. The purified PDZ1+2, but not the PDZ3 domain, contains a high affinity binding site for the cytoplasmic domain of Shaker-type K+ channels. Similarly, we demonstrate that the PDZ1+2 domain can also specifically bind to ATP. Furthermore, we provide evidence for an in vivo interaction between hDIg and protein 4.1 and show that the hDIg protein contains a single high affinity protein 4.1-binding site that is not located within the PDZ domains. The results suggest a mechanism by which PDZ domain-binding proteins may be coupled to ATP and the membrane cytoskeleton via hDlg. PMID:8909548

  14. Multifunction display system, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and construction of a multifunction display man/machine interface for use with a 4 pi IBM-360 System are described. The system is capable of displaying superimposed volatile alphanumeric and graphical data on a 512 x 512 element plasma panel, and holographically stored multicolor archival information. The volatile data may be entered from a keyboard or by means of an I/O interface to the 360 system. A 2-page memory local to the display is provided for storing the entered data. The archival data is stored as a phase hologram on a vinyl tape strip. This data is accessible by means of a rapid transport system which responds to inputs provided by the I/O channel on the keyboard. As many as 500 frames may be stored on a tape strip for access in under 6 seconds.

  15. Multifunctionalities driven by ferroic domains

    SciTech Connect

    Yang, J. C.; Huang, Y. L.; Chu, Y. H.; He, Q.

    2014-08-14

    Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.

  16. Multifunctional composites for energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif I.; Karim, Hasanul; Rajib, Md; Delfin, Diego; Lin, Yirong

    2014-03-01

    Electrochemical super-capacitors have become one of the most important topics in both academia and industry as novel energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been an increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles and portable electronics. These multifunctional structural super-capacitors provide lighter structures combining energy storage and load bearing functionalities. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area and fast ion diffusion rates. Scanning Electron Microscopy (SEM) and XRay Diffraction (XRD) measurements were used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing has been performed using a potentio-galvanostat. The results show that gold sputtered nanowire hybrid carbon fiber provides 65.9% better performance than bare carbon fiber cloth as super-capacitor.

  17. Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery

    PubMed Central

    Slastnikova, Tatiana A; Rosenkranz, Andrey A; Gulak, Pavel V; Schiffelers, Raymond M; Lupanova, Tatiana N; Khramtsov, Yuri V; Zalutsky, Michael R; Sobolev, Alexander S

    2012-01-01

    Background Modular nanotransporters (MNT) are recombinant multifunctional polypeptides created to exploit a cascade of cellular processes, initiated with membrane receptor recognition to deliver selective short-range and highly cytotoxic therapeutics to the cell nucleus. This research was designed for in vivo concept testing for this drug delivery platform using two modular nanotransporters, one targeted to the α-melanocyte-stimulating hormone (αMSH) receptor overexpressed on melanoma cells and the other to the epidermal growth factor (EGF) receptor overexpressed on several cancers, including glioblastoma, and head-and-neck and breast carcinoma cells. Methods In vivo targeting of the modular nanotransporter was determined by immuno-fluorescence confocal laser scanning microscopy and by accumulation of 125I-labeled modular nanotransporters. The in vivo therapeutic effects of the modular nanotransporters were assessed by photodynamic therapy studies, given that the cytotoxicity of photosensitizers is critically dependent on their delivery to the cell nucleus. Results Immunohistochemical analyses of tumor and neighboring normal tissues of mice injected with multifunctional nanotransporters demonstrated preferential uptake in tumor tissue, particularly in cell nuclei. With 125I-labeled MNT{αMSH}, optimal tumor:muscle and tumor:skin ratios of 8:1 and 9.8:1, respectively, were observed 3 hours after injection in B16-F1 melanoma-bearing mice. Treatment with bacteriochlorin p-MNT{αMSH} yielded 89%–98% tumor growth inhibition and a two-fold increase in survival for mice with B16-F1 and Cloudman S91 melanomas. Likewise, treatment of A431 human epidermoid carcinoma-bearing mice with chlorin e6- MNT{EGF} resulted in 94% tumor growth inhibition compared with free chlorin e6, with 75% of animals surviving at 3 months compared with 0% and 20% for untreated and free chlorin e6-treated groups, respectively. Conclusion The multifunctional nanotransporter approach provides a

  18. Counteraction of the multifunctional restriction factor tetherin.

    PubMed

    Sauter, Daniel

    2014-01-01

    The interferon-inducible restriction factor tetherin (also known as CD317, BST-2 or HM1.24) has emerged as a key component of the antiviral immune response. Initially, tetherin was shown to restrict replication of various enveloped viruses by inhibiting the release of budding virions from infected cells. More recently, it has become clear that tetherin also acts as a pattern recognition receptor inducing NF-κB-dependent proinflammatory gene expression in virus infected cells. Whereas the ability to restrict virion release is highly conserved among mammalian tetherin orthologs and thus probably an ancient function of this protein, innate sensing seems to be an evolutionarily recent activity. The potent and broad antiviral activity of tetherin is reflected by the fact that many viruses evolved means to counteract this restriction factor. A continuous arms race with viruses has apparently driven the evolution of different isoforms of tetherin with different functional properties. Interestingly, tetherin has also been implicated in cellular processes that are unrelated to immunity, such as the organization of the apical actin network and membrane microdomains or stabilization of the Golgi apparatus. In this review, I summarize our current knowledge of the different functions of tetherin and describe the molecular strategies that viruses have evolved to antagonize or evade this multifunctional host restriction factor.

  19. Evolution and the Modularity of Mindreading.

    ERIC Educational Resources Information Center

    Moore, Chris

    1996-01-01

    Reviews Baron-Cohen's study of autism and an explanatory theory called modularity of mindreading, which proposed a domain-specific modular psychological model based on evolutionary, developmental, psychopathological, and neurobiological considerations. Enumerates problems with the modularity approach and emphasized the evolution of domain general…

  20. Modularity in Cognition: Framing the Debate

    ERIC Educational Resources Information Center

    Barrett, H. Clark; Kurzban, Robert

    2006-01-01

    Modularity has been the subject of intense debate in the cognitive sciences for more than 2 decades. In some cases, misunderstandings have impeded conceptual progress. Here the authors identify arguments about modularity that either have been abandoned or were never held by proponents of modular views of the mind. The authors review arguments that…

  1. Studies in Multifunctional Drug Development: Preparation and Evaluation of 11beta-Substituted Estradiol-Drug Conjugates, Cell Membrane Targeting Imaging Agents, and Target Multifunctional Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dao, KinhLuan Lenny D.

    Cancer is the second leading cause of death after cardiovascular disease in the United State. Despite extensive research in development of antitumor drugs, most of these therapeutic entities often possess nonspecific toxicity, thus they can only be used to treat tumors in higher doses or more frequently. Because of the cytotoxicity and severe side effects, the drug therapeutic window normally is limited. Beside the toxicity issue, antitumor drug are also not selectively taken up by tumor cells, thus the necessitating concentrations that would eradicate the tumor can often not be used. In addition, tumor cells tend to develop resistance against the anticancer drugs after prolonged treatment. Therefore, alleviating the systemic cytotoxicity and side effects, improving in tumor selectivity, high potency, and therapeutic efficacy are still major obstacles in the area of anticancer drug development. A more promising approach for developing a selective agent for cancer is to conjugate a potent therapeutic drug, or an imaging agent with a targeting group, such as antibody or a high binding-specificity small molecule, that selectively recognize the overexpressed antigens or proteins on tumor cells. My research combines several approaches to describe this strategy via using different targeting molecules to different diseases, as well as different potent cytotoxic drugs for different therapies. Three studies related to the preparation and biological evaluation of new therapeutic agents, such as estradiol-drug hybrids, cell membrane targeted molecular imaging agents, and multifunctional NPs will be discussed. The preliminary results of these studies indicated that our new reagents achieved their initial objectives and can be further improved for optimized synthesis and in vivo experiments. The first study describes the method in which we employed a modular assembly approach to synthesize a novel 11beta-substituted steroidal anti-estrogen. The key intermediate was synthesized

  2. Induction in a Modular Learner.

    ERIC Educational Resources Information Center

    Carroll, Susanne E.

    2002-01-01

    Presents a theory of inductive learning--Autonomous Induction Theory--a form of induction that takes place within the autonomous and modular representational systems of the language faculty. Argues that Autonomous Induction Theory is constrained enough to be taken seriously as a plausible approach to explaining second language acquisition.…

  3. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  4. Teaching Creation: A Modular Approach

    ERIC Educational Resources Information Center

    Bosworth, David A.

    2007-01-01

    The present article describes a modular approach to teaching Genesis 1-3 that values depth over breadth even in an introductory class. The module allows students to learn about the text and its original context by orienting discussion around contemporary issues of practical concern. Specifically, the creation-evolution debates provide an…

  5. Microbial diversity drives multifunctionality in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  6. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-28

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

  7. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  8. Multifunctional imaging probe based on gadofulleride nanoplatform

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Peng; Liu, Qiao-Ling; Zhen, Ming-Ming; Jiang, Feng; Shu, Chun-Ying; Jin, Chan; Yang, Yongji; Alhadlaq, Hisham A.; Wang, Chun-Ru

    2012-05-01

    A FAR over-expressed tumor targeting multifunctional imaging probe has been fabricated based on gadofulleride nanoplatform. The combination of highly efficient MRI contrast enhancement and sensitive fluorescence imaging along with the preferential uptake toward FAR tumor cells suggest that the obtained multifunctional imaging probe possesses complementary capabilities for anatomical resolution and detection sensitivity.A FAR over-expressed tumor targeting multifunctional imaging probe has been fabricated based on gadofulleride nanoplatform. The combination of highly efficient MRI contrast enhancement and sensitive fluorescence imaging along with the preferential uptake toward FAR tumor cells suggest that the obtained multifunctional imaging probe possesses complementary capabilities for anatomical resolution and detection sensitivity. Electronic supplementary information (ESI) available: Materials, instruments and methods, synthesis details, XPS characterization for estimation of average molecular formula, evaluation of conjugated FA and FITC ratio, zeta potential and fluorescent images. See DOI: 10.1039/c2nr30836c

  9. Modularity and stability in ecological communities

    PubMed Central

    Grilli, Jacopo; Rogers, Tim; Allesina, Stefano

    2016-01-01

    Networks composed of distinct, densely connected subsystems are called modular. In ecology, it has been posited that a modular organization of species interactions would benefit the dynamical stability of communities, even though evidence supporting this hypothesis is mixed. Here we study the effect of modularity on the local stability of ecological dynamical systems, by presenting new results in random matrix theory, which are obtained using a quaternionic parameterization of the cavity method. Results show that modularity can have moderate stabilizing effects for particular parameter choices, while anti-modularity can greatly destabilize ecological networks. PMID:27337386

  10. Does multifunctionality matter to US farmers? Farmer motivations and conceptions of multifunctionality in dairy systems.

    PubMed

    Brummel, Rachel F; Nelson, Kristen C

    2014-12-15

    The concept of multifunctionality describes and promotes the multiple non-production benefits that emerge from agricultural systems. The notion of multifunctional agriculture was conceived in a European context and largely has been used in European policy arenas to promote and protect the non-production goods emerging from European agriculture. Thus scholars and policy-makers disagree about the relevance of multifunctionality for United States agricultural policy and US farmers. In this study, we explore lived expressions of multifunctional agriculture at the farm-level to examine the salience of the multifunctionality concept in the US. In particular, we investigate rotational grazing and confinement dairy farms in the eastern United States as case studies of multifunctional and productivist agriculture. We also analyze farmer motivations for transitioning from confinement dairy to rotational grazing systems. Through interviews with a range of dairy producers in Wisconsin, Pennsylvania, and New York, we found that farmers were motivated by multiple factors--including improved cow health and profitability--to transition to rotational grazing systems to achieve greater farm-level multifunctionality. Additionally, rotational grazing farmers attributed a broader range of production and non-production benefits to their farm practice than confinement dairy farmers. Further, rotational grazing dairy farmers described a system-level notion of multifunctionality based on the interdependence of multiple benefits across scales--from the farm to the national level--emerging from grazing operations. We find that the concept of multifunctionality could be expanded in the US to address the interdependence of benefits emerging from farming practices, as well as private benefits to farmers. We contend that understanding agricultural benefits as experienced by the farmer is an important contribution to enriching the multifunctionality concept in the US context, informing agri

  11. Does multifunctionality matter to US farmers? Farmer motivations and conceptions of multifunctionality in dairy systems.

    PubMed

    Brummel, Rachel F; Nelson, Kristen C

    2014-12-15

    The concept of multifunctionality describes and promotes the multiple non-production benefits that emerge from agricultural systems. The notion of multifunctional agriculture was conceived in a European context and largely has been used in European policy arenas to promote and protect the non-production goods emerging from European agriculture. Thus scholars and policy-makers disagree about the relevance of multifunctionality for United States agricultural policy and US farmers. In this study, we explore lived expressions of multifunctional agriculture at the farm-level to examine the salience of the multifunctionality concept in the US. In particular, we investigate rotational grazing and confinement dairy farms in the eastern United States as case studies of multifunctional and productivist agriculture. We also analyze farmer motivations for transitioning from confinement dairy to rotational grazing systems. Through interviews with a range of dairy producers in Wisconsin, Pennsylvania, and New York, we found that farmers were motivated by multiple factors--including improved cow health and profitability--to transition to rotational grazing systems to achieve greater farm-level multifunctionality. Additionally, rotational grazing farmers attributed a broader range of production and non-production benefits to their farm practice than confinement dairy farmers. Further, rotational grazing dairy farmers described a system-level notion of multifunctionality based on the interdependence of multiple benefits across scales--from the farm to the national level--emerging from grazing operations. We find that the concept of multifunctionality could be expanded in the US to address the interdependence of benefits emerging from farming practices, as well as private benefits to farmers. We contend that understanding agricultural benefits as experienced by the farmer is an important contribution to enriching the multifunctionality concept in the US context, informing agri

  12. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    PubMed

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater. PMID:23435731

  13. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration.

    PubMed

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-07-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.

  14. From "Weak" to "Strong" Multifunctionality: Conceptualising Farm-Level Multifunctional Transitional Pathways

    ERIC Educational Resources Information Center

    Wilson, Geoff A.

    2008-01-01

    Building on normative conceptualisations of multifunctionality as a decision-making spectrum bounded by productivist and non-productivist action and thought, this paper analyses farm-level multifunctional agricultural transitions. First, the paper suggests that it may be possible to categorise different farm types along the…

  15. Modular hydrodam: concept definition study

    SciTech Connect

    Not Available

    1981-07-01

    The purpose of this investigation was to explore the potential for developing economical new ultra low-head (6 to 10 ft) sites using an innovative concept known as the Modular Hydrodam (MH). This concept combines the benefits of shop fabrication, installation of equipment in truck transportable, waterproof power modules, and prefabricated gate sections that can be located between the power modules. The size and weight of the power module permits it to be fully assembled and checked out in the manufacturer's shop. The module can then be broken down into four pieces and shipped by truck to the site. Once in place, concrete ballast will be added, as necessary, to prevent flotation. The following aspects were investigated: tubular and cross flow turbines; modularized components; the use of a cable support system for horizontal stability of the dam and powerhouse; and construction in the wet as well as in the dry.

  16. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  17. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    NASA Astrophysics Data System (ADS)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self

  18. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  19. Multidimensional bioseparation with modular microfluidics

    DOEpatents

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  20. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2013-02-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks.

  1. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2014-01-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

  2. Multifunctional PEGylated nanoclusters for biomedical applications

    NASA Astrophysics Data System (ADS)

    Peng, Erwin; Choo, Eugene Shi Guang; Tan, Cherie Shi Hua; Tang, Xiaosheng; Sheng, Yang; Xue, Junmin

    2013-06-01

    A simple and versatile synthesis method to form water soluble multifunctional nanoclusters using polyethylene glycol (PEG) functionalized poly(maleic anhydride-alt-1-octadecene) amphiphilic brush copolymers (PMAO-g-PEG) was presented. Simply by tuning the core size and the initial nanocrystal concentration, manganese ferrite nanoparticles (MFNPs) were used to demonstrate the versatility of tuning the loading amount of the nanoclusters. The resultant nanoclusters were found to have a well-controlled spherical shape. When Zn-doped AgInS2 quantum dots (AIZS QDs) were loaded together with the MFNP nanocrystals, bi-functional nanoclusters with fluorescent and magnetic behaviors were obtained. Such bi-functional nanoclusters were also successfully demonstrated for cellular bio-imaging. Moreover, the presence of another type of nanocrystals together with MFNPs was found to have a negligible effect on the overall properties of the nanoclusters as demonstrated by the MR relaxivity test. From the time-dependent colloidal stability test, it was found that the presence of the PEG chain grafted onto PMAO was able to reduce protein adsorption onto the nanocluster surface. An in vitro study on NIH/3T3 demonstrated the biocompatibility of the nanoclusters. Such biocompatible and colloidally stable nanoclusters with an approximate size of 80-120 nm were suitable for both MRI and cell labeling applications.A simple and versatile synthesis method to form water soluble multifunctional nanoclusters using polyethylene glycol (PEG) functionalized poly(maleic anhydride-alt-1-octadecene) amphiphilic brush copolymers (PMAO-g-PEG) was presented. Simply by tuning the core size and the initial nanocrystal concentration, manganese ferrite nanoparticles (MFNPs) were used to demonstrate the versatility of tuning the loading amount of the nanoclusters. The resultant nanoclusters were found to have a well-controlled spherical shape. When Zn-doped AgInS2 quantum dots (AIZS QDs) were loaded together

  3. In vivo architectonic stability of fully de novo designed protein-only nanoparticles.

    PubMed

    Céspedes, María Virtudes; Unzueta, Ugutz; Tatkiewicz, Witold; Sánchez-Chardi, Alejandro; Conchillo-Solé, Oscar; Álamo, Patricia; Xu, Zhikun; Casanova, Isolda; Corchero, José Luis; Pesarrodona, Mireia; Cedano, Juan; Daura, Xavier; Ratera, Imma; Veciana, Jaume; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Mangues, Ramón

    2014-05-27

    The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids. PMID:24708510

  4. Some Endpoint Results for β-Generalized Weak Contractive Multifunctions

    PubMed Central

    Alikhani, H.; Gopal, D.; Miandaragh, M. A.; Rezapour, Sh.; Shahzad, N.

    2013-01-01

    We introduce β-generalized weak contractive multifunctions and give some results about endpoints of the multifunctions. Also, we give some results about role of a point in the existence of endpoints. PMID:24348197

  5. Modular ulnar head decoupling force: case report.

    PubMed

    Naidu, Sanjiv H; Radin, Alex

    2009-01-01

    Cobalt-chrome modular distal ulnar head replacement arthroplasty is a surgical option to restore stability to the distal radioulnar joint rendered unstable by hemi-resection arthroplasty or a total resection arthroplasty. However, the revision of dislocated modular cobalt-chrome ulnar head implants may pose an important intraoperative challenge. The Morse-taper disassembly force of modular ulnar head implants is not available in the current published literature. We present a case in which tremendous difficulty was encountered while revising a dislocated modular cobalt-chrome distal ulnar head implant. The mean Morse-taper disassembly force of the retrieved modular cobalt-chrome implant was 2958 N +/- 1272. At nearly 4.5 times the average body weight, the modular ulnar head Morse-taper disassembly strength presented a formidable force to overcome intraoperatively.

  6. Modular workcells: modern methods for laboratory automation.

    PubMed

    Felder, R A

    1998-12-01

    Laboratory automation is beginning to become an indispensable survival tool for laboratories facing difficult market competition. However, estimates suggest that only 8% of laboratories will be able to afford total laboratory automation systems. Therefore, automation vendors have developed alternative hardware configurations called 'modular automation', to fit the smaller laboratory. Modular automation consists of consolidated analyzers, integrated analyzers, modular workcells, and pre- and post-analytical automation. These terms will be defined in this paper. Using a modular automation model, the automated core laboratory will become a site where laboratory data is evaluated by trained professionals to provide diagnostic information to practising physicians. Modem software information management and process control tools will complement modular hardware. Proper standardization that will allow vendor-independent modular configurations will assure success of this revolutionary new technology.

  7. Modular microrobot for swimming in heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Cheang, U. Kei; Meshkati, Meshkati; Fu, Henry; Kim, Minjun; Drexel University Team; University of Nevada, Reno Team

    2015-11-01

    One of the difficulties in navigating in vivo is to overcome many types of environments. This includes blood vessels of different diameters, fluids with different mechanical properties, and physical barriers. Inspired by conventional modular robotics, we demonstrate modular microrobotics using magnetic particles as the modular units to change size and shape through docking and undocking. Much like the vast variety of microorganisms navigating many different bio-environments, modular microswimmers have the ability to dynamically adapt different environments by reconfiguring the swimmers' physical characteristics. We model the docking as magnetic assembly and undocking mechanisms as deformation by hydrodynamic forces. We characterize the swimming capability of the modular microswimmer with different size and shapes. Finally, we demonstrate modular microrobotics by assembling a three-bead microswimmer into a nine-bead microswimmer, and then disassemble it into several independently swimming microswimmers..

  8. Modular open RF architecture: extending VICTORY to RF systems

    NASA Astrophysics Data System (ADS)

    Melber, Adam; Dirner, Jason; Johnson, Michael

    2015-05-01

    Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with welldefined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves significant size, weight and power (SWaP) savings by allowing hardware such as power amplifiers and antennas to be shared across systems. By separating signal conditioning from the processing that implements the actual radio application, MORA exposes previously inaccessible architecture points, providing system integrators with the flexibility to insert third-party capabilities to address technical challenges and emerging requirements. MORA leverages the Vehicular Integration for Command, Control, Communication, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR)/EW Interoperability (VICTORY) framework. This paper concludes by discussing how MORA, VICTORY and other standards such as OpenVPX are being leveraged by the U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development, and Engineering Center (CERDEC) to define a converged architecture enabling rapid technology insertion, interoperability and reduced SWaP.

  9. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  10. Multifunctional materials for bone cancer treatment

    PubMed Central

    Marques, Catarina; Ferreira, José MF; Andronescu, Ecaterina; Ficai, Denisa; Sonmez, Maria; Ficai, Anton

    2014-01-01

    The purpose of this review is to present the most recent findings in bone tissue engineering. Special attention is given to multifunctional materials based on collagen and collagen–hydroxyapatite composites used for skin and bone cancer treatments. The multi-functionality of these materials was obtained by adding to the base regenerative grafts proper components, such as ferrites (magnetite being the most important representative), cytostatics (cisplatin, carboplatin, vincristine, methotrexate, paclitaxel, doxorubicin), silver nanoparticles, antibiotics (anthracyclines, geldanamycin), and/or analgesics (ibuprofen, fentanyl). The suitability of complex systems for the intended applications was systematically analyzed. The developmental possibilities of multifunctional materials with regenerative and curative roles (antitumoral as well as pain management) in the field of skin and bone cancer treatment are discussed. It is worth mentioning that better materials are likely to be developed by combining conventional and unconventional experimental strategies. PMID:24920907

  11. One-step fabrication of multifunctional micromotors

    NASA Astrophysics Data System (ADS)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  12. Structural organization of the multifunctional animal fatty-acid synthase.

    PubMed

    Witkowski, A; Rangan, V S; Randhawa, Z I; Amy, C M; Smith, S

    1991-06-15

    The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.

  13. Simple multifunction discriminator for multichannel triggers

    SciTech Connect

    Maier, M.R.

    1982-10-01

    A simple version of a multifunction timing discriminator using only two integrated circuits is presented. It can be configured as a leading edge, a constant fraction, a zero cross or a dual threshold timing discriminator. Since so few parts are used, it is well suited for building multichannel timing discriminators. Two versions of this circuit are described: a quadruple multifunction discriminator and an octal constant fraction trigger. The different compromises made in these units are discussed. Results for walk and jitter obtained with these are presented and possible improvements are disussed.

  14. Novel hybrid multifunctional magnetoelectric porous composite films

    NASA Astrophysics Data System (ADS)

    Martins, P.; Gonçalves, R.; Lopes, A. C.; Venkata Ramana, E.; Mendiratta, S. K.; Lanceros-Mendez, S.

    2015-12-01

    Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu g-1 and a maximum magnetoelectric coefficient of 9 mV cm-1 Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

  15. Complex Multifunctional Polymer/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Patel, Pritesh; Balasubramaniyam, Gobinath; Chen, Jian

    2009-01-01

    A methodology for developing complex multifunctional materials that consist of or contain polymer/carbon-nanotube composites has been conceived. As used here, "multifunctional" signifies having additional and/or enhanced physical properties that polymers or polymer-matrix composites would not ordinarily be expected to have. Such properties include useful amounts of electrical conductivity, increased thermal conductivity, and/or increased strength. In the present methodology, these properties are imparted to a given composite through the choice and processing of its polymeric and CNT constituents.

  16. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  17. Modular stellarator fusion reactor concept

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Krakowski, R. A.

    1981-08-01

    A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an 1 = 2 system with a plasma aspect ratio of 11. The physical basis of the design point is described together with supporting magnetics, coil-force, and stress computations.

  18. Algorithms to detect multiprotein modularity conserved during evolution.

    PubMed

    Hodgkinson, Luqman; Karp, Richard M

    2012-01-01

    Detecting essential multiprotein modules that change infrequently during evolution is a challenging algorithmic task that is important for understanding the structure, function, and evolution of the biological cell. In this paper, we define a measure of modularity for interactomes and present a linear-time algorithm, Produles, for detecting multiprotein modularity conserved during evolution that improves on the running time of previous algorithms for related problems and offers desirable theoretical guarantees. We present a biologically motivated graph theoretic set of evaluation measures complementary to previous evaluation measures, demonstrate that Produles exhibits good performance by all measures, and describe certain recurrent anomalies in the performance of previous algorithms that are not detected by previous measures. Consideration of the newly defined measures and algorithm performance on these measures leads to useful insights on the nature of interactomics data and the goals of previous and current algorithms. Through randomization experiments, we demonstrate that conserved modularity is a defining characteristic of interactomes. Computational experiments on current experimentally derived interactomes for Homo sapiens and Drosophila melanogaster, combining results across algorithms, show that nearly 10 percent of current interactome proteins participate in multiprotein modules with good evidence in the protein interaction data of being conserved between human and Drosophila.

  19. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications

    PubMed Central

    Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

    2013-01-01

    The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications. PMID:23650477

  20. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.

    PubMed

    Misra, Superb K; Ansari, Tahera I; Valappil, Sabeel P; Mohn, Dirk; Philip, Sheryl E; Stark, Wendelin J; Roy, Ipsita; Knowles, Jonathan C; Salih, Vehid; Boccaccini, Aldo R

    2010-04-01

    Poly(3-hydroxybutyrate) (P(3HB)) foams exhibiting highly interconnected porosity (85% porosity) were prepared using a unique combination of solvent casting and particulate leaching techniques by employing commercially available sugar cubes as porogen. Bioactive glass (BG) particles of 45S5 Bioglass grade were introduced in the scaffold microstructure, both in micrometer ((m-BG), <5 microm) and nanometer ((n-BG), 30 nm) sizes. The in vitro bioactivity of the P(3HB)/BG foams was confirmed within 10 days of immersion in simulated body fluid and the foams showed high level of protein adsorption. The foams interconnected porous microstructure proved to be suitable for MG-63 osteoblast cell attachment and proliferation. The foams implanted in rats as subcutaneous implants resulted in a non-toxic and foreign body response after one week of implantation. In addition to showing bioactivity and biocompatibility, the P(3HB)/BG composite foams also exhibited bactericidal properties, which was tested on the growth of Staphylococcus aureus. An attempt was made at developing multifunctional scaffolds by incorporating, in addition to BG, selected concentrations of Vitamin E or/and carbon nanotubes. P(3HB) scaffolds with multifunctionalities (viz. bactericidal, bioactive, electrically conductive, antioxidative behaviour) were thus produced, which paves the way for next generation of advanced scaffolds for bone tissue engineering. PMID:20045554

  1. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering.

    PubMed

    Park, Kyeng Min; Yang, Jeong-A; Jung, Hyuntae; Yeom, Junseok; Park, Ji Sun; Park, Keun-Hong; Hoffman, Allan S; Hahn, Sei Kwang; Kim, Kimoon

    2012-04-24

    A facile in situ supramolecular assembly and modular modification of biocompatible hydrogels were demonstrated using cucurbit[6]uril-conjugated hyaluronic acid (CB[6]-HA), diaminohexane-conjugated HA (DAH-HA), and tags-CB[6] for cellular engineering applications. The strong and selective host-guest interaction between CB[6] and DAH made possible the supramolecular assembly of CB[6]/DAH-HA hydrogels in the presence of cells. Then, the 3D environment of CB[6]/DAH-HA hydrogels was modularly modified by the simple treatment with various multifunctional tags-CB[6]. Furthermore, we could confirm in situ formation of CB[6]/DAH-HA hydrogels under the skin of nude mice by sequential subcutaneous injections of CB[6]-HA and DAH-HA solutions. The fluorescence of modularly modified fluorescein isothiocyanate (FITC)-CB[6] in the hydrogels was maintained for up to 11 days, reflecting the feasibility to deliver the proper cues for cellular proliferation and differentiation in the body. Taken together, CB[6]/DAH-HA hydrogels might be successfully exploited as a 3D artificial extracellular matrix for various tissue engineering applications.

  2. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  3. Learning modular policies for robotics.

    PubMed

    Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

    2014-01-01

    A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

  4. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  5. Modular Construction: The Wave of the Future.

    ERIC Educational Resources Information Center

    Savage, Chuck

    1989-01-01

    Modular construction of school buildings offers speed of construction, with 100 percent contractor responsibility for the completed structures. Under negotiated terms, modular projects can be purchased outright or through long-term leasing arrangements that provide ownership at the end of the lease period. (MLF)

  6. Modular Building Institute 2000 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. The articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Elementary K-8 Modular Courtyard"; (2) "School District #33, Chilliwack, BC"; (3) "New Elementary School for Briarwood, NY"; (4) "Addition to Queens Intermediate…

  7. A Modular Laser Graphics Projection System

    NASA Astrophysics Data System (ADS)

    Newswanger, Craig D.

    1984-05-01

    WED Enterprises has designed and built a modular projection system for the presentation of animated laser shows. This system was designed specifically for use in Disney theme shows. Its modular design allows it to be adapted to many show situations with simple hardware and software adjustments. The primary goals were superior animation, long life, low maintenance and stand alone operation.

  8. A modular data system for Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Frost, W. O.; Emens, F. H.

    1982-01-01

    This overview describes a flexible system of electronic and mechanical building blocks with characteristics and capabilities suitable for construction of a flight-capable experiment data management system. The initial space application of this modular system, called the Spacelab Payload System Modular Electronics (SPSME), is the data system for the Nuclear Radiation Monitor (NRM) on Spacelab Mission 2.

  9. Modular interdependency in complex dynamical systems.

    PubMed

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability. PMID:16197673

  10. A modular approach toward extremely large apertures

    NASA Astrophysics Data System (ADS)

    Woods, A. A., Jr.

    1981-02-01

    Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

  11. Brain and language: evidence for neural multifunctionality.

    PubMed

    Cahana-Amitay, Dalia; Albert, Martin L

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.

  12. The relative efficiency of modular and non-modular networks of different size.

    PubMed

    Tosh, Colin R; McNally, Luke

    2015-03-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: 'small' and 'large', and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity.

  13. Mechanically Assisted Taper Corrosion in Modular TKA

    PubMed Central

    Arnholt, Christina; MacDonald, Daniel W.; Tohfafarosh, Mariya; Gilbert, Jeremy L.; Rimnac, Clare M.; Kurtz, Steven M.; Klein, Gregg; Mont, Michael A.; Parvizi, Javad; Cates, Harold E.; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Matthew

    2014-01-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. 198 modular components were revised after 3.9±4.2y (range: 0.0–17.5y). Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Flexural rigidity, stem diameter, alloy coupling, patient weight, age and implantation time were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score≥2) was observed in 94/101 of the tapers on the modular femoral components and 90/97 of the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications of fretting and corrosion in TKA remain unclear. PMID:24996586

  14. Mechanically assisted taper corrosion in modular TKA.

    PubMed

    Arnholt, Christina M; MacDonald, Daniel W; Tohfafarosh, Mariya; Gilbert, Jeremy L; Rimnac, Clare M; Kurtz, Steven M; Klein, Gregg; Mont, Michael A; Parvizi, Javad; Cates, Harold E; Lee, Gwo-Chin; Malkani, Arthur; Kraay, Mattheuw

    2014-09-01

    The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. One hundred ninety-eight modular components were revised after 3.9±4.2 years of implantation. Modular components were evaluated for fretting corrosion using a semi-quantitative 4-point scoring system. Design features and patient information were assessed as predictors of fretting corrosion damage. Mild-to-severe fretting corrosion (score ≥2) was observed in 94/101 tapers on the modular femoral components and 90/97 tapers on the modular tibial components. Mixed alloy pairs (p=0.03), taper design (p<0.001), and component type (p=0.02) were associated with taper corrosion. The results from this study supported the hypothesis that there is taper corrosion in TKA. However the clinical implications remain unclear.

  15. Crystal structure of the liganded SCP-2-like domain of human peroxisomal multifunctional enzyme type 2 at 1.75 A resolution.

    PubMed

    Haapalainen, A M; van Aalten, D M; Meriläinen, G; Jalonen, J E; Pirilä, P; Wierenga, R K; Hiltunen, J K; Glumoff, T

    2001-11-01

    beta-Oxidation of amino acyl coenzyme A (acyl-CoA) species in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. MFE-2 has a modular organization of three domains. The function of the C-terminal domain of the mammalian MFE-2, which shows similarity with sterol carrier protein type 2 (SCP-2), is unclear. Here, the structure of the SCP-2-like domain comprising amino acid residues 618-736 of human MFE-2 (d Delta h Delta SCP-2L) was solved at 1.75 A resolution in complex with Triton X-100, an analog of a lipid molecule. This is the first reported structure of an MFE-2 domain. The d Delta h Delta SCP-2L has an alpha/beta-fold consisting of five beta-strands and five alpha-helices; the overall architecture resembles the rabbit and human SCP-2 structures. However, the structure of d Delta h Delta SCP-2L shows a hydrophobic tunnel that traverses the protein, which is occupied by an ordered Triton X-100 molecule. The tunnel is large enough to accommodate molecules such as straight-chain and branched-chain fatty acyl-CoAs and bile acid intermediates. Large empty apolar cavities are observed near the exit of the tunnel and between the helices C and D. In addition, the C-terminal peroxisomal targeting signal is ordered in the structure and solvent-exposed, which is not the case with unliganded rabbit SCP-2, supporting the hypothesis of a ligand-assisted targeting mechanism.

  16. Magnetically Attached Multifunction Maintenance Rover

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  17. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  18. Small Modular Reactors: Institutional Assessment

    SciTech Connect

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview

  19. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells

    PubMed Central

    Li, Xue-tao; Tang, Wei; Jiang, Ying; Wang, Xiao-min; Wang, Yan-hong; Cheng, Lan; Meng, Xian-sheng

    2016-01-01

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood–brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma. PMID:27029055

  20. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.

    PubMed

    Grosse-Holz, Friederike M; van der Hoorn, Renier A L

    2016-05-01

    Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. PMID:26800491

  1. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells.

    PubMed

    Li, Xue-Tao; Tang, Wei; Jiang, Ying; Wang, Xiao-Min; Wang, Yan-Hong; Cheng, Lan; Meng, Xian-Sheng

    2016-04-26

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood-brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma. PMID:27029055

  2. Building a Multifunctional Aptamer-Based DNA Nanoassembly for Targeted Cancer Therapy

    PubMed Central

    Wu, Cuichen; Han, Da; Chen, Tao; Peng, Lu; Zhu, Guizhi; You, Mingxu; Qiu, Liping; Sefah, Kwame; Zhang, Xiaobing; Tan, Weihong

    2014-01-01

    The ability to self-assemble one-dimensional DNA building blocks into two- and three-dimensional nanostructures via DNA/RNA nanotechnology has led to broad applications in bioimaging, basic biological mechanism studies, disease diagnosis and drug delivery. However, the cellular uptake of most nucleic acid nanostructures is dependent on passive delivery or the enhanced permeability and retention effect, which may not be suitable for certain types of cancers, especially for treatment in vivo. To meet this need, we have constructed a multifunctional aptamer-based DNA nanoassembly (AptNA) for targeted cancer therapy. In particular, we first designed various Y-shaped functional DNA domains through predesigned base pair hybridization, including targeting aptamers, intercalated anticancer drugs and therapeutic antisense oligonucleotides. Then these functional DNA domains were linked to an X-shaped DNA core connector, termed a building unit, through the complementary sequences in the arms of functional domains and connector. Finally, hundreds (~100–200) of these basic building units with 5′-modification of acrydite groups were further photocrosslinked into a multifunctional and programmable aptamer-based nanoassembly structure able to take advantage of facile modular design and assembly, high programmability, excellent biostability and biocompatibility, as well as selective recognition and transportation. With these properties, AptNAs were demonstrated to have specific cytotoxic effect against leukemia cells. Moreover, the incorporation of therapeutic antisense oligonucleotides resulted in the inhibition of P-gp expression (a drug efflux pump to increase excretion of anticancer drugs), as well as a decrease in drug resistance. Therefore, these multifunctional and programmable aptamer-based DNA nanoassemblies show promise as candidates for targeted drug delivery and cancer therapy. PMID:24245521

  3. Integrated Modular Engine technology needs

    NASA Astrophysics Data System (ADS)

    Harmon, Timothy J.; Briley, Gary; Pauckert, Ron; Vilja, John

    1993-06-01

    An Integrated Modular Engine (IME) system conceptual design has been developed for meeting the upper stage propulsion requirements. This design was used to identify key technical areas for further development and demonstration. A number of factors are favorable for introducing advanced technologies: new materials are available, controls and health monitoring are vastly more capable, and new fabrication methods are coming on-line. Furthermore, recent innovative integrated propulsion system architecture designs leverage the benefits throughout the stage. All needed technologies are compatible with near-term initial launch capability around the year 2000. These technologies do not require extensive, time-consuming, or expensive development programs to bring these technologies to fruition. This paper describes those technologies that need to be developed to support an IME development program which would result in an affordable propulsion system applicable to a wide range of missions, i.e., upper stage, space-based, transfer, lunar lander, lunar ascent, and Mars lander propulsion systems.

  4. Analytical Spectroscopy Using Modular Systems

    NASA Astrophysics Data System (ADS)

    Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

    2003-12-01

    This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

  5. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  6. Modular Homogeneous Chromophore-Catalyst Assemblies.

    PubMed

    Mulfort, Karen L; Utschig, Lisa M

    2016-05-17

    Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate that molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule-nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of

  7. Development of a Multifunctional Benzophenone Linker for Peptide Stapling and Photoaffinity Labelling

    PubMed Central

    Wu, Yuteng; Olsen, Lasse B.; Lau, Yu Heng; Jensen, Claus Hatt; Rossmann, Maxim; Baker, Ysobel R.; Sore, Hannah F.; Collins, Súil

    2016-01-01

    Abstract Photoaffinity labelling is a useful method for studying how proteins interact with ligands and biomolecules, and can help identify and characterise new targets for the development of new therapeutics. We present the design and synthesis of a novel multifunctional benzophenone linker that serves as both a photo‐crosslinking motif and a peptide stapling reagent. Using double‐click stapling, we attached the benzophenone to the peptide via the staple linker, rather than by modifying the peptide sequence with a photo‐crosslinking amino acid. When applied to a p53‐derived peptide, the resulting photoreactive stapled peptide was able to preferentially crosslink with MDM2 in the presence of competing protein. This multifunctional linker also features an extra alkyne handle for downstream applications such as pull‐down assays, and can be used to investigate the target selectivity of stapled peptides. PMID:26919579

  8. Development of a Multifunctional Benzophenone Linker for Peptide Stapling and Photoaffinity Labelling.

    PubMed

    Wu, Yuteng; Olsen, Lasse B; Lau, Yu Heng; Jensen, Claus Hatt; Rossmann, Maxim; Baker, Ysobel R; Sore, Hannah F; Collins, Súil; Spring, David R

    2016-04-15

    Photoaffinity labelling is a useful method for studying how proteins interact with ligands and biomolecules, and can help identify and characterise new targets for the development of new therapeutics. We present the design and synthesis of a novel multifunctional benzophenone linker that serves as both a photo-crosslinking motif and a peptide stapling reagent. Using double-click stapling, we attached the benzophenone to the peptide via the staple linker, rather than by modifying the peptide sequence with a photo-crosslinking amino acid. When applied to a p53-derived peptide, the resulting photoreactive stapled peptide was able to preferentially crosslink with MDM2 in the presence of competing protein. This multifunctional linker also features an extra alkyne handle for downstream applications such as pull-down assays, and can be used to investigate the target selectivity of stapled peptides. PMID:26919579

  9. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  10. ASMPKS: an analysis system for modular polyketide synthases

    PubMed Central

    Tae, Hongseok; Kong, Eun-Bae; Park, Kiejung

    2007-01-01

    Background Polyketides are secondary metabolites of microorganisms with diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. Polyketides are synthesized by serialized reactions of a set of enzymes called polyketide synthase(PKS)s, which coordinate the elongation of carbon skeletons by the stepwise condensation of short carbon precursors. Due to their importance as drugs, the volume of data on polyketides is rapidly increasing and creating a need for computational analysis methods for efficient polyketide research. Moreover, the increasing use of genetic engineering to research new kinds of polyketides requires genome wide analysis. Results We describe a system named ASMPKS (Analysis System for Modular Polyketide Synthesis) for computational analysis of PKSs against genome sequences. It also provides overall management of information on modular PKS, including polyketide database construction, new PKS assembly, and chain visualization. ASMPKS operates on a web interface to construct the database and to analyze PKSs, allowing polyketide researchers to add their data to this database and to use it easily. In addition, the ASMPKS can predict functional modules for a protein sequence submitted by users, estimate the chemical composition of a polyketide synthesized from the modules, and display the carbon chain structure on the web interface. Conclusion ASMPKS has powerful computation features to aid modular PKS research. As various factors, such as starter units and post-processing, are related to polyketide biosynthesis, ASMPKS will be improved through further development for study of the factors. PMID:17764579

  11. Size reduction of complex networks preserving modularity

    NASA Astrophysics Data System (ADS)

    Arenas, A.; Duch, J.; Fernández, A.; Gómez, S.

    2007-06-01

    The ubiquity of modular structure in real-world complex networks is the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the non-deterministic polynomial-time hard (NP-hard) class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining their modularity. This size reduction allows use of heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the extremal optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  12. Size reduction of complex networks preserving modularity

    SciTech Connect

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  13. Rational design of efficient modular cells.

    PubMed

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic

  14. Multifunctional facets of retrovirus integrase

    PubMed Central

    Grandgenett, Duane P; Pandey, Krishan K; Bera, Sibes; Aihara, Hideki

    2015-01-01

    The retrovirus integrase (IN) is responsible for integration of the reverse transcribed linear cDNA into the host DNA genome. First, IN cleaves a dinucleotide from the 3’ OH blunt ends of the viral DNA exposing the highly conserved CA sequence in the recessed ends. IN utilizes the 3’ OH ends to catalyze the concerted integration of the two ends into opposite strands of the cellular DNA producing 4 to 6 bp staggered insertions, depending on the retrovirus species. The staggered ends are repaired by host cell machinery that results in a permanent copy of the viral DNA in the cellular genome. Besides integration, IN performs other functions in the replication cycle of several studied retroviruses. The proper organization of IN within the viral internal core is essential for the correct maturation of the virus. IN plays a major role in reverse transcription by interacting directly with the reverse transcriptase and by binding to the viral capsid protein and a cellular protein. Recruitment of several other host proteins into the viral particle are also promoted by IN. IN assists with the nuclear transport of the preintegration complex across the nuclear membrane. With several retroviruses, IN specifically interacts with different host protein factors that guide the preintegration complex to preferentially integrate the viral genome into specific regions of the host chromosomal target. Human gene therapy using retrovirus vectors is directly affected by the interactions of IN with these host factors. Inhibitors directed against the human immunodeficiency virus (HIV) IN bind within the active site of IN containing viral DNA ends thus preventing integration and subsequent HIV/AIDS. PMID:26322168

  15. A Modular Approach to Redundant Robot Control

    SciTech Connect

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be `passive control laws`, i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust.

  16. Generalized epidemic process on modular networks.

    PubMed

    Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2014-05-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.

  17. The gravity duals of modular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-01

    In this work, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-like to the causal completion of the region.

  18. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization

    NASA Astrophysics Data System (ADS)

    Kotagiri, Nalinikanth; Sakon, Joshua; Han, Haewook; Zharov, Vladimir P.; Kim, Jin-Woo

    2016-06-01

    Cancer nanomedicines are opening new paradigms in cancer management and recent research points to how they can vastly improve imaging and therapy through multimodality and multifunctionality. However, challenges to achieving optimal efficacy are manifold starting from processing materials and evaluating their intended effectiveness on biological tissue, to developing new strategies aimed at improving transport of these materials through the biological milieu to the target tissue. Here, we report a fluorescent derivative of a beta-lactam antibiotic, ampicillin (termed iAmp) and its multifunctional physicobiochemical characteristics and potential as a biocompatible shielding agent and an effective dispersant. Carbon nanotubes (CNTs) were chosen to demonstrate the efficacy of iAmp. CNTs are known for their versatility and have been used extensively for cancer theranostics as photothermal and photoacoustic agents, but have limited solubility in water and biocompatibility. Traditional dispersants are associated with imaging artifacts and are not fully biocompatible. The chemical structure of iAmp is consistent with a deamination product of ampicillin. Although the four-membered lactam ring is intact, it does not retain the antibiotic properties. The iAmp is an effective dispersant and simultaneously serves as a fluorescent label for single-walled CNTs (SWNTs) with minimal photobleaching. The iAmp also enables bioconjugation of SWNTs to bio-ligands such as antibodies through functional carboxyl groups. Viability tests show that iAmp-coated SWNTs have minimal toxicity. Bio-stability tests under physiological conditions reveal that iAmp coating not only remains stable in a biologically relevant environment with high protein and salt concentrations, but also renders SWNTs transparent against nonspecific protein adsorption, also known as protein corona. Mammalian tissue culture studies with macrophages and opsonins validate that iAmp coating affords immunological resistance

  19. Modular Buildings: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    School Planning & Management, 2001

    2001-01-01

    Highlights the history of the modular classroom industry and emergence of the Modular Building Institute. Analyzes the differences between temporary portable classrooms and permanent modular additions. Also examines the possible influence of modular classrooms on future facility design and the ways that educational facilities officials are saving…

  20. Sulfonamides as multifunctional agents for Alzheimer's disease.

    PubMed

    Bag, Seema; Tulsan, Rekha; Sood, Abha; Cho, Hyejin; Redjeb, Hana; Zhou, Weihong; LeVine, Harry; Török, Béla; Török, Marianna

    2015-02-01

    Sulfonamide linker-based inhibitors with extended linear structure were designed and synthesized with the aim of producing multifunctional agents against several processes involved in the pathology of Alzheimer's disease (AD). The potency of the compounds were assessed in the inhibition of Aβ self-assembly (fibril and oligomer formation), in modulating cholinesterase (AChE, BuChE) activity, and scavenging free radicals. Several compounds exhibited promising Aβ self-assembly and cholinesterase inhibition and in parallel, showed good free radical scavenging properties. The investigation of the scaffold described in this study resulted in the identification of three compounds (14, 19 and 26) as promising leads for the further design of multifunctional drug candidates for AD.

  1. MULTIFUNCTIONAL AND STIMULI-SENSITIVE PHARMACEUTICAL NANOCARRIERS

    PubMed Central

    Torchilin, Vladimir

    2011-01-01

    Currently used pharmaceutical nanocarriers, such as liposomes, micelles, and polymeric nanoparticles, demonstrate a broad variety of useful properties, such as longevity in the body; specific targeting to certain disease sites; enhanced intracellular penetration; contrast properties allowing for direct carrier visualization in vivo; stimili-sensitivity, and others. Some of those pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. In certain cases, the pharmaceutical nanocarriers combine several of the listed properties. Long-circulating immunoliposomes capable of prolonged residence in the blood and specific target recognition represent one of examples of this kind. The engineering of multifunctional pharmaceutical nanocarriers combining several useful properties in one particle can significantly enhance the efficacy of many therapeutic and diagnostic protocols. This paper considers the current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration, contrast loading, and stimuli sensitivity. PMID:18977297

  2. Modular optimization code package: MOZAIK

    NASA Astrophysics Data System (ADS)

    Bekar, Kursat B.

    This dissertation addresses the development of a modular optimization code package, MOZAIK, for geometric shape optimization problems in nuclear engineering applications. MOZAIK's first mission, determining the optimal shape of the D2O moderator tank for the current and new beam tube configurations for the Penn State Breazeale Reactor's (PSBR) beam port facility, is used to demonstrate its capabilities and test its performance. MOZAIK was designed as a modular optimization sequence including three primary independent modules: the initializer, the physics and the optimizer, each having a specific task. By using fixed interface blocks among the modules, the code attains its two most important characteristics: generic form and modularity. The benefit of this modular structure is that the contents of the modules can be switched depending on the requirements of accuracy, computational efficiency, or compatibility with the other modules. Oak Ridge National Laboratory's discrete ordinates transport code TORT was selected as the transport solver in the physics module of MOZAIK, and two different optimizers, Min-max and Genetic Algorithms (GA), were implemented in the optimizer module of the code package. A distributed memory parallelism was also applied to MOZAIK via MPI (Message Passing Interface) to execute the physics module concurrently on a number of processors for various states in the same search. Moreover, dynamic scheduling was enabled to enhance load balance among the processors while running MOZAIK's physics module thus improving the parallel speedup and efficiency. In this way, the total computation time consumed by the physics module is reduced by a factor close to M, where M is the number of processors. This capability also encourages the use of MOZAIK for shape optimization problems in nuclear applications because many traditional codes related to radiation transport do not have parallel execution capability. A set of computational models based on the

  3. Multifunctional optical processor based on symbolic substitution

    SciTech Connect

    Casasent, D.P.; Botha, E.C. )

    1989-04-01

    The authors propose an optical multifunctional processor that can perform logic, numeric, pattern recognition, morphological, and inference operations. The ability to perform such diverse functions on one optical processor architecture is unique. The processor uses the technique of symbolic substitution and is based on an optical correlator architecture. Several inputs can be operated on in parallel, and different functions can be performed at one time, making it a multiple-instruction multiple-data processor.

  4. Approach to multifunction radar tracker design

    NASA Astrophysics Data System (ADS)

    Casar Corredera, Jose R.; Harvey, Denis H.

    A new approach is presented to select optimally both the energy of the tracking waveforms and the track sampling rates which jointly minimize occupancy and satisfy angular accuracy requirements for a multifunction radar. The design process is illustrated for a particular system. The results suggest that the radar's energy should be managed as a function of target size and range so as to obtain an SNR as close as possible to its optimal value.

  5. Multiscale/Multifunctional Probabilistic Composite Fatigue

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A multilevel (multiscale/multifunctional) evaluation is demonstrated by applying it to three different sample problems. These problems include the probabilistic evaluation of a space shuttle main engine blade, an engine rotor and an aircraft wing. The results demonstrate that the blade will fail at the highest probability path, the engine two-stage rotor will fail by fracture at the rim and the aircraft wing will fail at 109 fatigue cycles with a probability of 0.9967.

  6. Holmium laser for multifunctional use in urology

    NASA Astrophysics Data System (ADS)

    Watson, Graham M.; Shroff, Sunil; Thomas, Robert; Kellett, Michael

    1994-05-01

    The holmium laser pulsed at 350 microsecond cuts tissue and fragments calculi. It has been assessed for minimally invasive urological intervention. It is useful for partly excising and partly coagulating tumors, incising strictures and the obstructed PUJ. It partly drill and partly fragments urinary calculi however hard. Other lasers are more effective at any one particular application, but this laser is a useful compromise as a multifunctional device.

  7. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  8. Multifunctional gold-based nanocomposites for theranostics.

    PubMed

    Dykman, Lev A; Khlebtsov, Nikolai G

    2016-11-01

    Although Au-particle potential in nanobiotechnology has been recognized for the last 15 years, new insights into the unique properties of multifunctional nanostructures have just recently started to emerge. Multifunctional gold-based nanocomposites combine multiple modalities to improve the efficacy of the therapeutic and diagnostic treatment of cancer and other socially significant diseases. This review is focused on multifunctional gold-based theranostic nanocomposites, which can be fabricated by three main routes. The first route is to create composite (or hybrid) nanoparticles, whose components enable diagnostic and therapeutic functions. The second route is based on smart bioconjugation techniques to functionalize gold nanoparticles with a set of different molecules, enabling them to perform targeting, diagnostic, and therapeutic functions in a single treatment procedure. Finally, the third route for multifunctionalized composite nanoparticles is a combination of the first two and involves additional functionalization of hybrid nanoparticles with several molecules possessing different theranostic modalities. This last class of multifunctionalized composites also includes fluorescent atomic clusters with multiple functionalities. PMID:27614818

  9. Biomimetic multifunctional surfaces inspired from animals.

    PubMed

    Han, Zhiwu; Mu, Zhengzhi; Yin, Wei; Li, Wen; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2016-08-01

    Over millions of years, animals have evolved to a higher intelligent level for their environment. A large number of diverse surface structures on their bodies have been formed to adapt to the extremely harsh environment. Just like the structural diversity existed in plants, the same also applies true in animals. Firstly, this article provides an overview and discussion of the most common functional surface structures inspired from animals, such as drag reduction, noise reduction, anti-adhesion, anti-wear, anti-erosion, anti-fog, water capture, and optical surfaces. Then, some typical characteristics of morphologies, structures, and materials of the animal multifunctional surfaces were discussed. The adaptation of these surfaces to environmental conditions was also analyzed. It mainly focuses on the relationship between their surface functions and their surface structural characteristics. Afterwards, the multifunctional mechanisms or principles of these surfaces were discussed. Models of these structures were provided for the development of structure materials and machinery surfaces. At last, fabrication techniques and existing or potential technical applications inspired from biomimetic multifunctional surfaces in animals were also discussed. The application prospects of the biomimetic functional surfaces are very broad, such as civil field of self-cleaning textile fabrics and non-stick pots, ocean field of oil-water separation, sports field of swimming suits, space development field of lens arrays. PMID:27085632

  10. Brain and Language: Evidence for Neural Multifunctionality

    PubMed Central

    Cahana-Amitay, Dalia; Albert, Martin L.

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term “neural multifunctionality” refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging. PMID:25009368

  11. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  12. Modular Solar Electric Power (MSEP) Systems (Presentation)

    SciTech Connect

    Hassani, V.

    2000-06-18

    This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

  13. Modular digital holographic fringe data processing system

    NASA Technical Reports Server (NTRS)

    Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.

    1985-01-01

    A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.

  14. Modular solar-heating system - design package

    NASA Technical Reports Server (NTRS)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  15. Interleukin-11: A Multifunctional Cytokine with Intrinsically Disordered Regions.

    PubMed

    Permyakov, Eugene A; Uversky, Vladimir N; Permyakov, Sergei E

    2016-09-01

    Cytokine interleukin-11 (IL-11) is a multifunctional protein with diverse roles in the normal cell signaling and in various pathologies. The structure of IL-11 is characterized by a four-helix bundle motif comprising two pairs of antiparallel α-helices arranged in an up-up-down-down configuration. Evaluation of the intrinsic disorder predisposition of human IL-11 by several computational tools clearly shows that this protein is predicted to have functional disordered regions potentially involved in interaction with natural binding partners. Signaling by IL-11 proceeds via an interaction of the protein with its membrane-specific receptor IL-11Rα and a subsequent interaction of the complex with the transmembrane signal-transducing receptor GP130. Cytoplasmic domain of IL-11Rα is predicted to be very disordered, and noticeable amount of disorder is present even in the large extracellular domain of the protein. GP130 is also predicted to have long disordered region that is located at the C-terminal of the protein and is expected to have several disorder-based binding sites. It shows that intrinsic disorder might play an important role in functioning of this signaling machine. A specific subset of the calcium sensor proteins (calmodulin, S100P, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants in a range of 1-19 μM, and the structural features of their hinge regions likely ensure selectivity and calcium sensitivity of IL-11 binding to the EF-hand proteins studied. IL-11 exhibits multiple effects on hematopoietic and non-hematopoietic systems. It plays a major role in orchestrating complex processes of tumor development and progression. PMID:27334537

  16. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells.

    PubMed

    Wei, Yu; Zhang, Jingxun; Li, Haolie; Zhang, Li; Bi, Hong

    2015-01-01

    Multifunctional polymer coatings have potential applications in biomaterials. These coatings possess reactive functional groups for the immobilization of specific biological factors that can influence cellular behavior. These coatings also display low nonspecific protein adsorption. In this study, we prepared a multifunctional polymer coating through the deposition of random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) to prevent nonspecific attachment and enable the covalence of Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity. Coatings were characterized by X-ray photoelectron spectroscopy (XPS). The adhesion and proliferation of ECs and smooth muscle cells (SMCs) onto the REDV-modified surface were investigated to understand the synergistic action of antifouling PEG and EC selective REDV peptide conjugated GMA. The copolymers containing GMA and PEG groups are very useful as a multifunctional coating material with anti-fouling and ECs specific adhesion for implant materials surface modification. PMID:26381476

  17. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  18. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-01-01

    Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.

  19. Managing in an age of modularity.

    PubMed

    Baldwin, C Y; Clark, K B

    1997-01-01

    Modularity is a familiar principle in the computer industry. Different companies can independently design and produce components, suck as disk drives or operating software, and those modules will fit together into a complex and smoothly functioning product because the module makers obey a given set of design rules. Modularity in manufacturing is already common in many companies. But now a number of them are beginning to extend the approach into the design of their products and services. Modularity in design should tremendously boost the rate of innovation in many industries as it did in the computer industry. As businesses as diverse as auto manufacturing and financial services move toward modular designs, the authors say, competitive dynamics will change enormously. No longer will assemblers control the final product: suppliers of key modules will gain leverage and even take on responsibility for design rules. Companies will compete either by specifying the dominant design rules (as Microsoft does) or by producing excellent modules (as disk drive maker Quantum does). Leaders in a modular industry will control less, so they will have to watch the competitive environment closely for opportunities to link up with other module makers. They will also need to know more: engineering details that seemed trivial at the corporate level may now play a large part in strategic decisions. Leaders will also become knowledge managers internally because they will need to coordinate the efforts of development groups in order to keep them focused on the modular strategies the company is pursuing.

  20. A 3-d modular gripper design tool

    SciTech Connect

    Brown, R.G.; Brost, R.C.

    1997-02-01

    Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

  1. Cell-Targeting Cationic Gene Delivery System Based on a Modular Design Rationale.

    PubMed

    Liu, Jia; Xu, Luming; Jin, Yang; Qi, Chao; Li, Qilin; Zhang, Yunti; Jiang, Xulin; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-06-01

    En route to target cells, a gene carrier faces multiple extra- and intracellular hurdles that would affect delivery efficacy. Although diverse strategies have been proposed to functionalize gene carriers for individually overcoming these barriers, it is challenging to generate a single multifunctional gene carrier capable of surmounting all these barriers. Aiming at this challenge, we have developed a supramolecular modular approach to fabricate a multifunctional cationic gene delivery system. It consists of two prefunctionalized modules: (1) a host module: a polymer (PCD-SS-PDMAEMA) composed of poly(β-cyclodextrin) backbone and disulfide-linked PDMAEMA arms, expectedly acting to compact DNA and release DNA upon cleavage of disulfide linkers in reductive microenvironment; and (2) a guest module: adamantyl and folate terminated PEG (Ad-PEG-FA), expectedly functioning to reduce nonspecific interactions, improve biocompatibility, and provide folate-mediated cellular targeting specificity. Through the host-guest interaction between β-cyclodextrin units of the "host" module and adamantyl groups of the "guest" module, the PCD-SS-PDMAEMA-1 (host) and Ad-PEG-FA (guest) self-assemble forming a supramolecular pseudocopolymer (PCD-SS-PDMAEMA-1/PEG-FA). Our comprehensive analyses demonstrate that the functions preassigned to the two building modules are well realized. The gene carrier effectively compacts DNA into stable nanosized polyplexes resistant to enzymatic digestion, triggers DNA release in reducing environment, possesses significantly improved hemocompatibility, and specifically targets folate-receptor positive cells. Most importantly, endowed with these predesigned functions, the PCD-SS-PDMAEMA-1/PEG-FA supramolecular gene carrier exhibits excellent transfection efficacy for both pDNA and siRNA. Thus, this work represents a proof-of-concept example showing the efficiency and convenience of an adaptable, modular approach for conferring multiple functions to a single

  2. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  3. Test stations: a modular approach

    NASA Astrophysics Data System (ADS)

    Capone, Benjamin R.; Remillard, Paul; Everett, Jonathan E.

    1996-06-01

    Recent requests for test stations to characterize and evaluate thermal and visible imaging systems have shown remarkable similarities. They contain the usual request for target patterns for the measurement of MRTD, NETD, SiTF for the infrared thermal imager and similar patterns for measuring CTF and SNR for the visible imager. The combined systems almost invariably include some type of laser designator/rangefinder in the total package requiring the need for LOS registration among the various individual units. Similarities also exist in that the requests are for large collimator apertures and focal lengths for projecting the desired signals into the unit under test apertures. Diversified Optical Products, Inc. has developed and is continually improving test station hardware and software to provide modularity in design and versatility in operation while satisfying individual test requirements and maintaining low cost. A high emissivity, DSP controlled, high slew rate, low cost, blackbody source with excellent uniformity and stability has been produced to function as the driver for thermal image target projectors. Several types of sources for producing energy in the visible portion of the spectrum have been evaluated. Software for selection of targets, sources, focus and auto- collimation has been developed and tested.

  4. Allosteric regulation of carbamoylphosphate synthetase-aspartate transcarbamylase multifunctional protein of Saccharomyces cerevisiae: selection, mapping and identification of missense mutations define three regions involved in feedback inhibition by UTP.

    PubMed

    Jaquet, L; Serre, V; Lollier, M; Penverne, B; Hervé, G; Souciet, J L; Potier, S

    1995-05-01

    The positive screening procedure previously described was used in order to select, clone and characterize mutants defective in negative feedback control by UTP of the yeast carbamoylphosphate synthetase-aspartate transcarbamylase protein (CPSase-ATCase). The selection procedure was improved by adding a general mapping method for dominant mutations in order to avoid sequencing the whole URA2 allele (7 kb). All 16 mutants obtained carry missense mutations leading to single amino acid replacements: five of them are located in the CPSase domain while the other 11 are in the ATCase domain. In these 16 mutants, ATCase is no longer inhibited by UTP although CPSase retains full sensitivity to the effector, suggesting that the regulation of the two activities involve distinct mechanisms. Amino acid replacements in the ATCase domain were located on a three-dimensional model structure of the yeast ATCase domain. They are clustered in two regions of this domain which must be directly involved in the feedback process. PMID:7752230

  5. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS.

    PubMed

    Shrivas, Kamlesh; Kailasa, Suresh Kumar; Wu, Hui-Fen

    2009-05-01

    We report the first use of functionalized cadmium selinide quantum dots (CdSe QDs) with 11-mercaptoundecanoic acid (MUA) as the matrix for the selective ionization of proteins with high resolution and rapid analysis of amino acids and peptides by using quantum dots laser desorption/ionization mass spectrometry (QDLDI-MS). The mercaptocarboxylic groups of CdSe QDs have been known to be an effective affinity probe to interact with the biomolecules at low abundance level. Using these QDs as the matrix, sensitivity of the method was greatly enhanced and the LOQ of peptides was found to be 100 pM with RSD <10%. The QDLDI-MS is capable for the selective ionization of insulin, lysozyme and myoglobin with high resolution, which is not observed with sinapic acid (SA) as the matrix. The QDLDI-MS technique offers many advantages for the analysis of amino acids, peptides and proteins with regard to simplicity, rapidity, sensitivity and the mass spectra were generated in the presence of signal suppressors such as urea and Trition X-100. In addition, the CdSe QDs have been successfully applied as preconcentrating probes for the analysis of digested peptides in lysozyme from chicken egg white by microwave-assisted enzymatic digestion. This indicates that the QDs are able to absorb radiation from microwave and their ability to trap peptides from microwave-digested lysozyme. These results demonstrate that the CdSe QDs are promising candidates for the selective ionization of the analytes with an accurate platform to the rapid screening of biomolecules. PMID:19391181

  6. Multifunctional role of β-1, 3 glucan binding protein purified from the haemocytes of blue swimmer crab Portunus pelagicus and in vitro antibacterial activity of its reaction product.

    PubMed

    Anjugam, Mahalingam; Iswarya, Arokiadhas; Vaseeharan, Baskaralingam

    2016-01-01

    β-1, 3 glucan binding protein (β-GBP) was isolated from the haemocytes of blue swimmer crab, Portunus pelagicus and purified by laminarin coupled Sephadex G-100 affinity column chromatography. The purified β-GBP has the molecular mass of 100 kDa, confirmed by SDS-PAGE. The X-ray diffraction analysis of purified β-GBP indicates the crystalline nature of the protein and also the presence of single peak confirming the existence of β-glucan molecule. The results of agglutination assay showed that the purified β-GBP had the ability to agglutinate with yeast cell, Saccharomyces cerevisiae and mammalian erythrocytes. β-GBP can agglutinate with yeast cells at the concentration of 50 μg/ml. The phagocytic and encapsulation activity of purified β-GBP from P. pelagicus was determined with yeast cell S. cerevisiae and sepharose bead suspension respectively. This reveals that, β-GBP have the ability to detect the pathogen associated molecular patterns (PAMP) found on the surface of fungi and bacteria. The recognition of invading foreign substances and in the involvement of functional activities induces the activation of prophenoloxidase. This revealed that β-GBP play a major role in the innate immune system of crustaceans by stimulating the prophenoloxidase system. Moreover, it was obvious to note that β-GBP reaction product exhibited antibacterial and antibiofilm activity against Gram positive and Gram negative bacteria. This study concludes the functional aspects of β-GBP purified from P. pelagicus and its vital role in the stimulation of prophenoloxidase cascade during the pathogenic infection.

  7. Multifunctional role of β-1, 3 glucan binding protein purified from the haemocytes of blue swimmer crab Portunus pelagicus and in vitro antibacterial activity of its reaction product.

    PubMed

    Anjugam, Mahalingam; Iswarya, Arokiadhas; Vaseeharan, Baskaralingam

    2016-01-01

    β-1, 3 glucan binding protein (β-GBP) was isolated from the haemocytes of blue swimmer crab, Portunus pelagicus and purified by laminarin coupled Sephadex G-100 affinity column chromatography. The purified β-GBP has the molecular mass of 100 kDa, confirmed by SDS-PAGE. The X-ray diffraction analysis of purified β-GBP indicates the crystalline nature of the protein and also the presence of single peak confirming the existence of β-glucan molecule. The results of agglutination assay showed that the purified β-GBP had the ability to agglutinate with yeast cell, Saccharomyces cerevisiae and mammalian erythrocytes. β-GBP can agglutinate with yeast cells at the concentration of 50 μg/ml. The phagocytic and encapsulation activity of purified β-GBP from P. pelagicus was determined with yeast cell S. cerevisiae and sepharose bead suspension respectively. This reveals that, β-GBP have the ability to detect the pathogen associated molecular patterns (PAMP) found on the surface of fungi and bacteria. The recognition of invading foreign substances and in the involvement of functional activities induces the activation of prophenoloxidase. This revealed that β-GBP play a major role in the innate immune system of crustaceans by stimulating the prophenoloxidase system. Moreover, it was obvious to note that β-GBP reaction product exhibited antibacterial and antibiofilm activity against Gram positive and Gram negative bacteria. This study concludes the functional aspects of β-GBP purified from P. pelagicus and its vital role in the stimulation of prophenoloxidase cascade during the pathogenic infection. PMID:26611720

  8. Identification of Multi-Functional Enzyme with Multi-Label Classifier

    PubMed Central

    Che, Yuxin; Ju, Ying; Xuan, Ping; Long, Ren; Xing, Fei

    2016-01-01

    Enzymes are important and effective biological catalyst proteins participating in almost all active cell processes. Identification of multi-functional enzymes is essential in understanding the function of enzymes. Machine learning methods perform better in protein structure and function prediction than traditional biological wet experiments. Thus, in this study, we explore an efficient and effective machine learning method to categorize enzymes according to their function. Multi-functional enzymes are predicted with a special machine learning strategy, namely, multi-label classifier. Sequence features are extracted from a position-specific scoring matrix with autocross-covariance transformation. Experiment results show that the proposed method obtains an accuracy rate of 94.1% in classifying six main functional classes through five cross-validation tests and outperforms state-of-the-art methods. In addition, 91.25% accuracy is achieved in multi-functional enzyme prediction, which is often ignored in other enzyme function prediction studies. The online prediction server and datasets can be accessed from the link http://server.malab.cn/MEC/. PMID:27078147

  9. Intron-exon organization of the gene for the multifunctional animal fatty acid synthase.

    PubMed Central

    Amy, C M; Williams-Ahlf, B; Naggert, J; Smith, S

    1992-01-01

    The complete intron-exon organization of the gene encoding a multifunctional mammalian fatty acid synthase has been elucidated, and specific exons have been assigned to coding sequences for the component domains of the protein. The rat gene is interrupted by 42 introns and the sequences bordering the splice-site junctions universally follow the GT/AG rule. However, of the 41 introns that interrupt the coding region of the gene, 23 split the reading frame in phase I, 14 split the reading frame in phase 0, and only 4 split the reading frame in phase II. Remarkably, 46% of the introns interrupt codons for glycine. With only one exception, boundaries between the constituent enzymes of the multifunctional polypeptide coincide with the location of introns in the gene. The significance of the predominance of phase I introns, the almost uniformly short length of the 42 introns and the overall small size of the gene, is discussed in relation to the evolution of multifunctional proteins. Images PMID:1736293

  10. Identification of Multi-Functional Enzyme with Multi-Label Classifier.

    PubMed

    Che, Yuxin; Ju, Ying; Xuan, Ping; Long, Ren; Xing, Fei

    2016-01-01

    Enzymes are important and effective biological catalyst proteins participating in almost all active cell processes. Identification of multi-functional enzymes is essential in understanding the function of enzymes. Machine learning methods perform better in protein structure and function prediction than traditional biological wet experiments. Thus, in this study, we explore an efficient and effective machine learning method to categorize enzymes according to their function. Multi-functional enzymes are predicted with a special machine learning strategy, namely, multi-label classifier. Sequence features are extracted from a position-specific scoring matrix with autocross-covariance transformation. Experiment results show that the proposed method obtains an accuracy rate of 94.1% in classifying six main functional classes through five cross-validation tests and outperforms state-of-the-art methods. In addition, 91.25% accuracy is achieved in multi-functional enzyme prediction, which is often ignored in other enzyme function prediction studies. The online prediction server and datasets can be accessed from the link http://server.malab.cn/MEC/.

  11. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  12. Teleoperated Modular Robots for Lunar Operations

    NASA Technical Reports Server (NTRS)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot

  13. Modular Manufacturing Simulator: Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

  14. Modular Rake of Pitot Probes

    NASA Technical Reports Server (NTRS)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  15. Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach

    PubMed Central

    Włodarczyk-Biegun, Małgorzata K.; Farbod, Kambiz; Werten, Marc W. T.; Slingerland, Cornelis J.; de Wolf, Frits A.; van den Beucken, Jeroen J. J. P.; Leeuwenburgh, Sander C. G.; Cohen Stuart, Martien A.; Kamperman, Marleen

    2016-01-01

    Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions. PMID:27223105

  16. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization.

    PubMed

    Kotagiri, Nalinikanth; Sakon, Joshua; Han, Haewook; Zharov, Vladimir P; Kim, Jin-Woo

    2016-07-01

    Cancer nanomedicines are opening new paradigms in cancer management and recent research points to how they can vastly improve imaging and therapy through multimodality and multifunctionality. However, challenges to achieving optimal efficacy are manifold starting from processing materials and evaluating their intended effectiveness on biological tissue, to developing new strategies aimed at improving transport of these materials through the biological milieu to the target tissue. Here, we report a fluorescent derivative of a beta-lactam antibiotic, ampicillin (termed iAmp) and its multifunctional physicobiochemical characteristics and potential as a biocompatible shielding agent and an effective dispersant. Carbon nanotubes (CNTs) were chosen to demonstrate the efficacy of iAmp. CNTs are known for their versatility and have been used extensively for cancer theranostics as photothermal and photoacoustic agents, but have limited solubility in water and biocompatibility. Traditional dispersants are associated with imaging artifacts and are not fully biocompatible. The chemical structure of iAmp is consistent with a deamination product of ampicillin. Although the four-membered lactam ring is intact, it does not retain the antibiotic properties. The iAmp is an effective dispersant and simultaneously serves as a fluorescent label for single-walled CNTs (SWNTs) with minimal photobleaching. The iAmp also enables bioconjugation of SWNTs to bio-ligands such as antibodies through functional carboxyl groups. Viability tests show that iAmp-coated SWNTs have minimal toxicity. Bio-stability tests under physiological conditions reveal that iAmp coating not only remains stable in a biologically relevant environment with high protein and salt concentrations, but also renders SWNTs transparent against nonspecific protein adsorption, also known as protein corona. Mammalian tissue culture studies with macrophages and opsonins validate that iAmp coating affords immunological resistance

  17. Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly.

    PubMed

    Sun, Qing; Chen, Qi; Blackstock, Daniel; Chen, Wilfred

    2015-08-25

    Context driven biosensor assembly with modular targeting and detection moieties is gaining significant attentions. Although protein-based nanoparticles have emerged as an excellent platform for biosensor assembly, current strategies of decorating bionanoparticles with targeting and detection moieties often suffer from unfavorable spacing and orientation as well as bionanoparticle aggregation. Herein, we report a highly modular post-translational modification approach for biosensor assembly based on sortase A-mediated ligation. This approach enables the simultaneous modifications of the Bacillus stearothermophilus E2 nanoparticles with different functional moieties for antibody, enzyme, DNA aptamer, and dye decoration. The resulting easy-purification platform offers a high degree of targeting and detection modularity with signal amplification. This flexibility is demonstrated for the detection of both immobilized antigens and cancer cells. PMID:26235232

  18. Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiber‐Initiated Controlled Radical Polymerization

    PubMed Central

    Harrison, Rachael H.; Steele, Joseph A. M.; Chapman, Robert; Gormley, Adam J.; Chow, Lesley W.; Mahat, Muzamir M.; Podhorska, Lucia; Palgrave, Robert G.; Payne, David J.; Hettiaratchy, Shehan P.; Dunlop, Iain E.

    2015-01-01

    Native tissues are typically heterogeneous and hierarchically organized, and generating scaffolds that can mimic these properties is critical for tissue engineering applications. By uniquely combining controlled radical polymerization (CRP), end‐functionalization of polymers, and advanced electrospinning techniques, a modular and versatile approach is introduced to generate scaffolds with spatially organized functionality. Poly‐ε‐caprolactone is end functionalized with either a polymerization‐initiating group or a cell‐binding peptide motif cyclic Arg‐Gly‐Asp‐Ser (cRGDS), and are each sequentially electrospun to produce zonally discrete bilayers within a continuous fiber scaffold. The polymerization‐initiating group is then used to graft an antifouling polymer bottlebrush based on poly(ethylene glycol) from the fiber surface using CRP exclusively within one bilayer of the scaffold. The ability to include additional multifunctionality during CRP is showcased by integrating a biotinylated monomer unit into the polymerization step allowing postmodification of the scaffold with streptavidin‐coupled moieties. These combined processing techniques result in an effective bilayered and dual‐functionality scaffold with a cell‐adhesive surface and an opposing antifouling non‐cell‐adhesive surface in zonally specific regions across the thickness of the scaffold, demonstrated through fluorescent labelling and cell adhesion studies. This modular and versatile approach combines strategies to produce scaffolds with tailorable properties for many applications in tissue engineering and regenerative medicine. PMID:27134621

  19. Requirements for a multifunctional code architecture

    SciTech Connect

    Tiihonen, O.; Juslin, K.

    1997-07-01

    The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results are managed.

  20. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites

    SciTech Connect

    Wang, Xin; Yong, Zhenzhong; Li, Qingwen; Bradford, Philip D.; Liu, Wei; Tucker, Dennis S.; Cai, Wei; Wang, Hsin; Yuan, Fuh-Gwo; Zhu, Yuntian

    2012-01-01

    Carbon nanotubes (CNTs) are an order of magnitude stronger than any current engineering fiber. However, for the past two decades it has been a challenge to utilize their reinforcement potential in composites. Here we report CNT composites with unprecedented multifunctionalities, including record high strength (3.8 GPa), Young s modulus (293 GPa), electrical conductivity (1230 S cm-1) and thermal conductivity (41 W m-1 K-1). These superior properties are derived from the long length, high volume fraction, good alignment and reduced waviness of the CNTs, which were produced by a novel processing approach that can be easily scaled up for industrial production.

  1. Multifunctional epitaxial systems on silicon substrates

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John Thomas; Narayan, Jagdish

    2016-09-01

    Multifunctional heterostructures can exhibit a wide range of functional properties, including colossal magneto-resistance, magnetocaloric, and multiferroic behavior, and can display interesting physical phenomena including spin and charge ordering and strong spin-orbit coupling. However, putting this functionality to work remains a challenge. To date, most of the work reported in the literature has dealt with heterostructures deposited onto closely lattice matched insulating substrates such as DyScO3, SrTiO3 (STO), or STO buffered Si(100) using concepts of lattice matching epitaxy (LME). However, strain in heterostructures grown by LME is typically not fully relaxed and the layers contain detrimental defects such as threading dislocations that can significantly degrade the physical properties of the films and adversely affect the device characteristics. In addition, most of the substrates are incompatible with existing CMOS-based technology, where Si (100) substrates dominate. This review discusses recent advances in the integration of multifunctional oxide and non-oxide materials onto silicon substrates. An alternative thin film growth approach, called "domain matching epitaxy," is presented which identifies approaches for minimizing lattice strain and unwanted defects in large misfit systems (7%-25% and higher). This approach broadly allows for the integration of multifunctional materials onto silicon substrates, such that sensing, computation, and response functions can be combined to produce next generation "smart" devices. In general, pulsed laser deposition has been used to epitaxially grow these materials, although the concepts developed here can be extended to other deposition techniques, as well. It will be shown that TiN and yttria-stabilized zirconia template layers provide promising platforms for the integration of new functionality into silicon-based computer chips. This review paper reports on a number of thin-film heterostructure systems that span a

  2. Gold nanocages as multifunctional materials for nanomedicine

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohu; Xia, Younan

    2014-06-01

    Featured by tunable localized surface plasmon resonance peaks in the near-infrared region and hollow interiors, Au nanocages represent a novel class of multifunctional nanomaterials that have gained considerable attention in recent years. This short review summarizes our recent work on the capabilities of Au nanocages in nanomedicine. We start with a brief description of the synthesis of Au nanocages and highlight our recent protocols for the scaled-up production of Au nanocages. We then use a number of examples to illustrate how Au nanocages can contribute to nanomedicine with respect to both diagnosis and therapy.

  3. Predictive design of engineered multifunctional solid catalysts.

    PubMed

    Raja, Robert; Potter, Matthew E; Newland, Stephanie H

    2014-06-01

    The ability to devise and design multifunctional active sites at the nanoscale, by drawing on the intricate ability of enzymes to evolve single-sites with distinctive catalytic function, has prompted complimentary and concordant developments in the field of catalyst design and in situ operando spectroscopy. Innovations in design-application approach have led to a more fundamental understanding of the nature of the active site and its mechanistic influence at a molecular level, that have enabled robust structure-property correlations to be established, which has facilitated the dextrous manipulation and predictive design of redox and solid-acid sites for industrially-significant, sustainable catalytic transformations. PMID:24682048

  4. Development of thermoplastic coated multifunctional transmission elements

    NASA Astrophysics Data System (ADS)

    Golaz, B.; Michaud, V.; de Oliveira, R.; Månson, J.-A. E.

    2012-04-01

    We report on key challenges of the development of steel cords reinforced thermoplastic elastomer composites with smart functionalities: adhesion tailoring for a durable mechanical load transfer through steel cords or other transmission elements by the use of surface treatments and primers, and integrated distributed temperature and strain sensing by the use of embedded fiber optic sensors. Traditional surface treatments including silane coupling agent were outperformed in processing time, adhesion and durability by a fast-curing coupling method using a UV-curable primer; and the integrated distributed temperature and strain sensing capability was demonstrated. The practical applications of the resulting multifunctional transmission element are then discussed in light of these results.

  5. Branched modular primers in DNA sequencing

    SciTech Connect

    Mugasimangalam, R.C.; Shmulevitz, M. |; Ramanathan, V.

    1997-08-01

    The need to synthesize new sequencing primers, such as in primer walking, can be eliminated by assembling modular primers from oligonucleotide modules selected from presynthesized libraries. Our earlier modular primers consisted of 5-mers, 6-mers or 7-mers, annealing to the template contiguously with each other. Here we introduce a novel {open_quotes}branched{close_quotes} type of modular primer with a distinctly different specificity mechanism. The concept of a {open_quotes}branched{close_quotes} primer involves modules that are physically linked by annealing to each other as well as to the target, forming a branched structure of the 3-way junction type. While contiguous modular primers are made specific by the preference of the polymerase for longer primer, branched primers, in contrast, owe their specificity to cooperative annealing of their modules to the intended site on the template. This cooperativity of annealing to the template is provided by mutually complementary segments in the two modules that bind each other. Thus the primer-template complex is no longer limited to linear sequences, but acquires another, second dimension giving the modular primer new functionality.

  6. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  7. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  8. Immuno-targeting the multifunctional CD38 using nanobody

    PubMed Central

    Li, Ting; Qi, Shali; Unger, Mandy; Hou, Yun Nan; Deng, Qi Wen; Liu, Jun; Lam, Connie M. C.; Wang, Xian Wang; Xin, Du; Zhang, Peng; Koch-Nolte, Friedrich; Hao, Quan; Zhang, Hongmin; Lee, Hon Cheung; Zhao, Yong Juan

    2016-01-01

    CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10−11 molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma. PMID:27251573

  9. Controllable microgels from multifunctional molecules: structure control and size distribution

    NASA Astrophysics Data System (ADS)

    Gu, Zhenyu; Patterson, Gary; Cao, Rong; Armitage, Bruce

    2004-03-01

    Supramolecular microgels with fractal structures were produced by engineered multifunctional molecules. The combination of static and dynamic light scattering was utilized to characterize the fractal dimension (Df) of the microgels and analyze the aggregation process of the microgels. The microgels are assembled from (1) a tetrafunctional protein (avidin), (2) a trifunctional DNA construct known as a three-way junction, and (3) a biotinylated peptide nucleic acid (PNA) that acts as a crosslinker by binding irreversibly to four equivalent binding sites on the protein and thermoreversibly to three identical binding sites on the DNA. The structure of microgels can be controlled through different aggregation mechanisms. The initial microgels formed by titration have a compact structure with Df ˜2.6; while the reversible microgels formed from melted aggregates have an open structure with Df ˜1.8. The values are consistent with the point-cluster and the cluster-cluster aggregation mechanisms, respectively. A narrow size distribution of microgels was observed and explained in terms of the Flory theory of reversible self-assembly.

  10. Immuno-targeting the multifunctional CD38 using nanobody.

    PubMed

    Li, Ting; Qi, Shali; Unger, Mandy; Hou, Yun Nan; Deng, Qi Wen; Liu, Jun; Lam, Connie M C; Wang, Xian Wang; Xin, Du; Zhang, Peng; Koch-Nolte, Friedrich; Hao, Quan; Zhang, Hongmin; Lee, Hon Cheung; Zhao, Yong Juan

    2016-01-01

    CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10(-11) molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma. PMID:27251573

  11. A modular framework for biomedical concept recognition

    PubMed Central

    2013-01-01

    Background Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex external libraries and/or the development of custom tools. Results This article presents Neji, an open source framework optimized for biomedical concept recognition built around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging, chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting overlapped concept names and respective disambiguation techniques. The most popular input and output formats, namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers and researchers can implement new processing modules or pipelines, or use the provided command-line interface tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts (CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition (F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%, chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list of identifiers: species 88

  12. A Modular PMAD System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    1998-01-01

    Current trends in satellite design are focused on developing small, reliable, and inexpensive spacecraft. To that end, a modular power management and distribution system (PMAD) is proposed which will help transition the aerospace industry towards an assembly line approach to building spacecraft. The modular system is based on an innovative DC voltage boost converter called the Series Connected Boost Regulator (SCBR). The SCBR uses existing DC-DC converters and adds a unique series connection. This simple modification provides the SCBR topology with many advantages over existing boost converters. Efficiencies of 94-98%, power densities above 1,000 We/kg, and inherent fault tolerance are just a few of the characteristics presented. Limitations of the SCBR technology are presented, and it is shown that the SCBR makes an ideal photovoltaic array regulator. A modular design based on the series connected boost unit is outlined and functional descriptions of the components are given.

  13. Modularity and community structure in networks.

    PubMed

    Newman, M E J

    2006-06-01

    Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as "modularity" over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.

  14. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design. PMID:25890504

  15. Corrosion of Metal Modular Cup Liners.

    PubMed

    Hothi, Harry S; Ilo, Kevin; Whittaker, Robert K; Eskelinen, Antti; Skinner, John A; Hart, Alister J

    2015-09-01

    Numerous studies have reported on corrosion at the modular head taper, however less is known about the interface between the metal shell and liner of modular cups. This study examined the backside of a series of metal modular cup liners of two designs (DePuy Pinnacle and Smith & Nephew R3), retrieved from 67 patients. Visual inspection found evidence of corrosion in virtually all liners, with the engaging rim surface significantly more corroded than the polar regions (P<0.001). EDX confirmed that black surface deposits were chromium rich corrosion debris, while SEM analysis revealed considerable pitting in the vicinity of the black debris. The R3 liners were significantly more corroded that the Pinnacles (P<0.001); this may help to explain the higher revision rates of this design.

  16. An Integrated Modular Avionics Development Environment

    NASA Astrophysics Data System (ADS)

    Schoofs, T.; Santos, S.; Tatibana, C.; Anjos, J.; Rufino, J.; Windsor, J.

    2009-05-01

    The ARINC 653 standard has taken a leading role within the aeronautical industry in the development of safety-critical systems based upon the Integrated Modular Avionics (IMA) concept. The related cost savings in reduced integration, verification and validation effort has raised interest in the European space industry for developing a spacecraft IMA approach and for the definition of an ARINC 653-for-Space software framework. As part of this process, it is necessary to establish an effective way to develop, test and analyse on-board applications without having access to the final IMA target platform for all engineers. Target platforms are usually extremely expensive considering hardware and software prices as well as training costs. This paper describes the architecture of an Integrated Modular Avionics Development Environment (IMADE) based on the Linux Operating System and the ARINC 653 simulator for Modular On-Board Applications that was developed by Skysoft Portugal, S.A. In cooperation with ESA, 2007-2008.

  17. Modular categories and 3-manifold invariants

    SciTech Connect

    Tureav, V.G. )

    1992-06-01

    The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds.

  18. Modularization Technology in Power Plant Construction

    SciTech Connect

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-07-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  19. Multifunctional π-expanded oligothiophene macrocycles.

    PubMed

    Iyoda, Masahiko; Shimizu, Hideyuki

    2015-09-21

    This tutorial review summarizes recent progress in the design, synthesis, and multifunctional properties of fully conjugated macrocyclic π-systems. We focus on the π-expanded oligothiophene macrocycles after a short survey of macrocyclic conjugated loops and belts such as [n]cycloparaphenylenes, cyclic[n]para-phenylacetylenes, [4]cyclo-2,8-crysenylenes, and cyclo[n]thiophenes. Fully conjugated π-expanded oligothiophene macrocycles possess shape-persistent but sometimes pliable π-frames, and the electronic and optoelectronic properties of the macrocycles largely depend on the π-systems inserted into the oligothiophene macrocycles. Among them, the π-expanded oligothiophene macrocycle composed of 2,5-thienylenes, ethynylenes, and vinylenes is one of the most widely applicable macrocycles for constructing multifunctional π-systems. These π-expanded oligothiophene macrocycles from small to very large ring sizes can be prepared via a short step procedure, and their various solid state structures can be determined by X-ray analysis. Since these macrocycles have inner and outer domains, specific information concerning structural, electronic, and optical properties is expected. Furthermore, π-expanded oligothiophene macrocycles with alkyl substituents exhibit various morphologies depending on nanophase separation of molecules, and a morphological change is observed for the molecular switch. PMID:26204527

  20. Bi- or multifunctional opioid peptide drugs.

    PubMed

    Schiller, Peter W

    2010-04-10

    Strategies for the design of bi- or multifunctional drugs are reviewed. A distinction is made between bifunctional drugs interacting in a monovalent fashion with two targets and ligands containing two distinct pharmacophores binding in a bivalent mode to the two binding sites in a receptor heterodimer. Arguments are presented to indicate that some of the so-called "bivalent" ligands reported in the literature are unlikely to simultaneously interact with two binding sites. Aspects related to the development of bi- or multifunctional drugs are illustrated with examples from the field of opioid analgesics. The drug-like properties of the tetrapeptide Dmt(1)[DALDA] with triple action as a micro opioid agonist, norepinephrine uptake inhibitor and releaser of endogenous opioid peptides to produce potent spinal analgesia are reviewed. Rationales for the development of opioid peptides with mixed agonist/antagonist profiles as analgesics with reduced side effects are presented. Progress in the development of mixed micro opioid agonist/delta opioid antagonists with low propensity to produce tolerance and physical dependence is reviewed. Efforts to develop bifunctional peptides containing a micro opioid agonist and a cholecystokinin antagonist or an NK1 receptor antagonist as analgesics expected to produce less tolerance and dependence are also reviewed. A strategy to improve the drug-like properties of bifunctional opioid peptide analgesics is presented.

  1. Multifunction Habitat Workstation/OLED Development

    NASA Technical Reports Server (NTRS)

    Schumacher, Shawn; Salazar, George; Schmidt, Oron

    2013-01-01

    This paper gives a general outline of both a multifunction habitat workstation and the research put into an Organic Light Emitting Diode (OLED) device. It first covers the tests that the OLED device will go through to become flight ready along with reasoning. Guidelines for building an apparatus to house the display and its components are given next, with the build of such following. The three tests the OLED goes through are presented (EMI, Thermal/Vac, Radiation) along with the data recovered. The second project of a multifunction workstation is then discussed in the same pattern. Reasoning for building such a workstation with telepresence in mind is offered. Build guidelines are presented first, with the build timeline following. Building the workstation will then be shown in great detail along with accompanying photos. Once the workstation has been discussed, the versatility of its functions are given. The paper concludes with future views and concepts that can added when the time or technology presents itself.

  2. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  3. Multifunctional porous silicon nanoparticles for cancer theranostics.

    PubMed

    Wang, Chang-Fang; Sarparanta, Mirkka P; Mäkilä, Ermei M; Hyvönen, Maija L K; Laakkonen, Pirjo M; Salonen, Jarno J; Hirvonen, Jouni T; Airaksinen, Anu J; Santos, Hélder A

    2015-04-01

    Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development.

  4. Faster Evolution of More Multifunctional Logic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A modification in a method of automated evolutionary synthesis of voltage-controlled multifunctional logic circuits makes it possible to synthesize more circuits in less time. Prior to the modification, the computations for synthesizing a four-function logic circuit by this method took about 10 hours. Using the method as modified, it is possible to synthesize a six-function circuit in less than half an hour. The concepts of automated evolutionary synthesis and voltage-controlled multifunctional logic circuits were described in a number of prior NASA Tech Briefs articles. To recapitulate: A circuit is designed to perform one of several different logic functions, depending on the value of an applied control voltage. The circuit design is synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. In this process, random populations of integer strings that encode electronic circuits play a role analogous to that of chromosomes. An evolved circuit is tested by computational simulation (prior to testing in real hardware to verify a final design). Then, in a fitness-evaluation step, responses of the circuit are compared with specifications of target responses and circuits are ranked according to how close they come to satisfying specifications. The results of the evaluation provide guidance for refining designs through further iteration.

  5. Multifunctional porous silicon nanoparticles for cancer theranostics.

    PubMed

    Wang, Chang-Fang; Sarparanta, Mirkka P; Mäkilä, Ermei M; Hyvönen, Maija L K; Laakkonen, Pirjo M; Salonen, Jarno J; Hirvonen, Jouni T; Airaksinen, Anu J; Santos, Hélder A

    2015-04-01

    Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. PMID:25701036

  6. Multifunctional nanoparticles for use in theranostic applications.

    PubMed

    Cole, James T; Holland, Nolan B

    2015-06-01

    Theranostics is a promising field that combines therapeutics and diagnostics into single multifunctional formulations. This field is driven by advancements in nanoparticle systems capable of providing the necessary functionalities. By utilizing these powerful nanomedicines, the concept of personalized medicine can be realized by tailoring treatment strategies to the individual. This review gives a brief overview of the components of a theranostic system and the challenges that designing truly multifunctional nanoparticles present. Considerations when choosing a class of nanoparticle include the size, shape, charge, and surface chemistry, while classes of nanoparticles discussed are polymers, liposomes, dendrimers, and polymeric micelles. Targeting to disease states can be achieved either through passive or active targeting which uses specific ligands to target receptors that are overexpressed in tumors and common targeting elements are presented. To image the interactions with disease states, contrast agents are included in the nanoparticle formulation. Imaging options include optical imaging techniques, computed tomography, nuclear based, and magnetic resonance imaging. The interplay between all of these components needs to be carefully considered when designing a theranostic system. PMID:25787729

  7. Advanced Multifunctional MMOD Shield: Radiation Shielding Assessment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Christiansen, Eric

    2013-01-01

    As NASA is looking to explore further into deep space, multifunctional materials are a necessity for decreasing complexity and mass. One area where multifunctional materials could be extremely beneficial is in the micrometeoroid orbital debris (MMOD) shield. A typical MMOD shield on the International Space Station (ISS) is a stuffed whipple shield consisting of multiple layers. One of those layers is the thermal blanket, or multi-layer insulation (MLI). Increasing the MMOD effectiveness of MLI blankets, while still preserving their thermal capabilities, could allow for a less massive MMOD shield. Thus, a study was conducted to evaluate a concept MLI blanket for an MMOD shield. In conjunction, this MLI blanket and the subsequent MMOD shield was also evaluated for its radiation shielding effectiveness towards protecting crew. The overall MMOD shielding system using the concept MLI blanket proved to only have a marginal increase in the radiation mitigating properties. Therefore, subsequent analysis was performed on various conceptual MMOD shields to determine the combination of materials that may prove superior for radiation mitigating purposes. The following paper outlines the evaluations performed and discusses the results and conclusions of this evaluation for radiation shielding effectiveness.

  8. Successes and failures in modular genetic engineering.

    PubMed

    Kittleson, Joshua T; Wu, Gabriel C; Anderson, J Christopher

    2012-08-01

    Synthetic biology relies on engineering concepts such as abstraction, standardization, and decoupling to develop systems that address environmental, clinical, and industrial needs. Recent advances in applying modular design to system development have enabled creation of increasingly complex systems. However, several challenges to module and system development remain, including syntactic errors, semantic errors, parameter mismatches, contextual sensitivity, noise and evolution, and load and stress. To combat these challenges, researchers should develop a framework for describing and reasoning about biological information, design systems with modularity in mind, and investigate how to predictively describe the diverse sources and consequences of metabolic load and stress.

  9. Liouville field, modular forms and elliptic genera

    NASA Astrophysics Data System (ADS)

    Eguchi, Tohru; Sugawara, Yuji; Taormina, Anne

    2007-03-01

    When we describe non-compact or singular Calabi-Yau manifolds by CFT, continuous as well as discrete representations appear in the theory. These representations mix in an intricate way under the modular transformations. In this article, we propose a method of combining discrete and continuous representations so that the resulting combinations have a simpler modular behavior and can be used as conformal blocks of the theory. We compute elliptic genera of ALE spaces and obtain results which agree with those suggested from the decompactification of K3 surface. Consistency of our approach is assured by some remarkable identity of theta functions whose proof, by D. Zagier, is included in an appendix.

  10. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization

    NASA Astrophysics Data System (ADS)

    Kotagiri, Nalinikanth; Sakon, Joshua; Han, Haewook; Zharov, Vladimir P.; Kim, Jin-Woo

    2016-06-01

    Cancer nanomedicines are opening new paradigms in cancer management and recent research points to how they can vastly improve imaging and therapy through multimodality and multifunctionality. However, challenges to achieving optimal efficacy are manifold starting from processing materials and evaluating their intended effectiveness on biological tissue, to developing new strategies aimed at improving transport of these materials through the biological milieu to the target tissue. Here, we report a fluorescent derivative of a beta-lactam antibiotic, ampicillin (termed iAmp) and its multifunctional physicobiochemical characteristics and potential as a biocompatible shielding agent and an effective dispersant. Carbon nanotubes (CNTs) were chosen to demonstrate the efficacy of iAmp. CNTs are known for their versatility and have been used extensively for cancer theranostics as photothermal and photoacoustic agents, but have limited solubility in water and biocompatibility. Traditional dispersants are associated with imaging artifacts and are not fully biocompatible. The chemical structure of iAmp is consistent with a deamination product of ampicillin. Although the four-membered lactam ring is intact, it does not retain the antibiotic properties. The iAmp is an effective dispersant and simultaneously serves as a fluorescent label for single-walled CNTs (SWNTs) with minimal photobleaching. The iAmp also enables bioconjugation of SWNTs to bio-ligands such as antibodies through functional carboxyl groups. Viability tests show that iAmp-coated SWNTs have minimal toxicity. Bio-stability tests under physiological conditions reveal that iAmp coating not only remains stable in a biologically relevant environment with high protein and salt concentrations, but also renders SWNTs transparent against nonspecific protein adsorption, also known as protein corona. Mammalian tissue culture studies with macrophages and opsonins validate that iAmp coating affords immunological resistance

  11. The frequency-agile radar: A multifunctional approach to remote sensing of the ionosphere

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.; Livingston, R. C.; Buonocore, J. J.; McKinley, A. V.

    1995-09-01

    We introduce a new kind of diagnostic sensor that combines multifunctional measurement capabilities for ionospheric research. Multifunctionality is realized through agility in frequency selection over an extended band (1.5 to 50 MHz), system modularity, complete system control by software written in C, and a user-friendly computer interface. This sensor, which we call the frequency-agile radar (FAR), incorporates dual radar channels and an arbitrary waveform synthesizer that allows creative design of sophisticated waveforms as a means of increasing its sensitivity to weak signals while minimizing loss in radar resolution. The sensitivity of the FAR is determined by two sets of power amplifier modules: four 4-kW solid-state broadband amplifiers, and four 30-kW vacuum tube amplifiers. FAR control is by an AT-bus personal computer with on-line processing by a programmable array processor. The FAR does not simply house the separate functions of most radio sensors in use today, it provides convenient and flexible access to those functions as elements to be used in any combination. Some of the first new results obtained with the FAR during recent field campaigns are presented to illustrate its versatility. These include (1) the first detection of anomalous high-frequency (HF) reflections from a barium ion cloud, (2) the first evidence of unexpectedly large drifts and a shear north of the equatorial electrojet, (3) the first HF radar signature of a developing equatorial plasma bubble, and (4) the first measurements by a portable radar of altitude-extended, quasi-periodic backscatter from midlatitude sporadic E. We also mention the potential of the FAR for atmospheric remote sensing.

  12. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  13. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    PubMed

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952

  14. Biotic homogenization can decrease landscape-scale forest multifunctionality.

    PubMed

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-03-29

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.

  15. Biotic homogenization can decrease landscape-scale forest multifunctionality

    PubMed Central

    van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952

  16. Modular optimization of multi-gene pathways for fumarate production.

    PubMed

    Chen, Xiulai; Zhu, Pan; Liu, Liming

    2016-01-01

    Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, we report a modular engineering approach that systematically removed metabolic pathway bottlenecks and led to significant titer improvements in a multi-gene fumarate metabolic pathway. On the basis of central pathway architecture, yeast fumarate biosynthesis was re-cast into three modules: reduction module, oxidation module, and byproduct module. We targeted reduction module and oxidation module to the cytoplasm and the mitochondria, respectively. Combinatorially tuning pathway efficiency by constructing protein fusions RoMDH-P160A and KGD2-SUCLG2 and optimizing metabolic balance by controlling genes RoPYC, RoMDH-P160A, KGD2-SUCLG2 and SDH1 expression strengths led to significantly improved fumarate production (20.46 g/L). In byproduct module, synthetizing DNA-guided scaffolds and designing sRNA switchs enabled further production improvement up to 33.13 g/L. These results suggest that modular pathway engineering can systematically optimize biosynthesis pathways to enable an efficient production of fumarate. PMID:26241189

  17. Intramolecular phenotypic capacitance in a modular RNA molecule

    PubMed Central

    Hayden, Eric J.; Bendixsen, Devin P.; Wagner, Andreas

    2015-01-01

    Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA’s ancient role in life suggests that phenotypic capacitance may have influenced evolution since life’s origins. PMID:26401020

  18. Modular optimization of multi-gene pathways for fumarate production.

    PubMed

    Chen, Xiulai; Zhu, Pan; Liu, Liming

    2016-01-01

    Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, we report a modular engineering approach that systematically removed metabolic pathway bottlenecks and led to significant titer improvements in a multi-gene fumarate metabolic pathway. On the basis of central pathway architecture, yeast fumarate biosynthesis was re-cast into three modules: reduction module, oxidation module, and byproduct module. We targeted reduction module and oxidation module to the cytoplasm and the mitochondria, respectively. Combinatorially tuning pathway efficiency by constructing protein fusions RoMDH-P160A and KGD2-SUCLG2 and optimizing metabolic balance by controlling genes RoPYC, RoMDH-P160A, KGD2-SUCLG2 and SDH1 expression strengths led to significantly improved fumarate production (20.46 g/L). In byproduct module, synthetizing DNA-guided scaffolds and designing sRNA switchs enabled further production improvement up to 33.13 g/L. These results suggest that modular pathway engineering can systematically optimize biosynthesis pathways to enable an efficient production of fumarate.

  19. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2011-10-01 2011-10-01 false Independent modular smoke detecting units....

  20. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2012-10-01 2012-10-01 false Independent modular smoke detecting units....

  1. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2013-10-01 2013-10-01 false Independent modular smoke detecting units....

  2. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2014-10-01 2014-10-01 false Independent modular smoke detecting units....

  3. 46 CFR 181.450 - Independent modular smoke detecting units.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Independent modular smoke detecting units. (a) An independent modular smoke detecting unit must: (1) Meet UL 217 (incorporated by reference, see 46 CFR 175.600) and be listed as a “Single Station Smoke detector... 46 Shipping 7 2010-10-01 2010-10-01 false Independent modular smoke detecting units....

  4. Next-Generation Multifunctional Electrochromic Devices.

    PubMed

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy

  5. Next-Generation Multifunctional Electrochromic Devices.

    PubMed

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    The rational design and exploration of electrochromic devices will find a wide range of applications in smart windows for energy-efficient buildings, low-power displays, self-dimming rear mirrors for automobiles, electrochromic e-skins, and so on. Electrochromic devices generally consist of multilayer structures with transparent conductors, electrochromic films, ion conductors, and ion storage films. Synthetic strategies and new materials for electrochromic films and transparent conductors, comprehensive electrochemical kinetic analysis, and novel device design are areas of active study worldwide. These are believed to be the key factors that will help to significantly improve the electrochromic performance and extend their application areas. In this Account, we present our strategies to design and fabricate electrochromic devices with high performance and multifunctionality. We first describe the synthetic strategies, in which a porous tungsten oxide (WO3) film with nearly ideal optical modulation and fast switching was prepared by a pulsed electrochemical deposition method. Multiple strategies, such as sol-gel/inkjet printing methods, hydrothermal/inkjet printing methods, and a novel hybrid transparent conductor/electrochromic layer have been developed to prepare high-performance electrochromic films. We then summarize the recent advances in transparent conductors and ion conductor layers, which play critial roles in electrochromic devices. Benefiting from the developments of soft transparent conductive substrates, highly deformable electrochromic devices that are flexible, foldable, stretchable, and wearable have been achieved. These emerging devices have great potential in applications such as soft displays, electrochromic e-skins, deformable electrochromic films, and so on. We finally present a concept of multifunctional smart glass, which can change its color to dynamically adjust the daylight and solar heat input of the building or protect the users' privacy

  6. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    PubMed

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments

  7. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    PubMed

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments

  8. Protocell design through modular compartmentalization.

    PubMed

    Miller, David; Booth, Paula J; Seddon, John M; Templer, Richard H; Law, Robert V; Woscholski, Rudiger; Ces, Oscar; Barter, Laura M C

    2013-10-01

    De novo synthetic biological design has the potential to significantly impact upon applications such as energy generation and nanofabrication. Current designs for constructing organisms from component parts are typically limited in scope, as they utilize a cut-and-paste ideology to create simple stepwise engineered protein-signalling pathways. We propose the addition of a new design element that segregates components into lipid-bound 'proto-organelles', which are interfaced with response elements and housed within a synthetic protocell. This design is inspired by living cells, which utilize multiple types of signalling molecules to facilitate communication between isolated compartments. This paper presents our design and validation of the components required for a simple multi-compartment protocell machine, for coupling a light transducer to a gene expression system. This represents a general design concept for the compartmentalization of different types of artificial cellular machinery and the utilization of non-protein signal molecules for signal transduction. PMID:23925982

  9. Protocell design through modular compartmentalization

    PubMed Central

    Miller, David; Booth, Paula J.; Seddon, John M.; Templer, Richard H.; Law, Robert V.; Woscholski, Rudiger; Ces, Oscar; Barter, Laura M. C.

    2013-01-01

    De novo synthetic biological design has the potential to significantly impact upon applications such as energy generation and nanofabrication. Current designs for constructing organisms from component parts are typically limited in scope, as they utilize a cut-and-paste ideology to create simple stepwise engineered protein-signalling pathways. We propose the addition of a new design element that segregates components into lipid-bound ‘proto-organelles’, which are interfaced with response elements and housed within a synthetic protocell. This design is inspired by living cells, which utilize multiple types of signalling molecules to facilitate communication between isolated compartments. This paper presents our design and validation of the components required for a simple multi-compartment protocell machine, for coupling a light transducer to a gene expression system. This represents a general design concept for the compartmentalization of different types of artificial cellular machinery and the utilization of non-protein signal molecules for signal transduction. PMID:23925982

  10. Modular Building Institute 2001 Educational Showcase.

    ERIC Educational Resources Information Center

    Modular Building Inst., Charlottesville, VA.

    This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "An Architect's Perspective: Convincing a Skeptic" (Robert M. Iamello); (2) "66 Portables for San Mateo High" (Steven Williams); (3) "Case Study: Charter Schools"…

  11. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  12. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2016-01-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  13. A robust and modular synthesis of ynamides.

    PubMed

    Mansfield, Steven J; Campbell, Craig D; Jones, Michael W; Anderson, Edward A

    2015-02-25

    A flexible, modular ynamide synthesis is reported that uses trichloroethene as an inexpensive two carbon synthon. A wide range of amides and electrophiles can be converted to the corresponding ynamides, importantly including acyclic carbamates, hindered amides, and aryl amides. This method thus overcomes many of the limitations of other approaches to this useful functionality.

  14. A Modular Communicative Syllabus (2): The Project.

    ERIC Educational Resources Information Center

    Estaire, Sheila

    1982-01-01

    Describes two core syllabi, a communicative one and a grammatical one, and a modular syllabus for elementary ESL courses, with hints for introducing out-of-sequence items. Explains how the syllabi have been designed, what they offer to teachers, and how they have affected first-year teaching as a whole. (Author/MES)

  15. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  16. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  17. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  18. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  19. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... label can use wording such as the following: “Contains Transmitter Module FCC ID: XYZMODEL1” or “Contains FCC ID: XYZMODEL1.” Any similar wording that expresses the same meaning may be used. The Grantee... authorization. (B) If the modular transmitter uses an electronic display of the FCC identification number,...

  20. Modular Instruction in Higher Education: A Review.

    ERIC Educational Resources Information Center

    Goldschmid, Barbara; Goldschmid, Marcel L.

    This paper reviews the principles, implementation, management, formats, problems, and research in modular instruction. A module is defined as a self-contained, independent unit of a planned series of learning activities designed to help the student accomplish certain well-defined objectives. The learner is able to proceed at his own rate, choose…