Liu, Ya-Ling; Nascimento, Marcelle; Burne, Robert A
2012-01-01
Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease. PMID:22996271
Narrowband diode laser pump module for pumping alkali vapors.
Rotondaro, M D; Zhdanov, B V; Shaffer, M K; Knize, R J
2018-04-16
We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 6 2 S 1/2 → 6 2 P 3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.
Ecological Effect of Arginine on Oral Microbiota.
Zheng, Xin; He, Jinzhi; Wang, Lin; Zhou, Shuangshuang; Peng, Xian; Huang, Shi; Zheng, Liwei; Cheng, Lei; Hao, Yuqing; Li, Jiyao; Xu, Jian; Xu, Xin; Zhou, Xuedong
2017-08-03
Dental caries is closely associated with the microbial dybiosis between acidogenic/aciduric pathogens and alkali-generating commensal bacteria colonized in the oral cavity. Our recent studies have shown that arginine may represent a promising anti-caries agent by modulating microbial composition in an in vitro consortium. However, the effect of arginine on the oral microbiota has yet to be comprehensively delineated in either clinical cohort or in vitro biofilm models that better represent the microbial diversity of oral cavity. Here, by employing a clinical cohort and a saliva-derived biofilm model, we demonstrated that arginine treatment could favorably modulate the oral microbiota of caries-active individuals. Specifically, treatment with arginine-containing dentifrice normalized the oral microbiota of caries-active individuals similar to that of caries-free controls in terms of microbial structure, abundance of typical species, enzymatic activities of glycolysis and alkali-generation related enzymes and their corresponding transcripts. Moreover, we found that combinatory use of arginine with fluoride could better enrich alkali-generating Streptococcus sanguinis and suppress acidogenic/aciduric Streptococcus mutans, and thus significantly retard the demineralizing capability of saliva-derived oral biofilm. Hence, we propose that fluoride and arginine have a potential synergistic effect in maintaining an eco-friendly oral microbial equilibrium in favor of better caries management.
NASA Technical Reports Server (NTRS)
Harris, S. E.; Siegman, A. E.; Kuizenga, D. J.; Kung, A. H.; Young, J. F.; Bekkers, G. W.; Bloom, D. M.; Newton, J. H.; Phillion, D. W.
1975-01-01
The generation of tunable visible, infrared, and ultraviolet light is examined, along with the control of this light by means of novel mode-locking and modulation techniques. Transient mode-locking of the Nd:YAG laser and generation of short tunable pulses in the visible and the alkali metal inert gas excimer laser systems were investigated. Techniques for frequency conversion of high power and high energy laser radiation are discussed, along with high average power blue and UV laser light sources.
Qiao, Dongling; Yu, Long; Liu, Hongsheng; Zou, Wei; Xie, Fengwei; Simon, George; Petinakis, Eustathios; Shen, Zhiqi; Chen, Ling
2016-06-25
Combined analytical techniques were used to explore the effects of alkali treatment on the multi-scale structure and digestion behavior of starches with different amylose/amylopectin ratios. Alkali treatment disrupted the amorphous matrix, and partial lamellae and crystallites, which weakened starch molecular packing and eventually enhanced the susceptibility of starch to alkali. Stronger alkali treatment (0.5% w/w) made this effect more prominent and even transformed the dual-phase digestion of starch into a triple-phase pattern. Compared with high-amylose starch, regular maize starch, which possesses some unique structure characteristics typically as pores and crystallite weak points, showed evident changes of hierarchical structure and in digestion rate. Thus, alkali treatment has been demonstrated as a simple method to modulate starch hierarchical structure and thus to realize the rational development of starch-based food products with desired digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alkali Metal Handling Practices at NASA MSFC
NASA Technical Reports Server (NTRS)
Salvail, Patrick G.; Carter, Robert R.
2002-01-01
NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter
2014-08-15
We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.
Joint CPT and N resonance in compact atomic time standards
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron
2008-05-01
Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.
Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie
2016-05-17
A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode.
Li, Xiaoyan; Zhou, Huanfen; Tang, Weiqiang; Guo, Qing; Zhang, Yan
2015-01-01
Purpose: Chemical burn in cornea may cause permanent visual problem or complete blindness. In the present study, we investigated the role of microRNA 206 (miR-206) in relieving chemical burn in mouse cornea. Method: An alkali burn model was established in C57BL/6 mice to induce chemical corneal injury. Within 72 hours, the transient inflammatory responses in alkali-treated corneas were measured by opacity and corneal neovascularization (CNV) levels, and the gene expression profile of miR-206 was measured by quantitative real-time PCR (qPCR). Inhibitory oligonucleotides of miR-206, miR-206-I, were intrastromally injected into alkali-burned corneas. The possible protective effects of down-regulating miR-206 were assessed by both in vivo measurements of inflammatory responses and in vitro histochemical examinations of corneal epithelium sections. The possible binding of miR-206 on its molecular target, connexin43 (Cx43), was assessed by luciferase reporter (LR) and western blot (WB) assays. Cx43 was silenced by siRNA to examine its effect on regulating miR-206 modulation in alkali-burned cornea. Results: Opacity and CNV levels, along with gene expression of miR-206, were all transiently elevated within 72 hours of alkali-burned mouse cornea. Intrastromal injection of miR-206-I into alkali-burned cornea down-regulated miR-206 and ameliorated inflammatory responses both in vivo and in vitro. LR and WB assays confirmed that Cx43 was directly targeted by miR-206 in mouse cornea. Genetic silencing of Cx43 reversed the protective effect of miR-206 down-regulation in alkali-burned cornea. Conclusion: miR-206, associated with Cx43, is a novel molecular modulator in alkali burn in mouse cornea. PMID:26045777
Preliminary evaluation of a space AMTEC power conversion system
NASA Technical Reports Server (NTRS)
Crowley, Christopher J.; Sievers, Robert K.
1991-01-01
As original evaluation of a space solar energy source coupled with Alkali Metal Thermoelectric Conversion (AMTEC) is presented here. This study indicates that an AMTEC system would have 30 percent of the mass of a photovoltaic system and 70 percent of the mass of a Stirling cycle system at the 35-kWe level of power generation modules typical of the baseline for the U.S. Space Station. The operating temperatures and sodium heat pipe components for solar receiver/TES hardware (currently being developed by NASA) integrate well with AMTEC power conversion. AMTEC is therefore an attractive alternative specifically for space solar power generation.
EXTINGUISHMENT OF ALKALI METAL FIRES
was found to be effective on low temperature (1000F) fires and was useful on alkali metal fires on or under insulation. Organic liquids were not...particularly effective on alkali metal fires . A section is presented on a typical alkali metal system which might be used to generate electrical power in space.
Potential-induced degradation of Cu(In,Ga)Se2 photovoltaic modules
NASA Astrophysics Data System (ADS)
Yamaguchi, Seira; Jonai, Sachiko; Hara, Kohjiro; Komaki, Hironori; Shimizu-Kamikawa, Yukiko; Shibata, Hajime; Niki, Shigeru; Kawakami, Yuji; Masuda, Atsushi
2015-08-01
Potential-induced degradation (PID) of Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 °C. The normalized energy conversion efficiency of a standard module decreases to 0.2 after the PID test for 14 days. This reveals that CIGS modules suffer PID under this experimental condition. In contrast, a module with non-alkali glass shows no degradation, which implies that the degradation occurs owing to alkali metal ions, e.g., Na+, migrating from the cover glass. The results of dynamic secondary ion mass spectrometry show Na accumulation in the n-ZnO transparent conductive oxide layer of the degraded module. A CIGS PV module with an ionomer (IO) encapsulant instead of a copolymer of ethylene and vinyl acetate shows no degradation. This reveals that the IO encapsulant can prevent PID of CIGS modules. A degraded module can recover from its performance losses by applying +1000 V to connected submodule interconnector ribbons from an Al plate placed on the test module.
Internal-integral sodium return line for sodium heat engine
Hunt, Thomas K.
1985-01-01
A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a portion of the return line for the alkali metal is located within the generator vacuum space.
Electrochemical generation of useful chemical species from lunar materials
NASA Technical Reports Server (NTRS)
Sammells, Anthony F.; Semkow, Krystyna W.
1987-01-01
A high temperature electrolytic cell which simultaneously generates oxygen at the anode and liquid alkali metals at the cathode is electrochemically characterized. The electrolytic technology being investigated utilizes the oxygen vacancy conducting solid electrolyte, yttria stabilized zirconia, which effectively separates the oxygen evolving (at La0.89Sr0.10MnO3) and alkali metal (Li, Na) reducing (from a molten salt at either Pt or FeSi2) half cell reactions. In the finally engineered cell liquid alkali metal would be continuously removed from the cathode compartment and used as an effective reductant for the direct thermochemical refining of lunar ores to their metallic state with simultaneous oxidation of the alkali metal to its oxide. The alkali metal oxide would then be reintroduced into the electrolytic cell to complete the overall system cycle.
Electrochemical generation of useful chemical species from lunar materials
NASA Astrophysics Data System (ADS)
Sammells, Anthony F.; Semkow, Krystyna W.
1987-09-01
A high temperature electrolytic cell which simultaneously generates oxygen at the anode and liquid alkali metals at the cathode is electrochemically characterized. The electrolytic technology being investigated utilizes the oxygen vacancy conducting solid electrolyte, yttria stabilized zirconia, which effectively separates the oxygen evolving (at La0.89Sr0.10MnO3) and alkali metal (Li, Na) reducing (from a molten salt at either Pt or FeSi2) half cell reactions. In the finally engineered cell liquid alkali metal would be continuously removed from the cathode compartment and used as an effective reductant for the direct thermochemical refining of lunar ores to their metallic state with simultaneous oxidation of the alkali metal to its oxide. The alkali metal oxide would then be reintroduced into the electrolytic cell to complete the overall system cycle.
Optimal control of multiphoton ionization dynamics of small alkali aggregates
NASA Astrophysics Data System (ADS)
Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger
2003-11-01
We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.
Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers
2009-11-04
vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation... Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4
NASA Astrophysics Data System (ADS)
Nishida, Takamasa; Eda, Kazuo
2018-02-01
Hydrothermal syntheses of alkali-metal blue molybdenum bronze nanoribbons, which are expected to exhibit unique properties induced by a combined effect of extrinsic and intrinsic low-dimensionalities, from hydrated-alkali-metal molybdenum bronzes were investigated. Nanoribbons grown along the quasi-one-dimensional (1D) conductive direction of Cs0.3MoO3, which is difficult to prepare by the conventional methods, were first synthesized. The nanomorphology formation is achieved by a solid-state conversion (or crystallite splitting) and subsequent crystallite growth, and the structural changes of the starting material related to the conversion were first observed by powder X-ray diffraction and scanning transmission electron microscopy as a result of finely tuned reaction system and preparation conditions. The structural changes were analyzed by model simulations and were attributed to the structural modulations that were concerned with the intralayer packing disorder and with two-dimensional long-range ordered structure, formed in MoO3 sheets of the hydrated molybdenum bronze. Moreover, the modulations were related to displacement defects of the Mo-O framework units generated along the [100] direction in the hydrated molybdenum bronze. Then, it was suggested that the solid-state conversion into blue molybdenum bronze and the crystallite splitting to nanomorphology were initiated by the breaking of the Mo-O-Mo bonds at the defects. [Figure not available: see fulltext.
Laser Velocimeter for Studies of Microgravity Combustion Flowfields
NASA Technical Reports Server (NTRS)
Varghese, P. L.; Jagodzinski, J.
2001-01-01
We are currently developing a velocimeter based on modulated filtered Rayleigh scattering (MFRS), utilizing diode lasers to make measurements in an unseeded gas or flame. MFRS is a novel variation of filtered Rayleigh scattering, utilizing modulation absorption spectroscopy to detect a strong absorption of a weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption and semiconductor diode lasers generate the relatively weak Rayleigh scattered signal. Alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry; the compact, rugged construction of diode lasers makes them ideally suited for microgravity experimentation. Molecular Rayleigh scattering of laser light simplifies flow measurements as it obviates the complications of flow-seeding. The MFRS velocimeter should offer an attractive alternative to comparable systems, providing a relatively inexpensive means of measuring velocity in unseeded flows and flames.
Near atomically smooth alkali antimonide photocathode thin films
Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...
2017-01-24
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Near atomically smooth alkali antimonide photocathode thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jun; Karkare, Siddharth; Nasiatka, James
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Diode pumped alkali vapor fiber laser
Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.
2007-10-23
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
Diode pumped alkali vapor fiber laser
Payne, Stephen A [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Dawson, Jay W [Livermore, CA; Krupke, William F [Pleasanton, CA
2006-07-26
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
Ando, Takahiro; Mori, Atsushi; Ito, Rie; Nishiwaki, Kimitoshi
2017-12-01
We investigated whether calcium chloride (CaCl 2 ), a supplementary additive in carbon dioxide (CO 2 ) absorbents, could affect carbon monoxide (CO) production caused by desflurane degradation, using a Japanese alkali-free CO 2 absorbent Yabashi Lime ® -f (YL-f), its CaCl 2 -free and 1% CaCl 2 -added derivatives, and other commercially available alkali-free absorbents with or without CaCl 2 . The reaction between 1 L of desflurane gas (3-10%) and 20 g of desiccated specimen was performed in an artificial closed-circuit anesthesia system for 3 min at 20 or 40 °C. The CO concentration was measured using a gas chromatograph equipped with a semiconductor sensor detector. The systems were validated by detecting dose-dependent CO production with an alkali hydroxide-containing CO 2 absorbent, Sodasorb ® . Compared with YL-f, the CaCl 2 -free derivative caused the production of significantly more CO, while the 1% CaCl 2 -added derivative caused the production of a comparable amount of CO. These phenomena were confirmed using commercially available absorbents AMSORB ® PLUS, an alkali-free absorbent with CaCl 2 , and LoFloSorb™, an alkali-free absorbent without CaCl 2 . These results suggest that CaCl 2 plays an important role in preventing CO generation caused by desflurane degradation with alkali hydroxide-free CO 2 absorbents like YL-f.
Microscreen radiation shield for thermoelectric generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, T.K.; Novak, R.F.; McBride, J.R.
1990-08-14
This patent describes a radiation shield adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield comprises woven wire mesh screen, the spacing between the wires forming the mesh screen being such that the radiation shield reflects thermal radiation while permitting the passage of alkali metal vapor therethrough.
ERIC Educational Resources Information Center
Venkatesh, S.; Tilak, B. V.
1983-01-01
Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)
Metallurgical technologies, energy conversion, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Branover, Herman; Unger, Yeshajahu
The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)
Khatri, Vinay; Meddeb-Mouelhi, Fatma; Adjallé, Kokou; Barnabé, Simon; Beauregard, Marc
2018-01-01
Pretreatment of lignocellulosic biomass (LCB) is a key step for its efficient bioconversion into ethanol. Determining the best pretreatment and its parameters requires monitoring its impacts on the biomass material. Here, we used fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay to study the relationship between surface-exposed polysaccharides and enzymatic hydrolysis of LCB. Our results indicated that alkali extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, cattail stems and flax shives, despite its lower lignin removal efficiency compared to alkali pretreatment. Corn crop residues were more sensitive to alkali pretreatments, leading to higher hydrolysis rates. A clear relationship was consistently observed between total surface-exposed cellulose detected by the FTCM-depletion assay and biomass enzymatic hydrolysis. Comparison of bioconversion yield and total composition analysis (by NREL/TP-510-42618) of LCB prior to or after pretreatments did not show any close relationship. Lignin removal efficiency and total cellulose content (by NREL/TP-510-42618) led to an unreliable prediction of enzymatic polysaccharide hydrolysis. Fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay provided direct evidence that cellulose exposure is the key determinant of hydrolysis yield. The clear and robust relationships that were observed between the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates change could be evolved into a powerful prediction tool that might help develop optimal biomass pretreatment strategies for biofuel production.
Coverage dependent work function of graphene on a Cu(111) substrate with intercalated alkali metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Brandon G.; Russakoff, Arthur; Varga, Kalman
2015-05-26
Using first-principles calculations, it is shown that the work function of graphene on copper can be adjusted by varying the concentration of intercalated alkali metals. Using density functional theory, we calculate the modulation of work function when Li, Na, or K are intercalated between graphene and a Cu(111) surface. Furthermore, the physical origins of the change in work function are explained in terms of phenomenological models accounting for the formation and depolarization of interfacial dipoles and the shift in the Fermi-level induced via charge transfer.
Carbon dioxide capture process with regenerable sorbents
Pennline, Henry W.; Hoffman, James S.
2002-05-14
A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.
Microscreen radiation shield for thermoelectric generator
Hunt, Thomas K.; Novak, Robert F.; McBride, James R.
1990-01-01
The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.
In situ alkali-silica reaction observed by x-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.
1997-04-01
In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques availablemore » for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cultrera, L.; Gulliford, C.; Bartnik, A.
2016-03-28
The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.
Serrano, Raquel; Martín, Humberto; Casamayor, Antonio; Ariño, Joaquín
2006-12-29
Alkalinization of the external environment represents a stress situation for Saccharomyces cerevisiae. Adaptation to this circumstance involves the activation of diverse response mechanisms, the components of which are still largely unknown. We show here that mutation of members of the cell integrity Pkc1/Slt2 MAPK module, as well as upstream and downstream elements of the system, confers sensitivity to alkali. Alkalinization resulted in fast and transient activation of the Slt2 MAPK, which depended on the integrity of the kinase module and was largely abolished by sorbitol. Lack of Wsc1, removal of specific extracellular and intracellular domains, or substitution of Tyr(303) in this putative membrane stress sensor rendered cells sensitive to alkali and considerably decreased alkali-induced Slt2 activation. In contrast, constitutive activation of Slt2 by the bck1-20 allele increased pH tolerance in the wsc1 mutant. DNA microarray analysis revealed that several genes encoding cell wall proteins, such as GSC2/FKS2, DFG5, SKT5, and CRH1, were induced, at least in part, by high pH in an Slt2-dependent manner. We observed that dfg5, skt5, and particularly dfg5 skt5 cells were alkali-sensitive. Therefore, our results show that an alkaline environment imposes a stress condition on the yeast cell wall. We propose that the Slt2-mediated MAPK pathway plays an important role in the adaptive response to this insult and that Wsc1 participates as an essential cell-surface pH sensor. Moreover, these results provide a new example of the complexity of the response of budding yeast to the alkalinization of the environment.
Survey of Current and Next Generation Space Power Technologies
2006-06-26
different thermodynamic cycles, such as the Brayton, Rankine, and Stirling cycles, alkali metal thermal electric converters ( AMTEC ) and thermionic...efficiencies @ 1700K. The primary issue with this system is the integration of the converter technology into the nuclear reactor core. AMTEC (static...Alkali metal thermal to electric converters ( AMTECs ) are thermally powered electrochemical concentration cells that convert heat energy directly to DC
OSL studies of alkali fluoroperovskite single crystals for radiation dosimetry
NASA Astrophysics Data System (ADS)
Daniel, D. Joseph; Raja, A.; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.
2016-08-01
This paper presents a preliminary investigation of the optically stimulated luminescence (OSL) of alkali fluoroperovskite single crystals for radiation dosimetry. The perovskite-like KMgF3, NaMgF3 and LiBaF3 polycrystalline compounds doped with rare earths (Eu2+ and Ce3+) were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of these compounds have been grown from melt by using vertical Bridgman-Stockbarger method. The Linearly Modulated OSL and Continuous Wave OSL measurements were performed in these alkali fluorides using blue light stimulation. Thermal bleaching experiments have shown that OSL signals originate from traps which are unstable near 200 °C, thus proving the suitability of the signals for dosimetric purposes. Optical bleaching measurements were also performed for these fluoride samples. OSL dose response was studied as a function of dose which was found to increase with beta dose.
Sheng, Jiangyun; Baldeck, Jeremiah D.; Nguyen, Phuong T.M.; Quivey, Robert G.; Marquis, Robert E.
2011-01-01
Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. l-Malic acid was rapidly fermented to l-lactic acid and CO2 by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses. PMID:20651853
Sheng, Jiangyun; Baldeck, Jeremiah D; Nguyen, Phuong T M; Quivey, Robert G; Marquis, Robert E
2010-07-01
Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.
Nucleic acids encoding metal uptake transporters and their uses
Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan
1999-01-01
The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.
Alkali production in the mouth and its relationship with certain patient's characteristics.
Gordan, Valeria Veiga; McEdward, Deborah Landry; Ottenga, Marc Edward; Garvan, Cynthia Wilson; Harris, Pearl Ann
2014-01-01
To assess the relationships among alkali production, diet, oral health behaviors, and oral hygiene. Data from 52 subjects including demographics, diet, and oral hygiene scores were analyzed against the level of arginine and urea enzymes in plaque and saliva samples. An oral habit survey was completed that included: use of tobacco (TB), alcohol (AH), sugary drinks (SD), and diet. Alkali production through arginine deiminase (ADS) and urease activities were measured in smooth-surface supragingival dental plaque and un stimulated saliva samples from all subjects. ADS and urease activities were measured by quantification of the ammonia generated from the incubation of plaque or saliva samples. Spearman correlations were used to compute all associations. Participants in the lowest SES (Socio-economic status) group had the habit of consuming sugary drinks the most and had the highest rate of tobacco use. Males consumed significantly more alcohol than females. No significant relationship was found between age or gender and alkali production. Higher rates of sugary drink consumption and tobacco use were significantly related to lower alkali production. The study showed a relationship between alkali production and oral hygiene, diet, and certain oral health behaviors. Poor oral hygiene was significantly associated with age, lower SES, tobacco use, and alcohol, and sugary drinks consumption. Clinical relevance Certain oral health behaviors have an impact on oral hygiene and on alkali production; it is important to address these factors with patients as a strategy for caries control.
Noise suppression for the differential detection in nuclear magnetic resonance gyroscope
NASA Astrophysics Data System (ADS)
Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin
2017-10-01
The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.
Alkali Metal Backup Cooling for Stirling Systems - Experimental Results
NASA Technical Reports Server (NTRS)
Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.
2013-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 C temperature increase from the nominal vapor temperature. The 19 C temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.
Alkali Metal Backup Cooling for Stirling Systems - Experimental Results
NASA Technical Reports Server (NTRS)
Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.
2013-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.
Batteries for storage of wind-generated energy
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1973-01-01
Cost effectiveness characteristics of conventional-, metal gas-, and high energy alkali metal-batteries for wind generated energy storage are considered. A lead-acid battery with a power density of 20 to 30 watt/hours per pound is good for about 1500 charge-discharge cycles at a cost of about $80 per kilowatt hour. A zinc-chlorine battery that stores chlorine as solid chlorine hydrate at temperatures below 10 C eliminates the need to handle gaseous chlorine; its raw material cost are low and inexpensive carbon can be used for the chlorine electrode. This system has the best chance to replace lead-acid. Exotic alkali metal batteries are deemed too costly at the present stage of development.
Improved OSC Amtec generator design to meet goals of JPL's candidate Europa Orbiter mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1998-07-01
The preceding paper (Paper IECEC.98.244) described OSC's initial designs of AMTEC (Alkali Metal Thermal-to-Electrical Conversion) power systems, consisting of one or two generators, each with 2, 3, or 4 General Purpose Heat Source (GPHS) modules and with 16 refractory AMTEC cells containing 5 Beta Alumina Solid Electrolyte (BASE) tubes; and presented the effect of heat input and voltage output on the generator's BOM evaporator and clad temperatures and on its EOM system efficiency and power output. Comparison of the computed results with JPL's goals for the Europa Orbiter mission showed that all of the initial 16-cell design options yielded eithermore » excessive evaporator and clad temperatures or insufficient EOM power to satisfy the JPL-specified mission goals. The present paper describes modified OSC generator designs with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell. These efforts succeeded in identifying generator designs with only half the number of AMTEC cells which -- for the same assumptions -- can produce EOM power outputs substantially in excess of JPL's goals for NASA's Europa Orbiter mission while operating well below the prescribed BOM limits on evaporator and clad temperature; and revealed that lowering the emissivity of the generator's housing to raise the cells' condenser temperatures can achieve substantial additional performance improvement. Finally, the paper culminates in programmatic recommendations.« less
Tyagi, Vinay Kumar; Lo, Shang-Lien; Rajpal, Ankur
2014-05-01
The effects of alkali-enhanced microwave (MW; 50-175 °C) and ultrasonic (US) (0.75 W/mL, 15-60 min) pretreatments, on solubilisation and subsequent anaerobic digestion efficiency of pulp and paper mill waste-activated sludge, were investigated. Improvements in total chemical oxygen demand and volatile suspended solids (VSS) solubilisation were limited to 33 and 39 % in MW pretreatment only (175 °C). It reached 78 and 66 % in combined MW-alkali pretreatment (pH 12 + 175 °C), respectively. Similarly, chemical oxygen demand and VSS solubilisation were 58 and 37 % in US pretreatment alone (60 min) and it improved by 66 and 49 % after US-alkali pretreatment (pH 12 + 60 min), respectively. The biogas yield for US 60 min-alkali (pH 12)-pretreated sludge was significantly improved by 47 and 20 % over the control and US 60 reactors, respectively. The biogas generation for MW (150 °C)-alkali (pH 12)-pretreated sludge was only 6.3 % higher than control; however, it was 8.3 % lower than the MW (150 °C) reactor, which was due to the inhibition of anaerobic activity under harsh thermal-alkali treatment condition.
NASA Astrophysics Data System (ADS)
Topcu, Turker; Derevianko, Andrei
2013-11-01
Intensity-modulated optical lattice potentials can change sign for an alkali-metal Rydberg atom, and the atoms are not always attracted to intensity minima in optical lattices with wavelengths near the CO2 laser band. Here we demonstrate that such IR lattices can be tuned so that the trapping potential experienced by the Rydberg atom can be made to vanish for atoms in “targeted” Rydberg states. Such state-selective trapping of Rydberg atoms can be useful in controlled cold Rydberg collisions, cooling Rydberg states, and species-selective trapping and transport of Rydberg atoms in optical lattices. We tabulate wavelengths at which the trapping potential vanishes for the ns, np, and nd Rydberg states of Na and Rb atoms and discuss advantages of using such optical lattices for state-selective trapping of Rydberg atoms. We also develop exact analytical expressions for the lattice-induced polarizability for the mz=0 Rydberg states and derive an accurate formula predicting tune-out wavelengths at which the optical trapping potential becomes invisible to Rydberg atoms in targeted l=0 states.
Mayser, P; Schulz, S
2016-08-01
Lithium succinate and gluconate are effective alternative options licensed for the topical treatment of seborrhoeic dermatitis (SD). Their mode of action is not fully elucidated. Minimal inhibitory concentrations against Malassezia (M.) yeasts, which play an important role in SD, are very high. An assay based on the hydrolysis of ethyl octanoate enables us to test the hydrolytic activity of reference strains of the species M. globosa, M. sympodialis and M. furfur solely without interference by fungal growth as the free octanoic acid generated has antifungal activity. In this assay the presence of alkali salts (lithium, sodium and potassium succinate resp.) in concentrations of 2%, 4% and 8% does not influence hydrolytic activity but the availability of the generated free fatty acid in a dose-dependent manner which was analysed by means of high-performance thin layer chromatography and densitometry. This was best effected with the lithium, followed by the sodium and only to a low degree by the potassium salt. As shown by attenuated total reflection Fourier transform infrared spectroscopy the free fatty acid reacted to the respective alkali soap and precipitate from solution. The alkali soaps could not be utilized by the M. spp. as shown in a modified Tween auxanogram and in lack of fungal growth by ethyl oleate in the presence of 8% lithium succinate. The effect of lithium succinate on growth of M. yeasts and presumably in SD can be explained by a precipitation of free fatty acids as alkali soaps limiting their availability for the growth of these lipid-dependent yeasts. © 2016 European Academy of Dermatology and Venereology.
Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.
1999-01-01
The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.
Control of cerium oxidation state through metal complex secondary structures
Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...
2015-08-11
A series of alkali metal cerium diphenylhydrazido complexes, M x(py) y[Ce(PhNNPh) 4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li + or Na +, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reductionmore » of 1,2-diphenylhydrazine was not observed when M = K +, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce( IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less
Oh, Sang-Eun; Yoon, Joung Yee; Gurung, Anup; Kim, Dong-Jin
2014-08-01
This study investigated the effects of different sludge pretreatment methods (ultrasonic vs. combined heat/alkali) with varied sources of municipal sewage sludge (primary sludge (PS), secondary excess sludge (ES), anaerobic digestion sludge (ADS)) on electricity generation in microbial fuel cells (MFCs). Introduction of ultrasonically pretreated sludge (PS, ES, ADS) to MFCs generated maximum power densities of 13.59, 9.78 and 12.67mW/m(2) and soluble COD (SCOD) removal efficiencies of 87%, 90% and 57%, respectively. The sludge pretreated by combined heat/alkali (0.04N NaOH at 120°C for 1h) produced maximum power densities of 10.03, 5.21 and 12.53mW/m(2) and SCOD removal efficiencies of 83%, 75% and 74% with PS, ES and ADS samples, respectively. Higher SCOD by sludge pretreatment enhanced performance of the MFCs and the electricity generation was linearly proportional to the SCOD removal, especially for ES. Copyright © 2014 Elsevier Ltd. All rights reserved.
Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.
Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu
2016-04-01
The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.
Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs.
Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang
2015-09-01
During the pickling process, strong alkali causes significant lysinoalanine (LAL) formation in preserved eggs, which may reduce the nutritional value of the proteins and result in a potential hazard to human health. In this study, the impacts of the alkali treatment conditions on the production of LAL in preserved eggs were investigated. Preserved eggs were prepared using different times and temperatures, and alkali-pickling solutions with different types and concentrations of alkali and metal salts, and the corresponding LAL contents were measured. The results showed the following: during the pickling period of the preserved egg, the content of LAL in the egg white first rapidly increased and then slowly increased; the content of LAL in the egg yolk continued to increase significantly. During the aging period, the levels of LAL in both egg white and egg yolk slowly increased. The amounts of LAL in the preserved eggs were not significantly different at temperatures between 20 and 25ºC. At higher pickling temperatures, the LAL content in the preserved eggs increased. With the increase of alkali concentration in the alkali-pickling solution, the LAL content in the egg white and egg yolk showed an overall trend of an initial increase followed by a slight decrease. The content of LAL produced in preserved eggs treated with KOH was lower than in those treated with NaOH. NaCl and KCl produced no significant effects on the production of LAL in the preserved eggs. With increasing amounts of heavy metal salts, the LAL content in the preserved eggs first decreased and then increased. The LAL content generated in the CuSO4 group was lower than that in either the ZnSO4 or PbO groups. © 2015 Poultry Science Association Inc.
Porselvam, S; Soundara Vishal, N; Srinivasan, S V
2017-10-01
Intestine waste generated from slaughterhouse (IWS) is difficult to degrade in anaerobic process due to the presence of high protein and lipid contents. However, anaerobic co-digestion helps to increase the degradation of IWS by the addition of carbon-rich food waste (FW). To increase the biogas yield, thermo-alkali pretreatment may be more viable method for the anaerobic digestion of protein and lipid rich wastes. In the present study, Thermo-alkali pretreatment of intestine waste from slaughterhouse and food waste alone and mixing of IWS and FW with different ratios (1:1-1:3) on VS basis have been studied. To study the effect of Thermo-alkali pretreatment on solubilization of substrate, the substrate was mixed with alkali solutions (NaOH and KOH) at different concentrations of 1, 2, 3, 4 and 5% solutions. The results revealed that the maximum solubilization was observed to be 94.7% and 90.1% at KOH (1:3 and 5%) and NaOH (1:3 and 5%), respectively. Based on the study, enhancement in biogas yield by 16% (IWS), 11.5% (FW), 12.2% (1:1), 18.11% (1:2) and 22.5% (1:3) in KOH pretreated waste when compared with NaOH pretreated waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dedrick, Daniel E.; Bradshaw, Robert W.; Behrens, Richard, Jr.
2007-08-01
Safe and efficient hydrogen storage is a significant challenge inhibiting the use of hydrogen as a primary energy carrier. Although energy storage performance properties are critical to the success of solid-state hydrogen storage systems, operator and user safety is of highest importance when designing and implementing consumer products. As researchers are now integrating high energy density solid materials into hydrogen storage systems, quantification of the hazards associated with the operation and handling of these materials becomes imperative. The experimental effort presented in this paper focuses on identifying the hazards associated with producing, storing, and handling sodium alanates, and thus allowingmore » for the development and implementation of hazard mitigation procedures. The chemical changes of sodium alanates associated with exposure to oxygen and water vapor have been characterized by thermal decomposition analysis using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and X-ray diffraction methods. Partial oxidation of sodium alanates, an alkali metal complex hydride, results in destabilization of the remaining hydrogen-containing material. At temperatures below 70 C, reaction of sodium alanate with water generates potentially combustible mixtures of H{sub 2} and O{sub 2}. In addition to identifying the reaction hazards associated with the oxidation of alkali-metal containing complex hydrides, potential treatment methods are identified that chemically stabilize the oxidized material and reduce the hazard associated with handling the contaminated metal hydrides.« less
NASA Astrophysics Data System (ADS)
Onea, A.; Hering, W.; Reiser, J.; Weisenburger, A.; Diez de los Rios Ramos, N.; Lux, M.; Ziegler, R.; Baumgärtner, S.; Stieglitz, R.
2017-07-01
Three classes of experimental liquid metal facilities have been completed during the LIMTECH project aiming the qualification of materials, investigation of thermoelectrical modules, investigation of sodium transitional regimes and fundamental thermo-dynamical flows in concentrating solar power (CSP) relevant geometries. ATEFA facility is dedicated to basic science investigation focussed on the alkali metal thermal-to-electric converter (AMTEC) technology. Three SOLTEC facilities are aimed to be used in different laboratories for long term material investigation sodium environment up to a 1000 K temperature and for long term tests of AMTEC modules. The medium scale integral facility KASOLA is planned as the backbone for CSP development and demonstration.
Sodium heat engine electrical feedthrough
Weber, N.
1985-03-19
A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.
High-temperature molten salt thermal energy storage systems
NASA Technical Reports Server (NTRS)
Petri, R. J.; Claar, T. D.; Tison, R. R.; Marianowski, L. G.
1980-01-01
The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified.
Cowan, Robert L.; Ginosar, Daniel M.; Dunks, Gary B.
2000-01-01
A method is described for synthesizing decaborane wherein at least about 90% of the boron atoms in the decaborane are the .sup.10 B isotope, comprising the steps of: (a) reacting boric acid with a C.sub.1 to C.sub.10 alkanol to form a .sup.10 B-alkyl borate wherein at least about 90% of the boron atoms in the boric acid are the .sup.10 B isotope; (b) reducing the .sup.10 B-alkyl borate to form an alkali metal .sup.10 B-borohydride; (c) converting the alkali metal .sup.10 B-borohydride to a .sup.10 B-tetradecahydroundecaborate ion; and (d) converting the .sup.10 B-tetradecahydroundecaborate ion to .sup.10 B-decaborane. Methods of preparing tetradecahydroundecaborate ions and decaborane from alkali metal borohydrides are also described.
NASA Astrophysics Data System (ADS)
Zhou, Haihua; Zou, Yingquan
2006-03-01
The photosensitive compounds in the photosensitive coatings of positive PS plates are the diazonaphthaquinone derivatives. Some acidolysis small molecular phenolic ethers, which were synthesized by some special polyhydroxyl phenols with vinyl ethyl ether, are added in the positive diazonaphthaquinone photosensitive composition to improve its sensitivity, composed with photo-acid-generators. The effects to the photosensitivity, anti-alkali property, anti-isopropyl alcohol property, dot resolution and line resolution of the coatings are studied with different additive percent of the special phenolic ethers. In the conventional photosensitive diazonaphthaquinone systems for positive PS plates, the photosensitivity is improved without negative effects to resolution, anti-alkali and anti-isopropyl alcohol properties when added about 5% of the special acidolysis phenolic ethers, EAAE or DPHE, composed with photo-acid-generators.
NASA Astrophysics Data System (ADS)
Flude, Stephanie; Lee, Martin R.; Sherlock, Sarah C.; Kelley, Simon P.
2012-06-01
Charge contrast imaging in the scanning electron microscope can provide new insights into the scale and composition of alkali feldspar microtextures, and such information helps considerably with the interpretation of their geological histories and results of argon isotope thermochronological analyses. The effectiveness of this technique has been illustrated using potassium-rich alkali feldspars from the Dartmoor granite (UK). These feldspars contain strain-controlled lamellar crypto- and microperthites that are cross-cut by strain-free deuteric microperthites. The constituent albite- and orthoclase-rich phases of both microperthite generations can be readily distinguished by atomic number contrast imaging. The charge contrast results additionally show that sub-micrometre-sized albite `platelets' are commonplace between coarser exsolution lamellae and occur together to make cryptoperthites. Furthermore, charge contrast imaging reveals that the orthoclase-rich feldspar is an intergrowth of two phases, one that is featureless with uniform contrast and another that occurs as cross-cutting veins and grains with the {110} adularia habit. Transmission electron microscopy shows that the featureless feldspar is tweed orthoclase, whereas the veins and euhedral grains are composed of irregular microcline that has formed from orthoclase by `unzipping' during deuteric or hydrothermal alteration. The charge contrast imaging results are especially important in demonstrating that deuteric perthites are far more abundant in alkali feldspars than would be concluded from investigations using conventional microscopy techniques. The unexpected presence of such a high volume of replacement products has significant implications for understanding the origins and geological histories of crustal rocks and the use of alkali feldspars in geo- and thermochronology. Whilst the precise properties of feldspars that generate contrast remain unclear, the similarity between charge contrast images and corresponding cathodoluminescence images of deuteric microperthites indicates that trace element chemistry and possibly also elastic strain within the crystal play a major role.
Synchronous optical pumping of quantum revival beats for atomic magnetometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seltzer, S. J.; Meares, P. J.; Romalis, M. V.
2007-05-15
We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.
The 2√{3}×2√{3}R30 surface reconstruction of alkali/Si(1 1 1):B semiconducting surfaces
NASA Astrophysics Data System (ADS)
Tournier-Colletta, C.; Chaput, L.; Tejeda, A.; Cardenas, L. A.; Kierren, B.; Malterre, D.; Fagot-Revurat, Y.; Fèvre, P. Le; Bertran, F.; Taleb-Ibrahimi, A.
2013-02-01
The surface structure of alkali doped Si(1 1 1):B ultra-thin films has been studied by low-energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS) and scanning tunneling microscopy (STM). A comparative study of K/Si(1 1 1)-3 × 1 and K/Si(1 1 1):B-2√{3}×2√{3}R30 interfaces allowed us to determine the saturation coverage to be 0.5 monolayer in the later case. The 2√{3}-surface reconstruction is shown to be a common property of pure K, Rb, Cs materials and K0.4Rb0.6 alloys but progressively disappears if Rb is replaced by Ca. Taking into account the existence of two distinct boron sites in the ratio 1/3 as seen from B-1s core levels spectra, LAPW-DFT calculations have been carried out in order to optimize the atomic structure. As a result, alkali adatoms are shown to form trimers leading to a large modulation of the Sisbnd B bonds accompanied by an inhomogeneous doping of the dangling bonds in agreement with voltage dependent STM images.
NASA Astrophysics Data System (ADS)
Huang, M.; Bazurto, R.; Camparo, J.
2018-01-01
The ring-mode to red-mode transition in alkali metal inductively coupled plasmas (ICPs) (i.e., rf-discharge lamps) is perhaps the most important physical phenomenon affecting these devices as optical pumping light sources for atomic clocks and magnetometers. It sets the limit on useful ICP operating temperature, thereby setting a limit on ICP light output for atomic-clock/magnetometer signal generation, and it is a temperature region of ICP operation associated with discharge instability. Previous work has suggested that the mechanism driving the ring-mode to red-mode transition is associated with radiation trapping, but definitive experimental evidence validating that hypothesis has been lacking. Based on that hypothesis, one would predict that the introduction of an alkali-fluorescence quenching gas (i.e., N2) into the ICP would increase the ring-mode to red-mode transition temperature. Here, we test that prediction, finding direct evidence supporting the radiation-trapping hypothesis.
Wang, Wen; Wang, Qiong; Tan, Xuesong; Qi, Wei; Yu, Qiang; Zhou, Guixiong; Zhuang, Xinshu; Yuan, Zhenhong
2016-10-01
The generation of a great quantity of black liquor (BL) and waste wash water (WWW) has been key problems of the alkaline pretreatment. This work tried to build a sustainable way to recycle the BL for pretreating sugarcane bagasse (SCB) and the WWW for washing the residual solid (RS) of alkali-treated SCB which would be subsequently hydrolysed and fermented. The enzymatic hydrolysis efficiency of the washed RS decreased with the recycling times of BL and WWW increasing. Tween80 at the loading of 0.25% (V/V) could notably improve the enzymatic hydrolysis and had no negative impact on the downstream fermentation. Compared with the non-recycling and BL recycling ways based on alkaline pretreatment, the BL-WWW recycling way could not only maintain high conversion of carbohydrate into monosaccharides and save alkali amount of 45.5%, but also save more than 80% water and generate less than 15% waste water. Copyright © 2016 Elsevier Ltd. All rights reserved.
A multi-channel tunable source for atomic sensors
NASA Astrophysics Data System (ADS)
Bigelow, Matthew S.; Roberts, Tony D.; McNeil, Shirley A.; Hawthorne, Todd; Battle, Phil
2015-09-01
We have designed and completed initial testing on a laser source suitable for atomic interferometry from compact, robust, integrated components. Our design is enabled by capitalizing on robust, well-commercialized, low-noise telecom components with high reliability and declining costs which will help to drive the widespread deployment of this system. The key innovation is the combination of current telecom-based fiber laser and modulator technology with periodicallypoled waveguide technology to produce tunable laser light at rubidium D1 and D2 wavelengths (and expandable to other alkalis) using second harmonic generation (SHG). Unlike direct-diode sources, this source is immune to feedback at the Rb line eliminating the need for bulky high-power isolators in the system. In addition, the source has GHz-level frequency agility and in our experiments was found to only be limited by the agility of our RF generator. As a proof-of principle, the source was scanned through the Doppler-broadened Rb D2 absorption line. With this technology, multiple channels can be independently tuned to produce the fields needed for addressing atomic states in atom interferometers and clocks. Thus, this technology could be useful in the development cold-atom inertial sensors and gyroscopes.
NASA Astrophysics Data System (ADS)
Allison, C. M.; Roggensack, K.; Clarke, A. B.
2017-12-01
Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear regression to generate this compositional relationship. Our revised general model provides a new framework to interpret volcanic data, yielding greater depths for melt inclusion entrapment than previously calculated using other models, and it can be applied to mafic magma compositions for which no experimental data is available.
Effects of nicotine on corneal wound healing following acute alkali burn.
Kim, Jong Won; Lim, Chae Woong; Kim, Bumseok
2017-01-01
Epidemiological studies have indicated that smoking is a pivotal risk factor for the progression of several chronic diseases. Nicotine, the addictive component of cigarettes, has powerful pathophysiological properties in the body. Although the effects of cigarette smoking on corneal re-epithelialization have been studied, the effects of nicotine on corneal wound healing-related neovascularization and fibrosis have not been fully demonstrated. The aim of this study was to evaluate the effects of chronic administration of nicotine on corneal wound healing following acute insult induced by an alkali burn. BALB/C female mice randomly received either vehicle (2% saccharin) or nicotine (100 or 200 μg/ml in 2% saccharin) in drinking water ad libitum. After 1 week, animals were re-randomized and the experimental group was subjected to a corneal alkali burn, and then nicotine was administered until day 14 after the alkali burn. A corneal alkali burn model was generated by placing a piece of 2 mm-diameter filter paper soaked in 1N NaOH on the right eye. Histopathological analysis and the expression level of the pro-angiogenic genes vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) revealed that chronic nicotine administration enhanced alkali burn-induced corneal neovascularization. Furthermore, the mRNA expression of the pro-fibrogenic factors α-smooth muscle actin (αSMA), transforming growth factor-β (TGF-β), and collagen α1 (Col1) was enhanced in the high-concentration nicotine-treated group compared with the vehicle group after corneal injury. Immunohistochemical analysis also showed that the αSMA-positive area was increased in chronic nicotine-treated mice after corneal alkali burn. An in vitro assay found that expression of the α3, α7, and β1 nicotinic acetylcholine receptor (nAChR) subunits was significantly increased by chemical injury in human corneal fibroblast cells. Moreover, alkali-induced fibrogenic gene expression and proliferation of fibroblast cells were further increased by treatment with nicotine and cotinine. The proliferation of such cells induced by treatment of nicotine and cotinine was reduced by inhibition of the PI3K and PKC pathways using specific inhibitors. In conclusion, chronic administration of nicotine accelerated the angiogenic and fibrogenic healing processes in alkali-burned corneal tissue.
High Temperature Alkali Corrosion of Dense SN4 Coated with CMZP and Mg-Doped A21TiO5 in Coal Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. J. Brown; Nguyen Thierry
1998-03-01
Over the past twenty years silicon based ceramics have generated considerable enthusiasm in the scientific community. Of particular interest is Si3N4, one of the leading candidates of this family, for very demanding structural applications. Its properties are well known and include a high strength to weight ratio, a high chemical resistance, and excellent high temperature properties. However, it was reported in previous papers that the performances of Si3N4 were dramatically affected by hot alkali molten salts. In order to alleviate this phenomenon, it was suggested that certain oxide ceramics, which exhibit better resistance to the alkali corrosion, could be appliedmore » as protective coatings. Using the sol-gel process and dip coating technique, CMZP and Mg-doped Al2TiO5 thin films were deposited on Si3N4 substrates and exposure to a sodium containing atmosphere was carried out. During this reporting period, the emphasis was placed on investigating the microstrutural changes of coated and uncoated samples as well as on assessing their alkali corrosion resistance.« less
NASA Astrophysics Data System (ADS)
Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek
2017-02-01
This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.
Sensen, Marion; Richardson, David H S
2002-07-03
Mercury concentrations were determined in the epiphytic lichen Hypogymnia physodes along five transects starting from a chlor-alkali plant located at Dalhousie, New Brunswick, a landfill site and a nearby electricity generating station. Lichen samples were collected from white birch (Betula papyrifera) and spruce (Picea sp.) or balsam fir (Abies balsamea). Average lichen background mercury values were 0.088+/-0.005 microg/g from white birch and 0.148+/-0.046 microg/g from spruce trees, with a detection limit of 0.05 microg/g. The chlor-alkali plant and a power plant were identified, respectively, as a major source and a minor source of elevated mercury levels in lichens. At 125 m north-west of the New Brunswick Power plant, 0.28 microg/g Hg were found in Hypogymnia physodes from spruce trees, while at 250 m west (downwind) of the chlor-alkali plant, 3.66 microg/g of mercury were determined. High values, 0.98 microg/g in lichens from spruce trees and 0.79 microg/g in lichen samples from white birch were also measured at 125 m south of the chlor-alkali plant and decreased exponentially with distance. The sphere of influence of the chlor-alkali plant with respect to mercury deposition was estimated to extend 2.4-3.4 km from the plant. The mercury concentrations in Hypogymnia physodes collected from white birch were significantly lower than the concentrations in the same lichen from spruce trees in areas with elevated levels of mercury, but not in areas with low mercury levels. The magnitude of this difference dropped with distance from the source.
Models for Multimegawatt Space Power Systems
1990-06-01
devices such as batteries, flywheels, and large, cryogenic inductors. Turbines with generators, thermionics, thermoelectrics, alkali metal...NTCA Weapons Laboratory Kirtland AFB, NM 87117 C. Perry Bankston California Institute of Technology Jet Propulsion Laboratory 4800 Oak Grove
Hrizo, John; Bauerle, James E.; Witkowski, Robert E.
1982-01-01
A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.
Light-induced atomic desorption in a compact system for ultracold atoms
Torralbo-Campo, Lara; Bruce, Graham D.; Smirne, Giuseppe; Cassettari, Donatella
2015-01-01
In recent years, light-induced atomic desorption (LIAD) of alkali atoms from the inner surface of a vacuum chamber has been employed in cold atom experiments for the purpose of modulating the alkali background vapour. This is beneficial because larger trapped atom samples can be loaded from vapour at higher pressure, after which the pressure is reduced to increase the lifetime of the sample. We present an analysis, based on the case of rubidium atoms adsorbed on pyrex, of various aspects of LIAD that are useful for this application. Firstly, we study the intensity dependence of LIAD by fitting the experimental data with a rate-equation model, from which we extract a correct prediction for the increase in trapped atom number. Following this, we quantify a figure of merit for the utility of LIAD in cold atom experiments and we show how it can be optimised for realistic experimental parameters. PMID:26458325
NASA Astrophysics Data System (ADS)
Lodhi, M. A. K.
2012-10-01
Static conversion systems are gaining importance in recent times because of newer applications of electricity like in spacecraft, hybrid-electric vehicles, military uses and domestic purposes. Of the many new static energy conversion systems that are being considered, one is the Alkali Metal Thermal Electric Converter (AMTEC). It is a thermally regenerative, electrochemical device for the direct conversion of heat to electrical power. As the name suggests, this system uses an alkali metal in its process. The electrochemical process involved in the working of AMTEC is ionization of alkali metal atoms at the interface of electrode and electrolyte. The electrons produced as a result flow through the external load thus doing work, and finally recombine with the metal ions at the cathode. AMTECs convert the work done during the nearly isothermal expansion of metal vapor to produce a high current and low voltage electron flow. Due to its principle of working it has many inherent advantages over other conventional generators. These will be discussed briefly.
NASA Astrophysics Data System (ADS)
Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji
2013-08-01
Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na2CO3 powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. The concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demicheli, M.C.; Duprez, D.; Barbier, J.
The influence of potassium on the hydrogenolysis of cyclopentane and on the simultaneous carbon formation over a series of alumina-supported Ni catalysts was studied. With increasing potassium loadings at temperatures where either a deactivating two-dimensional carbon or a filamentary carbon was formed, the catalytic activity passed through a maximum and then decreased. With relatively high K-doses there was less coking in the presence of steam; the growth of filamentary carbon was then largely reduced. Characterization of the coked catalysts by temperature-programmed oxidation and SEM disclosed quite different roles of alkali: at lower contents, associated with alumina, potassium facilitates the formationmore » of filamentary carbon and minimizes the generation of coke precursors, whereas at higher contents it acts as a poison for both hydrogenolysis and coking reactions. In all cases, the alkali promoted the catalytic oxidation of the carbon deposits. Because of its localization, the alkali could also modify the nickel-carbon interface in carbon filaments. 32 refs., 12 figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copuroglu, Oguzhan, E-mail: O.Copuroglu@CiTG.TUDelft.NL; Andic-Cakir, Ozge; Broekmans, Maarten A.T.M.
In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO{sub 2}. The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences:more » (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.« less
Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT
2011-12-13
Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
NASA Astrophysics Data System (ADS)
Zagidulin, M. V.; Nikolaev, V. D.; Svistun, M. I.; Khvatov, N. A.
2008-08-01
A centrifugal bubbling singlet-oxygen gas generator is developed in which chlorine with helium are injected into the rotating layer of the alkali solution of hydrogen peroxide through cylindrical nozzles directed at an angle of 30° to the bubbler surface. The concentrations of water vapour and O2 (1Δ) and the gas temperature were determined by using the multichannel recording of the emission bands of oxygen at 634, 703, 762 and 1268 nm. For the chlorine and helium flow rates of 60 and 90 mmol s-1, respectively, the specific chlorine load of 3.2 mmol cm-2, a total pressure of 100 Torr in the working region of the gas generator and the oxygen partial pressure of 36 Torr, the chlorine utilisation was 90% and the content of O2 (1Δ) was ≈60%. For the ratio of the flow rates of chlorine and the alkali solution of hydrogen peroxide equal to 1 mol L-1, the water vapour content was ≈25%. The chemical efficiency of the oxygen—iodine laser with this gas generator achieved 23% for the specific power of 12.7 W cm per 1 cm3 s-1 per pass of the solution through the gas generator.
NASA Astrophysics Data System (ADS)
Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei
2018-03-01
Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the Paleotethyan subduction channel plays the key role in transferring the geochemical signatures from the subducted Paleotethyan oceanic crust to the alkali basalts in the fossil convergent plate margin.
Global expression for representing cohesive-energy curves. II
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1993-01-01
Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.
Alkali and Chlorine Photochemistry in a Volcanically Driven Atmosphere on Io
NASA Astrophysics Data System (ADS)
Moses, Julianne I.; Zolotov, Mikhail Yu.; Fegley, Bruce
2002-03-01
Observations of the Io plasma torus and neutral clouds indicate that the extended ionian atmosphere must contain sodium, potassium, and chlorine in atomic and/or molecular form. Models that consider sublimation of pure sulfur dioxide frost as the sole mechanism for generating an atmosphere on Io cannot explain the presence of alkali and halogen species in the atmosphere—active volcanoes or surface sputtering must also be considered, or the alkali and halide species must be discharged along with the SO 2 as the frost sublimates. To determine how volcanic outgassing can affect the chemistry of Io's atmosphere, we have developed a one-dimensional photochemical model in which active volcanoes release a rich suite of S-, O-, Na-, K-, and Cl-bearing vapor and in which photolysis, chemical reactions, condensation, and vertical eddy and molecular diffusion affect the subsequent evolution of the volcanic gases. Observations of Pele plume constituents, along with thermochemical equilibrium calculations of the composition of volcanic gases exsolved from high-temperature silicate magmas on Io, are used to constrain the composition of the volcanic vapor. We find that NaCl, Na, Cl, KCl, and K will be the dominant alkali and chlorine gases in atmospheres generated from Pele-like plume eruptions on Io. Although the relative abundances of these species will depend on uncertain model parameters and initial conditions, these five species remain dominant for a wide variety of realistic conditions. Other sodium and chlorine molecules such as NaS, NaO, Na 2, NaS 2, NaO 2, NaOS, NaSO 2, SCl, ClO, Cl 2, S 2Cl, and SO 2Cl 2 will be only minor constituents in the ionian atmosphere because of their low volcanic emission rates and their efficient photochemical destruction mechanisms. Our modeling has implications for the general appearance, properties, and variability of the neutral sodium clouds and jets observed near Io. The neutral NaCl molecules present at high altitudes in atmosph eres generated by active volcanoes might provide the NaX + ion needed to help explain the morphology of the high-velocity sodium "stream" feature observed near Io.
Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept
NASA Technical Reports Server (NTRS)
Martin, James; Salvail, Pat
2003-01-01
To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final "wet in". A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/- 1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to less than10(exp -10) std cc/sec helium and vacuum conditioned at 250 C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.
Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept
NASA Astrophysics Data System (ADS)
Martin, James; Salvail, Pat
2004-02-01
To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final ``wet in''. A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/-1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to <10-10 std cc/sec helium and vacuum conditioned at 250 °C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 °C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.
Thiagamani, Senthil Muthu Kumar; Nagarajan, Rajini; Jawaid, Mohammad; Anumakonda, Varadarajulu; Siengchin, Suchart
2017-11-01
As the annual production of the solid waste generable in the form of spent coffee bean powder (SCBP) is over 6 million tons, its utilization in the generation of green energy, waste water treatment and as a filler in biocomposites is desirable. The objective of this article is to analyze the possibilities to valorize coffee bean powder as a filler in cellulose matrix. Cellulose matrix was dissolved in the relatively safer aqueous solution mixture (8% LiOH and 15% Urea) precooled to -12.5°C. To the cellulose solution (SCBP) was added in 5-25wt% and the composite films were prepared by regeneration method using ethyl alcohol as a coagulant. Some SCBP was treated with aq. 5% NaOH and the composite films were also prepared using alkali treated SCBP as a filler. The films of composites were uniform with brown in color. The cellulose/SCBP films without and with alkali treated SCBP were characterized by FTIR, XRD, optical and polarized optical microscopy, thermogravimetric analysis (TGA) and tensile tests. The maximum tensile strength of the composite films with alkali treated SCBP varied between (106-149MPa) and increased with SCBP content when compared to the composites with untreated SCBP. The thermal stability of the composite was higher at elevated temperatures when alkali treated SCBP was used. Based on the improved tensile properties and photo resistivity, the cellulose/SCBP composite films with alkali treated SCBP may be considered for packaging and wrapping of flowers and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alkali metal ion battery with bimetallic electrode
Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli
2015-04-07
Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.
He, Rui; Yu, Guohong; Han, Xiaori; Han, Jiao; Li, Wei; Wang, Bing; Huang, Shengcai; Cheng, Xianguo
2017-12-01
An inorganic pyrophosphorylase gene, ThPP1 , modulated the accumulations of phosphate and osmolytes by up-regulating the differentially expression genes, thus enhancing the tolerance of the transgenic rice to alkali stress (AS). Inorganic pyrophosphorylase is essential in catalyzing the hydrolysis of pyrophosphate to inorganic phosphate during plant growth. Here, we report the changes of physiological osmolytes and differentially expression genes in the transgenic rice overexpressing a soluble inorganic pyrophosphatase gene ThPP1 of Thellungiella halophila in response to AS. Analyses showed that the ThPP1 gene was a PPase family I member which is located to the cytoplasm. Data showed that the transgenic lines revealed an enhanced tolerance to AS compared to the wild type, and effectively increased the accumulations of inorganic phosphate and organic small molecules starch, sucrose, proline and chlorophyll, and maintained the balance of osmotic potential by modulating the ratio of Na + /K + in plant cells. Under AS, total 379 of differentially expression genes were up-regulated in the leaves of the transgenic line compared with control, and the enhanced tolerance of the transgenic rice to the AS seemed to be associated with the up-regulations of the osmotic stress-related genes such as the L-type lectin-domain containing receptor kinase (L-type LecRK), the cation/H + antiporter gene and the vacuolar cation/proton exchanger 1 gene (CAX1), which conferred the involvements in the biosynthesis and metabolic pathways. Protein interaction showed that the ThPP1 protein specifically interacted with a 16# target partner of the photosystem II light-harvesting-Chl-binding protein. This study suggested that the ThPP1 gene plays an important regulatory role in conferring the tolerance of the transgenic rice to AS, and is an effective candidate in molecular breeding for crop cultivation of the alkali tolerance.
Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi
2017-04-01
Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions
NASA Technical Reports Server (NTRS)
Patel, P. S.; Baker, B. S.
1977-01-01
A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.
2001-07-27
KENNEDY SPACE CENTER, Fla. -- On Launch Pad 39A, two Hitchhiker Experiments Advancing Technology (HEAT) payloads are loaded onto Discovery’s port adapter beam in the payload bay. At left is the Space Experiment Module, an educational initiative to increase educational access to space. The canister contains up to 10 small, enclosed modules that contain separate, passive experiments designed and constructed by students. Many of the experiments will study the growing characteristics of plants subjected to the space environment. At right is the Get Away Special canister containing the Alkali Metal Thermal-to-Electric Converter (AMTEC), designed for efficient conversion of heat into electrical energy. The HEAT payloads are flying on mission STS-105, scheduled to launch Aug. 9, 2001
Hydrothermal alkali metal catalyst recovery process
Eakman, James M.; Clavenna, LeRoy R.
1979-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier
Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution andmore » may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.« less
High efficiency Raman memory by suppressing radiation trapping
NASA Astrophysics Data System (ADS)
Thomas, S. E.; Munns, J. H. D.; Kaczmarek, K. T.; Qiu, C.; Brecht, B.; Feizpour, A.; Ledingham, P. M.; Walmsley, I. A.; Nunn, J.; Saunders, D. J.
2017-06-01
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5 % in caesium vapour at high optical depths of up to ˜ 2× {10}5; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
Performance of OSC's initial Amtec generator design, and comparison with JPL's Europa Orbiter goals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1998-07-01
The procedure for the analysis (with overpotential correction) of multitube AMTEC (Alkali Metal Thermal-to-Electrical Conversion) cells described in Paper IECEC 98-243 was applied to a wide range of multicell radioisotope space power systems. System design options consisting of one or two generators, each with 2, 3, or 4 stacked GPHS (General Purpose Heat Source) modules, identical to those used on previous NASA missions, were analyzed and performance-mapped. The initial generators analyzed by OSC had 8 AMTEC cells on each end of the heat source stack, with five beta-alumina solid electrolyte (BASE) tubes per cell. The heat source and converters inmore » the Orbital generator designs are embedded in a thermal insulation system consisting of Min-K fibrous insulation surrounded by graded-length molybdenum multifoils. Detailed analyses in previous Orbital studies found that such an insulation system could reduce extraneous heat losses to about 10%. For the above design options, the present paper presents the system mass and performance (i.e., the EOM system efficiency and power output and the BOM evaporator and clad temperatures) for a wide range of heat inputs and load voltages, and compares the results with JPL's preliminary goals for the Europa Orbiter mission to be launched in November 2003. The analytical results showed that the initial 16-cell generator designs resulted in either excessive evaporator and clad temperatures and/or insufficient power outputs to meet the JPL-specified mission goals. The computed performance of modified OSC generators with different numbers of AMTEC cells, cell diameters, cell lengths, cell materials, BASE tube lengths, and number of tubes per cell are described in Paper IECEC.98.245 in these proceedings.« less
Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.
Ultra-narrow band diode lasers with arbitrary pulse shape modulation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ryasnyanskiy, Aleksandr I.; Smirnov, Vadim; Mokhun, Oleksiy; Glebov, Alexei L.; Glebov, Leon B.
2017-03-01
Wideband emission spectra of laser diode bars (several nanometers) can be largely narrowed by the usage of thick volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass. Such narrowband systems, with GHz-wide emission spectra, found broad applications for Diode Pumped Alkali vapor Lasers, optically pumped rare gas metastable lasers, Spin Exchange Optical Pumping, atom cooling, etc. Although the majority of current applications of narrow line diode lasers require CW operation, there are a variety of fields where operation in a different pulse mode regime is necessary. Commercial electric pulse generators can provide arbitrary current pulse profiles (sinusoidal, rectangular, triangular and their combinations). The pulse duration and repetition rate however, have an influence on the laser diode temperature, and therefore, the emitting wavelength. Thus, a detailed analysis is needed to understand the correspondence between the optical pulse profiles from a diode laser and the current pulse profiles; how the pulse profile and duty cycle affects the laser performance (e.g. the wavelength stability, signal to noise ratio, power stability etc.). We present the results of detailed studies of the narrowband laser diode performance operating in different temporal regimes with arbitrary pulse profiles. The developed narrowband (16 pm) tunable laser systems at 795 nm are capable of operating in different pulse regimes while keeping the linewidth, wavelength, and signal-to-noise ratio (>20 dB) similar to the corresponding CW modules.
Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system
Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.
1993-01-01
A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.
Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system
Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.
1993-02-16
A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.
Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system
Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.
1994-01-01
A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Saika, Shizuya; Miyamoto, Takeshi; Yamanaka, Osamu; Kato, Tadashi; Ohnishi, Yoshitaka; Flanders, Kathleen C.; Ikeda, Kazuo; Nakajima, Yuji; Kao, Winston W.-Y.; Sato, Misako; Muragaki, Yasuteru; Ooshima, Akira
2005-01-01
We evaluated the therapeutic efficacy of topical administration of SN50, an inhibitor of nuclear factor-κB, in a corneal alkali burn model in mice. An alkali burn was produced with 1 N NaOH in the cornea of C57BL/6 mice under general anesthesia. SN50 (10 μg/μl) or vehicle was topically administered daily for up to 12 days. The eyes were processed for histological or immunohistochemical examination after bromodeoxyuridine labeling or for semiquantification of cytokine mRNA. Topical SN50 suppressed nuclear factor-κB activation in local cells and reduced the incidence of epithelial defects/ulceration in healing corneas. Myofibroblast generation, macrophage invasion, activity of matrix metalloproteinases, basement membrane destruction, and expression of cytokines were all decreased in treated corneas compared with controls. To elucidate the role of tumor necrosis factor (TNF)-α in epithelial cell proliferation, we performed organ culture of mouse eyes with TNF-α, SN50, or an inhibitor of c-Jun N-terminal kinase (JNK) and examined cell proliferation in healing corneal epithelium in TNF-α−/− mice treated with SN50. An acceleration of epithelial cell proliferation by SN50 treatment was found to depend on TNF-α/JNK signaling. In conclusion, topical application of SN50 is effective in treating corneal alkali burns in mice. PMID:15855640
A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries.
Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang
2017-08-29
Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium-sulfur (Li-S) batteries and analogous flexible alkali metal-chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li-S and analogous batteries. A brief introduction to flexible energy storage systems and general Li-S batteries has been provided first. Progress in flexible materials for flexible Li-S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal-chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li-S batteries are highlighted. In the end, existing challenges and future development of flexible Li-S and analogous alkali metal-chalcogen batteries are summarized and prospected.
Second-order non-linear optical studies on CdS microcrystallite-doped alkali borosilicate glasses
NASA Astrophysics Data System (ADS)
Liu, Hao; Liu, Qiming; Wang, Mingliang; Zhao, Xiujian
2007-05-01
CdS microcrystal-doped alkali borosilicate glasses were prepared by conventional fusion and heat-treatment method. Utilizing Maker fringe method, second-harmonic generation (SHG) was both observed from CdS-doped glasses before and after certain thermal/electrical poling. While because the direction of polarization axes of CdS crystals formed in the samples is random or insufficient interferences of generated SH waves occur, the fringe patterns obtained in samples without poling treatments showed no fine structures. For the poled samples, larger SH intensity has been obtained than that of the samples without any poling treatments. It was considered that the increase of an amount of hexagonal CdS in the anode surface layer caused by the applied dc field increased the SH intensity. The second-order non-linearity χ(2) was estimated to be 1.23 pm/V for the sample poled with 2.5 kV at 360 °C for 30 min.
Generation of low work function, stable compound thin films by laser ablation
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2001-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
The forms of alkalis in the biochar produced from crop residues at different temperatures.
Yuan, Jin-Hua; Xu, Ren-Kou; Zhang, Hong
2011-02-01
The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars. Copyright © 2010 Elsevier Ltd. All rights reserved.
Alkali metal for ultraviolet band-pass filter
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)
1993-01-01
An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.
Alkali metal recovery from carbonaceous material conversion process
Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.
An expert system for the evaluation of reinforced concrete structure durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berra, M.; Bertolini, L.; Briglia, M.C.
1999-11-01
A user-friendly expert system has been developed to evaluate primarily the durability of reinforced concrete structures, either in the design phase or during service life related to reinforcement corrosion. Besides the durability module, the ES has been provided with three other expert modules in order to support the user during the following activities: inspections, corrosion diagnosis and repair strategy (of concrete and reinforcement). Corrosion induced by carbonation and chlorides penetration and caused by concrete degradation such as sulfate attack, freeze/thaw cycles, alkali silica reaction are considered. The knowledge used for the expert system is based both on open literature andmore » international standards as well as on specific experiences and proprietary databases. The paper describes main features of the system, including the modeling of the knowledge, input data, the algorithms, the rules and the outputs for each module.« less
Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.
Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi
2014-07-01
A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.
Li, Meng; Wang, Jun; Yang, Yuezhou; Xie, Guanghui
2016-05-01
Jerusalem artichoke (JA) has been known as a potential nonfood feedstock for biofuels. Based on systems analysis of total 59 accessions, both soluble sugar and ash could positively affect biomass digestibility after dilute sodium hydroxide pretreatment (A). In this study, one representative accession (HEN-3) was used to illustrate its enzymatic digestibility with pretreatments of ultrasonic-assisted dilute sodium hydroxide (B), alkaline peroxide (C), and ultrasonic-assisted alkaline peroxide (D). Pretreatment D exhibited the highest hexose release rate (79.4%) and total sugar yield (10.4 g/L), which were 2.4 and 2.6 times higher, respectively, than those of the control. The analysis of cellulose crystalline index (CrI), cellulose degree of polymerization (DP), thermal behavior and SEM suggested that alkali-based pretreatments could distinctively extract lignin and pectin polymers, leading to significant alterations of cellulose CrI and DP for high biomass saccharification. Additionally, hydrogen peroxide (H2O2) could significant reduce the generation of fermentation inhibitors during alkali-based pretreatments. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Hiroshi; Sakai, Daisuke; Nishii, Junji
2013-08-14
Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na{sub 2}CO{sub 3} powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. Themore » concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.« less
EXTINGUISHMENT OF ALKALI METAL FIRES
low O2 partial pressures on alkali metal fires Extinguishment of alkali metal fires using in organic salt mixtures Extinguishment of alkali metal ... fires using inorganic salt foams Alkali metal jet stream ignition at various pressure conditions Bibliography
Self-Protection Mechanism of Hexagonal WO3-Based DeNOx Catalysts against Alkali Poisoning.
Zheng, Li; Zhou, Meijuan; Huang, Zhiwei; Chen, Yaxin; Gao, Jiayi; Ma, Zhen; Chen, Jianmin; Tang, Xingfu
2016-11-01
A good catalyst for efficiently controlling NO x emissions often demands strong resistance against alkali poisoning. Although the traditional ion-exchange model, based on acid-base reactions of alkalis with Brønsted acid sites, has been established over the past two decades, it is difficult to be used as a guideline to develop such an alkali-resistant catalyst. Here we establish a self-protection mechanism of deNO x catalysts against alkali poisoning by systematically studying the intrinsic nature of alkali resistance of V 2 O 5 /HWO (HWO = hexagonal WO 3 ) that shows excellent resistance to alkali poisoning in selective catalytic reduction of NO x with NH 3 (SCR). Synchrotron X-ray diffraction and absorption spectroscopies demonstrate that V 2 O 5 /HWO has spatially separated catalytically active sites (CASs) and alkali-trapping sites (ATSs). During the SCR process, ATSs spontaneously trap alkali ions such as K + , even if alkali ions initially block CASs, thus releasing CASs to realize the self-protection against alkali poisoning. X-ray photoelectron spectra coupled with theoretical calculations indicate that the electronic interaction between the alkali ions and ATSs with an energy saving is the driving force of the self-protection. This work provides a strategy to design alkali-resistant deNO x catalysts.
Refractories for high alkali environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.W.; Cloer, F.
1996-12-31
Information on refractories for high alkali environments is outlined. Information is presented on: product gallery; alkali attack; chemical reactions; basic layout of alkali cup test; criteria for rating alkali cup test samples; and basic layout of physical properties test.
Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung
2013-04-04
Using the strong electron hole cage C20F19 acceptor, the NH2...M/M3O (M = Li, Na, and K) complicated donors with excess electron, and the unusual σ chain (CH2)4 bridge, we construct a new kind of electride molecular salt e(-)@C20F19-(CH2)4-NH2...M(+)/M3O(+) (M = Li, Na, and K) with excess electron anion inside the hole cage (to be encapsulated excess electron-hole pair) serving as a new A-B-D strategy for enhancing nonlinear optical (NLO) response. An interesting push-pull mechanism of excess electron generation and its long-range transfer is exhibited. The excess electron is pushed out from the (super)alkali atom M/M3O by the lone pair of NH2 in the donor and further pulled inside the hole cage C20F19 acceptor through the efficient long σ chain (CH2)4 bridge. Owing to the long-range electron transfer, the new designed electride molecular salts with the excess electron-hole pair exhibit large NLO response. For the e(-)@C20F19-(CH2)4-NH2...Na(+), its large first hyperpolarizability (β0) reaches up to 9.5 × 10(6) au, which is about 2.4 × 10(4) times the 400 au for the relative e(-)@C20F20...Na(+) without the extended chain (CH2)4-NH2. It is shown that the new strategy is considerably efficient in enhancing the NLO response for the salts. In addition, the effects of different bridges and alkali atomic number on β0 are also exhibited. Further, three modulating factors are found for enhancing NLO response. They are the σ chain bridge, bridge-end group with lone pair, and (super)alkali atom. The new knowledge may be significant for designing new NLO materials and electronic devices with electrons inside the cages. They may also be the basis of establishing potential organic chemistry with electron-hole pair.
Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe
2013-08-04
Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to NaCl and alkali stresses.
Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth
NASA Technical Reports Server (NTRS)
Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.
1993-01-01
A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.
Aqueous cathode for next-generation alkali-ion batteries.
Lu, Yuhao; Goodenough, John B; Kim, Youngsik
2011-04-20
The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.
Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.
DOT National Transportation Integrated Search
2016-12-19
This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...
1977-02-01
oxides and their mixtures, arsenides, borides, bromides , carbides , chlorides , fluoride s, nitride s, phosphides, silicides , sulfides , tellurides...ivity of alkali elements (lithium , sodium , potassium , rubi- dium , ces ium , and francium) and contains recomme nded reference values generated
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jin-Hua; Tang, Gui-Mei, E-mail: meiguit@163.com; Qin, Ting-Xiao
2014-11-15
Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11more » nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one-dimensional structures have been observed. • The properties of second harmonic generation and ferroelectricity for complex 2.« less
Hydrothermal alkali metal recovery process
Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.
Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system
Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.
1994-01-04
A generator system has been invented for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form. 1 figure.
Li, Xuemin; Zhao, Yangzhi; Brennan, Alice; McCeig, Miranda; Wolden, Colin A; Yang, Yongan
2017-07-21
Anhydrous alkali sulfide (M 2 S, M=Li or Na) nanocrystals (NCs) are important materials central to the development of next generation cathodes and solid-state electrolytes for advanced batteries, but not commercially available at present. This work reports an innovative method to directly synthesize M 2 S NCs through alcohol-mediated reactions between alkali metals and hydrogen sulfide (H 2 S). In the first step, the alkali metal is complexed with alcohol in solution, forming metal alkoxide (ROM) and releasing hydrogen (H 2 ). Next, H 2 S is bubbled through the ROM solution, where both chemicals are completely consumed to produce phase-pure M 2 S NC precipitates and regenerate alcohol that can be recycled. The M 2 S NCs morphology may be tuned through the choice of the alcohol and solvent. Both synthetic steps are thermodynamically favorable (ΔG m o <-100 kJ mol -1 ), proceeding rapidly to completion at ambient temperature with almost 100 % atom efficiency. The net result, H 2 S+2 m→M 2 S+H 2 , makes good use of a hazardous chemical (H 2 S) and delivers two value-added products that naturally phase separate for easy recovery. This scalable approach provides an energy-efficient and environmentally benign solution to the production of nanostructured materials required in emerging battery technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Igneous rocks of the East Pacific Rise
Engel, A.E.J.; Engel, C.G.
1964-01-01
The apical parts of large volcanoes along the East Pacific Rise (islands and seamounts) are encrusted with rocks of the alkali volcanic suite (alkali basalt, andesine- and oligoclase-andesite, and trachyte). In contrast, the more submerged parts of the Rise are largely composed of a tholeiitic basalt which has low concentrations of K, P, U, Th, Pb, and Ti. This tholeiitic basalt is either the predominant or the only magma generated in the earth's mantle under oceanic ridges and rises. It is at least 1000-fold more abundant than the alkali suite, which is probably derived from tholeiitic basalt by magmatic differentiation in and immediately below the larger volcanoes. Distinction of oceanic tholeiites from almost all continental tholeiites is possible on the simple basis of total potassium content, with the discontinuity at 0.3 to 0.5 percent K2O by weight. Oceanic tholeiites also are readily distinguished from some 19 out of 20 basalts of oceanic islands and seamount cappings by having less than 0.3 percent K2O by weight and more than 48 percent SiO2. Deep drilling into oceanic volcanoes should, however, core basalts transitional between the oceanic tholeiites and the presumed derivative alkali basalts.The composition of the oceanic tholeiites suggests that the mantle under the East Pacific Rise contains less than 0.10 percent potassium oxide by weight; 0.1 part per million of uranium and 0.4 part of thorium; a potassium:rubidium ratio of about 1200 and a potassium: uranium ratio of about 104.
Alkali metal nitrate purification
Fiorucci, Louis C.; Morgan, Michael J.
1986-02-04
A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.
Recovery of alkali metal constituents from catalytic coal conversion residues
Soung, W.Y.
In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
[Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].
Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai
2015-09-01
In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.
Yang, Mei-Ling; Zhang, Nan; Lu, Kang-Qiang; Xu, Yi-Jun
2017-04-04
Considerable attention has been focused on transforming graphene (GR) into semiconducting GR by diverse strategies, which can perform as one type of promising photocatalyst toward various photoredox reactions. Herein, we report a facile alkali-assisted hydrothermal method for simultaneous tailoring of the lateral size of GR and nitrogen (N) doping into the GR matrix, by which small-sized N-doped GR (S-NGR) can be obtained. For comparison, large-sized N-doped GR (L-NGR) has also been achieved through the same hydrothermal treatment except for the addition of alkali. The photocatalytic activity test shows that S-NGR exhibits much higher activity than L-NGR toward the degradation of organic pollutants under visible-light irradiation. Structure-photoactivity correlation analysis and characterization suggest that the underlying origin for the significantly enhanced visible-light photoactivity of S-NGR in comparison with L-NGR can be assigned to the lateral size decrease in the NGR sheet, which is able to tune the band gap of semiconducting NGR, to facilitate the separation and transfer of photogenerated charge carriers, and to improve the adsorption capacity of NGR toward the reactant. It is expected that this work will cast new light on the judicious utilization of semiconducting GR with controlled size modulation and heteroatom doping to tune its physicochemical properties, thereby advancing further developments in the rational design of more efficient semiconducting GR materials for diverse applications in photocatalysis.
NASA Astrophysics Data System (ADS)
Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.
2017-02-01
In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.
High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Walker, Kara L.; Anderson, William G.
2009-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling convertor. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 C while the heat losses caused by the addition of the VCHP are 1.8 W.
Light collection device for flame emission detectors
Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.
1990-01-01
A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.
The Effect of Radiation "Memory" in Alkali-Halide Crystals
NASA Astrophysics Data System (ADS)
Korovkin, M. V.; Sal'nikov, V. N.
2017-01-01
The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.
Alkali injection system with controlled CO.sub.2 /O.sub.2 ratios for combustion of coal
Berry, Gregory F.
1988-01-01
A high temperature combustion process for an organic fuel containing sulfur n which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO.sub.2 /O.sub.2 being controlled to generate combustion temperatures above 2000 K. for a gas-gas reaction with SO.sub.2 and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO.sub.2 for oil recovery and other purposes.
AMTEC vapor-vapor series connected cells
NASA Technical Reports Server (NTRS)
Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)
1995-01-01
An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.
Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaraman, Saivenkataraman
2010-03-01
Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We aremore » currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.« less
A new glass option for parenteral packaging.
Schaut, Robert A; Peanasky, John S; DeMartino, Steven E; Schiefelbein, Susan L
2014-01-01
Glass is the ideal material for parenteral packaging because of its chemical durability, hermeticity, strength, cleanliness, and transparency. Alkali borosilicate glasses have been used successfully for a long time, but they do have some issues relating to breakage, delamination, and variation in hydrolytic performance. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the compendial requirements, and to have similar thermal, optical, and mechanical attributes as the current alkali borosilicate glasses. In addition, the alkali aluminosilicate performed as well or better than the current alkali borosilicates in extractables tests and stability studies, which suggests that it would be suitable for use with the studied liquid product formulation. The physical, mechanical, and optical properties of glass make it an ideal material for packaging injectable drugs and biologics. Alkali borosilicate glasses have been used successfully for a long time for these applications, but there are some issues. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the requirements for packaging injectable drugs and biologics, and to be suitable for use with a particular liquid drug. © PDA, Inc. 2014.
Titration Curves: Fact and Fiction.
ERIC Educational Resources Information Center
Chamberlain, John
1997-01-01
Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…
Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix
NASA Astrophysics Data System (ADS)
Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore
2014-05-01
Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.
Mechanistic investigations in sono-hybrid techniques for rice straw pretreatment.
Suresh, Kelothu; Ranjan, Amrita; Singh, Shuchi; Moholkar, Vijayanand S
2014-01-01
This paper reports comparative study of two chemical techniques (viz. dilute acid/alkali treatment) and two physical techniques (viz. hot water bath and autoclaving) coupled with sonication, termed as sono-hybrid techniques, for hydrolysis of rice straw. The efficacy of each sono-hybrid technique was assessed on the basis of total sugar and reducing sugar release. The system of biomass pretreatment is revealed to be mass transfer controlled. Higher sugar release is obtained during dilute acid treatment than dilute alkali treatment. Autoclaving alone was found to increase sugar release marginally as compared to hot water bath. Sonication of the biomass solution after autoclaving and stirring resulted in significant rise of sugar release, which is attributed to strong convection generated during sonication that assists effective transport of sugar molecules. Discrimination between individual contributions of ultrasound and cavitation to mass transfer enhancement reveals that contribution of ultrasound (through micro-streaming) is higher. Micro-turbulence as well as acoustic waves generated by cavitation did not contribute much to enhancing of mass transfer in the system. Copyright © 2013 Elsevier B.V. All rights reserved.
Methods of recovering alkali metals
Krumhansl, James L; Rigali, Mark J
2014-03-04
Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.
Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua
2016-01-01
This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recovery of alkali metal constituents from catalytic coal conversion residues
Soung, Wen Y.
1984-01-01
In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Yang, Qiulin; Shi, Jianbin; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Xie, Tujun; Liu, Ying
2012-05-09
A novel, efficient, and environmentally friendly technology is used in cornstalk cooking, active oxygen (O₂ and H₂O₂) cooking with solid alkali (MgO). After the cooking, the milled wood lignin in the raw material and pulp and the water-soluble and insoluble lignin in the yellow liquor were all characterized by attenuated total reflectance Fourier transform infrared spectroscopy and two-dimensional heteronuclear single-quantum coherence NMR. The results showed that the cooking procedure with solid alkali and active oxygen had a high selectivity for delignification, which could remove 85.5% of the lignin from the raw material. The syringyl (S/S'/S') units could be dissolved preferentially because of their high reactivity, and a novel guaiacyl unit with a carbonyl group (G') was generated in the cooking process. Moreover, during the cooking, the β-O-4' (A/A'/A″) structures as the main side-chain linkages in all the lignins could be partly broken and the β-O-4' (A') with a ring-conjugated structure was readily attacked by oxygen, whereas the H unit and β-5' and β-β' structures were found to stay stable without characteristic reaction.
Numerical and experimental investigation of plasma plume deflection with MHD flow control
NASA Astrophysics Data System (ADS)
Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN
2018-04-01
This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.
Method for the safe disposal of alkali metal
Johnson, Terry R.
1977-01-01
Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.
A study on the dynamic interfacial tension of acidic crude oil/alkali (alkali-polymer) systems--
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Yang, P.; Qin, T.
1989-01-01
This paper describes the investigation of dynamic interfacial tension (DIFT) between the acidic Liao-He crude oil and two types of brine: a simple alkali system and a combined alkali-polymer system. It was found that interfacial tension (IFT) changed markedly with time and that the history of DIFT depended upon the concentration of alkali in the brine. The experimental results also showed that the IFT dropped dramatically as soon as the fresh oil contacted brine causing spontaneous emulsification to occur. The steady-state value of DIFT {gamma} st can be lower with the combined alkali-polymer system than with the simple alkali system.more » The results indicate that biopolymer is more effective than partially hydrolyzed polyacrylamide (PHPAM) for lowering {gamma} st and that Na{sub 2}Co{sub 1} causes a lower {gamma} st than NaOH in the combined alkali-polymer system. Optimized formulations containing Na{sub 2}CO{sub 3} added biopolymer can reduce {gamma} st by two orders of magnitude, and PHPAM can reduce {gamma} st by one order of magnitude. The interaction between alkali and polymer in the combined alkali-polymer system is discussed.« less
Calcium-Alkali Syndrome in the Modern Era
Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley
2013-01-01
The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027
Role of Mesenchymal Stem Cells on Cornea Wound Healing Induced by Acute Alkali Burn
Yao, Lin; Li, Zhan-rong; Su, Wen-ru; Li, Yong-ping; Lin, Miao-li; Zhang, Wen-xin; Liu, Yi; Wan, Qian; Liang, Dan
2012-01-01
The aim of this study was to investigate the effects of subconjunctivally administered mesenchymal stem cells (MSCs) on corneal wound healing in the acute stage of an alkali burn. A corneal alkali burn model was generated by placing a piece of 3-mm diameter filter paper soaked in NaOH on the right eye of 48 Sprague-Dawley female rats. 24 rats were administered a subconjunctival injection of a suspension of 2×106 MSCs in 0.1 ml phosphate-buffered saline (PBS) on day 0 and day 3 after the corneal alkali burn. The other 24 rats were administered a subconjunctival injection of an equal amount of PBS as a control. Deficiencies of the corneal epithelium and the area of corneal neovascularization (CNV) were evaluated on days 3 and 7 after the corneal alkali burn. Infiltrated CD68+ cells were detected by immunofluorescence staining. The mRNA expression levels of macrophage inflammatory protein-1 alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1) and vascular endothelial growth factor (VEGF) were analyzed using real-time polymerase chain reaction (real-time PCR). In addition, VEGF protein levels were analyzed using an enzyme-linked immunosorbent assay (ELISA). MSCs significantly enhanced the recovery of the corneal epithelium and decreased the CNV area compared with the control group. On day 7, the quantity of infiltrated CD68+ cells was significantly lower in the MSC group and the mRNA levels of MIP-1α, TNF-α, and VEGF and the protein levels of VEGF were also down-regulated. However, the expression of MCP-1 was not different between the two groups. Our results suggest that subconjunctival injection of MSCs significantly accelerates corneal wound healing, attenuates inflammation and reduces CNV in alkaline-burned corneas; these effects were found to be related to a reduction of infiltrated CD68+ cells and the down-regulation of MIP-1α, TNF-α and VEGF. PMID:22363499
Huang, Jen-Hsien; Fang, Jheng-Hao; Liu, Chung-Chun; Chu, Chih-Wei
2011-08-23
In this study, we found that the work functions (Φ(w)) of solution-processable, functional graphene/carbon nanotube-based transparent conductors were readily manipulated, varying between 5.1 and 3.4 eV, depending on the nature of the doping alkali carbonate salt. We used the graphene-based electrodes possessing lower values of Φ(w) as cathodes in inverted-architecture polymer photovoltaic devices to effectively collect electrons, giving rise to an optimal power conversion efficiency of 1.27%. © 2011 American Chemical Society
EXTINGUISHMENT OF ALKALI METAL FIRES
Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions
Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.
Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
Process to separate alkali metal salts from alkali metal reacted hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier; Larsen, Dennis
A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phasemore » may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.« less
Electrolytic systems and methods for making metal halides and refining metals
Holland, Justin M.; Cecala, David M.
2015-05-26
Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.
Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654
Sodium to sodium carbonate conversion process
Herrmann, Steven D.
1997-01-01
A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.
Salts of alkali metal anions and process of preparing same
Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak
1978-01-01
Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.
Carbonation of metal silicates for long-term CO2 sequestration
Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S
2014-03-18
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
Carbonation of metal silicates for long-term CO.sub.2 sequestration
Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA
2012-02-14
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
DOT National Transportation Integrated Search
2015-04-01
This study investigated the test methods used to determine the : alkali content of fly ash. It also evaluated if high-alkali fly ash : exacerbates alkali-silica reaction in laboratory tests and field : concrete.
NASA Astrophysics Data System (ADS)
Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng
2017-04-01
Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.
NASA Astrophysics Data System (ADS)
Basta, Fawzy F.; Maurice, Ayman E.; Bakhit, Bottros R.; Azer, Mokhles K.; El-Sobky, Atef F.
2017-09-01
The igneous rocks of the Wadi Hamad area are exposed in the northernmost segment of the Arabian-Nubian Shield (ANS). These rocks represent part of crustal section of Neoproterozoic continental island arc which is intruded by late to post-collisional alkali feldspar granites. The subduction-related intrusives comprise earlier gabbro-diorites and later granodiorites-granites. Subduction setting of these intrusives is indicated by medium- to high-K calc-alkaline affinity, Ta-Nb troughs on the spider diagrams and pyroxene and biotite compositions similar to those crystallized from arc magmas. The collisional alkali feldspar granites have high-K highly fractionated calc-alkaline nature and their spider diagrams almost devoid of Ta-Nb troughs. The earlier subduction gabbro-diorites have lower alkalis, LREE, Nb, Zr and Hf values compared with the later subduction granodiorites-granites, which display more LILE-enriched spider diagrams with shallower Ta-Nb troughs, reflecting variation of magma composition with arc evolution. The later subduction granitoids were generated by lower degree of partial melting of mantle wedge and contain higher arc crustal component compared with the earlier subduction gabbro-diorites. The highly silicic alkali feldspar granites represent extensively evolved melts derived from partial melting of intermediate arc crustal sources during the collisional stage. Re-melting of arc crustal sources during the collisional stage results in geochemical differentiation of the continental arc crust and the silicic collisional plutonism drives the composition of its upper part towards that of mature continental crust.
Habasaki, Junko; Ngai, Kia L
2007-09-07
When more than two kinds of mobile ions are mixed in ionic conducting glasses and crystals, there is a non-linear decrease of the transport coefficients of either type of ion. This phenomenon is known as the mixed mobile ion effect or Mixed Alkali Effect (MAE), and remains an unsolved problem. We use molecular dynamics simulation to study the complex ion dynamics in ionically conducting glasses including the MAE. In the mixed alkali lithium-potassium silicate glasses and related systems, a distinct part of the van Hove functions reveals that jumps from one kind of site to another are suppressed. Although, consensus for the existence of preferential jump paths for each kind of mobile ions seems to have been reached amongst researchers, the role of network formers and the number of unoccupied ion sites remain controversial in explaining the MAE. In principle, these factors when incorporated into a theory can generate the MAE, but in reality they are not essential for a viable explanation of the ion dynamics and the MAE. Instead, dynamical heterogeneity and "cooperativity blockage" originating from ion-ion interaction and correlation are fundamental for the observed ion dynamics and the MAE. Suppression of long range motion with increased back-correlated motions is shown to be a cause of the large decrease of the diffusivity especially in dilute foreign alkali regions. Support for our conclusion also comes from the fact that these features of ion dynamics are common to other ionic conductors, which have no glassy networks, and yet they all exhibit the MAE.
Apparatus enables accurate determination of alkali oxides in alkali metals
NASA Technical Reports Server (NTRS)
Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.
1966-01-01
Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.
Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams
Siriwardane, Ranjani V [Morgantown, WV
2008-01-01
A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.
Alkali content of fly ash : measuring and testing strategies for compliance.
DOT National Transportation Integrated Search
2015-04-01
Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence : problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (...
Carbonation of metal silicates for long-term CO.sub.2 sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to producemore » a carbonate of the metal formerly contained in the metal silicate of step (a).« less
Food composition and acid-base balance: alimentary alkali depletion and acid load in herbivores.
Kiwull-Schöne, Heidrun; Kiwull, Peter; Manz, Friedrich; Kalhoff, Hermann
2008-02-01
Alkali-enriched diets are recommended for humans to diminish the net acid load of their usual diet. In contrast, herbivores have to deal with a high dietary alkali impact on acid-base balance. Here we explore the role of nutritional alkali in experimentally induced chronic metabolic acidosis. Data were collected from healthy male adult rabbits kept in metabolism cages to obtain 24-h urine and arterial blood samples. Randomized groups consumed rabbit diets ad libitum, providing sufficient energy but variable alkali load. One subgroup (n = 10) received high-alkali food and approximately 15 mEq/kg ammonium chloride (NH4Cl) with its drinking water for 5 d. Another group (n = 14) was fed low-alkali food for 5 d and given approximately 4 mEq/kg NH4Cl daily for the last 2 d. The wide range of alimentary acid-base load was significantly reflected by renal base excretion, but normal acid-base conditions were maintained in the arterial blood. In rabbits fed a high-alkali diet, the excreted alkaline urine (pH(u) > 8.0) typically contained a large amount of precipitated carbonate, whereas in rabbits fed a low-alkali diet, both pH(u) and precipitate decreased considerably. During high-alkali feeding, application of NH4Cl likewise decreased pH(u), but arterial pH was still maintained with no indication of metabolic acidosis. During low-alkali feeding, a comparably small amount of added NH4Cl further lowered pH(u) and was accompanied by a significant systemic metabolic acidosis. We conclude that exhausted renal base-saving function by dietary alkali depletion is a prerequisite for growing susceptibility to NH4Cl-induced chronic metabolic acidosis in the herbivore rabbit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2011 CFR
2011-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2010 CFR
2010-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2014 CFR
2014-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2012 CFR
2012-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Sodium to sodium carbonate conversion process
Herrmann, S.D.
1997-10-14
A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.
Controlled in-situ dissolution of an alkali metal
Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald
2012-09-11
A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.
Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L
2010-06-01
Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Javorkova, Eliska; Trosan, Peter; Zajicova, Alena; Krulova, Magdalena; Hajkova, Michaela
2014-01-01
The aim of this study was to investigate the effects of systemically administered bone-marrow-derived mesenchymal stromal cells (MSCs) on the early acute phase of inflammation in the alkali-burned eye. Mice with damaged eyes were either untreated or treated 24 h after the injury with an intravenous administration of fluorescent-dye-labeled MSCs that were unstimulated or pretreated with interleukin-1α (IL-1α), transforming growth factor-β (TGF-β), or interferon-γ (IFN-γ). Analysis of cell suspensions prepared from the eyes of treated mice on day 3 after the alkali burn revealed that MSCs specifically migrated to the damaged eye and that the number of labeled MSCs was more than 30-times higher in damaged eyes compared with control eyes. The study of the composition of the leukocyte populations within the damaged eyes showed that all types of tested MSCs slightly decreased the number of infiltrating lymphoid and myeloid cells, but only MSCs pretreated with IFN-γ significantly decreased the percentage of eye-infiltrating cells with a more profound effect on myeloid cells. Determining cytokine and NO production in the damaged eyes confirmed that the most effective immunomodulation was achieved with MSCs pretreated with IFN-γ, which significantly decreased the levels of the proinflammatory molecules IL-1α, IL-6, and NO. Taken together, the results show that systemically administered MSCs specifically migrate to the damaged eye and that IFN-γ-pretreated MSCs are superior in inhibiting the acute phase of inflammation, decreasing leukocyte infiltration, and attenuating the early inflammatory environment. PMID:24849741
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-07-14
Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.
Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters
NASA Astrophysics Data System (ADS)
Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan
2017-11-01
The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.
40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...
40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...
40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...
40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...
Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries
Deng, Zhi; Mo, Yifei; Ong, Shyue Ping
2016-03-25
The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less
Method of handling radioactive alkali metal waste
Wolson, Raymond D.; McPheeters, Charles C.
1980-01-01
Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.
Method of handling radioactive alkali metal waste
Wolson, R.D.; McPheeters, C.C.
Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.
Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils.
Palomo, Mónica; Bhandari, Alok
2011-01-01
Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C.
The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.
1986-08-01
The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/submore » 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell.« less
40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...
40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...
40 CFR 721.4660 - Alcohol, alkali metal salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...
Structure of xanthan gum and cell ultrastructure at different times of alkali stress
de Mello Luvielmo, Márcia; Borges, Caroline Dellinghausen; de Oliveira Toyama, Daniela; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa
2016-01-01
The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232
Descartesites - Missing(?) pristine rocks
NASA Astrophysics Data System (ADS)
Longhi, J.
1997-03-01
A thermal divide that is stable to comparatively low temperatures in lunar compositions because of their low alkalies is presently invoked in order to explain the absence of granitoids called 'descartesites' which are residual to the formation of lunar ferroan anorthosites (FANs). Attention is given to the composition paths generated by fractional crystallization of a model FAN parent liquid at pressures of 0 and 3 kb.
Robertson, Eric P
2011-05-24
A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.
Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E
2014-04-08
Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO 2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H 2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H 2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO 2 absorbed and 4 mg of CO 2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO 2 fixed as insoluble carbonates. Considering the additional economic benefits of H 2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO 2 sequestration.
Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A
2008-09-01
Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Qun; University of Chinese Academy of Sciences, Beijing 100049; Department of Physics, School of Science, Shihezi University, Shihezi 832000
2014-11-15
It is an interesting topic to reveal the origin of the SHG intensity enhancement after substitution from alkali and alkali-earth metal atoms to cadmium in a series of apatite-like borates KSr{sub 4}(BO{sub 3}){sub 3}, Ca{sub 5}(BO{sub 3}){sub 3}F, Cd{sub 5}(BO{sub 3}){sub 3}F. Combined with the first-principles method, SHG-density method and real-space atom-cutting method, the electronic structure, the optical properties and the contribution of respective ion and ion groups have been investigated. Second harmonic generation (SHG) responses are mainly attributed to BO{sub 3} groups with π conjugated configuration and their alignment framework. The contributions of A site are more important inmore » CaBOF and CdBOF compounds than in KSrBO. It is also demonstrated that the strong covalent interactions between the boron–oxygen groups and the cadmium atoms contribute the enhancement of SHG responses after substitution from alkali and alkali-earth metal atoms. - graphical abstract: Combined with the first-principles method, SHG-density method and real-space atom-cutting method, the enhancement of SHG response are attributed to the interaction between cadmium and BO{sub 3} groups. - Highlights: • SHG response on a series of apatite-like borates was studied by a SHG-density method. • SHG responses are mainly attributed to BO{sub 3} groups and their alignment framework. • The contributions of A site are more important in CaBOF and CdBOF than in KSrBO. • Covalent interaction between BO and Cd is responsible for SHG of CdBOF.« less
Variable Conductance Heat Pipes for Radioisotope Stirling Systems
NASA Astrophysics Data System (ADS)
Anderson, William G.; Tarau, Calin
2008-01-01
In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.
Extraction process for removing metallic impurities from alkalide metals
Royer, L.T.
1987-03-20
A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.
Theoretical study on the thermal and optical features of a diode side-pumped alkali laser
NASA Astrophysics Data System (ADS)
Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You
2018-03-01
As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.
Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.
Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi
2015-12-28
A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect.
Modulation Transfer Through Coherence and Its Application to Atomic Frequency Offset Locking
NASA Astrophysics Data System (ADS)
Jagatap, B. N.; Ray, Ayan; Kale, Y. B.; Singh, Niharika; Lawande, Q. V.
We discuss the process of modulation transfer in a coherently prepared three-level atomic medium and its prospective application to atomic frequency offset locking (AFOL). The issue of modulation transfer through coherence is treated in the framework of temporal evolution of dressed atomic system with externally superimposed deterministic flow. This dynamical description of the atom-field system offers distinctive advantage of using a single modulation source to dither passively the coherent phenomenon as probed by an independent laser system under pump-probe configuration. Modulation transfer is demonstrated experimentally using frequency modulation spectroscopy on a subnatural linewidth electromagnetically induced transparency (EIT) and a sub-Doppler linewidth Autler-Townes (AT) resonance in Doppler broadened alkali vapor medium, and AFOL is realized by stabilizing the probe laser on the first/third derivative signals. The stability of AFOL is discussed in terms of the frequency noise power spectral density and Allan variance. Analysis of AFOL schemes is carried out at the backdrop of closed loop active frequency control in a conventional master-slave scheme to point out the contrasting behavior of AFOL schemes based on EIT and AT resonances. This work adds up to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave type laser system in the domain of coherent photon-atom interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Kevin; Buell, Robin; Zhao, Bingyu
Switchgrass (Panicum virgatum) is a warm-season C4 grass that is a target lignocellulosic biofuel species for use in the United States due to its local adaption capabilities and high biomass accumulation. Two ecotypes of switchgrass have been described. Members of the lowland ecotype are taller, have narrower leaf blades and generate more biomass compared to individuals from the upland ecotype. Additionally, lowland plants are generally found in the southern United States while upland switchgrass is more typically present in the northern United States. These differences are important as it is envisioned that switchgrass for biofuel production will typically be grownmore » on marginal lands in the northern United States to supplement and diversify farmers' traditional crop incomes. While lowland switchgrass is more productive, it has poor winter survivability in northern latitudes where upland switchgrass is expected to be grown for biofuel use. Abiotic stresses likely to be encountered by switchgrass include drought and salinity. Despite initially being described as preferring wetter environments, members of the lowland ecotype have been characterized as being more drought tolerant than plants of the upland ecotype. Nonetheless, direct trials have indicated that variation for drought tolerance exists in both ecotypes, but prior to this project, only a relatively small number of switchgrass lines had been tested for drought responses. Similarly, switchgrass cultivars have not been widely tested for salt tolerance, but a few studies have shown that even mild salt stress can inhibit growth. The effects of drought and salt stress on plant growth are complex. Both drought and salinity affect the osmotic potential of plant cells and negatively affect plant growth due to reduced water potential and reduced photosynthesis that results from lower stomatal conductance of CO 2. Plants respond to drought and salt stress by activating genes that directly attempt to reduce the stress (e.g., transmembrane pumps that partition Na +) and mitigate the effects of the stress (e.g., synthesis of osmoprotectant metabolites and stress-related signaling compounds). Prior to the start of this project, no gene expression analysis had been performed on switchgrass under conditions of drought or salt stress, and therefore, relevant gene networks responding to drought and salt stress were unknown in switchgrass. In this project, we performed drought, salt and alkali-salt screens on 49 switchgrass cultivars (Liu et al 2014; Liu et al 2015; Hu et al 2015; Kim et al 2016). These experiments demonstrated that a wide range of variation exists within switchgrass for drought, salt and alkali-salt tolerance and that, while the lowland ecotype of switchgrass is often considered more tolerant of abiotic stresses, there are some upland switchgrass lines that are also very tolerant of drought, salt and alkali-salt stress. We also conducted drought and salt time course experiments with Alamo and Dacotah. We have identified modules of coexpressed genes that differentiate Alamo and Dacotah drought responses. We are continuing to analyze these results and plan to submit manuscripts describing this work in early 2017. In an effort to show how drought- and salt-related gene modules could be dissected, we generated transgenic switchgrass overexpressing either PvGTγ-1 or ZmDREB2. Increased expression of PvGTγ-1 does confer increased salt tolerance, and we were able to identify genes that are induced and suppressed by PvGTγ-1. Overexpression of ZmDREB2 increases drought tolerance in switchgrass. Analysis of the PvGTγ-1 and ZmDREB2 overexpression work is ongoing, and we plan to prepare manuscripts about these experiments for submission in early 2017.« less
Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes
Gaowei, M.; Ding, Z.; Schubert, S.; ...
2017-11-10
Advanced photoinjectors, which are critical to many next generation accelerators, open the door to new ways of material probing, both as injectors for free electron lasers and for ultra-fast electron diffraction. For these applications, the nonuniformity of the electric field near the cathode caused by surface roughness can be the dominant source of beam emittance. Therefore, improving the photocathode roughness while maintaining quantum efficiency is essential to the improvement of beam brightness. Here in this article, we report the demonstration of a bi-alkali antimonide photocathode with an order of magnitude improved roughness by sputter deposition from a K 2CsSb sputtermore » target, using in situ and operando X-ray characterizations. We found that a surface roughness of 0.5 nm for a sputtered photocathode with a final thickness of 42 nm can be achieved while still yielding a quantum efficiency of 3.3% at 530 nm wavelength.« less
Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaowei, M.; Ding, Z.; Schubert, S.
Advanced photoinjectors, which are critical to many next generation accelerators, open the door to new ways of material probing, both as injectors for free electron lasers and for ultra-fast electron diffraction. For these applications, the nonuniformity of the electric field near the cathode caused by surface roughness can be the dominant source of beam emittance. Therefore, improving the photocathode roughness while maintaining quantum efficiency is essential to the improvement of beam brightness. Here in this article, we report the demonstration of a bi-alkali antimonide photocathode with an order of magnitude improved roughness by sputter deposition from a K 2CsSb sputtermore » target, using in situ and operando X-ray characterizations. We found that a surface roughness of 0.5 nm for a sputtered photocathode with a final thickness of 42 nm can be achieved while still yielding a quantum efficiency of 3.3% at 530 nm wavelength.« less
Low work function, stable thin films
Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.
2000-01-01
Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.
Kumar, Vikash; Satyanarayana, T
2015-03-01
The recombinant Pichia pastoris harboring the endoxylanase gene (TSEV1xyl) of Bacillus halodurans TSEV1 yielded a high titer of extracellular xylanase (502±23 U ml(-1)) on induction with methanol. The purified recombinant xylanase (TSEV1xyl) displayed optimal activity at 80°C and pH 9.0. The glycosylated recombinant xylanase exhibited higher thermostability (T1/2 of 45 min at 80°C) than the native enzyme (T1/2 of 35 min at 80°C). The agroresidues subjected to pretreatment (soaking in alkali followed by microwave irradiation) liberated xylooligosaccharides (XOS) upon hydrolysis with the recombinant xylanase. The removal of unhydrolyzed agroresidues, xylanase and xylose from the hydrolysate by two-step ultrafiltration led to the purification of XOS as confirmed by TLC as well as HPLC analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method and apparatus for hydrogen production from water
NASA Technical Reports Server (NTRS)
Muradov, Nazim Z. (Inventor)
2012-01-01
A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, S. L.; Jang, J. I.; Ketterson, J. B.
2010-09-22
The layered compounds RbAg{sub 2}TeS{sub 6} and CsAg{sub 2}TeS{sub 6} crystallize in the noncentrosymmetric space group P6{sub 3}cm, with a = 19.15 {angstrom}, c = 14.64 {angstrom}, and V = 4648 {angstrom}{sup 3} and a = 19.41 {angstrom}, c = 14.84 {angstrom}, and V = 4839 {angstrom}{sup 3}, respectively. The structures are composed of neutral [Ag{sub 2}TeS{sub 3}] layers alternating with charge-balanced salt layers containing polysulfide chains of [S{sub 6}]{sup 2-} and alkali-metal ions. RbAg{sub 2}TeS{sub 6} and CsAg{sub 2}TeS{sub 6} are air- and water-stable, wide-band-gap semiconductors (E{sub g} {approx} 2.0 eV) exhibiting nonlinear-optical second-harmonic generation.
Kim, Yongseon
2012-05-01
Li(Ni(0.8)Co(0.1)Mn(0.1))O(2) (NCM811) was synthesized using alkali chlorides as a flux and the performance as a cathode material for lithium ion batteries was examined. Primary particles of the powder were segregated and grown separately in the presence of liquid state fluxes, which induced each particle to be composed of one primary particle with well-developed facet planes, not the shape of agglomerates as appears with commercial NCMs. The new NCM showed far less gas emission during high temperature storage at charged states, and higher volumetric capacity thanks to its high bulk density. The material is expected to provide optimal performances for pouch type lithium ion batteries, which require high volumetric capacity and are vulnerable to deformation caused by gas generation from the electrode materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Noravian, H.; Or, C.
1997-12-31
This paper presents the background and introduction to the OSC AMTEC (Alkali Metal Thermal-to-Electrical Conversion) studies, which were conducted for the Department of energy (DOE) and NASA`s jet Propulsion Laboratory (JPL). After describing the basic principle of AMTEC, the paper describes and explains the operation of multi-tube vapor/vapor cells, which have been under development by AMPS (Advance Modular Power Systems, Inc.) for the Air Force Phillips Laboratory (AFPL) and JPL for possible application to the Europa Orbiter, Pluto Express, and other space missions. It then describes a novel OSC-generated methodology for analyzing the performance of such cells. This methodology consistsmore » of an iterative procedure for the coupled solution of the interdependent thermal, electrical, and fluid flow differential and integral equations governing the performance of AMTEC cells and generators, taking proper account of the non-linear axial variations of temperature, pressure, open-circuit voltage, inter-electrode voltages, current density, axial current, sodium mass flow rate, and power density. The paper illustrates that analytical procedure by applying it to OSC`s latest cell design and by presenting detailed analytical results for that design. The OSC-developed analytic methodology constitutes a unique and powerful tool for accurate parametric analyses and design optimizations of the multi-tube AMTEC cells and of radioisotope power systems. This is illustrated in two companion papers in these proceedings. The first of those papers applies the OSC-derived program to determine the effect of various design parameters on the performance of single AMTEC cells with adiabatic side walls, culminating in an OSC-recommended revised cell design. And the second describes a number of OSC-generated AMTEC generator designs consisting of 2 and 3 GPHS heat source modules, 16 multi-tube converter cells, and a hybrid insulation design, and presents the results of applying the above analysis program to determine the applicability of those generators to possible future missions under consideration by NASA.« less
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.; Dembovska, L.
2015-11-01
Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.
Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.
Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G
2018-03-01
The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.
Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
NASA Astrophysics Data System (ADS)
Maitra, Urmimala; House, Robert A.; Somerville, James W.; Tapia-Ruiz, Nuria; Lozano, Juan G.; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A.; Massel, Felix; Pickup, David M.; Ramos, Silvia; Lu, Xingye; McNally, Daniel E.; Chadwick, Alan V.; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C.; Roberts, Matthew R.; Bruce, Peter G.
2018-03-01
The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+-O(2p)-Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen.
Hydrothermal carbonization of rice husk for fuel upgrading
NASA Astrophysics Data System (ADS)
Suteerawattananonda, N.; Kongkaew, N.; Patumsawad, S.
2018-01-01
The biomass is popularly used as renewable energy. In Thailand rice is the most consume agricultural products. Agricultural residues from rice husk can be an energy resource. However, alkali and alkali earth materials (AAEMs) in biomass ash are the causes of corrosion and erosion problem in the heat exchanger equipment, while the acidity of ash affects the slagging agglomeration problem. Reduction of alkali and alkali earth materials can minimize the problem. In order to challenge the reduction of alkali and alkali earth materials in biomass ash, hydrothermal carbonization process was selected. Thai rice husk was used as sample to compare the result of treatment. The rice husk was heated under the condition of different temperature ranged from 180°C to 250°C, at operate pressure ranges from 12 bar to 42 bar with residence holding reaction time 1 hour. The results of proximate analysis show that the percentage by mass of fixed carbon are increased 2 times, but volatile matter is decreased by 40% and ash content is decreased by 11% due to the increment of temperature. Meanwhile, the X-Ray fluorescence (XRF) analysis results show the decreasing of alkali and alkali earth materials are reduced.
Alkali elemental and potassium isotopic compositions of Semarkona chondrules
Alexander, C.M. O'D.; Grossman, J.N.
2005-01-01
We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.
Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.
Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu
2015-06-02
A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.
Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian
2015-10-01
Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.
N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) on alkali halide (001) surfaces
NASA Astrophysics Data System (ADS)
Fendrich, Markus; Lange, Manfred; Weiss, Christian; Kunstmann, Tobias; Möller, Rolf
2009-05-01
The growth of N ,N'-dimethylperylene-3,4,9,10-bis(dicarboximide) (DiMe-PTCDI) on KBr(001) and NaCl(001) surfaces has been studied. Experimental results have been achieved using frequency modulation atomic force microscopy at room temperature under ultrahigh vacuum conditions. On both substrates, DiMe-PTCDI forms molecular wires with a width of 10nm, typically, and a length of up to 600nm at low coverages. All wires grow along either the [110] direction (or [11¯0] direction, respectively) of the alkali halide (001) substrates. There is no wetting layer of molecules: atomic resolution of the substrates can be achieved between the wires. The wires are mobile on KBr but substantially more stable on NaCl. A p(2×2) superstructure in a brickwall arrangement on the ionic crystal surfaces is proposed based on electrostatic considerations. Calculations and Monte Carlo simulations using empirical potentials reveal possible growth mechanisms for molecules within the first layer for both substrates, also showing a significantly higher binding energy for NaCl(001). For KBr, the p(2×2) superstructure is confirmed by the simulations; for NaCl, a less dense, incommensurate superstructure is predicted.
Alkali-aggregate reactivity (AAR) facts book.
DOT National Transportation Integrated Search
2013-03-01
This document provides detailed information on alkali-aggregate reactivity (AAR). It primarily discusses alkali-silica reaction (ASR), covering the chemistry, symptoms, test methods, prevention, specifications, diagnosis and prognosis, and mitigation...
Recovery of Ga(III) by Raw and Alkali Treated Citrus limetta Peels
2014-01-01
Alkali treated Citrus limetta peels were used for recovery of Ga(III) from its aqueous solution. The raw and alkali treated peels were characterized for functional groups. The efficiency of adsorption increased from 47.62 mg/g for raw peels to 83.33 mg/g for alkali treated peels. Between pH 1 and 3, the adsorption increased and thereafter decreased drastically. The adsorption followed pseudosecond order kinetics and Langmuir isotherm gave the best fit for the experimental data. Desorption studies showed 95.28% desorption after 3 cycles for raw peels while it was 89.51% for alkali treated peels. Simulated Bayer liquor showed 39.57% adsorption for gallium ions on raw peels which was enhanced to 41.13% for alkali treated peels. PMID:27382624
Alkali resistant optical coatings for alkali lasers and methods of production thereof
Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C
2014-11-18
In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.
CO.sub.2 removal sorbent composition with high chemical stability during multiple cycles
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-09-22
Disclosed herein is a clay-alkali-amine CO.sub.2 sorbent composition prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay-alkali-amine C02 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a C02 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
A-type granite and the Red Sea opening
Coleman, R.G.; DeBari, S.; Peterman, Z.
1992-01-01
Miocene-Oligocene A-type granite intrudes the eastern side of the Red Sea margin within the zone of extension from Jiddah, Saudi Arabia south to Yemen. The intrusions developed in the early stages of continental extension as Arabia began to move slowly away from Africa (around 30-20 Ma). Within the narrow zone of extension silicic magmas formed dikes, sills, small plutons and extrusive equivalents. In the Jabal Tirf area of Saudi Arabia these rocks occur in an elongate zone consisting of late Precambrian basement to the east, which is gradually invaded by mafic dikes. The number of dikes increases westward until an igneous complex is produced parallel to the present Red Sea axis. The Jabal Tirf igneous complex consists of diabase and rhyolite-granophyre sills (20-24 Ma). Although these are intrusine intrusive rocks their textures indicate shallow depths of intrusion (< 1 km). To the south, in the Yemen, contemporaneous with alkali basaltic eruptions (26-30 Ma) and later silicic eruptions, small plutons, dikes, and stocks of alkali granite invaded thick (1500 m) volcanic series, at various levels and times. Erosion within the uplifted margin of Yemen suggests that the maximum depth of intrusion was less than 1-2 km. Granophyric intrusions (20-30 Ma) within mafic dike swarms similar to the Jabal Tirf complex are present along the western edge of the Yemen volcanic plateau, marking a north-south zone of continental extension. The alkali granites of Yemen consist primarily of perthitic feldspar and quartz with some minor alkali amphiboles and acmite. These granites represent water-poor, hypersolvus magmas generated from parent alkali basalt magmas. The granophyric, two-feldspar granites associated with the mafic dike swarms and layered gabbros formed by fractional crystallization from tholeiitic basalt parent developed in the early stages of extension. Initial 87Sr/86Sr ratios of these rocks and their bulk chemistry indicate that production of peralkaline and metaluminous granitic magmas involved both fractio??nation and partial melting as they ascended through the late Precambrian crust of the Arabian plate. ?? 1992.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.
1986-01-01
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.
1985-07-10
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Regenerable activated bauxite adsorbent alkali monitor probe
Lee, S.H.D.
1992-12-22
A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.
Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.
Orebaugh, Clinton D; Lujan, Scott A; Burkholder, Adam B; Clausen, Anders R; Kunkel, Thomas A
2018-01-01
Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.
High-Performance Multi-Fuel AMTEC Power System
2000-12-01
AMTEC technology has demonstrated thermal to electric conversion efficiencies and power densities which make it an attractive option for meso-scaic...power generation. This report details development of an integrated, logistics-fueled, 500 W AMTEC power supply. The development targeted 2O% AMTEC ...cylindrical multi-tube/single cell AMTEC configuration with effective management of alkali metal flow; scaling down and integrating a multi-fuel micro-combustor
Enhancement of superexchange pairing in the periodically driven Hubbard model
NASA Astrophysics Data System (ADS)
Coulthard, J. R.; Clark, S. R.; Al-Assam, S.; Cavalleri, A.; Jaksch, D.
2017-08-01
Recent experiments performed on cuprates and alkali-doped fullerides have demonstrated that key signatures of superconductivity can be induced above the equilibrium critical temperature by optical modulation. These observations in disparate physical systems may indicate a general underlying mechanism. Multiple theories have been proposed, but these either consider specific features, such as competing instabilities, or focus on conventional BCS-type superconductivity. Here we show that periodic driving can enhance electron pairing in strongly correlated systems. Focusing on the strongly repulsive limit of the doped Hubbard model, we investigate in-gap, spatially inhomogeneous, on-site modulations. We demonstrate that such modulations substantially reduce electronic hopping, while simultaneously sustaining superexchange interactions and pair hopping via driving-induced virtual charge excitations. We calculate real-time dynamics for the one-dimensional case, starting from zero- and finite-temperature initial states, and we show that enhanced singlet-pair correlations emerge quickly and robustly in the out-of-equilibrium many-body state. Our results reveal a fundamental pairing mechanism that might underpin optically induced superconductivity in some strongly correlated quantum materials.
Wang, Huan; Wu, Zhihai; Han, Jiayu; Zheng, Wei; Yang, Chunwu
2012-01-01
Background Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. Methodology/Principal Findings The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl− in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na+ in old leaves under alkali stress. Alkali stress mightily reduced the NO3 − contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO3 − was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO3 − in old leaves. NO3 − deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH4 +, which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. Conclusions/Significance Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research. PMID:22655071
Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long
2015-07-07
It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.
NASA Astrophysics Data System (ADS)
Xia, Huifen; Pan, Junliang; Niu, Lijuan; Xu, Tianhan
2018-02-01
The results illustrate that under the condition of the same viscosity of ASP system, oil displacement efficiency is different while the ASP system with different alkali concentration has the same order of magnitude as the interfacial tension of oil. In this paper, the microscopic simulation visual model is used to study the mechanism of starting migration of residual oil by doing ASP flooding experiments with different alkali concentration. The results indicate that the migration of residual oil is different from that in the ASP systems with different alkali concentration. ASP system with high alkali concentration can start the migration by means of emulsifying residual oil into oil droplets and oil threads, on this account, increasing the alkali concentration can make the recovery degree of ASP system higher, which will finally be beneficial to the oil recovery.
Guo, Rui; Shi, LianXuan; Yang, ChunWu; Yan, ChangRong; Zhong, XiuLi; Liu, Qi; Xia, Xu; Li, HaoRu
2016-01-01
Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton (Gossypium hirsutum L.) plants as experimental material to investigate whether alkali stress induces ionic and metabolism changes in old and young leaves of cotton plants exposed to alkali stress. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable tricarboxylic acid cycle, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages. PMID:27933088
Zhang, Pingping; Fu, Jinmin; Hu, Longxing
2012-10-01
Soil alkalization is one of the most prominent adverse environmental factors limiting plant growth, while alkali stress affects amino acids and carbohydrates metabolism. The objective of this study was conducted to investigate the effects of alkali stress on growth, amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Seventy-day-old plants were subjected to four pH levels: 6.0 (control), 8.0 (low), 9.4 (moderate) and 10.3 (severe) for 7 days. Moderate to severe alkali stress (pH >9.4) caused a significant decline in turf quality and growth rate in Kentucky bluegrass. Soluble protein was unchanged in shoots, but decreased in roots as pH increased. The levels of amino acids was kept at the same level as control level at 4 days after treatment (DAT) in shoots, but greater at 7 DAT, when plants were subjected to severe (pH 10.3) alkali stress. The alkali stressed plants had a greater level of starch, water soluble carbohydrate and sucrose content, but lower level of fructose and glucose. Fructan and total non-structural carbohydrate (TNC) increased at 4 DAT and decreased at 7 DAT for alkali stressed plants. These results suggested that the decrease in fructose and glucose contributed to the growth reduction under alkali stress, while the increase in amino acids, sucrose and storage form of carbohydrate (fructan, starch) could be an adaptative mechanism in Kentucky bluegrass under alkali stress.
Alkali metal hafnium oxide scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward
The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A 2HfO 3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
Determination of the common and rare alkalies in mineral analysis
Wells, R.C.; Stevens, R.E.
1934-01-01
Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.
1990-12-01
42) that is brighter than any of the other alkali metal fires (Reference 36). Combustion of lithium is accompanied by emission of dense, white, opaque...extinguishing alkali metal fires (Reference 64). Application of an inert gas such as argon to a well-established lithium fire was found to be...extinguishers be used against alkali metal fires (References 1, 64); water reacts with explosive violence with alkali metals (References 35, 36). In an
Zheng, Cong Cong; Wang, Yong Jing; Sun, Hao; Wang, Xin Yu; Gao, Ying Zhi
2017-07-18
Soil salinization and overgrazing are two main factors limiting animal husbandry in the Songnen Grassland. Leymus chinensis is a dominant rhizome grass, resistant to grazing as well as to-lerant to salt stress. Foliar labeled with 15 N-urea was used to study the nitrogen allocation strategy and compensatory growth response to clipping under saline-alkali conditions. The results showed that the total absorbed 15 N allocated to the aboveground part was more than 60%. Compared with the control treatment (no saline-alkali, no clipping), saline-alkali increased the distribution of 15 N by 5.1% in root; the 15 N distribution into aboveground in the moderate clipping and saline-alkali treatment was 11.6% higher than that of the control, exhibiting over-compensatory growth of aboveground biomass and total biomass, however, 15 N allocated to stem base was significantly increased by 9.5% under severe clipping level and saline-alkali addition, showing under-compensatory growth of shoot, root and total biomass. These results suggested that L. chinensis adapted to mode-rate clipping by over-compensatory growth under salt-alkali stress condition. However, L. chinensis would take a relatively conservative growth strategy through the enhanced N allocation to stem base for storage under severe saline-alkali and clipping conditions.
NASA Astrophysics Data System (ADS)
Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong
2013-08-01
For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.
Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2
Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.
2017-01-01
Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. PMID:28233864
Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.
Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J
2017-02-24
Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.
Tsang, Floris Y.
1980-01-01
Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.
Alkali metal and alkali earth metal gadolinium halide scintillators
Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.
2016-08-02
The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
Electroactive materials for rechargeable batteries
Wu, Huiming; Amine, Khalil; Abouimrane, Ali
2015-04-21
An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.
Method of making alkali metal hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek
A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.
Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L.
Senthamaraikannan, P; Kathiresan, M
2018-04-15
The physical, chemical, tensile, crystalline, thermal, and surface morphological properties of raw and alkali treated Coccinia Grandis.L Fibers (CGFs) were characterized for the first time in this work. The results of the chemical analysis indicate that, after alkali treatment, the cellulose content of CGFs increased whereas hemicelluloses, lignin and wax contents decreased. This directly influenced the tensile strength, crystallinity index, thermal stability and the roughness of alkali-treated CGFs. The thermal stability and activation energy of the CGFs improved from 213.4 °C to 220.6 °C and 67.02 kJ/mol to 73.43 kJ/mol, respectively, due to alkali treatment. The statistical approach, Weibull distribution was adopted to analyze the tensile properties. The improved properties of the alkali treated CGF indicate that it could be an appropriate material for reinforcement in polymer composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bamberger, C.E.; Robinson, P.R.
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Bamberger, Carlos E.; Robinson, Paul R.
1980-01-01
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Chang, Chia-Jung; Tyagi, Vinay Kumar; Lo, Shang-Lien
2011-09-01
Individual and combined effects of microwave (MW) and alkali pretreatments on sludge disintegration and subsequent aerobic digestion of waste activated sludge (WAS) were studied. Pretreatments with MW (600W-85°C-2 min), conventional heating (520 W-80°C-12 min) and alkali (1.5 g NaOH/L - pH 12-30 min) achieved 8.5%, 7% and 18% COD solubilization, respectively. However, combined MW-alkali pretreatment synergistically enhanced sludge solubilization and achieved 46% COD solubilization, 20% greater than the additive value of MW alone and alkali alone (8.5+18%=26.5%). Moreover, the results of the batch aerobic digestion study on MW-alkali pretreated sludge showed 93% and 63% reductions in SCOD and VSS concentrations, respectively, at 16 days of SRT. The VSS reduction was 20% higher than that of WAS without pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Purification of alkali metal nitrates
Fiorucci, Louis C.; Gregory, Kevin M.
1985-05-14
A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.
The utilization of alkali-treated melon husk by broilers.
Abiola, S S; Amalime, A C; Akadiri, K C
2002-09-01
The effects of alkali treatment on chemical constituents of melon husk (MH) and performance characteristics of broilers fed alkali-treated MH (ATMH) diets were investigated. The chemical analysis showed that alkali treatment increased the ash content of MH (from 15.70% to 16.86%) and reduced the crude fibre content (from 29.00% to 14.00%). Result of feed intake was superior on 30% alkali diet with a value of 100.14 g/bird/day. Body weight gain decreased with increase in the level of ATMH in the diet. Highest dressing percentage of 66.33% and best meat/bone ratio of 2.57 were obtained on 10% and 20% alkali diets, respectively. Dietary treatments had significant effect (P < 0.05) on gizzard weight. Up to 20% of maize can be replaced with ATMH in broiler diets to produce good quality poultry carcases and chicken meat with favourable shelf life.
Geng, Jing; Wang, Wen-Liang; Yu, Yu-Xiang; Chang, Jian-Min; Cai, Li-Ping; Shi, Sheldon Q
2017-03-01
The composition of pyrolysis vapors obtained from alkali lignin pyrolysis with the additive of nickel formate was examined using the pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Characterization of bio-chars was performed using X-ray diffraction (XRD). Results showed that the nickel formate significantly increased liquid yield, simplified the types of alkali lignin pyrolysis products and increased individual component contents. The additive of nickel formate increased contents of alkylphenols and aromatics from alkali lignin pyrolysis. With an increase in temperature, a greater amount of the relative contents can be achieved. The nickel formate was thermally decomposed to form hydrogen, resulting in hydrodeoxygenation of alkali lignin during pyrolysis. It was also found that Ni is in favor of producing alkylphenols. The analysis based on the experimental result provided evidences used to propose reaction mechanism for pyrolysis of nickel formate-assisted alkali lignin. Copyright © 2016. Published by Elsevier Ltd.
Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides
NASA Astrophysics Data System (ADS)
Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.
2018-03-01
Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.
1994-09-21
nI131+ mixed nanocrystals containing a " magic " number of 14 metal cations and 13 iodide anions is examined. These nanocrystals were generated through...RbnK14-nl13J+ mixed nanocrystals containing a " magic " number of 14 metal cations and 13 iodide anions is examined. These nanocrystals were generated...deviations or "local maxima" occur at n= 14, 23, 38, and 63 . These n values are called the " magic numbers" and are attributed to the formation of relatively
NASA Astrophysics Data System (ADS)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru
2018-03-01
The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.
Alkali absorption and citrate excretion in calcium nephrolithiasis
NASA Technical Reports Server (NTRS)
Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.
1993-01-01
The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).
PROCESS OF RECOVERING ALKALI METALS
Wolkoff, J.
1961-08-15
A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)
Method of extracting coal from a coal refuse pile
Yavorsky, Paul M.
1991-01-01
A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.
Crystallized alkali-silica gel in concrete from the late 1890s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Karl; Gress, David; Van Dam, Tom
The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levelsmore » in the cements used.« less
1980-06-01
43 3000 TYPICAL MID-1978 COSTS, all overhead included 2000- Type of System: Double alkali flue gas desulfurization plus baghouse particulate removal...Figures 5, 6, and 8 also provide cost estimating data for oil- and natural gas -fired steam turbine systems. Figure 5 shows the steam- generating station of...to the ownership and operation of the system. For systems burning oil or natural gas , fuel will typically constitute 65-90% of the total life cycle
Ultrasmall Zeolite L Crystals Prepared from Highly-Interdispersed Alkali-Silicate Precursors.
Li, Rui; Linares, Noemi; Sutjianto, James G; Chawla, Aseem; Garcia Martinez, Javier; Rimer, Jeffrey D
2018-06-19
The preparation of nanosized zeolites is critical for applications where mass transport limitations within microporous networks hinder their performance. Oftentimes the ability to generate ultrasmall zeolite crystals is dependent upon the use of expensive organics with limited commercial relevance. Here, we report the generation of zeolite L crystals with uniform sizes less than 30 nm using a facile, organic-free method. Time-resolved analysis of precursor assembly and evolution during nonclassical crystallization highlights key differences among silicon sources. Our findings reveal that a homogenous dispersion of potassium ions throughout silicate precursors is critical to enhancing the rate of nucleation and facilitating the formation of ultrasmall crystals. Intimate contact between the inorganic structure-directing agent and silica leads to the formation of a metastable nonporous phase, identified as KAlSi2O6, which undergoes an intercrystalline transformation to zeolite L. The presence of highly-interdispersed alkali-silicate precursors is seemingly integral to a reduced zeolite induction time and may facilitate the development of ultrasmall crystals. Given the general difficulty of achieving nanosized crystals in zeolite synthesis, it is likely that using well-dispersed precursors does not have the same effect on all framework types; however, in select cases it may provide an alternative strategy for optimizing zeolite synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Positive electrode for a lithium battery
Park, Sang-Ho; Amine, Khalil
2015-04-07
A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.
Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania
NASA Astrophysics Data System (ADS)
Bytnar, Krzysztof; Burmistrz, Piotr
2013-09-01
In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minerały ilaste, sporadycznie też miki oraz skalenie. Udział alkaliów zawartych w wilgoci węgli stosowanych do produkcji koksu w ogólnej ilości zawartych w nim alkaliów wynosi dla badanych węgli od 17.8 do 62.0%. Obecność sodu i potasu w wilgoci węgla związana jest wyłącznie z obecnością w niej jonów chlorkowych. Wyniki analizy wody odprowadzanej z procesu wirowania flotokoncentratu wskazują, że stosunek masowy Na do K w wilgoci węgla wynosi 20:1. Wzrost zawartość wilgoci w koksie będący wynikiem ich zwiększonej ilości w mieszance węglowej prowadzi do wzrostu reaktywności (wskaźnik CRI) oraz spadku wytrzymałości (wskaźnik CSR) oznaczonych metoda Nippon Steel Co.
NASA Technical Reports Server (NTRS)
Yakshinskiy, B. V.; Madey, T. E.
2003-01-01
We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
NASA Astrophysics Data System (ADS)
Jarrar, Ghaleb H.; Yaseen, Najel; Theye, Thomas
2013-03-01
The Arabian Nubian Shield is an exemplary juvenile continental crust of Neoproterozoic age (1000-542 Ma). The post-collisional rift-related stage (~ 610 to 542 Ma) of its formation is characterized among others by the intrusion of several generations of simple and composite dikes. This study documents a suite of hybrid composite dikes and a natural example of partial melting of granite by a mafic magma from the northernmost extremity of Arabian Nubian Shield in southwest Jordan. The petrogenesis of this suite is discussed on the basis of field, petrographic, geochemical, and Rb/Sr isotopic data. These dikes give spectacular examples of the interaction between basaltic magma and the granitic basement. This interaction ranges from brecciation, partial melting of the host alkali feldspar granite to complete assimilation of the granitic material. Field structures range from intrusive breccia (angular partially melted granitic fragments in a mafic groundmass) to the formation of hybrid composite dikes that are up to 14 m in thickness. The rims of these dikes are trachyandesite (latite) with alkali feldspar ovoids (up to 1 cm in diameter); while the central cores are trachydacite to dacite and again with alkali feldspar ovoids and xenoliths from the dike rims. The granitic xenoliths in the intrusive breccia have been subjected to at least 33% partial melting. A seven-point Rb/Sr isochron from one of these composite dikes yields an age of 561 ± 33 Ma and an initial 87Sr/86Sr ratio of 0.70326 ± 0.0003 (2σ) and MSWD of 0.62. Geochemical modeling using major, trace, rare earth elements and isotopes suggests the generation of the hybrid composite dike suite through the assimilation of 30% to 60% granitic crustal material by a basaltic magma, while the latter was undergoing fractional crystallization at different levels in the continental crust.
Use of fly ash, slag, or silica fume to inhibit alkali-silica reactivity.
DOT National Transportation Integrated Search
1995-01-01
This study had two objectives: (1) to evaluate the effectiveness of particular mineral admixtures when combined with portland cements of varying alkali content in preventing expansion due to alkali-silica reactivity (ASR), and (2) to determine if set...
Hydration heat of alkali activated fine-grained ceramic
NASA Astrophysics Data System (ADS)
Jerman, Miloš; Černý, Robert
2017-07-01
Early-age hydration heat of alkali activated ceramic dust is studied as a function of silicate modulus. A mixture of sodium hydroxide and water glass is used as alkali activator. The measurements are carried out using a large-volume isothermal heat flow calorimeter which is capable of detecting even very small values of specific heat power. Experimental results show that the specific hydration heat power of alkali activated fine-ground ceramic is very low and increases with the decreasing silicate modulus of the mix.
Millwright Apprenticeship. Related Training Modules. 11.1-11.2 Generators.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains two modules covering generators. The modules provide information on the following topics: types and construction of generators and generator operation. Each module consists of a goal, performance indicators, student study guide,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; ...
2018-03-07
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
Sodium VCHP with Carbon-Carbon Radiator for Radioisotope Stirling Systems
NASA Astrophysics Data System (ADS)
Tarau, Calin; Anderson, William G.; Miller, William O.; Ramirez, Rogelio
2010-01-01
In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling converter normally provides this cooling. If the Stirling convertor stops in the current system the insulation is designed to spoil, preventing damage to the GPHS at the cost of an earlier termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to allow multiple stops and restarts of the Stirling convertor. A sodium VCHP with a Haynes 230 envelope was designed and fabricated for the Advanced Stirling Radioisotope Generator (ASRG), with a baseline 850° C heater head temperature. When the Stirling convertor is stopped, the heat from the GPHS is rejected to the Cold Side Adapter Flange using a low-mass, carbon-carbon radiator. The VCHP is designed to activate with a AT of 30° C. The 880° C temperature when the Stirling convertor is stopped is high enough to avoid risking standard ASRG operation, but low enough to save most of the heater head life. The VCHP has low mass and low thermal losses for normal operation. The design has been modified from an earlier, stainless steel prototype with a nickel radiator. In addition to replacing the nickel radiator with a low mass carbon-carbon radiator, the radiator location has been moved from the ASRG case to the cold side adapter flange. This flange already removes two-thirds of the heat during normal operation, so it is optimized to transfer heat to the case. The VCHP was successfully tested with a turn-on ΔT of 30° C in three orientations: horizontal, gravity-aided, and against gravity.
Nicotine-substitute gum-induced milk alkali syndrome: a look at unexpected sources of calcium.
Swanson, Christine M; Mackey, Patricia A; Westphal, Sydney A; Argueta, Rodolfo
2013-01-01
This report describes a 64-year-old woman with recurrent hypercalcemia. Her laboratory evaluation was consistent with milk-alkali syndrome. It was eventually discovered that the source of the excessive calcium consumption was nicotine-replacement chewing gum and carbonated water. An extensive literature search was performed to see if milk-alkali syndrome due to nicotine-replacement gum and carbonated water has been previously reported. No prior report describing the association of milk alkali syndrome with nicotine-replacement gum and carbonated water was found. We present a unique case of milk-alkali syndrome due to nicotine-replacement gum and carbonated water. It serves as a lesson to evaluate other sources besides calcium supplements as the cause of excessive calcium intake.
Coupled channel effects on resonance states of positronic alkali atom
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Kino, Yasushi
2018-01-01
S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.
NASA Astrophysics Data System (ADS)
Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.
2014-03-01
The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.
40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...
40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator employing mercury chlor-alkali cell(s) shall test emissions from hydrogen streams according to... the Administrator, for a minimum of 2 years. (b) Mercury chlor-alkali plant—hydrogen and end-box.... (c) Mercury chlor-alkali plants—cell room ventilation system. (1) Stationary sources using mercury...
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator employing mercury chlor-alkali cell(s) shall test emissions from hydrogen streams according to... the Administrator, for a minimum of 2 years. (b) Mercury chlor-alkali plant—hydrogen and end-box.... (c) Mercury chlor-alkali plants—cell room ventilation system. (1) Stationary sources using mercury...
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator employing mercury chlor-alkali cell(s) shall test emissions from hydrogen streams according to... the Administrator, for a minimum of 2 years. (b) Mercury chlor-alkali plant—hydrogen and end-box.... (c) Mercury chlor-alkali plants—cell room ventilation system. (1) Stationary sources using mercury...
Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream
Chang, Shih-Ger; Li, Yang; Zhao, Xinglei
2014-07-08
The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.
NASA Astrophysics Data System (ADS)
Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu
2016-05-01
We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hai; Spencer, Benjamin W.; Cai, Guowei
Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document themore » progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture/heat transfer module was implemented to simulate long-term spatial and temporal evolutions of the moisture and temperature fields within concrete structures at both room and elevated temperatures. The ASR swelling model implemented in GRIZZLY code can simulate anisotropic expansions of ASR gel under either uniaxial, biaxial and triaxial stress states, and can be run simultaneously with the moisture/heat transfer model and coupled with various elastic/inelastic solid mechanics models that were implemented in GRIZZLY code previously. This report provides detailed descriptions of the governing equations, constitutive equations and numerical algorithms of the three modules implemented in GRIZZLY during FY15, simulation results of example problems and model validation results by comparing simulations with available experimental data reported in the literature. The close match between the experiments and simulations clearly demonstrate the potential of GRIZZLY code for reliable evaluation and prediction of long-term performance and response of aged concrete structures in nuclear power plants.« less
NASA Astrophysics Data System (ADS)
Bosch, Henry
2016-03-01
A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.
Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release
NASA Astrophysics Data System (ADS)
Ferraz, Ana Rita; Fernandes, Isabel; Soares, Dora; Santos Silva, António; Quinta-Ferreira, Mário
2017-12-01
Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun
2016-11-01
The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.
Chlorate adsorption from chlor-alkali plant brine stream.
Lakshmanan, Shyam; Murugesan, Thanabalan
2017-07-01
Chlorates are present in the brine stream purged from chlor-alkali plants. Tests were conducted using activated carbon from coconut shell, coal or palm kernel shell to adsorb chlorate. The results show varying levels of adsorption with reduction ranging between 1.3 g/L and 1.8 g/L. This was higher than the chlorate generation rate of that plant, recorded at 1.22 g/L, indicating that chlorate can be adequately removed by adsorption using activated carbon. Coconut based activated carbon exhibited the best adsorption of chlorate of the three types of activated carbon tested. Introducing an adsorption step prior to purging of the brine will be able to reduce chlorate content in the brine stream. The best location for introducing the adsorption step was identified to be after dechlorination of the brine and before resaturation. Introduction of such an adsorption step will enable complete recovery of the brine and prevent brine purging, which in turn will result in less release of chlorides and chlorates to the environment.
Calcification-carbonation method for red mud processing.
Li, Ruibing; Zhang, Tingan; Liu, Yan; Lv, Guozhi; Xie, Liqun
2016-10-05
Red mud, the Bayer process residue, is generated from alumina industry and causes environmental problem. In this paper, a novel calcification-carbonation method that utilized a large amount of the Bayer process residue is proposed. Using this method, the red mud was calcified with lime to transform the silicon phase into hydrogarnet, and the alkali in red mud was recovered. Then, the resulting hydrogarnet was decomposed by CO2 carbonation, affording calcium silicate, calcium carbonate, and aluminum hydroxide. Alumina was recovered using an alkaline solution at a low temperature. The effects of the new process were analyzed by thermodynamics analysis and experiments. The extraction efficiency of the alumina and soda obtained from the red mud reached 49.4% and 96.8%, respectively. The new red mud with <0.3% alkali can be used in cement production. Using a combination of this method and cement production, the Bayer process red mud can be completely utilized. Copyright © 2016 Elsevier B.V. All rights reserved.
Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A
2014-12-30
The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.
Methane-rich syngas production from hydrocarbon fuels using multi-functional catalyst/capture agent
Siefert, Nicholas S.; Shekhawat, Dushyant; Berry, David A.; Surdoval, Wayne A.
2017-02-07
The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 400.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 400.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 400.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 400-900.degree. C. and pressures in excess of 10 atmospheres.
NASA Technical Reports Server (NTRS)
Hoffer, J. M.; Ortiz, T. S.
1980-01-01
Inclusions of clinopyroxenite, kaersutiteclinopyroxenite, kaersutite-rich inclusions, wehrlite and olivine-clinopyroxenite together with megacrysts of feldspar, kaersutite and spinel are found loose on the flanks of cinder cones, as inclusions within lava flows and within the cores of volcanic bombs in the Quaternary alkali-olivine basalt of the West Potrillo Mountains, southcentral New Mexico. Based on petrological and geochemical evidence the megacysts are interpreted to be phenocrysts which formed at great depth rather that xenocrysts of larger crystal aggregates. These large crystals are believed to have formed as stable phases at high temperature and pressure and have partially reacted with the basalt to produce subhedral to anhedral crystal boundaries. It can be demonstrated that the mafic and ultramafic crystal aggregates were derived from an alkali-basalt source rock generated in the mantle. The inclusions are believed to represent a cumulus body or bodies injected within the lower crust or upper mantle.
NASA Astrophysics Data System (ADS)
Yong, Jiale; Fang, Yao; Chen, Feng; Huo, Jinglan; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun
2016-12-01
Separating the mixture of water and oil by the superhydrophobic porous materials has attracted increasing research interests; however, the surface microstructures and chemical composition of those materials are easily destroyed in a harsh environment, resulting in materials losing the superhydrophobicity as well as the oil/water separation function. In this paper, a kind of rough microstructures was formed on polytetrafluoroethylene (PTFE) sheet by femtosecond laser treatment. The rough surfaces showed durable superhydrophobicity and ultralow water adhesion even after storing in various harsh environment for a long time, including strong acid, strong alkali, and high temperature. A micro-through-holes array was further generated on the rough superhydrophobic PTFE film by a subsequent mechanical drilling process. The resultant sample was successfully applied in the field of oil/water separation due to the inverse superhydrophobicity and superoleophilicity. The designed separation system is also very efficient to separate the mixtures of oil and corrosive acid/alkali solutions, exhibiting the strong potential for practical application.
Environmental sustainability of bioethanol produced from sweet sorghum stem on saline-alkali land.
Wang, Mingxin; Pan, Xinxing; Xia, Xunfeng; Xi, Beidou; Wang, Lijun
2015-01-01
Life cycle assessment was conducted to evaluate the energy efficiency and environmental impacts of a bioethanol production system that uses sweet sorghum stem on saline-alkali land as feedstock. The system comprises a plant cultivation unit, a feedstock transport unit, and a bioethanol conversion unit, with 1000L of bioethanol as a functional unit. The net energy ratio is 3.84, and the net energy gain is 17.21MJ/L. Agrochemical production consumes 76.58% of the life cycle fossil energy. The category with the most significant impact on the environment is eutrophication, followed by acidification, fresh water aquatic ecotoxicity, human toxicity, and global warming. Allocation method, waste recycling approach, and soil salinity significantly influence the results. Using vinasse to produce pellet fuel for steam generation significantly improves energy efficiency and decreases negative environmental impacts. Promoting reasonable management practices to alleviate saline stress and increasing agrochemical utilization efficiency can further improve environmental sustainability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gabhane, Jagdish; William, S P M Prince; Vaidya, Atul N; Das, Sera; Wate, Satish R
2015-06-01
A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...
40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...
40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...
COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL
Seaborg, G.T.
1960-08-01
A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.
Process for the disposal of alkali metals
Lewis, Leroy C.
1977-01-01
Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.
Recommended design and fabrication sequence of AMTEC test assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, A.; Kumar, V.; Noravian, H.
1998-01-01
A series of previous OSC papers described: 1) a novel methodology for the coupled thermal, fluid flow, and electrical analysis of multitube AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells; 2) the application of that methodology to determine the effect of numerous design variations on the cell{close_quote}s performance, leading to selection and performance characterization of an OSC-recommended cell design; and 3) the design, analysis, and characterization of an OSC-generated power system design combining sixteen of the above AMTEC cells with two or three GPHS (General Purpose Heat Source) radioisotope heat source modules, and the applicability of those power systems to future spacemore » missions ({ital e.g.} Pluto Express and Europa Orbiter) under consideration by NASA. The OSC system design studies demonstrated the critical importance of the thermal insulation subsystem, and culminated in a design in which the eight AMTEC cells on each end of the heat source stack are embedded in Min-K fibrous insulation, and the Min-K and the GPHS modules are surrounded by graded-length Mo multifoil insulation. The present paper depicts the OSC-recommended AMTEC cell and generator designs, and identifies the need for an electrically heated (scaled-down but otherwise prototypic) test assembly for the experimental validation of the generator{close_quote}s system performance predictions. It then describes the design of an OSC-recommended test assembly consisting of an electrical heater enclosed in a graphite box to simulate the radioisotope heat source, four series-connected prototypic AMTEC cells of the OSC-recommended configuration, and a prototypic hybrid insulation package consisting of Min-K and graded-length Mo multifoils. Finally, the paper describes and illustrates an OSC-recommended detailed fabrication sequence and procedure for the above cell and test assembly. That fabrication procedure is being implemented by AMPS, Inc. with the support of DOE{close_quote}s Oak Ridge and Mound Laboratories, and the Air Force Phillips Laboratory (AFPL) will test the performance of the assembly over a range of input thermal powers and output voltages. The experimentally measured performance will be compared with the results of OSC analyses of the same insulated test assembly over the same range of operating parameters. {copyright} {ital 1998 American Institute of Physics.}« less
SE-72/AS-72 generator system based on Se extraction/ As reextraction
Fassbender, Michael Ernst; Ballard, Beau D
2013-09-10
The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.
Hazardous Waste Minimization Guide for Shipyards
1994-01-01
any waste generation associated with spent sol- vent. Elimination can be achieved by utiliza- tion of non-solvent cleaning agents or elimi- nating the...alkali, citric, and caustic base, are often useful substitutes for solvents. There are many for- mulations that are suited for a variety of clean- ing...agents, such as caustic soda (NaOH), are often employed in place of meth- ylene chloride based strippers. Caustic solu- tions have the advantage of
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
Electrochemical cell utilizing molten alkali metal electrode-reactant
Virkar, Anil V.; Miller, Gerald R.
1983-11-04
An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.
Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation
NASA Astrophysics Data System (ADS)
Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas
2018-04-01
The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.
Electronic structure of semiconducting alkali-metal silicides and germanides
NASA Astrophysics Data System (ADS)
Tegze, M.; Hafner, J.
1989-11-01
We present self-consistent linearized-muffin-tin-orbital calculations of the electronic structure of three alkali-metal germanides and silicides (KGe, NaGe, and NaSi). Like the alkali-metal-lead compounds investigated in our earlier work [M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989)] the Ge and Si compounds of the alkali metals form complex structures based on the packing of tetrahedral Ge4 and Si4 clusters. Our calculations show that all three compounds are narrow-gap semiconductors. The width of the energy gap depends on two main factors: the ratio of the intracluster to the intercluster interactions between the group-IV elements (which increases from Pb to Si) and the strength of the interactions between the alkali-metal atoms (which varies with the size ratio).
Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures
Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard
2001-01-01
Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.
A N, Balaji; K J, Nagarajan
2017-10-15
The aim of this study is to examine the use of new natural fibers, which are extracted from the Saharan aloe vera cactus plant leaves as reinforcement in polymer composites. The physicochemical, mechanical and thermal properties of the Saharan Aloe Vera Cactus Leaves (SACL) fibers are investigated, through the effect of alkali treatment. The contents of α-cellulose, hemicellulose, wax and moisture present in SACL fibers were characterized by standard test methods The mechanical properties of SACL fibers were measured through single fiber tensile test. The interfacial strength between the fiber and matrix was estimated by the fiber pull-out test. These results ensure that the chemical and mechanical properties of the fibers are improved after the alkali treatment. FT-IR spectroscopic analysis confirms that the alkali treatment process has removed certain amount of amorphous materials from the fibers. XRD analysis results show that the alkali treatment has enhanced the Crystallinity Index and Crystalline Size of the fibers. Thermal behavior of the fibers was analyzed by using TGA. The thermal stability and the thermal degradation temperature increases after the alkali treatment of fibers. The morphologies of fibers were analyzed by SEM and prove that the fiber surfaces become rough after alkali treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alkali metal ionization detector
Bauerle, James E.; Reed, William H.; Berkey, Edgar
1978-01-01
Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.
Liu, Ye; Wang, Zhengxuan; Li, Hui; Liang, Mingcai; Yang, Lin
2016-12-01
To elucidate whether and how alkali treatment, which is a common process for rice protein (RP) extraction, affects antioxidant activity of RP, the different degree of alkali (from 0.1% to 0.4% of NaOH) was used to extract RP (RP-1, RP-2, RP-3, RP-4). The antioxidant capacities of scavenging free radicals [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt, ABTS; 1,1-diphenyl-2-picrylhydrazyl, DPPH), chelating metals (iron, copper) and reducing power investigated in the hydrolysates of RPs (RP-1, RP-2, RP-3, RP-4) during in vitro pepsin-pancreatin digestion were effectively affected by alkali treatment. The present study demonstrated that the weakest antioxidant responses to ABTS radical-scavenging activity, DPPH radical-scavenging activity, iron chelating activity, copper chelating activity and reducing power were produced by RP-4 extracted by the highest alkali proportion (0.4% NaOH). The present study indicates that antioxidant capacity of RP could be more readily depressed by strict alkali degree and affected by gastrointestinal proteases. Results suggest that alkali extraction is a vital process to regulate the antioxidant activity of RP through modifying the compositions of amino acids, which are dependent on alkali magnitude. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Alkali-deficient tourmaline from the Sullivan Pb-Zn-Ag deposit, British Columbia
Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.
1997-01-01
Alkali-deficient tourmalines are found in albitized rocks from the hanging-wall of the Sullivan Pb-Zn-Ag deposit (British Columbia, Canada). They approximate the Mg-equivalent of foitite with an idealized formula D???(Mg2Al)Al6Si6O18(BO 3)3(OH)4. Major chemical substitutions in the tourmalines are the alkali-defect type [Na*(x) + Mg*(Y) = ???(X) + Al(Y)] and the uvite type [Na*(X) + Al(Y) = Ca(X) + Mg*(Y)], where Na* = Na + K, Mg* = Mg + Fe + Mn. The occurrence of these alkali-deficient tourmalines reflects a unique geochemical environment that is either alkali-depleted overall or one in which the alkalis preferentially partitioned into coexisting minerals (e.g. albite). Some of the alkali-deficient tourmalines have unusually high Mn contents (up to 1.5 wt.% MnO) compared to other Sullivan tourmalines. Manganese has a strong preference for incorporation into coexisting garnet and carbonate at Sullivan, thus many tourmalines in Mn-rich rocks are poor in Mn (<0.2 wt.% MnO). It appears that the dominant controls over the occurrence of Mn-rich tourmalines at Sullivan are the local availability of Mn and the lack of other coexisting minerals that may preferentially incorporate Mn into their structures.
AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XV, UNDERSTANDING DC GENERATOR PRINCIPLES (PART II).
ERIC Educational Resources Information Center
Human Engineering Inst., Cleveland, OH.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF MAINTENANCE PROCEDURES FOR DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE SPECIAL GENERATOR CIRCUITS, GENERATOR TESTING, AND GENERATOR POLARITY. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "DC GENERATORS II--GENERATOR…
A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses
NASA Astrophysics Data System (ADS)
Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao
2016-01-01
A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.
Sodium heat engine system: Space application
NASA Astrophysics Data System (ADS)
Betz, Bryan H.; Sungu, Sabri; Vu, Hung V.
1994-08-01
This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth'' geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve.
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...
2017-02-18
The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less
Sun, Pengfei; Wang, Wanglong; Weng, Xiaole; Dai, Xiaoxia; Wu, Zhongbiao
2018-06-05
Industrial combustion of chloroaromatics is likely to generate unintentional biphenyls (PCBs), polychlorinated dibenzo- p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). This process involves a surface-mediated reaction and can be accelerated in the presence of a catalyst. In the past decade, the effect of surface nature of applied catalysts on the conversion of chloroaromatics to PCBs/PCDD/PCDF has been well explored. However, studies on how the flue gas interferent components affect such a conversion process remain insufficient. In this article, a critical flue gas interferent component, alkali potassium, was investigated to reveal its effect on the chloroaromatics oxidation at a typical solid acid-base catalyst, Mn x Ce 1- x O 2 /HZSM-5. The loading of alkali potassium was found to improve the Lewis acidity of the catalyst (by increasing the amounts of surface Mn 4+ after calcination), which thus promoted the CO 2 selectivity for catalytic chlorobenzene (CB) oxidation. The KOH with a high hydrophilicity has favored the adsorption/activation of H 2 O molecules that provided sufficient hydroxyl groups and possibly induced a hydrolysis process to promote the formation of HCl. The K ion also served as a potential sink for chorine ions immobilization (via forming KCl). Both of these inhibited the formation of phenyl polychloride byproducts, thereby blocking the conversion of CB to chlorophenol and then PCDDs/PCDFs, and potentially ensuring a durable operation and less secondary pollution for the catalytic chloroaromatics combustion in industry.
Shen, Yafei
2018-06-01
The non-metallic fraction from waste printed circuit boards (NMF-WPCB) generally consists of plastics with high content of Br, glass fibers and metals (e.g. Cu), which are normally difficult to dispose. This work aims to study the chemical pretreatments by using alkalis, acids and alkali-earth-metal salts on pyrolysis of NMF-WPCB. Char (60-79%) and volatile matter (21-40%) can be produced via the pyrolysis process. In particular, the ash content can reach up to 42-56%, which was attributed to the high content of glass fibers and other minerals. Copper (Cu, 2.5%), calcium (Ca, 28.7%), and aluminum (Al, 6.9%) were the main metal constituents. Meanwhile, silicon (Si, 28.3%) and bromine (Br, 26.4%) were the predominant non-metallic constituents. The heavy metals such as Cu were significantly reduced by 92.4% with the acid (i.e. HCl) pretreatment. It has been proved that the organic Br in the plastics (e.g. BFR) can be transformed into HBr via the pyrolysis process at relatively high temperature. It was noteworthy that the alkali pretreatment was more benefit for the Br fixation in the solid char. Particularly, the Br fixation efficiency can reach up to 53.6% by the sodium hydroxide (NaOH) pretreatment with the pyrolysis process. The formed HBr can react with NaOH to generate NaBr. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.
The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less
Factors affecting alkali jarosite precipitation
NASA Astrophysics Data System (ADS)
Dutrizac, J. E.
1983-12-01
Several factors affecting the precipitation of the alkali jarosites (sodium jarosite, potassium jarosite, rubidium jarosite, and ammonium jarosite) have been studied systematically using sodium jarosite as the model. The pH of the reacting solution exercises a major influence on the amount of jarosite formed, but has little effect on the composition of the washed product. Higher temperatures significantly increase the yield and slightly raise the alkali content of the jarosites. The yield and alkali content both increase greatly with the alkali concentration to about twice the stoichiometric requirement but, thereafter, remain nearly constant. At 97 °C, the amount of product increases with longer retention times to about 15 hours, but more prolonged reaction times are without significant effect on the amount or composition of the jarosite. Factors such as the presence of seed or ionic strength have little effect on the yield or jarosite composition. The amount of precipitate augments directly as the iron concentration of the solution increases, but the product composition is nearly independent of this variable. A significant degree of agitation is necessary to suspend the product and to prevent the jarosite from coating the apparatus with correspondingly small yields. Once the product is adequately suspended, however, further agitation is without significant effect. The partitioning of alkali ions during jarosite precipitation was ascertained for K:Na, Na:NH4, K:NH4, and K:Rb. Potassium jarosite is the most stable of the alkali jarosites and the stability falls systematically for lighter or heavier congeners; ammonium jarosite is slightly more stable than the sodium analogue. Complete solid solubility among the various alkali jarosite-type compounds was established.
Overview on new diode lasers for defense applications
NASA Astrophysics Data System (ADS)
Neukum, Joerg
2012-11-01
Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME II. APPENDICES F-J
The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 721.4660 - Alcohol, alkali metal salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660 Section 721.4660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4660 Alcohol, alkali metal sal...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Mercury Cell Chlor- Alkali...: NESHAP for Mercury Cell Chlor-Alkali Plants (Renewal). ICR Numbers: EPA ICR Number 2046.07, OMB Control... disclose the information. Respondents/Affected Entities: Owners or operators of mercury cell chlor-alkali...
Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams
Siriwardane, Ranjani V.
2016-05-10
Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
Long term mechanical properties of alkali activated slag
NASA Astrophysics Data System (ADS)
Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.
2018-01-01
This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.
NASA Astrophysics Data System (ADS)
Ray, Arijit; Hatui, Kalyanbrata; Paul, Dalim Kumar; Sen, Gautam; Biswas, S. K.; Das, Brindaban
2016-02-01
Kutch rift basin of northwestern India is characterized by a topography that is controlled by a number of fault controlled uplifted blocks. Kutch Mainland Uplift, the largest uplifted block in the central part of the basin, contains alkali basalt plugs and tholeiitic basalt flows of the Deccan age. Alkali plugs often contain small, discoidal mantle xenoliths of spinel lherzolite and spinel wehrlite composition. Olivine occurs as xenocrysts (coarse, fractured, broken olivine grains with embayed margin; Fo> 90), phenocrysts (euhedral, smaller, and less forsteritic ~ Fo80), and as groundmass grains (small, anhedral, Fo75) in these alkali basalts. In a few cases, the alkali plugs are connected with feeder dykes. Based on the width of feeder dykes, on the sizes of the xenocrysts and xenoliths, thickness of alteration rim around olivine xenocryst, we estimate that the alkali magmas erupted at a minimum speed of 0.37 km per hour. The speed was likely greater because of the fact that the xenoliths broke up into smaller fragments as their host magma ascended through the lithosphere.
Volcanic rocks of the McDermitt Caldera, Nevada-Oregon
Greene, Robert C.
1976-01-01
The McDermitt caldera, a major Miocene eruptive center is locatedin the northernmost Great Basin directly west of McDermitt, Nev. The alkali rhyolite of Jordan Meadow was erupted from the caldera and covered an area of about 60,000 sq km; the volume of rhyolite is about 960 cubic km. Paleozoic and Mesozoic sedimentary rocks and Mesozoic granodiorite form the pre-Tertiary Basement in this area.. Overlying these is a series of volcanic rocks, probably all of Miocene age. The lowest is a dacite welded tuff, a reddish-brown rock featuring abundant phenocrysts of plagioclase, hornblende, and biotite; next is a heterogeneous unit consisting of mocks ranging from basalt to dacite. Overlying these is the basalt and andesite of Orevada View, over 700 m thick and consisting of a basal unit of cinder agglutinate overlain by basalt and andesite, much of which contains conspicuous large plagioclase phenocrysts. Near Disaster Peak and Orevada View, the basalt and andesite are overlain by additional units of silicic volcanic rocks. The lower alkali rhyolite welded tuff contains abundant phenocrysts of alkali feldspar and has a vitric phase with obvious pumice and shard texture. The rhyolite of Little Peak consists of a wide variety of banded flows or welded ruffs and breccias, mostly containing abundant alkali feldspar phenocrysts. It extends south from Disaster Peak and apparently underlies the alkali rhyolite of Jordan Meadow. The quartz latite of Sage Creek lies north of Disaster Peak and consists mostly of finely mottled quartz latite with sparse minute plagioclase phenocrysts. Volcanic rock units in the east part of the area near the Cordero mine include trachyandesite, quartz labile of McConnell Canyon, and rhyolite of McCormick Ranch. The trachyandesite is dark gray and contains less than 1 percent microphenocrysts plagioclase. It is the lowest unit exposed and may correlate with part of the basalt and andesite of Orevada View. The quartz latite of McConnell Canyon is olive gray and contains about 8 percent plagioclase phenocrysts. It has an upper phase of black vitrophyre which directly underlies The alkali rhyolite of Jordan Meadow. The rhyolite of McCormick Ranch is present farther north and consists of pinkish rhyolite with small amounts of phenocrysts of alkali feldspar, quartz, and plagioclase. The alkali rhyolite of Jordan Meadow consists of interlayered aphyric, sparsely porphyritic, and abundantly porphyritic alkali rhyolites whose colors are predominantly light gray, greenish gray, and brown, respectively. Phenocrysts are alkali feldspar (to 15 percent) locally with quartz. Sections inside the caldera are as much as 360 m thick and consist of intimately interlayered gray, green, and brown alkali rhyolites commonly flow folded. Outside the caldera sections are equally thick in the south and southwest, but thinner to the north; in these places units of similar lithology are persistent for many kilometers, and flow folding is rare. A basal green porphyritic unit north of the caldera contains definite shard texture, but elsewhere this feature is rare. Nevertheless, the great lateral extent and relative thinness of the alkali rhyolite of Jordan Meadow suggests that it is welded ash-flow tuff. Overlying the alkali rhyolite of Jordan Meadow within the McDermitt caldera are four units of lavas. The rhyolite of Hoppin Peaks contains light-brownish-gray rhyolite and black vitophyre, all with sparse phenocrysts of alkali feldspar, quartz, and plagioclase. The rhyolite of McDermitt Creek is greenish or brownish gray and contains abundant phenocrysts of plagioclase. It .is in part structureless and in part flow banded. Alkali rhyolite of Washburn Creek is light gray and contains 0-5 percent phenocrysts alkali feldspar. Quartz labile of Black Mountain forms four isolated remnants of volcanoes in the south part of the caldera. It is brown where well crystallized and black where vitric and contains 5-15 percent pla
Method and composition for testing for the presence of an alkali metal
Guon, Jerold
1981-01-01
A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.
Mineralization dynamics of metakaolin-based alkali-activated cements
Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.
2017-01-01
This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.
The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less
Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.
Padmaja, G; Kistaiah, P
2009-03-19
A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.
NASA Astrophysics Data System (ADS)
Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.
2018-06-01
Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.
Ruckmani, K.; Kavimani, S.; Jayakar, B.; Anandan, R.
1998-01-01
The alkali preparation of the root and fresh leaf juice of Moringa oleifera possessed significant dose –depen-dent anti-ulcer activity in experimentally induced acute gastric ulcers with aspirin, the anti-ulcer effect of the alkali preparation of the root seems to be more pronounced than that of the fresh leaf juice. Te anti-ulcer activity of the alkali preparation of the root could be due to its content of alkaloids or its anticholinergic and antihistaminic activities, or a combination of these factors. PMID:22556845
High temperature alkali corrosion of ceramics in coal gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, G.R.; Sun, T.; Brown, J.J.
1992-02-24
The high temperature alkali corrosion kinetics of SiC have been systematically investigated from 950 to 1100[degrees]C at 0.63 vol % alkali vapor concentration. The corrosion rate in the presence of alkaliis approximately 10[sup 4] to 10[sup 5] times faster than the oxidation rate of SiC in air. The activation energy associated with the alkali corrosion is 406 kJ/mol, indicating a highly temperature-dependent reaction rate. The rate-controlling step of the overall reaction is likely to be the dissolution of silica in the sodium silicate liquid, based on the oxygen diffusivity data.
Alkali Silicate Vehicle Forms Durable, Fireproof Paint
NASA Technical Reports Server (NTRS)
Schutt, John B.; Seindenberg, Benjamin
1964-01-01
The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.
Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization
NASA Astrophysics Data System (ADS)
Karpenko, A.; Iablonskyi, D.; Urpelainen, S.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.
2014-05-01
The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.
Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI
Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA
2011-08-09
An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.
Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer.
Chen, Liang; Wang, Zaiqin; Wang, Yuanyi; Feng, Jing
2016-09-08
The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO₂:Al₂O₃:Na₂O:NaOH:H₂O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection.
Hemicellulose and lignin removal on typha fiber by alkali treatment
NASA Astrophysics Data System (ADS)
Ikramullah; Rizal, Samsul; Thalib, Sulaiman; Huzni, Syifaul
2018-05-01
One of the methods commonly utilized to alter the surfaces of natural fibers for improving the interface compatibility among fiber and polymer matrix is by alkali treatment. Several natural fibers have been experimented with alkali treatments such as abaca, borassus and kenaf. There is a relatively few of literature that reports the FTIR investigation of Typha fibers. The purpose of this study is to determine the effect of alkali treatment on Typha fiber. Two of three bundle fibers are immersed in a 5% NaOH solution for one and two hours. The chemical structure of alkali-treated and untreated fibers are both being analyzed by Fourier Transform Infrared Spectroscopy (FTIR) instrument. The emergence of peak at 1155.36 cm-1 in strong intensity denotes the C-O-C asymmetric stretching in cellulose compound. The lignin composition of the fiber is typified by the stretching band of C-O group at 1247 cm-1. Meanwhile, the peak at 1735.03 cm-1 wavenumber is allegedly C=O stretching evidencing the existence of hemicelluloses and pectin. The peaks which are suspected to be hemicellulose, lignin and pectin are no longer visible in alkali treated Typha fiber. Giving alkali treatment to Typha fiber has been successfully removed impurities (hemicelluloses and lignin), as approved by the FTIR analysis. This will lead to a better contact and bonding mechanism between fiber and polymer matrix.
Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer
Chen, Liang; Wang, Zaiqin; Wang, Yuanyi; Feng, Jing
2016-01-01
The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO2:Al2O3:Na2O:NaOH:H2O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection. PMID:28773888
1994-03-01
other Pickling liquor and other corrosive alkalies corrosive acids Lime wastewater Spent acid Lime and water Spent mixed acid Spent caustic Spent ...acid Spent caustic Spent sulfuric acid Potential Consequences: heat generation; violent reaction. 4 - 161 Appendix 4-6 (continued) Group 2-A Group 2-B1...topical bleach (STB) Ordnance, ammunition, explosives & residues Battery acid & caustics (in unserviceable batteries) Some pharmaceuticals Petroleum, oil
CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME I. REPORT AND APPENDICES A-E
The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...
Zhao, Yang; Zhao, Chaoyue; DuanMu, Huizi; Yu, Yang; Ji, Wei; Zhu, Yanming
2014-01-01
So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops. PMID:24586886
K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias
NASA Technical Reports Server (NTRS)
Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.
2013-01-01
Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.
DFT study of the interaction between DOTA chelator and competitive alkali metal ions.
Frimpong, E; Skelton, A A; Honarparvar, B
2017-09-01
1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.
Giotis, Efstathios S; Muthaiyan, Arunachalam; Blair, Ian S; Wilkinson, Brian J; McDowell, David A
2008-01-01
Background Information regarding the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes is very limited. Treatment of alkali-adapted cells with the protein synthesis inhibitor chloramphenicol has revealed that the AlTR is at least partially protein-dependent. In order to gain a more comprehensive perspective on the physiology and regulation of the AlTR, we compared differential gene expression and protein content of cells adapted at pH 9.5 and un-adapted cells (pH 7.0) using complementary DNA (cDNA) microarray and two-dimensional (2D) gel electrophoresis, (combined with mass spectrometry) respectively. Results In this study, L. monocytogenes was shown to exhibit a significant AlTR following a 1-h exposure to mild alkali (pH 9.5), which is capable of protecting cells from subsequent lethal alkali stress (pH 12.0). Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. The observed variability between results of cDNA arrays and 2D gel electrophoresis may be accounted for by posttranslational modifications. Interestingly, several alkali induced genes/proteins can provide a cross protective overlap to other types of stresses. Conclusion Alkali pH provides therefore L. monocytogenes with nonspecific multiple-stress resistance that may be vital for survival in the human gastrointestinal tract as well as within food processing systems where alkali conditions prevail. This study showed strong evidence that the AlTR in L. monocytogenes functions as to minimize excess alkalisation and energy expenditures while mobilizing available carbon sources. PMID:18577215
Is Electronegativity a Useful Descriptor for the "Pseudo-Alkali-Metal" NH4?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.
2011-11-18
Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the "pseudo-alkali metal" ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, andmore » reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.« less
Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z
2015-02-10
Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.
Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?
Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej
2011-11-18
Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Baldeck, P. L.; Ho, P. P.; Alfano, Robert R.
Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse progagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).
NASA Astrophysics Data System (ADS)
Abdullah, Fakhraddin Mohammad; Saeed Ahmad, Sheler
2014-05-01
The Hassan Salarn area is located 20km to southeast of Saqqez city in Kurdistan Province, western Iran. In this area there are two distinct granitic rock suites consisting A-type and I-type granites and also mylonitic granites. These A-type and I-type granites have various petrological and geochemical characteristics. They also have different origins and petrogenesis. A-type granitoids comprise alkali feldspar granite, syenogranite and quartz alkali feldspar syenite, whereas I-type granitoids are composed of monzogranite, granodiorite and tonalite. Geochemically, A-type granitoids are peralkaline and acmite-normative but I-type granitoids are subalkaline (calc-alkaline), metaluminous and diopside-normative. A-type granitoids are also ferroan alkali and ferroan alkali-calcic whereas I-type granitoids are magnesian and calcic. A-type granitoids resemble to within plate granites and post-orogenic granites whereas I-type granitoids resemble to volcanic arc granites. A-type granitoids contain higher concentrations of alkalies, Zr, Rb, Nb, Y, Th, Ce, high FeO/MgO ratios and lower concentrations of Mg, Ca and Sr, resembling post-orogenic A-type granites. It is possible that heat from a mantle-derived magma which intruded into the lower crust, and/or rapid crustal extension have been essential generation of approriate melts producing A-type granitoids. Thus we can conclude that A-type granitoids were generated from a mixed mantle-crust source. Negative Nb anomalies and low contents of Ti and P probably indicate a subduction-related origin for protolith of I-type granitoids. Negative Nb anomalies and enrichment in Ce relative to its adjacent elements can be related to involvement of continental crust in magmatic processes. I-type granitoids are also enriched in Rb, Ba, K, Th, Ce and depleted in Nb, Zr and Y, indicating that they have had interacted with crust. I-type granitoids may result from contamination of mantle-derived magmas by continental crust during a subduction event. The mylonitic granites are elongated masses with a NE-SW trend and their contacts with the A-type and I-type granitoids are fault contact. Hand specimens have a layered appearance with green bands made from chlorite and epidote and grey to white bands with quartz and feldspar. These rocks contain plagioclase, quartz and orthoclase under the microscope. Also fine-grained minerals such as quartz, sericite, epidote, chlorite and opaque minerals make the groundmass wrapping the porphyroclasts. Pressure shadows around porphyroclasts of plagioclase and quartz and crystallization of fine-grained quartz and sericite in these places along with intense alteration of plagioclase to epidote and sericite, existence of quartz with different sizes, andaluse extinction in quartz crystals, and elongation of chlorites, resulted from dynamic recrystallisation of biotites all indicate effect of stresses on the rocks. Considering the similar mineralogical composition of the mylonitic rocks with I-type granitoid, it could be concluded that the granodioritic magma, after intrusion and solidification, is changed to mylonite in a shear zone due to tectonical forces.
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, Carlos E.
1980-01-01
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
NASA Technical Reports Server (NTRS)
Altman, R. L.; Mayer, L. A.; Ling, A. C. (Inventor)
1983-01-01
Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred.
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, C.E.
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
NASA Astrophysics Data System (ADS)
Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui
2017-03-01
A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.
Deng, Wei; Li, Ronglong; Zhang, Mengjun; Gong, Lixiang; Kan, Chengyou
2010-09-01
Soap-free P(St-MAA) latex particles with variable styrene (St)/methacrylic acid (MAA) ratio were synthesized by batch emulsion copolymerization at 70 degrees C for 7h, and the particles with porous structure were obtained after stepwise alkali/acid post-treatment. The effects of MAA amount on the particle morphologies after the alkali and the stepwise alkali/acid post-treatments were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Results indicated that the alkali-treated latex particles showed anomalous structure with rough surface, and no hollow was clearly identified inside them. When these alkali-treated particles were further treated with acid solution, the particle surface became much smoother, and porous morphology appeared. It was found that when the MAA amount was less than or equal to 4mol%, no obvious morphological variation was observed; while the latex particles showed clearly porous structure as the MAA amount increased to 6mol%; with the further increase of MAA amount to 8mol%, the pore size decreased distinctly. Copyright 2010 Elsevier Inc. All rights reserved.
Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer
NASA Astrophysics Data System (ADS)
Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas
2018-03-01
First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.
Utilization of Mineral Wools as Alkali-Activated Material Precursor
Yliniemi, Juho; Kinnunen, Paivo; Karinkanta, Pasi; Illikainen, Mirja
2016-01-01
Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW) and glass wool (GW) were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW). The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation. PMID:28773435
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Claire E., E-mail: whitece@princeton.edu; Andlinger Center for Energy and the Environment, Princeton University, Princeton; Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos
2015-01-15
The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicatemore » (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.« less
NASA Astrophysics Data System (ADS)
Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin
2018-02-01
This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.
Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange
Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.
1994-01-01
Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.
Petrology of the Western Highland Province: Ancient crust formation at the Apollo 14 site
NASA Astrophysics Data System (ADS)
Shervais, John W.; McGee, James J.
1999-03-01
Plutonic rocks found at the Apollo 14 site comprise four lithologic suites: the magnesian suite, the alkali suite, evolved lithologies, and the ferroan anorthosite suite (FAN). Rocks of the magnesian suite include troctolite, anorthosite, norite, dunite, and harzburgite; they are characterized by plagioclase ~An95 and mafic minerals with mg#s 82-92. Alkali suite rocks and evolved rocks generally have plagioclase ~An90 to ~An40, and mafic minerals with mg#s 82-40. Lithologies include anorthosite, norite, quartz monzodiorite, granite, and felsite. Ferroan anorthosites have plagioclase ~An96 and mafic minerals with mg#s 45-70. Whole rock geochemical data show that most magnesian suite samples and all alkali anorthosites are cumulates with little or no trapped liquid component. Norites may contain significant trapped liquid component, and some alkali norites may represent cumulate-enriched, near-liquid compositions, similar to KREEP basalt 15386. Evolved lithologies include evolved partial cumulates related to alkali suite fractionation (quartz monzodiorite), immiscible melts derived from these evolved magmas (granites), and impact melts of preexisting granite (felsite). Plots of whole rock mg# versus whole rock Ca/(Ca+Na+K) show a distinct gap between rocks of the magnesian suite and rocks of the alkali suite, suggesting either distinct parent magmas or distinct physical processes of formation. Chondrite-normalized rare earth element (REE) patterns show that rocks of both the magnesian suite and alkali suite have similar ranges, despite the large difference in major element chemistry. Current models for the origin of the magnesian suite call for a komatiitic parent magma derived from early magma ocean cumulates; these melts must assimilate plagiophile elements to form troctolites at low pressures and must assimilate a highly enriched KREEP component so that the resulting mixture has REE concentrations similar to high-K KREEP. There are as yet no plausible scenarios that can explain these unusual requirements. We propose that partial melting of a primitive lunar interior and buffering of these melts by ultramagnesian early magma ocean cumulates provides a more reasonable pathway to form magnesian troctolites. Alkali anorthosites and norites formed by crystallization of a parent magma with major element compositions similar to KREEP basalt 15386. If the parent magma of the alkali suite and evolved rocks is related to the magnesian suite, then that magma must have evolved through combined assimilation-fractional crystallization processes to form the alkali suite cumulates.
Li, Wei; Wang, Li Xian; Hofmann, Werner; Zhu, Ning Hua; Bimberg, Dieter
2012-08-27
We propose and demonstrate a novel scheme to generate ultra-wideband (UWB) triplet pulses based on four-wave mixing and phase-to-intensity modulation conversion. First a phase-modulated Gaussian doublet pulse is generated by four-wave mixing in a highly nonlinear fiber. Then an UWB triplet pulse is generated by generating the first-order derivative of the phase-modulated Gaussian doublet pulse using an optical filter serving as a frequency discriminator. By locating the optical signal at the linear slope of the optical filter, the phase modulated Gaussian doublet pulse is converted to an intensity-modulated UWB triplet pulse which well satisfies the Federal Communications Commission spectral mask requirements, even in the extremely power-restricted global positioning system band.
Spill-Resistant Alkali-Metal-Vapor Dispenser
NASA Technical Reports Server (NTRS)
Klipstein, William
2005-01-01
A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Susan A., E-mail: s.bernal@sheffield.ac.uk; Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD; Provis, John L., E-mail: j.provis@sheffield.ac.uk
2013-11-15
Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclearmore » magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.« less
Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.
Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu
2015-12-15
The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.
Proteomic Analyses of Corneal Tissue Subjected to Alkali Exposure
Parikh, Toral; Eisner, Natalie; Venugopalan, Praseeda; Yang, Qin; Lam, Byron L.
2011-01-01
Purpose. To determine whether exposure to alkaline chemicals results in predictable changes in corneal protein profile. To determine whether protein profile changes are indicative of severity and duration of alkali exposure. Methods. Enucleated bovine and porcine (n = 59 each) eyes were used for exposure to sodium, ammonium, and calcium hydroxide, respectively. Eyes were subjected to fluorescein staining, 5-bromo-2′-deoxy-uridine (BrdU) labeling. Excised cornea was subjected to protein extraction, spectrophotometric determination of protein amount, dynamic light scattering and SDS-PAGE profiling, mass spectrometric protein identification, and iTRAQ-labeled quantification. Select identified proteins were subjected to Western blot and immunohistochemical analyses. Results. Alkali exposure resulted in lower protein extractability from corneal tissue. Elevated aggregate formation was found with strong alkali exposure (sodium hydroxide>ammonium, calcium hydroxide), even with a short duration of exposure compared with controls. The protein yield after exposure varied as a function of postexposure time. Protein profiles changed because of alkali exposure. Concentration and strength of the alkali affected the profile change significantly. Mass spectrometry identified 15 proteins from different bands with relative quantification. Plexin D1 was identified for the first time in the cornea at a protein level that was further confirmed by Western blot and immunohistochemical analyses. Conclusions. Exposure to alkaline chemicals results in predictable and reproducible changes in corneal protein profile. Stronger alkali, longer durations, or both, of exposure resulted in lower yields and significant protein profile changes compared with controls. PMID:20861482
NASA Astrophysics Data System (ADS)
Zapała-Sławeta, Justyna; Owsiak, Zdzisława
2017-10-01
Lithium nitrate is known to have the highest potential to inhibit alkali silica reaction in concrete. It is well soluble in water and does not increase the pH of concrete pore solution. The extent to which the alkali silica reaction is mitigated is affected by the amount of the applied lithium ions, exposure conditions and by the kind of reactive aggregate. It is known that some lithium compounds such as lithium carbonate or lithium fluoride, when used in insufficient amount, may increase expansion due to alkali silica reaction. This effect was not detected in the presence of lithium nitrate. The aim of this study was to determine the effect of lithium nitrate on alkali silica reaction in mortars exposed to different conditions. Expansion studies were conducted in accordance with the accelerated mortar bar test (ASTM C1260) and the standard mortar bar test (ASTM C227). It was observed that the long-term expansion results are different from the values obtained in the accelerated mortar bar test. Lithium nitrate does not reduce ASR-induced expansion when mortars are stored under conditions specified in ASTM C 227. The microstructure of the mortar samples exposed to different conditions was examined and X-ray microanalysis was performed. The microstructure and compositions of the alkali-silica reaction products varied. The amount of alkali silica gel in mortars with lithium nitrate in which the expansion was high was greater than that in the mortar bars tested by accelerated method.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Forced-flow once-through boilers. [structural design criteria/aerospace environments
NASA Technical Reports Server (NTRS)
Stone, J. R.; Gray, V. H.; Gutierrez, O. A.
1975-01-01
A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis.
NASA Astrophysics Data System (ADS)
Igoshin, Valerii I.; Karyshev, V. D.; Katulin, V. A.; Kirilin, A. V.; Kisletsov, A. V.; Konnov, S. A.; Kupriyanov, N. L.; Medvedev, A. M.; Nadezhina, T. N.
1989-02-01
Experimental investigations were made of the physicochemical characteristics of the active solutions for a chemical generator in an oxygen-iodine laser. A strong temperature dependence of the viscosity of the solution was observed. The influence of this factor on the operation of the singlet-oxygen generator and the laser is discussed. The cyclic operation of a laser with efficient neutralization of the reagents and the addition of an alkali is simulated. It is shown that hydrogen peroxide may be 50% utilized when the temperature of the solution is no higher than - 30 °C. A method of preparing a solution for an iodine laser with a low freezing point (between - 30 °C and - 40 °C) is developed. It is shown that an aqueous solution of hydrogen peroxide with a concentration of 25-40% is suitable.
Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete
NASA Astrophysics Data System (ADS)
Najimi, Meysam
This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied alkali-activated concretes, workability and setting times were in the acceptable ranges. Overall, a 50/50 combination of natural Pozzolan and slag developed the highest strengths. Increasing slag content to 70%, however, was useful for mixtures with high NaOH concentrations (2.5M) and for acceleration of initial reactions. The strength of alkali-activated concretes improved with increases in sodium silicate portion of activator. Regarding effects of sodium hydroxide concentration on strength properties, there were optimum NaOH molarities which increased with an increase in slag portion of the binder. A 50/50 combination of natural Pozzolan and slag also proved to be the optimum combination for the results of absorption test. NaOH concentration and sodium silicate dosage had marginal effects on the absorption and volume of permeable voids. The chloride penetration depth reduced with decreases in natural Pozzolan portion of the binder (particularly from 70 to 50%), sodium silicate dosage, and NaOH concentration. A nearly similar trend was seen for the drying shrinkage of studied alkali-activated natural Pozzolan/slag concretes, as reduction of these variables also reduced the drying shrinkage. The mass loss of alkali-activated concretes subjected to acid attack increased with increases in slag content, sodium silicate dosage, and sodium hydroxide concentration. The failure time in corrosion test improved (increased) with increases in natural Pozzolan content, sodium silicate dosage, and sodium hydroxide concentration. The frost resistance of alkali-activated concretes improved as slag portion of the binder was increased. An increase in sodium silicate dosage was beneficial in improving frost resistance of concretes made with binders having 50 and 70% slag. An opposite trend was seen when slag portion of the binder was reduced to 30%. The mechanical properties (compressive strength, tensile strength and elastic modulus) of alkali-activated concretes made with activators having 20 and 25% sodium silicate were lower than those of the reference Portland cement concrete. As sodium silicate dosage of activator was increased to 30%, the compressive strengths of alkali-activated concretes were similar to those of the reference Portland cement concrete. Absorption of the studied alkali-activated natural Pozzolan/slag concretes was averagely 26% lower than that of the reference Portland cement concrete. Their chloride penetration depths were significantly lower (averagely about 80%) than that of the reference Portland cement concrete. The average drying shrinkage of alkali-activated natural Pozzolan/slag concretes was lower than that of reference PC concrete by nearly 26%. While the drying shrinkage of the worst performed alkali-activated natural Pozzolan/slag concrete was about 25% higher than that of the reference Portland cement concrete, there were several alkali-activated concretes that shrank considerably less than the reference Portland cement concrete. The corrosion and acid attack resistances of alkali-activated natural Pozzolan/slag concretes were significantly higher than that of the reference Portland cement concrete. The frost resistance of alkali-activated concretes having binders made with 50 and 70% slag was significantly higher than that of the reference Portland cement concrete. On the other hand, the frost resistance of concretes made with binders having 30% slag was similar to or less than (depending on sodium silicate content) that of the reference Portland cement concrete.
MHD conversion of solar energy. [space electric power system
NASA Technical Reports Server (NTRS)
Lau, C. V.; Decher, R.
1978-01-01
Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.
Observation of Raman self-focusing in an alkali-metal vapor cell
NASA Astrophysics Data System (ADS)
Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.
2008-02-01
We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.
An Overview of Hydrogen Generation and Storage for Low-Temperature PEM Fuel Cells
1999-11-01
environment. Otherwise, the wt % of stored hydrogen is attractive; e.g., LiH is 25 percent. Thermal stability of pure alkali and alkaline earth- metal ...nanofibers can be prepared by metal -catalyzed decomposition (at 450 to 750 °C) of carbon-containing gases to possess a cross-sectional area between 30 to ...respect to the face of the metal particle. Separation distance between layers depends on the type of catalyst, gas, and reaction conditions used
Chang, Ho; Yu, Zhi-Rong
2012-08-01
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.
Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J
2014-01-01
An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.
Variable Conductance Heat Pipe Cooling of Stirling Convertor and General Purpose Heat Source
NASA Technical Reports Server (NTRS)
Tarau, Calin; Schwendeman, Carl; Anderson William G.; Cornell, Peggy A.; Schifer, Nicholas A.
2013-01-01
In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental results from integrating the VCHP with an operating Stirling convertor and describes the methodology used to achieve their successful combined operation.
Techno-economical evaluation of protein extraction for microalgae biorefinery
NASA Astrophysics Data System (ADS)
Sari, Y. W.; Sanders, J. P. M.; Bruins, M. E.
2016-01-01
Due to scarcity of fossil feedstocks, there is an increasing demand for biobased fuels. Microalgae are considered as promising biobased feedstocks. However, microalgae based fuels are not yet produced at large scale at present. Applying biorefinery, not only for oil, but also for other components, such as carbohydrates and protein, may lead to the sustainable and economical microalgae-based fuels. This paper discusses two relatively mild conditions for microalgal protein extraction, based on alkali and enzymes. Green microalgae (Chlorella fusca) with and without prior lipid removal were used as feedstocks. Under mild conditions, more protein could be extracted using proteases, with the highest yields for microalgae meal (without lipids). The data on protein extraction yields were used to calculate the costs for producing 1 ton of microalgal protein. The processing cost for the alkaline method was € 2448 /ton protein. Enzymatic method performed better from an economic point of view with € 1367 /ton protein on processing costs. However, this is still far from industrially feasible. For both extraction methods, biomass cost per ton of produced product were high. A higher protein extraction yield can partially solve this problem, lowering processing cost to €620 and 1180 /ton protein product, using alkali and enzyme, respectively. Although alkaline method has lower processing cost, optimization appears to be better achievable using enzymes. If the enzymatic method can be optimized by lowering the amount of alkali added, leading to processing cost of € 633/ton protein product. Higher revenue can be generated when the residue after protein extraction can be sold as fuel, or better as a highly digestible feed for cattle.
Optimization and characterization of gelatin and chitosan extracted from fish and shrimp waste
NASA Astrophysics Data System (ADS)
Ait Boulahsen, M.; Chairi, H.; Laglaoui, A.; Arakrak, A.; Zantar, S.; Bakkali, M.; Hassani, M.
2018-05-01
Fish and seafood processing industries generate large quantities of waste which are at the origin of several environmental, economic and social problems. However fish waste could contain high value-added substances such as biopolymers. This work focuses on optimizing the gelatin and chitosan extraction from tilapia fish skins and shrimp shells respectively. The gelatin extraction process was optimized using alkali acid treatment prior to thermal hydrolysis. Three different acids were tested at different concentrations. Chitosan was obtained after acid demineralization followed by simultaneous hydrothermal deproteinization and deacetylation by an alkali treatment with different concentrations of HCl and NaOH. The extracted gelatin and chitosan with the highest yield were characterized by determining their main physicochemical properties (Degree of deacetylation, viscosity, pH, moisture and ash content). Results show a significant influence of the acid type and concentration on the extraction yield of gelatin and chitosan, with an average yield of 12.24% and 3.85% respectively. Furthermore, the obtained physicochemical properties of both extracted gelatin and chitosan were within the recommended standard values of the commercial ones used in the industry.
Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors.
Bar-David, Jonathan; Stern, Liron; Levy, Uriel
2017-02-08
In recent years, dielectric and metallic nanoscale metasurfaces are attracting growing attention and are being used for variety of applications. Resulting from the ability to introduce abrupt changes in optical properties at nanoscale dimensions, metasurfaces enable unprecedented control over light's different degrees of freedom, in an essentially two-dimensional configuration. Yet, the dynamic control over metasurface properties still remains one of the ultimate goals of this field. Here, we demonstrate the optical resonant interaction between a form birefringent dielectric metasurface made of silicon and alkali atomic vapor to control and effectively tune the optical transmission pattern initially generated by the nanoscale dielectric metasurface. By doing so, we present a controllable metasurface system, the output of which may be altered by applying magnetic fields, changing input polarization, or shifting the optical frequency. Furthermore, we also demonstrate the nonlinear behavior of our system taking advantage of the saturation effect of atomic transition. The demonstrated approach paves the way for using metasurfaces in applications where dynamic tunability of the metasurface is in need, for example, for scanning systems, tunable focusing, real time displays, and more.
Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim
We present the bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719 T . Here we show using 31P-NMR, HPAECPAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (70 300more » g mol1 ) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less
Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal-Air Batteries.
Gelman, Danny; Shvartsev, Boris; Ein-Eli, Yair
2016-12-01
Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.
Influence of the helium-pressure on diode-pumped alkali-vapor laser
NASA Astrophysics Data System (ADS)
Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing
2013-05-01
Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.
Modifications and Modelling of the Fission Surface Power Primary Test Circuit (FSP-PTC)
NASA Technical Reports Server (NTRS)
Garber, Ann E.
2008-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, underwent a range of tests at MSFC in early 2007. During this period, system transient responses and the performance of the liquid metal pump were evaluated. In May of 2007, the circuit was drained and cleaned to prepare for multiple modifications: the addition of larger upper and lower reservoirs, the installation of an annular linear induction pump (ALIP), and the inclusion of the Single Flow Cell Test Apparatus (SFCTA) in the test section. Performance of the ALIP, provided by Idaho National Laboratory (INL), will be evaluated when testing resumes. The SFCTA, which will be tested simultaneously, will provide data on alkali metal flow behavior through the simulated core channels and assist in the development of a second generation thermal simulator. Additionally, data from the first round of testing has been used to refine the working system model, developed using the Generalized Fluid System Simulation Program (GFSSP). This paper covers the modifications of the FSP-PTC and the updated GFSSP system model.
Kumar, Vishal; Marín-Navarro, Julia; Shukla, Pratyoosh
2016-02-01
Xylanases are enzymes with biotechnological relevance in a number of fields, including food, feed, biofuel, and textile industries. Their most significant application is in the paper and pulp industry, where they are used as a biobleaching agent, showing clear economic and environmental advantages over chemical alternatives. Since this process requires high temperatures and alkali media, the identification of thermostable and alkali stable xylanases represents a major biotechnological goal in this field. Moreover, thermostability is a desirable property for many other applications of xylanases. The review makes an overview of xylanase producing microorganisms and their current implementation in paper biobleaching. Future perspectives are analyzed focusing in the efforts carried out to generate thermostable enzymes by means of modern biotechnological tools, including metagenomic analysis, enzyme molecular engineering and nanotechnology. Furthermore, structural and mutagenesis studies have revealed critical sites for stability of xylanases from glycoside hydrolase families GH10 and GH11, which constitute the main classes of these enzymes. The overall conclusions of these works are summarized here and provide relevant information about putative weak spots within xylanase structures to be targeted in future protein engineering approaches.
Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci
Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim; ...
2017-01-13
We present the bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719 T . Here we show using 31P-NMR, HPAECPAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (70 300more » g mol1 ) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, R.L.; MacQueen, D.B.; Bader, K.E.
1997-12-31
Alkali Metal Thermoelectric Converters (AMTEC) are efficient direct energy conversion devices that depend on the use of highly conductive beta-alumina membranes for their operation. The key component of the AMTEC system is a highly conductive Na-{beta}{double_prime}-alumina solid electrolyte which conducts sodium ions from the high to low temperature zone, thereby generating electricity. AMTEC cells convert thermal to electrical energy by using heat to produce and maintain an alkali metal concentration gradient across the ion transporting BASE membrane. They have developed a method for producing pure phase Na-{beta}{double_prime}-alumina and K-{beta}{double_prime}-alumina powders from single phase nano-sized carboxylato-alumoxanes precursors. Sodium or potassium ionsmore » (the mobile ions) and either Mg{sup 2+} or Li{sup +} ions (which stabilize the {beta}{double_prime}-alumina structure) can be atomically dispersed into the carboxylato-alumoxane lattice at low (< 100 C) temperature. Calculation of the carboxylato-alumoxane precursors at 1,200--1,500 C produces pure phase {beta}{double_prime}-alumina powders.« less
Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion
Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; ...
2011-01-01
The objective of this study was to develop a hermetical alkali digestion process to obtain single cellulosic fibers from kenaf bast. Kenaf bast were hermetically digested into single fiber using a 5% sodium hydroxide solution for one hour at four different temperatures (80 ° C, 110 ° C, 130 ° C, and 160 ° C). The hermetical digestion process used in this study produced fibers with high cellulose content (84.2–92.3%) due to the removal of lignin and hemicelluloses. The surface hardness and elastic modulus of the fibers digested at 130 ° C and 160 ° C were improved significantly comparedmore » with those digested at 80 ° C. The tensile modulus and tensile strength of the individual fibers reduced as the digestion temperature increased from 110 ° C to 160 ° C. Micropores were generated in fiber cell wall when the fibers were digested at 130 ° C and 160 ° C. The studies on the composites that were made from polypropylene reinforced with the digested fibers indicated that the compatibility between the digested fibers and polypropylene matrix was poor.« less
SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
George J. Hirasaki; Clarence A. Miller; Gary A. Pope
2004-07-01
Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less
Durability of PEM Fuel Cell Membranes
NASA Astrophysics Data System (ADS)
Huang, Xinyu; Reifsnider, Ken
Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.
Kim, Haegyeom; Yoon, Gabin; Lim, Kyungmi; Kang, Kisuk
2016-10-18
Here, we demonstrate that graphite can serve as a versatile electrode for various rechargeable battery types by reversibly accommodating solvated alkali ions (such as K, Na, and Li) through co-intercalation in its galleries. The co-intercalation of alkali ions is observed to occur via staging reactions. Notably, their insertion behaviors, including their specific capacity, are remarkably similar regardless of the alkali ion species despite the different solubility limits of K, Na, and Li ions in graphite. Nevertheless, the insertion potentials of the solvated alkali ions differ from each other and are observed to be correlated with the interlayer distance in the intercalated graphite gallery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of fourmore » elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.« less
Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation.
Agnello, M; Cen, L; Tran, N C; Shi, W; McLean, J S; He, X
2017-07-01
Dental caries can be described as a dysbiosis of the oral microbial community, in which acidogenic, aciduric, and acid-adapted bacterial species promote a pathogenic environment, leading to demineralization. Alkali generation by oral microbes, specifically via arginine catabolic pathways, is an essential factor in maintaining plaque pH homeostasis. There is evidence that the use of arginine in dentifrices helps protect against caries. The aim of the current study was to investigate the mechanistic and ecological effect of arginine treatment on the oral microbiome and its regulation of pH dynamics, using an in vitro multispecies oral biofilm model that was previously shown to be highly reflective of the in vivo oral microbiome. Pooled saliva from 6 healthy subjects was used to generate overnight biofilms, reflecting early stages of biofilm maturation. First, we investigated the uptake of arginine by the cells of the biofilm as well as the metabolites generated. We next explored the effect of arginine on pH dynamics by pretreating biofilms with 75 mM arginine, followed by the addition of sucrose (15 mM) after 0, 6, 20, or 48 h. pH was measured at each time point and biofilms were collected for 16S sequencing and targeted arginine quantification, and supernatants were prepared for metabolomic analysis. Treatment with only sucrose led to a sustained pH drop from 7 to 4.5, while biofilms treated with sucrose after 6, 20, or 48 h of preincubation with arginine exhibited a recovery to higher pH. Arginine was detected within the cells of the biofilms, indicating active uptake, and arginine catabolites citrulline, ornithine, and putrescine were detected in supernatants, indicating active metabolism. Sequencing analysis revealed a shift in the microbial community structure in arginine-treated biofilms as well as increased species diversity. Overall, we show that arginine improved pH homeostasis through a remodeling of the oral microbial community.
NASA Astrophysics Data System (ADS)
Sharkov, Evgenii; Bogina, Maria; Chistyakov, Alexeii
2017-04-01
One of the most important problems of magmatic petrology over the past century is a «Daly Gap» [Daly, 1914]. It describes the lack of intermediate compositions (i.e., andesite, trachyandesite) in volcanic provinces like ocean islands, LIPs, & arcs, giving rise to "bimodal" basalt-rhyolite, basalt-trachyte or basanite-phonolite suites (Menzies, 2016). At the same time, the origin of the bimodal distribution still remains unclear. Among models proposed to explain the origin of the bimodal series are liquid immiscibility (Charlier et al 2011), physico-chemical specifics of melts (Mungal, Martin,1995), high water content in a primary melt (Melekhova et al., 2012), influence of latent heat production (Nelson et al., 2011), appearance of differentiated transitional chambers with hawaiites below and trachytes on top (Ferla et al., 2006), etc. In this case, the bimodal series are characterized by similar geochemical and isotopic-geochemical features of mafic and sialic members. At the same time, some bimodal series are produced by melting of sialic crust over basaltic chambers (Philpottas and Ague, 2009). This results in the essentially different isotopic characteristics of mafic and sialic members, as exemplified by the bimodal rapakivi granites-anorthosite complexes (Ramo, 1991; Sharkov, 2010). In addition, the bimodal basalt-trachyte series are widely spread in oceanic islands where sialic crust is absent. Thus, it is generally accepted that two contrasting melts were formed in magma chambers beneath volcanoes. Such chambers survived as intrusions and are available for geological study and deciphering their role in the formation of the bimodal magmatic series. We discuss this problem by the example of alkali Fe-Ti basalts and trachytes usually developed in LIPs. Transitional magmatic chambers of such series are represented by bimodal syenite-gabbro intrusions, in particular, by the Elet'ozero intrusion (2086±30 Ma) in Northern Karelia (Russia). The intrusion intruded Archean granite-gneisses and, like syenite-gabbro intrusive complexes everywhere, was formed in two intrusive phases. The first phase is represented by mafic-ultramafic layered intrusion derived from alkali Fe-Ti basalt. The second phase is made up of alkali syenites, which are close in composition to alkali trachyte. At the same time, syenite and gabbro have close ɛNd(2080) (2.99 and 3.09, respectively). So, we faced the intrusive version of alkali basalt-trachyte series. We believe that neither crystallization differentiation, nor immiscible splitting, nor other within-chamber processes were responsible for a Daly Gap. The formation of the latter is rather related to the generation of two compositionally different independent partial melts from the same mantle plume head: (1) alkali Fe-Ti basalts derived from plume head owing to adiabatic melting, and (2) trachytes produced by incongruent melting of upper cooled margin of the head under the influence of fluids, which percolated from underlying adiabatic melting zone. The existence of primary trachyte melts is supported by the finds of "melt pockets" in mantle xenoliths in basalts.
Wei, Guangtao; Shao, Luhua; Mo, Jihua; Li, Zhongmin; Zhang, Linye
2017-06-01
Using molasses wastewater as partial acidifying agent, a new Fenton-like catalyst (ACRM sm ) was prepared through a simple process of acidification and calcination using red mud as main material. With molasses wastewater, both the free alkali and the chemically bonded alkali in red mud were effectively removed under the action of H 2 SO 4 and molasses wastewater, and the prepared ACRM sm was a near-neutral catalyst. The ACRM sm preparation conditions were as follows: for 3 g of red mud, 9 mL of 0.7 mol/L H 2 SO 4 plus 2 g of molasses wastewater as the acidifying agent, calcination temperature 573 K, and calcination time 1 h. Iron phase of ACRM sm was mainly α-Fe 2 O 3 and trace amount of carbon existed in ACRM sm . The addition of molasses wastewater not only effectively reduced the consumption of H 2 SO 4 in acidification of red mud but also resulted in the generation of carbon and significantly improved the distribution of macropore in prepared ACRM sm . It was found that near-neutral pH of catalyst, generated carbon, and wide distribution of macropore were the main reasons for the high catalytic activity of ACRM sm . The generated carbon and wide distribution of macropore were entirely due to the molasses wastewater added. In degradation of orange II, ACRM sm retained most of its catalytic stability and activity after five recycling times, indicating ACRM sm had an excellent long-term stability in the Fenton-like process. Furthermore, the performance test of settling showed ACRM sm had an excellent settleability. ACRM sm was a safe and green catalytic material used in Fenton-like oxidation for wastewater treatment.
Kolker, A.; Olson, M.L.; Krabbenhoft, D.P.; Tate, M.T.; Engle, M.A.
2010-01-01
Simultaneous real-time changes in mercury (Hg) speciation ?????" reactive gaseous Hg (RGM), elemental Hg (Hg??), and fine particulate Hg (Hg-PM2.5), were determined from June to November 2007, in ambient air at three locations in rural Central Wisconsin. Known Hg emission sources within the airshed of the monitoring sites include: 1) a 1114 megawatt (MW) coal-fired electric utility generating station; 2) a Hg-bed chlor-alkali plant; and 3) a smaller (465 MW) coal-burning electric utility. Monitoring sites, showing sporadic elevation of RGM, Hg?? and Hg-PM 2.5, were positioned at distances of 25, 50 and 100 km northward of the larger electric utility. A series of RGM events were recorded at each site. The largest, on 23 September, occurred under prevailing southerly winds, with a maximum RGM value (56.8 pg m-3) measured at the 100 km site, and corresponding elevated SO2 (10.41 ppbv; measured at 50 km site). The finding that RGM, Hg??, and Hg-PM2.5 are not always highest at the 25 km site, closest to the large generating station, contradicts the idea that RGM decreases with distance from a large point source. This may be explained if: 1) the 100 km site was influenced by emissions from the chlor-alkali facility or by RGM from regional urban sources; 2) the emission stack height of the larger power plant promoted plume transport at an elevation where the Hg is carried over the closest site; or 3) RGM was being generated in the plume through oxidation of Hg??. Operational changes at each emitter since 2007 should reduce their Hg output, potentially allowing quantification of the environmental benefit in future studies.
NASA Astrophysics Data System (ADS)
Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.
2018-04-01
Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier
A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or onemore » or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.« less
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2017-11-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.
Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.
1991-12-31
Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double_prime} alumina solid electrolyte (BASE), themore » seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less
Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.
1991-01-01
Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double prime} alumina solid electrolyte (BASE),more » the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.« less
Acid and alkali effects on the decomposition of HMX molecule: a computational study.
Zhang, Chaoyang; Li, Yuzhen; Xiong, Ying; Wang, Xiaolin; Zhou, Mingfei
2011-11-03
The stored and wasted explosives are usually in an acid or alkali environment, leading to the importance of exploring the acid and alkali effects on the decomposition mechanism of explosives. The acid and alkali effects on the decomposition of HMX molecule in gaseous state and in aqueous solution at 298 K are studied using quantum chemistry and molecular force field calculations. The results show that both H(+) and OH(-) make the decomposition in gaseous state energetically favorable. However, the effect of H(+) is much different from that of OH(-) in aqueous solution: OH(-) can accelerate the decomposition but H(+) cannot. The difference is mainly caused by the large aqueous solvation energy difference between H(+) and OH(-). The results confirm that the dissociation of HMX is energetically favored only in the base solutions, in good agreement with previous HMX base hydrolysis experimental observations. The different acid and alkali effects on the HMX decomposition are dominated by the large aqueous solvation energy difference between H(+) and OH(-).
IUPAC-NIST Solubility Data Series. 75. Nonmetals in Liquid Alkali Metals
NASA Astrophysics Data System (ADS)
Borgstedt, Hans Ulrich; Guminski, Cezary; Borgstedt, Hans Ulrich; Guminski, Cezary
2001-07-01
Liquid alkali metals have several physical properties which favor their use in a number of important applications. For example, their large liquidus temperature range and their excellent heat transfer properties are important for use as heat transfer media. They are used in large nuclear reactors in which hundreds of tons of sodium are circulating, and in small parts of engines for cooling of valves. Since these metals are among the most electropositive elements, several of them (Li, Na) can be used in high specific capacity and high energy density batteries at moderately elevated temperatures. The compatibility of metallic constructional materials which are used to contain the liquid metals is strongly influenced by nonmetals present in the liquids. The physical properties of the liquid metals are also influenced by dissolved substances. Several nonmetals dissolved in alkali metals are able to form ternary compounds with components of the constructional materials. Thus, corrosion and compatibility studies have been accompanied by extensive chemical work related to the solutions of non-metallic substances in liquid alkali metals. All available solubility data of nonmetallic elements and some of their compounds in the five liquid alkali metal solvents (Li, Na, K, Rb, and Cs) are collected and compiled. Original publications with reliable data and information on the methods used to generate them are reported in individual Compilations. When numerical data are not given in a publication, the data are often read out from figures and converted into numerical data by the compilers. The precision of this procedure is indicated in the Compilations under Estimated Error. Evaluated solubility data are tabulated at the end of the Critical Evaluations: if there is agreement of at least two independent studies within the experimental error, the solubility values are assigned to the "recommended" category. Values are assigned as "tentative," if only one reliable result was reported, or if the mean value of two or more reliable studies was outside the error limits. In the tabulation, three, two, or one significant figures are assigned for respective precisions that are better than ±1% and ±10% and worse than ±10%. If necessary, the solubilities are recalculated into mol %. The completeness of this investigation of the literature has been confirmed and extended by studying several reviews dealing with the solution chemistry of substances in the alkali metals. Solubility data are sometimes measured under parameters, which are not standard conditions of such measurements. Frequently measurements are performed under constrained pressure. The solubility of noble gases or other gases, which do not form compounds with the alkali metals, depends on the gas pressures. This dependency is documented in the data sheets. Schematic phase diagrams are presented in systems for which they assist the understanding of the data and the conclusions. They are based on the most recent state of knowledge and generally presented in the Critical Evaluations. Some solubility diagrams are shown in form of a log solubility versus reciprocal temperature function. These figures illustrate the larger scatter of data for systems in which interfering reactions cause unstable behavior of solutions. While several solutes are well defined substances, other systems need still additional studies to define the equilibrium solid state compound. One should realize that estimations of the stoichiometry and thermal stability of ternary compounds are experimentally difficult, and their results are often uncertain.
Optically-Based Diagnostics for Gas-Phase Laser Development
2010-08-01
Laser (COIL), Electric Oxygen Iodine Laser (EOIL), Diode-Pumped Alkali Laser (DPAL), and Exciplex Alkali Laser (XPAL). The papers at this Symposium... exciplex -assisted absorption and laser-induced fluorescence, and multi-photon excitation of infrared atomic alkali transitions.11,12 In this paper... EXCIPLEX LASER SYSTEMS Proper review and discussion of the DPAL and XPAL laser systems can be found elsewhere,11,12 and in the paper by Carroll and
ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS
Alter, H.W.; Barney, D.L.
1958-09-30
A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.
Electrochemical cell having an alkali-metal-nitrate electrode
Roche, M.F.; Preto, S.K.
1982-06-04
A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.
2011-02-01
worldwide. Lawrence Berkeley National Laboratory Peer Reviewed Title: Investigation of anti-Relaxation coatings for alkali-metal vapor cells using ...2010 Abstract: Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to...preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an
Process for preparing higher oxides of the alkali and alkaline earth metals
NASA Technical Reports Server (NTRS)
Sadhukhan, P.; Bell, A. (Inventor)
1978-01-01
High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berra, M., E-mail: mario.berra@erse-web.i; Faggiani, G.; Mangialardi, T.
2010-09-15
The primary objective of this study was to ascertain whether the Threshold Alkali Level (TAL) of the concrete aggregates may be taken as a suitable reactivity parameter for the selection of aggregates susceptible of alkali-silica reaction (ASR), even when ASR expansion in concrete develops under restrained conditions. Concrete mixes made with different alkali contents and two natural siliceous aggregates with very different TALs were tested for their expansivity at 38 {sup o}C and 100% RH under unrestrained and restrained conditions. Four compressive stress levels over the range from 0.17 to 3.50 N/mm{sup 2} were applied by using a new appositelymore » designed experimental equipment. The lowest stress (0.17 N/mm{sup 2}) was selected in order to estimate the expansive pressure developed by the ASR gel under 'free' expansion conditions. It was found that, even under restrained conditions, the threshold alkali level proves to be a suitable reactivity parameter for designing concrete mixes that are not susceptible of deleterious ASR expansion. An empirical relationship between expansive pressure, concrete alkali content and aggregate TAL was developed in view of its possible use for ASR diagnosis and/or safety evaluation of concrete structures.« less
Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses.
Baral, Khagendra; Li, Aize; Ching, Wai-Yim
2017-10-12
A density functional theory (DFT)-based ab initio molecular dynamics (AIMD) has been applied to simulate models of single and mixed alkali silicate glasses with two different molar concentrations of alkali oxides. The structural environments and spatial distributions of alkali ions in the 10 simulated models with 20% and 30% of Li, Na, K and equal proportions of Li-Na and Na-K are studied in detail for subtle variations among the models. Quantum mechanical calculations of electronic structures, interatomic bonding, and mechanical and optical properties are carried out for each of the models, and the results are compared with available experimental observation and other simulations. The calculated results are in good agreement with the experimental data. We have used the novel concept of using the total bond order density (TBOD), a quantum mechanical metric, to characterize internal cohesion in these glass models. The mixed alkali effect (MAE) is visible in the bulk mechanical properties but not obvious in other physical properties studied in this paper. We show that Li doping deviates from expected trend due to the much stronger Li-O bonding than those of Na and K doping. The approach used in this study is in contrast with current studies in alkali-doped silicate glasses based only on geometric characterizations.
Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids
NASA Astrophysics Data System (ADS)
Seo, Jung Hun; Zajacz, Zoltán
2016-06-01
Brine and vapor inclusions were synthesized to study Cl/Br fractionation during magmatic-hydrothermal fluid phase separation at 900 °C and pressures of 90, 120, and 150 MPa in Li/Na/K halide salt-H2O systems. Laser ablation ICP-MS microanalysis of high-density brine inclusions show an elevated Cl/Br ratio compared to the coexisting low-density vapor inclusions. The degree of Cl/Br fractionation between vapor and brine is significantly dependent on the identity of the alkali metal in the system: stronger vapor partitioning of Br occurs in the Li halide-H2O system compared to the systems of K and Na halide-H2O. The effect of the identity of alkali-metals in the system is stronger compared to the effect of vapor-brine density contrast. We infer that competition between alkali-halide and alkali-OH complexes in high-temperature fluids might cause the Cl/Br fractionation, consistent with the observed molar imbalances of alkali metals compared to halides in the analyzed brine inclusions. Our experiments show that the identity of alkali metals controls the degrees of Cl/Br fractionation between the separating aqueous fluid phases at 900 °C, and suggest that a significant variability in the Cl/Br ratios of magmatic fluids can arise in Li-rich systems.
A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste
Jo, Byung-Wan; Chakraborty, Sumit
2015-01-01
To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665
NASA Astrophysics Data System (ADS)
Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi
2015-11-01
An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.
The interactions of sorbates with gallosilicates and alkali-metal exchanged gallosilicates
NASA Astrophysics Data System (ADS)
Limtrakul, J.; Kuno, M.; Treesukol, P.
1999-11-01
Structures, energetics and vibrational frequencies of the interaction of adsorbates with H-aluminosilicates (H-AlZ), H-gallosilicates (H-GaZ), alkali-metal exchanged aluminosilicates (X-AlZ) and alkali-metal exchanged gallosilicates (X-GaZ), where X being Li, Na, or K, have been carried out at B3LYP and HF levels of theory with 6-31G(d) as the basis set. The charge compensating alkali-metal ions can affect the catalytically active site (Si-O-T where T=Al or Ga) by weakening the Si-O, Al-O, and Ga-O bonds as compared to their anionic frameworks. Comparing the net stabilization energies, Δ ENSE, of the naked alkali-metal/H 2O adducts with those of the alkali-metal exchanged zeolite/H 2O systems, the latter amounts only to about 50% of the former, which is partly due to the destabilizing role of the negative zeolitic oxygen frameworks surrounding the cations. The interaction of sorbates with the alkali-metal exchanged gallosilicates can be employed to probe the field strength inside the catalytic frameworks as indicated by the plot of the binding energy, Δ E, versus 1/ RX-O w2, with R(X-O w) being the distance between the cationic nucleus and the oxygen atom of the adsorbate. The IR spectra of H 2O adsorbed on Na-AlZ are calculated to be 3584, 3651, and 1686 cm -1. The obtained results are in excellent agreement with the very recent experimental IR spectra of water adsorbed on Na-ZSM-5 of Zecchina et al. (J. Phys. Chem., 100 (1996) 16 484). Other important features, i.e. the correlation between Δ νOH and, Δ E, R(X-O w) , and 1/ RX-O w2, cationic size, demonstrate that the interactions of sorbates with alkali-metal exchanged gallosilicates are well approximated by electrostatic contribution.
Hosseini-Nasab, S M; Zitha, P L J
2017-01-01
The objective of this study is to discover a synergistic effect between foam stability in bulk and micro-emulsion phase behaviour to design a high-performance chemical system for an optimized alkaline-surfactant-foam (ASF) flooding for enhanced oil recovery (EOR). The focus is on the interaction of ASF chemical agents with oil in the presence and absence of a naphthenic acid component and in situ soap generation under bulk conditions. To do so, the impact of alkalinity, salinity, interfacial tension (IFT) reduction and in situ soap generation was systematically studied by a comprehensive measurement of (1) micro-emulsion phase behaviour using a glass tube test method, (2) interfacial tension and (3) foam stability analysis. The presented alkali-surfactant (AS) formulation in this study lowered IFT between the oil and aqueous phases from nearly 30 to 10 -1 -10 -3 mN/m. This allows the chemical formulation to create considerably low IFT foam flooding with a higher capillary number than conventional foam for displacing trapped oil from porous media. Bulk foam stability tests demonstrated that the stability of foam diminishes in the presence of oil with large volumes of in situ soap generation. At lower surface tensions (i.e. larger in situ soap generation), the capillary suction at the plateau border is smaller, thus uneven thinning and instabilities of the film might happen, which will cause acceleration of film drainage and lamellae rupture. This observation could also be interpreted by the rapid spreading of oil droplets that have a low surface tension over the lamella. The spreading oil, by augmenting the curvature radius of the bubbles, decreases the surface elasticity and surface viscosity. Furthermore, the results obtained for foam stability in presence of oil were interpreted in terms of phenomenological theories of entering/spreading/bridging coefficients and lamella number.
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2009-04-01
A geometrical and phasor representation technique is presented to illustrate the modulation of the lightwave carrier to generate quadrature amplitude modulated (QAM) signals. The modulation of the amplitude and phase of the lightwave carrier is implemented using only one dual-drive Mach-Zehnder interferometric modulator (MZIM) with the assistance of phasor techniques. Any multilevel modulation scheme can be generated, but we illustrate specifically, the multilevel amplitude and differential phase shift keying (MADPSK) signals. The driving voltage levels are estimated for driving the traveling wave electrodes of the modulator. Phasor diagrams are extensively used to demonstrate the effectiveness of modulation schemes. MATLAB Simulink models are formed to generate the multilevel modulation formats, transmission, and detection in optically amplified fiber communication systems. Transmission performance is obtained for the multilevel optical signals and proven to be equivalent or better than those of binary level with equivalent bit rate. Further, the resilience to nonlinear effects is much higher for MADPSK of 50% and 33% pulse width as compared to non-return-to-zero (NRZ) pulse shaping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbert, G
2009-09-01
The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 psmore » apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.« less
Detection of alkali-silica reaction swelling in concrete by staining
Guthrie, Jr., George D.; Carey, J. William
1998-01-01
A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.
The thermo-elastic instability model of melting of alkali halides in the Debye approximation
NASA Astrophysics Data System (ADS)
Owens, Frank J.
2018-05-01
The Debye model of lattice vibrations of alkali halides is used to show that there is a temperature below the melting temperature where the vibrational pressure exceeds the electrostatic pressure. The onset temperature of this thermo-elastic instability scales as the melting temperature of NaCl, KCl, and KBr, suggesting its role in the melting of the alkali halides in agreement with a previous more rigorous model.
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-01-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649
Inoue, Motoki; Sasaki, Makoto; Taguchi, Tetsushi
2012-01-01
Gelatins were crosslinked with organic acids and treated with alkali to impart to them endothelialization and anti-thrombogenic properties. These matrices were characterized by biochemical and physicochemical techniques. The amounts of residual amino groups in the matrices decreased with increasing crosslinker concentration. The matrices with the highest crosslinking densities showed excellent endothelial cell adhesion and proliferation. In addition, the adhesion of platelets and formation of fibrin networks on the matrices were suppressed with increasing crosslinker concentration. The matrices also exhibited excellent biodegradability, and the degradation rate decreased with increasing crosslinking density. All the organic acid-crosslinked alkali-treated gelatins showed excellent anti-thrombogenic and endothelialization properties, superior to those of glutaraldehyde-crosslinked alkali-treated gelatins. PMID:27877542
Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides
NASA Astrophysics Data System (ADS)
Patki, Gauri Dilip
Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ˜10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.
Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R
2017-01-01
Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.
Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J
2018-02-19
The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.
Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source
NASA Astrophysics Data System (ADS)
Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang
2015-03-01
Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.
Mach-zehnder based optical marker/comb generator for streak camera calibration
Miller, Edward Kirk
2015-03-03
This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.
Dynamic tailoring of surface plasmon polaritons through incident angle modulation.
Qiu, Peizhen; Zhang, Dawei; Jing, Ming; Lu, Taiguo; Yu, Binbin; Zhan, Qiwen; Zhuang, Songlin
2018-04-16
Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.
Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response
NASA Astrophysics Data System (ADS)
Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki
2016-07-01
In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.
Thermal effects in Cs DPAL and alkali cell window damage
NASA Astrophysics Data System (ADS)
Zhdanov, B. V.; Rotondaro, M. D.; Shaffer, M. K.; Knize, R. J.
2016-10-01
Experiments on power scaling of Diode Pumped Alkali Lasers (DPALs) revealed some limiting parasitic effects such as alkali cell windows and gain medium contamination and damage, output power degradation in time and others causing lasing efficiency decrease or even stop lasing1 . These problems can be connected with thermal effects, ionization, chemical interactions between the gain medium components and alkali cells materials. Study of all these and, possibly, other limiting effects and ways to mitigate them is very important for high power DPAL development. In this talk we present results of our experiments on temperature measurements in the gain medium of operating Cs DPAL at different pump power levels in the range from lasing threshold to the levels causing damage of the alkali cell windows. For precise contactless in situ temperature measurements, we used an interferometric technique, developed in our lab2 . In these experiments we demonstrated that damage of the lasing alkali cell starts in the bulk with thermal breakdown of the hydrocarbon buffer gas. The degradation processes start at definite critical temperatures of the gain medium, different for each mixture of buffer gas. At this critical temperature, the hydrocarbon and the excited alkali metal begin to react producing the characteristic black soot and, possibly, some other chemical compounds, which both harm the laser performance and significantly increase the harmful heat deposition within the laser medium. This soot, being highly absorptive, is catastrophically heated to very high temperatures that visually observed as bulk burning. This process quickly spreads to the cell windows and causes their damage. As a result, the whole cell is also contaminated with products of chemical reactions.
Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.
Puri, V P; Pearce, G R
1986-04-01
Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.
Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao
2016-02-01
The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lin, Jixiang; Wang, Yingnan; Sun, Shengnan; Mu, Chunsheng; Yan, Xiufeng
2017-01-15
Leymus chinensis is the most promising grass species for salt-alkaline grassland restoration in northern China. However, little information exists concerning the role of arbuscular mycorrhizal (AM) symbiosis in the adaptation of seedlings to salt-alkali stress, particularly under increased nitrogen deposition, which has become a major environmental problem throughout the world. In this study, Leymus chinensis seedlings were cultivated in soil with 0, 100 and 200mM NaCl/NaHCO 3 under two forms of nitrogen (10mM NH 4 NO 3 or NH 4 Cl: NH 4 NO 3 =3:1), and the root colonization, growth and photosynthetic characteristics of the seedlings were measured. The results showed that the colonization rate and intensity decreased with increasing salt-alkali stress and were much lower under alkali stress. The nitrogen treatments also decreased the colonization, particularly under the NH 4 + -N treatment. Compared with the non-mycorrhizal controls, mycorrhizal seedlings generally presented higher plant biomass, photosynthetic parameters and contents of photosynthetic pigments under stresses, and the inhibitive effects of alkali stress were substantially stronger. In addition, both nitrogen forms decreased the physiological indexes compared with those of the AM seedlings. Our results suggest that salt stress and alkali stress are significantly different and that the salt-alkali tolerance of Leymus chinensis seedlings could be enhanced by associations with arbuscular mycorrhizal fungi, in which would yield better plant growth and photosynthesis. Excessive nitrogen in the soil affects mycorrhizal colonization and thereby inhibits the growth and photosynthetic ability of the seedlings. Copyright © 2016 Elsevier B.V. All rights reserved.
Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A
2015-01-01
Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
2015-06-01
INVESTIGATION OF HEAVY OXIDE AND ALKALI-HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS by Jeremy S. Cadiente June...AND ALKALI- HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Jeremy S. Cadiente 7...fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma- neutron radiation detectors. The
In situ formation of coal gasification catalysts from low cost alkali metal salts
Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.
1985-01-01
A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.
Detection of alkali-silica reaction swelling in concrete by staining
Guthrie, G.D. Jr.; Carey, J.W.
1998-04-14
A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.
Alkali metal intercalates of molybdenum disulfide.
NASA Technical Reports Server (NTRS)
Somoano, R. B.; Hadek, V.; Rembaum, A.
1973-01-01
Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.
Interactions of Hydrazine and of Hydrazine Derivatives with Soil Constituents and with Soils
1984-08-23
vigorously. After flocs which formed on addition of alkali had redissolved a homogeneous dark red solution (pH 2.0) was obtained. This solution was allowed to...collected fractions of the eluate. Scintillation techniques (Smedley, 1978), atomic absorption and radioisotopic labelling techniques (Hartmann, 1981), and...but significantly less exothermic in the cases of the alkali -earth than the alkali metals. The heat of hydration of the divalent cations is greater than
Spectroscopic studies of transition-metal ions in molten alkali-metal carboxylates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maroni, V.A.; Maciejewski, M.L.
This paper presents the results of electronic absorption and /sup 13/C-NMR measurements on molten alkali metal formates and acetates and on solutions of selected 3d transition metal ions therein. These studies provide a unique opportunity to explore (1) the highly ordered nature of alkali carboxylates, (2) the ligand field properties of acetate and formate ions, and (3) the coordination chemistry of the 3d transition metals in molten carboxylates. 1 figure, 2 tables.
Krishnaiah, Prakash; Ratnam, Chantara Thevy; Manickam, Sivakumar
2017-01-01
In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5°C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties. Copyright © 2016 Elsevier B.V. All rights reserved.
In vitro adhesion of fibroblastic cells to titanium alloy discs treated with sodium hydroxide.
Al Mustafa, Maisa; Agis, Hermann; Müller, Heinz-Dieter; Watzek, Georg; Gruber, Reinhard
2015-01-01
Adhesion of osteogenic cells on titanium surfaces is a prerequisite for osseointegration. Alkali treatment can increase the hydrophilicity of titanium implant surfaces, thereby supporting the adhesion of blood components. However, it is unclear if alkali treatment also supports the adhesion of cells with a fibroblastic morphology to titanium. Here, we have used a titanium alloy (Ti-6AL-4V) processed by alkali treatment to demonstrate the impact of hydrophilicity on the adhesion of primary human gingival fibroblast and bone cells. Also included were the osteosarcoma and fibroblastoma cell lines, MG63 and L929, respectively. Cell adhesion was determined by scanning electron microscopy. We also measured viability, proliferation, and protein synthesis of the adherent cells. Alkali treatment increased the adhesion of gingival fibroblasts, bone cells, and the two cell lines when seeded onto the titanium alloy surface for 1 h. At 3 h, no significant changes in cell adhesion were observed. Cells grown for 1 day on the titanium alloy surfaces processed by alkali treatment behave similarly to untreated controls with regard to viability, proliferation, and protein synthesis. Based on these preliminary In vitro findings, we conclude that alkali treatment can support the early adhesion of cells with fibroblastic characteristics to a titanium alloy surface. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide
NASA Astrophysics Data System (ADS)
Gökçe, Aytaç Gürhan; Ersan, Fatih
2017-01-01
First-principles plane wave calculations have been performed to study the adsorption of alkali and alkaline earth metals on monolayer germanium carbide (GeC). We found that the favourable adsorption sites on GeC sheet for single alkali and alkaline earth adatoms are generally different from graphene or germanene. Among them, Mg, Na and their dimers have weakly bounded to GeC due to their closed valence electron shells, so they may have high mobility on GeC. Two different levels of adatom coverage (? and ?) have been investigated and we concluded that different electronic structures and magnetic moments for both coverages owing to alkali and alkaline earth atoms have long range electrostatic interactions. Lithium atom prefers to adsorbed on hollow site similar to other group-IV monolayers and the adsorption results in metallisation of GeC instead of semiconducting behaviour. Na and K adsorption can induce 1 ? total magnetic moment on GeC structures and they have shown semiconductor property which may have potential use in spintronic devices. We also showed that alkali or alkaline earth metal atoms can form dimer on GeC sheet. Calculated adsorption energies suggest that clustering of alkali and alkaline earth atoms is energetically favourable. All dimer adsorbed GeC systems have nonmagnetic semiconductor property with varying band gaps from 0.391 to 1.311 eV which are very suitable values for various device applications.
System and method for determining an ammonia generation rate in a three-way catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Min; Perry, Kevin L; Kim, Chang H
A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.
Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon
2017-06-01
We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.
Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors.
Tang, Qianqiu; Wang, Wenqiang; Wang, Gengchao
2016-10-05
Research on stretchable energy-storage devices has been motivated by elastic electronics, and considerable research efforts have been devoted to the development of stretchable electrodes. However, stretchable electrolytes, another critical component in stretchable devices, have earned quite little attention, especially the alkali-resistant ones. Here, we reported a novel stretchable alkali-resistant electrolyte made of a polyolefin elastomer porous membrane supported potassium hydroxide-potassium polyacrylate (POE@KOH-PAAK). The as-prepared electrolyte shows a negligible plastic deformation even after 1000 stretching cycles at a strain of 150% as well as a high conductivity of 0.14 S cm -1 . It also exhibits excellent alkali resistance, which shows no obvious degradation of the mechanical performance after immersion in 2 M KOH for up to 2 weeks. To demonstrate its good properties, a high-performance stretchable supercapacitor is assembled using a carbon-nanotube-film-supported NiCo 2 O 4 (CNT@NiCo 2 O 4 ) as the cathode and Fe 2 O 3 (CNT@Fe 2 O 3 ) as the anode, proving great application promise of the stretchable alkali-resistant electrolyte in stretchable energy-storage devices.
High temperature alkali corrosion of ceramics in coal gas: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.
1994-12-31
There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less
Recovery of Gallium from Secondary V-Recycling Slag by Alkali Fusion
NASA Astrophysics Data System (ADS)
Gao, Lei; Shi, Zhe; Zhang, Gui-fang
Secondary V-recycling slag, an industrial waste containing high gallium is being dumped continuously, which causes the loss of gallium. Thus, the alkali fusion process was employed to recover gallium from this slag. The effects factors on extraction of gallium such as roasting temperature, roasting time, alkali fusion agent concentration and CaO concentration were investigated in the paper. The experimental results indicated that excessive roasting temperature and roasting time is unfavorable to the recovery rate of gallium. The appropriate roasting temperature and duration are 1000°C and 2 hours, respectively; The appropriate proportioning of Na2CO3: NaOH is 2:1 when the concentration of alkali fusion agent weighs 0.4 times the mass of the slag; In order to remove SiO2 from the leaching liquor, CaO should be used as an additive in the roasting process. The appropriate concentration of CaO should weigh 0.2 times the mass of the slag. Employing these optimal alkali fusion conditions in the roasting process, gallium recovery is above 90%.
Temperature dependent mobility measurements of alkali earth ions in superfluid helium
NASA Astrophysics Data System (ADS)
Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.
1998-05-01
Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.
NASA Astrophysics Data System (ADS)
Yu, Jie; He, Dedong; Chen, Dingkai; Liu, Jiangping; Lu, Jichang; Liu, Feng; Liu, Pan; Zhao, Yutong; Xu, Zhizhi; Luo, Yongming
2017-10-01
Na-modified HZSM-5 catalysts with different Na loading amounts were prepared by incipient-wetness impregnation method and their catalytic activities for methyl mercaptan catalytic elimination were analyzed. XRD, N2 adsorption-desorption, NH3-TPD, CO2-TPD and FT-IR measurements were carried out to investigate the effects of modification of alkali metal Na on the physicochemical properties of the HZSM-5 zeolite catalyst. Research results illustrated that the introduction of alkali metal Na can improve catalytic activity for CH3SH catalytic elimination. CH3SH can be almost completely converted over 3%-Na/HZSM-5 at 450 °C compared to pure HZSM-5 at 600 °C based on our experimental results and the results from previous research. The improved catalytic activity could be attributed to the regulated acid-base properties of the HZSM-5 catalysts by doping with alkali metal Na. High alkali concentration treatment, however, may destroy the framework structure of the catalyst sample, thus causing the poor stability performance of the obtained catalyst.
Mixed Polyanion Glass Cathodes: Mixed Alkali Effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kercher, A. K.; Chapel, A. S.; Kolopus, J. A.
2017-01-01
In lithium-ion batteries, mixed polyanion glass cathodes have demonstrated high capacities (200-500 mAh/g) by undergoing conversion and intercalation reactions. Mixed polyanion glasses typically have the same fundamental issues as other conversion cathodes, i.e.: large hysteresis, capacity fade, and 1st-cycle irreversible loss. A key advantage of glass cathodes is the ability to tailor their composition to optimize the desired physical properties and electrochemical performance. The strong dependence of glass physical properties (e.g., ionic diffusivity, electrical conductivity, and chemical durability) on the composition of alkali mixtures in a glass is well known and has been named the mixed alkali effect. The mixedmore » alkali effect on battery electrochemical properties is reported here for the first time. Depending on glass composition, the mixed alkali effect is shown to improve capacity retention during cycling (from 39% to 50% after 50 cycle test), to reduce the 1st-cycle irreversible loss (from 41% to 22%), and improve the high power (500 mA/g) capacity (from 50% to 67% of slow discharge capacity).« less
Ruan, Chunhai; Huang, Hai; Rodgers, M T
2008-02-01
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.
Huang, Xiao; Zhuang, RanLiang; Muhammad, Faheem; Yu, Lin; Shiau, YanChyuan; Li, Dongwei
2017-02-01
Chromite Ore Processing Residue (COPR) produced in chromium salt production process causes a great health and environmental risk with Cr(VI) leaching. The solidification/stabilization (S/S) of COPR using alkali-activated blast furnace slag (BFS) and fly ash (FA) based cementitious material was investigated in this study. The optimum percentage of BFS and FA for preparing the alkali-activated BFS-FA binder had been studied. COPR was used to replace the amount of BFS-FA or ordinary Portland cement (OPC) for the preparation of the cementitious materials, respectively. The immobilization effect of the alkali-activated BFS-FA binder on COPR was much better than that of OPC based cementitious material. The potential for reusing the final treatment product as a readily available construction material was evaluated. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscope with energy dispersive spectrometer (SEM-EDS) analysis indicated that COPR had been effectively immobilized. The solidification mechanism is the combined effect of reduction, ion exchange, precipitation, adsorption and physical fixation in the alkali-activated composite cementitious material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Isomolybdate conversion coatings
NASA Technical Reports Server (NTRS)
Minevski, Zoran (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)
2002-01-01
A conversion coating solution and process forms a stable and corrosion-resistant layer on metal substrates or layers or, more preferably, on a boehmite layer or other base conversion coating. The conversion coating process involves contacting the substrate, layer or coating with an aqueous alkali metal isomolybdate solution in order to convert the surface of the substrate, layer or coating to a stable conversion coating. The aqueous alkali metal molybdates are selected from sodium molybdate (Na.sub.2 MoO.sub.4), lithium molybdate (Li.sub.2 MoO.sub.4), potassium molybdate (K.sub.2 MoO.sub.4), or combinations thereof, with the most preferred alkali metal molybdate being sodium molybdate. The concentration of alkali metal molybdates in the solution is preferably less than 5% by weight. In addition to the alkali metal molybdates, the conversion coating solution may include alkaline metal passivators selected from lithium nitrate (LiNO.sub.3), sodium nitrate (NaNO.sub.3), ammonia nitrate (NH.sub.4 NO.sub.3), and combinations thereof; lithium chloride, potassium hexafluorozirconate (K.sub.2 ZrF.sub.6) or potassium hexafluorotitanate (K.sub.2 TiF.sub.6).
Synchronous radio-frequency FM signal generator using direct digital synthesizers
NASA Astrophysics Data System (ADS)
Arablu, Masoud; Kafashi, Sajad; Smith, Stuart T.
2018-04-01
A novel Radio-Frequency Frequency-Modulated (RF-FM) signal generation method is introduced and a prototype circuit developed to evaluate its functionality and performance. The RF-FM signal generator uses a modulated, voltage-controlled time delay to correspondingly modulate the phase of a 10 MHz sinusoidal reference signal. This modulated reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit resulting in an FM signal at its output. The modulating signal that is input to the voltage-controlled time delay circuit is generated by another DDS that is synchronously clocked by the same 10 MHz sine wave signal before modulation. As a consequence, all of the digital components are timed from a single sine wave oscillator that forms the basis of all timing. The resultant output signal comprises a center, or carrier, frequency plus a series of phase-synchronized sidebands having exact integer harmonic frequency separation. In this study, carrier frequencies ranging from 10 MHz to 70 MHz are generated with modulation frequencies ranging from 10 kHz to 300 kHz. The captured spectra show that the FM signal characteristics, amplitude and phase, of the sidebands and the modulation depth are consistent with the Jacobi-Anger expansion for modulated harmonic signals.
Cold electron beams from cryocooled, alkali antimonide photocathodes
Cultrera, L.; Karkare, S.; Lee, H.; ...
2015-11-30
In this study we report on the generation of cold electron beams using a Cs 3Sb photocathode grown by codeposition of Sb and Cs. By cooling the photocathode to 90 K we demonstrate a significant reduction in the mean transverse energy validating the long-standing speculation that the lattice temperature contributes to limiting the mean transverse energy or intrinsic emittance near the photoemission threshold, opening new frontiers in generating ultrabright beams. At 90 K, we achieve a record low intrinsic emittance of 0.2 μm (rms) per mm of laser spot diameter from an ultrafast (subpicosecond) photocathode with quantum efficiency greater thanmore » 7 × 10 -5 using a visible laser wavelength of 690 nm.« less
Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source
NASA Astrophysics Data System (ADS)
Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.
2016-09-01
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge. [40 FR 48302, Oct. 14, 1975] ...
Susman, Sherman; Volin, Kenneth J.
1984-01-01
An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H. (Inventor)
1993-01-01
An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.
Ab initio study of the alkali and alkaline-earth monohydroxides
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.
1986-01-01
A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.
NASA Astrophysics Data System (ADS)
Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin
2017-05-01
The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.
THE ACTION OF ALKALIES ON PEPTIDES AND ON KETOPIPERAZINES
Levene, P. A.; Pfaltz, M. H.
1925-01-01
1. The tripeptide glycyl-levo-alanyl-glycine in solution of either one or ten equivalents of alkali does not undergo racemization on standing. 2. The dipeptide levo-alanyl-glycine under the conditions given in (1) does not undergo racemization. 3. In ketopiperazines, levo-alanyl-glycine anhydride and in levo-prolyl-glycine anhydride under the influence of dilute alkalies, racemization takes place. 4. Racemization in the present experiments was never complete. The degree of racemization seems to depend, on the one hand, on the stability of the ketopiperazine ring; on the other, on the concentration of the alkali. 5. The significance of these observations will depend on the outcome of the work on a larger number of polypeptides and ketopiperazines. The work is now in progress in this laboratory. PMID:19872187
Electrical properties of alkali-activated slag composite with combined graphite/CNT filler
NASA Astrophysics Data System (ADS)
Rovnaník, P.; Míková, M.; Kusák, I.
2017-10-01
Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.
Neutron beam effects on spin-exchange-polarized 3He.
Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S
2008-08-22
We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.
Macroscopic and mesoscopic approach to the alkali-silica reaction in concrete
NASA Astrophysics Data System (ADS)
Grymin, Witold; Koniorczyk, Marcin; Pesavento, Francesco; Gawin, Dariusz
2018-01-01
A model of the alkali-silica reaction, which takes into account couplings between thermal, hygral, mechanical and chemical phenomena in concrete, has been discussed. The ASR may be considered at macroscopic or mesoscopic scale. The main features of each approach have been summarized and development of the model for both scales has been briefly described. Application of the model to experimental results for both scales has been presented. Even though good accordance of the model has been obtained for both approaches, consideration of the model at the mesoscopic scale allows to model different mortar mixes, prepared with the same aggregate, but of different grain size, using the same set of parameters. It enables also to predict reaction development assuming different alkali sources, such as de-icing salts or alkali leaching.
Alkali Metal/Salt Thermal-Energy-Storage Systems
NASA Technical Reports Server (NTRS)
Phillips, Wayne W.; Stearns, John W.
1987-01-01
Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.
Upgrading platform using alkali metals
Gordon, John Howard
2014-09-09
A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.
ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION
Thunaes, A.; Brown, E.A.; Rabbitts, A.T.
1957-11-12
A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.
The oil displacement effect evaluation of Different Displacing systems
NASA Astrophysics Data System (ADS)
Wang, Keliang; Zhang, Bowen; Li, Gen
2018-02-01
During the chemical flooding, the surfactant and the alkali play an emulsifying role. The emulsification can not only improve the displacement efficiency, but also expand the swept volume by the mechanism of emulsifying trapping. We select some chemical flooding systems including different kinds of surfactants, alkali/alkali-free and different emulsion degrees to make the comparative experiment and draw the conclusion that it is an effective way to enhance the recovery by increasing the emulsion stability without having to pursue the ultra-low interfacial tension.
.sup.123m Te-Labeled biochemicals and method of preparation
Knapp, Jr., Furn F.
1980-01-01
A novel class of .sup.123m Te-labeled steroids and amino acids is provided by the method of reacting a .sup.123m Te symmetric diorgano ditelluride with a hydride reducing agent and a source of alkali metal ions to form an alkali metal organo telluride. The alkali metal organo telluride is reacted with a primary halogenated steroidal side chain, amino acid, or amino acid precursor such as hydantoin. The novel compounds are useful as biological tracers and as organal imaging agents.
Irague, Romain; Topham, Christopher M.; Martineau, Nelly; Baylac, Audrey; Auriol, Clément; Walther, Thomas; François, Jean-Marie; Remaud-Siméon, Magali
2018-01-01
An end-point ADP/NAD+ acid/alkali assay procedure, directly applicable to library screening of any type of ATP-utilising/ADP producing enzyme activity, was implemented. Typically, ADP production is coupled to NAD+ co-enzyme formation by the conventional addition of pyruvate kinase and lactate dehydrogenase. Transformation of enzymatically generated NAD+ into a photometrically active alkali derivative product is then achieved through the successive application of acidic/alkali treatment steps. The assay was successfully miniaturized to search for malate kinase activity in a structurally-guided library of LysC aspartate kinase variants comprising 6,700 clones. The screening procedure enabled the isolation of nine positive variants showing novel kinase activity on (L)-malate, the best mutant, LysC V115A:E119S:E434V exhibited strong substrate selectivity for (L)-malate compared to (L)-aspartate with a (kcat/Km)malate/(kcat/Km)aspartate ratio of 86. Double mutants V115A:E119S, V115A:E119C and E119S:E434V were constructed to further probe the origins of stabilising substrate binding energy gains for (L)-malate due to mutation. The introduction of less sterically hindering side-chains in engineered enzymes carrying E119S and V115A mutations increases the effective volume available for substrate binding in the catalytic pocket. Improved binding of the (L)-malate substrate may be assisted by less hindered movement of the Phe184 aromatic side-chain. Additional favourable long-range electostatic effects on binding arising from the E434V surface mutation are conditionally dependent upon the presence of the V115A mutation close to Phe184 in the active-site. PMID:29462203
NASA Astrophysics Data System (ADS)
Suikkanen, E.; Rämö, O. T.
2017-12-01
Peralkaline to marginally metaluminous alkali-feldspar syenites and quartz alkali-feldspar syenites are hosted by subalkaline, ferroan rapakivi granites in the 1644 Ma Suomenniemi complex of southeastern Finland. These alkali syenites form NW-oriented dikes and small (< 10 m in diameter) bodies that are distinguished from the surrounding granites by their color (violet-red), general lack of quartz, as well as pronounced interstitial character of mafic minerals. Microtextures of the syenites imply pervasive alkali metasomatism and growth of secondary sodic and oxidized ferromagnesian minerals. Both subsolvus ( Ab99 and Or90-100Ab0-10) and hypersolvus (Or40-60Ab40-60) feldspar assemblages are present and display red luminescence characteristic of alkali feldspar recrystallized in the presence of an oxidizing fluid. In the marginally metaluminous syenites, primary magmatic hastingsite has been metasomatized to ferro-actinolite or decomposed to ferro-ferri-hornblende and magnetite. In some of the peralkaline syenites, primary hastingsite was replaced by magnetite and feldspars and has been overgrown by aegirine-augite and riebeckite. Sodic clinopyroxene (sodic augite-aegirine) is the most common and, in many cases, the only ferromagnesian silicate in these syenites. Three peralkaline alkali-feldspar syenites analyzed for zircon U-Pb and O isotopic compositions by single-grain SIMS have zircon 207Pb/206Pb ages of 1645 ± 5, 1642 ± 4 and 1644 ± 4 Ma, and zircon δ18OVSMOW values of 8.04 ± 0.18, 8.19 ± 0.17 and 8.26 ± 0.17‰. Whole-rock Nd isotope data imply an overall εNd(1644 Ma) value of ca. - 1.5 for the syenites. These ages and isotopic fingerprints are, within error, identical to those of the subalkaline granites of the complex. We propose that the Suomenniemi alkali-feldspar syenites are episyenites, formed as the result of pervasive local metasomatism of the subalkaline granites caused by high-temperature oxidizing peralkaline fluids. The process led to major geochemical changes, e.g., addition of Na, Al and Fe3 +, depletion of Si and Fe2 +, and partial to complete recrystallization of the granites along fluid pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kincs, J.; Cho, J.; Bloyer, D.
1994-09-01
The T{sub g}`s and heat capacity functions have been measured for a series of Na{sub 2}S + B{sub 2}S{sub 3} glasses for the first time. Unlike the alkali borates, T{sub g} decreases rapidly as Na{sub 2}S is added to B{sub 2}S{sub 3}. This effect, even in the presence of a rapidly increasing fraction of tetrahedrally coordinated borons, has been associated with the ``over crosslinking`` effect of the sulfide ion. Unlike the borate glasses where each added oxygen produces two tetrahedral borons, the conversion rate for the thioborates is between four and six. This behavior is suggested to result in themore » formation of local tightly-bonded molecular-like structures that exhibit less long-range network bonding than the alkali borite glasses. A a result, T{sub g} decreases with added alkali in alkali thioborates rather than increases as in the alkali borate glasses. The change in heat capacity at T{sub g}, {Delta}C{sub p}(T{sub g}) has been carefully measured and is found to also decrease dramatically as alkali sulfide is added to the glass. Again this effect is opposite to the trends observed for the alkali borate glasses. The decreasing {Delta}C{sub p}(T{sub g}) occurs even in the presence of a decreasing T{sub g}. The authors have tentatively associated the diminishing {Delta}C{sub p}(T{sub g}) values to the decreasing density of the configurational states above T{sub g}. This is attributed to the high coordination number and site specificity caused by the added alkali sulfide. The glassy state heat capacities were analyzed and found to reach {approximately}90% of the classical limiting DuLong-Petit value just below T{sub g} for all glasses. This was used to suggest that the diminishing {Delta}C{sub p}(T{sub g}) values are associated with a unique behavior in the system to become a liquid with very little change in the density of configurational states.« less
MAMA detector systems - A status report
NASA Technical Reports Server (NTRS)
Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.
1989-01-01
Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.
Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje
2015-01-01
Summary Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems. PMID:26199853
Pfleger, Nicole; Bauer, Thomas; Martin, Claudia; Eck, Markus; Wörner, Antje
2015-01-01
Thermal energy storage (TES) is capable to reduce the demand of conventional energy sources for two reasons: First, they prevent the mismatch between the energy supply and the power demand when generating electricity from renewable energy sources. Second, utilization of waste heat in industrial processes by thermal energy storage reduces the final energy consumption. This review focuses mainly on material aspects of alkali nitrate salts. They include thermal properties, thermal decomposition processes as well as a new method to develop optimized salt systems.
1994-02-01
In potassium iodide electrolyte, the usual "three-missing-row" (1 x 3) structure is seen to be generated by single gold atomic-row segments shifting...observed, involving the intermediate local formation of "one-missing-row" (I x 3) domains by removal of one-third of the top layer gold rows onto nearby...structure is achieved by aggregation of the displaced monoatomic row segments. The mechanistic value of following atomic-level reconstruction processes by
High-Rydberg Xenon Submillimeter-Wave Detector
NASA Technical Reports Server (NTRS)
Chutjian, Ara
1987-01-01
Proposed detector for infrared and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based detector potential for infrared astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.
1991-03-01
common breeching and can be routed to the wet -scrubber or to a bypass stack. The scrubber is a double-alkali flue - gas desulfurization system using...air. B,,., = proportion by volume of water vapor in F, = a factor representing a ratio of the vol- the stack gas . ume of wet flue gases generated to...1 s- .- - Dtstr’, . iii i Illustrations Figure Title Page 1 View of Scrubbers and Bypass Stack 3 2 Flue Gas Flow Diagram 4 3 ORSAT Sampling Train
Metallic anodes for next generation secondary batteries.
Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk; Kim, Jae-Hun; Park, Cheol-Min; Sohn, Hun-Joon
2013-12-07
Li-air(O2) and Li-S batteries have gained much attention recently and most relevant research has aimed to improve the electrochemical performance of air(O2) or sulfur cathode materials. However, many technical problems associated with the Li metal anode have yet to be overcome. This review mainly focuses on the electrochemical behaviors and technical issues related to metallic Li anode materials as well as other metallic anode materials such as alkali (Na) and alkaline earth (Mg) metals, including Zn and Al when these metal anodes were employed for various types of secondary batteries.
Dynamic Imbalance Would Counter Offcenter Thrust
NASA Technical Reports Server (NTRS)
Mccanna, Jason
1994-01-01
Dynamic imbalance generated by offcenter thrust on rotating body eliminated by shifting some of mass of body to generate opposing dynamic imbalance. Technique proposed originally for spacecraft including massive crew module connected via long, lightweight intermediate structure to massive engine module, such that artificial gravitation in crew module generated by rotating spacecraft around axis parallel to thrust generated by engine. Also applicable to dynamic balancing of rotating terrestrial equipment to which offcenter forces applied.
Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L
2013-06-14
Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
NaK Variable Conductance Heat Pipe for Radioisotope Stirling Systems
NASA Technical Reports Server (NTRS)
Tarau, Calin; Anderson, William G.; Walker, Kara
2008-01-01
In a Stirling radioisotope power system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides most of this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending use of that convertor for the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling convertor. In the design of the VCHP for the Advanced Stirling Radioisotope Generator, the VCHP reservoir temperature can vary between 40 and 120 C. While sodium, potassium, or cesium could be used as the working fluid, their melting temperatures are above the minimum reservoir temperature, allowing working fluid to freeze in the reservoir. In contrast, the melting point of NaK is -12 C, so NaK can't freeze in the reservoir. One potential problem with NaK as a working fluid is that previous tests with NaK heat pipes have shown that NaK heat pipes can develop temperature non-uniformities in the evaporator due to NaK's binary composition. A NaK heat pipe was fabricated to measure the temperature non-uniformities in a scale model of the VCHP for the Stirling Radioisotope system. The temperature profiles in the evaporator and condenser were measured as a function of operating temperature and power. The largest delta T across the condenser was 2S C. However, the condenser delta T decreased to 16 C for the 775 C vapor temperature at the highest heat flux applied, 7.21 W/ square cm. This decrease with increasing heat flux was caused by the increased mixing of the sodium and potassium in the vapor. This temperature differential is similar to the temperature variation in this ASRG heat transfer interface without a heat pipe, so NaK can be used as the VCHP working fluid.
ULF Generation by Modulated Ionospheric Heating
NASA Astrophysics Data System (ADS)
Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.
2013-12-01
Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.
The structure of liquid alkali nitrates and nitrites
Wilding, Martin C.; Wilson, Mark; Ribeiro, Mauro C. C.; ...
2017-07-26
State of the art high energy X-ray diffraction experiments and simulation models (employing a description of charge transfer) are applied to pure molten alkali nitrates and nitrites and uncover significant emerging structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, Md Abdullah A., E-mail: mmamu001@odu.edu; Elmustafa, Abdelmageed A.; Hernandez-Garcia, Carlos
The alkali species Cs and K were codeposited using an effusion source, onto relatively thick layers of Sb (50 nm to ∼7 μm) grown on GaAs and Ta substrates inside a vacuum chamber that was baked and not-vented, and also baked and vented with clean dry nitrogen but not rebaked. The characteristics of the Sb films, including sticking probability, surface roughness, grain size, and crystal properties were very different for these conditions, yet comparable values of photocathode yield [or quantum efficiency (QE)] at 284 V were obtained following codeposition of the alkali materials. Photocathodes manufactured with comparatively thick Sb layers exhibited the highestmore » QE and the best 1/e lifetime. The authors speculate that the alkali codeposition enabled optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Hernandez-Garcia, Carlos
The alkali species Cs and K were codeposited using an effusion source, onto relatively thick layers of Sb (50 nm to ~7 μm) grown on GaAs and Ta substrates inside a vacuum chamber that was baked and not-vented, and also baked and vented with clean dry nitrogen but not rebaked. The characteristics of the Sb films, including sticking probability, surface roughness, grain size, and crystal properties were very different for these conditions, yet comparable values of photocathode yield [or quantum efficiency (QE)] at 284 V were obtained following codeposition of the alkali materials. Photocathodes manufactured with comparatively thick Sb layersmore » exhibited the highest QE and the best 1/e lifetime. As last, the authors speculate that the alkali codeposition enabled optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali materials.« less