Sample records for modular neural network

  1. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  2. Deinterlacing using modular neural network

    NASA Astrophysics Data System (ADS)

    Woo, Dong H.; Eom, Il K.; Kim, Yoo S.

    2004-05-01

    Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.

  3. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    PubMed Central

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting. PMID:25837826

  4. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    PubMed

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-04-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to alleviate the problem of catastrophic forgetting.

  5. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    PubMed Central

    Sánchez, Daniela; Melin, Patricia

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461

  6. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.

    PubMed

    Sánchez, Daniela; Melin, Patricia; Castillo, Oscar

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.

  7. Modularity Induced Gating and Delays in Neuronal Networks

    PubMed Central

    Shein-Idelson, Mark; Cohen, Gilad; Hanein, Yael

    2016-01-01

    Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. PMID:27104350

  8. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    PubMed

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  10. Modular neural networks: a survey.

    PubMed

    Auda, G; Kamel, M

    1999-04-01

    Modular Neural Networks (MNNs) is a rapidly growing field in artificial Neural Networks (NNs) research. This paper surveys the different motivations for creating MNNs: biological, psychological, hardware, and computational. Then, the general stages of MNN design are outlined and surveyed as well, viz., task decomposition techniques, learning schemes and multi-module decision-making strategies. Advantages and disadvantages of the surveyed methods are pointed out, and an assessment with respect to practical potential is provided. Finally, some general recommendations for future designs are presented.

  11. Fitness landscape complexity and the emergence of modularity in neural networks

    NASA Astrophysics Data System (ADS)

    Lowell, Jessica

    Previous research has shown that the shape of the fitness landscape can affect the evolution of modularity. We evolved neural networks to solve different tasks with different fitness landscapes, using NEAT, a popular neuroevolution algorithm that quantifies similarity between genomes in order to divide them into species. We used this speciation mechanism as a means to examine fitness landscape complexity, and to examine connections between fitness landscape complexity and the emergence of modularity.

  12. Model of brain activation predicts the neural collective influence map of the brain

    PubMed Central

    Morone, Flaviano; Roth, Kevin; Min, Byungjoon; Makse, Hernán A.

    2017-01-01

    Efficient complex systems have a modular structure, but modularity does not guarantee robustness, because efficiency also requires an ingenious interplay of the interacting modular components. The human brain is the elemental paradigm of an efficient robust modular system interconnected as a network of networks (NoN). Understanding the emergence of robustness in such modular architectures from the interconnections of its parts is a longstanding challenge that has concerned many scientists. Current models of dependencies in NoN inspired by the power grid express interactions among modules with fragile couplings that amplify even small shocks, thus preventing functionality. Therefore, we introduce a model of NoN to shape the pattern of brain activations to form a modular environment that is robust. The model predicts the map of neural collective influencers (NCIs) in the brain, through the optimization of the influence of the minimal set of essential nodes responsible for broadcasting information to the whole-brain NoN. Our results suggest intervention protocols to control brain activity by targeting influential neural nodes predicted by network theory. PMID:28351973

  13. The relative efficiency of modular and non-modular networks of different size

    PubMed Central

    Tosh, Colin R.; McNally, Luke

    2015-01-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

  14. Classification capacity of a modular neural network implementing neurally inspired architecture and training rules.

    PubMed

    Poirazi, Panayiota; Neocleous, Costas; Pattichis, Costantinos S; Schizas, Christos N

    2004-05-01

    A three-layer neural network (NN) with novel adaptive architecture has been developed. The hidden layer of the network consists of slabs of single neuron models, where neurons within a slab--but not between slabs--have the same type of activation function. The network activation functions in all three layers have adaptable parameters. The network was trained using a biologically inspired, guided-annealing learning rule on a variety of medical data. Good training/testing classification performance was obtained on all data sets tested. The performance achieved was comparable to that of SVM classifiers. It was shown that the adaptive network architecture, inspired from the modular organization often encountered in the mammalian cerebral cortex, can benefit classification performance.

  15. Sustained Activity in Hierarchical Modular Neural Networks: Self-Organized Criticality and Oscillations

    PubMed Central

    Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong

    2010-01-01

    Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information processing. PMID:21852971

  16. Modular representation of layered neural networks.

    PubMed

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Applying Neural Networks to Air Force Personnel Analysis

    DTIC Science & Technology

    1992-03-01

    Asakawa, Yoda, and Takeoka (1990); Atlas, Cole, Conner, EI-Sharkawi, Marks, Muthusamy, and Barnard (1990); Leung and Zue (1989); and Denker, Gardner...Transactions on Neural Networks, 1(2), 239-242. Kimoto, T., Asakawa, K., Yoda, M., & Takeoka , M. (1990). Stock market prediction with modular neural

  18. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.

    PubMed

    Schrum, Jacob; Miikkulainen, Risto

    2016-03-12

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.

  20. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks

    PubMed Central

    Schrum, Jacob; Miikkulainen, Risto

    2015-01-01

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games. PMID:27030803

  1. When modularization fails to occur: a developmental perspective.

    PubMed

    D'Souza, Dean; Karmiloff-Smith, Annette

    2011-05-01

    We argue that models of adult cognition defined in terms of independently functioning modules cannot be applied to development, whether typical or atypical. The infant brain starts out highly interconnected, and it is only over developmental time that neural networks become increasingly specialized-that is, relatively modularized. In the case of atypical development, even when behavioural scores fall within the normal range, they are frequently underpinned by different cognitive and neural processes. In other words, in neurodevelopmental disorders the gradual process of relative modularization may fail to occur.

  2. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

    NASA Astrophysics Data System (ADS)

    Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong

    2016-12-01

    The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.

  3. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

    PubMed Central

    Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong

    2016-01-01

    The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks. PMID:27917958

  4. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity

    NASA Astrophysics Data System (ADS)

    Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard

    2018-04-01

    Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.

  5. Development of modularity in the neural activity of childrenʼs brains

    NASA Astrophysics Data System (ADS)

    Chen, Man; Deem, Michael W.

    2015-02-01

    We study how modularity of the human brain changes as children develop into adults. Theory suggests that modularity can enhance the response function of a networked system subject to changing external stimuli. Thus, greater cognitive performance might be achieved for more modular neural activity, and modularity might likely increase as children develop. The value of modularity calculated from functional magnetic resonance imaging (fMRI) data is observed to increase during childhood development and peak in young adulthood. Head motion is deconvolved from the fMRI data, and it is shown that the dependence of modularity on age is independent of the magnitude of head motion. A model is presented to illustrate how modularity can provide greater cognitive performance at short times, i.e. task switching. A fitness function is extracted from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. Experiments exploring the effect of modularity on cognitive performance are suggested. Modularity may be a potential biomarker for injury, rehabilitation, or disease.

  6. Sculpting the Intrinsic Modular Organization of Spontaneous Brain Activity by Art.

    PubMed

    Lin, Chia-Shu; Liu, Yong; Huang, Wei-Yuan; Lu, Chia-Feng; Teng, Shin; Ju, Tzong-Ching; He, Yong; Wu, Yu-Te; Jiang, Tianzi; Hsieh, Jen-Chuen

    2013-01-01

    Artistic training is a complex learning that requires the meticulous orchestration of sophisticated polysensory, motor, cognitive, and emotional elements of mental capacity to harvest an aesthetic creation. In this study, we investigated the architecture of the resting-state functional connectivity networks from professional painters, dancers and pianists. Using a graph-based network analysis, we focused on the art-related changes of modular organization and functional hubs in the resting-state functional connectivity network. We report that the brain architecture of artists consists of a hierarchical modular organization where art-unique and artistic form-specific brain states collectively mirror the mind states of virtuosos. We show that even in the resting state, this type of extraordinary and long-lasting training can macroscopically imprint a neural network system of spontaneous activity in which the related brain regions become functionally and topologically modularized in both domain-general and domain-specific manners. The attuned modularity reflects a resilient plasticity nurtured by long-term experience.

  7. Sculpting the Intrinsic Modular Organization of Spontaneous Brain Activity by Art

    PubMed Central

    Lin, Chia-Shu; Liu, Yong; Huang, Wei-Yuan; Lu, Chia-Feng; Teng, Shin; Ju, Tzong-Ching; He, Yong; Wu, Yu-Te; Jiang, Tianzi; Hsieh, Jen-Chuen

    2013-01-01

    Artistic training is a complex learning that requires the meticulous orchestration of sophisticated polysensory, motor, cognitive, and emotional elements of mental capacity to harvest an aesthetic creation. In this study, we investigated the architecture of the resting-state functional connectivity networks from professional painters, dancers and pianists. Using a graph-based network analysis, we focused on the art-related changes of modular organization and functional hubs in the resting-state functional connectivity network. We report that the brain architecture of artists consists of a hierarchical modular organization where art-unique and artistic form-specific brain states collectively mirror the mind states of virtuosos. We show that even in the resting state, this type of extraordinary and long-lasting training can macroscopically imprint a neural network system of spontaneous activity in which the related brain regions become functionally and topologically modularized in both domain-general and domain-specific manners. The attuned modularity reflects a resilient plasticity nurtured by long-term experience. PMID:23840527

  8. Individual differences and time-varying features of modular brain architecture.

    PubMed

    Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong

    2017-05-15

    Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Towards cortex sized artificial neural systems.

    PubMed

    Johansson, Christopher; Lansner, Anders

    2007-01-01

    We propose, implement, and discuss an abstract model of the mammalian neocortex. This model is instantiated with a sparse recurrently connected neural network that has spiking leaky integrator units and continuous Hebbian learning. First we study the structure, modularization, and size of neocortex, and then we describe a generic computational model of the cortical circuitry. A characterizing feature of the model is that it is based on the modularization of neocortex into hypercolumns and minicolumns. Both a floating- and fixed-point arithmetic implementation of the model are presented along with simulation results. We conclude that an implementation on a cluster computer is not communication but computation bounded. A mouse and rat cortex sized version of our model executes in 44% and 23% of real-time respectively. Further, an instance of the model with 1.6 x 10(6) units and 2 x 10(11) connections performed noise reduction and pattern completion. These implementations represent the current frontier of large-scale abstract neural network simulations in terms of network size and running speed.

  10. Impact of delays on the synchronization transitions of modular neuronal networks with hybrid synapses

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2013-09-01

    The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.

  11. Neural networks for sign language translation

    NASA Astrophysics Data System (ADS)

    Wilson, Beth J.; Anspach, Gretel

    1993-09-01

    A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.

  12. Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization.

    PubMed

    Westphal, Andrew J; Wang, Siliang; Rissman, Jesse

    2017-03-29

    Most complex cognitive tasks require the coordinated interplay of multiple brain networks, but the act of retrieving an episodic memory may place especially heavy demands for communication between the frontoparietal control network (FPCN) and the default mode network (DMN), two networks that do not strongly interact with one another in many task contexts. We applied graph theoretical analysis to task-related fMRI functional connectivity data from 20 human participants and found that global brain modularity-a measure of network segregation-is markedly reduced during episodic memory retrieval relative to closely matched analogical reasoning and visuospatial perception tasks. Individual differences in modularity were correlated with memory task performance, such that lower modularity levels were associated with a lower false alarm rate. Moreover, the FPCN and DMN showed significantly elevated coupling with each other during the memory task, which correlated with the global reduction in brain modularity. Both networks also strengthened their functional connectivity with the hippocampus during the memory task. Together, these results provide a novel demonstration that reduced modularity is conducive to effective episodic retrieval, which requires close collaboration between goal-directed control processes supported by the FPCN and internally oriented self-referential processing supported by the DMN. SIGNIFICANCE STATEMENT Modularity, an index of the degree to which nodes of a complex system are organized into discrete communities, has emerged as an important construct in the characterization of brain connectivity dynamics. We provide novel evidence that the modularity of the human brain is reduced when individuals engage in episodic memory retrieval, relative to other cognitive tasks, and that this state of lower modularity is associated with improved memory performance. We propose a neural systems mechanism for this finding where the nodes of the frontoparietal control network and default mode network strengthen their interaction with one another during episodic retrieval. Such across-network communication likely facilitates effective access to internally generated representations of past event knowledge. Copyright © 2017 the authors 0270-6474/17/373523-09$15.00/0.

  13. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.

    PubMed

    Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou

    2011-09-01

    To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.

  15. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  16. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  17. Organization of excitable dynamics in hierarchical biological networks.

    PubMed

    Müller-Linow, Mark; Hilgetag, Claus C; Hütt, Marc-Thorsten

    2008-09-26

    This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.

  18. Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization

    PubMed Central

    2017-01-01

    Most complex cognitive tasks require the coordinated interplay of multiple brain networks, but the act of retrieving an episodic memory may place especially heavy demands for communication between the frontoparietal control network (FPCN) and the default mode network (DMN), two networks that do not strongly interact with one another in many task contexts. We applied graph theoretical analysis to task-related fMRI functional connectivity data from 20 human participants and found that global brain modularity—a measure of network segregation—is markedly reduced during episodic memory retrieval relative to closely matched analogical reasoning and visuospatial perception tasks. Individual differences in modularity were correlated with memory task performance, such that lower modularity levels were associated with a lower false alarm rate. Moreover, the FPCN and DMN showed significantly elevated coupling with each other during the memory task, which correlated with the global reduction in brain modularity. Both networks also strengthened their functional connectivity with the hippocampus during the memory task. Together, these results provide a novel demonstration that reduced modularity is conducive to effective episodic retrieval, which requires close collaboration between goal-directed control processes supported by the FPCN and internally oriented self-referential processing supported by the DMN. SIGNIFICANCE STATEMENT Modularity, an index of the degree to which nodes of a complex system are organized into discrete communities, has emerged as an important construct in the characterization of brain connectivity dynamics. We provide novel evidence that the modularity of the human brain is reduced when individuals engage in episodic memory retrieval, relative to other cognitive tasks, and that this state of lower modularity is associated with improved memory performance. We propose a neural systems mechanism for this finding where the nodes of the frontoparietal control network and default mode network strengthen their interaction with one another during episodic retrieval. Such across-network communication likely facilitates effective access to internally generated representations of past event knowledge. PMID:28242796

  19. Impulsivity and the Modular Organization of Resting-State Neural Networks

    PubMed Central

    Davis, F. Caroline; Knodt, Annchen R.; Sporns, Olaf; Lahey, Benjamin B.; Zald, David H.; Brigidi, Bart D.; Hariri, Ahmad R.

    2013-01-01

    Impulsivity is a complex trait associated with a range of maladaptive behaviors, including many forms of psychopathology. Previous research has implicated multiple neural circuits and neurotransmitter systems in impulsive behavior, but the relationship between impulsivity and organization of whole-brain networks has not yet been explored. Using graph theory analyses, we characterized the relationship between impulsivity and the functional segregation (“modularity”) of the whole-brain network architecture derived from resting-state functional magnetic resonance imaging (fMRI) data. These analyses revealed remarkable differences in network organization across the impulsivity spectrum. Specifically, in highly impulsive individuals, regulatory structures including medial and lateral regions of the prefrontal cortex were isolated from subcortical structures associated with appetitive drive, whereas these brain areas clustered together within the same module in less impulsive individuals. Further exploration of the modular organization of whole-brain networks revealed novel shifts in the functional connectivity between visual, sensorimotor, cortical, and subcortical structures across the impulsivity spectrum. The current findings highlight the utility of graph theory analyses of resting-state fMRI data in furthering our understanding of the neurobiological architecture of complex behaviors. PMID:22645253

  20. Concurrent evolution of feature extractors and modular artificial neural networks

    NASA Astrophysics Data System (ADS)

    Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter

    2009-05-01

    This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.

  1. Beyond Fine Tuning: Adding capacity to leverage few labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem

    2017-12-09

    In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning.more » Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.« less

  2. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.

    PubMed

    Wen, Haiguang; Liu, Zhongming

    2016-06-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed with resting-state fMRI, respectively. Copyright © 2016 the authors 0270-6474/16/366030-11$15.00/0.

  3. Onset age of L2 acquisition influences language network in early and late Cantonese-Mandarin bilinguals.

    PubMed

    Liu, Xiaojin; Tu, Liu; Wang, Junjing; Jiang, Bo; Gao, Wei; Pan, Ximin; Li, Meng; Zhong, Miao; Zhu, Zhenzhen; Niu, Meiqi; Li, Yanyan; Zhao, Ling; Chen, Xiaoxi; Liu, Chang; Lu, Zhi; Huang, Ruiwang

    2017-11-01

    Early second language (L2) experience influences the neural organization of L2 in neuro-plastic terms. Previous studies tried to reveal these plastic effects of age of second language acquisition (AoA-L2) and proficiency-level in L2 (PL-L2) on the neural basis of language processing in bilinguals. Although different activation patterns have been observed during language processing in early and late bilinguals by task-fMRI, few studies reported the effect of AoA-L2 and high PL-L2 on language network at resting state. In this study, we acquired resting-state fMRI (R-fMRI) data from 10 Cantonese (L1)-Mandarin (L2) early bilinguals (acquired L2: 3years old) and 11 late bilinguals (acquired L2: 6years old), and analyzed their topological properties of language networks after controlling the language daily exposure and usage as well as PL in L1 and L2. We found that early bilinguals had significantly a higher clustering coefficient, global and local efficiency, but significantly lower characteristic path length compared to late bilinguals. Modular analysis indicated that compared to late bilinguals, early bilinguals showed significantly stronger intra-modular functional connectivity in the semantic and phonetic modules, stronger inter-modular functional connectivity between the semantic and phonetic modules as well as between the phonetic and syntactic modules. Differences in global and local parameters may reflect different patterns of neuro-plasticity respectively for early and late bilinguals. These results suggested that different L2 experience influences topological properties of language network, even if late bilinguals achieve high PL-L2. Our findings may provide a new perspective of neural mechanisms related to early and late bilinguals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Topological dimension tunes activity patterns in hierarchical modular networks

    NASA Astrophysics Data System (ADS)

    Safari, Ali; Moretti, Paolo; Muñoz, Miguel A.

    2017-11-01

    Connectivity patterns of relevance in neuroscience and systems biology can be encoded in hierarchical modular networks (HMNs). Recent studies highlight the role of hierarchical modular organization in shaping brain activity patterns, providing an excellent substrate to promote both segregation and integration of neural information. Here, we propose an extensive analysis of the critical spreading rate (or ‘epidemic’ threshold)—separating a phase with endemic persistent activity from one in which activity ceases—on diverse HMNs. By employing analytical and computational techniques we determine the nature of such a threshold and scrutinize how it depends on general structural features of the underlying HMN. We critically discuss the extent to which current graph-spectral methods can be applied to predict the onset of spreading in HMNs and, most importantly, we elucidate the role played by the network topological dimension as a relevant and unifying structural parameter, controlling the epidemic threshold.

  5. The Evolutionary Origins of Hierarchy

    PubMed Central

    Huizinga, Joost; Clune, Jeff

    2016-01-01

    Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881

  6. The Evolutionary Origins of Hierarchy.

    PubMed

    Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff

    2016-06-01

    Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  7. Localizing Tortoise Nests by Neural Networks.

    PubMed

    Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita

    2016-01-01

    The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  8. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    PubMed

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  9. Neural network identification of aircraft nonlinear aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Egorchev, M. V.; Tiumentsev, Yu V.

    2018-02-01

    The simulation problem for the controlled aircraft motion is considered in the case of imperfect knowledge of the modeling object and its operating conditions. The work aims to develop a class of modular semi-empirical dynamic models that combine the capabilities of theoretical and neural network modeling. We consider the use of semi-empirical neural network models for solving the problem of identifying aerodynamic characteristics of an aircraft. We also discuss the formation problem for a representative set of data characterizing the behavior of a simulated dynamic system, which is one of the critical tasks in the synthesis of ANN-models. The effectiveness of the proposed approach is demonstrated using a simulation example of the aircraft angular motion and identifying the corresponding coefficients of aerodynamic forces and moments.

  10. An improved fault detection classification and location scheme based on wavelet transform and artificial neural network for six phase transmission line using single end data only.

    PubMed

    Koley, Ebha; Verma, Khushaboo; Ghosh, Subhojit

    2015-01-01

    Restrictions on right of way and increasing power demand has boosted development of six phase transmission. It offers a viable alternative for transmitting more power, without major modification in existing structure of three phase double circuit transmission system. Inspite of the advantages, low acceptance of six phase system is attributed to the unavailability of a proper protection scheme. The complexity arising from large number of possible faults in six phase lines makes the protection quite challenging. The proposed work presents a hybrid wavelet transform and modular artificial neural network based fault detector, classifier and locator for six phase lines using single end data only. The standard deviation of the approximate coefficients of voltage and current signals obtained using discrete wavelet transform are applied as input to the modular artificial neural network for fault classification and location. The proposed scheme has been tested for all 120 types of shunt faults with variation in location, fault resistance, fault inception angles. The variation in power system parameters viz. short circuit capacity of the source and its X/R ratio, voltage, frequency and CT saturation has also been investigated. The result confirms the effectiveness and reliability of the proposed protection scheme which makes it ideal for real time implementation.

  11. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice.

    PubMed

    Balasubramani, Pragathi P; Moreno-Bote, Rubén; Hayden, Benjamin Y

    2018-01-01

    The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies.

  12. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice

    PubMed Central

    Balasubramani, Pragathi P.; Moreno-Bote, Rubén; Hayden, Benjamin Y.

    2018-01-01

    The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies. PMID:29643773

  13. Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks

    PubMed Central

    Clune, Jeff

    2017-01-01

    A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules). While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1) induces task-specific learning in groups of nodes and connections (task-specific localized learning), which 2) produces functional modules for each subtask, and 3) yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting. PMID:29145413

  14. The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles

    PubMed Central

    Azulay, Aharon; Zaslaver, Alon

    2016-01-01

    A major goal of systems neuroscience is to decipher the structure-function relationship in neural networks. Here we study network functionality in light of the common-neighbor-rule (CNR) in which a pair of neurons is more likely to be connected the more common neighbors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we establish that the CNR is an emerging property in this connectome. Moreover, sets of common neighbors form homogenous structures that appear in defined layers of the network. Simulations of signal propagation reveal their potential functional roles: signal amplification and short-term memory at the sensory/inter-neuron layer, and synchronized activity at the motoneuron layer supporting coordinated movement. A coarse-grained view of the neural network based on homogenous connected sets alone reveals a simple modular network architecture that is intuitive to understand. These findings provide a novel framework for analyzing larger, more complex, connectomes once these become available. PMID:27606684

  15. Individual nodeʼs contribution to the mesoscale of complex networks

    NASA Astrophysics Data System (ADS)

    Klimm, Florian; Borge-Holthoefer, Javier; Wessel, Niels; Kurths, Jürgen; Zamora-López, Gorka

    2014-12-01

    The analysis of complex networks is devoted to the statistical characterization of the topology of graphs at different scales of organization in order to understand their functionality. While the modular structure of networks has become an essential element to better apprehend their complexity, the efforts to characterize the mesoscale of networks have focused on the identification of the modules rather than describing the mesoscale in an informative manner. Here we propose a framework to characterize the position every node takes within the modular configuration of complex networks and to evaluate their function accordingly. For illustration, we apply this framework to a set of synthetic networks, empirical neural networks, and to the transcriptional regulatory network of the Mycobacterium tuberculosis. We find that the architecture of both neuronal and transcriptional networks are optimized for the processing of multisensory information with the coexistence of well-defined modules of specialized components and the presence of hubs conveying information from and to the distinct functional domains.

  16. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    PubMed

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  17. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder

    PubMed Central

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive. PMID:28018162

  18. A modular neural network scheme applied to fault diagnosis in electric power systems.

    PubMed

    Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.

  19. A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems

    PubMed Central

    Flores, Agustín; Morant, Francisco

    2014-01-01

    This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897

  20. Dynamic changes in neural circuit topology following mild mechanical injury in vitro.

    PubMed

    Patel, Tapan P; Ventre, Scott C; Meaney, David F

    2012-01-01

    Despite its enormous incidence, mild traumatic brain injury is not well understood. One aspect that needs more definition is how the mechanical energy during injury affects neural circuit function. Recent developments in cellular imaging probes provide an opportunity to assess the dynamic state of neural networks with single-cell resolution. In this article, we developed imaging methods to assess the state of dissociated cortical networks exposed to mild injury. We estimated the imaging conditions needed to achieve accurate measures of network properties, and applied these methodologies to evaluate if mild mechanical injury to cortical neurons produces graded changes to either spontaneous network activity or altered network topology. We found that modest injury produced a transient increase in calcium activity that dissipated within 1 h after injury. Alternatively, moderate mechanical injury produced immediate disruption in network synchrony, loss in excitatory tone, and increased modular topology. A calcium-activated neutral protease (calpain) was a key intermediary in these changes; blocking calpain activation restored the network nearly completely to its pre-injury state. Together, these findings show a more complex change in neural circuit behavior than previously reported for mild mechanical injury, and highlight at least one important early mechanism responsible for these changes.

  1. Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.

    PubMed

    Tran, Son N; d'Avila Garcez, Artur S

    2018-02-01

    Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.

  2. Functional Brain Network Modularity Captures Inter- and Intra-Individual Variation in Working Memory Capacity

    PubMed Central

    Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.

    2012-01-01

    Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise. PMID:22276205

  3. A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.

    PubMed

    Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying

    2018-06-13

    The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.

  4. Dynamics of modularity of neural activity in the brain during development

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Chen, Man

    2014-03-01

    Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.

  5. Modes of Large-Scale Brain Network Organization during Threat Processing and Posttraumatic Stress Disorder Symptom Reduction during TF-CBT among Adolescent Girls.

    PubMed

    Cisler, Josh M; Sigel, Benjamin A; Kramer, Teresa L; Smitherman, Sonet; Vanderzee, Karin; Pemberton, Joy; Kilts, Clinton D

    2016-01-01

    Posttraumatic stress disorder (PTSD) is often chronic and disabling across the lifespan. The gold standard treatment for adolescent PTSD is Trauma-Focused Cognitive-Behavioral Therapy (TF-CBT), though treatment response is variable and mediating neural mechanisms are not well understood. Here, we test whether PTSD symptom reduction during TF-CBT is associated with individual differences in large-scale brain network organization during emotion processing. Twenty adolescent girls, aged 11-16, with PTSD related to assaultive violence completed a 12-session protocol of TF-CBT. Participants completed an emotion processing task, in which neutral and fearful facial expressions were presented either overtly or covertly during 3T fMRI, before and after treatment. Analyses focused on characterizing network properties of modularity, assortativity, and global efficiency within an 824 region-of-interest brain parcellation separately during each of the task blocks using weighted functional connectivity matrices. We similarly analyzed an existing dataset of healthy adolescent girls undergoing an identical emotion processing task to characterize normative network organization. Pre-treatment individual differences in modularity, assortativity, and global efficiency during covert fear vs neutral blocks predicted PTSD symptom reduction. Patients who responded better to treatment had greater network modularity and assortativity but lesser efficiency, a pattern that closely resembled the control participants. At a group level, greater symptom reduction was associated with greater pre-to-post-treatment increases in network assortativity and modularity, but this was more pronounced among participants with less symptom improvement. The results support the hypothesis that modularized and resilient brain organization during emotion processing operate as mechanisms enabling symptom reduction during TF-CBT.

  6. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    NASA Astrophysics Data System (ADS)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  7. Neural network pattern recognition of thermal-signature spectra for chemical defense

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Lim, Pascal I.

    1995-05-01

    We treat infrared patterns of absorption or emission by nerve and blister agent compounds (and simulants of this chemical group) as features for the training of neural networks to detect the compounds' liquid layers on the ground or their vapor plumes during evaporation by external heating. Training of a four-layer network architecture is composed of a backward-error-propagation algorithm and a gradient-descent paradigm. We conduct testing by feed-forwarding preprocessed spectra through the network in a scaled format consistent with the structure of the training-data-set representation. The best-performance weight matrix (spectral filter) evolved from final network training and testing with software simulation trials is electronically transferred to a set of eight artificial intelligence integrated circuits (ICs') in specific modular form (splitting of weight matrices). This form makes full use of all input-output IC nodes. This neural network computer serves an important real-time detection function when it is integrated into pre-and postprocessing data-handling units of a tactical prototype thermoluminescence sensor now under development at the Edgewood Research, Development, and Engineering Center.

  8. Graph theoretical analysis of functional network for comprehension of sign language.

    PubMed

    Liu, Lanfang; Yan, Xin; Liu, Jin; Xia, Mingrui; Lu, Chunming; Emmorey, Karen; Chu, Mingyuan; Ding, Guosheng

    2017-09-15

    Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t (24) =2.379, p=0.026), small-worldness (t (24) =2.604, p=0.016) and modularity (t (24) =3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?

    PubMed Central

    Li, Dong; Zhou, Changsong

    2011-01-01

    Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576

  10. Modular Neural Networks for Speech Recognition.

    DTIC Science & Technology

    1996-08-01

    automatic speech rccogni- tion, understanding and translation since the early 1950’ s . Although researchers have demonstrated impressive results with...nodes. It serves only as a data source for the following hidden layer( s ). Finally, the networks output is computed by neurons in the output layer. The...following update rule for weights in the hidden layer: w (,,•+I) ("’) E/V S (W W k- = wj, -- 7 - / v It is easy to generalize the backpropagation

  11. Cosmic-ray discrimination capabilities of /ΔE-/E silicon nuclear telescopes using neural networks

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Castellano, M.; Ciacio, F.; Circella, M.; Marzo, C. N. D.; Montaruli, T.

    2000-02-01

    An isotope classifier of cosmic-ray events collected by space detectors has been implemented using a multi-layer perceptron neural architecture. In order to handle a great number of different isotopes a modular architecture of the ``mixture of experts'' type is proposed. The performance of this classifier has been tested on simulated data and has been compared with a ``classical'' classifying procedure. The quantitative comparison with traditional techniques shows that the neural approach has classification performances comparable - within /1% - with that of the classical one, with efficiency of the order of /98%. A possible hardware implementation of such a kind of neural architecture in future space missions is considered.

  12. On structure-exploiting trust-region regularized nonlinear least squares algorithms for neural-network learning.

    PubMed

    Mizutani, Eiji; Demmel, James W

    2003-01-01

    This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).

  13. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens.

    PubMed

    Kaiser, Marcus; Varier, Sreedevi

    2011-01-01

    Neural networks show a progressive increase in complexity during the time course of evolution. From diffuse nerve nets in Cnidaria to modular, hierarchical systems in macaque and humans, there is a gradual shift from simple processes involving a limited amount of tasks and modalities to complex functional and behavioral processing integrating different kinds of information from highly specialized tissue. However, studies in a range of species suggest that fundamental similarities, in spatial and topological features as well as in developmental mechanisms for network formation, are retained across evolution. 'Small-world' topology and highly connected regions (hubs) are prevalent across the evolutionary scale, ensuring efficient processing and resilience to internal (e.g. lesions) and external (e.g. environment) changes. Furthermore, in most species, even the establishment of hubs, long-range connections linking distant components, and a modular organization, relies on similar mechanisms. In conclusion, evolutionary divergence leads to greater complexity while following essential developmental constraints.

  14. Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.

    PubMed

    Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo

    2017-01-01

    Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.

  15. Modular Neuronal Assemblies Embodied in a Closed-Loop Environment: Toward Future Integration of Brains and Machines

    PubMed Central

    Tessadori, Jacopo; Bisio, Marta; Martinoia, Sergio; Chiappalone, Michela

    2012-01-01

    Behaviors, from simple to most complex, require a two-way interaction with the environment and the contribution of different brain areas depending on the orchestrated activation of neuronal assemblies. In this work we present a new hybrid neuro-robotic architecture based on a neural controller bi-directionally connected to a virtual robot implementing a Braitenberg vehicle aimed at avoiding obstacles. The robot is characterized by proximity sensors and wheels, allowing it to navigate into a circular arena with obstacles of different sizes. As neural controller, we used hippocampal cultures dissociated from embryonic rats and kept alive over Micro Electrode Arrays (MEAs) for 3–8 weeks. The developed software architecture guarantees a bi-directional exchange of information between the natural and the artificial part by means of simple linear coding/decoding schemes. We used two different kinds of experimental preparation: “random” and “modular” populations. In the second case, the confinement was assured by a polydimethylsiloxane (PDMS) mask placed over the surface of the MEA device, thus defining two populations interconnected via specific microchannels. The main results of our study are: (i) neuronal cultures can be successfully interfaced to an artificial agent; (ii) modular networks show a different dynamics with respect to random culture, both in terms of spontaneous and evoked electrophysiological patterns; (iii) the robot performs better if a reinforcement learning paradigm (i.e., a tetanic stimulation delivered to the network following each collision) is activated, regardless of the modularity of the culture; (iv) the robot controlled by the modular network further enhances its capabilities in avoiding obstacles during the short-term plasticity trial. The developed paradigm offers a new framework for studying, in simplified model systems, neuro-artificial bi-directional interfaces for the development of new strategies for brain-machine interaction. PMID:23248586

  16. Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    NASA Technical Reports Server (NTRS)

    Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael

    1993-01-01

    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).

  17. Modular structure of functional networks in olfactory memory.

    PubMed

    Meunier, David; Fonlupt, Pierre; Saive, Anne-Lise; Plailly, Jane; Ravel, Nadine; Royet, Jean-Pierre

    2014-07-15

    Graph theory enables the study of systems by describing those systems as a set of nodes and edges. Graph theory has been widely applied to characterize the overall structure of data sets in the social, technological, and biological sciences, including neuroscience. Modular structure decomposition enables the definition of sub-networks whose components are gathered in the same module and work together closely, while working weakly with components from other modules. This processing is of interest for studying memory, a cognitive process that is widely distributed. We propose a new method to identify modular structure in task-related functional magnetic resonance imaging (fMRI) networks. The modular structure was obtained directly from correlation coefficients and thus retained information about both signs and weights. The method was applied to functional data acquired during a yes-no odor recognition memory task performed by young and elderly adults. Four response categories were explored: correct (Hit) and incorrect (False alarm, FA) recognition and correct and incorrect rejection. We extracted time series data for 36 areas as a function of response categories and age groups and calculated condition-based weighted correlation matrices. Overall, condition-based modular partitions were more homogeneous in young than elderly subjects. Using partition similarity-based statistics and a posteriori statistical analyses, we demonstrated that several areas, including the hippocampus, caudate nucleus, and anterior cingulate gyrus, belonged to the same module more frequently during Hit than during all other conditions. Modularity values were negatively correlated with memory scores in the Hit condition and positively correlated with bias scores (liberal/conservative attitude) in the Hit and FA conditions. We further demonstrated that the proportion of positive and negative links between areas of different modules (i.e., the proportion of correlated and anti-correlated areas) accounted for most of the observed differences in signed modularity. Taken together, our results provided some evidence that the neural networks involved in odor recognition memory are organized into modules and that these modular partitions are linked to behavioral performance and individual strategies. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks.

    PubMed

    Ertosun, Mehmet Günhan; Rubin, Daniel L

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository.

  19. Automated Grading of Gliomas using Deep Learning in Digital Pathology Images: A modular approach with ensemble of convolutional neural networks

    PubMed Central

    Ertosun, Mehmet Günhan; Rubin, Daniel L.

    2015-01-01

    Brain glioma is the most common primary malignant brain tumors in adults with different pathologic subtypes: Lower Grade Glioma (LGG) Grade II, Lower Grade Glioma (LGG) Grade III, and Glioblastoma Multiforme (GBM) Grade IV. The survival and treatment options are highly dependent of this glioma grade. We propose a deep learning-based, modular classification pipeline for automated grading of gliomas using digital pathology images. Whole tissue digitized images of pathology slides obtained from The Cancer Genome Atlas (TCGA) were used to train our deep learning modules. Our modular pipeline provides diagnostic quality statistics, such as precision, sensitivity and specificity, of the individual deep learning modules, and (1) facilitates training given the limited data in this domain, (2) enables exploration of different deep learning structures for each module, (3) leads to developing less complex modules that are simpler to analyze, and (4) provides flexibility, permitting use of single modules within the framework or use of other modeling or machine learning applications, such as probabilistic graphical models or support vector machines. Our modular approach helps us meet the requirements of minimum accuracy levels that are demanded by the context of different decision points within a multi-class classification scheme. Convolutional Neural Networks are trained for each module for each sub-task with more than 90% classification accuracies on validation data set, and achieved classification accuracy of 96% for the task of GBM vs LGG classification, 71% for further identifying the grade of LGG into Grade II or Grade III on independent data set coming from new patients from the multi-institutional repository. PMID:26958289

  20. VoIP attacks detection engine based on neural network

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2015-05-01

    The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.

  1. Disrupted Topological Patterns of Large-Scale Network in Conduct Disorder

    PubMed Central

    Jiang, Yali; Liu, Weixiang; Ming, Qingsen; Gao, Yidian; Ma, Ren; Zhang, Xiaocui; Situ, Weijun; Wang, Xiang; Yao, Shuqiao; Huang, Bingsheng

    2016-01-01

    Regional abnormalities in brain structure and function, as well as disrupted connectivity, have been found repeatedly in adolescents with conduct disorder (CD). Yet, the large-scale brain topology associated with CD is not well characterized, and little is known about the systematic neural mechanisms of CD. We employed graphic theory to investigate systematically the structural connectivity derived from cortical thickness correlation in a group of patients with CD (N = 43) and healthy controls (HCs, N = 73). Nonparametric permutation tests were applied for between-group comparisons of graphical metrics. Compared with HCs, network measures including global/local efficiency and modularity all pointed to hypo-functioning in CD, despite of preserved small-world organization in both groups. The hubs distribution is only partially overlapped with each other. These results indicate that CD is accompanied by both impaired integration and segregation patterns of brain networks, and the distribution of highly connected neural network ‘hubs’ is also distinct between groups. Such misconfiguration extends our understanding regarding how structural neural network disruptions may underlie behavioral disturbances in adolescents with CD, and potentially, implicates an aberrant cytoarchitectonic profiles in the brain of CD patients. PMID:27841320

  2. Breakdown of the brain’s functional network modularity with awareness

    PubMed Central

    Godwin, Douglass; Barry, Robert L.; Marois, René

    2015-01-01

    Neurobiological theories of awareness propose divergent accounts of the spatial extent of brain changes that support conscious perception. Whereas focal theories posit mostly local regional changes, global theories propose that awareness emerges from the propagation of neural signals across a broad extent of sensory and association cortex. Here we tested the scalar extent of brain changes associated with awareness using graph theoretical analysis applied to functional connectivity data acquired at ultra-high field while subjects performed a simple masked target detection task. We found that awareness of a visual target is associated with a degradation of the modularity of the brain’s functional networks brought about by an increase in intermodular functional connectivity. These results provide compelling evidence that awareness is associated with truly global changes in the brain’s functional connectivity. PMID:25759440

  3. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    PubMed

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  4. The pandemonium system of reflective agents.

    PubMed

    Smieja, F

    1996-01-01

    The Pandemonium system of reflective MINOS agents solves problems by automatic dynamic modularization of the input space. The agents contain feedforward neural networks which adapt using the backpropagation algorithm. We demonstrate the performance of Pandemonium on various categories of problems. These include learning continuous functions with discontinuities, separating two spirals, learning the parity function, and optical character recognition. It is shown how strongly the advantages gained from using a modularization technique depend on the nature of the problem. The superiority of the Pandemonium method over a single net on the first two test categories is contrasted with its limited advantages for the second two categories. In the first case the system converges quicker with modularization and is seen to lead to simpler solutions. For the second case the problem is not significantly simplified through flat decomposition of the input space, although convergence is still quicker.

  5. Autonomous learning in humanoid robotics through mental imagery.

    PubMed

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Trade-off between Multiple Constraints Enables Simultaneous Formation of Modules and Hubs in Neural Systems

    PubMed Central

    Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C.; Zhou, Changsong

    2013-01-01

    The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy suggests that there are further relevant factors that are not yet captured here. PMID:23505352

  7. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems

    PubMed Central

    Stefanini, Fabio; Neftci, Emre O.; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS. PMID:25232314

  8. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.

    PubMed

    Stefanini, Fabio; Neftci, Emre O; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS.

  9. Understanding emotion with brain networks.

    PubMed

    Pessoa, Luiz

    2018-02-01

    Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.

  10. A model for integrating elementary neural functions into delayed-response behavior.

    PubMed

    Gisiger, Thomas; Kerszberg, Michel

    2006-04-01

    It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  11. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  12. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  13. The application of improved NeuroEvolution of Augmenting Topologies neural network in Marcellus Shale lithofacies prediction

    NASA Astrophysics Data System (ADS)

    Wang, Guochang; Cheng, Guojian; Carr, Timothy R.

    2013-04-01

    The organic-rich Marcellus Shale was deposited in a foreland basin during Middle Devonian. In terms of mineral composition and organic matter richness, we define seven mudrock lithofacies: three organic-rich lithofacies and four organic-poor lithofacies. The 3D lithofacies model is very helpful to determine geologic and engineering sweet spots, and consequently useful for designing horizontal well trajectories and stimulation strategies. The NeuroEvolution of Augmenting Topologies (NEAT) is relatively new idea in the design of neural networks, and shed light on classification (i.e., Marcellus Shale lithofacies prediction). We have successfully enhanced the capability and efficiency of NEAT in three aspects. First, we introduced two new attributes of node gene, the node location and recurrent connection (RCC), to increase the calculation efficiency. Second, we evolved the population size from an initial small value to big, instead of using the constant value, which saves time and computer memory, especially for complex learning tasks. Third, in multiclass pattern recognition problems, we combined feature selection of input variables and modular neural network to automatically select input variables and optimize network topology for each binary classifier. These improvements were tested and verified by true if an odd number of its arguments are true and false otherwise (XOR) experiments, and were powerful for classification.

  14. [Not Available].

    PubMed

    Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus

    2009-01-01

    The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations.

  15. Can modular psychological concepts like affect and emotion be assigned to a distinct subset of regional neural circuits?. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Fehr, Thorsten; Herrmann, Manfred

    2015-06-01

    The proposed Quartet Theory of Human Emotions by Koelsch and co-workers [11] adumbrates evidence from various scientific sources to integrate and assign the psychological concepts of 'affect' and 'emotion' to four brain circuits or to four neuronal core systems for affect-processing in the brain. The authors differentiate between affect and emotion and assign several facultative, or to say modular, psychological domains and principles of information processing, such as learning and memory, antecedents of affective activity, emotion satiation, cognitive complexity, subjective quality feelings, degree of conscious appraisal, to different affect systems. Furthermore, they relate orbito-frontal brain structures to moral affects as uniquely human, and the hippocampus to attachment-related affects. An additional feature of the theory describes 'emotional effector-systems' for motor-related processes (e.g., emotion-related actions), physiological arousal, attention and memory that are assumed to be cross-linked with the four proposed affect systems. Thus, higher principles of emotional information processing, but also modular affect-related issues, such as moral and attachment related affects, are thought to be handled by these four different physiological sub-systems that are on the other side assumed to be highly interwoven at both physiological and functional levels. The authors also state that the proposed sub-systems have many features in common, such as the selection and modulation of biological processes related to behaviour, perception, attention and memory. The latter aspect challenges an ongoing discussion about the mind-body problem: To which degree do the proposed sub-systems 'sufficiently' cover the processing of complex modular or facultative emotional/affective and/or cognitive phenomena? There are current models and scientific positions that almost completely reject the idea that modular psychological phenomena are handled by a distinct selection of regional brain systems or neural modules, but rather suggest highly complex and cross-linked neural networks individually shaped by livelong learning and experience [e.g., 6,7,10,13]. This holds in particular true for complex emotional phenomena such as aggression or empathy in social interaction [8,13]. It thus remains questionable, whether - beyond primary sensory and motor-processing - a small number of modular sub-systems sufficiently cover the organisation of specific phenomenological and social features of perception and behaviour [7,10].

  16. PCSIM: A Parallel Simulation Environment for Neural Circuits Fully Integrated with Python

    PubMed Central

    Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus

    2008-01-01

    The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations. PMID:19543450

  17. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  18. Adaptive multi-resolution Modularity for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Wang, Zhi-Zhong; Bao, Mei-Hua; Tang, Liang; Zhou, Ji; Xiang, Ju; Li, Jian-Ming; Yi, Chen-He

    2018-02-01

    Community structure is a common topological property of complex networks, which attracted much attention from various fields. Optimizing quality functions for community structures is a kind of popular strategy for community detection, such as Modularity optimization. Here, we introduce a general definition of Modularity, by which several classical (multi-resolution) Modularity can be derived, and then propose a kind of adaptive (multi-resolution) Modularity that can combine the advantages of different Modularity. By applying the Modularity to various synthetic and real-world networks, we study the behaviors of the methods, showing the validity and advantages of the multi-resolution Modularity in community detection. The adaptive Modularity, as a kind of multi-resolution method, can naturally solve the first-type limit of Modularity and detect communities at different scales; it can quicken the disconnecting of communities and delay the breakup of communities in heterogeneous networks; and thus it is expected to generate the stable community structures in networks more effectively and have stronger tolerance against the second-type limit of Modularity.

  19. Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.

    PubMed

    Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J

    2012-10-01

    This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.

  20. Evolutionary and Developmental Modules

    PubMed Central

    Lacquaniti, Francesco; Ivanenko, Yuri P.; d’Avella, Andrea; Zelik, Karl E.; Zago, Myrka

    2013-01-01

    The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates. PMID:23730285

  1. Evolutionary and developmental modules.

    PubMed

    Lacquaniti, Francesco; Ivanenko, Yuri P; d'Avella, Andrea; Zelik, Karl E; Zago, Myrka

    2013-01-01

    The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates.

  2. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    PubMed Central

    Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living. PMID:28373567

  3. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    USGS Publications Warehouse

    Sah, Pratha; Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  4. Unraveling the disease consequences and mechanisms of modular structure in animal social networks.

    PubMed

    Sah, Pratha; Leu, Stephan T; Cross, Paul C; Hudson, Peter J; Bansal, Shweta

    2017-04-18

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  5. From Hippocampus to Whole-Brain: The Role of Integrative Processing in Episodic Memory Retrieval

    PubMed Central

    Geib, Benjamin R.; Stanley, Matthew L.; Dennis, Nancy A.; Woldorff, Marty G.; Cabeza, Roberto

    2017-01-01

    Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. PMID:28112460

  6. Non-Stationarity in the “Resting Brain’s” Modular Architecture

    PubMed Central

    Jones, David T.; Vemuri, Prashanthi; Murphy, Matthew C.; Gunter, Jeffrey L.; Senjem, Matthew L.; Machulda, Mary M.; Przybelski, Scott A.; Gregg, Brian E.; Kantarci, Kejal; Knopman, David S.; Boeve, Bradley F.; Petersen, Ronald C.; Jack, Clifford R.

    2012-01-01

    Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variability has hampered efforts to define a robust metric of connectivity suitable as a biomarker for neurologic illness. We hypothesized that some of this variability rather than representing noise in the measurement process, is related to a fundamental feature of connectivity within ICNs, which is their non-stationary nature. To test this hypothesis, we used a large (n = 892) population-based sample of older subjects to construct a well characterized atlas of 68 functional regions, which were categorized based on independent component analysis network of origin, anatomical locations, and a functional meta-analysis. These regions were then used to construct dynamic graphical representations of brain connectivity within a sliding time window for each subject. This allowed us to demonstrate the non-stationary nature of the brain’s modular organization and assign each region to a “meta-modular” group. Using this grouping, we then compared dwell time in strong sub-network configurations of the default mode network (DMN) between 28 subjects with Alzheimer’s dementia and 56 cognitively normal elderly subjects matched 1∶2 on age, gender, and education. We found that differences in connectivity we and others have previously observed in Alzheimer’s disease can be explained by differences in dwell time in DMN sub-network configurations, rather than steady state connectivity magnitude. DMN dwell time in specific modular configurations may also underlie the TF-fMRI findings that have been described in mild cognitive impairment and cognitively normal subjects who are at risk for Alzheimer’s dementia. PMID:22761880

  7. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.

    PubMed

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world.

  8. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot

    PubMed Central

    Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate

    2015-01-01

    Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world. PMID:26528176

  9. Toward Real Time Neural Net Flight Controllers

    NASA Technical Reports Server (NTRS)

    Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.

  10. Nonparametric weighted stochastic block models

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2018-01-01

    We present a Bayesian formulation of weighted stochastic block models that can be used to infer the large-scale modular structure of weighted networks, including their hierarchical organization. Our method is nonparametric, and thus does not require the prior knowledge of the number of groups or other dimensions of the model, which are instead inferred from data. We give a comprehensive treatment of different kinds of edge weights (i.e., continuous or discrete, signed or unsigned, bounded or unbounded), as well as arbitrary weight transformations, and describe an unsupervised model selection approach to choose the best network description. We illustrate the application of our method to a variety of empirical weighted networks, such as global migrations, voting patterns in congress, and neural connections in the human brain.

  11. Z-Score-Based Modularity for Community Detection in Networks

    PubMed Central

    Miyauchi, Atsushi; Kawase, Yasushi

    2016-01-01

    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given partition with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function. PMID:26808270

  12. From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval.

    PubMed

    Geib, Benjamin R; Stanley, Matthew L; Dennis, Nancy A; Woldorff, Marty G; Cabeza, Roberto

    2017-04-01

    Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. Hum Brain Mapp 38:2242-2259, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Modular analysis of biological networks.

    PubMed

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  14. Altered segregation between task-positive and task-negative regions in mild traumatic brain injury.

    PubMed

    Sours, Chandler; Kinnison, Joshua; Padmala, Srikanth; Gullapalli, Rao P; Pessoa, Luiz

    2018-06-01

    Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were investigated using functional magnetic resonance imaging (fMRI) during the N-back working memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined during the chronic stage of injury and compared to 28 control participants. Demographics and behavioral performance were matched across groups. Due to the diffuse nature of injury, we hypothesized that there would be an imbalance in the communication between task-positive and Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a graph-theoretic measure of modularity was used to quantify the extent to which groups of brain regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI patients showed reduced segregation between the DMN and task-positive networks, but increased functional connectivity within the DMN regions during the more cognitively demanding 2-back task. Together, our findings reveal that patients exhibit alterations in the communication between and within neural networks during a cognitively demanding task. These findings reveal altered processes that persist through the chronic stage of injury, highlighting the need for longitudinal research to map the neural recovery of mTBI patients.

  15. Neurological impressions on the organization of language networks in the human brain.

    PubMed

    Oliveira, Fabricio Ferreira de; Marin, Sheilla de Medeiros Correia; Bertolucci, Paulo Henrique Ferreira

    2017-01-01

    More than 95% of right-handed individuals, as well as almost 80% of left-handed individuals, have left hemisphere dominance for language. The perisylvian networks of the dominant hemisphere tend to be the most important language systems in human brains, usually connected by bidirectional fibres originated from the superior longitudinal fascicle/arcuate fascicle system and potentially modifiable by learning. Neuroplasticity mechanisms take place to preserve neural functions after brain injuries. Language is dependent on a hierarchical interlinkage of serial and parallel processing areas in distinct brain regions considered to be elementary processing units. Whereas aphasic syndromes typically result from injuries to the dominant hemisphere, the extent of the distribution of language functions seems to be variable for each individual. Review of the literature Results: Several theories try to explain the organization of language networks in the human brain from a point of view that involves either modular or distributed processing or sometimes both. The most important evidence for each approach is discussed under the light of modern theories of organization of neural networks. Understanding the connectivity patterns of language networks may provide deeper insights into language functions, supporting evidence-based rehabilitation strategies that focus on the enhancement of language organization for patients with aphasic syndromes.

  16. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.

    PubMed

    von Twickel, Arndt; Büschges, Ansgar; Pasemann, Frank

    2011-02-01

    This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et al. (Arthropod Struct Dev 33:287-300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.

  17. Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network

    NASA Astrophysics Data System (ADS)

    Funabashi, Masatoshi

    We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.

  18. Representing Sex in the Brain, One Module at a Time

    PubMed Central

    Yang, Cindy F.; Shah, Nirao M.

    2014-01-01

    Summary Sexually dimorphic behaviors, qualitative or quantitative differences in behaviors between the sexes, result from the activity of a sexually differentiated nervous system. Sensory cues and sex hormones control the entire repertoire of sexually dimorphic behaviors, including those commonly thought to be charged with emotion such as courtship and aggression. Recent studies show that these over-arching control mechanisms regulate distinct genes and neurons that in turn specify the display of such behaviors in a modular manner. How such modular control is transformed into cohesive internal states that correspond to sexually dimorphic behavior is poorly understood. We summarize current understanding of the neural circuit control of sexually dimorphic behaviors from several perspectives, including how neural circuits in general, and sexually dimorphic neurons in particular, can generate sex differences in behavior, and how molecular mechanisms and evolutionary constraints shape these behaviors. We propose that emergent themes such as the modular genetic and neural control of dimorphic behavior are broadly applicable to the neural control of other behaviors. PMID:24742456

  19. Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting.

    PubMed

    Corzo, Gerald; Solomatine, Dimitri

    2007-05-01

    Natural phenomena are multistationary and are composed of a number of interacting processes, so one single model handling all processes often suffers from inaccuracies. A solution is to partition data in relation to such processes using the available domain knowledge or expert judgment, to train separate models for each of the processes, and to merge them in a modular model (committee). In this paper a problem of water flow forecast in watershed hydrology is considered where the flow process can be presented as consisting of two subprocesses -- base flow and excess flow, so that these two processes can be separated. Several approaches to data separation techniques are studied. Two case studies with different forecast horizons are considered. Parameters of the algorithms responsible for data partitioning are optimized using genetic algorithms and global pattern search. It was found that modularization of ANN models using domain knowledge makes models more accurate, if compared with a global model trained on the whole data set, especially when forecast horizon (and hence the complexity of the modelled processes) is increased.

  20. A neural network based artificial vision system for licence plate recognition.

    PubMed

    Draghici, S

    1997-02-01

    This paper presents a neural network based artificial vision system able to analyze the image of a car given by a camera, locate the registration plate and recognize the registration number of the car. The paper describes in detail various practical problems encountered in implementing this particular application and the solutions used to solve them. The main features of the system presented are: controlled stability-plasticity behavior, controlled reliability threshold, both off-line and on-line learning, self assessment of the output reliability and high reliability based on high level multiple feedback. The system has been designed using a modular approach. Sub-modules can be upgraded and/or substituted independently, thus making the system potentially suitable in a large variety of vision applications. The OCR engine was designed as an interchangeable plug-in module. This allows the user to choose an OCR engine which is suited to the particular application and to upgrade it easily in the future. At present, there are several versions of this OCR engine. One of them is based on a fully connected feedforward artificial neural network with sigmoidal activation functions. This network can be trained with various training algorithms such as error backpropagation. An alternative OCR engine is based on the constraint based decomposition (CBD) training architecture. The system has showed the following performances (on average) on real-world data: successful plate location and segmentation about 99%, successful character recognition about 98% and successful recognition of complete registration plates about 80%.

  1. The Basal Ganglia and Adaptive Motor Control

    NASA Astrophysics Data System (ADS)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  2. Continuous system modeling

    NASA Technical Reports Server (NTRS)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  3. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    PubMed

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  4. Development of an Efficient Identifier for Nuclear Power Plant Transients Based on Latest Advances of Error Back-Propagation Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.

    2014-02-01

    This study aims to improve the performance of nuclear power plants (NPPs) transients training and identification using the latest advances of error back-propagation (EBP) learning algorithm. To this end, elements of EBP, including input data, initial weights, learning rate, cost function, activation function, and weights updating procedure are investigated and an efficient neural network is developed. Usefulness of modular networks is also examined and appropriate identifiers, one for each transient, are employed. Furthermore, the effect of transient type on transient identifier performance is illustrated. Subsequently, the developed transient identifier is applied to Bushehr nuclear power plant (BNPP). Seven types of the plant events are probed to analyze the ability of the proposed identifier. The results reveal that identification occurs very early with only five plant variables, whilst in the previous studies a larger number of variables (typically 15 to 20) were required. Modular networks facilitated identification due to its sole dependency on the sign of each network output signal. Fast training of input patterns, extendibility for identification of more transients and reduction of false identification are other advantageous of the proposed identifier. Finally, the balance between the correct answer to the trained transients (memorization) and reasonable response to the test transients (generalization) is improved, meeting one of the primary design criteria of identifiers.

  5. Integration of white matter network is associated with interindividual differences in psychologically mediated placebo response in migraine patients.

    PubMed

    Liu, Jixin; Ma, Shaohui; Mu, Junya; Chen, Tao; Xu, Qing; Dun, Wanghuan; Tian, Jie; Zhang, Ming

    2017-10-01

    Individual differences of brain changes of neural communication and integration in the modular architecture of the human brain network exist for the repeated migraine attack and physical or psychological stressors. However, whether the interindividual variability in the migraine brain connectome predicts placebo response to placebo treatment is still unclear. Using DTI and graph theory approaches, we systematically investigated the topological organization of white matter networks in 71 patients with migraine without aura (MO) and 50 matched healthy controls at three levels: global network measure, nodal efficiency, and nodal intramodule/intermodule efficiency. All patients participated in an 8-week sham acupuncture treatment to induce analgesia. In our results, 30% (n = 21) of patients had 50% change in migraine days from baseline after placebo treatment. At baseline, abnormal increased network integration was found in MO patients as compared with the HC group, and the increased global efficiency before starting clinical treatment was associated with their following placebo response. For nodal efficiency, significantly increased within-subnetwork nodal efficiency and intersubnetwork connectivity of the hippocampus and middle frontal gyrus in patients' white matter network were correlated with the responses of follow-up placebo treatment. Our findings suggested that the trait-like individual differences in pain-related maladaptive stress interfered with and diminished the capacity of chronic pain modulation differently, and the placebo response for treatment could be predicted from a prior white matter network modular structure in migraineurs. Hum Brain Mapp 38:5250-5259, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment

    PubMed Central

    Yamashita, Yuichi; Tani, Jun

    2008-01-01

    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398

  7. Effect of intermodular connection on fast sparse synchronization in clustered small-world neural networks

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-11-01

    We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength Jinter and the average number of intermodular links per interneuron Msyn(inter ). In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior is globally identical, independently of the cluster structure, because the intramodular dynamics of subnetworks make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching degree between the instantaneous subpopulation spike rates of the subnetworks, and examine whether the sparse synchronization is global or modular. Depending on its magnitude, the intermodular coupling strength Jinter seems to play "dual" roles for the pacing between spikes in each subnetwork. For large Jinter, due to strong inhibition it plays a destructive role to "spoil" the pacing between spikes, while for small Jinter it plays a constructive role to "favor" the pacing between spikes. Through competition between the constructive and the destructive roles of Jinter, there exists an intermediate optimal Jinter at which the pacing degree between spikes becomes maximal. In contrast, the average number of intermodular links per interneuron Msyn(inter ) seems to play a role just to favor the pacing between spikes. With increasing Msyn(inter ), the pacing degree between spikes increases monotonically thanks to the increase in the degree of effectiveness of global communication between spikes. Furthermore, we employ the realistic sub- and whole-population order parameters, based on the instantaneous sub- and whole-population spike rates, to determine the threshold values for the synchronization-unsynchronization transition in the sub- and whole populations, and the degrees of global and modular sparse synchronization are also measured in terms of the realistic sub- and whole-population statistical-mechanical spiking measures defined by considering both the occupation and the pacing degrees of spikes. It is expected that our results could have implications for the role of the brain plasticity in some functional behaviors associated with population synchronization.

  8. Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.

    PubMed

    Avery, Suzanne N; Rogers, Baxter P; Heckers, Stephan

    2018-05-01

    Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision. We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups. Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity. Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. TRANSDIAGNOSTIC DIMENSIONS OF ANXIETY AND DEPRESSION MODERATE MOTIVATION-RELATED BRAIN NETWORKS DURING GOAL MAINTENANCE

    PubMed Central

    Spielberg, Jeffrey M.; Miller, Gregory A.; Warren, Stacie L.; Sutton, Bradley P.; Banich, Marie; Heller, Wendy

    2015-01-01

    Background Advancing research on the etiology, prevention, and treatment of psychopathology requires the field to move beyond modular conceptualizations of neural dysfunction toward understanding disturbance in key brain networks. Although some studies of anxiety and depression have begun doing so, they typically suffer from several drawbacks, including: (1) a categorical approach ignoring transdiagnostic processes, (2) failure to account for substantial anxiety and depression comorbidity, (3) examination of networks at rest, which overlooks disruption manifesting only when networks are challenged. Accordingly, the present study examined relationships between transdiagnostic dimensions of anxiety/depression and patterns of functional connectivity while goal maintenance was challenged. Methods Participants (n = 179, unselected community members and undergraduates selected to be high/low on anxiety/depression) performed a task in which goal maintenance was challenged (color-word Stroop) while fMRI data were collected. Analyses examined moderation by anxiety/depression of condition-dependent coupling between regions of dorsolateral prefrontal cortex (dlPFC) previously associated with approach and avoidance motivation and amygdala/orbitofrontal cortex (OFC). Results Anxious arousal was positively associated with amygdala↔right dlPFC coupling. Depression was positively associated with OFC↔right dlPFC coupling and negatively associated with OFC↔left dlPFC coupling. Conclusions Findings advance the field toward an integrative model of the neural instantiation of anxiety/depression by identifying specific, distinct dysfunctions associated with anxiety and depression in networks important for maintaining approach and avoidance goals. Specifically, findings shed light on potential neural mechanisms involved in attentional biases in anxiety and valuation biases in depression and underscore the importance of examining transdiagnostic dimensions of anxiety/depression while networks are challenged. PMID:24753242

  10. Transdiagnostic dimensions of anxiety and depression moderate motivation-related brain networks during goal maintenance.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Sutton, Bradley P; Banich, Marie; Heller, Wendy

    2014-10-01

    Advancing research on the etiology, prevention, and treatment of psychopathology requires the field to move beyond modular conceptualizations of neural dysfunction toward understanding disturbance in key brain networks. Although some studies of anxiety and depression have begun doing so, they typically suffer from several drawbacks, including: (1) a categorical approach ignoring transdiagnostic processes, (2) failure to account for substantial anxiety and depression comorbidity, (3) examination of networks at rest, which overlooks disruption manifesting only when networks are challenged. Accordingly, the present study examined relationships between transdiagnostic dimensions of anxiety/depression and patterns of functional connectivity while goal maintenance was challenged. Participants (n = 179, unselected community members and undergraduates selected to be high/low on anxiety/depression) performed a task in which goal maintenance was challenged (color-word Stroop) while fMRI data were collected. Analyses examined moderation by anxiety/depression of condition-dependent coupling between regions of dorsolateral prefrontal cortex (dlPFC) previously associated with approach and avoidance motivation and amygdala/orbitofrontal cortex (OFC). Anxious arousal was positively associated with amygdala↔right dlPFC coupling. Depression was positively associated with OFC↔right dlPFC coupling and negatively associated with OFC↔left dlPFC coupling. Findings advance the field toward an integrative model of the neural instantiation of anxiety/depression by identifying specific, distinct dysfunctions associated with anxiety and depression in networks important for maintaining approach and avoidance goals. Specifically, findings shed light on potential neural mechanisms involved in attentional biases in anxiety and valuation biases in depression and underscore the importance of examining transdiagnostic dimensions of anxiety/depression while networks are challenged. © 2014 Wiley Periodicals, Inc.

  11. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-03-13

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  12. Bone age detection via carpogram analysis using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Torres, Felipe; Bravo, María. Alejandra; Salinas, Emmanuel; Triana, Gustavo; Arbeláez, Pablo

    2017-11-01

    Bone age assessment is a critical factor for determining delayed development in children, which can be a sign of pathologies such as endocrine diseases, growth abnormalities, chromosomal, neurological and congenital disorders among others. In this paper we present BoneNet, a methodology to assess automatically the skeletal maturity state in pediatric patients based on Convolutional Neural Networks. We train and evaluate our algorithm on a database of X-Ray images provided by the hospital Fundacion Santa Fe de Bogot ´ a with around 1500 images of patients between the ages 1 to 18. ´ We compare two different architectures to classify the given data in order to explore the generality of our method. To accomplish this, we define multiple binary age assessment problems, dividing the data by bone age and differentiating the patients by their gender. Thus, exploring several parameters, we develop BoneNet. Our approach is holistic, efficient, and modular, since it is possible for the specialists to use all the networks combined to determine how is the skeletal maturity of a patient. BoneNet achieves over 90% accuracy for most of the critical age thresholds, when differentiating the images between over or under a given age.

  13. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  14. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  15. Investigation on changes of modularity and robustness by edge-removal mutations in signaling networks.

    PubMed

    Truong, Cong-Doan; Kwon, Yung-Keun

    2017-12-21

    Biological networks consisting of molecular components and interactions are represented by a graph model. There have been some studies based on that model to analyze a relationship between structural characteristics and dynamical behaviors in signaling network. However, little attention has been paid to changes of modularity and robustness in mutant networks. In this paper, we investigated the changes of modularity and robustness by edge-removal mutations in three signaling networks. We first observed that both the modularity and robustness increased on average in the mutant network by the edge-removal mutations. However, the modularity change was negatively correlated with the robustness change. This implies that it is unlikely that both the modularity and the robustness values simultaneously increase by the edge-removal mutations. Another interesting finding is that the modularity change was positively correlated with the degree, the number of feedback loops, and the edge betweenness of the removed edges whereas the robustness change was negatively correlated with them. We note that these results were consistently observed in randomly structure networks. Additionally, we identified two groups of genes which are incident to the highly-modularity-increasing and the highly-robustness-decreasing edges with respect to the edge-removal mutations, respectively, and observed that they are likely to be central by forming a connected component of a considerably large size. The gene-ontology enrichment of each of these gene groups was significantly different from the rest of genes. Finally, we showed that the highly-robustness-decreasing edges can be promising edgetic drug-targets, which validates the usefulness of our analysis. Taken together, the analysis of changes of robustness and modularity against edge-removal mutations can be useful to unravel novel dynamical characteristics underlying in signaling networks.

  16. Environmental versatility promotes modularity in genome-scale metabolic networks.

    PubMed

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple environments. This organizational principle is insensitive to the environments we consider and to the number of reactions in a metabolic network. Because we observe this principle not just in one or few biological networks, but in large random samples of networks, we propose that it may be a generic principle of metabolic network organization.

  17. Modular thought in the circuit analysis

    NASA Astrophysics Data System (ADS)

    Wang, Feng

    2018-04-01

    Applied to solve the problem of modular thought, provides a whole for simplification's method, the complex problems have become of, and the study of circuit is similar to the above problems: the complex connection between components, make the whole circuit topic solution seems to be more complex, and actually components the connection between the have rules to follow, this article mainly tells the story of study on the application of the circuit modular thought. First of all, this paper introduces the definition of two-terminal network and the concept of two-terminal network equivalent conversion, then summarizes the common source resistance hybrid network modular approach, containing controlled source network modular processing method, lists the common module, typical examples analysis.

  18. Small worlds in space: Synchronization, spatial and relational modularity

    NASA Astrophysics Data System (ADS)

    Brede, M.

    2010-06-01

    In this letter we investigate networks that have been optimized to realize a trade-off between enhanced synchronization and cost of wire to connect the nodes in space. Analyzing the evolved arrangement of nodes in space and their corresponding network topology, a class of small-world networks characterized by spatial and network modularity is found. More precisely, for low cost of wire optimal configurations are characterized by a division of nodes into two spatial groups with maximum distance from each other, whereas network modularity is low. For high cost of wire, the nodes organize into several distinct groups in space that correspond to network modules connected on a ring. In between, spatially and relationally modular small-world networks are found.

  19. On the role of sparseness in the evolution of modularity in gene regulatory networks

    PubMed Central

    2018-01-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459

  20. On the role of sparseness in the evolution of modularity in gene regulatory networks.

    PubMed

    Espinosa-Soto, Carlos

    2018-05-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.

  1. Revisiting the variation of clustering coefficient of biological networks suggests new modular structure.

    PubMed

    Hao, Dapeng; Ren, Cong; Li, Chuanxing

    2012-05-01

    A central idea in biology is the hierarchical organization of cellular processes. A commonly used method to identify the hierarchical modular organization of network relies on detecting a global signature known as variation of clustering coefficient (so-called modularity scaling). Although several studies have suggested other possible origins of this signature, it is still widely used nowadays to identify hierarchical modularity, especially in the analysis of biological networks. Therefore, a further and systematical investigation of this signature for different types of biological networks is necessary. We analyzed a variety of biological networks and found that the commonly used signature of hierarchical modularity is actually the reflection of spoke-like topology, suggesting a different view of network architecture. We proved that the existence of super-hubs is the origin that the clustering coefficient of a node follows a particular scaling law with degree k in metabolic networks. To study the modularity of biological networks, we systematically investigated the relationship between repulsion of hubs and variation of clustering coefficient. We provided direct evidences for repulsion between hubs being the underlying origin of the variation of clustering coefficient, and found that for biological networks having no anti-correlation between hubs, such as gene co-expression network, the clustering coefficient doesn't show dependence of degree. Here we have shown that the variation of clustering coefficient is neither sufficient nor exclusive for a network to be hierarchical. Our results suggest the existence of spoke-like modules as opposed to "deterministic model" of hierarchical modularity, and suggest the need to reconsider the organizational principle of biological hierarchy.

  2. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    NASA Astrophysics Data System (ADS)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  3. An algorithm for generating modular hierarchical neural network classifiers: a step toward larger scale applications

    NASA Astrophysics Data System (ADS)

    Roverso, Davide

    2003-08-01

    Many-class learning is the problem of training a classifier to discriminate among a large number of target classes. Together with the problem of dealing with high-dimensional patterns (i.e. a high-dimensional input space), the many class problem (i.e. a high-dimensional output space) is a major obstacle to be faced when scaling-up classifier systems and algorithms from small pilot applications to large full-scale applications. The Autonomous Recursive Task Decomposition (ARTD) algorithm is here proposed as a solution to the problem of many-class learning. Example applications of ARTD to neural classifier training are also presented. In these examples, improvements in training time are shown to range from 4-fold to more than 30-fold in pattern classification tasks of both static and dynamic character.

  4. Epidemic outbreaks in growing scale-free networks with local structure

    NASA Astrophysics Data System (ADS)

    Ni, Shunjiang; Weng, Wenguo; Shen, Shifei; Fan, Weicheng

    2008-09-01

    The class of generative models has already attracted considerable interest from researchers in recent years and much expanded the original ideas described in BA model. Most of these models assume that only one node per time step joins the network. In this paper, we grow the network by adding n interconnected nodes as a local structure into the network at each time step with each new node emanating m new edges linking the node to the preexisting network by preferential attachment. This successfully generates key features observed in social networks. These include power-law degree distribution pk∼k, where μ=(n-1)/m is a tuning parameter defined as the modularity strength of the network, nontrivial clustering, assortative mixing, and modular structure. Moreover, all these features are dependent in a similar way on the parameter μ. We then study the susceptible-infected epidemics on this network with identical infectivity, and find that the initial epidemic behavior is governed by both of the infection scheme and the network structure, especially the modularity strength. The modularity of the network makes the spreading velocity much lower than that of the BA model. On the other hand, increasing the modularity strength will accelerate the propagation velocity.

  5. A framework for plasticity implementation on the SpiNNaker neural architecture.

    PubMed

    Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A; Furber, Steve B; Benosman, Ryad B

    2014-01-01

    Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system.

  6. A framework for plasticity implementation on the SpiNNaker neural architecture

    PubMed Central

    Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A.; Furber, Steve B.; Benosman, Ryad B.

    2015-01-01

    Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system. PMID:25653580

  7. Linear motif-mediated interactions have contributed to the evolution of modularity in complex protein interaction networks.

    PubMed

    Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk

    2014-10-01

    The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.

  8. Convergent evolution of modularity in metabolic networks through different community structures.

    PubMed

    Zhou, Wanding; Nakhleh, Luay

    2012-09-14

    It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.

  9. A Healthy Brain in a Healthy Body: Brain Network Correlates of Physical and Mental Fitness

    PubMed Central

    Douw, Linda; Nieboer, Dagmar; van Dijk, Bob W.; Stam, Cornelis J.; Twisk, Jos W. R.

    2014-01-01

    A healthy lifestyle is an important focus in today's society. The physical benefits of regular exercise are abundantly clear, but physical fitness is also associated with better cognitive performance. How these two factors together relate to characteristics of the brain is still incompletely understood. By applying mathematical concepts from ‘network theory’, insights in the organization and dynamics of brain functioning can be obtained. We test the hypothesis that neural network organization mediates the association between cardio respiratory fitness (i.e. VO2 max) and cognitive functioning. A healthy cohort was studied (n = 219, 113 women, age range 41–44 years). Subjects underwent resting-state eyes-closed magneto-encephalography (MEG). Five artifact-free epochs were analyzed and averaged in six frequency bands (delta-gamma). The phase lag index (PLI) was used as a measure of functional connectivity between all sensors. Modularity analysis was performed, and both within and between-module connectivity of each sensor was calculated. Subjects underwent a maximum oxygen uptake (VO2 max) measurement as an indicator of cardio respiratory fitness. All subjects were tested with a commonly used Dutch intelligence test. Intelligence quotient (IQ) was related to VO2 max. In addition, VO2 max was negatively associated with upper alpha and beta band modularity. Particularly increased intermodular connectivity in the beta band was associated with higher VO2 max and IQ, further indicating a benefit of more global network integration as opposed to local connections. Within-module connectivity showed a spatially varied pattern of correlation, while average connectivity did not show significant results. Mediation analysis was not significant. The occurrence of less modularity in the resting-state is associated with better cardio respiratory fitness, while having increased intermodular connectivity, as opposed to within-module connections, is related to better physical and mental fitness. PMID:24498438

  10. The modular modality frame model: continuous body state estimation and plausibility-weighted information fusion.

    PubMed

    Ehrenfeld, Stephan; Butz, Martin V

    2013-02-01

    Humans show admirable capabilities in movement planning and execution. They can perform complex tasks in various contexts, using the available sensory information very effectively. Body models and continuous body state estimations appear necessary to realize such capabilities. We introduce the Modular Modality Frame (MMF) model, which maintains a highly distributed, modularized body model continuously updating, modularized probabilistic body state estimations over time. Modularization is realized with respect to modality frames, that is, sensory modalities in particular frames of reference and with respect to particular body parts. We evaluate MMF performance on a simulated, nine degree of freedom arm in 3D space. The results show that MMF is able to maintain accurate body state estimations despite high sensor and motor noise. Moreover, by comparing the sensory information available in different modality frames, MMF can identify faulty sensory measurements on the fly. In the near future, applications to lightweight robot control should be pursued. Moreover, MMF may be enhanced with neural encodings by introducing neural population codes and learning techniques. Finally, more dexterous goal-directed behavior should be realized by exploiting the available redundant state representations.

  11. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  12. To cut or not to cut? Assessing the modular structure of brain networks.

    PubMed

    Chang, Yu-Teng; Pantazis, Dimitrios; Leahy, Richard M

    2014-05-01

    A wealth of methods has been developed to identify natural divisions of brain networks into groups or modules, with one of the most prominent being modularity. Compared with the popularity of methods to detect community structure, only a few methods exist to statistically control for spurious modules, relying almost exclusively on resampling techniques. It is well known that even random networks can exhibit high modularity because of incidental concentration of edges, even though they have no underlying organizational structure. Consequently, interpretation of community structure is confounded by the lack of principled and computationally tractable approaches to statistically control for spurious modules. In this paper we show that the modularity of random networks follows a transformed version of the Tracy-Widom distribution, providing for the first time a link between module detection and random matrix theory. We compute parametric formulas for the distribution of modularity for random networks as a function of network size and edge variance, and show that we can efficiently control for false positives in brain and other real-world networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Brain Modularity Mediates the Relation between Task Complexity and Performance

    NASA Astrophysics Data System (ADS)

    Ye, Fengdan; Yue, Qiuhai; Martin, Randi; Fischer-Baum, Simon; Ramos-Nuã+/-Ez, Aurora; Deem, Michael

    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases, and other tasks showing worse performance. A recent theoretical model suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of behavioral tasks. Complex and simple tasks were defined on the basis of whether they drew on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on the complex tasks but a positive correlation with performance on the simple tasks. The results presented here provide a framework for linking measures of whole brain organization to cognitive processing.

  14. Modularity and the spread of perturbations in complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Kolchinsky, Artemy; Gates, Alexander J.; Rocha, Luis M.

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  15. Modularity and the spread of perturbations in complex dynamical systems.

    PubMed

    Kolchinsky, Artemy; Gates, Alexander J; Rocha, Luis M

    2015-12-01

    We propose a method to decompose dynamical systems based on the idea that modules constrain the spread of perturbations. We find partitions of system variables that maximize "perturbation modularity," defined as the autocovariance of coarse-grained perturbed trajectories. The measure effectively separates the fast intramodular from the slow intermodular dynamics of perturbation spreading (in this respect, it is a generalization of the "Markov stability" method of network community detection). Our approach captures variation of modular organization across different system states, time scales, and in response to different kinds of perturbations: aspects of modularity which are all relevant to real-world dynamical systems. It offers a principled alternative to detecting communities in networks of statistical dependencies between system variables (e.g., "relevance networks" or "functional networks"). Using coupled logistic maps, we demonstrate that the method uncovers hierarchical modular organization planted in a system's coupling matrix. Additionally, in homogeneously coupled map lattices, it identifies the presence of self-organized modularity that depends on the initial state, dynamical parameters, and type of perturbations. Our approach offers a powerful tool for exploring the modular organization of complex dynamical systems.

  16. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    PubMed

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S J; Frith, Chris D

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H 2 15 O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system.

  17. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    PubMed Central

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S. J.; Frith, Chris D.

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system. PMID:28567009

  18. A simplified computational memory model from information processing.

    PubMed

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-11-23

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.

  19. Scalable detection of statistically significant communities and hierarchies, using message passing for modularity

    PubMed Central

    Zhang, Pan; Moore, Cristopher

    2014-01-01

    Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096

  20. Neural network river forecasting through baseflow separation and binary-coded swarm optimization

    NASA Astrophysics Data System (ADS)

    Taormina, Riccardo; Chau, Kwok-Wing; Sivakumar, Bellie

    2015-10-01

    The inclusion of expert knowledge in data-driven streamflow modeling is expected to yield more accurate estimates of river quantities. Modular models (MMs) designed to work on different parts of the hydrograph are preferred ways to implement such approach. Previous studies have suggested that better predictions of total streamflow could be obtained via modular Artificial Neural Networks (ANNs) trained to perform an implicit baseflow separation. These MMs fit separately the baseflow and excess flow components as produced by a digital filter, and reconstruct the total flow by adding these two signals at the output. The optimization of the filter parameters and ANN architectures is carried out through global search techniques. Despite the favorable premises, the real effectiveness of such MMs has been tested only on a few case studies, and the quality of the baseflow separation they perform has never been thoroughly assessed. In this work, we compare the performance of MM against global models (GMs) for nine different gaging stations in the northern United States. Binary-coded swarm optimization is employed for the identification of filter parameters and model structure, while Extreme Learning Machines, instead of ANN, are used to drastically reduce the large computational times required to perform the experiments. The results show that there is no evidence that MM outperform global GM for predicting the total flow. In addition, the baseflow produced by the MM largely underestimates the actual baseflow component expected for most of the considered gages. This occurs because the values of the filter parameters maximizing overall accuracy do not reflect the geological characteristics of the river basins. The results indeed show that setting the filter parameters according to expert knowledge results in accurate baseflow separation but lower accuracy of total flow predictions, suggesting that these two objectives are intrinsically conflicting rather than compatible.

  1. The application of the multi-alternative approach in active neural network models

    NASA Astrophysics Data System (ADS)

    Podvalny, S.; Vasiljev, E.

    2017-02-01

    The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.

  2. Functional vs. Structural Modularity: do they imply each other?

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltan

    2009-03-01

    While many deterministic and stochastic processes have been proposed to produce heterogeneous graphs mimicking real-world networks, only a handful of studies attempt to connect structure and dynamics with the function(s) performed by the network. In this talk I will present an approach built on the premise that structure, dynamics, and their observed heterogeneity, are implementations of various functions and their compositions. After a brief review of real-world networks where this connection can explicitly be made, I will focus on biological networks. Biological networks are known to possess functionally specialized modules, which perform tasks almost independently of each other. While proposals have been made for the evolutionary emergence of modularity, it is far from clear that adaptation on evolutionary timescales is the sole mechanism leading to functional specialization. We show that non-evolutionary learning can also lead to the formation of functionally specialized modules in a system exposed to multiple environmental constraints. A natural example suggesting that this is possible is the cerebral cortex, where there are clearly delineated functional areas in spite of the largely uniform anatomical construction of the cortical tissue. However, as numerous experiments show, when damaged, regions specialized for a certain function can be retrained to perform functions normally attributed to other regions. We use the paradigm of neural networks to represent a multitasking system, and use several non-evolutionary learning algorithms as mechanisms for phenotypic adaptation. We show that for a network learning to perform multiple tasks, the degree of independence between the tasks dictates the degree of functional specialization emerging in the network. To uncover the functional modules, we introduce a method of node knockouts that explicitly rates the contribution of each node to different tasks (differential robustness). Through a concrete example we also demonstrate the potential inability of purely topology-based clustering methods to detect functional modules. The robustness of these results suggests that similar mechanisms might be responsible for the emergence of functional specialization in other multitasking networks, as well, including social networks.

  3. Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults

    PubMed Central

    Baniqued, Pauline L.; Gallen, Courtney L.; Voss, Michelle W.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Duffy, Kristin; Fanning, Jason; Ehlers, Diane K.; Salerno, Elizabeth A.; Aguiñaga, Susan; McAuley, Edward; Kramer, Arthur F.; D'Esposito, Mark

    2018-01-01

    Recent work suggests that the brain can be conceptualized as a network comprised of groups of sub-networks or modules. The extent of segregation between modules can be quantified with a modularity metric, where networks with high modularity have dense connections within modules and sparser connections between modules. Previous work has shown that higher modularity predicts greater improvements after cognitive training in patients with traumatic brain injury and in healthy older and young adults. It is not known, however, whether modularity can also predict cognitive gains after a physical exercise intervention. Here, we quantified modularity in older adults (N = 128, mean age = 64.74) who underwent one of the following interventions for 6 months (NCT01472744 on ClinicalTrials.gov): (1) aerobic exercise in the form of brisk walking (Walk), (2) aerobic exercise in the form of brisk walking plus nutritional supplement (Walk+), (3) stretching, strengthening and stability (SSS), or (4) dance instruction. After the intervention, the Walk, Walk+ and SSS groups showed gains in cardiorespiratory fitness (CRF), with larger effects in both walking groups compared to the SSS and Dance groups. The Walk, Walk+ and SSS groups also improved in executive function (EF) as measured by reasoning, working memory, and task-switching tests. In the Walk, Walk+, and SSS groups that improved in EF, higher baseline modularity was positively related to EF gains, even after controlling for age, in-scanner motion and baseline EF. No relationship between modularity and EF gains was observed in the Dance group, which did not show training-related gains in CRF or EF control. These results are consistent with previous studies demonstrating that individuals with a more modular brain network organization are more responsive to cognitive training. These findings suggest that the predictive power of modularity may be generalizable across interventions aimed to enhance aspects of cognition and that, especially in low-performing individuals, global network properties can capture individual differences in neuroplasticity. PMID:29354050

  4. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  5. Mining the modular structure of protein interaction networks.

    PubMed

    Berenstein, Ariel José; Piñero, Janet; Furlong, Laura Inés; Chernomoretz, Ariel

    2015-01-01

    Cluster-based descriptions of biological networks have received much attention in recent years fostered by accumulated evidence of the existence of meaningful correlations between topological network clusters and biological functional modules. Several well-performing clustering algorithms exist to infer topological network partitions. However, due to respective technical idiosyncrasies they might produce dissimilar modular decompositions of a given network. In this contribution, we aimed to analyze how alternative modular descriptions could condition the outcome of follow-up network biology analysis. We considered a human protein interaction network and two paradigmatic cluster recognition algorithms, namely: the Clauset-Newman-Moore and the infomap procedures. We analyzed to what extent both methodologies yielded different results in terms of granularity and biological congruency. In addition, taking into account Guimera's cartographic role characterization of network nodes, we explored how the adoption of a given clustering methodology impinged on the ability to highlight relevant network meso-scale connectivity patterns. As a case study we considered a set of aging related proteins and showed that only the high-resolution modular description provided by infomap, could unveil statistically significant associations between them and inter/intra modular cartographic features. Besides reporting novel biological insights that could be gained from the discovered associations, our contribution warns against possible technical concerns that might affect the tools used to mine for interaction patterns in network biology studies. In particular our results suggested that sub-optimal partitions from the strict point of view of their modularity levels might still be worth being analyzed when meso-scale features were to be explored in connection with external source of biological knowledge.

  6. Generalized epidemic process on modular networks.

    PubMed

    Chung, Kihong; Baek, Yongjoo; Kim, Daniel; Ha, Meesoon; Jeong, Hawoong

    2014-05-01

    Social reinforcement and modular structure are two salient features observed in the spreading of behavior through social contacts. In order to investigate the interplay between these two features, we study the generalized epidemic process on modular networks with equal-sized finite communities and adjustable modularity. Using the analytical approach originally applied to clique-based random networks, we show that the system exhibits a bond-percolation type continuous phase transition for weak social reinforcement, whereas a discontinuous phase transition occurs for sufficiently strong social reinforcement. Our findings are numerically verified using the finite-size scaling analysis and the crossings of the bimodality coefficient.

  7. The Dichotomy in Degree Correlation of Biological Networks

    PubMed Central

    Hao, Dapeng; Li, Chuanxing

    2011-01-01

    Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally connected modular network, by which the integrity of network and specificity of modules might be reconciled. PMID:22164269

  8. A simplified computational memory model from information processing

    PubMed Central

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-01-01

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view. PMID:27876847

  9. A new multi-scale method to reveal hierarchical modular structures in biological networks.

    PubMed

    Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin

    2016-11-15

    Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.

  10. Modularity-like objective function in annotated networks

    NASA Astrophysics Data System (ADS)

    Xie, Jia-Rong; Wang, Bing-Hong

    2017-12-01

    We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.

  11. Convergent evolution of modularity in metabolic networks through different community structures

    PubMed Central

    2012-01-01

    Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations. PMID:22974099

  12. The neural architecture of expert calendar calculation: a matter of strategy?

    PubMed

    Fehr, Thorsten; Wallace, Gregory L; Erhard, Peter; Herrmann, Manfred

    2011-08-01

    Savants and prodigies are individuals with exceptional skills in particular mental domains. In the present study we used functional magnetic resonance imaging to examine neural correlates of calendar calculation in two individuals, a savant with Asperger's disorder and a self-taught mathematical prodigy. If there is a modular neural organization of exceptional performance in a specific mental domain, calendar calculation should be reflected in a considerable overlap in the recruitment of brain circuits across expert individuals. However, considerable individual differences in activation patterns during calendar calculation were noted. The present results indicate that activation patterns produced by complex mental processing, such as calendar calculation, seem to be influenced strongly by learning history and idiosyncratic strategy usage rather than a modular neural organization. Thus, well-known individual differences in complex cognition play a major role even in experts with exceptional abilities in a particular mental domain and should in particular be considered when examining the neural architecture of complex mental processes and skills.

  13. Viewing socio-affective stimuli increases connectivity within an extended default mode network.

    PubMed

    Göttlich, Martin; Ye, Zheng; Rodriguez-Fornells, Antoni; Münte, Thomas F; Krämer, Ulrike M

    2017-03-01

    Empathy is an essential ability for prosocial behavior. Previous imaging studies identified a number of brain regions implicated in affective and cognitive aspects of empathy. In this study, we investigated the neural correlates of empathy from a network perspective using graph theory and beta-series correlations. Two independent data sets were acquired using the same paradigm that elicited empathic responses to socio-affective stimuli. One data set was used to define the network nodes and modular structure, the other data set was used to investigate the effects of emotional versus neutral stimuli on network connectivity. Emotional relative to neutral stimuli increased connectivity between 74 nodes belonging to different networks. Most of these nodes belonged to an extended default mode network (eDMN). The other nodes belonged to a cognitive control network or visual networks. Within the eDMN, posterior STG/TPJ regions were identified as provincial hubs. The eDMN also showed stronger connectivity to the cognitive control network encompassing lateral PFC regions. Connector hubs between the two networks were posterior cingulate cortex and ventrolateral PFC. This stresses the advantage of a network approach as regions similarly modulated by task conditions can be dissociated into distinct networks and regions crucial for network integration can be identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Neuromechanical principles underlying movement modularity and their implications for rehabilitation

    PubMed Central

    Ting, Lena H.; Chiel, Hillel J.; Trumbower, Randy D.; Allen, Jessica L.; McKay, J. Lucas; Hackney, Madeleine E.; Kesar, Trisha M.

    2015-01-01

    Summary Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e. motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual, and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson’s disease. Recent studies provide insights into the yet unknown underlying neural mechanisms of motor modules, motor impairment and motor learning, and may lead to better understanding of the causal nature of modularity and its underlying neural substrates. PMID:25856485

  15. Autapse-induced multiple stochastic resonances in a modular neuronal network

    NASA Astrophysics Data System (ADS)

    Yang, XiaoLi; Yu, YanHu; Sun, ZhongKui

    2017-08-01

    This study investigates the nontrivial effects of autapse on stochastic resonance in a modular neuronal network subjected to bounded noise. The resonance effect of autapse is detected by imposing a self-feedback loop with autaptic strength and autaptic time delay to each constituent neuron. Numerical simulations have demonstrated that bounded noise with the proper level of amplitude can induce stochastic resonance; moreover, the noise induced resonance dynamics can be significantly shaped by the autapse. In detail, for a specific range of autaptic strength, multiple stochastic resonances can be induced when the autaptic time delays are appropriately adjusted. These appropriately adjusted delays are detected to nearly approach integer multiples of the period of the external weak signal when the autaptic strength is very near zero; otherwise, they do not match the period of the external weak signal when the autaptic strength is slightly greater than zero. Surprisingly, in both cases, the differences between arbitrary two adjacent adjusted autaptic delays are always approximately equal to the period of the weak signal. The phenomenon of autaptic delay induced multiple stochastic resonances is further confirmed to be robust against the period of the external weak signal and the intramodule probability of subnetwork. These findings could have important implications for weak signal detection and information propagation in realistic neural systems.

  16. An iterative network partition algorithm for accurate identification of dense network modules

    PubMed Central

    Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong

    2012-01-01

    A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225

  17. Morphological communication: exploiting coupled dynamics in a complex mechanical structure to achieve locomotion

    PubMed Central

    Rieffel, John A.; Valero-Cuevas, Francisco J.; Lipson, Hod

    2010-01-01

    Traditional engineering approaches strive to avoid, or actively suppress, nonlinear dynamic coupling among components. Biological systems, in contrast, are often rife with these dynamics. Could there be, in some cases, a benefit to high degrees of dynamical coupling? Here we present a distributed robotic control scheme inspired by the biological phenomenon of tensegrity-based mechanotransduction. This emergence of morphology-as-information-conduit or ‘morphological communication’, enabled by time-sensitive spiking neural networks, presents a new paradigm for the decentralized control of large, coupled, modular systems. These results significantly bolster, both in magnitude and in form, the idea of morphological computation in robotic control. Furthermore, they lend further credence to ideas of embodied anatomical computation in biological systems, on scales ranging from cellular structures up to the tendinous networks of the human hand. PMID:19776146

  18. Network community-detection enhancement by proper weighting

    NASA Astrophysics Data System (ADS)

    Khadivi, Alireza; Ajdari Rad, Ali; Hasler, Martin

    2011-04-01

    In this paper, we show how proper assignment of weights to the edges of a complex network can enhance the detection of communities and how it can circumvent the resolution limit and the extreme degeneracy problems associated with modularity. Our general weighting scheme takes advantage of graph theoretic measures and it introduces two heuristics for tuning its parameters. We use this weighting as a preprocessing step for the greedy modularity optimization algorithm of Newman to improve its performance. The result of the experiments of our approach on computer-generated and real-world data networks confirm that the proposed approach not only mitigates the problems of modularity but also improves the modularity optimization.

  19. Analysis of the structure of complex networks at different resolution levels

    NASA Astrophysics Data System (ADS)

    Arenas, A.; Fernández, A.; Gómez, S.

    2008-05-01

    Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights into the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for the partition of a network into modules. Recently, some authors (Fortunato and Barthélemy 2007 Proc. Natl Acad. Sci. USA 104 36 and Kumpula et al 2007 Eur. Phys. J. B 56 41) have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have their own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here, we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows us to find the exact splits reported in the literature, as well as the substructure beyond the actual split.

  20. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming.

    PubMed

    Duffau, Hugues; Moritz-Gasser, Sylvie; Mandonnet, Emmanuel

    2014-04-01

    From recent findings provided by brain stimulation mapping during picture naming, we re-examine the neural basis of language. We studied structural-functional relationships by correlating the types of language disturbances generated by stimulation in awake patients, mimicking a transient virtual lesion both at cortical and subcortical levels (white matter and deep grey nuclei), with the anatomical location of the stimulation probe. We propose a hodotopical (delocalized) and dynamic model of language processing, which challenges the traditional modular and serial view. According to this model, following the visual input, the language network is organized in parallel, segregated (even if interconnected) large-scale cortico-subcortical sub-networks underlying semantic, phonological and syntactic processing. Our model offers several advantages (i) it explains double dissociations during stimulation (comprehension versus naming disorders, semantic versus phonemic paraphasias, syntactic versus naming disturbances, plurimodal judgment versus naming disorders); (ii) it takes into account the cortical and subcortical anatomic constraints; (iii) it explains the possible recovery of aphasia following a lesion within the "classical" language areas; (iv) it establishes links with a model executive functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models.

    PubMed

    Imamizu, Hiroshi; Kuroda, Tomoe; Yoshioka, Toshinori; Kawato, Mitsuo

    2004-02-04

    An internal model is a neural mechanism that can mimic the input-output properties of a controlled object such as a tool. Recent research interests have moved on to how multiple internal models are learned and switched under a given context of behavior. Two representative computational models for task switching propose distinct neural mechanisms, thus predicting different brain activity patterns in the switching of internal models. In one model, called the mixture-of-experts architecture, switching is commanded by a single executive called a "gating network," which is different from the internal models. In the other model, called the MOSAIC (MOdular Selection And Identification for Control), the internal models themselves play crucial roles in switching. Consequently, the mixture-of-experts model predicts that neural activities related to switching and internal models can be temporally and spatially segregated, whereas the MOSAIC model predicts that they are closely intermingled. Here, we directly examined the two predictions by analyzing functional magnetic resonance imaging activities during the switching of one common tool (an ordinary computer mouse) and two novel tools: a rotated mouse, the cursor of which appears in a rotated position, and a velocity mouse, the cursor velocity of which is proportional to the mouse position. The switching and internal model activities temporally and spatially overlapped each other in the cerebellum and in the parietal cortex, whereas the overlap was very small in the frontal cortex. These results suggest that switching mechanisms in the frontal cortex can be explained by the mixture-of-experts architecture, whereas those in the cerebellum and the parietal cortex are explained by the MOSAIC model.

  2. Evidence of Rentian Scaling of Functional Modules in Diverse Biological Networks.

    PubMed

    How, Javier J; Navlakha, Saket

    2018-06-12

    Biological networks have long been known to be modular, containing sets of nodes that are highly connected internally. Less emphasis, however, has been placed on understanding how intermodule connections are distributed within a network. Here, we borrow ideas from engineered circuit design and study Rentian scaling, which states that the number of external connections between nodes in different modules is related to the number of nodes inside the modules by a power-law relationship. We tested this property in a broad class of molecular networks, including protein interaction networks for six species and gene regulatory networks for 41 human and 25 mouse cell types. Using evolutionarily defined modules corresponding to known biological processes in the cell, we found that all networks displayed Rentian scaling with a broad range of exponents. We also found evidence for Rentian scaling in functional modules in the Caenorhabditis elegans neural network, but, interestingly, not in three different social networks, suggesting that this property does not inevitably emerge. To understand how such scaling may have arisen evolutionarily, we derived a new graph model that can generate Rentian networks given a target Rent exponent and a module decomposition as inputs. Overall, our work uncovers a new principle shared by engineered circuits and biological networks.

  3. A Fly's Eye View of Natural and Drug Reward.

    PubMed

    Lowenstein, Eve G; Velazquez-Ulloa, Norma A

    2018-01-01

    Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster , dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila . This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster , including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.

  4. A Fly’s Eye View of Natural and Drug Reward

    PubMed Central

    Lowenstein, Eve G.; Velazquez-Ulloa, Norma A.

    2018-01-01

    Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism. PMID:29720947

  5. Model validation of simple-graph representations of metabolism

    PubMed Central

    Holme, Petter

    2009-01-01

    The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012

  6. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system.

    PubMed

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.

  7. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571

  8. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    PubMed

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  9. Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference

    PubMed Central

    Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.

    2013-01-01

    This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151

  10. A modular, closed-loop platform for intracranial stimulation in people with neurological disorders.

    PubMed

    Sarma, Anish A; Crocker, Britni; Cash, Sydney S; Truccolo, Wilson

    2016-08-01

    Neuromodulation systems based on electrical stimulation can be used to investigate, probe, and potentially treat a range of neurological disorders. The effects of ongoing neural state and dynamics on stimulation response, and of stimulation parameters on neural state, have broad implications for the development of closed-loop neuro-modulation approaches. We describe the development of a modular, low-latency platform for pre-clinical, closed-loop neuromodulation studies with human participants. We illustrate the uses of the platform in a stimulation case study with a person with epilepsy undergoing neuro-monitoring prior to resective surgery. We demonstrate the efficacy of the system by tracking interictal epileptiform discharges in the local field potential to trigger intracranial electrical stimulation, and show that the response to stimulation depends on the neural state.

  11. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be considered in attempts to make interdependent networks more resilient.

  12. An effective immunization strategy for airborne epidemics in modular and hierarchical social contact network

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang

    2015-12-01

    Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.

  13. Re-emergence of modular brain networks in stroke recovery.

    PubMed

    Siegel, Joshua S; Seitzman, Benjamin A; Ramsey, Lenny E; Ortega, Mario; Gordon, Evan M; Dosenbach, Nico U F; Petersen, Steven E; Shulman, Gordon L; Corbetta, Maurizio

    2018-04-01

    Studies of stroke have identified local reorganization in perilesional tissue. However, because the brain is highly networked, strokes also broadly alter the brain's global network organization. Here, we assess brain network structure longitudinally in adult stroke patients using resting state fMRI. The topology and boundaries of cortical regions remain grossly unchanged across recovery. In contrast, the modularity of brain systems i.e. the degree of integration within and segregation between networks, was significantly reduced sub-acutely (n = 107), but partially recovered by 3 months (n = 85), and 1 year (n = 67). Importantly, network recovery correlated with recovery from language, spatial memory, and attention deficits, but not motor or visual deficits. Finally, in-depth single subject analyses were conducted using tools for visualization of changes in brain networks over time. This exploration indicated that changes in modularity during successful recovery reflect specific alterations in the relationships between different networks. For example, in a patient with left temporo-parietal stroke and severe aphasia, sub-acute loss of modularity reflected loss of association between frontal and temporo-parietal regions bi-hemispherically across multiple modules. These long-distance connections then returned over time, paralleling aphasia recovery. This work establishes the potential importance of normalization of large-scale modular brain systems in stroke recovery. Copyright © 2017. Published by Elsevier Ltd.

  14. Asynchronous networks: modularization of dynamics theorem

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  15. Evolutionary method for finding communities in bipartite networks.

    PubMed

    Zhan, Weihua; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng

    2011-06-01

    An important step in unveiling the relation between network structure and dynamics defined on networks is to detect communities, and numerous methods have been developed separately to identify community structure in different classes of networks, such as unipartite networks, bipartite networks, and directed networks. Here, we show that the finding of communities in such networks can be unified in a general framework-detection of community structure in bipartite networks. Moreover, we propose an evolutionary method for efficiently identifying communities in bipartite networks. To this end, we show that both unipartite and directed networks can be represented as bipartite networks, and their modularity is completely consistent with that for bipartite networks, the detection of modular structure on which can be reformulated as modularity maximization. To optimize the bipartite modularity, we develop a modified adaptive genetic algorithm (MAGA), which is shown to be especially efficient for community structure detection. The high efficiency of the MAGA is based on the following three improvements we make. First, we introduce a different measure for the informativeness of a locus instead of the standard deviation, which can exactly determine which loci mutate. This measure is the bias between the distribution of a locus over the current population and the uniform distribution of the locus, i.e., the Kullback-Leibler divergence between them. Second, we develop a reassignment technique for differentiating the informative state a locus has attained from the random state in the initial phase. Third, we present a modified mutation rule which by incorporating related operations can guarantee the convergence of the MAGA to the global optimum and can speed up the convergence process. Experimental results show that the MAGA outperforms existing methods in terms of modularity for both bipartite and unipartite networks.

  16. Modular synchronization in complex networks.

    PubMed

    Oh, E; Rho, K; Hong, H; Kahng, B

    2005-10-01

    We study the synchronization transition (ST) of a modified Kuramoto model on two different types of modular complex networks. It is found that the ST depends on the type of intermodular connections. For the network with decentralized (centralized) intermodular connections, the ST occurs at finite coupling constant (behaves abnormally). Such distinct features are found in the yeast protein interaction network and the Internet, respectively. Moreover, by applying the finite-size scaling analysis to an artificial network with decentralized intermodular connections, we obtain the exponent associated with the order parameter of the ST to be beta approximately 1 different from beta(MF) approximately 1/2 obtained from the scale-free network with the same degree distribution but the absence of modular structure, corresponding to the mean field value.

  17. RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations

    PubMed Central

    2012-01-01

    Visualization and analysis of molecular networks are both central to systems biology. However, there still exists a large technological gap between them, especially when assessing multiple network levels or hierarchies. Here we present RedeR, an R/Bioconductor package combined with a Java core engine for representing modular networks. The functionality of RedeR is demonstrated in two different scenarios: hierarchical and modular organization in gene co-expression networks and nested structures in time-course gene expression subnetworks. Our results demonstrate RedeR as a new framework to deal with the multiple network levels that are inherent to complex biological systems. RedeR is available from http://bioconductor.org/packages/release/bioc/html/RedeR.html. PMID:22531049

  18. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    USGS Publications Warehouse

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested networks, whether they were assessed in individual sample periods or pooled into infested and non-infested networks over the entire blooming period of C.arvense. Connectors typically did not reside within the same modules as C. arvense, suggesting that effects of the other invasive plants may also influence the modularity results, and that effects of infestation extend to co-flowering native plants. We conclude that the presence of abundantly flowering invasive species is associated with greater network stability due to decreased modularity, but whether this is advantageous for the associated native plant-pollinator communities depends on the nature of perturbations they experience.

  19. The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes

    PubMed Central

    Watts, Stella; Dormann, Carsten F.; Martín González, Ana M.; Ollerton, Jeff

    2016-01-01

    Background and Aims Modularity is a ubiquitous and important structural property of ecological networks which describes the relative strengths of sets of interacting species and gives insights into the dynamics of ecological communities. However, this has rarely been studied in species-rich, tropical plant–pollinator networks. Working in a biodiversity hotspot in the Peruvian Andes we assessed the structure of quantitative plant–pollinator networks in nine valleys, quantifying modularity among networks, defining the topological roles of species and the influence of floral traits on specialization. Methods A total of 90 transects were surveyed for plants and pollinators at different altitudes and across different life zones. Quantitative modularity (QuanBiMo) was used to detect modularity and six indices were used to quantify specialization. Key Results All networks were highly structured, moderately specialized and significantly modular regardless of size. The strongest hubs were Baccharis plants, Apis mellifera, Bombus funebris and Diptera spp., which were the most ubiquitous and abundant species with the longest phenologies. Species strength showed a strong association with the modular structure of plant–pollinator networks. Hubs and connectors were the most centralized participants in the networks and were ranked highest (high generalization) when quantifying specialization with most indices. However, complementary specialization d' quantified hubs and connectors as moderately specialized. Specialization and topological roles of species were remarkably constant across some sites, but highly variable in others. Networks were dominated by ecologically and functionally generalist plant species with open access flowers which are closely related taxonomically with similar morphology and rewards. Plants associated with hummingbirds had the highest level of complementary specialization and exclusivity in modules (functional specialists) and the longest corollas. Conclusions We have demonstrated that the topology of networks in this tropical montane environment was non-random and highly organized. Our findings underline that specialization indices convey different concepts of specialization and hence quantify different aspects, and that measuring specialization requires careful consideration of what defines a specialist. PMID:27562649

  20. The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes.

    PubMed

    Watts, Stella; Dormann, Carsten F; Martín González, Ana M; Ollerton, Jeff

    2016-09-01

    Modularity is a ubiquitous and important structural property of ecological networks which describes the relative strengths of sets of interacting species and gives insights into the dynamics of ecological communities. However, this has rarely been studied in species-rich, tropical plant-pollinator networks. Working in a biodiversity hotspot in the Peruvian Andes we assessed the structure of quantitative plant-pollinator networks in nine valleys, quantifying modularity among networks, defining the topological roles of species and the influence of floral traits on specialization. A total of 90 transects were surveyed for plants and pollinators at different altitudes and across different life zones. Quantitative modularity (QuanBiMo) was used to detect modularity and six indices were used to quantify specialization. All networks were highly structured, moderately specialized and significantly modular regardless of size. The strongest hubs were Baccharis plants, Apis mellifera, Bombus funebris and Diptera spp., which were the most ubiquitous and abundant species with the longest phenologies. Species strength showed a strong association with the modular structure of plant-pollinator networks. Hubs and connectors were the most centralized participants in the networks and were ranked highest (high generalization) when quantifying specialization with most indices. However, complementary specialization d' quantified hubs and connectors as moderately specialized. Specialization and topological roles of species were remarkably constant across some sites, but highly variable in others. Networks were dominated by ecologically and functionally generalist plant species with open access flowers which are closely related taxonomically with similar morphology and rewards. Plants associated with hummingbirds had the highest level of complementary specialization and exclusivity in modules (functional specialists) and the longest corollas. We have demonstrated that the topology of networks in this tropical montane environment was non-random and highly organized. Our findings underline that specialization indices convey different concepts of specialization and hence quantify different aspects, and that measuring specialization requires careful consideration of what defines a specialist. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity.

    PubMed

    Schmidt, Helmut; Petkov, George; Richardson, Mark P; Terry, John R

    2014-11-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3-6 Hz) and low-alpha (6-9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80% predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people with epilepsy leading to improved diagnostics and therapeutics.

  2. Connectional Modularity of Top-Down and Bottom-Up Multimodal Inputs to the Lateral Cortex of the Mouse Inferior Colliculus

    PubMed Central

    Lesicko, Alexandria M.H.; Hristova, Teodora S.; Maigler, Kathleen C.

    2016-01-01

    The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information. PMID:27798184

  3. Network modularity reveals critical scales for connectivity in ecology and evolution

    USGS Publications Warehouse

    Fletcher, Robert J.; Revell, Andre; Reichert, Brian E.; Kitchens, Wiley M.; Dixon, J.; Austin, James D.

    2013-01-01

    For nearly a century, biologists have emphasized the profound importance of spatial scale for ecology, evolution and conservation. Nonetheless, objectively identifying critical scales has proven incredibly challenging. Here we extend new techniques from physics and social sciences that estimate modularity on networks to identify critical scales for movement and gene flow in animals. Using four species that vary widely in dispersal ability and include both mark-recapture and population genetic data, we identify significant modularity in three species, two of which cannot be explained by geographic distance alone. Importantly, the inclusion of modularity in connectivity and population viability assessments alters conclusions regarding patch importance to connectivity and suggests higher metapopulation viability than when ignoring this hidden spatial scale. We argue that network modularity reveals critical meso-scales that are probably common in populations, providing a powerful means of identifying fundamental scales for biology and for conservation strategies aimed at recovering imperilled species.

  4. MOBS - A modular on-board switching system

    NASA Astrophysics Data System (ADS)

    Berner, W.; Grassmann, W.; Piontek, M.

    The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.

  5. Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques.

    PubMed

    Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A

    2018-07-01

    Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

  6. Online Community Detection for Large Complex Networks

    PubMed Central

    Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian

    2014-01-01

    Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683

  7. Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia

    NASA Astrophysics Data System (ADS)

    Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.

    2017-04-01

    Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.

  8. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  9. Can the default-mode network be described with one spatial-covariance network?

    PubMed Central

    Habeck, Christian; Steffener, Jason; Rakitin, Brian; Stern, Yaakov

    2012-01-01

    The default-mode network (DMN) has become a well accepted concept in cognitive and clinical neuroscience over the last decade, and perusal of the recent literature attests to a stimulating research field of cognitive and diagnostic applications (for example, (Andrews-Hanna, Reidler, Huang, & Buckner, 2010; Koch et al., 2010; Sheline, Barch et al., 2009; Sheline, Raichle et al., 2009; Uddin et al., 2008; Uddin, Kelly, Biswal, Castellanos, & Milham, 2009; Weng et al., 2009; Yan et al., 2009)). However, a formal definition of what exactly constitutes a functional brain network is difficult to come by. In recent contributions, some researchers argue that the DMN is best understood as multiple interacting subsystems (Buckner, Andrews-Hanna, & Schacter, 2008) and have explored modular components of the DMN that have different functional specialization and could to some extent be identified separately (Fox et al., 2005; Harrison et al., 2008; Uddin et al., 2009). Such conception of modularity seems to imply an opposite construct of a ‘unified whole’, but it is difficult to locate proponents of the idea of a DMN who are supplying constraints that can be brought to bear on data in rigorous tests. Our aim in this paper is to present a principled way of deriving a single covariance pattern as the neural substrate of the DMN, test to what extent its behavior tracks the coupling strength between critical seed regions, and investigate to what extent our stricter concept of a network is consistent with the already established findings about the DMN in the literature. We show that our approach leads to a functional covariance pattern whose pattern scores are a good proxy for the integrity of the connections between a medioprefrontal, posterior cingulate and parietal seed regions. Our derived DMN network thus has potential for diagnostic applications that are simpler to perform than computation of pairwise correlational strengths or seed maps. PMID:22668988

  10. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    PubMed

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  11. The fragmented self: imbalance between intrinsic and extrinsic self-networks in psychotic disorders.

    PubMed

    Ebisch, Sjoerd J H; Aleman, André

    2016-08-01

    Self-disturbances are among the core features of schizophrenia and related psychotic disorders. The basic structure of the self could depend on the balance between intrinsic and extrinsic self-processing. We discuss studies on self-related processing in psychotic disorders that provide converging evidence for disrupted communication between neural networks subserving the so-called intrinsic self and extrinsic self. This disruption might be mainly caused by impaired integrity of key brain hubs. The intrinsic self has been associated with cortical midline structures involved in self-referential processing, autobiographical memory, and emotional evaluation. Additionally, we highlight central aspects of the extrinsic self in its interaction with the environment using sensorimotor networks, including self-experience in sensation and actions. A deficient relationship between these self-aspects because of disrupted between-network interactions offers a framework to explain core clinical features of psychotic disorders. In particular, we show how relative isolation and reduced modularity of networks subserving intrinsic and extrinsic self-processing might trigger the emergence of hallucinations and delusions, and why patients with psychosis typically have difficulties with self-other relationships and do not recognise mental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    PubMed

    Scheler, Gabriele

    2013-01-01

    We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.

  13. A proposal of optimal sampling design using a modularity strategy

    NASA Astrophysics Data System (ADS)

    Simone, A.; Giustolisi, O.; Laucelli, D. B.

    2016-08-01

    In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.

  14. Changes in functional organization and white matter integrity in the connectome in Parkinson's disease.

    PubMed

    Tinaz, Sule; Lauro, Peter M; Ghosh, Pritha; Lungu, Codrin; Horovitz, Silvina G

    2017-01-01

    Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional "disconnection" in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome.

  15. Phage-bacteria infection networks: From nestedness to modularity

    NASA Astrophysics Data System (ADS)

    Flores, Cesar O.; Valverde, Sergi; Weitz, Joshua S.

    2013-03-01

    Bacteriophages (viruses that infect bacteria) are the most abundant biological life-forms on Earth. However, very little is known regarding the structure of phage-bacteria infections. In a recent study we re-evaluated 38 prior studies and demonstrated that phage-bacteria infection networks tend to be statistically nested in small scale communities (Flores et al 2011). Nestedness is consistent with a hierarchy of infection and resistance within phages and bacteria, respectively. However, we predicted that at large scales, phage-bacteria infection networks should be typified by a modular structure. We evaluate and confirm this hypothesis using the most extensive study of phage-bacteria infections (Moebus and Nattkemper 1981). In this study, cross-infections were evaluated between 215 marine phages and 286 marine bacteria. We develop a novel multi-scale network analysis and find that the Moebus and Nattkemper (1981) study, is highly modular (at the whole network scale), yet also exhibits nestedness and modularity at the within-module scale. We examine the role of geography in driving these modular patterns and find evidence that phage-bacteria interactions can exhibit strong similarity despite large distances between sites. CFG acknowledges the support of CONACyT Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and acknowledges the support of the James S. McDonnell Foundation

  16. Network Disruption in the Preclinical Stages of Alzheimer's Disease: From Subjective Cognitive Decline to Mild Cognitive Impairment.

    PubMed

    López-Sanz, David; Garcés, Pilar; Álvarez, Blanca; Delgado-Losada, María Luisa; López-Higes, Ramón; Maestú, Fernando

    2017-12-01

    Subjective Cognitive Decline (SCD) is a largely unknown state thought to represent a preclinical stage of Alzheimer's Disease (AD) previous to mild cognitive impairment (MCI). However, the course of network disruption in these stages is scarcely characterized. We employed resting state magnetoencephalography in the source space to calculate network smallworldness, clustering, modularity and transitivity. Nodal measures (clustering and node degree) as well as modular partitions were compared between groups. The MCI group exhibited decreased smallworldness, clustering and transitivity and increased modularity in theta and beta bands. SCD showed similar but smaller changes in clustering and transitivity, while exhibiting alterations in the alpha band in opposite direction to those showed by MCI for modularity and transitivity. At the node level, MCI disrupted both clustering and nodal degree while SCD showed minor changes in the latter. Additionally, we observed an increase in modular partition variability in both SCD and MCI in theta and beta bands. SCD elders exhibit a significant network disruption, showing intermediate values between HC and MCI groups in multiple parameters. These results highlight the relevance of cognitive concerns in the clinical setting and suggest that network disorganization in AD could start in the preclinical stages before the onset of cognitive symptoms.

  17. Finding modules and hierarchy in weighted financial network using transfer entropy

    NASA Astrophysics Data System (ADS)

    Yook, Soon-Hyung; Chae, Huiseung; Kim, Jinho; Kim, Yup

    2016-04-01

    We study the modular structure of financial network based on the transfer entropy (TE). From the comparison with the obtained modular structure using the cross-correlation (CC), we find that TE and CC both provide well organized modular structure and the hierarchical relationship between each industrial group when the time scale of the measurement is less than one month. However, when the time scale of the measurement becomes larger than one month, we find that the modular structure from CC cannot correctly reflect the known industrial classification and their hierarchy. In addition the measured maximum modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better weight measure than CC for the system with asymmetric relationship.

  18. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks

    PubMed Central

    Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-01-01

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. PMID:29642483

  19. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks.

    PubMed

    Murakami, Masaya; Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-04-08

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.

  20. A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation.

    PubMed

    Camuñas-Mesa, Luis A; Domínguez-Cordero, Yaisel L; Linares-Barranco, Alejandro; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2018-01-01

    Convolutional Neural Networks (ConvNets) are a particular type of neural network often used for many applications like image recognition, video analysis or natural language processing. They are inspired by the human brain, following a specific organization of the connectivity pattern between layers of neurons known as receptive field. These networks have been traditionally implemented in software, but they are becoming more computationally expensive as they scale up, having limitations for real-time processing of high-speed stimuli. On the other hand, hardware implementations show difficulties to be used for different applications, due to their reduced flexibility. In this paper, we propose a fully configurable event-driven convolutional node with rate saturation mechanism that can be used to implement arbitrary ConvNets on FPGAs. This node includes a convolutional processing unit and a routing element which allows to build large 2D arrays where any multilayer structure can be implemented. The rate saturation mechanism emulates the refractory behavior in biological neurons, guaranteeing a minimum separation in time between consecutive events. A 4-layer ConvNet with 22 convolutional nodes trained for poker card symbol recognition has been implemented in a Spartan6 FPGA. This network has been tested with a stimulus where 40 poker cards were observed by a Dynamic Vision Sensor (DVS) in 1 s time. Different slow-down factors were applied to characterize the behavior of the system for high speed processing. For slow stimulus play-back, a 96% recognition rate is obtained with a power consumption of 0.85 mW. At maximum play-back speed, a traffic control mechanism downsamples the input stimulus, obtaining a recognition rate above 63% when less than 20% of the input events are processed, demonstrating the robustness of the network.

  1. A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation

    PubMed Central

    Camuñas-Mesa, Luis A.; Domínguez-Cordero, Yaisel L.; Linares-Barranco, Alejandro; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabé

    2018-01-01

    Convolutional Neural Networks (ConvNets) are a particular type of neural network often used for many applications like image recognition, video analysis or natural language processing. They are inspired by the human brain, following a specific organization of the connectivity pattern between layers of neurons known as receptive field. These networks have been traditionally implemented in software, but they are becoming more computationally expensive as they scale up, having limitations for real-time processing of high-speed stimuli. On the other hand, hardware implementations show difficulties to be used for different applications, due to their reduced flexibility. In this paper, we propose a fully configurable event-driven convolutional node with rate saturation mechanism that can be used to implement arbitrary ConvNets on FPGAs. This node includes a convolutional processing unit and a routing element which allows to build large 2D arrays where any multilayer structure can be implemented. The rate saturation mechanism emulates the refractory behavior in biological neurons, guaranteeing a minimum separation in time between consecutive events. A 4-layer ConvNet with 22 convolutional nodes trained for poker card symbol recognition has been implemented in a Spartan6 FPGA. This network has been tested with a stimulus where 40 poker cards were observed by a Dynamic Vision Sensor (DVS) in 1 s time. Different slow-down factors were applied to characterize the behavior of the system for high speed processing. For slow stimulus play-back, a 96% recognition rate is obtained with a power consumption of 0.85 mW. At maximum play-back speed, a traffic control mechanism downsamples the input stimulus, obtaining a recognition rate above 63% when less than 20% of the input events are processed, demonstrating the robustness of the network. PMID:29515349

  2. Dynamic burstiness of word-occurrence and network modularity in textbook systems

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Mei; Yoon, Chang No; Youn, Hyejin; Lee, Sang Hoon; Jung, Jean S.; Han, Seung Kee

    2017-12-01

    We show that the dynamic burstiness of word occurrence in textbook systems is attributed to the modularity of the word association networks. At first, a measure of dynamic burstiness is introduced to quantify burstiness of word occurrence in a textbook. The advantage of this measure is that the dynamic burstiness is decomposable into two contributions: one coming from the inter-event variance and the other from the memory effects. Comparing network structures of physics textbook systems with those of surrogate random textbooks without the memory or variance effects are absent, we show that the network modularity increases systematically with the dynamic burstiness. The intra-connectivity of individual word representing the strength of a tie with which a node is bound to a module accordingly increases with the dynamic burstiness, suggesting individual words with high burstiness are strongly bound to one module. Based on the frequency and dynamic burstiness, physics terminology is classified into four categories: fundamental words, topical words, special words, and common words. In addition, we test the correlation between the dynamic burstiness of word occurrence and network modularity using a two-state model of burst generation.

  3. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.

    PubMed

    Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C

    2016-05-01

    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.

  4. Multiple Assembly Rules Drive the Co-occurrence of Orthopteran and Plant Species in Grasslands: Combining Network, Functional and Phylogenetic Approaches

    PubMed Central

    Fournier, Bertrand; Mouly, Arnaud; Gillet, François

    2016-01-01

    Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754

  5. Modular and hierarchical structure of social contact networks

    NASA Astrophysics Data System (ADS)

    Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong

    2013-10-01

    Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.

  6. Fox proteins are modular competency factors for facial cartilage and tooth specification.

    PubMed

    Xu, Pengfei; Balczerski, Bartosz; Ciozda, Amanda; Louie, Kristin; Oralova, Veronika; Huysseune, Ann; Crump, J Gage

    2018-06-26

    Facial form depends on the precise positioning of cartilage, bone, and tooth fields in the embryonic pharyngeal arches. How complex signaling information is integrated to specify these cell types remains a mystery. We find that modular expression of Forkhead domain transcription factors (Fox proteins) in the zebrafish face arises through integration of Hh, Fgf, Bmp, Edn1 and Jagged-Notch pathways. Whereas loss of C-class Fox proteins results in reduced upper facial cartilages, loss of F-class Fox proteins results in distal jaw truncations and absent midline cartilages and teeth. We show that Fox proteins are required for Sox9a to promote chondrogenic gene expression. Fox proteins are sufficient in neural crest-derived cells for cartilage development, and neural crest-specific misexpression of Fox proteins expands the cartilage domain but inhibits bone. These results support a modular role for Fox proteins in establishing the competency of progenitors to form cartilage and teeth in the face. © 2018. Published by The Company of Biologists Ltd.

  7. Subcommunities and Their Mutual Relationships in a Transaction Network

    NASA Astrophysics Data System (ADS)

    Iino, T.; Iyetomi, H.

    We investigate a Japanese transaction network consisting ofabout 800 thousand firms (nodes) and four million business relations (links) with focus on its modular structure. Communities detected by maximizing modularity often are dominated by firms with common features or behaviors in the network, such as characterized by regions or industry sectors. However, it is well known that the modularity optimization approach has a resolution limit problem, that is, it fails in identifying fine communities buried in large communities. To unfold such hidden structures, we apply the community detection to each of subnetworks formed by isolating those communities from the whole body. Subcommunities thus identified are composed of firms with finer regions, more specified sectors or business affiliations. Also we introduce a new idea of reduced modularity matrix to measure the strength of relations between (sub)communities.

  8. Evolution of a modular software network

    PubMed Central

    Fortuna, Miguel A.; Bonachela, Juan A.; Levin, Simon A.

    2011-01-01

    “Evolution behaves like a tinkerer” (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed. PMID:22106260

  9. Ad hoc Laser networks component technology for modular spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Xiujun; Shi, Dele; Ma, Zongfeng; Shen, Jingshi

    2016-03-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  10. Ad hoc laser networks component technology for modular spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  11. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    PubMed

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  12. Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.

    PubMed

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney J

    2018-05-01

    Finding actions that satisfy the constraints imposed by both external inputs and internal representations is central to decision making. We demonstrate that some important classes of constraint satisfaction problems (CSPs) can be solved by networks composed of homogeneous cooperative-competitive modules that have connectivity similar to motifs observed in the superficial layers of neocortex. The winner-take-all modules are sparsely coupled by programming neurons that embed the constraints onto the otherwise homogeneous modular computational substrate. We show rules that embed any instance of the CSP's planar four-color graph coloring, maximum independent set, and sudoku on this substrate and provide mathematical proofs that guarantee these graph coloring problems will convergence to a solution. The network is composed of nonsaturating linear threshold neurons. Their lack of right saturation allows the overall network to explore the problem space driven through the unstable dynamics generated by recurrent excitation. The direction of exploration is steered by the constraint neurons. While many problems can be solved using only linear inhibitory constraints, network performance on hard problems benefits significantly when these negative constraints are implemented by nonlinear multiplicative inhibition. Overall, our results demonstrate the importance of instability rather than stability in network computation and offer insight into the computational role of dual inhibitory mechanisms in neural circuits.

  13. Development of BION(TM) Technology for Functional Electrical Stimulation: Bidirectional Telemetry

    DTIC Science & Technology

    2001-10-25

    paralyzed limb , it is necessary to incorporate sensors and back telemetry to provide voluntary control and sensory feedback signals. We describe...requirements. Keywords - neural prostheses, electrical stimulation, implants, telemetry, sensors I. INTRODUCTION BIONs ( BIOnic Neurons) are modular...ents of a paralyzed limb will require a sophisticated control system that must be driven by two types of data from the patient: 1) command signals

  14. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    NASA Astrophysics Data System (ADS)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  15. Structural Covariance Networks in Children with Autism or ADHD

    PubMed Central

    Romero-Garcia, R.; Mak, E.; Bullmore, E. T.; Baron-Cohen, S.

    2017-01-01

    Abstract Background While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Method Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. Results We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Conclusions Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. PMID:28633299

  16. Structural Covariance Networks in Children with Autism or ADHD.

    PubMed

    Bethlehem, R A I; Romero-Garcia, R; Mak, E; Bullmore, E T; Baron-Cohen, S

    2017-08-01

    While autism and attention-deficit/hyperactivity disorder (ADHD) are considered distinct conditions from a diagnostic perspective, clinically they share some phenotypic features and have high comorbidity. Regardless, most studies have focused on only one condition, with considerable heterogeneity in their results. Taking a dual-condition approach might help elucidate shared and distinct neural characteristics. Graph theory was used to analyse topological properties of structural covariance networks across both conditions and relative to a neurotypical (NT; n = 87) group using data from the ABIDE (autism; n = 62) and ADHD-200 datasets (ADHD; n = 69). Regional cortical thickness was used to construct the structural covariance networks. This was analysed in a theoretical framework examining potential differences in long and short-range connectivity, with a specific focus on relation between central graph measures and cortical thickness. We found convergence between autism and ADHD, where both conditions show an overall decrease in CT covariance with increased Euclidean distance between centroids compared with a NT population. The 2 conditions also show divergence. Namely, there is less modular overlap between the 2 conditions than there is between each condition and the NT group. The ADHD group also showed reduced cortical thickness and lower degree in hub regions than the autism group. Lastly, the ADHD group also showed reduced wiring costs compared with the autism groups. Our results indicate a need for taking an integrated approach when considering highly comorbid conditions such as autism and ADHD. Furthermore, autism and ADHD both showed alterations in the relation between inter-regional covariance and centroid distance, where both groups show a steeper decline in covariance as a function of distance. The 2 groups also diverge on modular organization, cortical thickness of hub regions and wiring cost of the covariance network. Thus, on some network features the groups are distinct, yet on others there is convergence. © The Author 2017. Published by Oxford University Press.

  17. Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree–herbivore networks

    PubMed Central

    Robinson, Kathryn M; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R

    2015-01-01

    Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen–herbivore bipartite networks, the role of environmental variations is a dominant constraint. PMID:26306175

  18. Trapping in scale-free networks with hierarchical organization of modularity.

    PubMed

    Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo

    2009-11-01

    A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.

  19. Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking

    PubMed Central

    Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus

    2013-01-01

    Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194

  20. Modular networks with delayed coupling: Synchronization and frequency control

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  1. A network function-based definition of communities in complex networks.

    PubMed

    Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward

    2012-09-01

    We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.

  2. Individual T1-weighted/T2-weighted ratio brain networks: Small-worldness, hubs and modular organization

    NASA Astrophysics Data System (ADS)

    Wu, Huijun; Wang, Hao; Lü, Linyuan

    Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.

  3. Multichannel activity propagation across an engineered axon network

    NASA Astrophysics Data System (ADS)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers. These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.

  4. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  5. An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems

    DTIC Science & Technology

    1991-12-01

    neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input

  6. Classification of 2-dimensional array patterns: assembling many small neural networks is better than using a large one.

    PubMed

    Chen, Liang; Xue, Wei; Tokuda, Naoyuki

    2010-08-01

    In many pattern classification/recognition applications of artificial neural networks, an object to be classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted neural network, which takes all the elements in the array as inputs could be used for problems such as these. However, a districted neural network can be used to reduce the training complexity. A districted neural network usually consists of two levels of sub-neural networks. Each of the lower level neural networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and is expected to output a temporary class label, called an individual opinion, based on the partial information of the entire array. The higher level neural network, called an assembling sub-neural network, uses the outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision for the object. Each of the sub-neural networks can be trained separately and thus the training is less expensive. The regional sub-neural networks can be trained and performed in parallel and independently, therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model, that a districted neural network is actually more stable than an undistricted neural network in noisy environments. We conjecture that the result is valid for all neural networks. This theory is verified by experiments involving gender classification and human face recognition. We conclude that a districted neural network is highly recommended for neural network applications in recognition or classification of 2-dimensional array patterns in highly noisy environments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. MINE: Module Identification in Networks

    PubMed Central

    2011-01-01

    Background Graphical models of network associations are useful for both visualizing and integrating multiple types of association data. Identifying modules, or groups of functionally related gene products, is an important challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when applied to dense networks of experimentally derived interaction data. To address this problem, we have developed an agglomerative clustering method that is able to identify highly modular sets of gene products within highly interconnected molecular interaction networks. Results MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves superior geometric accuracy and modularity for annotated functional categories. In comparison with the most closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing topological properties. Conclusions MINE was created in response to the challenge of discovering high quality modules of gene products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans. PMID:21605434

  8. Advanced Aeroservoelastic Testing and Data Analysis (Les Essais Aeroservoelastiques et l’Analyse des Donnees).

    DTIC Science & Technology

    1995-11-01

    network - based AFS concepts. Neural networks can addition of vanes in each engine exhaust for thrust provide...parameter estimation programs 19-11 8.6 Neural Network Based Methods unknown parameters of the postulated state space model Artificial neural network ...Forward Neural Network the network that the applicability of the recurrent neural and ii) Recurrent Neural Network [117-119]. network to

  9. Traffic-aware energy saving scheme with modularization supporting in TWDM-PON

    NASA Astrophysics Data System (ADS)

    Xiong, Yu; Sun, Peng; Liu, Chuanbo; Guan, Jianjun

    2017-01-01

    Time and wavelength division multiplexed passive optical network (TWDM-PON) is considered to be a primary solution for next-generation passive optical network stage 2 (NG-PON2). Due to the feature of multi-wavelength transmission of TWDM-PON, some of the transmitters/receivers at the optical line terminal (OLT) could be shut down to reduce the energy consumption. Therefore, a novel scheme called traffic-aware energy saving scheme with modularization supporting is proposed. Through establishing the modular energy consumption model of OLT, the wavelength transmitters/receivers at OLT could be switched on or shut down adaptively depending on sensing the status of network traffic load, thus the energy consumption of OLT will be effectively reduced. Furthermore, exploring the technology of optical network unit (ONU) modularization, each module of ONU could be switched to sleep or active mode independently in order to reduce the energy consumption of ONU. Simultaneously, the polling sequence of ONU could be changed dynamically via sensing the packet arrival time. In order to guarantee the delay performance of network traffic, the sub-cycle division strategy is designed to transmit the real-time traffic preferentially. Finally, simulation results verify that the proposed scheme is able to reduce the energy consumption of the network while maintaining the traffic delay performance.

  10. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  11. Functional modular architecture underlying attentional control in aging.

    PubMed

    Monge, Zachary A; Geib, Benjamin R; Siciliano, Rachel E; Packard, Lauren E; Tallman, Catherine W; Madden, David J

    2017-07-15

    Previous research suggests that age-related differences in attention reflect the interaction of top-down and bottom-up processes, but the cognitive and neural mechanisms underlying this interaction remain an active area of research. Here, within a sample of community-dwelling adults 19-78 years of age, we used diffusion reaction time (RT) modeling and multivariate functional connectivity to investigate the behavioral components and whole-brain functional networks, respectively, underlying bottom-up and top-down attentional processes during conjunction visual search. During functional MRI scanning, participants completed a conjunction visual search task in which each display contained one item that was larger than the other items (i.e., a size singleton) but was not informative regarding target identity. This design allowed us to examine in the RT components and functional network measures the influence of (a) additional bottom-up guidance when the target served as the size singleton, relative to when the distractor served as the size singleton (i.e., size singleton effect) and (b) top-down processes during target detection (i.e., target detection effect; target present vs. absent trials). We found that the size singleton effect (i.e., increased bottom-up guidance) was associated with RT components related to decision and nondecision processes, but these effects did not vary with age. Also, a modularity analysis revealed that frontoparietal module connectivity was important for both the size singleton and target detection effects, but this module became central to the networks through different mechanisms for each effect. Lastly, participants 42 years of age and older, in service of the target detection effect, relied more on between-frontoparietal module connections. Our results further elucidate mechanisms through which frontoparietal regions support attentional control and how these mechanisms vary in relation to adult age. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A novel modular ANN architecture for efficient monitoring of gases/odours in real-time

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Rajput, N. S.

    2018-04-01

    Data pre-processing is tremendously used for enhanced classification of gases. However, it suppresses the concentration variances of different gas samples. A classical solution of using single artificial neural network (ANN) architecture is also inefficient and renders degraded quantification. In this paper, a novel modular ANN design has been proposed to provide an efficient and scalable solution in real–time. Here, two separate ANN blocks viz. classifier block and quantifier block have been used to provide efficient and scalable gas monitoring in real—time. The classifier ANN consists of two stages. In the first stage, the Net 1-NDSRT has been trained to transform raw sensor responses into corresponding virtual multi-sensor responses using normalized difference sensor response transformation (NDSRT). These responses have been fed to the second stage (i.e., Net 2-classifier ). The Net 2-classifier has been trained to classify various gas samples to their respective class. Further, the quantifier block has parallel ANN modules, multiplexed to quantify each gas. Therefore, the classifier ANN decides class and quantifier ANN decides the exact quantity of the gas/odor present in the respective sample of that class.

  13. NASA Tech Briefs, February 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics discussed include: Nearly Direct Measurement of Relative Permittivity; DCS-Neural-Network Program for Aircraft Control and Testing; Dielectric Heaters for Testing Spacecraft Nuclear Reactors; Using Doppler Shifts of GPS Signals To Measure Angular Speed; Monitoring Temperatures of Tires Using Luminescent Materials; Highly Efficient Multilayer Thermoelectric Devices; Very High-Speed Digital Video Capability for In-Flight Use; MMIC DHBT Common-Base Amplifier for 172 GHz; Modular, Microprocessor-Controlled Flash Lighting System; Generic Environment for Simulating Launch Operations; Modular Aero-Propulsion System Simulation; X-Windows Socket Widget Class; Infrastructure for Rapid Development of Java GUI Programs; Processing Raman Spectra of High-Pressure Hydrogen Flames; X-Windows Information Sharing Protocol Widget Class; Simulating Humans as Integral Parts of Spacecraft Missions; Analyzing Power Supply and Demand on the ISS; Polyimides From a-BPDA and Aromatic Diamines; Making Plant-Support Structures From Waste Plant Fiber; Large Deployable Reflectarray Antenna; Periodically Discharging, Gas-Coalescing Filter; Ion Milling On Steps for Fabrication of Nanowires; Neuro-Prosthetic Implants With Adjustable Electrode Arrays; Microfluidic Devices for Studying Biomolecular Interactions; Studying Functions of All Yeast Genes Simultaneously; Polarization Phase-Compensating Coats for Metallic Mirrors; Tunable-Bandwidth Filter System; Methodology for Designing Fault-Protection Software; and Ground-Based Localization of Mars Rovers.

  14. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks

    PubMed Central

    Pani, Danilo; Meloni, Paolo; Tuveri, Giuseppe; Palumbo, Francesca; Massobrio, Paolo; Raffo, Luigi

    2017-01-01

    In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments. PMID:28293163

  15. Time Series Neural Network Model for Part-of-Speech Tagging Indonesian Language

    NASA Astrophysics Data System (ADS)

    Tanadi, Theo

    2018-03-01

    Part-of-speech tagging (POS tagging) is an important part in natural language processing. Many methods have been used to do this task, including neural network. This paper models a neural network that attempts to do POS tagging. A time series neural network is modelled to solve the problems that a basic neural network faces when attempting to do POS tagging. In order to enable the neural network to have text data input, the text data will get clustered first using Brown Clustering, resulting a binary dictionary that the neural network can use. To further the accuracy of the neural network, other features such as the POS tag, suffix, and affix of previous words would also be fed to the neural network.

  16. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.

    PubMed

    Saez-Rodriguez, Julio; Gayer, Stefan; Ginkel, Martin; Gilles, Ernst Dieter

    2008-08-15

    The modularity of biochemical networks in general, and signaling networks in particular, has been extensively studied over the past few years. It has been proposed to be a useful property to analyze signaling networks: by decomposing the network into subsystems, more manageable units are obtained that are easier to analyze. While many powerful algorithms are available to identify modules in protein interaction networks, less attention has been paid to signaling networks de.ned as chemical systems. Such a decomposition would be very useful as most quantitative models are de.ned using the latter, more detailed formalism. Here, we introduce a novel method to decompose biochemical networks into modules so that the bidirectional (retroactive) couplings among the modules are minimized. Our approach adapts a method to detect community structures, and applies it to the so-called retroactivity matrix that characterizes the couplings of the network. Only the structure of the network, e.g. in SBML format, is required. Furthermore, the modularized models can be loaded into ProMoT, a modeling tool which supports modular modeling. This allows visualization of the models, exploiting their modularity and easy generation of models of one or several modules for further analysis. The method is applied to several relevant cases, including an entangled model of the EGF-induced MAPK cascade and a comprehensive model of EGF signaling, demonstrating its ability to uncover meaningful modules. Our approach can thus help to analyze large networks, especially when little a priori knowledge on the structure of the network is available. The decomposition algorithms implemented in MATLAB (Mathworks, Inc.) are freely available upon request. ProMoT is freely available at http://www.mpi-magdeburg.mpg.de/projects/promot. Supplementary data are available at Bioinformatics online.

  17. Obtaining big data of vegetation using artificial neural network

    NASA Astrophysics Data System (ADS)

    Ise, T.; Minagawa, M.; Onishi, M.

    2017-12-01

    To carry out predictive studies concerning ecosystems, obtaining appropriate datasets is one of the key factors. Recently, applications of neural network such as deep learning have successfully overcome difficulties in data acquisition and added large datasets for predictive science. For example, deep learning is very powerful in identifying and counting people, cars, etc. However, for vegetation science, deep learning has not been widely used. In general, differing from animals, plants have characteristics of modular growth. For example, numbers of leaves and stems which one individual plant typically possesses are not predetermined but change flexibly according to environmental conditions. This is clearly different from that the standard model of human face has predetermined numbers of parts, such as two eyes, one mouth, and so on. This characteristics of plants can make object identification difficult. In this study, a simple but effective technique was used to overcome the difficulty of visual identification of plants, and automated classification of plant types and quantitative analyses were become possible. For instance, when our method was applied to classify bryophytes, one of the most difficult plant types for computer vision due to their amorphous shapes, the performance of identification model was typically over 90% success. With this technology, it may be possible to obtain the big data of plant type, size, density etc. from satellite and/or drone imageries, in a quantitative manner. this will allow progress in predictive biogeosciences.

  18. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  19. A Smarter Brain Is Associated with Stronger Neural Interaction in Healthy Young Females: A Resting EEG Coherence Study

    ERIC Educational Resources Information Center

    Lee, Tien-Wen; Wu, Yu-Te; Yu, Younger W.-Y.; Wu, Hung-Chi; Chen, Tai-Jui

    2012-01-01

    General intelligence, the "g" factor, is a major issue in psychology and neuroscience. However, the neural mechanism of the "g" factor is still not clear. It is suggested that the "g" factor should be non-modular (a property across the brain) and show good colinearity with various cognitive tests. This study examines…

  20. Selection of neural network structure for system error correction of electro-optical tracker system with horizontal gimbal

    NASA Astrophysics Data System (ADS)

    Liu, Xing-fa; Cen, Ming

    2007-12-01

    Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.

  1. A novel recurrent neural network with finite-time convergence for linear programming.

    PubMed

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  2. Optimal multi-community network modularity for information diffusion

    NASA Astrophysics Data System (ADS)

    Wu, Jiaocan; Du, Ruping; Zheng, Yingying; Liu, Dong

    2016-02-01

    Studies demonstrate that community structure plays an important role in information spreading recently. In this paper, we investigate the impact of multi-community structure on information diffusion with linear threshold model. We utilize extended GN network that contains four communities and analyze dynamic behaviors of information that spreads on it. And we discover the optimal multi-community network modularity for information diffusion based on the social reinforcement. Results show that, within the appropriate range, multi-community structure will facilitate information diffusion instead of hindering it, which accords with the results derived from two-community network.

  3. Does biological intimacy shape ecological network structure? A test using a brood pollination mutualism on continental and oceanic islands.

    PubMed

    Hembry, David H; Raimundo, Rafael L G; Newman, Erica A; Atkinson, Lesje; Guo, Chang; Guimarães, Paulo R; Gillespie, Rosemary G

    2018-04-25

    Biological intimacy-the degree of physical proximity or integration of partner taxa during their life cycles-is thought to promote the evolution of reciprocal specialization and modularity in the networks formed by co-occurring mutualistic species, but this hypothesis has rarely been tested. Here, we test this "biological intimacy hypothesis" by comparing the network architecture of brood pollination mutualisms, in which specialized insects are simultaneously parasites (as larvae) and pollinators (as adults) of their host plants to that of other mutualisms which vary in their biological intimacy (including ant-myrmecophyte, ant-extrafloral nectary, plant-pollinator and plant-seed disperser assemblages). We use a novel dataset sampled from leafflower trees (Phyllanthaceae: Phyllanthus s. l. [Glochidion]) and their pollinating leafflower moths (Lepidoptera: Epicephala) on three oceanic islands (French Polynesia) and compare it to equivalent published data from congeners on continental islands (Japan). We infer taxonomic diversity of leafflower moths using multilocus molecular phylogenetic analysis and examine several network structural properties: modularity (compartmentalization), reciprocality (symmetry) of specialization and algebraic connectivity. We find that most leafflower-moth networks are reciprocally specialized and modular, as hypothesized. However, we also find that two oceanic island networks differ in their modularity and reciprocal specialization from the others, as a result of a supergeneralist moth taxon which interacts with nine of 10 available hosts. Our results generally support the biological intimacy hypothesis, finding that leafflower-moth networks (usually) share a reciprocally specialized and modular structure with other intimate mutualisms such as ant-myrmecophyte symbioses, but unlike nonintimate mutualisms such as seed dispersal and nonintimate pollination. Additionally, we show that generalists-common in nonintimate mutualisms-can also evolve in intimate mutualisms, and that their effect is similar in both types of assemblages: once generalists emerge they reshape the network organization by connecting otherwise isolated modules. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  4. Functional network organizations of two contrasting temperament groups in dimensions of novelty seeking and harm avoidance.

    PubMed

    Kyeong, Sunghyon; Kim, Eunjoo; Park, Hae-Jeong; Hwang, Dong-Uk

    2014-08-05

    Novelty seeking (NS) and harm avoidance (HA) are two major dimensions of temperament in Cloninger׳s neurobiological model of personality. Previous neurofunctional and biological studies on temperament dimensions of HA and NS suggested that the temperamental traits have significant correlations with cortical and subcortical brain regions. However, no study to date has investigated the functional network modular organization as a function of the temperament dimension. The temperament dimensions were originally proposed to be independent of one another. However, a meta-analysis based on 16 published articles found a significant negative correlation between HA and NS (Miettunen et al., 2008). Based on this negative correlation, the current study revealed the whole-brain connectivity modular architecture for two contrasting temperament groups. The k-means clustering algorithm, with the temperamental traits of HA and NS as an input, was applied to divide the 40 subjects into two temperament groups: 'high HA and low NS' versus 'low HA and high NS'. Using the graph theoretical framework, we found a functional segregation of whole brain network architectures derived from resting-state functional MRI. In the 'high HA and low NS' group, the regulatory brain regions, such as the prefrontal cortex (PFC), are clustered together with the limbic system. In the 'low HA and high NS' group, however, brain regions lying on the dopaminergic pathways, such as the PFC and basal ganglia, are partitioned together. These findings suggest that the neural basis of inhibited, passive, and inactive behaviors in the 'high HA and low NS' group was derived from the increased network associations between the PFC and limbic clusters. In addition, supporting evidence of topological differences between the two temperament groups was found by analyzing the functional connectivity density and gray matter volume, and by computing the relationships between the morphometry and function of the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Modular-extramodular organization in developing multisensory shell regions of the mouse inferior colliculus.

    PubMed

    Dillingham, Christopher H; Gay, Sean M; Behrooz, Roxana; Gabriele, Mark L

    2017-12-01

    The complex neuroanatomical connections of the inferior colliculus (IC) and its major subdivisions offer a juxtaposition of segregated processing streams with distinct organizational features. While the tonotopically layered central nucleus is well-documented, less is known about functional compartments in the neighboring lateral cortex (LCIC). In addition to a laminar framework, LCIC afferent-efferent patterns suggest a multimodal mosaic, consisting of a patchy modular network with surrounding extramodular domains. This study utilizes several neurochemical markers that reveal an emerging LCIC modular-extramodular microarchitecture. In newborn and post-hearing C57BL/6J and CBA/CaJ mice, histochemical and immunocytochemical stains were performed for acetylcholinesterase (AChE), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), glutamic acid decarboxylase (GAD), cytochrome oxidase (CO), and calretinin (CR). Discontinuous layer 2 modules are positive for AChE, NADPH-d, GAD, and CO throughout the rostrocaudal LCIC. While not readily apparent at birth, discrete cell clusters emerge over the first postnatal week, yielding an identifiable modular network prior to hearing onset. Modular boundaries continue to become increasingly distinct with age, as surrounding extramodular fields remain largely negative for each marker. Alignment of modular markers in serial sections suggests each highlight the same periodic patchy network throughout the nascent LCIC. In contrast, CR patterns appear complementary, preferentially staining extramodular LCIC zones. Double-labeling experiments confirm that NADPH-d, the most consistent developmental modular marker, and CR label separate, nonoverlapping LCIC compartments. Determining how this emerging modularity may align with similar LCIC patch-matrix-like Eph/ephrin guidance patterns, and how each interface with, and potentially influence developing multimodal LCIC projection configurations is discussed. © 2017 Wiley Periodicals, Inc.

  6. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Cui, Bao-Tong

    2007-07-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  7. De novo design of protein homo-oligomers with modular hydrogen bond network-mediated specificity

    PubMed Central

    Boyken, Scott E.; Chen, Zibo; Groves, Benjamin; Langan, Robert A.; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H.; Baker, David

    2017-01-01

    In nature, structural specificity in DNA and proteins is encoded quite differently: in DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen bond networks with atomic accuracy is a milestone for protein design and enables the programming of protein interaction specificity for a broad range of synthetic biology applications. PMID:27151862

  8. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  9. The neural network to determine the mechanical properties of the steels

    NASA Astrophysics Data System (ADS)

    Yemelyanov, Vitaliy; Yemelyanova, Nataliya; Safonova, Marina; Nedelkin, Aleksey

    2018-04-01

    The authors describe the neural network structure and software that is designed and developed to determine the mechanical properties of steels. The neural network is developed to refine upon the values of the steels properties. The results of simulations of the developed neural network are shown. The authors note the low standard error of the proposed neural network. To realize the proposed neural network the specialized software has been developed.

  10. Detecting network communities beyond assortativity-related attributes

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Murata, Tsuyoshi; Wakita, Ken

    2014-07-01

    In network science, assortativity refers to the tendency of links to exist between nodes with similar attributes. In social networks, for example, links tend to exist between individuals of similar age, nationality, location, race, income, educational level, religious belief, and language. Thus, various attributes jointly affect the network topology. An interesting problem is to detect community structure beyond some specific assortativity-related attributes ρ, i.e., to take out the effect of ρ on network topology and reveal the hidden community structures which are due to other attributes. An approach to this problem is to redefine the null model of the modularity measure, so as to simulate the effect of ρ on network topology. However, a challenge is that we do not know to what extent the network topology is affected by ρ and by other attributes. In this paper, we propose a distance modularity, which allows us to freely choose any suitable function to simulate the effect of ρ. Such freedom can help us probe the effect of ρ and detect the hidden communities which are due to other attributes. We test the effectiveness of distance modularity on synthetic benchmarks and two real-world networks.

  11. The neurophysiological and evolutionary considerations of close combat: A modular approach.

    PubMed

    Dervenis, Kostas; Tsialogiannis, Evangelos

    2017-01-01

    Close Combat may be identified as a physical confrontation involving armed or unarmed fighting, lethal and/or non-lethal methods, or even simply escape from and/or de-escalation of the confrontation. Our model hypothesizes that distinct areas of the brain are utilized for specific levels of violence, based on evolutionary criteria, and that these levels of violence bring into effect distinct physiological criteria and kinesiology. This model is outlined similar to Paul D. MacLean's triune brain theory, but incorporates distinct processes inherent to the autonomic nervous system (i.e. a "quadrune brain"), and correlates the observed level of violence to a particular response to a specific neural complex associated with very specific reactive kinesiology in the body. Our hypothesis is that the reverse also holds true: specific movements, scenarios and breathing will "activate" corresponding neural centres that in turn correlate to a respective level of violence. Moreover, socio-historic records bear out the premise that specific behavioural violations of social protocols act as "triggers" for assaultive and lethal force involving weapons, and it is very likely that these triggers (and the concomitant decision to engage in assault or lethal force) are processed through neural centres in what McLean has described as his "limbic system." A modular system of close combat is being researched and developed in accord with the above, readily adaptable to the level of violence professional peacekeepers and law enforcement officers may encounter in the course of their duties, but also directly relevant to the self-protection needs of civilians and youth. Distinct modular training regimes have been identified and developed for situations involving escape from a threat, submission of an adversary, and assaultive/lethal force, with the hope of strengthening neural bridges between the four neural complexes postulated in our model, and therefore via these bridges limiting adverse reactions to the psyche from combat stress.

  12. A novel community detection method in bipartite networks

    NASA Astrophysics Data System (ADS)

    Zhou, Cangqi; Feng, Liang; Zhao, Qianchuan

    2018-02-01

    Community structure is a common and important feature in many complex networks, including bipartite networks, which are used as a standard model for many empirical networks comprised of two types of nodes. In this paper, we propose a two-stage method for detecting community structure in bipartite networks. Firstly, we extend the widely-used Louvain algorithm to bipartite networks. The effectiveness and efficiency of the Louvain algorithm have been proved by many applications. However, there lacks a Louvain-like algorithm specially modified for bipartite networks. Based on bipartite modularity, a measure that extends unipartite modularity and that quantifies the strength of partitions in bipartite networks, we fill the gap by developing the Bi-Louvain algorithm that iteratively groups the nodes in each part by turns. This algorithm in bipartite networks often produces a balanced network structure with equal numbers of two types of nodes. Secondly, for the balanced network yielded by the first algorithm, we use an agglomerative clustering method to further cluster the network. We demonstrate that the calculation of the gain of modularity of each aggregation, and the operation of joining two communities can be compactly calculated by matrix operations for all pairs of communities simultaneously. At last, a complete hierarchical community structure is unfolded. We apply our method to two benchmark data sets and a large-scale data set from an e-commerce company, showing that it effectively identifies community structure in bipartite networks.

  13. Performance analysis and comparison of a minimum interconnections direct storage model with traditional neural bidirectional memories.

    PubMed

    Bhatti, A Aziz

    2009-12-01

    This study proposes an efficient and improved model of a direct storage bidirectional memory, improved bidirectional associative memory (IBAM), and emphasises the use of nanotechnology for efficient implementation of such large-scale neural network structures at a considerable lower cost reduced complexity, and less area required for implementation. This memory model directly stores the X and Y associated sets of M bipolar binary vectors in the form of (MxN(x)) and (MxN(y)) memory matrices, requires O(N) or about 30% of interconnections with weight strength ranging between +/-1, and is computationally very efficient as compared to sequential, intraconnected and other bidirectional associative memory (BAM) models of outer-product type that require O(N(2)) complex interconnections with weight strength ranging between +/-M. It is shown that it is functionally equivalent to and possesses all attributes of a BAM of outer-product type, and yet it is simple and robust in structure, very large scale integration (VLSI), optical and nanotechnology realisable, modular and expandable neural network bidirectional associative memory model in which the addition or deletion of a pair of vectors does not require changes in the strength of interconnections of the entire memory matrix. The analysis of retrieval process, signal-to-noise ratio, storage capacity and stability of the proposed model as well as of the traditional BAM has been carried out. Constraints on and characteristics of unipolar and bipolar binaries for improved storage and retrieval are discussed. The simulation results show that it has log(e) N times higher storage capacity, superior performance, faster convergence and retrieval time, when compared to traditional sequential and intraconnected bidirectional memories.

  14. Real-time classification of signals from three-component seismic sensors using neural nets

    NASA Astrophysics Data System (ADS)

    Bowman, B. C.; Dowla, F.

    1992-05-01

    Adaptive seismic data acquisition systems with capabilities of signal discrimination and event classification are important in treaty monitoring, proliferation, and earthquake early detection systems. Potential applications include monitoring underground chemical explosions, as well as other military, cultural, and natural activities where characteristics of signals change rapidly and without warning. In these applications, the ability to detect and interpret events rapidly without falling behind the influx of the data is critical. We developed a system for real-time data acquisition, analysis, learning, and classification of recorded events employing some of the latest technology in computer hardware, software, and artificial neural networks methods. The system is able to train dynamically, and updates its knowledge based on new data. The software is modular and hardware-independent; i.e., the front-end instrumentation is transparent to the analysis system. The software is designed to take advantage of the multiprocessing environment of the Unix operating system. The Unix System V shared memory and static RAM protocols for data access and the semaphore mechanism for interprocess communications were used. As the three-component sensor detects a seismic signal, it is displayed graphically on a color monitor using X11/Xlib graphics with interactive screening capabilities. For interesting events, the triaxial signal polarization is computed, a fast Fourier Transform (FFT) algorithm is applied, and the normalized power spectrum is transmitted to a backpropagation neural network for event classification. The system is currently capable of handling three data channels with a sampling rate of 500 Hz, which covers the bandwidth of most seismic events. The system has been tested in laboratory setting with artificial events generated in the vicinity of a three-component sensor.

  15. Multiway spectral community detection in networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Newman, M. E. J.

    2015-11-01

    One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.

  16. A spectral method to detect community structure based on distance modularity matrix

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Xuan; Zhang, Xiao-Dong

    2017-08-01

    There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.

  17. Region stability analysis and tracking control of memristive recurrent neural network.

    PubMed

    Bao, Gang; Zeng, Zhigang; Shen, Yanjun

    2018-02-01

    Memristor is firstly postulated by Leon Chua and realized by Hewlett-Packard (HP) laboratory. Research results show that memristor can be used to simulate the synapses of neurons. This paper presents a class of recurrent neural network with HP memristors. Firstly, it shows that memristive recurrent neural network has more compound dynamics than the traditional recurrent neural network by simulations. Then it derives that n dimensional memristive recurrent neural network is composed of [Formula: see text] sub neural networks which do not have a common equilibrium point. By designing the tracking controller, it can make memristive neural network being convergent to the desired sub neural network. At last, two numerical examples are given to verify the validity of our result. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA.

    PubMed

    Bowsher, Clive G

    2011-02-15

    Understanding the encoding and propagation of information by biochemical reaction networks and the relationship of such information processing properties to modular network structure is of fundamental importance in the study of cell signalling and regulation. However, a rigorous, automated approach for general biochemical networks has not been available, and high-throughput analysis has therefore been out of reach. Modularization Identification by Dynamic Independence Algorithms (MIDIA) is a user-friendly, extensible R package that performs automated analysis of how information is processed by biochemical networks. An important component is the algorithm's ability to identify exact network decompositions based on both the mass action kinetics and informational properties of the network. These modularizations are visualized using a tree structure from which important dynamic conditional independence properties can be directly read. Only partial stoichiometric information needs to be used as input to MIDIA, and neither simulations nor knowledge of rate parameters are required. When applied to a signalling network, for example, the method identifies the routes and species involved in the sequential propagation of information between its multiple inputs and outputs. These routes correspond to the relevant paths in the tree structure and may be further visualized using the Input-Output Path Matrix tool. MIDIA remains computationally feasible for the largest network reconstructions currently available and is straightforward to use with models written in Systems Biology Markup Language (SBML). The package is distributed under the GNU General Public License and is available, together with a link to browsable Supplementary Material, at http://code.google.com/p/midia. Further information is at www.maths.bris.ac.uk/~macgb/Software.html.

  19. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints.

    PubMed

    Liang, X B; Wang, J

    2000-01-01

    This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

  20. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  1. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    ERIC Educational Resources Information Center

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  2. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences

    PubMed Central

    Lindén, Henrik; Lansner, Anders

    2016-01-01

    Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN) learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model’s feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx). We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison. PMID:27213810

  3. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  4. Modified neural networks for rapid recovery of tokamak plasma parameters for real time control

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Ranjan, P.

    2002-07-01

    Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.

  5. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network.

    PubMed

    Jeng, J T; Lee, T T

    2000-01-01

    A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  6. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  7. Estimating the resolution limit of the map equation in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Rosvall, Martin

    2015-01-01

    A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.

  8. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  9. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  10. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  11. Dual Cross-Linked Biofunctional and Self-Healing Networks to Generate User-Defined Modular Gradient Hydrogel Constructs.

    PubMed

    Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon

    2017-08-01

    Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Neural network approaches to capture temporal information

    NASA Astrophysics Data System (ADS)

    van Veelen, Martijn; Nijhuis, Jos; Spaanenburg, Ben

    2000-05-01

    The automated design and construction of neural networks receives growing attention of the neural networks community. Both the growing availability of computing power and development of mathematical and probabilistic theory have had severe impact on the design and modelling approaches of neural networks. This impact is most apparent in the use of neural networks to time series prediction. In this paper, we give our views on past, contemporary and future design and modelling approaches to neural forecasting.

  13. The role of symmetry in neural networks and their Laplacian spectra.

    PubMed

    de Lange, Siemon C; van den Heuvel, Martijn P; de Reus, Marcel A

    2016-11-01

    Human and animal nervous systems constitute complexly wired networks that form the infrastructure for neural processing and integration of information. The organization of these neural networks can be analyzed using the so-called Laplacian spectrum, providing a mathematical tool to produce systems-level network fingerprints. In this article, we examine a characteristic central peak in the spectrum of neural networks, including anatomical brain network maps of the mouse, cat and macaque, as well as anatomical and functional network maps of human brain connectivity. We link the occurrence of this central peak to the level of symmetry in neural networks, an intriguing aspect of network organization resulting from network elements that exhibit similar wiring patterns. Specifically, we propose a measure to capture the global level of symmetry of a network and show that, for both empirical networks and network models, the height of the main peak in the Laplacian spectrum is strongly related to node symmetry in the underlying network. Moreover, examination of spectra of duplication-based model networks shows that neural spectra are best approximated using a trade-off between duplication and diversification. Taken together, our results facilitate a better understanding of neural network spectra and the importance of symmetry in neural networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Synchronization Control of Neural Networks With State-Dependent Coefficient Matrices.

    PubMed

    Zhang, Junfeng; Zhao, Xudong; Huang, Jun

    2016-11-01

    This brief is concerned with synchronization control of a class of neural networks with state-dependent coefficient matrices. Being different from the existing drive-response neural networks in the literature, a novel model of drive-response neural networks is established. The concepts of uniformly ultimately bounded (UUB) synchronization and convex hull Lyapunov function are introduced. Then, by using the convex hull Lyapunov function approach, the UUB synchronization design of the drive-response neural networks is proposed, and a delay-independent control law guaranteeing the bounded synchronization of the neural networks is constructed. All present conditions are formulated in terms of bilinear matrix inequalities. By comparison, it is shown that the neural networks obtained in this brief are less conservative than those ones in the literature, and the bounded synchronization is suitable for the novel drive-response neural networks. Finally, an illustrative example is given to verify the validity of the obtained results.

  15. The Laplacian spectrum of neural networks

    PubMed Central

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  16. Using Neural Pattern Classifiers to Quantify the Modularity of Conflict–Control Mechanisms in the Human Brain

    PubMed Central

    Jiang, Jiefeng; Egner, Tobias

    2014-01-01

    Resolving conflicting sensory and motor representations is a core function of cognitive control, but it remains uncertain to what degree control over different sources of conflict is implemented by shared (domain general) or distinct (domain specific) neural resources. Behavioral data suggest conflict–control to be domain specific, but results from neuroimaging studies have been ambivalent. Here, we employed multivoxel pattern analyses that can decode a brain region's informational content, allowing us to distinguish incidental activation overlap from actual shared information processing. We trained independent sets of “searchlight” classifiers on functional magnetic resonance imaging data to decode control processes associated with stimulus-conflict (Stroop task) and ideomotor-conflict (Simon task). Quantifying the proportion of domain-specific searchlights (capable of decoding only one type of conflict) and domain-general searchlights (capable of decoding both conflict types) in each subject, we found both domain-specific and domain-general searchlights, though the former were more common. When mapping anatomical loci of these searchlights across subjects, neural substrates of stimulus- and ideomotor-specific conflict–control were found to be anatomically consistent across subjects, whereas the substrates of domain-general conflict–control were not. Overall, these findings suggest a hybrid neural architecture of conflict–control that entails both modular (domain specific) and global (domain general) components. PMID:23402762

  17. Patterns of interactions of a large fish-parasite network in a tropical floodplain.

    PubMed

    Lima, Dilermando P; Giacomini, Henrique C; Takemoto, Ricardo M; Agostinho, Angelo A; Bini, Luis M

    2012-07-01

    1. Describing and explaining the structure of species interaction networks is of paramount importance for community ecology. Yet much has to be learned about the mechanisms responsible for major patterns, such as nestedness and modularity in different kinds of systems, of which large and diverse networks are a still underrepresented and scarcely studied fraction. 2. We assembled information on fishes and their parasites living in a large floodplain of key ecological importance for freshwater ecosystems in the Paraná River basin in South America. The resulting fish-parasite network containing 72 and 324 species of fishes and parasites, respectively, was analysed to investigate the patterns of nestedness and modularity as related to fish and parasite features. 3. Nestedness was found in the entire network and among endoparasites, multiple-host life cycle parasites and native hosts, but not in networks of ectoparasites, single-host life cycle parasites and non-native fishes. All networks were significantly modular. Taxonomy was the major host's attribute influencing both nestedness and modularity: more closely related host species tended to be associated with more nested parasite compositions and had greater chance of belonging to the same network module. Nevertheless, host abundance had a positive relationship with nestedness when only native host species pairs of the same network module were considered for analysis. 4. These results highlight the importance of evolutionary history of hosts in linking patterns of nestedness and formation of modules in the network. They also show that functional attributes of parasites (i.e. parasitism mode and life cycle) and origin of host populations (i.e. natives versus non-natives) are crucial to define the relative contribution of these two network properties and their dependence on other ecological factors (e.g. host abundance), with potential implications for community dynamics and stability. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  18. Finding Correlation between Protein Protein Interaction Modules Using Semantic Web Techniques

    NASA Astrophysics Data System (ADS)

    Kargar, Mehdi; Moaven, Shahrouz; Abolhassani, Hassan

    Many complex networks such as social networks and computer show modular structures, where edges between nodes are much denser within modules than between modules. It is strongly believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. In this paper we used a human curated dataset. In this paper we consider each module in the PPI network as ontology. Using techniques in ontology alignment, we compare each pair of modules in the network. We want to see that is there a correlation between the structure of each module or they have totally different structures. Our results show that there is no correlation between proteins in a protein protein interaction network.

  19. Introduction to Neural Networks.

    DTIC Science & Technology

    1992-03-01

    parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.

  20. Reconstructing for joint angles on the shoulder and elbow from non-invasive electroencephalographic signals through electromyography

    PubMed Central

    Choi, Kyuwan

    2013-01-01

    In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG) signals and estimated the EMG signals of 9 arm muscles. Then, a modular artificial neural network was used to estimate four joint angles from the estimated EMG signals of 9 muscles: one for movement control and the other for posture control. The estimated joint angles using this method have the correlation coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of 0.176 (±0.29) with the actual joint angles. PMID:24167469

  1. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  2. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  3. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Graded, Dynamically Routable Information Processing with Synfire-Gated Synfire Chains.

    PubMed

    Wang, Zhuo; Sornborger, Andrew T; Tao, Louis

    2016-06-01

    Coherent neural spiking and local field potentials are believed to be signatures of the binding and transfer of information in the brain. Coherent activity has now been measured experimentally in many regions of mammalian cortex. Recently experimental evidence has been presented suggesting that neural information is encoded and transferred in packets, i.e., in stereotypical, correlated spiking patterns of neural activity. Due to their relevance to coherent spiking, synfire chains are one of the main theoretical constructs that have been appealed to in order to describe coherent spiking and information transfer phenomena. However, for some time, it has been known that synchronous activity in feedforward networks asymptotically either approaches an attractor with fixed waveform and amplitude, or fails to propagate. This has limited the classical synfire chain's ability to explain graded neuronal responses. Recently, we have shown that pulse-gated synfire chains are capable of propagating graded information coded in mean population current or firing rate amplitudes. In particular, we showed that it is possible to use one synfire chain to provide gating pulses and a second, pulse-gated synfire chain to propagate graded information. We called these circuits synfire-gated synfire chains (SGSCs). Here, we present SGSCs in which graded information can rapidly cascade through a neural circuit, and show a correspondence between this type of transfer and a mean-field model in which gating pulses overlap in time. We show that SGSCs are robust in the presence of variability in population size, pulse timing and synaptic strength. Finally, we demonstrate the computational capabilities of SGSC-based information coding by implementing a self-contained, spike-based, modular neural circuit that is triggered by streaming input, processes the input, then makes a decision based on the processed information and shuts itself down.

  5. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  6. Intelligence is associated with the modular structure of intrinsic brain networks.

    PubMed

    Hilger, Kirsten; Ekman, Matthias; Fiebach, Christian J; Basten, Ulrike

    2017-11-22

    General intelligence is a psychological construct that captures in a single metric the overall level of behavioural and cognitive performance in an individual. While previous research has attempted to localise intelligence in circumscribed brain regions, more recent work focuses on functional interactions between regions. However, even though brain networks are characterised by substantial modularity, it is unclear whether and how the brain's modular organisation is associated with general intelligence. Modelling subject-specific brain network graphs from functional MRI resting-state data (N = 309), we found that intelligence was not associated with global modularity features (e.g., number or size of modules) or the whole-brain proportions of different node types (e.g., connector hubs or provincial hubs). In contrast, we observed characteristic associations between intelligence and node-specific measures of within- and between-module connectivity, particularly in frontal and parietal brain regions that have previously been linked to intelligence. We propose that the connectivity profile of these regions may shape intelligence-relevant aspects of information processing. Our data demonstrate that not only region-specific differences in brain structure and function, but also the network-topological embedding of fronto-parietal as well as other cortical and subcortical brain regions is related to individual differences in higher cognitive abilities, i.e., intelligence.

  7. Detecting communities using asymptotical surprise

    NASA Astrophysics Data System (ADS)

    Traag, V. A.; Aldecoa, R.; Delvenne, J.-C.

    2015-08-01

    Nodes in real-world networks are repeatedly observed to form dense clusters, often referred to as communities. Methods to detect these groups of nodes usually maximize an objective function, which implicitly contains the definition of a community. We here analyze a recently proposed measure called surprise, which assesses the quality of the partition of a network into communities. In its current form, the formulation of surprise is rather difficult to analyze. We here therefore develop an accurate asymptotic approximation. This allows for the development of an efficient algorithm for optimizing surprise. Incidentally, this leads to a straightforward extension of surprise to weighted graphs. Additionally, the approximation makes it possible to analyze surprise more closely and compare it to other methods, especially modularity. We show that surprise is (nearly) unaffected by the well-known resolution limit, a particular problem for modularity. However, surprise may tend to overestimate the number of communities, whereas they may be underestimated by modularity. In short, surprise works well in the limit of many small communities, whereas modularity works better in the limit of few large communities. In this sense, surprise is more discriminative than modularity and may find communities where modularity fails to discern any structure.

  8. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    PubMed

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  9. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  10. LavaNet—Neural network development environment in a general mine planning package

    NASA Astrophysics Data System (ADS)

    Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.

    2011-04-01

    LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.

  11. Cutting the Wires: Modularization of Cellular Networks for Experimental Design

    PubMed Central

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-01

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. PMID:24411264

  12. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  13. A new hierarchical method to find community structure in networks

    NASA Astrophysics Data System (ADS)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  14. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    PubMed Central

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  15. How Neural Networks Learn from Experience.

    ERIC Educational Resources Information Center

    Hinton, Geoffrey E.

    1992-01-01

    Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…

  16. Deep biomarkers of human aging: Application of deep neural networks to biomarker development

    PubMed Central

    Putin, Evgeny; Mamoshina, Polina; Aliper, Alexander; Korzinkin, Mikhail; Moskalev, Alexey; Kolosov, Alexey; Ostrovskiy, Alexander; Cantor, Charles; Vijg, Jan; Zhavoronkov, Alex

    2016-01-01

    One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R2 = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R2 = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis. PMID:27191382

  17. Deep biomarkers of human aging: Application of deep neural networks to biomarker development.

    PubMed

    Putin, Evgeny; Mamoshina, Polina; Aliper, Alexander; Korzinkin, Mikhail; Moskalev, Alexey; Kolosov, Alexey; Ostrovskiy, Alexander; Cantor, Charles; Vijg, Jan; Zhavoronkov, Alex

    2016-05-01

    One of the major impediments in human aging research is the absence of a comprehensive and actionable set of biomarkers that may be targeted and measured to track the effectiveness of therapeutic interventions. In this study, we designed a modular ensemble of 21 deep neural networks (DNNs) of varying depth, structure and optimization to predict human chronological age using a basic blood test. To train the DNNs, we used over 60,000 samples from common blood biochemistry and cell count tests from routine health exams performed by a single laboratory and linked to chronological age and sex. The best performing DNN in the ensemble demonstrated 81.5 % epsilon-accuracy r = 0.90 with R(2) = 0.80 and MAE = 6.07 years in predicting chronological age within a 10 year frame, while the entire ensemble achieved 83.5% epsilon-accuracy r = 0.91 with R(2) = 0.82 and MAE = 5.55 years. The ensemble also identified the 5 most important markers for predicting human chronological age: albumin, glucose, alkaline phosphatase, urea and erythrocytes. To allow for public testing and evaluate real-life performance of the predictor, we developed an online system available at http://www.aging.ai. The ensemble approach may facilitate integration of multi-modal data linked to chronological age and sex that may lead to simple, minimally invasive, and affordable methods of tracking integrated biomarkers of aging in humans and performing cross-species feature importance analysis.

  18. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening

    NASA Astrophysics Data System (ADS)

    Adamos, Dimitrios A.; Laskaris, Nikolaos A.; Micheloyannis, Sifis

    2018-06-01

    Objective. Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Approach. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying ‘switching nodes’ (i.e. recording sites) that consistently change module during music listening. Main results. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Significance. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography, it may lead to novel assistive tools for real-life applications.

  19. Harnessing functional segregation across brain rhythms as a means to detect EEG oscillatory multiplexing during music listening.

    PubMed

    Adamos, Dimitrios A; Laskaris, Nikolaos A; Micheloyannis, Sifis

    2018-06-01

    Music, being a multifaceted stimulus evolving at multiple timescales, modulates brain function in a manifold way that encompasses not only the distinct stages of auditory perception, but also higher cognitive processes like memory and appraisal. Network theory is apparently a promising approach to describe the functional reorganization of brain oscillatory dynamics during music listening. However, the music induced changes have so far been examined within the functional boundaries of isolated brain rhythms. Using naturalistic music, we detected the functional segregation patterns associated with different cortical rhythms, as these were reflected in the surface electroencephalography (EEG) measurements. The emerged structure was compared across frequency bands to quantify the interplay among rhythms. It was also contrasted against the structure from the rest and noise listening conditions to reveal the specific components stemming from music listening. Our methodology includes an efficient graph-partitioning algorithm, which is further utilized for mining prototypical modular patterns, and a novel algorithmic procedure for identifying 'switching nodes' (i.e. recording sites) that consistently change module during music listening. Our results suggest the multiplex character of the music-induced functional reorganization and particularly indicate the dependence between the networks reconstructed from the δ and β H rhythms. This dependence is further justified within the framework of nested neural oscillations and fits perfectly within the context of recently introduced cortical entrainment to music. Complying with the contemporary trends towards a multi-scale examination of the brain network organization, our approach specifies the form of neural coordination among rhythms during music listening. Considering its computational efficiency, and in conjunction with the flexibility of in situ electroencephalography, it may lead to novel assistive tools for real-life applications.

  20. A hexapod walker using a heterarchical architecture for action selection

    PubMed Central

    Schilling, Malte; Paskarbeit, Jan; Hoinville, Thierry; Hüffmeier, Arne; Schneider, Axel; Schmitz, Josef; Cruse, Holk

    2013-01-01

    Moving in a cluttered environment with a six-legged walking machine that has additional body actuators, therefore controlling 22 DoFs, is not a trivial task. Already simple forward walking on a flat plane requires the system to select between different internal states. The orchestration of these states depends on walking velocity and on external disturbances. Such disturbances occur continuously, for example due to irregular up-and-down movements of the body or slipping of the legs, even on flat surfaces, in particular when negotiating tight curves. The number of possible states is further increased when the system is allowed to walk backward or when front legs are used as grippers and cannot contribute to walking. Further states are necessary for expansion that allow for navigation. Here we demonstrate a solution for the selection and sequencing of different (attractor) states required to control different behaviors as are forward walking at different speeds, backward walking, as well as negotiation of tight curves. This selection is made by a recurrent neural network (RNN) of motivation units, controlling a bank of decentralized memory elements in combination with the feedback through the environment. The underlying heterarchical architecture of the network allows to select various combinations of these elements. This modular approach representing an example of neural reuse of a limited number of procedures allows for adaptation to different internal and external conditions. A way is sketched as to how this approach may be expanded to form a cognitive system being able to plan ahead. This architecture is characterized by different types of modules being arranged in layers and columns, but the complete network can also be considered as a holistic system showing emergent properties which cannot be attributed to a specific module. PMID:24062682

  1. Neural network to diagnose lining condition

    NASA Astrophysics Data System (ADS)

    Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.

    2018-03-01

    The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.

  2. [Measurement and performance analysis of functional neural network].

    PubMed

    Li, Shan; Liu, Xinyu; Chen, Yan; Wan, Hong

    2018-04-01

    The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.

  3. Revealing in-block nestedness: Detection and benchmarking

    NASA Astrophysics Data System (ADS)

    Solé-Ribalta, Albert; Tessone, Claudio J.; Mariani, Manuel S.; Borge-Holthoefer, Javier

    2018-06-01

    As new instances of nested organization—beyond ecological networks—are discovered, scholars are debating the coexistence of two apparently incompatible macroscale architectures: nestedness and modularity. The discussion is far from being solved, mainly for two reasons. First, nestedness and modularity appear to emerge from two contradictory dynamics, cooperation and competition. Second, existing methods to assess the presence of nestedness and modularity are flawed when it comes to the evaluation of concurrently nested and modular structures. In this work, we tackle the latter problem, presenting the concept of in-block nestedness, a structural property determining to what extent a network is composed of blocks whose internal connectivity exhibits nestedness. We then put forward a set of optimization methods that allow us to identify such organization successfully, in synthetic and in a large number of real networks. These findings challenge our understanding of the topology of ecological and social systems, calling for new models to explain how such patterns emerge.

  4. Neural network error correction for solving coupled ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  5. Artificial and Bayesian Neural Networks

    PubMed

    Korhani Kangi, Azam; Bahrampour, Abbas

    2018-02-26

    Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for predicting survival of gastric cancer patients in Iran. Creative Commons Attribution License

  6. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  7. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    PubMed

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Thermalnet: a Deep Convolutional Network for Synthetic Thermal Image Generation

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Gorbatsevich, V. S.; Mizginov, V. A.

    2017-05-01

    Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural networks.

  9. Determining geophysical properties from well log data using artificial neural networks and fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Chang, Hsien-Cheng

    Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.

  10. Reducing neural network training time with parallel processing

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Lamarsh, William J., II

    1995-01-01

    Obtaining optimal solutions for engineering design problems is often expensive because the process typically requires numerous iterations involving analysis and optimization programs. Previous research has shown that a near optimum solution can be obtained in less time by simulating a slow, expensive analysis with a fast, inexpensive neural network. A new approach has been developed to further reduce this time. This approach decomposes a large neural network into many smaller neural networks that can be trained in parallel. Guidelines are developed to avoid some of the pitfalls when training smaller neural networks in parallel. These guidelines allow the engineer: to determine the number of nodes on the hidden layer of the smaller neural networks; to choose the initial training weights; and to select a network configuration that will capture the interactions among the smaller neural networks. This paper presents results describing how these guidelines are developed.

  11. Application of the ANNA neural network chip to high-speed character recognition.

    PubMed

    Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D

    1992-01-01

    A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.

  12. Machine Learning and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Chapline, George

    The author has previously pointed out some similarities between selforganizing neural networks and quantum mechanics. These types of neural networks were originally conceived of as away of emulating the cognitive capabilities of the human brain. Recently extensions of these networks, collectively referred to as deep learning networks, have strengthened the connection between self-organizing neural networks and human cognitive capabilities. In this note we consider whether hardware quantum devices might be useful for emulating neural networks with human-like cognitive capabilities, or alternatively whether implementations of deep learning neural networks using conventional computers might lead to better algorithms for solving the many body Schrodinger equation.

  13. Using fuzzy logic to integrate neural networks and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  14. A neural network application to classification of health status of HIV/AIDS patients.

    PubMed

    Kwak, N K; Lee, C

    1997-04-01

    This paper presents an application of neural networks to classify and to predict the health status of HIV/AIDS patients. A neural network model in classifying both the well and not-well health status of HIV/AIDS patients is developed and evaluated in terms of validity and reliability of the test. Several different neural network topologies are applied to AIDS Cost and Utilization Survey (ACSUS) datasets in order to demonstrate the neural network's capability.

  15. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    NASA Astrophysics Data System (ADS)

    Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr

    2017-10-01

    Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  16. Identification of Modules in Protein-Protein Interaction Networks

    NASA Astrophysics Data System (ADS)

    Erten, Sinan; Koyutürk, Mehmet

    In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.

  17. On Functional Module Detection in Metabolic Networks

    PubMed Central

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  18. Improvement of the Hopfield Neural Network by MC-Adaptation Rule

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Zhao, Hong

    2006-06-01

    We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.

  19. The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.

    PubMed

    Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun

    2018-01-01

    Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

  20. An adaptive Hinfinity controller design for bank-to-turn missiles using ridge Gaussian neural networks.

    PubMed

    Lin, Chuan-Kai; Wang, Sheng-De

    2004-11-01

    A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.

  1. Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling.

    PubMed

    Yang, S; Wang, D

    2000-01-01

    This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.

  2. Financial time series prediction using spiking neural networks.

    PubMed

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  3. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  4. Neural dynamics based on the recognition of neural fingerprints

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2015-01-01

    Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531

  5. Using a network modularity analysis to inform management of a rare endemic plant in the northern Great Plains, USA

    USGS Publications Warehouse

    Larson, Diane L.; Droege, Sam; Rabie, Paul A.; Larson, Jennifer L.; Devalez, Jelle; Haar, Milton; McDermott-Kubeczko, Margaret

    2014-01-01

    1. Analyses of flower-visitor interaction networks allow application of community-level information to conservation problems, but management recommendations that ensue from such analyses are not well characterized. Results of modularity analyses, which detect groups of species (modules) that interact more with each other than with species outside their module, may be particularly applicable to management concerns. 2. We conducted modularity analyses of networks surrounding a rare endemic annual plant, Eriogonum visheri, at Badlands National Park, USA, in 2010 and 2011. Plant species visited were determined by pollen on insect bodies and by flower species upon which insects were captured. Roles within modules (network hub, module hub, connector and peripheral, in decreasing order of network structural importance) were determined for each species. 3. Relationships demonstrated by the modularity analysis, in concert with knowledge of pollen species carried by insects, allowed us to infer effects of two invasive species on E. visheri. Sharing a module increased risk of interspecific pollen transfer to E. visheri. Control of invasive Salsola tragus, which shared a module with E. visheri, is therefore a prudent management objective, but lack of control of invasive Melilotus officinalis, which occupied a different module, is unlikely to negatively affect pollination of E. visheri. Eriogonum pauciflorum may occupy a key position in this network, supporting insects from the E. visheri module when E. visheri is less abundant. 4. Year-to-year variation in species' roles suggests management decisions must be based on observations over several years. Information on pollen deposition on stigmas would greatly strengthen inferences made from the modularity analysis. 5. Synthesis and applications: Assessing the consequences of pollination, whether at the community or individual level, is inherently time-consuming. A trade-off exists: rather than an estimate of fitness effects, the network approach provides a broad understanding of the relationships among insect visitors and other plant species that may affect the focal rare plant. Knowledge of such relationships allows managers to detect, target and prioritize control of only the important subset of invasive species present and identify other species that may augment a rare species' population stability, such as E. pauciflorum in our study.

  6. Structural reliability calculation method based on the dual neural network and direct integration method.

    PubMed

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  7. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.

    PubMed

    Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  8. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.

  9. Mechanisms and dynamics of cooperation and competition emergence in complex networked systems

    NASA Astrophysics Data System (ADS)

    Gianetto, David A.

    Cooperative behavior is a pervasive phenomenon in human interactions and yet how it can evolve and become established, through the selfish process of natural selection, is an enduring puzzle. These behaviors emerge when agents interact in a structured manner; even so, the key structural factors that affect cooperation are not well understood. Moreover, the literature often considers cooperation a single attribute of primitive agents who do not react to environmental changes but real-world actors are more perceptive. The present work moves beyond these assumptions by evolving more realistic game participants, with memories of the past, on complex networks. Agents play repeated games with a three-part Markovian strategy that allows us to separate the cooperation phenomenon into trust, reciprocity, and forgiveness characteristics. Our results show that networks matter most when agents gain the most by acting in a selfish manner, irrespective of how much they may lose by cooperating; since the context provided by neighborhoods inhibits greedy impulses that agents otherwise succumb to in isolation. Network modularity is the most important driver of cooperation emergence in these high-stakes games. However, modularity fails to tell the complete story. Modular scale-free graphs impede cooperation when close coordination is required, partially due to the acyclic nature of scale-free network models. To achieve the highest cooperation in diverse social conditions, both high modularity, low connectivity within modules, and a rich network of long cycles become important. With these findings in hand, we study the influence of networks on coordination and competition within the federal health care insurance exchange. In this applied study, we show that systemic health care coordination is encouraged by the emergent insurance network. The network helps underpin the viability of the exchange and provides an environment of stronger competition once a critical-mass of insurers have entered the market.

  10. Neuropsychological Contributions to Theories of Part/Whole Organization.

    ERIC Educational Resources Information Center

    Robertson, Lynn C.; Lamb, Marvin R.

    1991-01-01

    It is proposed that there is a modular but interconnected system underlying the perceived hierarchical organization of objects. The discussion centers on neural and cognitive mechanisms of organizing objects within objects in at least four separate subsystems. (SLD)

  11. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  12. Disrupted functional connectome in antisocial personality disorder.

    PubMed

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2017-08-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.

  13. Disrupted functional connectome in antisocial personality disorder

    PubMed Central

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen

    2017-01-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949

  14. Locomotion training of legged robots using hybrid machine learning techniques

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible patent by NASA, Johnson Space Center. An alternative modular approach is also developed which uses separate controllers for each stage of the running stride. A self-organizing fuzzy-neural controller controls the height, distance and angular momentum of the stride. A CMAC-based controller controls the movement of the leg from the time the foot leaves the ground to the time of landing. Because the leg joints are controlled at each time step during flight, movement is smooth and obstacles can be avoided. Initial results indicate that this approach can yield fast, accurate results.

  15. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  16. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  17. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  18. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  20. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  1. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    PubMed

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mass media influence spreading in social networks with community structure

    NASA Astrophysics Data System (ADS)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  3. Applications of artificial neural nets in clinical biomechanics.

    PubMed

    Schöllhorn, W I

    2004-11-01

    The purpose of this article is to provide an overview of current applications of artificial neural networks in the area of clinical biomechanics. The body of literature on artificial neural networks grew intractably vast during the last 15 years. Conventional statistical models may present certain limitations that can be overcome by neural networks. Artificial neural networks in general are introduced, some limitations, and some proven benefits are discussed.

  4. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  5. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  6. Optimal input sizes for neural network de-interlacing

    NASA Astrophysics Data System (ADS)

    Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee

    2009-02-01

    Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.

  7. Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.

    PubMed

    Huang, Chengdai; Cao, Jinde

    2018-02-01

    The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Coronary Artery Diagnosis Aided by Neural Network

    NASA Astrophysics Data System (ADS)

    Stefko, Kamil

    2007-01-01

    Coronary artery disease is due to atheromatous narrowing and subsequent occlusion of the coronary vessel. Application of optimised feed forward multi-layer back propagation neural network (MLBP) for detection of narrowing in coronary artery vessels is presented in this paper. The research was performed using 580 data records from traditional ECG exercise test confirmed by coronary arteriography results. Each record of training database included description of the state of a patient providing input data for the neural network. Level and slope of ST segment of a 12 lead ECG signal recorded at rest and after effort (48 floating point values) was the main component of input data for neural network was. Coronary arteriography results (verified the existence or absence of more than 50% stenosis of the particular coronary vessels) were used as a correct neural network training output pattern. More than 96% of cases were correctly recognised by especially optimised and a thoroughly verified neural network. Leave one out method was used for neural network verification so 580 data records could be used for training as well as for verification of neural network.

  9. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  10. Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Makaryants, G. M.

    2018-01-01

    There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.

  11. Altered Synchronizations among Neural Networks in Geriatric Depression

    PubMed Central

    Wang, Lihong; Chou, Ying-Hui; Potter, Guy G.; Steffens, David C.

    2015-01-01

    Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression. PMID:26180795

  12. Altered Synchronizations among Neural Networks in Geriatric Depression.

    PubMed

    Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C

    2015-01-01

    Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.

  13. A consensual neural network

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.

    1991-01-01

    A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.

  14. Neural-Network Simulator

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul H.

    1991-01-01

    F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.

  15. SkyNet: Modular nuclear reaction network library

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  16. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling.

    PubMed

    Jewett, Kathryn A; Christian, Catherine A; Bacos, Jonathan T; Lee, Kwan Young; Zhu, Jiuhe; Tsai, Nien-Pei

    2016-03-22

    Neural network synchrony is a critical factor in regulating information transmission through the nervous system. Improperly regulated neural network synchrony is implicated in pathophysiological conditions such as epilepsy. Despite the awareness of its importance, the molecular signaling underlying the regulation of neural network synchrony, especially after stimulation, remains largely unknown. In this study, we show that elevation of neuronal activity by the GABA(A) receptor antagonist, Picrotoxin, increases neural network synchrony in primary mouse cortical neuron cultures. The elevation of neuronal activity triggers Mdm2-dependent degradation of the tumor suppressor p53. We show here that blocking the degradation of p53 further enhances Picrotoxin-induced neural network synchrony, while promoting the inhibition of p53 with a p53 inhibitor reduces Picrotoxin-induced neural network synchrony. These data suggest that Mdm2-p53 signaling mediates a feedback mechanism to fine-tune neural network synchrony after activity stimulation. Furthermore, genetically reducing the expression of a direct target gene of p53, Nedd4-2, elevates neural network synchrony basally and occludes the effect of Picrotoxin. Finally, using a kainic acid-induced seizure model in mice, we show that alterations of Mdm2-p53-Nedd4-2 signaling affect seizure susceptibility. Together, our findings elucidate a critical role of Mdm2-p53-Nedd4-2 signaling underlying the regulation of neural network synchrony and seizure susceptibility and reveal potential therapeutic targets for hyperexcitability-associated neurological disorders.

  17. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization.

    PubMed

    Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero

    2012-03-26

    Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.

  18. Neural network-based model reference adaptive control system.

    PubMed

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  19. Space-Time Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Shelton, Robert O.

    1992-01-01

    Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.

  20. Using neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brain.

    PubMed

    Jiang, Jiefeng; Egner, Tobias

    2014-07-01

    Resolving conflicting sensory and motor representations is a core function of cognitive control, but it remains uncertain to what degree control over different sources of conflict is implemented by shared (domain general) or distinct (domain specific) neural resources. Behavioral data suggest conflict-control to be domain specific, but results from neuroimaging studies have been ambivalent. Here, we employed multivoxel pattern analyses that can decode a brain region's informational content, allowing us to distinguish incidental activation overlap from actual shared information processing. We trained independent sets of "searchlight" classifiers on functional magnetic resonance imaging data to decode control processes associated with stimulus-conflict (Stroop task) and ideomotor-conflict (Simon task). Quantifying the proportion of domain-specific searchlights (capable of decoding only one type of conflict) and domain-general searchlights (capable of decoding both conflict types) in each subject, we found both domain-specific and domain-general searchlights, though the former were more common. When mapping anatomical loci of these searchlights across subjects, neural substrates of stimulus- and ideomotor-specific conflict-control were found to be anatomically consistent across subjects, whereas the substrates of domain-general conflict-control were not. Overall, these findings suggest a hybrid neural architecture of conflict-control that entails both modular (domain specific) and global (domain general) components. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    PubMed

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  2. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than themore » SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.« less

  3. Financial Time Series Prediction Using Spiking Neural Networks

    PubMed Central

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. PMID:25170618

  4. Qualitative analysis of Cohen-Grossberg neural networks with multiple delays

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Michel, Anthony N.; Wang, Kaining

    1995-03-01

    It is well known that a class of artificial neural networks with symmetric interconnections and without transmission delays, known as Cohen-Grossberg neural networks, possesses global stability (i.e., all trajectories tend to some equilibrium). We demonstrate in the present paper that many of the qualitative properties of Cohen-Grossberg networks will not be affected by the introduction of sufficiently small delays. Specifically, we establish some bound conditions for the time delays under which a given Cohen-Grossberg network with multiple delays is globally stable and possesses the same asymptotically stable equilibria as the corresponding network without delays. An effective method of determining the asymptotic stability of an equilibrium of a Cohen-Grossberg network with multiple delays is also presented. The present results are motivated by some of the authors earlier work [Phys. Rev. E 50, 4206 (1994)] and by some of the work of Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)]. These works address qualitative analyses of Hopfield neural networks with one time delay. The present work generalizes these results to Cohen-Grossberg neural networks with multiple time delays. Hopfield neural networks constitute special cases of Cohen-Grossberg neural networks.

  5. Cutting the wires: modularization of cellular networks for experimental design.

    PubMed

    Lang, Moritz; Summers, Sean; Stelling, Jörg

    2014-01-07

    Understanding naturally evolved cellular networks requires the consecutive identification and revision of the interactions between relevant molecular species. In this process, initially often simplified and incomplete networks are extended by integrating new reactions or whole subnetworks to increase consistency between model predictions and new measurement data. However, increased consistency with experimental data alone is not sufficient to show the existence of biomolecular interactions, because the interplay of different potential extensions might lead to overall similar dynamics. Here, we present a graph-based modularization approach to facilitate the design of experiments targeted at independently validating the existence of several potential network extensions. Our method is based on selecting the outputs to measure during an experiment, such that each potential network extension becomes virtually insulated from all others during data analysis. Each output defines a module that only depends on one hypothetical network extension, and all other outputs act as virtual inputs to achieve insulation. Given appropriate experimental time-series measurements of the outputs, our modules can be analyzed, simulated, and compared to the experimental data separately. Our approach exemplifies the close relationship between structural systems identification and modularization, an interplay that promises development of related approaches in the future. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Dynamic Neural Networks Supporting Memory Retrieval

    PubMed Central

    St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.

    2011-01-01

    How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407

  7. Implementation of a Space Communications Cognitive Engine

    NASA Technical Reports Server (NTRS)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  8. A machine learning approach for efficient uncertainty quantification using multiscale methods

    NASA Astrophysics Data System (ADS)

    Chan, Shing; Elsheikh, Ahmed H.

    2018-02-01

    Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.

  9. Coherence resonance in bursting neural networks

    NASA Astrophysics Data System (ADS)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  10. Classification of Respiratory Sounds by Using An Artificial Neural Network

    DTIC Science & Technology

    2001-10-28

    CLASSIFICATION OF RESPIRATORY SOUNDS BY USING AN ARTIFICIAL NEURAL NETWORK M.C. Sezgin, Z. Dokur, T. Ölmez, M. Korürek Department of Electronics and...successfully classified by the GAL network. Keywords-Respiratory Sounds, Classification of Biomedical Signals, Artificial Neural Network . I. INTRODUCTION...process, feature extraction, and classification by the artificial neural network . At first, the RS signal obtained from a real-time measurement equipment is

  11. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    DTIC Science & Technology

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  12. A neural net approach to space vehicle guidance

    NASA Technical Reports Server (NTRS)

    Caglayan, Alper K.; Allen, Scott M.

    1990-01-01

    The space vehicle guidance problem is formulated using a neural network approach, and the appropriate neural net architecture for modeling optimum guidance trajectories is investigated. In particular, an investigation is made of the incorporation of prior knowledge about the characteristics of the optimal guidance solution into the neural network architecture. The online classification performance of the developed network is demonstrated using a synthesized network trained with a database of optimum guidance trajectories. Such a neural-network-based guidance approach can readily adapt to environment uncertainties such as those encountered by an AOTV during atmospheric maneuvers.

  13. Neural network and its application to CT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  14. Electronic neural networks for global optimization

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.

    1990-01-01

    An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.

  15. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    NASA Technical Reports Server (NTRS)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  16. Newly developed double neural network concept for reliable fast plasma position control

    NASA Astrophysics Data System (ADS)

    Jeon, Young-Mu; Na, Yong-Su; Kim, Myung-Rak; Hwang, Y. S.

    2001-01-01

    Neural network is considered as a parameter estimation tool in plasma controls for next generation tokamak such as ITER. The neural network has been reported to be so accurate and fast for plasma equilibrium identification that it may be applied to the control of complex tokamak plasmas. For this application, the reliability of the conventional neural network needs to be improved. In this study, a new idea of double neural network is developed to achieve this. The new idea has been applied to simple plasma position identification of KSTAR tokamak for feasibility test. Characteristics of the concept show higher reliability and fault tolerance even in severe faulty conditions, which may make neural network applicable to plasma control reliably and widely in future tokamaks.

  17. Connectome sensitivity or specificity: which is more important?

    PubMed

    Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael

    2016-11-15

    Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Rule extraction from minimal neural networks for credit card screening.

    PubMed

    Setiono, Rudy; Baesens, Bart; Mues, Christophe

    2011-08-01

    While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting.

  19. An improved wavelet neural network medical image segmentation algorithm with combined maximum entropy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang

    2018-05-01

    In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.

  20. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  1. The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity

    PubMed Central

    Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406

  2. Modular multiplication in GF(p) for public-key cryptography

    NASA Astrophysics Data System (ADS)

    Olszyna, Jakub

    Modular multiplication forms the basis of modular exponentiation which is the core operation of the RSA cryptosystem. It is also present in many other cryptographic algorithms including those based on ECC and HECC. Hence, an efficient implementation of PKC relies on efficient implementation of modular multiplication. The paper presents a survey of most common algorithms for modular multiplication along with hardware architectures especially suitable for cryptographic applications in energy constrained environments. The motivation for studying low-power and areaefficient modular multiplication algorithms comes from enabling public-key security for ultra-low power devices that can perform under constrained environments like wireless sensor networks. Serial architectures for GF(p) are analyzed and presented. Finally proposed architectures are verified and compared according to the amount of power dissipated throughout the operation.

  3. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  4. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  5. Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function

    NASA Astrophysics Data System (ADS)

    QingJie, Wei; WenBin, Wang

    2017-06-01

    In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval

  6. Program Helps Simulate Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  7. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  8. Neural net target-tracking system using structured laser patterns

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun

    1996-06-01

    In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.

  9. Chaotic simulated annealing by a neural network with a variable delay: design and application.

    PubMed

    Chen, Shyan-Shiou

    2011-10-01

    In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE

  10. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  11. Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models

    NASA Astrophysics Data System (ADS)

    Mills, Kyle; Tamblyn, Isaac

    2018-03-01

    We demonstrate the capability of a convolutional deep neural network in predicting the nearest-neighbor energy of the 4 ×4 Ising model. Using its success at this task, we motivate the study of the larger 8 ×8 Ising model, showing that the deep neural network can learn the nearest-neighbor Ising Hamiltonian after only seeing a vanishingly small fraction of configuration space. Additionally, we show that the neural network has learned both the energy and magnetization operators with sufficient accuracy to replicate the low-temperature Ising phase transition. We then demonstrate the ability of the neural network to learn other spin models, teaching the convolutional deep neural network to accurately predict the long-range interaction of a screened Coulomb Hamiltonian, a sinusoidally attenuated screened Coulomb Hamiltonian, and a modified Potts model Hamiltonian. In the case of the long-range interaction, we demonstrate the ability of the neural network to recover the phase transition with equivalent accuracy to the numerically exact method. Furthermore, in the case of the long-range interaction, the benefits of the neural network become apparent; it is able to make predictions with a high degree of accuracy, and do so 1600 times faster than a CUDA-optimized exact calculation. Additionally, we demonstrate how the neural network succeeds at these tasks by looking at the weights learned in a simplified demonstration.

  12. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli.

    PubMed

    Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen

    2009-01-01

    We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.

  13. Tensor Basis Neural Network v. 1.0 (beta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Julia; Templeton, Jeremy

    This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.

  14. A renaissance of neural networks in drug discovery.

    PubMed

    Baskin, Igor I; Winkler, David; Tetko, Igor V

    2016-08-01

    Neural networks are becoming a very popular method for solving machine learning and artificial intelligence problems. The variety of neural network types and their application to drug discovery requires expert knowledge to choose the most appropriate approach. In this review, the authors discuss traditional and newly emerging neural network approaches to drug discovery. Their focus is on backpropagation neural networks and their variants, self-organizing maps and associated methods, and a relatively new technique, deep learning. The most important technical issues are discussed including overfitting and its prevention through regularization, ensemble and multitask modeling, model interpretation, and estimation of applicability domain. Different aspects of using neural networks in drug discovery are considered: building structure-activity models with respect to various targets; predicting drug selectivity, toxicity profiles, ADMET and physicochemical properties; characteristics of drug-delivery systems and virtual screening. Neural networks continue to grow in importance for drug discovery. Recent developments in deep learning suggests further improvements may be gained in the analysis of large chemical data sets. It's anticipated that neural networks will be more widely used in drug discovery in the future, and applied in non-traditional areas such as drug delivery systems, biologically compatible materials, and regenerative medicine.

  15. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    NASA Astrophysics Data System (ADS)

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  16. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  17. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    PubMed Central

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-01-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520

  18. Pruning artificial neural networks using neural complexity measures.

    PubMed

    Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F

    2008-10-01

    This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.

  19. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    PubMed

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    PubMed

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  1. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    PubMed Central

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  2. Periodicity and stability for variable-time impulsive neural networks.

    PubMed

    Li, Hongfei; Li, Chuandong; Huang, Tingwen

    2017-10-01

    The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  4. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

    PubMed

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  5. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  6. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  7. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  8. Integration of multi-interface conversion channel using FPGA for modular photonic network

    NASA Astrophysics Data System (ADS)

    Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.

    2010-09-01

    The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.

  9. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  10. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  11. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  12. Application of Two-Dimensional AWE Algorithm in Training Multi-Dimensional Neural Network Model

    DTIC Science & Technology

    2003-07-01

    hybrid scheme . the general neural network method (Table 3.1). The training process of the software- ACKNOWLEDGMENT "Neuralmodeler" is shown in Fig. 3.2...engineering. Artificial neural networks (ANNs) have emerged Training a neural network model is the key of as a powerful technique for modeling general neural...coefficients am, the derivatives method of moments (MoM). The variables in the of matrix I have to be generated . A closed form model are frequency

  13. Center for Neural Engineering at Tennessee State University, ASSERT Annual Progress Report.

    DTIC Science & Technology

    1995-07-01

    neural networks . Their research topics are: (1) developing frequency dependent oscillatory neural networks ; (2) long term pontentiation learning rules...as applied to spatial navigation; (3) design and build a servo joint robotic arm and (4) neural network based prothesis control. One graduate student

  14. A protein domain-based interactome network for C. elegans early embryogenesis

    PubMed Central

    Boxem, Mike; Maliga, Zoltan; Klitgord, Niels; Li, Na; Lemmens, Irma; Mana, Miyeko; de Lichtervelde, Lorenzo; Mul, Joram D.; van de Peut, Diederik; Devos, Maxime; Simonis, Nicolas; Yildirim, Muhammed A.; Cokol, Murat; Kao, Huey-Ling; de Smet, Anne-Sophie; Wang, Haidong; Schlaitz, Anne-Lore; Hao, Tong; Milstein, Stuart; Fan, Changyu; Tipsword, Mike; Drew, Kevin; Galli, Matilde; Rhrissorrakrai, Kahn; Drechsel, David; Koller, Daphne; Roth, Frederick P.; Iakoucheva, Lilia M.; Dunker, A. Keith; Bonneau, Richard; Gunsalus, Kristin C.; Hill, David E.; Piano, Fabio; Tavernier, Jan; van den Heuvel, Sander; Hyman, Anthony A.; Vidal, Marc

    2008-01-01

    Summary Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or “interactome” networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed new insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms. PMID:18692475

  15. A Feasibility Study of Synthesizing Subsurfaces Modeled with Computational Neural Networks

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Housner, Jerrold M.; Szewczyk, Z. Peter

    1998-01-01

    This paper investigates the feasibility of synthesizing substructures modeled with computational neural networks. Substructures are modeled individually with computational neural networks and the response of the assembled structure is predicted by synthesizing the neural networks. A superposition approach is applied to synthesize models for statically determinate substructures while an interface displacement collocation approach is used to synthesize statically indeterminate substructure models. Beam and plate substructures along with components of a complicated Next Generation Space Telescope (NGST) model are used in this feasibility study. In this paper, the limitations and difficulties of synthesizing substructures modeled with neural networks are also discussed.

  16. Optical-Correlator Neural Network Based On Neocognitron

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  17. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  18. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  19. Neural networks for function approximation in nonlinear control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  20. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  1. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  2. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  3. Advances in Artificial Neural Networks - Methodological Development and Application

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  4. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    DTIC Science & Technology

    1994-08-10

    SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC

  5. Evolution of synthetic signaling scaffolds by recombination of modular protein domains.

    PubMed

    Lai, Andicus; Sato, Paloma M; Peisajovich, Sergio G

    2015-06-19

    Signaling scaffolds are proteins that interact via modular domains with multiple partners, regulating signaling networks in space and time and providing an ideal platform from which to alter signaling functions. However, to better exploit scaffolds for signaling engineering, it is necessary to understand the full extent of their modularity. We used a directed evolution approach to identify, from a large library of randomly shuffled protein interaction domains, variants capable of rescuing the signaling defect of a yeast strain in which Ste5, the scaffold in the mating pathway, had been deleted. After a single round of selection, we identified multiple synthetic scaffold variants with diverse domain architectures, able to mediate mating pathway activation in a pheromone-dependent manner. The facility with which this signaling network accommodates changes in scaffold architecture suggests that the mating signaling complex does not possess a single, precisely defined geometry into which the scaffold has to fit. These relaxed geometric constraints may facilitate the evolution of signaling networks, as well as their engineering for applications in synthetic biology.

  6. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    PubMed

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  7. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization

    PubMed Central

    2012-01-01

    Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. Methods We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. Results The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. Conclusions By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications. PMID:22448851

  8. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  9. Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes and Predict Network Dynamics

    PubMed Central

    Kovács, István A.; Palotai, Robin; Szalay, Máté S.; Csermely, Peter

    2010-01-01

    Background Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction. PMID:20824084

  10. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  11. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  12. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical neural networks based on holographic correlators

    NASA Astrophysics Data System (ADS)

    Sokolov, V. K.; Shubnikov, E. I.

    1995-10-01

    The three most important models of neural networks — a bidirectional associative memory, Hopfield networks, and adaptive resonance networks — are used as examples to show that a holographic correlator has its place in the neural computing paradigm.

  13. Models of vocal learning in the songbird: Historical frameworks and the stabilizing critic.

    PubMed

    Nick, Teresa A

    2015-10-01

    Birdsong is a form of sensorimotor learning that involves a mirror-like system that activates with both song hearing and production. Early models of song learning, based on behavioral measures, identified key features of vocal plasticity, such as the requirements for memorization of a tutor song and auditory feedback during song practice. The concept of a comparator, which compares the memory of the tutor song to auditory feedback, featured prominently. Later models focused on linking anatomically-defined neural modules to behavioral concepts, such as the comparator. Exploiting the anatomical modularity of the songbird brain, localized lesions illuminated mechanisms of the neural song system. More recent models have integrated neuronal mechanisms identified in other systems with observations in songbirds. While these models explain multiple aspects of song learning, they must incorporate computational elements based on unknown biological mechanisms to bridge the motor-to-sensory delay and/or transform motor signals into the sensory domain. Here, I introduce the stabilizing critic hypothesis, which enables sensorimotor learning by (1) placing a purely sensory comparator afferent of the song system and (2) endowing song system disinhibitory interneuron networks with the capacity both to bridge the motor-sensory delay through prolonged bursting and to stabilize song segments selectively based on the comparator signal. These proposed networks stabilize an otherwise variable signal generated by both putative mirror neurons and a cortical-basal ganglia-thalamic loop. This stabilized signal then temporally converges with a matched premotor signal in the efferent song motor cortex, promoting spike-timing-dependent plasticity in the premotor circuitry and behavioral song learning. © 2014 Wiley Periodicals, Inc.

  14. Comparison of artificial intelligence classifiers for SIP attack data

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2016-05-01

    Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.

  15. Parallel consensual neural networks.

    PubMed

    Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H

    1997-01-01

    A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.

  16. Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.

    PubMed

    Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.

  17. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    PubMed

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  18. Hierarchical functional modularity in the resting-state human brain.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  19. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  20. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  1. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  2. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    PubMed

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  3. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    PubMed

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Neural joint control for Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.

    1992-01-01

    Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.

  5. Application of a neural network for reflectance spectrum classification

    NASA Astrophysics Data System (ADS)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  6. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    PubMed

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  7. Nanophotonic particle simulation and inverse design using artificial neural networks.

    PubMed

    Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin

    2018-06-01

    We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.

  8. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    NASA Astrophysics Data System (ADS)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  9. Enhancement of electrical signaling in neural networks on graphene films.

    PubMed

    Tang, Mingliang; Song, Qin; Li, Ning; Jiang, Ziyun; Huang, Rong; Cheng, Guosheng

    2013-09-01

    One of the key challenges for neural tissue engineering is to exploit supporting materials with robust functionalities not only to govern cell-specific behaviors, but also to form functional neural network. The unique electrical and mechanical properties of graphene imply it as a promising candidate for neural interfaces, but little is known about the details of neural network formation on graphene as a scaffold material for tissue engineering. Therapeutic regenerative strategies aim to guide and enhance the intrinsic capacity of the neurons to reorganize by promoting plasticity mechanisms in a controllable manner. Here, we investigated the impact of graphene on the formation and performance in the assembly of neural networks in neural stem cell (NSC) culture. Using calcium imaging and electrophysiological recordings, we demonstrate the capabilities of graphene to support the growth of functional neural circuits, and improve neural performance and electrical signaling in the network. These results offer a better understanding of interactions between graphene and NSCs, also they clearly present the great potentials of graphene as neural interface in tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks

    PubMed Central

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099

  11. Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales

    PubMed Central

    Timme, Nicholas; Ito, Shinya; Myroshnychenko, Maxym; Yeh, Fang-Chin; Hiolski, Emma; Hottowy, Pawel; Beggs, John M.

    2014-01-01

    Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons. PMID:25536059

  12. Bio-inspired spiking neural network for nonlinear systems control.

    PubMed

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    PubMed

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Criteria for Choosing the Best Neural Network: Part 1

    DTIC Science & Technology

    1991-07-24

    Touretzky, pp. 177-185. San Mateo: Morgan Kaufmann. Harp, S.A., Samad , T., and Guha, A . (1990). Designing application-specific neural networks using genetic...determining a parsimonious neural network for use in prediction/generalization based on a given fixed learning sample. Both the classification and...statistical settings, algorithms for selecting the number of hidden layer nodes in a three layer, feedforward neural network are presented. The selection

  15. Keypoint Density-Based Region Proposal for Fine-Grained Object Detection and Classification Using Regions with Convolutional Neural Network Features

    DTIC Science & Technology

    2015-12-15

    Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network ... Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their...detection accuracy and speed on the fine-grained Caltech UCSD bird dataset (Wah et al., 2011). Recently, Convolutional Neural Networks (CNNs), a deep

  16. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  17. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of

  18. Trimaran Resistance Artificial Neural Network

    DTIC Science & Technology

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  19. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  20. A research using hybrid RBF/Elman neural networks for intrusion detection system secure model

    NASA Astrophysics Data System (ADS)

    Tong, Xiaojun; Wang, Zhu; Yu, Haining

    2009-10-01

    A hybrid RBF/Elman neural network model that can be employed for both anomaly detection and misuse detection is presented in this paper. The IDSs using the hybrid neural network can detect temporally dispersed and collaborative attacks effectively because of its memory of past events. The RBF network is employed as a real-time pattern classification and the Elman network is employed to restore the memory of past events. The IDSs using the hybrid neural network are evaluated against the intrusion detection evaluation data sponsored by U.S. Defense Advanced Research Projects Agency (DARPA). Experimental results are presented in ROC curves. Experiments show that the IDSs using this hybrid neural network improve the detection rate and decrease the false positive rate effectively.

  1. Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.

    PubMed

    Trieu, Hoang T; Nguyen, Hung T; Willey, Keith

    2008-01-01

    In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.

  2. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  3. Ultrasonographic Diagnosis of Cirrhosis Based on Preprocessing Using Pyramid Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Lu, Jianming; Liu, Jiang; Zhao, Xueqin; Yahagi, Takashi

    In this paper, a pyramid recurrent neural network is applied to characterize the hepatic parenchymal diseases in ultrasonic B-scan texture. The cirrhotic parenchymal diseases are classified into 4 types according to the size of hypoechoic nodular lesions. The B-mode patterns are wavelet transformed , and then the compressed data are feed into a pyramid neural network to diagnose the type of cirrhotic diseases. Compared with the 3-layer neural networks, the performance of the proposed pyramid recurrent neural network is improved by utilizing the lower layer effectively. The simulation result shows that the proposed system is suitable for diagnosis of cirrhosis diseases.

  4. Application of artificial neural networks to composite ply micromechanics

    NASA Technical Reports Server (NTRS)

    Brown, D. A.; Murthy, P. L. N.; Berke, L.

    1991-01-01

    Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.

  5. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  6. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  7. Impact of biased scores on ranking in bipartite competition networks and inference of modular structure via generalized modularity

    NASA Astrophysics Data System (ADS)

    Jeon, Gyuhyeon; Park, Juyong

    2017-02-01

    In the common jury-contestant competition format, a jury consisting of multiple judges grade contestants on their performances to determine their ranking. Unlike in another common competition format where two contestants play a head-to-head match to produce the winner such as in football or basketball, the objectivity of judges are often called into question, potentially undermining the public's trust in the fairness of the competition. In this work we show, by modeling the jury-contestant competition format as a weighted bipartite network, how one can identify biased scores and how they impact the competition and its structure. Analyzing the prestigious International Chopin Piano Competition of 2015 as an example with a well-publicized scoring controversy, we show that the presence of even a very small fraction of biased edges can gravely distort our inference of the network structure —in the example a single biased edge is shown to lead to an incorrect “solution” that also wrongly appears to be robust exclusively, dominating other reasonable solutions— highlighting the importance of bias detection and elimination in network inference. In the process our work also presents a modified modularity measure for the one-mode projection of weighted complete bipartite networks.

  8. A Comparison of Conventional Linear Regression Methods and Neural Networks for Forecasting Educational Spending.

    ERIC Educational Resources Information Center

    Baker, Bruce D.; Richards, Craig E.

    1999-01-01

    Applies neural network methods for forecasting 1991-95 per-pupil expenditures in U.S. public elementary and secondary schools. Forecasting models included the National Center for Education Statistics' multivariate regression model and three neural architectures. Regarding prediction accuracy, neural network results were comparable or superior to…

  9. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  10. Deconvolution using a neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  11. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    PubMed

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    NASA Astrophysics Data System (ADS)

    Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad

    2013-12-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

  13. Using an Extended Kalman Filter Learning Algorithm for Feed-Forward Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, David J.; Mussa, Yussuf

    2004-01-01

    In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  14. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  15. Neural computation of arithmetic functions

    NASA Technical Reports Server (NTRS)

    Siu, Kai-Yeung; Bruck, Jehoshua

    1990-01-01

    An area of application of neural networks is considered. A neuron is modeled as a linear threshold gate, and the network architecture considered is the layered feedforward network. It is shown how common arithmetic functions such as multiplication and sorting can be efficiently computed in a shallow neural network. Some known results are improved by showing that the product of two n-bit numbers and sorting of n n-bit numbers can be computed by a polynomial-size neural network using only four and five unit delays, respectively. Moreover, the weights of each threshold element in the neural networks require O(log n)-bit (instead of n-bit) accuracy. These results can be extended to more complicated functions such as multiple products, division, rational functions, and approximation of analytic functions.

  16. Recognition of Telugu characters using neural networks.

    PubMed

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  17. Multistability in bidirectional associative memory neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Gan; Cao, Jinde

    2008-04-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.

  18. Application of Neural Network Optimized by Mind Evolutionary Computation in Building Energy Prediction

    NASA Astrophysics Data System (ADS)

    Song, Chen; Zhong-Cheng, Wu; Hong, Lv

    2018-03-01

    Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.

  19. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  20. Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.

    DTIC Science & Technology

    1996-12-01

    PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image

Top