Liu, Zhe; Jiang, Liwei; Zheng, Yisong
2015-02-04
By means of an appropriate wave function connection condition, we study the electronic structure of a line defect superlattice of graphene with the Dirac equation method. We obtain the analytical dispersion relation, which can simulate well the tight-binding numerical result about the band structure of the superlattice. Then, we generalize this theoretical method to study the electronic transmission through a potential barrier where multiple line defects are periodically patterned. We find that there exists a critical incident angle which restricts the electronic transmission through multiple line defects within a specific incident angle range. The critical angle depends sensitively on the potential barrier height, which can be modulated by a gate voltage. As a result, non-trivial transmissions of K and K' valley electrons are restricted, respectively, in two distinct ranges of the incident angle. Our theoretical result demonstrates that a gate voltage can act as a feasible measure to tune the valley polarization when electrons tunnel through multiple line defects.
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang
2018-06-01
In this paper, thermal-wave radar imaging (TWRI) is introduced to detect debonding defects in SiC-coated Ni-based superalloy plates. Linear frequency modulation signal (chirp) is used as the excitation signal which has a large time-bandwidth product. Artificial debonding defects in SiC coating are excited by the laser beam with the light intensity modulated by a chirp signal. Cross-correlation algorithm and chirp lock-in algorithm are introduced to extract the thermal-wave signal characteristic. The comparative experiment between TWRI reflection mode and transmission mode was carried out. Experiments are conducted to investigate the influence of laser power density, chirp period, and excitation frequency. Experimental results illustrate that chirp lock-in phase has a better detection capability than other characteristic parameters. TWRI can effectively detect simulated debonding defects of SiC-coated Ni-based superalloy plates.
NASA Astrophysics Data System (ADS)
Pandey, R. K.; Sathiyanarayanan, Rajesh; Kwon, Unoh; Narayanan, Vijay; Murali, K. V. R. M.
2013-07-01
We investigate the physical properties of a portion of the gate stack of an ultra-scaled complementary metal-oxide-semiconductor (CMOS) device. The effects of point defects, such as oxygen vacancy, oxygen, and aluminum interstitials at the HfO2/TiN interface, on the effective work function of TiN are explored using density functional theory. We compute the diffusion barriers of such point defects in the bulk TiN and across the HfO2/TiN interface. Diffusion of these point defects across the HfO2/TiN interface occurs during the device integration process. This results in variation of the effective work function and hence in the threshold voltage variation in the devices. Further, we simulate the effects of varying the HfO2/TiN interface stoichiometry on the effective work function modulation in these extremely-scaled CMOS devices. Our results show that the interface rich in nitrogen gives higher effective work function, whereas the interface rich in titanium gives lower effective work function, compared to a stoichiometric HfO2/TiN interface. This theoretical prediction is confirmed by the experiment, demonstrating over 700 meV modulation in the effective work function.
Wood, M. W.; Breitschwerdt, E. B.; Nordone, S. K.; Linder, K. E.; Gookin, J. L.
2013-01-01
Summary The urinary bladder is a common site of bacterial infection with a majority of cases attributed to uropathogenic Escherichia coli. Sequels of urinary tract infections (UTIs) include the loss of urothelial barrier function and subsequent clinical morbidity secondary to the permeation of urine potassium, urea and ammonia into the subepithelium. To date there has been limited research describing the mechanism by which this urothelial permeability defect develops. The present study models acute uropathogenic E. coli infection in vitro using intact canine bladder mucosa mounted in Ussing chambers to determine whether infection induces primarily a transcellular or paracellular permeability defect. The Ussing chamber sustains tissue viability while physically separating submucosal and lumen influences, so this model is ideal for quantitative measurement of transepithelial electrical resistance (TER) to assess alterations of urothelial barrier function. Using this model, changes in both tissue ultrastructure and TER indicated that uropathogenic E. coli infection promotes a paracellular permeability defect associated with the failure of umbrella cell tight junction formation and umbrella cell sloughing. In addition, bacterial interaction with the urothelium promoted secretion of cytokines from the urinary bladder with bioactivity capable of modulating epithelial barrier function including tumour necrosis factor-α, interleukin (IL)-6 and IL-15. IL-15 secretion by the infected bladder mucosa is a novel finding and, because IL-15 plays key roles in reconstitution of tight junction function in damaged intestine, this study points to a potential role for IL-15 in UTI-induced urothelial injury. PMID:22014415
Debye screening in single-molecule carbon nanotube field-effect sensors.
Sorgenfrei, Sebastian; Chiu, Chien-Yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L
2011-09-14
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough gate potentials, the target DNA is completely repelled and RTN is suppressed.
Debye screening in single-molecule carbon nanotube field-effect transistors
Sorgenfrei, Sebastian; Chiu, Chien-yang; Johnston, Matthew; Nuckolls, Colin; Shepard, Kenneth L.
2013-01-01
Point-functionalized carbon nanotube field-effect transistors can serve as highly sensitive detectors for biomolecules. With a probe molecule covalently bound to a defect in the nanotube sidewall, two-level random telegraph noise (RTN) in the conductance of the device is observed as a result of a charged target biomolecule binding and unbinding at the defect site. Charge in proximity to the defect modulates the potential (and transmission) of the conductance-limiting barrier created by the defect. In this Letter, we study how these single-molecule electronic sensors are affected by ionic screening. Both charge in proximity to the defect site and buffer concentration are found to affect RTN amplitude in a manner that follows from simple Debye length considerations. RTN amplitude is also dependent on the potential of the electrolyte gate as applied to the reference electrode; at high enough repulsive potentials, the target DNA is completely repelled and RTN is suppressed. PMID:21806018
Nanoscale charge distribution and energy band modification in defect-patterned graphene.
Wang, Shengnan; Wang, Rui; Wang, Xiaowei; Zhang, Dongdong; Qiu, Xiaohui
2012-04-21
Defects were introduced precisely to exfoliated graphene (G) sheets on a SiO(2)/n(+) Si substrate to modulate the local energy band structure and the electron pathway using solution-phase oxidation followed by thermal reduction. The resulting nanoscale charge distribution and band gap modification were investigated by electrostatic force microscopy and spectroscopy. A transition phase with coexisting submicron-sized metallic and insulating regions in the moderately oxidized monolayer graphene were visualized and measured directly. It was determined that the delocalization of electrons/holes in a graphene "island" is confined by the surrounding defective C-O matrix, which acts as an energy barrier for mobile charge carriers. In contrast to the irreversible structural variations caused by the oxidation process, the electrical properties of graphene can be restored by annealing. The defect-patterned graphene and graphene oxide heterojunctions were further characterized by electrical transport measurement.
Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya
2015-01-01
Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.
The Use of Feature Parameters to Asses Barrier Properties of ALD coatings for Flexible PV Substrates
NASA Astrophysics Data System (ADS)
Blunt, Liam; Robbins, David; Fleming, Leigh; Elrawemi, Mohamed
2014-03-01
This paper reports on the recent work carried out as part of the EU funded NanoMend project. The project seeks to develop integrated process inspection, cleaning, repair and control systems for nano-scale thin films on large area substrates. In the present study flexible photovoltaic films have been the substrate of interest. Flexible PV films are the subject of significant development at present and the latest films have efficiencies at or beyond the level of Si based rigid PV modules. These flexible devices are fabricated on polymer film by the repeated deposition, and patterning, of thin layer materials using roll-to-roll processes, where the whole film is approximately 3um thick prior to encapsulation. Whilst flexible films offer significant advantages in terms of mass and the possibility of building integration (BIPV) they are at present susceptible to long term environmental degradation as a result of water vapor transmission through the barrier layers to the CIGS (Copper Indium Gallium Selenide CuInxGa(1-x)Se2) PV cells thus causing electrical shorts and efficiency drops. Environmental protection of the GIGS cell is provided by a thin (40nm) barrier coating of Al2O3. The highly conformal aluminium oxide barrier layer is produced by atomic layer deposition (ALD) where, the ultra-thin Al2O3 layer is deposited onto polymer thin films before these films encapsulate the PV cell. The surface of the starting polymer film must be of very high quality in order to avoid creating defects in the device layers. Since these defects reduce manufacturing yield, in order to prevent them, a further thin polymer coating (planarization layer) is generally applied to the polymer film prior to deposition. The presence of surface irregularities on the uncoated film can create defects within the nanometre-scale, aluminium oxide, barrier layer and these are measured and characterised. This paper begins by reporting the results of early stage measurements conducted to characterise the uncoated and coated polymer film surface topography using feature parameter analysis. The measurements are carried out using a Taylor Hobson Coherence Correlation Interferometer an optical microscope and SEM. Feature parameter analysis allows the efficient separation of small insignificant defects from large defects. The presence of both large and insignificant defects is then correlated with the water vapour transmission rate as measured on representative sets of films using at standard MOCON test. The paper finishes by drawing conclusions based on analysis of WVTR and defect size, where it is postulated that small numbers of large defects play a significant role in higher levels of WVTR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Ali, G.N.; Mikhov, M.K.
2005-01-01
Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang,Y.; Ali, G.; Mikhov, M.
2005-01-01
Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin
In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less
Panda, Saurav; Sankari, Malaiappan; Satpathy, Anurag; Jayakumar, Doraiswamy; Mozzati, Marco; Mortellaro, Carmen; Gallesio, Giorgia; Taschieri, Silvio; Del Fabbro, Massimo
2016-05-01
Autologous platelet-rich fibrin (PRF) and barrier membranes in the treatment of intrabony defects in chronic periodontitis patients have shown significant clinical benefits. This study evaluates the additive effect of autologous PRF in combination with a barrier membrane versus the use of barrier membrane alone for the treatment of intrabony defects in chronic periodontitis patients. A randomized split-mouth design was used. Sixteen patients with 32 paired intrabony defects were included. In each patient 1 defect was treated using a resorbable collagen membrane along with PRF (test group) and the other defect by guided tissue regeneration alone (control group). The following clinical parameters were measured at baseline and after 9 months: plaque index, modified sulcus bleeding index, probing pocket depth, clinical attachment level, and gingival marginal level. The radiographic defect depth was also assessed at baseline and after 9 months. Test group showed a statistically significant improvement for probing depth (P = 0.002), clinical attachment level (P = 0.001), and radiographic defect depth (P < 0.001) after 9 months as compared with the control sites. Radiographic defect depth reduction was 58.19 ± 13.24% in the test group as compared with 24.86 ± 9.94% reduction in the control group. The adjunctive use of PRF in combination with barrier membrane is more effective in the treatment of intrabony defects in chronic periodontitis as compared with barrier membrane alone.
Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K
2013-12-19
Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Substrate Vibrations as Promoters of Chemical Reactivity on Metal Surfaces.
Campbell, Victoria L; Chen, Nan; Guo, Han; Jackson, Bret; Utz, Arthur L
2015-12-17
Studies exploring how vibrational energy (Evib) promotes chemical reactivity most often focus on molecular reagents, leaving the role of substrate atom motion in heterogeneous interfacial chemistry underexplored. This combined theoretical and experimental study of methane dissociation on Ni(111) shows that lattice atom motion modulates the reaction barrier height during each surface atom's vibrational period, which leads to a strong variation in the reaction probability (S0) with surface temperature (Tsurf). State-resolved beam-surface scattering studies at Tsurf = 90 K show a sharp threshold in S0 at translational energy (Etrans) = 42 kJ/mol. When Etrans decreases from 42 kJ/mol to 34 kJ/mol, S0 decreases 1000-fold at Tsurf = 90 K, but only 2-fold at Tsurf = 475 K. Results highlight the mechanism for this effect, provide benchmarks for DFT calculations, and suggest the potential importance of surface atom induced barrier height modulation in heterogeneously catalyzed reactions, particularly on structurally labile nanoscale particles and defect sites.
Mechanism of Na accumulation at extended defects in Si from first-principles
NASA Astrophysics Data System (ADS)
Park, Ji-Sang; Chan, Maria K. Y.
2018-04-01
Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.
Transition mechanism of Stone-Wales defect in armchair edge (5,5) carbon nanotube
NASA Astrophysics Data System (ADS)
Setiadi, Agung; Suprijadi
2015-04-01
We performed first principles calculations of Stone-Wales (SW) defects in armchair edge (5,5) carbon nanotube (CNT) by the density functional theory (DFT). Stone Wales (SW) defect is one kind of topological defect on the CNT. There are two kind of SW defect on the armchair edge (5,5) CNT, such as longitudinal and circumference SW defect. Barrier energy in the formation of SW defects is a good consideration to become one of parameter in controlling SW defects on the CNT. Our calculation results that a longitudinal SW defect is more stable than circumference SW defect. However, the barrier energy of circumference SW defect is lower than another one. We applied Climbing Image Nudge Elastic Band (CI-NEB) method to find minimum energy path (MEP) and barrier energy for SW defect transitions. We also found that in the case of circumference SW defect, armchair edge (5,5) CNT become semiconductor with the band gap of 0.0544 eV.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2004-01-01
Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.
Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal
NASA Astrophysics Data System (ADS)
Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong
2012-06-01
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.
Mechanisms of oxygen permeation through plastic films and barrier coatings
NASA Astrophysics Data System (ADS)
Wilski, Stefan; Wipperfürth, Jens; Jaritz, Montgomery; Kirchheim, Dennis; Mitschker, Felix; Awakowicz, Peter; Dahlmann, Rainer; Hopmann, Christian
2017-10-01
Oxygen and water vapour permeation through plastic films in food packaging or other applications with high demands on permeation are prevented by inorganic barrier films. Most of the permeation occurs through small defects (<3 µm) in the barrier coating. The defects were visualized by etching with reactive oxygen in a capacitively coupled plasma and subsequent SEM imaging. In this work, defects in SiO x -coatings deposited by plasma-enhanced chemical vapour deposition on polyethylene terephthalate (PET) are investigated and the mass transport through the polymer is simulated in a 3D approach. Calculations of single defects showed that there is no linear correlation between the defect area and the resulting permeability. The influence of adjacent defects in different distances was observed and led to flow reduction functions depending on the defect spacing and defect area. A critical defect spacing where no interaction between defects occurs was found and compared to other findings. According to the superposition principle, the permeability of single defects was added up and compared to experimentally determined oxygen permeation. The results showed the same trend of decreasing permeability with decreasing defect densities.
Kuperstein, Arthur S
2012-09-01
Fifty-two disinfected photostimulable phosphor (PSP) plates in plastic barrier envelopes were evaluated for contamination following placement in 30 study participants. Forty-four plates were acceptable for use in the study. The risk factor was the abundant oropharyngeal microbial flora and its ability to breach infection-control barrier sheaths. The presence of bacterial colonies on an agar plate was used to determine bacterial contamination and the presence of any growth indicated failure of the barrier envelope. Before clinical placement of the plates, quality review of the PSP plates revealed defects in the integrity of 4 barrier envelopes most likely caused by forceps-related damage or failure to achieve a uniform seal during manufacturing. These defects allowed substantial contamination. Contamination also occurred as a result of failure to extract the PSP plate from the barrier envelope cleanly. Of the 44 barriers with no obvious signs of a defect, 3 produced bacterial growth following culture. The authors concluded that digital sensor sheathed in barrier envelopes remain a potential source of contamination. PSP plates must be disinfected between removal from a contaminated barrier envelope (used in a patient) and placement in a new barrier envelope. In addition, placement into the barrier envelope should ideally be carried out under aseptic conditions. Finally, the integrity of each sealed barrier envelope must be verified visually. Copyright © 2012. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Chong-Jun; Lu, Xiang-An; Zhao, Zhi-Duo; Li, Ming-Hua; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Zhang, Jing-Yan; Yu, Guang-Hua
2013-09-01
As one of the most powerful tools for investigation of defects of materials, positron annihilation spectroscopy was employed to explore the thermal effects on the film microstructure evolution in CoFeB/MgO/CoFeB heterostructures. It is found that high annealing temperature can drive vacancy defects agglomeration and ordering acceleration in the MgO barrier. Meanwhile, another important type of defects, vacancy clusters, which are formed via the agglomeration of vacancy defects in the MgO barrier after annealing, still exists inside the MgO barrier. All these behaviors in the MgO barrier could potentially impact the overall performance in MgO based magnetic tunnel junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V.
2016-09-15
A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.
Tieleman, D Peter; Bentz, Joe
2002-01-01
The spontaneous formation of the phospholipid bilayer underlies the permeability barrier function of the biological membrane. Tears or defects that expose water to the acyl chains are spontaneously healed by lipid lateral diffusion. However, mechanical barriers, e.g., protein aggregates held in place, could sustain hydrophobic defects. Such defects have been postulated to occur in processes such as membrane fusion. This gives rise to a new question in bilayer structure: What do the lipids do in the absence of lipid lateral diffusion to minimize the free energy of a hydrophobic defect? As a first step to understand this rather fundamental question about bilayer structure, we performed molecular dynamic simulations of up to 10 ns of a planar bilayer from which lipids have been deleted randomly from one monolayer. In one set of simulations, approximately one-half of the lipids in the defect monolayer were restrained to form a mechanical barrier. In the second set, lipids were free to diffuse around. The question was simply whether the defects caused by removing a lipid would aggregate together, forming a large hydrophobic cavity, or whether the membrane would adjust in another way. When there are no mechanical barriers, the lipids in the defect monolayer simply spread out and thin with little effect on the other intact monolayer. In the presence of a mechanical barrier, the behavior of the lipids depends on the size of the defect. When 3 of 64 lipids are removed, the remaining lipids adjust the lower one-half of their chains, but the headgroup structure changes little and the intact monolayer is unaffected. When 6 to 12 lipids are removed, the defect monolayer thins, lipid disorder increases, and lipids from the intact monolayer move toward the defect monolayer. Whereas this is a highly simplified model of a fusion site, this engagement of the intact monolayer into the fusion defect is strikingly consistent with recent results for influenza hemagglutinin mediated fusion. PMID:12202375
Circuit analysis method for thin-film solar cell modules
NASA Technical Reports Server (NTRS)
Burger, D. R.
1985-01-01
The design of a thin-film solar cell module is dependent on the probability of occurrence of pinhole shunt defects. Using known or assumed defect density data, dichotomous population statistics can be used to calculate the number of defects expected in a module. Probability theory is then used to assign the defective cells to individual strings in a selected series-parallel circuit design. Iterative numerical calculation is used to calcuate I-V curves using cell test values or assumed defective cell values as inputs. Good and shunted cell I-V curves are added to determine the module output power and I-V curve. Different levels of shunt resistance can be selected to model different defect levels.
Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota
Arnal, Marie-Edith
2016-01-01
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components. PMID:26883882
Jeong, Eun Gyo; Kwon, Seonil; Han, Jun Hee; Im, Hyeon-Gyun; Bae, Byeong-Soo; Choi, Kyung Cheol
2017-05-18
Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model, naturally-occurring cracks, which were caused by Zn etching at the interface of the nano-stratified structure, can curb the propagation of defects. Cross-section images after bending tests provided remarkable evidence to support the existence of a defect suppression mechanism. Many visible cracks were found in a single Al 2 O 3 layer, but not in the nano-stratified structure, due to the mechanism. The nano-stratified structure also enhanced the barrier's physical properties by changing the crystalline phase of ZnO. In addition, experimental results demonstrated the effect of the mechanism in various ways. The nano-stratified barrier maintained a low water vapor transmission rate after 1000 iterations of a 1 cm bending radius test. Using this mechanically enhanced hybrid nano-stratified barrier, FOLEDs were successfully encapsulated without losing mechanical or electrical performance. Finally, comparative lifetime measurements were conducted to determine reliability. After 2000 hours of constant current driving and 1000 iterations with a 1 cm bending radius, the FOLEDs retained 52.37% of their initial luminance, which is comparable to glass-lid encapsulation, with 55.96% retention. Herein, we report a mechanically enhanced encapsulation technology for FOLEDs using a nano-stratified structure with a defect suppression mechanism.
Defect kinetics and resistance to amorphization in zirconium carbide
NASA Astrophysics Data System (ADS)
Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane
2015-02-01
To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material.
Vernino, A R; Ringeisen, T A; Wang, H L; Derhalli, M; Rapley, J; Nechamkin, S J; Brekke, J
1998-12-01
This study evaluated two bioresorbable polylactic acid barriers (Epi-Guide and Guidor) to determine if design differences were of therapeutic significance in the treatment of Grade II furcation defects in humans. Forty patients with bilaterally matched, Grade II furcation defects in maxillary or mandibular first or second molars were treated in a multicenter study. Comprehensive initial periodontal therapy, followed by defect debridement and root preparation, preceded randomized membrane placement. Data collected from all three investigative centers were pooled and analyzed using an analysis of variance appropriate for a counterbalancing design. Both barrier types produced measurable improvements of clinical probing values. Barrier exposure scores taken through the eighth week postoperative revealed that Epi-Guide was less likely to become exposed than Guidor. The findings of this study, which was conducted over a 12-month period, demonstrated that Epi-Guide and Guidor were comparable as measured by clinical probing determinations.
2012-01-01
Treatment of large bone defects represents a great challenge in orthopedic and craniomaxillofacial surgery. Although there are several methods for bone reconstruction, they all have specific indications and limitations. The concept of using barrier membranes for restoration of bone defects has been developed in an effort to simplify their treatment by offering a sinlge-staged procedure. Research on this field of bone regeneration is ongoing, with evidence being mainly attained from preclinical studies. The purpose of this review is to summarize the current experimental and clinical evidence on the use of barrier membranes for restoration of bone defects in maxillofacial and orthopedic surgery. Although there are a few promising preliminary human studies, before clinical applications can be recommended, future research should aim to establish the 'ideal' barrier membrane and delineate the need for additional bone grafting materials aiming to 'mimic' or even accelerate the normal process of bone formation. Reproducible results and long-term observations with barrier membranes in animal studies, and particularly in large animal models, are required as well as well-designed clinical studies to evaluate their safety, efficacy and cost-effectiveness. PMID:22834465
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1983-01-01
The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.
NASA Astrophysics Data System (ADS)
Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto
2017-08-01
The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.
Surface segregation and the Al problem in GaAs quantum wells
NASA Astrophysics Data System (ADS)
Chung, Yoon Jang; Baldwin, K. W.; West, K. W.; Shayegan, M.; Pfeiffer, L. N.
2018-03-01
Low-defect two-dimensional electron systems (2DESs) are essential for studies of fragile many-body interactions that only emerge in nearly-ideal systems. As a result, numerous efforts have been made to improve the quality of modulation-doped AlxGa1 -xAs /GaAs quantum wells (QWs), with an emphasis on purifying the source material of the QW itself or achieving better vacuum in the deposition chamber. However, this approach overlooks another crucial component that comprises such QWs, the AlxGa1 -xAs barrier. Here we show that having a clean Al source and hence a clean barrier is instrumental to obtain a high-quality GaAs 2DES in a QW. We observe that the mobility of the 2DES in GaAs QWs declines as the thickness or Al content of the AlxGa1 -xAs barrier beneath the QW is increased, which we attribute to the surface segregation of oxygen atoms that originate from the Al source. This conjecture is supported by the improved mobility in the GaAs QWs as the Al cell is cleaned out by baking.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
2003-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.
1990-01-01
Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.
Detection of internal defects in a liquid natural gas tank by use of infrared thermography
NASA Technical Reports Server (NTRS)
Kantsios, A. G.
1978-01-01
The use of an infrared scanning technique to detect defects in the secondary barrier of a liquid natural gas tank is described. The method works by detecting leak-caused temperature differences as low as 0.2 K, but can provide only an approximate idea of the extent of the defect. The nondestructive method was tested in a study of a LNG tank already at its location in a ship; the secondary barrier was located inside the tank wall. Defective areas indicated by the infrared radiometric measurements were confirmed by other probe techniques and by physical examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maindron, Tony, E-mail: tony.maindron@cea.fr; Jullien, Tony; André, Agathe
2016-05-15
Al{sub 2}O{sub 3} [20 nm, atomic layer deposition (ALD)] and SiO films' [25 nm, physical vacuum deposition (PVD)] single barriers as well as hybrid barriers of the Al{sub 2}O{sub 3}/SiO or SiO/Al{sub 2}O{sub 3} have been deposited onto single 100 nm thick tris-(8-hydroxyquinoline) aluminum (AlQ{sub 3}) organic films made onto silicon wafers. The defects in the different barrier layers could be easily observed as nonfluorescent AlQ{sub 3} black spots, under ultraviolet light on the different systems stored into accelerated aging conditions (85 °C/85% RH, ∼2000 h). It has been observed that all devices containing an Al{sub 2}O{sub 3} layer present a lag time τ frommore » which defect densities of the different systems start to increase significantly. This is coherent with the supposed pinhole-free nature of fresh, ALD-deposited, Al{sub 2}O{sub 3} films. For t > τ, the number of defect grows linearly with storage time. For devices with the single Al{sub 2}O{sub 3} barrier layer, τ has been estimated to be 64 h. For t > τ, the defect occurrence rate has been calculated to be 0.268/cm{sup 2}/h. Then, a total failure of fluorescence of the AlQ{sub 3} film appears between 520 and 670 h, indicating that the Al{sub 2}O{sub 3} barrier has been totally degraded by the hot moisture. Interestingly, the device with the hybrid barrier SiO/Al{sub 2}O{sub 3} shows the same characteristics as the device with the single Al{sub 2}O{sub 3} barrier (τ = 59 h; 0.246/cm{sup 2}/h for t > τ), indicating that Al{sub 2}O{sub 3} ALD is the factor that limits the performance of the barrier system when it is directly exposed to moisture condensation. At the end of the storage period (1410 h), the defect density for the system with the hybrid SiO/Al{sub 2}O{sub 3} barrier is 120/cm{sup 2}. The best sequence has been obtained when Al{sub 2}O{sub 3} is passivated by the SiO layer (Al{sub 2}O{sub 3}/SiO). In that case, a large lag time of 795 h and a very low defect growth rate of 0.032/cm{sup 2}/h (t > τ) have been measured. At the end of the storage test (2003 h), the defect density remains very low, i.e., only 50/cm{sup 2}. On the other hand, the device with the single PVD-deposited SiO barrier layer shows no significant lag time (τ ∼ 0), and the number of defects grows linearly from initial time with a high occurrence rate of 0.517/cm{sup 2}/h. This is coherent with the pinhole-full nature of fresh, PVD-deposited, SiO films. At intermediate times, a second regime shows a lower defect occurrence rate of 0.062/cm{sup 2}/h. At a longer time span (t > 1200 h), the SiO barrier begins to degrade, and a localized crystallization onto the oxide surface, giving rise to new defects (occurrence rate 0.461/cm{sup 2}/h), could be observed. At the end of the test (2003 h), single SiO films show a very high defect density of 600/cm{sup 2}. Interestingly, the SiO surface in the Al{sub 2}O{sub 3}/SiO device does not appeared crystallized at a high time span, suggesting that the crystallization observed on the SiO surface in the AlQ{sub 3}/SiO device rather originates into the AlQ{sub 3} layer, due to high humidity ingress on the organic layer through SiO pinholes. This has been confirmed by atomic force microscopy surface imaging of the AlQ{sub 3}/SiO surface showing a central hole in the crystallization zone with a 60 nm depth, deeper than SiO thickness (25 nm). Using the organic AlQ{sub 3} sensor, the different observations made in this work give a quantitative comparison of defects' occurrence and growth in ALD-deposited versus PVD-deposited oxide films, as well as in their combination PVD/ALD and ALD/PVD.« less
NASA Astrophysics Data System (ADS)
Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.
2010-02-01
Atopic Dermatitis (AD) is an inflammatory disease of human skin. Its pathogenesis is still unknown; however, dysfunctions of the epidermal barrier and the immune response are regarded as key factors for the development of AD. In our study we applied intravital multiphoton tomography (5D-IVT), equipped with a spectral-FLIM module for in-vivo and ex-vivo analysis of human skin affected with AD. In addition to the morphologic skin analysis, FLIM technology gain access to the metabolic status of the epidermal cells referring to the NADH specific fluorescence lifetime. We evaluated a characteristic 5D-IVT skin pattern of AD in comparison to histological sections and detected a correlation with the disease activity measured by SCORAD. FLIM analysis revealed a shift of the mean fluorescence lifetime (taum) of NADH, indicating an altered metabolic activity. Within an ex-vivo approach we have investigated cryo-sections of human skin with or without barrier defects. Spectral-FLIM allows the detection of autofluorescent signals that reflect the pathophysiological conditions of the defect skin barrier. In our study the taum value was shown to be different between healthy and affected skin. Application of the 5D-IVT allows non-invasive in-vivo imaging of human skin with a penetration depth of 150 μm. We could show that affected skin could be distinguished from healthy skin by morphological criteria, by FLIM and by spectral-FLIM. Further studies will evaluate the application of the 5D-IVT technology as a diagnostic tool and to monitor the therapeutic efficacy.
Nativ, Amit; Feldman, Haim; Shaked, Natan T
2018-05-01
We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.
Using FLIM in the study of permeability barrier function of aged and young skin
NASA Astrophysics Data System (ADS)
Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.
2006-02-01
Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Wenjuan, E-mail: ywj-0131148@163.com, E-mail: luojunkink@126.com; Yang, Hongping; Zhu, Jing
Defects are capable of modulating various properties of graphene, and thus controlling defects is useful in the development of graphene-based devices. Here we present first-principles calculations, which reveal a new avenue for defect engineering of graphene: the modulation by defects on the highest occupied molecular orbital (HOMO) energy of a charged monolayer graphene quantum dot (GQD) is discriminative. When the charge of a GQD increases its HOMO energy also increases. Importantly, when the GQD contains one particular class of defects its HOMO energy is sometimes higher and sometimes lower than that of the corresponding GQD without any defects, but whenmore » the GQD contains another class of defects its HOMO energy is always higher or lower than that of the corresponding intact GQD as its excess charge reaches a critical value. This discriminative modulation could allow defect engineering to control secondary electron ejection in graphene, leading to a new way to develop graphene-based devices.« less
Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio
2015-06-01
The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P < 0.05). No statistically significant differences were verified for E (test 3.1 ± 2.0; control 2.8 ± 2.1; P > 0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.
NASA Astrophysics Data System (ADS)
Li, Yan; Kowalski, Piotr M.
2018-07-01
In order to get better understanding of the selective order-disorder transition in pyrochlore compounds, using ab initio methods we calculated the formation energies of coupled cation anti-site and anion Frenkel pair defects and the energy barriers for the oxygen migration for number of families of A2B2 O7 pyrochlore-type compounds. While these parameters have been previously computed with force field-based methods, the ab initio results provide more reliable values that can be confidently used in subsequent analysis. We found a fairly good correlation between the formation energies of the coupled defects and the stability field of pyrochlores. In line with previous studies, the compounds that crystallize in defect fluorite structure are found to have smaller values of coupled defect formation energies than those crystallizing in the pyrochlore phase, although the correlation is not that sharp as in the case of isolated anion Frenkel pair defect. The investigation of the energy barriers for the oxygen migration shows that it is not a good, sole indicator of the tendency of the order-disorder phase transition in pyrochlores. However, we found that the oxygen migration barrier is reduced in the presence of the cation antisite defect. This points at disordering-induced enhancement of oxygen diffusion in pyrochlore compounds.
MacDonald, David S; Waterfield, J Douglas
2011-01-01
The detectors (both solid-state sensors and photostimulable phosphor [PSP] plates) used for digital intraoral radiography cannot be autoclaved, and barriers are typically used to prevent the spread of infection. The aim of this study was to determine the effectiveness of a barrier envelope system for PSP plates. Disinfected PSP plates were aseptically inserted into barrier envelopes and placed in a periapical location. One PSP plate was placed in each of 28 patients, and 12 plates in each of 2 volunteers (D.S.M., J.D.W.). After retrieval, each PSP plate was removed from its barrier envelope, immersed in trypticase soy broth and aliquots were plated on trypticase soy agar. Bacterial colonies were counted 2 days later. Fifty-two PSP plates in barrier envelopes were evaluated for contamination. Quality assurance of the PSP plates before clinical placement revealed defects in the integrity of 4 barrier envelopes, caused by forceps-related damage or failure to achieve a uniform seal. These defects allowed substantial contamination. Contamination also occurred as a result of failure to extract the PSP plate from the barrier envelope cleanly. Of the 44 barriers with no obvious defects that were placed by either final-year dental students or a radiologist, only 3 allowed bacterial contamination of the PSP plate. Detectors contained in barrier envelopes remain a potential source of contamination. PSP plates must be disinfected between removal from a contaminated barrier envelope and placement in a new barrier envelope. In addition, placement into the barrier envelope should ideally be carried out under aseptic conditions. Finally, the integrity of each sealed barrier envelope must be verified visually before release to the clinic.
Module Degradation Mechanisms Studied by a Multi-Scale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steve; Al-Jassim, Mowafak; Hacke, Peter
2016-11-21
A key pathway to meeting the Department of Energy SunShot 2020 goals is to reduce financing costs by improving investor confidence through improved photovoltaic (PV) module reliability. A comprehensive approach to further understand and improve PV reliability includes characterization techniques and modeling from module to atomic scale. Imaging techniques, which include photoluminescence, electroluminescence, and lock-in thermography, are used to locate localized defects responsible for module degradation. Small area samples containing such defects are prepared using coring techniques and are then suitable and available for microscopic study and specific defect modeling and analysis.
Smith, I M; Baker, A; Arneborg, N; Jespersen, L
2015-11-01
The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polster, S.; Jank, M. P. M.; Frey, L.
2016-01-14
The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussedmore » with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.« less
Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas
In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less
Identification and Analysis of Partial Shading Breakdown Sites in CuIn xGa (1-x)Se 2 Modules
Palmiotti, Elizabeth; Johnston, Steven; Gerber, Andreas; ...
2017-12-20
In this paper, CuIn xGa (1-x) (CIGS) mini-modules are stressed under reverse bias, resembling partial shading conditions, to predict and characterize where failures occur. Partial shading can cause permanent damage in the form of 'wormlike' defects on thin-film modules due to thermal runaway. This results in module-scale power losses. We have used dark lock-in thermography (DLIT) to spatially observe localized heating when reverse-bias breakdown occurs on various CIGS mini-modules. For better understanding of how and where these defects originated and propagated, we have developed techniques where the current is limited during reverse-bias stressing. This allows for DLIT-based detection and detailedmore » studying of the region where breakdown is initiated before thermal runaway leads to permanent damage. Statistics of breakdown sites using current-limited conditions has allowed for reasonable identification of the as-grown defects where permanent breakdown will likely originate. Scanning electron microscope results and wormlike defect analysis show that breakdown originates in defects such as small pits, craters, or cracks in the CIGS layer, and the wormlike defects propagate near the top CIGS interface.« less
Thermal activation of dislocations in large scale obstacle bypass
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique
2017-08-01
Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.
Defect design of insulation systems for photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.
1981-01-01
A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.
Surface defects and chiral algebras
NASA Astrophysics Data System (ADS)
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
2017-05-01
We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.
Fault detection monitor circuit provides ''self-heal capability'' in electronic modules - A concept
NASA Technical Reports Server (NTRS)
Kennedy, J. J.
1970-01-01
Self-checking technique detects defective solid state modules used in electronic test and checkout instrumentation. A ten bit register provides failure monitor and indication for 1023 comparator circuits, and the automatic fault-isolation capability permits the electronic subsystems to be repaired by replacing the defective module.
What we don't know can hurt us: Nonresponse bias assessment in birth defects research.
Strassle, Paula D; Cassell, Cynthia H; Shapira, Stuart K; Tinker, Sarah C; Meyer, Robert E; Grosse, Scott D
2015-07-01
Nonresponse bias assessment is an important and underutilized tool in survey research to assess potential bias due to incomplete participation. This study illustrates a nonresponse bias sensitivity assessment using a survey on perceived barriers to care for children with orofacial clefts in North Carolina. Children born in North Carolina between 2001 and 2004 with an orofacial cleft were eligible for inclusion. Vital statistics data, including maternal and child characteristics, were available on all eligible subjects. Missing 'responses' from nonparticipants were imputed using assumptions based on the distribution of responses, survey method (mail or phone), and participant maternal demographics. Overall, 245 of 475 subjects (51.6%) responded to either a mail or phone survey. Cost as a barrier to care was reported by 25.0% of participants. When stratified by survey type, 28.3% of mail respondents and 17.2% of phone respondents reported cost as a barrier. Under various assumptions, the bias-adjusted estimated prevalence of cost as barrier to care ranged from 16.1% to 30.0%. Maternal age, education, race, and marital status at time of birth were not associated with subjects reporting cost as a barrier. As survey response rates continue to decline, the importance of assessing the potential impact of nonresponse bias has become more critical. Birth defects research is particularly conducive to nonresponse bias analysis, especially when birth defect registries and birth certificate records are used. Future birth defect studies which use population-based surveillance data and have incomplete participation could benefit from this type of nonresponse bias assessment. Birth Defects Research (Part A) 103:603-609, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Huynh, Roy; Ip, Matthew; Chang, Jeff; Haifer, Craig; Leong, Rupert W
2018-01-01
Confocal laser endomicroscopy (CLE) allows mucosal barrier defects along the intestinal epithelium to be visualized in vivo during endoscopy. Training in CLE interpretation can be achieved didactically or through self-directed learning. This study aimed to compare the effectiveness of expert-led didactic with self-directed audiovisual teaching for training inexperienced analysts on how to recognize mucosal barrier defects on endoscope-based CLE (eCLE). This randomized controlled study involved trainee analysts who were taught how to recognize mucosal barrier defects on eCLE either didactically or through an audiovisual clip. After being trained, they evaluated 6 sets of 30 images. Image evaluation required the trainees to determine whether specific features of barrier dysfunction were present or not. Trainees in the didactic group engaged in peer discussion and received feedback after each set while this did not happen in the self-directed group. Accuracy, sensitivity, and specificity of both groups were compared. Trainees in the didactic group achieved a higher overall accuracy (87.5 % vs 85.0 %, P = 0.002) and sensitivity (84.5 % vs 80.4 %, P = 0.002) compared to trainees in the self-directed group. Interobserver agreement was higher in the didactic group (k = 0.686, 95 % CI 0.680 - 0.691, P < 0.001) than in the self-directed group (k = 0.566, 95 % CI 0.559 - 0.573, P < 0.001). Confidence (OR 6.48, 95 % CI 5.35 - 7.84, P < 0.001) and good image quality (OR 2.58, 95 % CI 2.17 - 2.82, P < 0.001) were positive predictors of accuracy. Expert-led didactic training is more effective than self-directed audiovisual training for teaching inexperienced analysts how to recognize mucosal barrier defects on eCLE.
Effect of hydrogen adsorption on the formation and annealing of Stone-Wales defects in graphene
NASA Astrophysics Data System (ADS)
Podlivaev, A. I.; Openov, L. A.
2015-12-01
The heights of energy barriers preventing the formation and annealing of Stone-Wales defects in graphene with a hydrogen atom adsorbed on the defect or in its immediate vicinity have been calculated using the atomistic computer simulation. It has been shown that, in the presence of hydrogen, both barriers are significantly lower than those in the absence of hydrogen. Based on the analysis of the potential energy surface, the frequency factors have been calculated for two different paths of the Stone-Wales transformation, and the temperature dependences of the corresponding annealing times of the defects have been found. The results obtained have been compared with the first-principles calculations and molecular dynamics data.
Physical aspects of colossal dielectric constant material CaCu3Ti4O12 thin films
NASA Astrophysics Data System (ADS)
Deng, Guochu; He, Zhangbin; Muralt, Paul
2009-04-01
The underlying physical mechanism of the so-called colossal dielectric constant phenomenon in CaCu3Ti4O12 (CCTO) thin films were investigated by using semiconductor theories and methods. The semiconductivity of CCTO thin films originated from the acceptor defect at a level ˜90 meV higher than valence band. Two contact types, metal-semiconductor and metal-insulator-semiconductor junctions, were observed and their barrier heights, and impurity concentrations were theoretically calculated. Accordingly, the Schottky barrier height of metal-semiconductor contact is about 0.8 eV, and the diffusion barrier height of metal-insulator-semiconductor contact is about 0.4-0.7 eV. The defect concentrations of both samples are quite similar, of the magnitude of 1019 cm-3, indicating an inherent feature of high defect concentration.
Perrotta, Alberto; García, Santiago J; Michels, Jasper J; Andringa, Anne-Marije; Creatore, Mariadriana
2015-07-29
Water permeation in inorganic moisture permeation barriers occurs through macroscale defects/pinholes and nanopores, the latter with size approaching the water kinetic diameter (0.27 nm). Both permeation paths can be identified by the calcium test, i.e., a time-consuming and expensive optical method for determining the water vapor transmission rate (WVTR) through barrier layers. Recently, we have shown that ellipsometric porosimetry (i.e., a combination of spectroscopic ellipsometry and isothermal adsorption studies) is a valid method to classify and quantify the nanoporosity and correlate it with the WVTR values. Nevertheless, no information is obtained about the macroscale defects or the kinetics of water permeation through the barrier, both essential in assessing the quality of the barrier layer. In this study, electrochemical impedance spectroscopy (EIS) is shown as a sensitive and versatile method to obtain information on nanoporosity and macroscale defects, water permeation, and diffusivity of moisture barrier layers, complementing the barrier property characterization obtained by means of EP and calcium test. EIS is performed on thin SiO2 barrier layers deposited by plasma enhanced-CVD. It allows the determination of the relative water uptake in the SiO2 layers, found to be in agreement with the nanoporosity content inferred by EP. Furthermore, the kinetics of water permeation is followed by EIS, and the diffusivity (D) is determined and found to be in accordance with literature values. Moreover, differently from EP, EIS data are shown to be sensitive to the presence of local macrodefects, correlated with the barrier failure during the calcium test.
2014-01-01
Background Despite the precise pathogenesis of atopic dermatitis (AD) is unknown, an immune dysregulation that causes Th2-predominant inflammation and an intrinsic defect in skin barrier function are currently the two major hypotheses, according to the so-called outside-inside-outside model. Mast cells (MCs) are involved in AD both by releasing Th2 polarizing cytokines and generating pruritus symptoms through release of histamine and tryptase. A link between MCs and skin barrier defects was recently uncovered, with histamine being found to profoundly contribute to the skin barrier defects. Palmitoylethanolamide and related lipid mediators are endogenous bioactive compounds, considered to play a protective homeostatic role in many tissues: evidence collected so far shows that the anti-inflammatory effect of palmitoylethanolamide depends on the down-modulation of MC degranulation. Based on this background, the purpose of the present study was twofold: (a) to determine if the endogenous levels of palmitoylethanolamide and other bioactive lipid mediators are changed in the skin of AD dogs compared to healthy animals; (b) to examine if MC number is increased in the skin of AD dogs and, if so, whether it depends on MC in-situ proliferation. Results The amount of lipid extract expressed as percent of biopsy tissue weight was significantly reduced in AD skin while the levels of all analyzed bioactive lipid mediators were significantly elevated, with palmitoylethanolamide showing the highest increase. In dogs with AD, the number of MCs was significantly increased in both the subepidermal and the perifollicular compartments and their granule content was significantly decreased in the latter. Also, in situ proliferation of MCs was documented. Conclusions The levels of palmitoylethanolamide and other bioactive lipid mediators were shown to increase in AD skin compared to healthy samples, leading to the hypothesis that they may be part of the body’s innate mechanisms to maintain cellular homeostasis when faced with AD-related inflammation. In particular, the increase may be considered a temptative response to down-regulating the observed elevation in the number, functionality and proliferative state of MCs in the skin of AD dogs. Further studies are warranted to confirm the hypothesis. PMID:24423192
[The blood-brain barrier in ageing persons].
Haaning, Nina; Damsgaard, Else Marie; Moos, Torben
2018-03-26
Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.
Electrical degradation of double-Schottky barrier in ZnO varistors
NASA Astrophysics Data System (ADS)
He, Jinliang; Cheng, Chenlu; Hu, Jun
2016-03-01
Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.
Electrical degradation of double-Schottky barrier in ZnO varistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Cheng, Chenlu; Hu, Jun
2016-03-15
Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.
Migration of defect clusters and xenon-vacancy clusters in uranium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Gao, Fei; Deng, Huiqiu
2014-07-01
The possible transition states, minimum energy paths and migration mechanisms of defect clusters and xenon-vacancy defect clusters in uranium dioxide have been investigated using the dimer and the nudged elastic-band methods. The nearby O atom can easily hop into the oxygen vacancy position by overcoming a small energy barrier, which is much lower than that for the migration of a uranium vacancy. A simulation for a vacancy cluster consisting of two oxygen vacancies reveals that the energy barrier of the divacancy migration tends to decrease with increasing the separation distance of divacancy. For an oxygen interstitial, the migration barrier formore » the hopping mechanism is almost three times larger than that for the exchange mechanism. Xe moving between two interstitial sites is unlikely a dominant migration mechanism considering the higher energy barrier. A net migration process of a Xe-vacancy pair containing an oxygen vacancy and a xenon interstitial is identified by the NEB method. We expect the oxygen vacancy-assisted migration mechanism to possibly lead to a long distance migration of the Xe interstitials in UO2. The migration of defect clusters involving Xe substitution indicates that Xe atom migrating away from the uranium vacancy site is difficult.« less
Key Questions in Building Defect Prediction Models in Practice
NASA Astrophysics Data System (ADS)
Ramler, Rudolf; Wolfmaier, Klaus; Stauder, Erwin; Kossak, Felix; Natschläger, Thomas
The information about which modules of a future version of a software system are defect-prone is a valuable planning aid for quality managers and testers. Defect prediction promises to indicate these defect-prone modules. However, constructing effective defect prediction models in an industrial setting involves a number of key questions. In this paper we discuss ten key questions identified in context of establishing defect prediction in a large software development project. Seven consecutive versions of the software system have been used to construct and validate defect prediction models for system test planning. Furthermore, the paper presents initial empirical results from the studied project and, by this means, contributes answers to the identified questions.
Resonant tunneling through electronic trapping states in thin MgO magnetic junctions.
Teixeira, J M; Ventura, J; Araujo, J P; Sousa, J B; Wisniowski, P; Cardoso, S; Freitas, P P
2011-05-13
We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15 V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.
Surface defects and chiral algebras
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
2017-05-26
Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less
Surface defects and chiral algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Córdova, Clay; Gaiotto, Davide; Shao, Shu-Heng
Here, we investigate superconformal surface defects in four-dimensional N = 2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfield-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. We find perfect agreement with the predicted characters, in eachmore » case.« less
Yoon, Jongchan; Bae, Sung Hwa; Sohn, Ho-Sang; Son, Injoon; Kim, Kyung Tae; Ju, Young-Wan
2018-09-01
In this study, we devised a method to bond thermoelectric elements directly to copper electrodes by plating indium with a relatively low melting point. A coating of indium, ~30 μm in thickness, was fabricated by electroplating the surface of a Bi2Te3-based thermoelectric element with a nickel diffusion barrier layer. They were then subjected to direct thermocompression bonding at 453 K on a hotplate for 10 min at a pressure of 1.1 kPa. Scanning electron microscopy images confirmed that a uniform bond was formed at the copper electrode/thermoelectric element interface, and the melted/solidified indium layer was defect free. Thus, the proposed novel method of fabricating a thermoelectric module by electroplating indium on the surface of the thermoelectric element and directly bonding with the copper electrode can be used to obtain a uniformly bonded interface even at a relatively low temperature without the use of solder pastes.
Coating defect evaluation based on stimulated thermography
NASA Astrophysics Data System (ADS)
Palumbo, Davide; Tamborrino, Rosanna; Galietti, Umberto
2017-05-01
Thermal Barrier Coatings are used to protect the materials from severe temperature and chemical environments. In particular, these materials are used in the engineering fields where high temperatures, corrosive environments and high mechanical stress are required. Defects present between substrate material and coating, as detachments may cause the break of coating and the consequent possibility to exposure the substrate material to the environment conditions. The capability to detect the defect zones with non-destructive techniques could allow the maintenance of coated components with great advantages in terms of costs and prediction of fatigue life. In this work, two different heat sources and two different thermographic techniques have been used to detect the adhesion defects among the base material and the coating. Moreover, an empirical thermographic method has been developed to evaluate the thickness of the thermal coating and to discriminate between an unevenness of the thickness and a defect zone. The study has been conducted on circular steel specimens with simulated adhesion defect and on specimens prepared with different thicknesses of thermal barrier coating.
Webinars on MyCDX Changes and New Defects and Recalls Reporting Module
This webinar focuses on MyCDX changes, overview of the new defects and recalls reporting module, the Engines and Vehicles Compliance Information System (EV-CIS) home page prototype and deployment information.
Various Stone-Wales defects in phagraphene
NASA Astrophysics Data System (ADS)
Openov, L. A.; Podlivaev, A. I.
2016-08-01
Various Stone-Wales defects in phagraphene, which is a graphene allotrope, predicted recently are studied in terms of the nonorthogonal tight-binding model. The energies of the defect formation and the heights of energy barriers preventing the formation and annealing of the defects are found. Corresponding frequency factors in the Arrhenius formula are calculated. The evolution of the defect structure is studied in the real-time mode using the molecular dynamics method.
Talbot effect of the defective grating in deep Fresnel region
NASA Astrophysics Data System (ADS)
Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei
2015-02-01
Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.
Turbine superalloy component defect repair with low-temperature curing resin
Hunt, David W.; Allen, David B.
2015-09-08
Voids, cracks or other similar defects in substrates of thermal barrier coated superalloy components, such as turbine blades or vanes, are filled with resin, without need to remove substrate material surrounding the void by grinding or other processes. The resin is cured at a temperature under 200.degree. C., eliminating the need for post void-filling heat treatment. The void-filled substrate and resin are then coated with a thermal barrier coating.
First-principles investigation of point defect and atomic diffusion in Al2Ca
NASA Astrophysics Data System (ADS)
Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu
2017-04-01
Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.
Salustro, S; Nöel, Y; Zicovich-Wilson, C M; Olivero, P; Dovesi, R
2016-11-14
The double defect in diamond, vacancy (V) plus 〈100〉 self-split-interstitial (V+I), is investigated at the ab initio quantum mechanical level, by considering the vicinal case VI 1 (V is one of the first neighbors of one of the two C atoms constituting the I defect) and the two possible "second neighbors" cases, VI 2 D , VI 2 S , in which a carbon atom is a first neighbor of both V and I. The case in which the two defects are at a larger distance is simulated by considering the two isolated defects separately (VI ∞ ). A 6-21G local Gaussian-type basis set and the B3LYP hybrid functional are used for most of the calculations; richer basis sets and other functionals (a global hybrid as PBE0, a range-separated hybrid as HSE06, LDA, PBE, and Hartree-Fock) have also been used for comparison. With this computational approach we evaluate the energy difference between the various spin states, the location of the corresponding bands in the energy gap of pristine diamond, as well as the defect formation energy of the four defects. The path for the recombination of V and I is explored for the vicinal case, by using the distinguished reaction coordinate strategy. A barrier as high as 0.75 eV is found with B3LYP between VI 1 and the perfect diamond recombined structure; when other hybrids are used, as PBE0 or HSE06, the barrier increases up to 1.01 eV (pure density functional theory produces lower barriers: 0.62 and 0.67 for PBE and LDA, respectively). Such a barrier is lower than the one estimated in a very indirect way through experimental data, ranging from 1.3 to 1.7 eV. It confirms however the evidence of the extremely low recombination rate also at high temperature. The Raman (and IR) spectra of the various defects are generated, which permit one to unambiguously attribute to these defects (thanks also to the graphical animation of the modes) many of the peaks observed in damaged diamond above the dominant peak of perfect bulk. For the residual non-attributed peaks, more complicated aggregations of defects should be explored.
System statistical reliability model and analysis
NASA Technical Reports Server (NTRS)
Lekach, V. S.; Rood, H.
1973-01-01
A digital computer code was developed to simulate the time-dependent behavior of the 5-kwe reactor thermoelectric system. The code was used to determine lifetime sensitivity coefficients for a number of system design parameters, such as thermoelectric module efficiency and degradation rate, radiator absorptivity and emissivity, fuel element barrier defect constant, beginning-of-life reactivity, etc. A probability distribution (mean and standard deviation) was estimated for each of these design parameters. Then, error analysis was used to obtain a probability distribution for the system lifetime (mean = 7.7 years, standard deviation = 1.1 years). From this, the probability that the system will achieve the design goal of 5 years lifetime is 0.993. This value represents an estimate of the degradation reliability of the system.
Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier
NASA Astrophysics Data System (ADS)
Althammer, Matthias; Mishra, Rohan; Borisevich, Albina J.; Singh, Amit Vikam; Keshavarz, Sahar; Yurtisigi, Mehmet Kenan; Leclair, Patrick; Gupta, Arunava
We experimentally investigate the structural, magnetic and electrical transport properties of La0.67Sr0.33MnO3 based magnetic tunnel junctions with a SrSnO3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier the observed tunnel magnetoresistance is comparable to tunnel junctions with a better lattice matched SrTiO3 barrier, reaching values of up to 350 % at T = 5 K . Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease of the TMR with increasing bias voltage. Our results suggest that by reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future. We gratefully acknowledge financial support via NSF-ECCS Grant No. 1509875.
Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing
NASA Astrophysics Data System (ADS)
Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.
2015-03-01
Directed self-assembly of block copolymers (BCPs) is a process that has received great interest in the field of nanomanufacturing in the past decade, and great strides towards forming high quality aligned patterns have been made. But state of the art methods still yield defectivities orders of magnitude higher than is necessary in semi-conductor fabrication even though free energy calculations suggest that equilibrium defectivities are much lower than is necessary for economic semi-conductor fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the transition state was reached so that the overall rate changed only slightly. The energy barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations show no change in rate associated with the energy barrier below χN ~ 50, and then show an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free interface or the BCP-underlayer interface where the increased A-B contact area associated with the transition state will be minimized, while the infinitely thick films must start healing in the bulk where the A-B contact area is increased. It is also found that cooperative chain movement is required for the defect to start healing.
NASA Astrophysics Data System (ADS)
Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.
2018-03-01
Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.
Atomically Thin Al2O3 Films for Tunnel Junctions
NASA Astrophysics Data System (ADS)
Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.
2017-06-01
Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.
Skin Barrier Disruption - A Requirement for Allergen Sensitization?
De Benedetto, Anna; Kubo, Akiharu; Beck, Lisa A.
2011-01-01
For at least half a century, noninvasive techniques have been available to quantify skin barrier function, and these have shown that a number of human skin conditions and disorders are associated with defects in skin permeability. In the last decade, several genes responsible for skin barrier defects observed in both monogenetic and complex, polygenic disorders have been elucidated and functionally characterized. This has led to an explosion of work in the last six years that has identified pathways connecting epidermal barrier disruption and antigen uptake as well as the quality and/or magnitude of the antigen-specific adaptive immune response. This review will introduce the notion that diseases arise from the dynamic crosstalk that occurs between the skin barrier and immune system using atopic dermatitis or eczema as the disease prototype. Nevertheless, the concepts put forth are highly relevant to a number of antigen-driven disorders for which skin barrier is at least transiently compromised such as psoriasis, allergic contact dermatitis and blistering disorders. PMID:22217737
Amasheh, Maren; Fromm, Anja; Krug, Susanne M; Amasheh, Salah; Andres, Susanne; Zeitz, Martin; Fromm, Michael; Schulzke, Jörg-Dieter
2010-12-01
TNFα-mediated tight junction defects contribute to diarrhea in inflammatory bowel diseases (IBDs). In our study, the signaling pathways of the TNFα effect on barrier- or pore-forming claudins were analyzed in HT-29/B6 human colon monolayers. Berberine, a herbal therapeutic agent that has been recently established as a therapy for diabetes and hypercholesterinemia, was able to completely antagonize the TNFα-mediated barrier defects in the cell model and in rat colon. Ussing chamber experiments and two-path impedance spectroscopy revealed a decrease of paracellular resistance after TNFα to 11±4%, whereas transcellular resistance was unchanged. The permeability of the paracellular marker fluorescein was increased fourfold. Berberine alone had no effect while it fully prevented the TNFα-induced barrier defects. This effect on resistance was confirmed in rat colon. TNFα removed claudin-1 from the tight junction and increased claudin-2 expression. Berberine prevented TNFα-induced claudin-1 disassembly and upregulation of claudin-2. The effects of berberine were mimicked by genistein plus BAY11-7082, indicating that they are mediated via tyrosine kinase, pAkt and NFκB pathways. In conclusion, the anti-diarrheal effect of berberine is explained by a novel mechanism, suggesting a therapeutic approach against barrier breakdown in intestinal inflammation.
Huynh, Roy; Ip, Matthew; Chang, Jeff; Haifer, Craig; Leong, Rupert W.
2018-01-01
Background and study aims Confocal laser endomicroscopy (CLE) allows mucosal barrier defects along the intestinal epithelium to be visualized in vivo during endoscopy. Training in CLE interpretation can be achieved didactically or through self-directed learning. This study aimed to compare the effectiveness of expert-led didactic with self-directed audiovisual teaching for training inexperienced analysts on how to recognize mucosal barrier defects on endoscope-based CLE (eCLE). Materials and methods This randomized controlled study involved trainee analysts who were taught how to recognize mucosal barrier defects on eCLE either didactically or through an audiovisual clip. After being trained, they evaluated 6 sets of 30 images. Image evaluation required the trainees to determine whether specific features of barrier dysfunction were present or not. Trainees in the didactic group engaged in peer discussion and received feedback after each set while this did not happen in the self-directed group. Accuracy, sensitivity, and specificity of both groups were compared. Results Trainees in the didactic group achieved a higher overall accuracy (87.5 % vs 85.0 %, P = 0.002) and sensitivity (84.5 % vs 80.4 %, P = 0.002) compared to trainees in the self-directed group. Interobserver agreement was higher in the didactic group (k = 0.686, 95 % CI 0.680 – 0.691, P < 0.001) than in the self-directed group (k = 0.566, 95 % CI 0.559 – 0.573, P < 0.001). Confidence (OR 6.48, 95 % CI 5.35 – 7.84, P < 0.001) and good image quality (OR 2.58, 95 % CI 2.17 – 2.82, P < 0.001) were positive predictors of accuracy. Conclusion Expert-led didactic training is more effective than self-directed audiovisual training for teaching inexperienced analysts how to recognize mucosal barrier defects on eCLE. PMID:29344572
Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.
Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P
2015-11-11
We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current.
Detection of tanker defects with infrared thermography
NASA Technical Reports Server (NTRS)
Kantsios, A. G.
1980-01-01
Infrared scanning technique for finding defects in secondary barrier of liquid natural gas (LNG) tank has been successfully tested on ship under construction at Newport News Shipbuilding and Dry Dock Company. Technique determines defects with minimal expenditure of time and manpower. Tests could be repeated during life of tanker and make more complicated testing unnecessary. Tests also confirmed that tank did not have any major defects, and tank was certified.
Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations
Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...
2016-04-01
Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO 3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancymore » is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less
Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing
2017-07-05
To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.
Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation
NASA Astrophysics Data System (ADS)
Zhang, Haijing; Ren, Siming; Pu, Jibin; Xue, Qunji
2018-06-01
Graphene has been demonstrated as a protective coating for Cu under ambient condition because of its high impermeability and light-weight oxidation barrier. However, it lacks the research of graphene as a protective coating in space environment. Here, we experimentally and theoretically study the oxidation behavior of graphene-coated Cu in vacuum atomic oxygen (AO) condition. After AO irradiation, the experimental results show multilayer graphene has better anti-oxidation than monolayer graphene. Meanwhile, the calculation results show the oxidation appeared on the graphene's grain boundaries or the film's vacancy defects for the monolayer graphene coated Cu foil. Moreover, the calculation results show the oxidation process proceeds slowly in multilayers because of the matched defects overlaps each other to form a steric hindrance to suppress the O atom diffusion in the vertical direction, and the mismatched defects generates potential energy barriers for interlayer to suppress the O atom diffusion in the horizontal direction. Hence, multilayer graphene films could serve as protection coatings to prevent diffusion of O atom.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Unraveling the Semiconducting/Metallic Discrepancy in Ni 3(HITP) 2
Foster, Michael E.; Sohlberg, Karl; Allendorf, Mark D.; ...
2018-01-10
Here, Ni 3(2,3,6,7,10,11-hexaiminotriphenylene) 2 is a π-stacked layered metal–organic framework material with extended π-conjugation that is analogous to graphene. Published experimental results indicate that the material is semiconducting, but all theoretical studies to date predict the bulk material to be metallic. Given that previous experimental work was carried out on specimens containing complex nanocrystalline microstructures and the tendency for internal interfaces to introduce transport barriers, we apply DFT to investigate the influence of internal interface defects on the electronic structure of Ni 3(HITP) 2. The results show that interface defects can introduce a transport barrier by breaking the π-conjugation and/ormore » decreasing the dispersion of the electronic bands near the Fermi level. We demonstrate that the presence of defects can open a small gap, in the range of 15–200 meV, which is consistent with the experimentally inferred hopping barrier.« less
Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction
Garrett, Joshua P.; Lowery, Anthony M.; Adam, Alejandro P.; Kowalczyk, Andrew P.; Vincent, Peter A.
2017-01-01
Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer. PMID:27852896
Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit
In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less
Investigation of the tunnel magnetoresistance in junctions with a strontium stannate barrier
Althammer, Matthias; Bavarian Academy of Sciences and Humanities; Vikam Singh, Amit; ...
2016-12-16
In this paper, we experimentally investigate the structural, magnetic, and electrical transport properties of La 0.67 Sr 0.33MnO 3 based magnetic tunnel junctions with a SrSnO 3 barrier. Our results show that despite the high density of defects in the strontium stannate barrier, due to the large lattice mismatch, the observed tunnel magnetoresistance (TMR) is comparable to tunnel junctions with a better lattice matched SrTiO 3 barrier, reaching values of up to 350% at T = 5K. Further analysis of the current-voltage characteristics of the junction and the bias voltage dependence of the observed tunnel magnetoresistance show a decrease ofmore » the TMR with increasing bias voltage. In addition, the observed TMR vanishes for T > 200K. Finally, our results suggest that by employing a better lattice matched ferromagnetic electrode, and thus reducing the structural defects in the strontium stannate barrier, even larger TMR ratios might be possible in the future.« less
Holmes, Casey J.; Plichta, Jennifer K.; Gamelli, Richard L.; Radek, Katherine A.
2016-01-01
Burn wound healing complications, such as graft failure or infection, are a major source of morbidity and mortality in burn patients. The mechanisms by which local burn injury alters epidermal barrier function in autologous donor skin and surrounding burn margin are largely undefined. We hypothesized that defects in the epidermal cholinergic system may impair epidermal barrier function and innate immune responses. The objective was to identify alterations in the epidermal cholinergic pathway, and their downstream targets, associated with inflammation and cell death. We established that protein levels, but not gene expression, of the α7 nicotinic acetylcholine receptor (CHRNA7) were significantly reduced in both donor and burn margin skin. Furthermore, the gene and protein levels of an endogenous allosteric modulator of CHRNA7, secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related protein-1 (SLURP1) and acetylcholine were significantly elevated in donor and burn margin skin. As downstream proteins of inflammatory and cell death targets of nAChR activation, we found significant elevations in epidermal High Mobility Group Box Protein 1 (HMGB1) and caspase 3 in donor and burn margin skin. Lastly, we employed a novel in vitro keratinocyte burn model to establish that burn injury influences the gene expression of these cholinergic mediators and their downstream targets. These results indicate that defects in cholinergic mediators and inflammatory/apoptotic molecules in donor and burn margin skin may directly contribute to graft failure or infection in burn patients. PMID:27648692
Vision-based surface defect inspection for thick steel plates
NASA Astrophysics Data System (ADS)
Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo
2017-05-01
There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.
Zybutz, M D; Laurell, L; Rapoport, D A; Persson, G R
2000-03-01
Different types of barriers are used in guided tissue regenerative procedures. This prospective study compared resorbable citric acid ester softened polylactic acid membranes (RM) and non-resorbable expanded polytetrafluoroethylene (ePTFE) barriers (NRM) in GTR treatment of intrabony defects. 29 subjects were randomly assigned to the RM group or NRM group. Each patient received one GTR procedure. An open flap debridement (FD) was performed at another site 2 weeks later to evaluate healing potential. Clinical treatment outcomes were finally evaluated 12 months after surgery for changes of pocket depth PD, probing attachment level PAL, and probing bone level PBL, and radiographically for bone change using standardised radiographs. No differences in healing patters after surgery were found between patients in the 2 study groups as evaluated from the FD surgical procedures. NRM treated sites showed less signs of post-surgical inflammation during the 1st 4 weeks of healing than did RM treated sites (p<0.05). GTR-treated defects in the RM group, initially 7.0+/-2.2 mm deep, showed PD reduction of 3.3+/-2.2 mm, PAL gain of 2.4+/-1.8 mm, PBL gain of 2.4+/-3.7 mm (28%) and a radiographic bone fill of 2.3+/-2.4 mm. Defects treated with the NRM exhibited PD reduction of 3.1+/-2.1 mm, PAL gain of 2.4+/-0.8 mm, PBL gain of 2.2+/-1.7 mm (25%) and a radiographic bone fill of 3.3+/-2.2 mm. All improvements were statistically significant (p<0.01) but there was no difference between RM and NRM treatments for any of the efficacy variables. The results of this study indicated that there was no clinically significant difference in treatment outcomes following GTR treatment of intrabony defects with citric acid ester softened polylactic acid membranes as compared to ePTFE barriers. The overall mean inter-proximal vertical bone defect fill at 12 months as assessed from intra-oral radiographs was 44% of the original mean defect depth. Thus, no clinically significant difference in treatment outcomes was observed following GTR treatment of intrabony defects with citric acid ester softened polylactic acid membranes or ePTFE barriers.
Walker, Matthew T; Green, Jeremy E; Ferrie, Ryan P; Queener, Ashley M; Kaplan, Mark H; Cook-Mills, Joan M
2018-05-01
Mechanisms for the development of food allergy in neonates are unknown but clearly linked in patient populations to a genetic predisposition to skin barrier defects. Whether skin barrier defects contribute functionally to development of food allergy is unknown. The purpose of the study was to determine whether skin barrier mutations, which are primarily heterozygous in patient populations, contribute to the development of food allergy. Mice heterozygous for the filaggrin (Flg) ft and Tmem79 ma mutations were skin sensitized with environmental and food allergens. After sensitization, mice received oral challenge with food allergen, and then inflammation, inflammatory mediators, and anaphylaxis were measured. We define development of inflammation, inflammatory mediators, and food allergen-induced anaphylaxis in neonatal mice with skin barrier mutations after brief concurrent cutaneous exposure to food and environmental allergens. Moreover, neonates of allergic mothers have increased responses to suboptimal sensitization with food allergens. Importantly, responses to food allergens by these neonatal mice were dependent on genetic defects in skin barrier function and on exposure to environmental allergens. ST2 blockade during skin sensitization inhibited the development of anaphylaxis, antigen-specific IgE, and inflammatory mediators. Neonatal anaphylactic responses and antigen-specific IgE were also inhibited by oral pre-exposure to food allergen, but interestingly, this was blunted by concurrent pre-exposure of the skin to environmental allergen. These studies uncover mechanisms for food allergy sensitization and anaphylaxis in neonatal mice that are consistent with features of human early-life exposures and genetics in patients with clinical food allergy and demonstrate that changes in barrier function drive development of anaphylaxis to food allergen. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.
Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy
2012-12-07
Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.
Raudies, Florian; Hasselmo, Michael E.
2015-01-01
Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432
NASA Astrophysics Data System (ADS)
Park, Youngjun; Kim, Hyunsoo
2011-08-01
The effective barrier height and carrier transport mechanism of low resistance Ag-based contact to highly Mg-doped p-GaN were investigated. The specific contact resistance obtained was as low as 7.0×10-4 Ω cm2. The electrical resistivity of p-GaN was found to increase depending on ˜T-1/4, indicating variable-range hopping (VRH) conduction through Mg-related deep-level defects. Based on the VRH conduction model, the effective barrier height for carrier transport could be measured as 0.12 eV, which is low enough to explain the formation of excellent ohmic contact. The deep-level defects were also found to induce surface Fermi pinning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Mao-Hua
2010-01-01
First-principles calculations are carried out to study the native defect properties in TlBr. Three important results emerge: (1) the native defects are benign in terms of electron trapping because the low-energy defects do not induce electron traps; (2) the dominant defects in nearly stoichiometric TlBr are Schottky defects that pin the Fermi level near the midgap, leading to high resistivity; and (3) the calculated low diffusion barriers for several native defects show that ionic conductivity can occur at room temperature. The important impacts of these material properties on the room-temperature radiation detection using TlBr are discussed.
NASA Astrophysics Data System (ADS)
Du, Mao-Hua
2010-09-01
First-principles calculations are carried out to study the native defect properties in TlBr. Three important results emerge: (1) the native defects are benign in terms of electron trapping because the low-energy defects do not induce electron traps; (2) the dominant defects in nearly stoichiometric TlBr are Schottky defects that pin the Fermi level near the midgap, leading to high resistivity; and (3) the calculated low diffusion barriers for several native defects show that ionic conductivity can occur at room temperature. The important impacts of these material properties on the room-temperature radiation detection using TlBr are discussed.
NASA Astrophysics Data System (ADS)
Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.
2016-01-01
State-of-the-art block copolymer (BCP)-directed self-assembly (DSA) methods still yield defect densities orders of magnitude higher than is necessary in semiconductor fabrication despite free-energy calculations that suggest equilibrium defect densities are much lower than is necessary for economic fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that bulk simulations yield an exponential drop in defect heal rate above χN˜30. Thin films show no change in rate associated with the energy barrier below χN˜50, significantly higher than the χN values found previously for self-consistent field theory studies that neglect fluctuations. Above χN˜50, the simulations show an increase in energy barrier scaling with 1/2 to 1/3 of the bulk systems. This is because thin films always begin healing at the free interface or the BCP-underlayer interface, where the increased A-B contact area associated with the transition state is minimized, while the infinitely thick films cannot begin healing at an interface.
Ma, Baojin; Han, Jing; Zhang, Shan; Liu, Feng; Wang, Shicai; Duan, Jiazhi; Sang, Yuanhua; Jiang, Huaidong; Li, Dong; Ge, Shaohua; Yu, Jinghua; Liu, Hong
2018-04-15
Controllable osteoinduction maintained in the original defect area is the key to precise bone repair. To meet the requirement of precise bone regeneration, a hydroxyapatite (HAp) nanobelt/polylactic acid (PLA) (HAp/PLA) Janus membrane has been successfully prepared in this study by coating PLA on a paper-like HAp nanobelt film by a casting-pervaporation method. The Janus membrane possesses dual functions: excellent osteoinduction from the hydrophilic HAp nanobelt side and barrier function originating from the hydrophobic PLA film. The cell viability and osteogenic differentiation ability of human adipose-derived stem cells (hADSCs) on the Janus membrane were assessed. The in vitro experimental results prove that the HAp nanobelt side presents high cell viability and efficient osteoinduction without any growth factor and that the PLA side can prohibit cell attachment. The in vivo repair experiments on a rat mandible defect model prove that the PLA side can prevent postoperative adhesion between bone and adjacent soft tissues. Most importantly, the HAp side has a strong ability to promote defect repair and bone regeneration. Therefore, the HAp/PLA Janus membrane will have wide applications as a kind of tissue engineering material in precise bone repair because of its unique dual osteoinduction/barrier functions, biocompatibility, low cost, and its ability to be mass-produced. Precise bone defect repair to keeping tissue integrity and original outline shape is a very important issue for tissue engineering. Here, we have designed and prepared a novel HAp/PLA Janus membrane using a casting-pervaporation method to form a layer of PLA film on paper-like HAp nanobelt film. HAp nanobelt side of the Janus membrane can successfully promote osteogenic differentiation. PLA side of the Janus membrane exhibits good properties as a barrier for preventing the adhesion of cells in vitro. Mandible repair experiments in vivo have shown that the HAp/PLA Janus membrane can promote rat mandible repair on the HAp side and can successfully prevent postoperative adhesion on the PLA side at the same time. Therefore, the HAp/PLA Janus membrane with its osteoinduction/barrier dual functions can be applied to repair bone defect precisely. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Andreas; Johnston, Steve; Olivera-Pimentel, Guillermo
We analyzed defects in silicon thin-film tandem (a-Si:H/..mu..c-Si:H) modules from an outdoor installation in India. The inspection of several affected modules reveals that most of the defects -- which optically appear as bright spots -- were formed primarily nearby the separation and series connection laser lines. Cross-sectional SEM analysis reveals that the bright spots emerge due to electrical isolation, caused by a delamination of the cell from the front TCO in the affected area. In addition, the morphology of the a-Si:H top cell differs in the delaminated area compared to the surrounding unaffected area. We propose that these effects aremore » potentially caused by an explosive and thermally triggered liberation of hydrogen from the a-Si:H layer. Electrical and thermal measurements reveal that these defects can impact the cell performance significantly.« less
Jiang, Tengfei; Li, Xueyan; Bujoli-Doeuff, Martine; Gautron, Eric; Cario, Laurent; Jobic, Stéphane; Gautier, Romain
2016-08-01
Optical and electrical characteristics of solid materials are well-known to be intimately related to the presence of intrinsic or extrinsic defects. Hence, the control of defects in semiconductors is of great importance to achieve specific properties, for example, transparency and conductivity. Herein, a facile and controllable reduction method for modulating the defects is proposed and used for the case of p-type delafossite CuCrO2 nanoparticles. The optical absorption in the infrared region of the CuCrO2 material can then be fine-tuned via the continuous reduction of nonstoichiometric Cu(II), naturally stabilized in small amounts. This reduction modifies the concentration of positive charge carriers in the material, and thus the conductive and reflective properties, as well as the flat band potential. Indeed, this controllable reduction methodology provides a novel strategy to modulate the (opto-) electronic characteristics of semiconductors.
NASA Astrophysics Data System (ADS)
Lee, Jung-Youl; Seo, Il-Seok; Ma, Seong-Min; Kim, Hyeon-Soo; Kim, Jin-Woong; Kim, DoOh; Cross, Andrew
2013-03-01
The migration to a 3D implementation for NAND flash devices is seen as the leading contender to replace traditional planar NAND architectures. However the strategy of replacing shrinking design rules with greater aspect ratios is not without its own set of challenges. The yield-limiting defect challenges for the planar NAND front end were primarily bridges, protrusions and residues at the bottom of the gates, while the primary challenges for front end 3D NAND is buried particles, voids and bridges in the top, middle and bottom of high aspect ratio structures. Of particular interest are the yield challenges in the channel hole process module and developing an understanding of the contribution of litho and etch defectivity for this challenging new integration scheme. The key defectivity and process challenges in this module are missing, misshapen channel holes or under-etched channel holes as well as reducing noise sources related to other none yield limiting defect types and noise related to the process integration scheme. These challenges are expected to amplify as the memory density increases. In this study we show that a broadband brightfield approach to defect monitoring can be uniquely effective for the channel hole module. This approach is correlated to end-of-line (EOL) Wafer Bin Map for verification of capability.
NASA Astrophysics Data System (ADS)
Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.
2015-10-01
We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (∼0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential. The Gao-Weber potential appears to give a more realistic description of cascade dynamics in SiC, but still has some shortcomings when the defect migration barriers are compared to the ab initio results.
Désir-Vigné, Axel; Haure-Mirande, Vianney; de Coppet, Pierre; Darmaun, Dominique; Le Dréan, Gwenola; Segain, Jean-Pierre
2018-05-01
Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring. Copyright © 2017 Elsevier Inc. All rights reserved.
Evaluation of eddy current and magnetic techniques for inspecting rebars in bridge barrier rails
NASA Astrophysics Data System (ADS)
Lo, C. C. H.; Nakagawa, N.
2013-01-01
This paper reports on a feasibility study of using eddy current (EC) and magnetic flux leakage (MFL) methods to detect corrosion damage in rebars that anchor concrete barrier rails to the road deck of bridge structures. EC and MFL measurements were carried out on standalone rebars with and without artificial defects of 25% and 50% material loss, using a commercial EC-based rebar locator and a MFL system that was developed using giant magnetoresistance sensors to detect leakage fluxes from the defects. Both techniques can readily detect the defects at a distance of 2.5″ (63.5 mm). The amplitudes of the EC and MFL signals vary monotonically with the amount of material loss, indicating the potential of using the techniques to quantify material loss of standalone rebars.
Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alimardani, Nasir; Conley, John F., E-mail: jconley@eecs.oregonstate.edu
Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling,more » and operation is relatively insensitive to temperature.« less
NASA Astrophysics Data System (ADS)
Wu, Ning; Xiong, Zhihua; Qin, Zhenzhen
2018-02-01
By investigating the effect of a defective interface structure on Ag-based Ohmic contact of GaN-based vertical light-emitting diodes, we found a direct relationship between the interfacial composition and the Schottky barrier height of the Ag(111)/GaN(0001) interface. It was demonstrated that the Schottky barrier height of a defect-free Ag(111)/GaN(0001) interface was 2.221 eV, and it would be dramatically decreased to 0.375 eV with the introduction of one Ni atom and one Ga vacancy at the interface structure. It was found that the tunability of the Schottky barrier height can be attributed to charge accumulations around the interfacial defective regions and an unpinning of the Fermi level, which explains the experimental phenomenon of Ni-assisted annealing improving the p-type Ohmic contact characteristic. Lastly, we propose a new method of using Cu as an assisted metal to realize a novel Ag-based Ohmic contact. These results provide a guideline for the fabrication of high-quality Ag-based Ohmic contact of GaN-based vertical light-emitting diodes.
Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Sulas, Dana; Guthrey, Harvey L
Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less
Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Sulas, Dana; Guthrey, Harvey L
Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less
First-principles study of fission gas incorporation and migration in zirconium nitride
Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.
2017-03-24
To evaluate the effectiveness of ZrN as a diffusion barrier against fission gases, we investigate in this paper the incorporation and migration of fission gas atoms, with a focus on Xe, in ZrN by first-principles calculations. The formations of point defects in ZrN, including vacancies, interstitials, divacancies, Frenkel pairs, and Schottky defects, are first studied. Among all the defects, the Schottky defect with two vacancies as first nearest neighbor is predicted to be the most favorable incorporation site for fission gas Xe in ZrN. The migration of Xe gas atom in ZrN is investigated through two diffusion mechanisms, i.e., interstitialmore » and vacancy-assisted diffusions. The migration barrier of Xe gas atom through the intrinsic interstitials in ZrN is considerably lower than that through vacancies. Finally, therefore, at low temperatures fission gas Xe atoms diffuse mainly through interstitials in single crystal ZrN, whereas at high temperatures Xe may diffuse in ZrN assisted by vacancies.« less
Centromeric Barrier Disruption Leads to Mitotic Defects in Schizosaccharomyces pombe
Gaither, Terilyn L.; Merrett, Stephanie L.; Pun, Matthew J.; Scott, Kristin C.
2014-01-01
Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-ACnp1 protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability. PMID:24531725
Fracture Behaviour of Plasma Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Malzbender, Jürgen; Wakui, Takashi; Wessel, Egbert; Steinbrech, Rolf W.
Thermal barrier coatings (TBCs) of plasma sprayed yttria stabilised zirconia (YSZ) are increasingly utilised for heat exposed components of advanced gas turbines1,2. An important reason for the application of zirconia coatings is the low thermal conductivity of this ceramic material which is further diminished in a TBC by the high concentration of spraying induced microstructural defects, e.g. crack-shaped defects between and within the spraying splats. Thus with TBCs on gas cooled turbine components stiff temperature gradients can be realised as an important prerequisite for an increased thermal efficiency of the energy conversion process.
Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier
Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.
2016-01-01
Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (<20 cigarettes/day) or heavy smokers (≥20 cigarettes/day). An MPA5 was used to measure SC hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403
Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis
Lee, Sang Eun; Jeong, Se Kyoo
2010-01-01
Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045
Effect of Defects on III-V MWIR nBn Detector Performance
2014-08-01
SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 infrared detectors ...rather than diffusion based processes. Keywords: infrared detectors , MWIR, nBn, photodiode, defects, irradiation, lattice mismatch, dark current...currents will increase noise in the detector , it is important to understand the impact elevated defect concentrations will have on barrier architecture
Maternal diet modulates the risk for neural tube defects in a mouse model of diabetic pregnancy
Kappen, Claudia; Kruger, Claudia; MacGowan, Jacalyn; Salbaum, J. Michael
2010-01-01
Pregnancies complicated by maternal diabetes have long been known to carry a higher risk for congenital malformations, such as neural tube defects. Using the FVB inbred mouse strain and the Streptozotocin-induced diabetes model, we tested whether the incidence of neural tube defects in diabetic pregnancies can be modulated by maternal diet. In a comparison of two commercial mouse diets, which are considered nutritionally replete, we found that maternal consumption of the unfavorable diet was associated with a more than three-fold higher rate of neural tube defects. Our results demonstrate that maternal diet can act as a modifier of the risk for abnormal development in high-risk pregnancies, and provide support for the possibility that neural tube defects in human diabetic pregnancies might be preventable by optimized maternal nutrition. PMID:20868740
Gut barrier in health and disease: focus on childhood.
Viggiano, D; Ianiro, G; Vanella, G; Bibbò, S; Bruno, G; Simeone, G; Mele, G
2015-01-01
The gut barrier is a functional unit, organized as a multi-layer system, made up of two main components: a physical barrier surface, which prevents bacterial adhesion and regulates paracellular diffusion to the host tissues, and a deep functional barrier, that is able to discriminate between pathogens and commensal microorganisms, organizing the immune tolerance and the immune response to pathogens. Other mechanisms, such as gastric juice and pancreatic enzymes (which both have antibacterial properties) participate in the luminal integrity of the gut barrier. From the outer layer to the inner layer, the physical barrier is composed of gut microbiota (that competes with pathogens to gain space and energy resources, processes the molecules necessary to mucosal integrity and modulates the immunological activity of deep barrier), mucus (which separates the intraluminal content from more internal layers and contains antimicrobial products and secretory IgA), epithelial cells (which form a physical and immunological barrier) and the innate and adaptive immune cells forming the gut-associated lymphoid tissue (which is responsible for antigen sampling and immune responses). Disruption of the gut barrier has been associated with many gastrointestinal diseases, but also with extra-intestinal pathological condition, such as type 1 diabetes mellitus, allergic diseases or autism spectrum disorders. The maintenance of a healthy intestinal barrier is therefore of paramount importance in children, for both health and economic reasons. Many drugs or compounds used in the treatment of gastrointestinal disorders act through the restoration of a normal intestinal permeability. Several studies have highlighted the role of probiotics in the modulation and reduction of intestinal permeability, considering the strong influence of gut microbiota in the modulation of the function and structure of gut barrier, but also on the immune response of the host. To date, available weapons for the maintenance and repair of gut barrier are however few, even if promising. Considerable efforts, including both a better understanding of the gut barrier features and mechanisms in health and disease, and the development of new pharmacological approaches for the modulation of gut barrier components, are needed for the prevention and treatment of gastrointestinal and extraintestinal diseases associated with gut barrier impairment.
Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakrabarty, Aurab, E-mail: aurab.chakrabarty@qatar.tamu.edu; Bouhali, Othmane; Mousseau, Normand
Adsorption and dissociation of gaseous carbon monoxide (CO) on metal surfaces is one of the most frequently occurring processes of carburisation, known as primary initiator of metal dusting corrosion. Among the various factors that can significantly influence the carburisation process are the intrinsic surface defects such as single surface vacancies occurring at high concentrations due to their low formation energy. Intuitively, adsorption and dissociation barriers of CO are expected to be lowered in the vicinity of a surface vacancy, due to the strong attractive interaction between the vacancy and the C atom. Here the adsorption energies and dissociation pathways ofmore » CO on clean and defective Fe 110 surface are explored by means of density functional theory. Interestingly, we find that the O adatom, resulting from the CO dissociation, is unstable in the electron-deficit neighbourhood of the vacancy due to its large electron affinity, and raises the barrier of the carburisation pathway. Still, a full comparative study between the clean surface and the vacancy-defected surface reveals that the complete process of carburisation, starting from adsorption to subsurface diffusion of C, is more favourable in the vicinity of a vacancy defect.« less
Li, Jiagui; Leyva-Castillo, Juan Manuel; Hener, Pierre; Eisenmann, Aurelie; Zaafouri, Sarra; Jonca, Nathalie; Serre, Guy; Birling, Marie-Christine; Li, Mei
2016-07-01
Epidermal barrier dysfunction has been recognized as a critical factor in the initiation and exacerbation of skin inflammation, particularly in patients with atopic dermatitis (AD) and AD-like congenital disorders, including peeling skin syndrome type B. However, inflammatory responses developed in barrier-defective skin, as well as the underlying mechanisms, remained incompletely understood. We aimed to decipher inflammatory axes and the cytokine network in mouse skin on breakdown of epidermal stratum corneum barrier. We generated Cdsn(iep-/-) mice with corneodesmosin ablation in keratinocytes selectively in an inducible manner. We characterized inflammatory responses and cytokine expression by using histology, immunohistochemistry, ELISA, and quantitative PCR. We combined mouse genetic tools, antibody-mediated neutralization, signal-blocking reagents, and topical antibiotic treatment to explore the inflammatory axes. We show that on breakdown of the epidermal stratum corneum barrier, type 2 and type 17 inflammatory responses are developed simultaneously, driven by thymic stromal lymphopoietin (TSLP) and IL-23, respectively. Importantly, we reveal a counterregulation between these 2 inflammatory axes. Furthermore, we show that protease-activated receptor 2 signaling is involved in mediating the TSLP/type 2 axis, whereas skin bacteria are engaged in induction of the IL-23/type 17 axis. Moreover, we find that IL-1β is induced in skin of Cdsn(iep-/-) mice and that blockade of IL-1 signaling suppresses both TSLP and IL-23 expression and ameliorates skin inflammation. The inflammatory phenotype in barrier-defective skin is shaped by counterregulation between the TSLP/type 2 and IL-23/type 17 axes. Targeting IL-1 signaling could be a promising therapeutic option for controlling skin inflammation in patients with peeling skin syndrome type B and other diseases related to epidermal barrier dysfunction, including AD. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Silicon metal-semiconductor-metal photodetector
Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.
1997-01-01
Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.
Silicon metal-semiconductor-metal photodetector
Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.
1995-01-01
Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.
First-Principles Study of Defects in GaN
2009-07-29
This means both Mg and Be are not suitable p-type dopants in AlN. c) We have calculated the Ga Frenkel pairs (interstitial Ga and gallium vacancy... gallium vacancy complexes) in GaN. We studied both the stability of the pair at different separations and the barriers for the pair to form/disintegrate...high in energy than vacancy defects, especially for covalent materials. However, in ionic materials the charged interstitial defects can have low
Understanding and reduction of defects on finished EUV masks
NASA Astrophysics Data System (ADS)
Liang, Ted; Sanchez, Peter; Zhang, Guojing; Shu, Emily; Nagpal, Rajesh; Stivers, Alan
2005-05-01
To reduce the risk of EUV lithography adaptation for the 32nm technology node in 2009, Intel has operated a EUV mask Pilot Line since early 2004. The Pilot Line integrates all the necessary process modules including common tool sets shared with current photomask production as well as EUV specific tools. This integrated endeavor ensures a comprehensive understanding of any issues, and development of solutions for the eventual fabrication of defect-free EUV masks. Two enabling modules for "defect-free" masks are pattern inspection and repair, which have been integrated into the Pilot Line. This is the first time we are able to look at real defects originated from multilayer blanks and patterning process on finished masks over entire mask area. In this paper, we describe our efforts in the qualification of DUV pattern inspection and electron beam mask repair tools for Pilot Line operation, including inspection tool sensitivity, defect classification and characterization, and defect repair. We will discuss the origins of each of the five classes of defects as seen by DUV pattern inspection tool on finished masks, and present solutions of eliminating and mitigating them.
Highly defective oxides as sinter resistant thermal barrier coating
Subramanian, Ramesh
2005-08-16
A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.
Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong
2014-02-10
A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications.
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Overbury, Steven H.
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces
Beste, Ariana; Overbury, Steven H.
2016-03-09
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces.
Beste, Ariana; Overbury, Steven H
2016-04-21
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed product selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.
Formation and field-driven dynamics of nematic spheroids.
Fu, Fred; Abukhdeir, Nasser Mohieddin
2017-07-19
Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.
NASA Astrophysics Data System (ADS)
Wlazło, M.; Majewski, J. A.
2018-03-01
We study the dissociative adsorption of methane at the surface of graphene. Free energy profiles, which include activation energies for different steps of the reaction, are computed from constrained ab initio molecular dynamics. At 300 K, the reaction barriers are much lower than experimental bond dissociation energies of gaseous methane, strongly indicating that the graphene surface acts as a catalyst of methane decomposition. On the other hand, the barriers are still much higher than on the nickel surface. Methane dissociation therefore occurs at a higher rate on nickel than on graphene. This reaction is a prerequisite for graphene growth from a precursor gas. Thus, the growth of the first monolayer should be a fast and efficient process while subsequent layers grow at a diminished rate and in a more controllable manner. Defects may also influence reaction energetics. This is evident from our results, in which simple defects (Stone-Wales defect and nitrogen substitution) lead to different free energy landscapes at both dissociation and adsorption steps of the process.
Electron-doping by hydrogen in transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Oh, Sehoon; Im, Seongil; Choi, Hyoung Joon
Using first-principles calculations, we investigate the atomic and electronic structures of 2H-phase transition-metal dichalcogenides (TMDC), 2H-MX2, with and without defects, where M is Mo or W and X is S, Se or Te. We find that doping of atomic hydrogen on 2H-MX2 induces electron doping in the conduction band. To understand the mechanism of this electron doping, we analyze the electronic structures with and without impurities. We also calculate the diffusion energy barrier to discuss the spatial stability of the doping. Based on these results, we suggest a possible way to fabricate elaborately-patterned circuits by modulating the carrier type of 2H-MoTe2. We also discuss possible applications of this doping in designing nano-devices. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2016-C3-0052).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.
2010-07-02
The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less
Effect of porous xenographic bone graft with collagen barrier membrane on periodontal regeneration.
Yamada, Satoru; Shima, Nobuhiro; Kitamura, Hidekazu; Sugito, Hiroki
2002-08-01
The purpose of this study was to investigate the effect of porous xenographic bone graft (Bio-Oss) with a collagen barrier membrane (Bio-Gide) on formation of new cementum and new bone in experimental intrabony defects of dogs. The intrabony defects were treated by either guided tissue regeneration with the collagen membrane (control group) or the collagen membrane with the porous bone mineral graft (experimental group). After 8 weeks, the animals were sacrificed and the tissues were histologically examined. New cementum with inserting collagen fibers was observed on the exposed surfaces in both groups. The amount of nevv bone was significantly greater in the group using the bone graft with the membrane than in the control group. The use of the collagen barrier membrane in combination with the porous bone graft material may enhance new bone and cementum formation.
Atomistic modeling and experimental studies of radiation damage in monazite-type LaPO4 ceramics
NASA Astrophysics Data System (ADS)
Ji, Yaqi; Kowalski, Piotr M.; Neumeier, Stefan; Deissmann, Guido; Kulriya, Pawan K.; Gale, Julian D.
2017-02-01
We simulated the threshold displacement energies (Ed), the related displacement and defect formation probabilities, and the energy barriers in LaPO4 monazite-type ceramics. The obtained Ed values for La, P, O primary knock-on atoms (PKA) are 56 eV, 75 eV and 8 eV, respectively. We found that these energies can be correlated with the energy barriers that separate the defect from the initial states. The Ed values are about twice the values of energy barriers, which is explained through an efficient dissipation of the PKA kinetic energy in the considered system. The computed Ed were used in simulations of the extent of radiation damage in La0.2Gd0.8PO4 solid solution, investigated experimentally. We found that this lanthanide phosphate fully amorphises in the ion beam experiments for fluences higher than ∼1013 ions/cm2.
NASA Astrophysics Data System (ADS)
Blauvelt, H.; Thurmond, G.; Parsons, J.; Lewis, D.; Yen, H.
1984-08-01
High-speed GaAs Schottky barrier photodiodes have been fabricated and characterized. These detectors have 3-dB bandwidths of 20 GHz and quantum efficiencies as high as 70 percent. The response of the detectors to light modulated at 1-18 GHz has been directly measured. Microwave modulated optical signals were obtained by using a LiNbO3 traveling wave modulator and by heterodyning two laser diodes.
75 FR 60258 - Federal Acquisition Regulation; Termination for Default Reporting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... terminations for cause or default and defective cost or pricing data, into the Past Performance Information... defective cost or pricing data and terminations for cause or default into the FAPIIS module of the PPIRS... Pricing Information Comment: One respondent submitted two separate comments suggesting that defective...
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang; ...
2016-06-01
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Fast diffusion of native defects and impurities in perovskite solar cell material CH 3NH 3PbI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dongwen; Ming, Wenmei; Shi, Hongliang
CH 3NH 3PbI 3-based solar cells have shown remarkable progress in recent years but have also suffered from structural, electrical, and chemical instabilities related to the soft lattices and the chemistry of these halides. One of the instabilities is ion migration, which may cause current–voltage hysteresis in CH 3NH 3PbI 3 solar cells. Significant ion diffusion and ionic conductivity in CH 3NH 3PbI 3 have been reported; their nature, however, remain controversial. In the literature, the use of different experimental techniques leads to the observation of different diffusing ions (either iodine or CH 3NH 3 ion); the calculated diffusion barriersmore » for native defects scatter in a wide range; the calculated defect formation energies also differ qualitatively. These controversies hinder the understanding and the control of the ion migration in CH 3NH 3PbI 3. In this paper, we show density functional theory calculations of both the diffusion barriers and the formation energies for native defects (V I +, MA i +, V MA –, and I i –) and the Au impurity in CH 3NH 3PbI 3. V I + is found to be the dominant diffusing defect due to its low formation energy and the low diffusion barrier. I i – and MA i + also have low diffusion barriers but their formation energies are relatively high. The hopping rate of V I + is further calculated taking into account the contribution of the vibrational entropy, confirming V I + as a fast diffuser. We discuss approaches for managing defect population and migration and suggest that chemically modifying surfaces, interfaces, and grain boundaries may be effective in controlling the population of the iodine vacancy and the device polarization. We further show that the formation energy and the diffusion barrier of Au interstitial in CH 3NH 3PbI 3 are both low. As a result, it is thus possible that Au can diffuse into CH3NH3PbI3 under bias in devices (e.g., solar cell, photodetector) with Au/CH 3NH 3PbI 3 interfaces and modify the electronic properties of CH 3NH 3PbI 3.« less
Magyari-Köpe, Blanka; Tendulkar, Mihir; Park, Seong-Geon; Lee, Hyung Dong; Nishi, Yoshio
2011-06-24
Resistance change random access memory (RRAM) cells, typically built as MIM capacitor structures, consist of insulating layers I sandwiched between metal layers M, where the insulator performs the resistance switching operation. These devices can be electrically switched between two or more stable resistance states at a speed of nanoseconds, with long retention times, high switching endurance, low read voltage, and large switching windows. They are attractive candidates for next-generation non-volatile memory, particularly as a flash successor, as the material properties can be scaled to the nanometer regime. Several resistance switching models have been suggested so far for transition metal oxide based devices, such as charge trapping, conductive filament formation, Schottky barrier modulation, and electrochemical migration of point defects. The underlying fundamental principles of the switching mechanism still lack a detailed understanding, i.e. how to control and modulate the electrical characteristics of devices incorporating defects and impurities, such as oxygen vacancies, metal interstitials, hydrogen, and other metallic atoms acting as dopants. In this paper, state of the art ab initio theoretical methods are employed to understand the effects that filamentary types of stable oxygen vacancy configurations in TiO(2) and NiO have on the electronic conduction. It is shown that strong electronic interactions between metal ions adjacent to oxygen vacancy sites results in the formation of a conductive path and thus can explain the 'ON' site conduction in these materials. Implication of hydrogen doping on electroforming is discussed for Pr(0.7)Ca(0.3)MnO(3) devices based on electrical characterization and FTIR measurements.
Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus
Zhang, Jiyong; Sadowska, Grazyna B.; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A.; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Stonestreet, Barbara S.
2015-01-01
Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. PMID:25609424
Proton and hydrogen transport through two-dimensional monolayers
NASA Astrophysics Data System (ADS)
Seel, Max; Pandey, Ravindra
2016-06-01
Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.
Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-01-01
Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
Resistive switching near electrode interfaces: Estimations by a current model
NASA Astrophysics Data System (ADS)
Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer
2013-02-01
The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai
A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In3+ to In0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries atmore » Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai
A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In 3+ to In 0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O 2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailedmore » interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less
Contactless Electroluminescence Imaging for Cell and Module Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steve
2015-06-14
Module performance can be characterized by imaging using baseline and periodic images to track defects and degradation. Both thermal images, which can be acquired during sunny operating conditions, and photoluminescence images, which could be acquired at night, can be collected without electrical connection. Electroluminescence (EL) images, which are useful to detect many types of defects such as cracks, interconnect and solder faults, and resistances, have typically required electrical connection to drive current in the cells and modules. Here, a contactless EL imaging technique is proposed, which provides an EL image without the need for electrical connection to drive current throughmore » the module. Such EL imaging has the capability to be collected at night without disruption to daytime power generation.« less
Canonical WNT signaling components in vascular development and barrier formation.
Zhou, Yulian; Wang, Yanshu; Tischfield, Max; Williams, John; Smallwood, Philip M; Rattner, Amir; Taketo, Makoto M; Nathans, Jeremy
2014-09-01
Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor-related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin-dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin-dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.
Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2
NASA Astrophysics Data System (ADS)
Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur
2018-05-01
A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.
Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.
Oh, Teresa; Kim, Chy Hyung
2016-02-01
To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB.
MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone
Li, Chunmei; Kennedy, Julie; Garcia-Gonzalo, Francesc R.; Romani, Marta; De Mori, Roberta; Bruel, Ange-Line; Gaillard, Dominique; Doray, Bérénice; Lopez, Estelle; Rivière, Jean-Baptiste; Faivre, Laurence; Thauvin-Robinet, Christel; Reiter, Jeremy F.; Blacque, Oliver E.; Valente, Enza Maria; Leroux, Michel R.
2016-01-01
Cilia have a unique diffusion barrier (“gate”) within their proximal region, termed transition zone (TZ), that compartmentalises signalling proteins within the organelle. The TZ is known to harbour two functional modules/complexes (Meckel syndrome [MKS] and Nephronophthisis [NPHP]) defined by genetic interaction, interdependent protein localisation (hierarchy), and proteomic studies. However, the composition and molecular organisation of these modules and their links to human ciliary disease are not completely understood. Here, we reveal Caenorhabditis elegans CEP-290 (mammalian Cep290/Mks4/Nphp6 orthologue) as a central assembly factor that is specific for established MKS module components and depends on the coiled coil region of MKS-5 (Rpgrip1L/Rpgrip1) for TZ localisation. Consistent with a critical role in ciliary gate function, CEP-290 prevents inappropriate entry of membrane-associated proteins into cilia and keeps ARL-13 (Arl13b) from leaking out of cilia via the TZ. We identify a novel MKS module component, TMEM-218 (Tmem218), that requires CEP-290 and other MKS module components for TZ localisation and functions together with the NPHP module to facilitate ciliogenesis. We show that TZ localisation of TMEM-138 (Tmem138) and CDKL-1 (Cdkl1/Cdkl2/Cdkl3/Cdlk4 related), not previously linked to a specific TZ module, similarly depends on CEP-290; surprisingly, neither TMEM-138 or CDKL-1 exhibit interdependent localisation or genetic interactions with core MKS or NPHP module components, suggesting they are part of a distinct, CEP-290-associated module. Lastly, we show that families presenting with Oral-Facial-Digital syndrome type 6 (OFD6) have likely pathogenic mutations in CEP-290-dependent TZ proteins, namely Tmem17, Tmem138, and Tmem231. Notably, patient fibroblasts harbouring mutated Tmem17, a protein not yet ciliopathy-associated, display ciliogenesis defects. Together, our findings expand the repertoire of MKS module-associated proteins—including the previously uncharacterised mammalian Tmem80—and suggest an MKS-5 and CEP-290-dependent assembly pathway for building a functional TZ. PMID:26982032
Optical Dependence of Electrically Detected Magnetic Resonance in Lightly Doped Si:P Devices
NASA Astrophysics Data System (ADS)
Zhu, Lihuang; van Schooten, Kipp J.; Guy, Mallory L.; Ramanathan, Chandrasekhar
2017-06-01
Using frequency-modulated electrically detected magnetic resonance (EDMR), we show that signals measured from lightly doped (1.2 - 5 ×1 015 cm-3 ) silicon devices vary significantly with the wavelength of the optical excitation used to generate the mobile carriers. We measure EDMR spectra at 4.2 K as a function of modulation frequency and applied microwave power using a 980-nm laser, a 405-nm laser, and a broadband white-light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all of the experiments. With near-infrared irradiation, we find that the EDMR signal primarily arises from donor-defect pairs, while, at higher photon energies, there are significant additional contributions from defect-defect pairs. The contribution of spins from different spatial regions to the EDMR signal is seen to vary as the optical penetration depth changes from about 120 nm at 405-nm illumination to 100 μ m at 980-nm illumination. The modulation frequency dependence of the EDMR signal shows that the energy of the optical excitation strongly modulates the kinetics of the underlying spin-dependent recombination (SDR) process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal and the dynamics of the SDR process.
Jung, Ui-Won; Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Hwang, Ji-Wan; Park, Jung-Chul; Kim, Chang-Sung; Cho, Kyoo-Sung; Chai, Jung-Kiu
2011-01-01
Purpose The aim of this study was to elucidate the effect of a bovine hydroxyapatite/collagen (BHC) block in one-wall intrabony periodontal defects in dogs. Methods A one-wall intrabony periodontal defect (4 mm wide and 5 mm deep) was prepared bilaterally at the mesial side of the mandibular fourth premolar in five beagle dogs. After thorough root planing, block-type BHC (4×5×5 mm) was placed on one side. The contralateral defect area did not receive any material as a sham-surgery control. Histological analysis of the sites was performed after an 8-week healing period. Results Two of five samples in the experimental group healed well without dissipation of the graft materials, and histological analysis revealed excellent regeneration of the periodontal tissues. However, most of the grafted materials had been displaced in the other three samples, leaving only a small portion of the graft. The measured parameters exhibited large standard deviations, and the mean values did not differ significantly between the experimental and sham-surgery control sides. Conclusions The application of BHC alone-without a barrier membrane-to wide, one-wall intrabony periodontal defects yielded inconsistent results regarding both periodontal regeneration and substantivity of the graft materials. Thus, the use of a barrier membrane for noncontained-type defects is recommended to improve the stability of the grafted material, and to condense it. PMID:22324006
Out-of-equilibrium dynamics and extended textures of topological defects in spin ice
NASA Astrophysics Data System (ADS)
Udagawa, M.; Jaubert, L. D. C.; Castelnovo, C.; Moessner, R.
2016-09-01
Memory effects have been observed across a wide range of geometrically frustrated magnetic materials, possibly including Pr2Ir2O7 where a spontaneous Hall effect has been observed. Frustrated magnets are also famous for the emergence of topological defects. Here we explore how the interaction between these defects can be responsible for a rich diversity of out-of-equilibrium dynamics, dominated by topological bottlenecks and multiscale energy barriers. Our model is an extension of the spinice model on the pyrochlore lattice, where farther-neighbor spin interactions give rise to a nearest-neighbor coupling between topological defects. This coupling can be chosen to be "unnatural" or not, i.e., attractive or repulsive between defects carrying the same topological charge. After applying a field quench, our model supports, for example, long-lived magnetization plateaux, and allows for the metastability of a "fragmented" spin liquid, an unconventional phase of matter where long-range order co-exists with a spin liquid. Perhaps most strikingly, the attraction between same-sign charges produces clusters of these defects in equilibrium, whose stability is due to a combination of energy and topological barriers. These clusters may take the form of a "jellyfish" spin texture, centered on a hexagonal ring with branches of arbitrary length. The ring carries a clockwise or counterclockwise circular flow of magnetization. This emergent toroidal degrees of freedom provide a possibility for time-reversal symmetry breaking with potential relevance to the spontaneous Hall effect observed in Pr2Ir2O7 .
Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.
2015-01-01
Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245
Hole defects in molecular beam epitaxially grown p-GaAs introduced by alpha irradiation
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Meyer, W. E.
1994-01-01
Epitaxial aluminum Schottky barrier diodes on molecular beam epitaxially grown p-GaAs with a free carrier density of 2×1016 cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. For the first time, the radiation induced hole defects are characterized using conventional deep level transient spectroscopy (DLTS). The introduction rates and DLTS ``signatures'' of three prominent radiation induced defects Hα1, Hα4, and Hα5, situated 0.08, 0.20, and 0.30 eV above the valence band, respectively, are calculated and compared to those of similar defects introduced during electron irradiation.
Nuclear Technology. Course 28: Welding Inspection. Module 28-6, Process Controls.
ERIC Educational Resources Information Center
Espy, John
This sixth in a series of ten modules for a course titled Welding Inspection describes procedures review, process monitoring, and weld defect analysis. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject matter, (6)…
Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro.
Chaitanya, Ganta V; Cromer, Walter E; Wells, Shannon R; Jennings, Merilyn H; Couraud, P Olivier; Romero, Ignacio A; Weksler, Babette; Erdreich-Epstein, Anat; Mathis, J Michael; Minagar, Alireza; Alexander, J Steven
2011-11-23
The glio-vascular unit (G-unit) plays a prominent role in maintaining homeostasis of the blood-brain barrier (BBB) and disturbances in cells forming this unit may seriously dysregulate BBB. The direct and indirect effects of cytokines on cellular components of the BBB are not yet unclear. The present study compares the effects of cytokines and cytokine-treated astrocytes on brain endothelial barrier. 3-dimensional transwell co-cultures of brain endothelium and related-barrier forming cells with astrocytes were used to investigate gliovascular barrier responses to cytokines during pathological stresses. Gliovascular barrier was measured using trans-endothelial electrical resistance (TEER), a sensitive index of in vitro barrier integrity. We found that neither TNF-α, IL-1β or IFN-γ directly reduced barrier in human or mouse brain endothelial cells or ECV-304 barrier (independent of cell viability/metabolism), but found that astrocyte exposure to cytokines in co-culture significantly reduced endothelial (and ECV-304) barrier. These results indicate that the barrier established by human and mouse brain endothelial cells (and other cells) may respond positively to cytokines alone, but that during pathological conditions, cytokines dysregulate the barrier forming cells indirectly through astrocyte activation involving reorganization of junctions, matrix, focal adhesion or release of barrier modulating factors (e.g. oxidants, MMPs). © 2011 Chaitanya et al; licensee BioMed Central Ltd.
ReaxFF Reactive Force-Field Study of Molybdenum Disulfide (MoS2).
Ostadhossein, Alireza; Rahnamoun, Ali; Wang, Yuanxi; Zhao, Peng; Zhang, Sulin; Crespi, Vincent H; van Duin, Adri C T
2017-02-02
Two-dimensional layers of molybdenum disulfide, MoS 2 , have been recognized as promising materials for nanoelectronics due to their exceptional electronic and optical properties. Here we develop a new ReaxFF reactive potential that can accurately describe the thermodynamic and structural properties of MoS 2 sheets, guided by extensive density functional theory simulations. This potential is then applied to the formation energies of five different types of vacancies, various vacancy migration barriers, and the transition barrier between the semiconducting 2H and metallic 1T phases. The energetics of ripplocations, a recently observed defect in van der Waals layers, is examined, and the interplay between these defects and sulfur vacancies is studied. As strain engineering of MoS 2 sheets is an effective way to manipulate the sheets' electronic and optical properties, the new ReaxFF description can provide valuable insights into morphological changes that occur under various loading conditions and defect distributions, thus allowing one to tailor the electronic properties of these 2D crystals.
First principles study of intrinsic defects in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Xia, J. H.; Liu, C. S.; Fang, Q. F.; Luo, G.-N.; Huang, Qun-Ying
2010-11-01
The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which are present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in tungsten carbide. Our results confirm that the defect formation energies of carbon are much lower than that of tungsten and reveal the carbon vacancy to be the dominant defect in tungsten carbide. The C sbnd C dimer configuration along the dense a direction is the most stable configuration of carbon interstitial defect. The results of carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerably lower activation energy. Both of them prefer to diffusion in carbon basal plane.
Naeem, Aishath S; Tommasi, Cristina; Cole, Christian; Brown, Stuart J; Zhu, Yanan; Way, Benjamin; Willis Owen, Saffron A G; Moffatt, Miriam; Cookson, William O; Harper, John I; Di, Wei-Li; Brown, Sara J; Reinheckel, Thomas; O'Shaughnessy, Ryan F L
2017-04-01
Filaggrin, which is encoded by the filaggrin gene (FLG), is an important component of the skin's barrier to the external environment, and genetic defects in FLG strongly associate with atopic dermatitis (AD). However, not all patients with AD have FLG mutations. We hypothesized that these patients might possess other defects in filaggrin expression and processing contributing to barrier disruption and AD, and therefore we present novel therapeutic targets for this disease. We describe the relationship between the mechanistic target of rapamycin complex 1/2 protein subunit regulatory associated protein of the MTOR complex 1 (RAPTOR), the serine/threonine kinase V-Akt murine thymoma viral oncogene homolog 1 (AKT1), and the protease cathepsin H (CTSH), for which we establish a role in filaggrin expression and processing. Increased RAPTOR levels correlated with decreased filaggrin expression in patients with AD. In keratinocyte cell cultures RAPTOR upregulation or AKT1 short hairpin RNA knockdown reduced expression of the protease CTSH. Skin of CTSH-deficient mice and CTSH short hairpin RNA knockdown keratinocytes showed reduced filaggrin processing, and the mouse had both impaired skin barrier function and a mild proinflammatory phenotype. Our findings highlight a novel and potentially treatable signaling axis controlling filaggrin expression and processing that is defective in patients with AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo-Negrete, Diego del; Blazevski, Daniel
2016-04-15
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less
NASA Astrophysics Data System (ADS)
Schmidt, Georg; Goeckeritz, Robert; Homonnay, Nico; Mueller, Alexander; Fuhrmann, Bodo
Resistive switching has already been reported in organic spin valves (OSV), however, its origin is still unclear. We have fabricated nanosized OSV based on La0.7Sr0.3MnO3/Alq3/Co. These devices show fully reversible resistive switching of up to five orders of magnitude. The magnetoresistance (MR) is modulated during the switching process from negative (-70%) to positive values (+23%). The results are reminiscent of experiments claiming magnetoelectric coupling in LSMO based tunneling structures using ferroelectric barriers. By analyzing the I/V characteristics of the devices we can show that transport is dominated by tunneling through pinholes. The resistive switching is caused by voltage induced creation and motion of oxygen vacancies at the LSMO surface, however, the resulting tunnel barrier is complemented by a second adjacent barrier in the organic semiconductor. Our model shows that the barrier in the organic material is constant, causing the initial MR while the barrier in the LMSO can be modulated by the voltage resulting in the resistive switching and the modulation of the MR as the coupling to the states in the LSMO changes. A switching caused by LSMO only is also supported by the fact that replacing ALQ3 by H2PC yields almost identical results. Supported by the DFG in the SFB762.
Equivalent Circuit Modeling for Carbon Nanotube Schottky Barrier Modulation in Polarized Gases
NASA Technical Reports Server (NTRS)
Yamada, Toshishige
2005-01-01
We study the carbon nanotube Schottky barrier at the metallic electrode interface in polarized gases using an equivalent circuit model. The gas-nanotube interaction is often weak and very little charge transfer is expected [l]. This is the case with'oxygen, but the gas-electrode interaction is appreciable and makes the oxygen molecules negatively charged. In the closed circuit condition, screening positive charges appear in the nanotube as well as in the electrode, and the Schottky barrier is modulated due to the resultant electrostatic effects [2]. In the case of ammonia, both the gas-nanotube and gas-electrode interactions are weak, but the Schottky barrier can still be modulated since the molecules are polarized and align in the preferred orientation within the gap between the electrode and nanotube in the open circuit condition (dipole layer formation). In the closed circuit condition, an electric field appears in the gap and strengthens or weakens the preferred dipole alignment reflecting the nanotube Fermi level. The modulation is visible when the nanotube depletion mode is involved, and the required dipole density is as low as 2 x 10(exp 13) dipoles/sq cm, which is quite feasible experimentally,
Two breakdown mechanisms in ultrathin alumina barrier magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Oliver, Bryan; Tuttle, Gary; He, Qing; Tang, Xuefei; Nowak, Janusz
2004-02-01
Two breakdown mechanisms are observed in magnetic tunnel junctions having an ultrathin alumina barrier. The two breakdown mechanisms manifest themselves differently when considering large ensembles of nominally identical devices under different stress conditions. The results suggest that one type of breakdown occurs because of the intrinsic breakdown of a well-formed oxide barrier that can be described by the E model of dielectric breakdown. The other is an extrinsic breakdown related to defects in the barrier rather than the failure of the oxide integrity. The characteristic of extrinsic breakdown suggests that a pre-existing pinhole in the barriers grows in area by means of dissipative (Joule) heating and/or an electric field across the pinhole circumference.
Molecular pathways for defect annihilation in directed self-assembly
Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.
2015-01-01
Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095
Molecular pathways for defect annihilation in directed self-assembly.
Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; ...
2015-11-17
Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less
Aqueous proton transfer across single-layer graphene
Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...
2015-03-17
Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons.« less
Relevance of non-equilibrium defect generation processes to resistive switching in TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelouahed, Samir; McKenna, Keith P., E-mail: keith.mckenna@york.ac.uk
First principles calculations are employed to identify atomistic pathways for the generation of vacancy-interstitial pair defects in TiO{sub 2}. We find that the formation of both oxygen and titanium defects induces a net dipole moment indicating that their formation can be assisted by an electric field. We also show that the activation barrier to formation of an oxygen vacancy defect can be reduced by trapping of holes which may be injected by the electrode. The calculated activation energies suggest that generation of titanium defects is more favorable than generation oxygen defects although activation energies in both cases are relatively highmore » (>3.3 eV). These results provide much needed insight into an issue that has been widely debated but for which little definitive experimental information is available.« less
Current-induced changes of migration energy barriers in graphene and carbon nanotubes
NASA Astrophysics Data System (ADS)
Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.
2016-05-01
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A
Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S
2018-01-31
A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.
Development of training modules for magnetic particle inspection
NASA Astrophysics Data System (ADS)
Kosaka, Daigo; Eisenmann, David J.; Enyart, Darrel; Nakagawa, Norio; Lo, Chester; Orman, David
2015-03-01
Magnetic particle inspection (MPI) is a nondestructive evaluation technique used with ferromagnetic materials. Although the application of this method may appear straightforward, MPI combines the complicated nature of electromagnetics, metallurgical material effects, fluid-particle motion dynamics, and physiological human factors into a single inspection. To fully appreciate industry specifications such as ASTM E-1444, users should develop a basic understanding of the many factors that are involved in MPI. We have developed a series of MPI training modules that are aimed at addressing this requirement. The modules not only offer qualitative explanations, but also show quantitative explanations in terms of measurement and numerical simulation data in many instances. There are five modules in all. Module ♯1 shows characteristics of waveforms and magnetizing methods. This allows MPI practitioners to make optimum choice of waveform and magnetizing method. Module ♯2 explains how material properties relate to the magnetic characteristics. Module ♯3 shows the strength of the excitation field or the flux leakage from a crack and how it compares to the detectability of a crack by MPI. Module ♯4 shows how specimen status may influence defect detection. Module ♯5 shows the effects of particle properties on defect detection.
CFTR Modulators for the Treatment of Cystic Fibrosis.
Pettit, Rebecca S; Fellner, Chris
2014-07-01
Defects in a single gene lead to the defective proteins that cause cystic fibrosis, making the disease an ideal candidate for mutation-targeted therapy. Although ivacaftor is currently the only FDA-approved CFTR modifier, others are in development.
McColl, Kit; Johnson, Ian; Corà, Furio
2018-05-25
A systematic study of the location and energetics of cation dopants in α-V2O5 has been conducted using pair-potential methods, supplemented by first-principles calculations. The consequences of doping on intrinsic defect equilibria have been discussed and the effects of selected dopants on Li+ and Mg2+ diffusion energy barriers have been investigated.
Critical Role of Water and Oxygen Defects in C-O Scission during CO2 Reduction on Zn2GeO4(010).
Yang, Jing; Li, Yanlu; Zhao, Xian; Fan, Weiliu
2018-03-27
Exploration of catalyst structure and environmental sensitivity for C-O bond scission is essential for improving the conversion efficiency because of the inertness of CO 2 . We performed density functional theory calculations to understand the influence of the properties of adsorbed water and the reciprocal action with oxygen vacancy on the CO 2 dissociation mechanism on Zn 2 GeO 4 (010). When a perfect surface was hydrated, the introduction of H 2 O was predicted to promote the scission step by two modes based on its appearance, with the greatest enhancement from dissociative adsorbed H 2 O. The dissociative H 2 O lowers the barrier and reaction energy of CO 2 dissociation through hydrogen bonding to preactivate the C-O bond and assisted scission via a COOH intermediate. The perfect surface with bidentate-binding H 2 O was energetically more favorable for CO 2 dissociation than the surface with monodentate-binding H 2 O. Direct dissociation was energetically favored by the former, whereas monodentate H 2 O facilitated the H-assisted pathway. The defective surface exhibited a higher reactivity for CO 2 decomposition than the perfect surface because the generation of oxygen vacancies could disperse the product location. When the defective surface was hydrated, the reciprocal action for vacancy and surface H 2 O on CO 2 dissociation was related to the vacancy type. The presence of H 2 O substantially decreased the reaction energy for the direct dissociation of CO 2 on O 2c1 - and O 3c2 -defect surfaces, which converts the endoergic reaction to an exoergic reaction. However, the increased decomposition barrier made the step kinetically unfavorable and reduced the reaction rate. When H 2 O was present on the O 2c2 -defect surface, both the barrier and reaction energy for direct dissociation were invariable. This result indicated that the introduction of H 2 O had little effect on the kinetics and thermodynamics. Moreover, the H-assisted pathway was suppressed on all hydrated defect surfaces. These results provide a theoretical perspective for the design of highly efficient catalysts.
NASA Astrophysics Data System (ADS)
Donskoy, Dmitri; Ekimov, Alexander; Luzzato, Emile; Lottiaux, Jean-Louis; Stoupin, Stanislav; Zagrai, Andrei
2003-08-01
In recent years, innovative vibro-modulation technique has been introduced for detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies on the contact area of the interface modulating passing through ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for detection and differentiation of the contact-type defects from other structural and material inhomogeneities. Vibro-modulation technique has been implemented in N-SCAN damage detection system. The system consists of a digital synthesizer, high and low frequency amplifiers, a magnetostrictive shaker, ultrasonic transducers and a PC-based data acquisition/processing station with N-SCAN software. The ability of the system to detect contact-type defects was experimentally verified using specimens of simple and complex geometries made of steel, aluminum, composites and other structural materials. N-SCAN proved to be very effective for nondestructive testing of full-scale structures ranging from 24 foot-long gun barrels to stainless steel pipes used in nuclear power plants. Among advantages of the system are applicability for the wide range of structural materials and for structures with complex geometries, real time data processing, convenient interface for system operation, simplicity of interpretation of results, no need for sensor scanning along structure, onsite inspection of large structures at a fraction of time as compared with conventional techniques. This paper describes the basic principles of nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction and justification of signal processing algorithm. It is also presents examples of practical implementation and application of the technique.
Pumped shot noise in adiabatically modulated graphene-based double-barrier structures.
Zhu, Rui; Lai, Maoli
2011-11-16
Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.
Pumped shot noise in adiabatically modulated graphene-based double-barrier structures
NASA Astrophysics Data System (ADS)
Zhu, Rui; Lai, Maoli
2011-11-01
Quantum pumping processes are accompanied by considerable quantum noise. Based on the scattering approach, we investigated the pumped shot noise properties in adiabatically modulated graphene-based double-barrier structures. It is found that compared with the Poisson processes, the pumped shot noise is dramatically enhanced where the dc pumped current changes flow direction, which demonstrates the effect of the Klein paradox.
Low-bias flat band-stop filter based on velocity modulated gaussian graphene superlattice
NASA Astrophysics Data System (ADS)
Sattari-Esfahlan, S. M.; Shojaei, S.
2018-05-01
Transport properties of biased planar Gaussian graphene superlattice (PGGSL) with Fermi velocity barrier is investigated by transfer matrix method (TMM). It is observed that enlargement of bias voltage over miniband width breaks the miniband to WSLs leads to suppressing resonant tunneling. Transmission spectrum shows flat wide stop-band property controllable by external bias voltage with stop-band width of near 200 meV. The simulations demonstrate that strong velocity barriers prevent tunneling of Dirac electrons leading to controllable enhancement of stop-band width. By increasing ratio of Fermi velocity in barriers to wells υc stop-band width increase. As wide transmission stop-band width (BWT) of filter is tunable from 40 meV to 340 meV is obtained by enhancing ratio of υc from 0.2 to 1.5, respectively. Proposed structure suggests easy tunable wide band-stop electronic filter with a modulated flat stop-band characteristic by height of electrostatic barrier and structural parameters. Robust sensitivity of band width to velocity barrier intensity in certain bias voltages and flat band feature of proposed filter may be opens novel venue in GSL based flat band low noise filters and velocity modulation devices.
Hidden topological constellations and polyvalent charges in chiral nematic droplets
NASA Astrophysics Data System (ADS)
Posnjak, Gregor; Čopar, Simon; Muševič, Igor
2017-02-01
Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=-2, -3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules.
Hidden topological constellations and polyvalent charges in chiral nematic droplets
Posnjak, Gregor; Čopar, Simon; Muševič, Igor
2017-01-01
Topology has an increasingly important role in the physics of condensed matter, quantum systems, material science, photonics and biology, with spectacular realizations of topological concepts in liquid crystals. Here we report on long-lived hidden topological states in thermally quenched, chiral nematic droplets, formed from string-like, triangular and polyhedral constellations of monovalent and polyvalent singular point defects. These topological defects are regularly packed into a spherical liquid volume and stabilized by the elastic energy barrier due to the helical structure and confinement of the liquid crystal in the micro-sphere. We observe, for the first time, topological three-dimensional point defects of the quantized hedgehog charge q=−2, −3. These higher-charge defects act as ideal polyvalent artificial atoms, binding the defects into polyhedral constellations representing topological molecules. PMID:28220770
Effect of geometric nonlinearity on acoustic modulation
NASA Astrophysics Data System (ADS)
Warnemuende, Kraig; Wu, Hwai-Chung
2005-05-01
Non-linear nondestructive testing is different from linear acoustic in that it correlates the presence and characteristics of a defect with acoustical signals whose frequencies differ from the frequencies of the emitted probe signal. The difference in frequencies between the probe signal and the resulting frequencies is due to a nonlinear transformation of the probe signal as it passes through a defect. Under acoustic interrogation due to longitudinal waves, as the compression phase passes the defect the two sides of the interface are in direct contact and the contact area increases. Similarly, the tensile phase passes through the defect, the two sides separate and the contact area decreases, thereby modulating the signal amplitude. The contact area depends on the roughness of the surface and on the magnitude of the cohesive forces that arise from the small crack openings. Such cohesive forces may be attributed to aggregate interlock (in plain concrete), fiber bridging (in fiber reinforced concrete) or both. In this paper, the frequency shifts of the probe elastic wave will be analytically related to the roughness and varying cohesive forces of the crack-like defect.
Designing and Assessing Learning
ERIC Educational Resources Information Center
Quan, Hong; Liu, Dandan; Cun, Xiangqin; Lu, Yingchun
2009-01-01
This paper analyses the design, implementation and assessment of a level 2 module for non-English major students in higher vocational and professional education. 1132001 is a code of module that uses active methods to teach college English in China. It specifically reflects on the module's advantage and defect for developing and improving learning…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao-Ying; Li, Chen-liang; Wu, Guo-Xun
The multi-scale simulation method is employed to investigate how defects affect the performances of Li-ion batteries (LIBs). The stable positions, binding energies and dynamics properties of Li impurity in Si with a 30° partial dislocation and stacking fault (SF) have been studied in comparison with the ideal crystal. It is found that the most table position is the tetrahedral (T{sub d}) site and the diffusion barrier is 0.63 eV in bulk Si. In the 30° partial dislocation core and SF region, the most stable positions are at the centers of the octagons (Oct-A and Oct-B) and pentahedron (site S), respectively. Inmore » addition, Li dopant may tend to congregate in these defects. The motion of Li along the dislocation core are carried out by the transport among the Oct-A (Oct-B) sites with the barrier of 1.93 eV (1.12 eV). In the SF region, the diffusion barrier of Li is 0.91 eV. These two types of defects may retard the fast migration of Li dopant that is finally trapped by them. Thus, the presence of the 30° partial dislocation and SF may deactivate the Li impurity and lead to low rate capability of LIB.« less
Grond, Susanne; Radner, Franz P.W.; Eichmann, Thomas O.; Kolb, Dagmar; Grabner, Gernot F.; Wolinski, Heimo; Gruber, Robert; Hofer, Peter; Heier, Christoph; Schauer, Silvia; Rülicke, Thomas; Hoefler, Gerald; Schmuth, Matthias; Elias, Peter M.; Lass, Achim; Zechner, Rudolf; Haemmerle, Guenter
2017-01-01
Adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) are limiting in cellular triglyceride catabolism. Although ATGL deficiency is compatible with normal skin development, mice globally lacking CGI-58 die postnatally and exhibit a severe epidermal permeability barrier defect, which may originate from epidermal and/or peripheral changes in lipid and energy metabolism. Here, we show that epidermis-specific disruption of CGI-58 is sufficient to provoke a defect in the formation of a functional corneocyte lipid envelope linked to impaired ω-O-acylceramide synthesis. As a result, epidermis-specific CGI-58-deficient mice show severe skin dysfunction, arguing for a tissue autonomous cause of disease development. Defective skin permeability barrier formation in global CGI-58-deficient mice could be reversed via transgenic restoration of CGI-58 expression in differentiated but not basal keratinocytes suggesting that CGI-58 is essential for lipid metabolism in suprabasal epidermal layers. The compatibility of ATGL deficiency with normal epidermal function indicated that CGI-58 may stimulate an epidermal triglyceride lipase beyond ATGL required for the adequate provision of fatty acids as a substrate for ω-O-acylceramide synthesis. Pharmacological inhibition of ATGL enzyme activity similarly reduced triglyceride-hydrolytic activities in wild-type and CGI-58 overexpressing epidermis implicating that CGI-58 participates in ω-O-acylceramide biogenesis independent of its role as a coactivator of epidermal triglyceride catabolism. PMID:27725204
Cobzaru, Cristina; Triantafyllopoulou, Antigoni; Löffek, Stefanie; Horiuchi, Keisuke; Threadgill, David W.; Kurz, Thomas; van Rooijen, Nico; Bruckner-Tuderman, Leena
2012-01-01
ADAM17 (a disintegrin and metalloproteinase 17) is ubiquitously expressed and cleaves membrane proteins, such as epidermal growth factor receptor (EGFR) ligands, l-selectin, and TNF, from the cell surface, thus regulating responses to tissue injury and inflammation. However, little is currently known about its role in skin homeostasis. We show that mice lacking ADAM17 in keratinocytes (A17ΔKC) have a normal epidermal barrier and skin architecture at birth but develop pronounced defects in epidermal barrier integrity soon after birth and develop chronic dermatitis as adults. The dysregulated expression of epidermal differentiation proteins becomes evident 2 d after birth, followed by reduced transglutaminase (TGM) activity, transepidermal water loss, up-regulation of the proinflammatory cytokine IL-36α, and inflammatory immune cell infiltration. Activation of the EGFR was strongly reduced in A17ΔKC skin, and topical treatment of A17ΔKC mice with recombinant TGF-α significantly improved TGM activity and decreased skin inflammation. Finally, we show that mice lacking the EGFR in keratinocytes (EgfrΔKC) closely resembled A17ΔKC mice. Collectively, these results identify a previously unappreciated critical role of the ADAM17–EGFR signaling axis in maintaining the homeostasis of the postnatal epidermal barrier and suggest that this pathway could represent a good target for treatment of epidermal barrier defects. PMID:22565824
Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui
2016-01-01
Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653
Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics
Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra
2014-01-01
The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819
Cleavage of E-Cadherin Contributes to Defective Barrier Function in Neosquamous Epithelium.
Runge, Thomas M; Shaheen, Nicholas J; Djukic, Zorka; Hallquist, Suzanne; Orlando, Roy C
2016-11-01
After ablation of Barrett's esophagus (BE), the esophagus heals with neosquamous epithelium (NSE). Despite normal endoscopic appearance, NSE exhibits defective barrier function with similarities to defects noted in the distal esophageal epithelium in patients with gastroesophageal reflux disease (GERD). To determine whether patients with NSE, unlike patients with healthy esophageal epithelium, have C-terminal fragments (CTFs) of e-cad detectable on tissue biopsy. Secondly, to determine whether patients with NSE have elevated levels of N-terminal fragments (NTFs) of e-cad in the serum. Fifteen patients with ablated long-segment BE, who had healing with formation of NSE, were enrolled in this pilot study. Western blots for CTFs and NTFs were performed on biopsies of NSE. Venous blood was obtained to assess levels of NTFs. Endoscopic distal esophageal biopsies from patients without esophageal disease served as tissue controls. Control blood samples were obtained from healthy subjects. Blots of NSE were successful in 14/15 patients, and all 14 (100 %) had a 35-kD CTF of e-cad, while CTFs were absent in healthy control tissues. Despite CTFs in NSE, serum NTFs of e-cad in NSE were similar to controls, p > 0.05. However, unlike healthy controls, blots of NSE also showed NTFs with molecular weights of 70-90 kD. Cleavage of e-cad, as evidenced by the presence of CTFs and NTFs on biopsy, contributes to defective barrier function in NSE. However, unlike findings reported in GERD patients, serum NTFs are not elevated in NSE patients. This difference may reflect poor absorption with tissue entrapment of NTFs in previously ablated areas with poorly perfused NSE.
Anti-IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus.
Zhang, Jiyong; Sadowska, Grazyna B; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Banks, William A; Stonestreet, Barbara S
2015-05-01
Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia. © FASEB.
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
del-Castillo-Negrete, Diego; Blazevski, Daniel
2016-04-01
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat pulses.« less
Finke, John M; Banks, William A
2017-01-01
This review serves to highlight approaches that may improve the access of antibody drugs to regions of the brain affected by Alzheimer's Disease. While previous antibody drugs have been unsuccessful in treating Alzheimer's disease, recent work demonstrates that Alzheimer's pathology can be modified if these drugs can penetrate the brain parenchyma with greater efficacy. Research in antibody blood-brain barrier drug delivery predominantly follows one of three distinct directions: (1) enhancing influx with reduced antibody size, addition of Trojan horse modules, or blood-brain barrier disruption; (2) modulating trancytotic equilibrium and/or kinetics of the neonatal Fc Receptor; and (3) manipulation of antibody glycan carbohydrate composition. In addition to these topics, recent studies are discussed that reveal a role of glycan sialic acid in suppressing antibody efflux from the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sata, Yohta; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp, E-mail: tmachida@iis.u-tokyo.ac.jp; Morikawa, Sei
2015-07-13
We demonstrate a vertical field-effect transistor based on a graphene/MoSe{sub 2} van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe{sub 2} exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe{sub 2} vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10{sup 5}. These results point to the potential high performance ofmore » the graphene/MoSe{sub 2} vdW heterostructure for electronics applications.« less
Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming
2005-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.
Metal Contacts in Semiconductors.
1983-11-01
greater understanding of the role that imperfec- tions, defects etc. play in the formation of Schottk~y barriers and related devices. In section 1 of...these effects. In Section 2 of this report we consider the role of surface defects in the pinning of the Fermi level at free semiconductor surfaces and...in the adsorption and oxidation processes involved when these surfaces interact with gases and metals. The role of imperfections at metal
2013-01-01
Praetorius, F. Guided tissue regeneration using de- gradable and nondegradable membranes in rabbit tibia. Clin Oral Implants Res 4, 172, 1993. 8. Queiroz... Regeneration of periodontal tissues : combinations of barrier membranes and grafting materials–biological foundation and preclinical evi- dence: a...structural graft provides benefits for bone tissue regeneration in terms of early interfacial integration. Introduction The treatment of large-bone defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrakchi, G.; Barbier, D.; Guillot, G.
Electrical and deep level transient spectroscopy measurements on Schottky barriers were performed in order to characterize electrically active defects in n-type GaAs (Bridgman substrates or liquid-phase epitaxial layers) after pulsed electron beam annealing. Both surface damage and bulk defects were observed in the Bridgman substrates depending on the pulse energy density. No electron traps were detected in the liquid-phase epitaxial layers before and after annealing for an energy density of 0.4 J/cm/sup 2/. The existence of an interfacial insulating layer at the metal-semiconductor interface, associated with As out-diffusion during the pulsed electron irradiation, was revealed by the abnormally high valuesmore » of the Schottky barrier diffusion potential. Moreover, two new electron traps with activation energy of 0.35 and 0.43 eV, called EP1 and EP2, were introduced in the Bridgman substrates after pulsed electron beam annealing. The presence of these traps, related to the As evaporation, was tentatively attributed to the decrease of the EL2 electron trap signal after 0.4-J/cm/sup 2/ annealing. It is proposed that these new defects states are due to the decomposition of the As/sub Ga/-As/sub i/ complex recently considered as the most probable defect configuration for the dominant EL2 electron trap usually detected in as-grown GaAs substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.
We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less
Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.
2015-06-03
We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less
Defects and oxidation of group-III monochalcogenide monolayers
NASA Astrophysics Data System (ADS)
Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun
2017-09-01
Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.
Anti-terrorist vehicle crash impact energy absorbing barrier
Swahlan, David J.
1989-01-01
An anti-terrorist vehicle crash barrier includes side support structures, crushable energy absorbing aluminum honeycomb modules, and an elongated impact-resistant beam extending between, and at its opposite ends through vertical guideways defined by, the side support structures. An actuating mechanism supports the beam at its opposite ends for movement between a lowered barrier-withdrawn position in which a traffic-supporting side of the beam is aligned with a traffic-bearing surface permitting vehicular traffic between the side support structures and over the beam, and a raised barrier-imposed position in which the beam is aligned with horizontal guideways defined in the side support structures above the traffic-bearing surface, providing an obstruction to vehicular traffic between the side support structures. The beam is movable rearwardly in the horizontal guideways with its opposite ends disposed transversely therethrough upon being impacted at its forward side by an incoming vehicle. The crushable modules are replaceably disposed in the horizontal guideways between aft ends thereof and the beam. The beam, replaceable modules, side support structures and actuating mechanism are separate and detached from one another such that the beam and replaceable modules are capable of coacting to disable and stop an incoming vehicle without causing structural damage to the side support structures and actuating mechanism.
Optical Probe of the Density of Defect States in Organic Thin-Film Transistors
NASA Astrophysics Data System (ADS)
Breban, Mihaela; Romero, Danilo; Ballarotto, Vincent; Williams, Ellen
2006-03-01
We investigate the role of defect states associated with different gate dielectric materials on charge transport in organic thin film transistors. Using a modulation technique we measure the magnitude and the phase of the photocurrent^1 in pentacene thin film transistors as a function of the modulation frequency. The photocurrent generation process is modeled as exciton dissociation due to interaction with localized traps. A time domain analyses of this multi-step process allows us to extract the density of defect states. We use this technique to compare the physical mechanism underlying performances of pentacene devices fabricated with different dielectric materials. *Supported by the Laboratory for Physical Science ^1 M. Breban, et al. ``Photocurrent probe of field-dependent mobility in organic thin-film transistors'' Appl. Phys. Letts. 87, 203503 (2005)
Sugiura, Ayumi; Nomura, Tsuyoshi; Mizuno, Atsuko; Imokawa, Genji
2014-07-01
Atopic dermatitis is characterized by disruption of the cutaneous barrier due to reduced ceramide levels even in non-lesional dry skin. Following further acute barrier disruption by repeated tape strippings, we re-characterized the non-lesional dry skin of subjects with atopic dermatitis, which shows significantly reduced levels of barrier function and ceramide but not of beta-glucocerebrosidase activity. For the first time, we report an abnormal trans-epidermal water loss homeostasis in which delayed recovery kinetics of trans-epidermal water loss occurred on the first day during the 4 days after acute barrier disruption compared with healthy control skin. Interestingly, whereas the higher ceramide level in the stratum corneum of healthy control skin was further significantly up-regulated at 4 days post-tape stripping, the lower ceramide level in the stratum corneum of subjects with atopic dermatitis was not significantly changed. In a parallel study, whereas beta-glucocerebrosidase activity at 4 days post-tape stripping was significantly up-regulated in healthy control skin compared with before tape stripping, the level of that activity remained substantially unchanged in atopic dermatitis. These findings indicate that subjects with atopic dermatitis have a defect in sphingolipid-metabolic processing that generates ceramide in the interface between the stratum corneum and the epidermis. The results also support the notion that the continued disruption of barrier function in atopic dermatitis non-lesional skin is associated with the impaired homeostasis of a ceramide-generating process, which underscores an atopy-specific inflammation-triggered ceramide deficiency that is distinct from other types of dermatitis.
Piche, T
2014-03-01
In this issue of Neurogastroenterology and Motility, Dr Ewa Wilcz-Villega and colleagues report low expression of E-cadherin, a tight junction protein involved in the regulation of paracellular permeability, in the colonic mucosa of patients with the irritable bowel syndrome (IBS) with predominance of diarrhea (IBS-D) or alternating symptoms (IBS-A). These findings constitute an improvement in our knowledge of epithelial barrier disruption associated with IBS. There is mounting evidence to indicate that a compromised epithelial barrier is associated with low-grade immune activation and intestinal dysfunction in at least a proportion of IBS patients. During the last 10 years of research, much interest has focused on the increase in the number of different types of immune cells in the gut mucosa of IBS patients including: mast cells, T lymphocytes, and other local cells such as enteroendocrine cells. The inflammatory mediators released by these cells or other luminal factors could be at the origin of altered epithelial barrier functions and enteric nervous system signaling, which lead to gut hypersensitivity. A current conceptual framework states that clinical symptoms of IBS could be associated with structural and functional abnormalities of the mucosal barrier, highlighting the crucial importance of elucidating the contributory role of epithelial barrier defects in the pathogenesis of IBS. More importantly, disruption of the epithelial barrier could also participate in the generation of persistent abdominal pain and discomfort mimicking IBS in patients with inflammatory bowel diseases considered in remission. This mini review gives a brief summary of clinical and experimental evidence concerning the mechanisms underlying epithelial barrier defects in IBS. © 2014 John Wiley & Sons Ltd.
Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Robinson, Craig
2017-01-01
This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.
Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations
Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge
2013-01-01
Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun
2015-12-01
Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.
Economically Sustainable Scaling of Photovoltaics to Meet Climate Targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Needleman, David Berney; Poindexter, Jeremy R.; Kurchin, Rachel C.
To meet climate goals, photovoltaics (PV) deployment will have to grow rapidly over the next fifteen years. We identify two barriers to this growth: scale-up of manufacturing capacity and the cost of PV module production. We explore several technoeconomic approaches to overcoming these barriers and identify deep reductions in the capital intensity (capex) of PV module manufacturing and large increases in module efficiency as the most promising routes to rapid deployment. Given the lag inherent in rolling out new technology, we explore an approach where growth is fueled by debt or subsidies in the short-term and technological advances in themore » medium term. Finally, we analyze the current capex structure of crystalline silicon PV module manufacturing to identify potential savings.« less
Tong, Cunzhu; Yoon, Soon Fatt; Wang, Lijun
2012-09-24
We demonstrate experimentally the submicron size self-assembled (SA) GaAs quantum rings (QRs) by quantum size effect (QSE). An ultrathin In0.1 Ga0.9As layer with different thickness is deposited on the GaAs to modulate the surface nucleus diffusion barrier, and then the SA QRs are grown. It is found that the density of QRs is affected significantly by the thickness of inserted In0.1 Ga0.9As, and the diffusion barrier modulation reflects mainly on the first five monolayer . The physical mechanism behind is discussed. The further analysis shows that about 160 meV decrease in diffusion barrier can be achieved, which allows the SA QRs with density of as low as one QR per 6 μm2. Finally, the QRs with diameters of 438 nm and outer diameters of 736 nm are fabricated using QSE.
Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility.
Cipolat, Sara; Hoste, Esther; Natsuga, Ken; Quist, Sven R; Watt, Fiona M
2014-05-05
Atopic dermatitis can result from loss of structural proteins in the outermost epidermal layers, leading to a defective epidermal barrier. To test whether this influences tumour formation, we chemically induced tumours in EPI-/- mice, which lack three barrier proteins-Envoplakin, Periplakin, and Involucrin. EPI-/- mice were highly resistant to developing benign tumours when treated with 7,12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The DMBA response was normal, but EPI-/- skin exhibited an exaggerated atopic response to TPA, characterised by abnormal epidermal differentiation, a complex immune infiltrate and elevated serum thymic stromal lymphopoietin (TSLP). The exacerbated TPA response could be normalised by blocking TSLP or the immunoreceptor NKG2D but not CD4+ T cells. We conclude that atopy is protective against skin cancer in our experimental model and that the mechanism involves keratinocytes communicating with cells of the immune system via signalling elements that normally protect against environmental assaults.DOI: http://dx.doi.org/10.7554/eLife.01888.001. Copyright © 2014, Cipolat et al.
Scale transition using dislocation dynamics and the nudged elastic band method
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-08-01
Microstructural features such as precipitates or irradiation-induced defects impede dislocation motion and directly influence macroscopic mechanical properties such as yield point and ductility. In dislocation-defect interactions both atomic scale and long range elastic interactions are involved. Thermally assisted dislocation bypass of obstacles occurs when thermal fluctuations and driving stresses contribute sufficient energy to overcome the energy barrier. The Nudged Elastic Band (NEB) method is typically used in the context of atomistic simulations to quantify the activation barriers for a given reaction. In this work, the NEB method is generalized to coarse-grain continuum representations of evolving microstructure states beyond the discretemore » particle descriptions of first principles and atomistics. The method we employed enables the calculation of activation energies for a View the MathML source glide dislocation bypassing a [001] self-interstitial atom loop of size in the range of 4-10 nm with a spacing larger than 150nm in α-iron for a range of applied stresses and interaction geometries. This study is complemented by a comparison between atomistic and continuum based prediction of barriers.« less
Discrete breathers in an electric lattice with an impurity: Birth, interaction, and death
NASA Astrophysics Data System (ADS)
Gómez-Rojas, A.; Halevi, P.
2018-02-01
We have simulated aspects of intrinsic localized modes or discrete breathers in a modulated lumped transmission line with nonlinear varactors and a defect unit cell. As the inductance or capacitance of this cell is increased, a transition from instability to stability takes place. Namely, there exist threshold values of the inductance or capacitance of a lattice impurity for a breather to be able to attach to. A resistive defect can also anchor a breather. Moreover, by either gradually lowering all the source resistances, or else increasing the modulation frequency, multiple secondary ILMs can be spontaneously generated at host sites (with only a single inductive or capacitive defect). Further, if two impurities are subcritically spaced (the separation increasing with the amplitude of the modulation voltage), a breather can pop up midway, with no breathers at the impurity sites themselves. Finally, an ILM can pull closer its neighbors on both sides, only to perish once these ILMs have gotten sufficiently close. To our knowledge, these effects have not been reported for any discrete nonlinear system.
Discrete breathers in an electric lattice with an impurity: Birth, interaction, and death.
Gómez-Rojas, A; Halevi, P
2018-02-01
We have simulated aspects of intrinsic localized modes or discrete breathers in a modulated lumped transmission line with nonlinear varactors and a defect unit cell. As the inductance or capacitance of this cell is increased, a transition from instability to stability takes place. Namely, there exist threshold values of the inductance or capacitance of a lattice impurity for a breather to be able to attach to. A resistive defect can also anchor a breather. Moreover, by either gradually lowering all the source resistances, or else increasing the modulation frequency, multiple secondary ILMs can be spontaneously generated at host sites (with only a single inductive or capacitive defect). Further, if two impurities are subcritically spaced (the separation increasing with the amplitude of the modulation voltage), a breather can pop up midway, with no breathers at the impurity sites themselves. Finally, an ILM can pull closer its neighbors on both sides, only to perish once these ILMs have gotten sufficiently close. To our knowledge, these effects have not been reported for any discrete nonlinear system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. -S.; Xiao, C.; Moutinho, H. R.
We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less
Jiang, C. -S.; Xiao, C.; Moutinho, H. R.; ...
2018-02-13
We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less
ERIC Educational Resources Information Center
Espy, John; Selleck, Ben
This second in a series of ten modules for a course titled Welding Inspection describes the key features of the oxyacetylene and shielded metal arc welding process. The apparatus, process techniques, procedures, applications, associated defects, and inspections are presented. The module follows a typical format that includes the following…
Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma.
Demehri, Shadmehr; Morimoto, Mitsuru; Holtzman, Michael J; Kopan, Raphael
2009-05-19
Asthma is a common allergic lung disease frequently affecting individuals with a prior history of eczema/atopic dermatitis (AD); however, the mechanism underlying the progression from AD to asthma (the so-called "atopic march") is unclear. Here we show that, like humans with AD, mice with skin-barrier defects develop AD-like skin inflammation and are susceptible to allergic asthma. Furthermore, we show that thymic stromal lymphopoietin (TSLP), overexpressed by skin keratinocytes, is the systemic driver of this bronchial hyper-responsiveness. As an AD-like model, we used mice with keratinocyte-specific deletion of RBP-j that sustained high systemic levels of TSLP. Antigen-induced allergic challenge to the lung airways of RBP-j-deficient animals resulted in a severe asthmatic phenotype not seen in similarly treated wild-type littermates. Elimination of TSLP signaling in these animals blocked the atopic march, demonstrating that high serum TSLP levels were required to sensitize the lung to allergic inflammation. Furthermore, we analyzed outbred K14-TSLP(tg) mice that maintained high systemic levels of TSLP without developing any skin pathology. Importantly, epidermal-derived TSLP was sufficient to trigger the atopic march, sensitizing the lung airways to inhaled allergens in the absence of epicutaneous sensitization. Based on these findings, we propose that in addition to early treatment of the primary skin-barrier defects, selective inhibition of systemic TSLP may be the key to blocking the development of asthma in AD patients.
NASA Astrophysics Data System (ADS)
Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong
2017-04-01
We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.
Lithium diffusion at Si-C interfaces in silicon-graphene composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odbadrakh, Khorgolkhuu; McNutt, N. W.; Nicholson, D. M.
2014-08-04
Models of intercalated Li and its diffusion in Si-Graphene interfaces are investigated using density functional theory. Results suggest that the presence of interfaces alters the energetics of Li binding and diffusion significantly compared to bare Si or Graphene surfaces. Our results show that cavities along reconstructed Si surface provide diffusion paths for Li. Diffusion barriers calculated along these cavities are significantly lower than penetration barriers to bulk Si. Interaction with Si surface results in graphene defects, creating Li diffusion paths that are confined along the cavities but have still lower barrier than in bulk Si.
Harvey, Steven P.; Moseley, John; Norman, Andrew; ...
2018-02-27
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
Transport in a magnetic field modulated graphene superlattice.
Li, Yu-Xian
2010-01-13
Using the transfer matrix method, we study the transport properties through a magnetic field modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector potential, and the number of wells in a superlattice modify the transmission remarkably. The angular dependent transmission is blocked by the magnetic vector potential because of the appearance of the evanescent states at certain incident angles, and the region of Klein tunneling shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier, the number of wells, and the strength of the modulated magnetic field.
Zhang, Jingjing; Ni, Chen; Yang, Zhenguo; Piontek, Anna; Chen, Huapu; Wang, Sijie; Fan, Yiming; Qin, Zhihai; Piontek, Joerg
2015-08-01
Claudins (Cldn) are the major components of tight junctions (TJs) sealing the paracellular cleft in tissue barriers of various organs. Zebrafish Cldnb, the homolog of mammalian Cldn4, is expressed at epithelial cell-cell contacts and is important for regulating epidermal permeability. The bacterial toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to a subset of mammalian Cldns. In this study, we used the Cldn-binding C-terminal domain of CPE (194-319 amino acids, cCPE 194-319 ) to investigate its functional role in modulating zebrafish larval epidermal barriers. In vitro analyses show that cCPE 194-319 removed Cldn4 from epithelial cells and disrupted the monolayer tightness, which could be rescued by the removal of cCPE 194-319. Incubation of zebrafish larvae with cCPE 194-319 removed Cldnb specifically from the epidermal cell membrane. Dye diffusion analysis with 4-kDa fluorescent dextran indicated that the permeability of the epidermal barrier increased due to cCPE 194-319 incubation. Electron microscopic investigation revealed reversible loss of TJ integrity by Cldnb removal. Collectively, these results suggest that cCPE 194-319 could be used as a Cldnb modulator to transiently open the epidermal barrier in zebrafish. In addition, zebrafish might be used as an in vivo system to investigate the capability of cCPE to enhance drug delivery across tissue barriers. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy.
Lamas, Mónica; González-Mariscal, Lorenza; Gutiérrez, Rafael
2002-08-15
In the central nervous system, the junctional types that establish and maintain tissue architecture include gap junctions, for cytoplasmic connectivity, and tight junctions, for paracellular and/or cell polarity barriers. Connexins are the integral membrane proteins of gap junctions, whereas occludin and members of the multigene family of claudins form tight junctions. In the brain, there are no transendothelial pathways, as continuous tight junctions are present between the endothelial cells. Thus, they provide a continuous cellular barrier between the blood and the insterstitial fluid. However, several brain pathologies, including epilepsy, are known to alter the permeability of the blood-brain barrier and to cause edema. Therefore, since claudins, as constitutive proteins of tight junctions are likely candidates for modulation under pathological states, we explored their normal pattern of expression in the brain and its modulation by seizures. We found that several members of this family are normally expressed in the hippocampus and cortex. Interestingly, claudin-7 is expressed in the hippocampus but not in the cortex. On the other hand, the expression of claudin-8 is selectively down-regulated in the hippocampus as kindling evolves. These results link for the first time the modulation of expression of a tight junction protein to abnormal neuronal synchronization that could probably be reflected in permeability changes of the blood-brain barrier or edema.
Sırav, Bahriye; Seyhan, Nesrin
2016-09-01
With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (p<0.01). 1800MHz pulse modulated radio-frequency radiation exposure was found more effective on the male animals (p<0.01). For female groups; dye contents in the whole brains were 0.14±0.01mg% in the control, 0.24±0.03mg% in 900MHz exposed and 0.14±0.02mg% in 1800MHz exposed animals. No statistical variance found between the control and 1800MHz exposed animals (p>0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown. Copyright © 2015 Elsevier B.V. All rights reserved.
Multilayer coatings for flexible high-barrier materials
NASA Astrophysics Data System (ADS)
Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike
2009-06-01
A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.
Modeling Anterior Development in Mice: Diet as Modulator of Risk for Neural Tube Defects
Kappen, Claudia
2014-01-01
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient–gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity. PMID:24124024
Dinwoodie, Thomas L.
2005-04-26
A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The bottom edges of the barriers of one row may overlap the top edges of the barriers of another row. The shingle assemblies may be mounted by first mounting the bases to an inclined surface; the barriers may be then secured to the bases using the supports to create rows of shingle assemblies defining venting regions between the barriers and the bases for temperature regulation.
Transformation between divacancy defects induced by an energy pulse in graphene.
Xia, Jun; Liu, XiaoYi; Zhou, Wei; Wang, FengChao; Wu, HengAn
2016-07-08
The mutual transformations among the four typical divacancy defects induced by a high-energy pulse were studied via molecular dynamics simulation. Our study revealed all six possible mutual transformations and found that defects transformed by absorbing energy to overcome the energy barrier with bonding, debonding, and bond rotations. The reversibility of defect transformations was also investigated by potential energy analysis. The energy difference was found to greatly influence the transformation reversibility. The direct transformation path was irreversible if the energy difference was too large. We also studied the correlation between the transformation probability and the input energy. It was found that the transformation probability had a local maxima at an optimal input energy. The introduction of defects and their structural evolutions are important for tailoring the exceptional properties and thereby performances of graphene-based devices, such as nanoporous membranes for the filtration and desalination of water.
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
Vented Cavity Radiant Barrier Assembly And Method
Dinwoodie, Thomas L.; Jackaway, Adam D.
2000-05-16
A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.
Lee, J Scott; Wang, Ruth X; Alexeev, Erica E; Lanis, Jordi M; Battista, Kayla D; Glover, Louise E; Colgan, Sean P
2018-04-20
Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du
2016-02-01
We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).
Orsi, Fernanda Andrade; Angerami, Rodrigo Nogueira; Mazetto, Bruna Moraes; Quaino, Susan Kelly Picoli; De Paula, Erich Vinícius; Annichino-Bizzachi, Joyce Maria
2014-06-11
Bleeding complications in dengue may occur irrespective of the presence of plasma leakage. We compared plasma levels of modulators of the endothelial barrier among three dengue groups: bleedings without plasma leakage, dengue hemorrhagic fever, and non-complicated dengue. The aim was to evaluate whether the presence of subtle alterations in microvascular permeability could be detected in bleeding patients. Plasma levels of VEGF-A and its soluble receptors were not associated with the occurrence of bleeding in patients without plasma leakage. These results provide additional rationale for considering bleeding as a complication independent of endothelial barrier breakdown, as proposed by the 2009 WHO classification.
Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.
Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min
2015-05-06
Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.
NASA Astrophysics Data System (ADS)
Kim, Tae-Soo; Lim, Seung-Young; Park, Yong-Keun; Jung, Gunwoo; Song, Jung-Hoon; Cha, Ho-Young; Han, Sang-Woo
2018-06-01
We investigated the distributions and the energy levels of defects in SiO2/AlGaN/GaN highelectron-mobility transistors (HEMTs) by using frequency-dependent ( F- D) capacitance-voltage ( C- V) measurements with resonant optical excitation. A Schottky barrier (SB) and a metal-oxidesemiconductor (MOS) HEMT were prepared to compare the effects of defects in their respective layers. We also investigated the effects of those layers on the threshold voltage ( V th ). A drastic voltage shift in the C- V curve at higher frequencies was caused by the large number of defect levels in the SiO2/GaN interface. A significant shift in V th with additional light illumination was observed due to a charging of the defect states in the SiO2/GaN interface. The voltage shifts were attributed to the detrapping of defect states at the SiO2/GaN interface.
Epitaxial growth mechanisms of graphene and effects of substrates
NASA Astrophysics Data System (ADS)
Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.
2012-06-01
The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.
Study of defects in TlBr, InI as potential semiconductor radiation detectors
NASA Astrophysics Data System (ADS)
Biswas, Koushik; Du, Mao-Hua
2011-03-01
Group III-halides such as TlBr and InI are receiving considerable attention for application in room temperature radiation detector devices. It is however, essential that these detector materials have favorable defect properties which enable good carrier transport when operating under an external bias voltage. We have studied the properties of native defects of InI and Tlbr and several important results emerge: (1) Schottky defects are the dominant low-energy defects in both materials that can potentially pin the Fermi level close to midgap, leading to high resistivity; (2) native defects in TlBr are benign in terms of electron trapping. However, anion-vacancy in InI induces a deep electron trap similar to the F -centers in alkali halides. This can reduce electron mobility-lifetime product in InI; (3) low diffusion barriers of vacancies and ionic conductivity could be responsible for the observed polarization phenomenon in both materials at room temperature. U.S. DOE Office of Nonproliferation Research and Development NA22.
NASA Astrophysics Data System (ADS)
Uedono, A.; Yamashita, Y.; Tsutsui, T.; Dordi, Y.; Li, S.; Oshima, N.; Suzuki, R.
2012-05-01
Positron annihilation was used to probe vacancy-type defects in electroless deposited copper films. For as-deposited films, two different types of vacancy-type defects were found to coexist; these were identified as vacancy aggregates (V3-V4) and larger vacancy clusters (˜V10). After annealing at about 200 °C, the defects started to diffuse toward the surface and aggregate. The same tendency has been observed for sulfur only, suggesting the formation of complexes between sulfur and vacancies. The defect concentration near the Cu/barrier-metal interface was high even after annealing above 600 °C, and this was attributed to an accumulation of vacancy-impurity complexes. The observed defect reactions were attributed to suppression of the vacancy diffusion to sinks through the formation of impurity-vacancy complexes. It was shown that electroless plating has a high potential to suppress the formation of voids/hillocks caused by defect migration.
Photovoltaic driven multiple quantum well optical modulator
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
Multiple quantum well (MQW) structures (12) are utilized to provide real-time, reliable, high-performance, optically-addressed spatial-light modulators (SLM) (10). The optically-addressed SLM comprises a vertical stack of quantum well layers (12a) within the penetration depth of an optical write signal 18, a plurality of space charge barriers (12b) having predetermined tunneling times by control of doping and thickness. The material comprising the quantum well layers has a lower bandgap than that of the space charge barrier layers. The write signal modulates a read signal (20). The modulation sensitivity of the device is high and no external voltage source is required. In a preferred embodiment, the SLM having interleaved doped semiconductor layers for driving the MQW photovoltaically is characterized by the use of a shift analogous to the Moss-Burnstein shift caused by the filling of two-dimensional states in the multiple quantum wells, thus allowing high modulation sensitivity in very narrow wells. Arrays (30) may be formed with a plurality of the modulators.
Octahedral tilt transitions in the relaxor ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Kai-Christian, E-mail: meyer@mm.tu-darmstadt.de; Gröting, Melanie; Albe, Karsten
2015-07-15
The kinetics of octahedral tilt transitions in the lead-free relaxor material sodium bismuth titanate Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} (NBT) is investigated by electronic structure calculations within density functional theory. Energy barriers for transitions between tetragonal, rhombohedral and orthorhombic tilts in cation configurations with [001]- and [111]-order on the A-sites are determined by nudged elastic band calculations. By tilting entire layers of octahedra simultaneously we find that the activation energy is lower for structures with 001-order compared to such with 111-order. The energetic coupling between differently tilted layers is, however, negligibly small. By introducing a single octahedral defect we create localmore » tilt disorder and find that the deformation energy of the neighboring octahedra is less in a rhombohedral than in a tetragonal structure. By successively increasing the size of clusters of orthorhombic defects in a rhombohedral matrix with 001-order, we determine a critical cluster size of about 40 Å . Thus groups of about ten octahedra can be considered as nuclei for polar nanoregions, which are the cause of the experimentally observed relaxor behavior of NBT. - Graphical abstract: Nine orthorhombic oxygen octahedral tilt defects in a rhombohedral tilt configuration. - Highlights: • Chemical order influences energy barriers of octahedral tilt transitions. • The octahedral deformation energy is lower in rhombohedral phases. • Tilt defect clusters are more likely in rhombohedral structures. • Tilt defect clusters can act as nuclei for polar nanoregions.« less
Delmelle, Eric M; Cassell, Cynthia H; Dony, Coline; Radcliff, Elizabeth; Tanner, Jean Paul; Siffel, Csaba; Kirby, Russell S
2013-10-01
Children with birth defects may face significant geographic barriers accessing medical care and specialized services. Using a Geographic Information Systems-based approach, one-way travel time and distance to access medical care for children born with spina bifida was estimated. Using 2007 road information from the Florida Department of Transportation, we built a topological network of Florida roads. Live-born Florida infants with spina bifida during 1998 to 2007 were identified by the Florida Birth Defects Registry and linked to hospital discharge records. Maternal residence at delivery and hospitalization locations were identified during the first year of life. Of 668 infants with spina bifida, 8.1% (n = 54) could not be linked to inpatient data, resulting in 614 infants. Of those 614 infants, 99.7% (n = 612) of the maternal residential addresses at delivery were successfully geocoded. Infants with spina bifida living in rural areas in Florida experienced travel times almost twice as high compared with those living in urban areas. When aggregated at county levels, one-way network travel times exhibited statistically significant spatial autocorrelation, indicating that families living in some clusters of counties experienced substantially greater travel times compared with families living in other areas of Florida. This analysis demonstrates the usefulness of linking birth defects registry and hospital discharge data to examine geographic differences in access to medical care. Geographic Information Systems methods are important in evaluating accessibility and geographic barriers to care and could be used among children with special health care needs, including children with birth defects. Copyright © 2013 Wiley Periodicals, Inc.
Baffling or Baffled: Improve Your Acoustics.
ERIC Educational Resources Information Center
Abdoo, Frank B.
1981-01-01
Presents techniques for evaluating the acoustics (reverberation time, and standing waves and resonance phenomena) of a band performance room. Gives instructions for building and placing inexpensive baffles (free-standing, portable sound barriers) to correct room defects. (SJL)
Self-Organized Defects of Half-Metallic Nanowires in MgO-Based Magnetic Tunnel Junctions
NASA Astrophysics Data System (ADS)
Seike, Masayoshi; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi
2013-03-01
The purpose of this study is to examine the possibility of self-organization of defects and defect-induced properties in MgO-based magnetic tunnel junctions (MTJs). Using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional, first-principles calculations were performed to estimate the electronic structures and total energies of MgO with various defects. From our thorough evaluation of the calculated results and previously reported experimental data, we propose that self-organized half-metallic nanowires of magnesium vacancies can be formed in MgO-based MTJs. This self-organization may provide the foundation for a comprehensive understanding of the conductivity, tunnel barriers and quantum oscillations of MgO-based MTJs. Further experimental verification is needed before firm conclusions can be drawn.
Multi-Scale Stochastic Resonance Spectrogram for fault diagnosis of rolling element bearings
NASA Astrophysics Data System (ADS)
He, Qingbo; Wu, Enhao; Pan, Yuanyuan
2018-04-01
It is not easy to identify incipient defect of a rolling element bearing by analyzing the vibration data because of the disturbance of background noise. The weak and unrecognizable transient fault signal of a mechanical system can be enhanced by the stochastic resonance (SR) technique that utilizes the noise in the system. However, it is challenging for the SR technique to identify sensitive fault information in non-stationary signals. This paper proposes a new method called multi-scale SR spectrogram (MSSRS) for bearing defect diagnosis. The new method considers the non-stationary property of the defective bearing vibration signals, and treats every scale of the time-frequency distribution (TFD) as a modulation system. Then the SR technique is utilized on each modulation system according to each frequencies in the TFD. The SR results are sensitive to the defect information because the energy of transient vibration is distributed in a limited frequency band in the TFD. Collecting the spectra of the SR outputs at all frequency scales then generates the MSSRS. The proposed MSSRS is able to well deal with the non-stationary transient signal, and can highlight the defect-induced frequency component corresponding to the impulse information. Experimental results with practical defective bearing vibration data have shown that the proposed method outperforms the former SR methods and exhibits a good application prospect in rolling element bearing fault diagnosis.
Characterization of point defects in monolayer arsenene
NASA Astrophysics Data System (ADS)
Liang, Xiongyi; Ng, Siu-Pang; Ding, Ning; Wu, Chi-Man Lawrence
2018-06-01
Topological defects that are inevitably found in 2D materials can dramatically affect their properties. Using density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) method, the structural, thermodynamic, electronic and magnetic properties of six types of typical point defects in arsenene, i.e. the Stone-Wales defect, single and double vacancies and adatoms, were systemically studied. It was found that these defects were all more easily generated in arsenene with lower formation energies than those with graphene and silicene. Stone-Wales defects can be transformed from pristine arsenene by overcoming a barrier of 2.19 eV and single vacancy defects tend to coalesce into double vacancy defects by diffusion. However, a type of adatom defect does not exhibit kinetic stability at room temperature. In addition, SV defects and another type of adatom defect can remarkably affect the electronic and magnetic properties of arsenene, e.g. they can introduce localized states near the Fermi level, as well as a strongly local magnetic moment due to dangling bond and unpaired electron. Furthermore, the simulated scanning tunneling microscopy (STM) and Raman spectroscopy were computed and the types of point defects can be fully characterized by correlating the STM images and Raman spectra to the defective atomistic structures. The results provide significant insights to the effect of defects in arsenene for potential applications, as well as identifications of two helpful tools (STM and Raman spectroscopy) to distinguish the type of defects in arsenene for future experiments.
NASA Astrophysics Data System (ADS)
Wen, Zheng; Li, Chen; Wu, Di; Li, Aidong; Ming, Naiben
2013-07-01
Ferroelectric tunnel junctions (FTJs), composed of two metal electrodes separated by an ultrathin ferroelectric barrier, have attracted much attention as promising candidates for non-volatile resistive memories. Theoretical and experimental works have revealed that the tunnelling resistance switching in FTJs originates mainly from a ferroelectric modulation on the barrier height. However, in these devices, modulation on the barrier width is very limited, although the tunnelling transmittance depends on it exponentially as well. Here we propose a novel tunnelling heterostructure by replacing one of the metal electrodes in a normal FTJ with a heavily doped semiconductor. In these metal/ferroelectric/semiconductor FTJs, not only the height but also the width of the barrier can be electrically modulated as a result of a ferroelectric field effect, leading to a greatly enhanced tunnelling electroresistance. This idea is implemented in Pt/BaTiO3/Nb:SrTiO3 heterostructures, in which an ON/OFF conductance ratio above 104, about one to two orders greater than those reported in normal FTJs, can be achieved at room temperature. The giant tunnelling electroresistance, reliable switching reproducibility and long data retention observed in these metal/ferroelectric/semiconductor FTJs suggest their great potential in non-destructive readout non-volatile memories.
Sharma, Vinit K.; Herklotz, Andreas; Ward, Thomas Zac; ...
2017-09-11
Ion implantation has been widely used in the semiconductor industry for decades to selectively control electron/hole doping for device applications. Recently, experimental studies on ion implantation into more structurally and electronically complex materials have been undertaken in which defect generation has been used to control a variety of functional phenomena. Of particular interest, are recent findings demonstrating that low doses of low energy helium ions into single crystal films can be used to tailor the structural properties. These initial experimental studies have shown that crystal symmetry can be continuously controlled by applying increasingly large doses of He ions into amore » crystal. The observed changes in lattice structure were then observed to correlate with functional changes, such as metal-insulator transition temperature2 and optical bandgap3. In these preliminary experimental studies, changes to lattice expansion was proposed to be the direct result of chemical pressure originating predominantly from the implanted He applying chemical pressure at interstitial sites. However, the influence of possible secondary knock-on damage arising from the He atoms transferring energy to the lattice through nuclear-nuclear collision with the crystal lattice remains largely unaddressed. In this work, we focus on a SrRuO3 model system to provide a comprehensive examination of the impact of common defects on structural and electronic properties, obtain calculated defect formation energies, and define defect migration barriers. Our model indicates that, while interstitial He can modify the crystal properties, a dose significantly larger than those reported in experimental studies would be required. The true origin of the observed structural changes is likely the result of a combination of secondary defects created during He implantation. Of particular importance, we observe that different defect types can generate greatly varied local electronic structures and that the formation energies and migration energy barriers vary by defect type. Thus, we may have identified a new method of selectively inducing controlled defect complexes into single crystal materials. Development of this approach would have a broad impact on both our ability to probe specific defect contributions in fundamental studies and allow a new level of control over functional properties driven by specific defect complexes.« less
Quick-release connector module
NASA Technical Reports Server (NTRS)
Sedig, Albert R. (Inventor)
1995-01-01
A multi-bay electrical connector is described, of the type that has a frame (12, FIG. 2 ) with cavities (14) that each holds a separate module 20, which enables quick withdrawal of a single module from the frame and its quick replacement. A lock arm (42) is slidable along a first side (50) of a first cavity, and has at least one lock lug (80). A first module has a barrier part (70) that lies inward of the lock lug, which prevents outward movement of the first module out of the frame cavity. The lock arm can be moved to an unlocked position wherein the barrier part on the module lies inward of a gap (84) in the lock arm to permit the module to be pulled out of the frame cavity and later inserted therein. A latch (54) is slidable on the frame in directions (A, B) perpendicular to the sliding movement of the lock arm, and has an abutment (112, FIG. 5 ) that abuts a shoulder (114) on the lock arm to keep the lock arm in its unlocked position until the latch is released.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xavier, Jolly, E-mail: jolly.xavierp@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in
2014-02-24
We report sculptured diverse photonic lattices simultaneously embedded with intrinsic defects of tunable type, number, shape as well as position by a single-step dynamically reconfigurable fabrication approach based on a programmable phase spatial light modulator-assisted interference lithography. The presented results on controlled formation of intrinsic defects in periodic as well as transversely quasicrystallographic lattices, irrespective and independent of their designed lattice geometry, portray the flexibility and versatility of the approach. The defect-formation in photonic lattices is also experimentally analyzed. Further, we also demonstrate the feasibility of fabrication of such defects-embedded photonic lattices in a photoresist, aiming concrete integrated photonic applications.
The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC
Jiang, Hao; Wang, Xing; Szlufarska, Izabela
2017-02-09
Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less
The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Xing; Szlufarska, Izabela
Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less
Zeniya, Satoshi; Kuwahara, Hiroya; Daizo, Kaiichi; Watari, Akihiro; Kondoh, Masuo; Yoshida-Tanaka, Kie; Kaburagi, Hidetoshi; Asada, Ken; Nagata, Tetsuya; Nagahama, Masahiro; Yagi, Kiyohito; Yokota, Takanori
2018-05-17
Within the field of RNA therapeutics, antisense oligonucleotide-based therapeutics are a potentially powerful means of treating intractable diseases. However, if these therapeutics are used for the treatment of neurological disorders, safe yet efficient methods of delivering antisense oligonucleotides across the blood-brain barrier to the central nervous system must be developed. Here, we examined the use of angubindin-1, a binder to the tricellular tight junction, to modulate paracellular transport between brain microvascular endothelial cells in the blood-brain barrier for the delivery of antisense oligonucleotides to the central nervous system. This proof-of-concept study demonstrated that intravenously injected angubindin-1 increased the permeability of the blood-brain barrier and enabled transient delivery of subsequently administered antisense oligonucleotides into the mouse brain and spinal cord, leading to silencing of a target RNA without any overt adverse effects. We also found that two bicellular tight junction modulators did not produce such a silencing effect, suggesting that the tricellular tight junction is likely a better target for the delivery of antisense oligonucleotides than the bicellular tight junction. Our delivery strategy of modulating the tricellular tight junction in the blood-brain barrier via angubindin-1 provides a novel avenue of research for the development of antisense oligonucleotide-based therapeutics for the treatment of neurological disorders. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
An improved PSO-SVM model for online recognition defects in eddy current testing
NASA Astrophysics Data System (ADS)
Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin
2013-12-01
Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.
Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha
2017-04-01
Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability. Copyright © 2017 the American Physiological Society.
Xue, Tianyu; Yu, Shansheng; Zhang, Xiaoming; Zhang, Xinzheng; Wang, Lei; Bao, Qiaoliang; Chen, Caiyun; Zheng, Weitao; Cui, Xiaoqiang
2016-01-01
A proper understanding of the role that molecular doping plays is essential to research on the modulation of the optical and electronic properties of graphene. The adsorption of R6G molecules onto defect-rich reduced graphene oxide nanosheets results in a shift of the Fermi energy and, consequently, a variation in the optical constants. This optical variation in the graphene nanosheets is used to develop an ultrasensitive surface plasmon resonance biosensor with a detection limit of 10−17 M (0.01 fM) at the molecular level. A density functional theory calculation shows that covalent bonds were formed between the R6G molecules and the defect sites on the graphene nanosheets. Our study reveals the important role that defects play in tailoring the properties and sensor device applications of graphene materials. PMID:26887525
Moiré-Modulated Conductance of Hexagonal Boron Nitride Tunnel Barriers.
Summerfield, Alex; Kozikov, Aleksey; Cheng, Tin S; Davies, Andrew; Cho, Yong-Jin; Khlobystov, Andrei N; Mellor, Christopher J; Foxon, C Thomas; Watanabe, Kenji; Taniguchi, Takashi; Eaves, Laurence; Novoselov, Kostya S; Novikov, Sergei V; Beton, Peter H
2018-06-27
Monolayer hexagonal boron nitride (hBN) tunnel barriers investigated using conductive atomic force microscopy reveal moiré patterns in the spatial maps of their tunnel conductance consistent with the formation of a moiré superlattice between the hBN and an underlying highly ordered pyrolytic graphite (HOPG) substrate. This variation is attributed to a periodc modulation of the local density of states and occurs for both exfoliated hBN barriers and epitaxially grown layers. The epitaxial barriers also exhibit enhanced conductance at localized subnanometer regions which are attributed to exposure of the substrate to a nitrogen plasma source during the high temperature growth process. Our results show clearly a spatial periodicity of tunnel current due to the formation of a moiré superlattice and we argue that this can provide a mechanism for elastic scattering of charge carriers for similar interfaces embedded in graphene/hBN resonant tunnel diodes.
EBIC investigation of hydrogenation of crystal defects in EFG solar silicon ribbons
NASA Technical Reports Server (NTRS)
Sullivan, T.; Ast, D. G.
1983-01-01
Changes in the contrast and resolution of defect structures in 205 Ohm-cm EFG polysilicon ribbon subjected to annealing and hydrogenation treatments were observed in a JEOL 733 Superprobe scanning electron microscope, using electron beam induced current (EBIC) collected at an A1 Schottky barrier. The Schottky barrier was formed by evaporation of A1 onto the cleaned and polished surface of the ribbon material. Measurement of beam energy, beam current, and the current induced in the Schottky diode enabled observations to be quantified. Exposure to hydrogen plasma increased charge collection efficiency. However, no simple causal relationship between the hydrogenation and charge collection efficiency could be inferred, because the collection efficiency also displayed an unexpected thermal dependence. Good quality intermediate-magnification (1000X-5400X) EBIC micrographs of several specific defect structures were obtained. Comparison of grown-in and stress-induced dislocations after annealing in vacuum at 500 C revealed that stress-induced dislocations are hydrogenated to a much greater degree than grown-in dislocations. The theoretical approximations used to predict EBIC contrast and resolution may not be entirely adequate to describe them under high beam energy and low beam current conditions.
Vladar, Eszter K; Nayak, Jayakar V; Milla, Carlos E; Axelrod, Jeffrey D
2016-08-18
Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.
NASA Astrophysics Data System (ADS)
Finkel, Peter
2008-03-01
We report on new nondestructive evaluation technique based on electromagnetic modulation of ultrasonic signal for detection of the small crack, flaws and inclusions in thin-walled parts. The electromagnetically induced high density current pulse produces stresses which alter the ultrasonic waves scanning the part with the defect and modulate ultrasonic signal. The excited electromagnetic field can produces crack-opening due to Lorentz forces that increase the ultrasonic reflection. The Joule heating associated with the high density current, and consequent thermal stresses may cause both crack-closure, as well as crack-opening, depending on various factors. Experimental data is presented here for the case of a small crack near holes in thin-walled structures. The measurements were taken at 2-10 MHz with a Lamb wave wedge transducer. It is shown that electromagnetic transient modulation of the ultrasonic echo pulse tone-burst suggest that this method could be used to enhance detection of small cracks and ferromagnetic inclusions in thin walled metallic structures.
Alipour, Misagh; Zaidi, Deenaz; Valcheva, Rosica; Jovel, Juan; Martínez, Inés; Sergi, Consolato; Walter, Jens; Mason, Andrew L.; Wong, Gane Ka-Shu; Dieleman, Levinus A.; Carroll, Matthew W.; Huynh, Hien Q.
2016-01-01
Background and Aims: Ulcerative colitis [UC] is associated with colonic mucosa barrier defects and bacterial dysbiosis, but these features may simply be the result of inflammation. Therefore, we sought to assess whether these features are inherently abrogated in the terminal ileum [TI] of UC patients, where inflammation is absent. Methods: TI biopsies from paediatric inflammatory bowel disease [IBD] subsets [Crohn’s disease [CD; n = 13] and UC [n = 10
ZnO Schottky barriers and Ohmic contacts
NASA Astrophysics Data System (ADS)
Brillson, Leonard J.; Lu, Yicheng
2011-06-01
ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.
Biomaterials for periodontal regeneration
Shue, Li; Yufeng, Zhang; Mony, Ullas
2012-01-01
Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
NASA Astrophysics Data System (ADS)
Guan, Dongshi; Wang, Yong Jian; Charlaix, Elisabeth; Tong, Penger
We report direct atomic-force-microscope measurements of capillary force hysteresis and relaxation of a circular moving contact line (CL) formed on a long micron-sized hydrophobic fiber intersecting a water-air interface. The measured capillary force hysteresis and CL relaxation show a strong asymmetric speed dependence in the advancing and receding directions. A unified model based on force-assisted barrier-crossing is utilized to find the underlying energy barrier Eb and size λ associated with the defects on the fiber surface. The experiment demonstrates that the pinning (relaxation) and depinning dynamics of the CL can be described by a common microscopic frame-work, and the advancing and receding CLs are influenced by two different sets of relatively wetting and non-wetting defects on the fiber surface. Work supported in part by the Research Grants Council of Hong Kong SAR.
NASA Astrophysics Data System (ADS)
Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang
2016-09-01
Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.
Astrocyte–endothelial interactions and blood–brain barrier permeability*
Abbott, N Joan
2002-01-01
The blood–brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFβ, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain endothelial permeability has been shown for a number of small chemical mediators produced by astrocytes and other nearby cell types. It is clear that endothelial cells are involved in both long- and short-term chemical communication with neighbouring cells, with the perivascular end feet of astrocytes being of particular importance. The role of barrier induction and modulation in normal physiology and in pathology is discussed. PMID:12162730
NASA Astrophysics Data System (ADS)
Lin, Wen-Chih; Li, Ying-Sih; Wu, Albert T.
2018-01-01
This paper investigates the interfacial reaction between Sn and Sn3Ag0.5Cu (SAC305) solder on n-type Bi2Te3 thermoelectric material. An electroless Ni-P layer successfully suppressed the formation of porous SnTe intermetallic compound at the interface. The formation of the layers between Bi2Te3 and Ni-P indicates that Te is the dominant diffusing species. Shear tests were conducted on both Sn and SAC305 solder on n- and p-type Bi2Te3 with and without a Ni-P barrier layer. Without a Ni-P layer, porous SnTe would result in a more brittle fracture. A comparison of joint strength for n- and p-type thermoelectric modules is evaluated by the shear test. Adding a diffusion barrier increases the mechanical strength by 19.4% in n-type and 74.0% in p-type thermoelectric modules.
Runge-Lenz wave packet in multichannel Stark photoionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Texier, F.
2005-01-01
In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance withmore » the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial.« less
NASA Astrophysics Data System (ADS)
Parkin, Stuart
2006-03-01
Recent advances in generating, manipulating and detecting spin-polarized electrons and electrical current make possible new classes of spin based sensor, memory and logic devices [1]. One key component of many such devices is the magnetic tunneling junction (MTJ) - a sandwich of thin layers of metallic ferromagnetic electrodes separated by a tunneling barrier, typically an oxide material only a few atoms thick. The magnitude of the tunneling current passing through the barrier can be adjusted by varying the relative magnetic orientation of the adjacent ferromagnetic layers. As a result, MTJs can be used to sense the magnitude of magnetic fields or to store information. The electronic structure of the ferromagnet together with that of the insulator determines the spin polarization of the current through an MTJ -- the ratio of 'up' to 'down' spin electrons. Using conventional amorphous alumina tunnel barriers tunneling spin polarization (TSP) values of up to ˜55% are found for conventional 3d ferromagnets, such as CoFe, but using highly textured crystalline MgO tunnel barriers TSP values of more than 90% can be achieved for otherwise the same ferromagnet [2]. Such TSP values rival those previously observed only with half-metallic ferromagnets. Corresponding giant values of tunneling magnetoresistance (TMR) are found, exceeding 350% at room temperature and nearly 600% at 3K. Perhaps surprisingly the MgO tunnel barrier can be quite rough: its thickness depends on the local crystalline texture of the barrier, which itself is influenced by structural defects in the underlayer. We show that the magnitude and the sign of the TMR is strongly influenced by defects in the tunnel barrier and by the detailed structure of the barrier/ferromagnet interfaces. The observation of Kondo-assisted tunneling phenomena will be discussed as well as the detailed dependence of TMR on chemical bonding at the interfaces [3]. [1] .S.S.P. Parkin, X. Jiang, C. Kaiser, et al., Proc. IEEE 91, 661 (2003). [2] S. S. P. Parkin, C. Kaiser, A. Panchula, et al., Nature Mater. 3, 862 (2004). [3] C. Kaiser, S. van Dijken, S.-H. Yang, H. Yang and S.S.P. Parkin, Phys. Rev. Lett. 94, 247203 (2005).
Electronic properties of B and Al doped graphane: A hybrid density functional study
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.
2018-04-01
Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.
Sancenon, Vicente; Lee, Sue-Ann; Patrick, Christina; Griffith, Janice; Paulino, Amy; Outeiro, Tiago F.; Reggiori, Fulvio; Masliah, Eliezer; Muchowski, Paul J.
2012-01-01
The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies. PMID:22357655
Abdi, Kianoush; Arab, Mohammad; Rashidian, Arash; Kamali, Mohammad; Khankeh, Hamid Reza; Farahani, Farideh Khalajabadi
2015-01-01
Introduction The United Nations (UN) identified health as a basic human right, but, unfortunately, the evidence shows that people with disabilities (PWD) often have lower levels of health than the general population. This can be associated with problems in access to the services and programs. The aim of this study was to explore barriers of the health system to rehabilitation services for PWD in Iran. Methods This was a qualitative study conducted on 21 participants using semi-structured, in-depth interviews and content analysis from June 2014 to July 2015. Data analysis was performed by MAXQDA version 10. Results “Barriers” were the most prominent challenge of people with disabilities that needed access to rehabilitation services. These barriers were categorized into eight concepts of deficiency in the system that provides rehabilitation services, defect of education, deficiency in detecting and screening of people with disability, defect of stewardship in rehabilitation, ignoring socio-cultural factors, accessibility hardships, lack of identification, and financial hardships in rehabilitation. Conclusions An efficient rehabilitation plan requires a common understanding, considering the long-term complications involved in addressing the barriers. Understanding the barriers of the health system to rehabilitation services requires comprehensive management that first should be familiar with all of PWD, providers, policy makers, and other beneficiaries. It also is necessary for policy makers to consider rehabilitation services as a main part of the health plan; especially, they must change their oversight of rehabilitation services and programs. Thus, policy makers should have need comprehensive management and recommended further research. PMID:26767101
Microwave device investigations
NASA Technical Reports Server (NTRS)
Haddad, G. I.; Lomax, R. J.; Masnari, N. A.; Shabde, S. E.
1971-01-01
Several tasks were active during this report period: (1) noise modulation in avalanche-diode devices; (2) schottky-barrier microwave devices; (3) intermodulation products in IMPATT diode amplifiers; (4) harmonic generation using Read-diode varactors; and (5) fabrication of GaAs Schottky-barrier IMPATT diodes.
Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Chunhua; Ma, Ziguang; Zhou, Junming
2014-04-14
The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiencymore » of holes.« less
ERIC Educational Resources Information Center
Espy, John
This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…
Visual selective attention with virtual barriers.
Schneider, Darryl W
2017-07-01
Previous studies have shown that interference effects in the flanker task are reduced when physical barriers (e.g., hands) are placed around rather than below a target flanked by distractors. One explanation of this finding is the referential coding hypothesis, whereby the barriers serve as reference objects for allocating attention. In five experiments, the generality of the referential coding hypothesis was tested by investigating whether interference effects are modulated by the placement of virtual barriers (e.g., parentheses). Modulation of flanker interference was found only when target and distractors differed in size and the virtual barriers were beveled wood-grain objects. Under these conditions and those of previous studies, the author conjectures that an impression of depth was produced when the barriers were around the target, such that the target was perceived to be on a different depth plane than the distractors. Perception of depth in the stimulus display might have led to referential coding of the stimuli in three-dimensional (3-D) space, influencing the allocation of attention beyond the horizontal and vertical dimensions. This 3-D referential coding hypothesis is consistent with research on selective attention in 3-D space that shows flanker interference is reduced when target and distractors are separated in depth.
Three-Space Interaction in Doubly Sinusoidal Periodic Media
NASA Astrophysics Data System (ADS)
Tian-Lin, Dong; Ping, Chen
2006-06-01
Three-space-harmonic (3SH) interaction in doubly sinusoidal periodic (DSP) medium is investigated. Associated physical effects such as additional gap, defect state, and indirect gaps, are theoretically and numerically revealed. This simple DSP model can facilitate the understanding and utilizing of a series of effects in rather complicated periodic structures with additional defect or modulation.
Boudry, Gaëlle; Hamilton, M. Kristina; Chichlowski, Maciej; Wickramasinghe, Saumya; Barile, Daniela; Kalanetra, Karen M.; Mills, David A.; Raybould, Helen E.
2017-01-01
Obesity is characterized by altered gut homeostasis, including dysbiosis and increased gut permeability closely linked to the development of metabolic disorders. Milk oligosaccharides are complex sugars that selectively enhance the growth of specific beneficial bacteria in the gastrointestinal tract and could be used as prebiotics. The aim of the study was to demonstrate the effects of bovine milk oligosaccharides (BMO) and Bifidobacterium longum ssp. infantis (B. infantis) on restoring diet-induced obesity intestinal microbiota and barrier function defects in mice. Male C57/BL6 mice were fed a Western diet (WD, 40% fat/kcal) or normal chow (C, 14% fat/kcal) for 7 wk. During the final 2 wk of the study, the diet of a subgroup of WD-fed mice was supplemented with BMO (7% wt/wt). Weekly gavage of B. infantis was performed in all mice starting at wk 3, yet B. infantis could not be detected in any luminal contents when mice were killed. Supplementation of the WD with BMO normalized the cecal and colonic microbiota with increased abundance of Lactobacillus compared with both WD and C mice and restoration of Allobaculum and Ruminococcus levels to that of C mice. The BMO supplementation reduced WD-induced increase in paracellular and transcellular flux in the large intestine as well as mRNA levels of the inflammatory marker tumor necrosis factor α. In conclusion, BMO are promising prebiotics to modulate gut microbiota and intestinal barrier function for enhanced health. PMID:28131576
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.
2017-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.
A homolog of Drosophila grainy head is essential for epidermal integrity in mice.
Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M
2005-04-15
The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.
Current-induced changes of migration energy barriers in graphene and carbon nanotubes.
Obodo, J T; Rungger, I; Sanvito, S; Schwingenschlögl, U
2016-05-21
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.
Congenital Abnormalities: Consequence of Maternal Zika Virus Infection: A Narrative Review.
Hassan, Fatima I; Niaz, Kamal; Maqbool, Faheem; Khan, Fazlullah; Abdollahi, Mohammad
2017-01-01
Zika virus (ZIKV) is a deadly flavivirus that has spread from Africa to Asia and European countries. The virus is associated with other viruses in the same genus or family, transmitted by the same mosquito species with known history of fatality. A sudden increase in the rate of infection from ZIKV has made it a global health concern, which necessitates close symptom monitoring, enhancing treatment options, and vaccine production. This paper reviewed current reports on birth defects associated with ZIKV, mode of transmission, body fluids containing the virus, diagnosis, possible preventive measures or treatments, and vaccine development. Google scholar was used as the major search engine for research and review articles, up to July, 2016. Search terms such as "ZIKV", "ZIKV infection", "ZIKV serotypes", "treatment of ZIKV infection", "co-infection with zika virus", "flavivirus", "microcephaly and zika", "birth defects and Zika", as well as "ZIKV vaccine" were used. ZIKV has been detected in several body fluids such as saliva, semen, blood, and amniotic fluid. This reveals the possibility of sexual and mother to child transmission. The ability of the virus to cross the placental barrier and the blood brain barrier (BBB) has been associated with birth defects such as microcephaly, ocular defects, and Guillian Barre syndrome (GBS). Preventive measures can reduce the spread and risk of the infection. Available treatments only target symptoms while vaccines are still under development. Birth defects are associated with ZIKV infection in pregnant women; hence the need for development of standard treatments, employment of strict preventive measures and development of effective vaccines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.
2016-11-21
We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.
Hydrodynamic optical soliton tunneling
NASA Astrophysics Data System (ADS)
Sprenger, P.; Hoefer, M. A.; El, G. A.
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Hydrodynamic optical soliton tunneling.
Sprenger, P; Hoefer, M A; El, G A
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Czarnecka-Operacz, Magdalena; Adamski, Zygmunt
2018-01-01
Atopic dermatitis (AD) is a chronic and recurrent disease induced by underlying defects of the epidermal barrier and immunological disorders, typical of atopic diseases. The genetic and immunological mechanisms (outlined in the previous paper) affecting the dysfunction of the barrier are intensified by environmental factors, e.g. airborne and food allergens, infections and stress. For this reason, proper skin care, which prevents further damage and restores the epidermal barrier is of such importance in the field of AD therapy. Appropriate therapy is based on emollients which, coupled with anti-inflammatory and antipruritic treatment, should be used as the first-line therapy. The aim of the present paper is to outline the effects of the abovementioned factors on the dysfunction of the epidermal barrier as well as to emphasize the importance of proper atopic skin care in maintaining the integrity of the barrier and preventing exacerbation of the disease. PMID:29760610
Electric field-induced emission enhancement and modulation in individual CdSe nanowires.
Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru
2012-10-23
CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.
Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong
2015-08-24
The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth.more » Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.« less
NASA Astrophysics Data System (ADS)
Kwak, Ji Hye; Chun, Su Jin; Shon, Chae-Hwa; Jung, Sunshin
2018-04-01
Photonic sintering has attracted considerable attention for printed electronics. It irradiates high-intensity light onto the front surface of metal nanoparticle patterns, which often causes defects such as delamination, cavities, and cracks in the patterns. Here, a back-irradiation photonic sintering method is developed for obtaining defect-free high-conductivity metal patterns on a transparent plastic substrate, through which high-intensity light is irradiated onto the back surface of the patterns for a few milliseconds. Ag patterns back-irradiated with ˜10.0 J cm-2 are defect-free in contrast to front-irradiated patterns and exhibited an electrical conductivity of ˜2.3 × 107 S m-1. Furthermore, real-time high-speed observation reveals that the mechanisms that generate defects in the front-irradiated patterns and prevent defects in the back-irradiated patterns are closely related to vapor trapping. In contrast to the latter, in the former, vapor is trapped and delaminates the patterns from the substrate because the front of the patterns acts as a barrier to vapor venting.
Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D
2014-04-18
We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.
2015-01-01
We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227
Ming, Wenmei; Chen, Shiyou; East China Normal Univ.; ...
2016-10-13
Methylammonium (MA) lead triiodide (MAPbI 3) has recently emerged as a promising solar cell material. But, MAPbI3 is known to have chemical instability, i.e., MAPbI3 is prone to decomposition into MAI and PbI 2 even at moderate temperatures (e.g. 330 K). Here, we show that the chemical instability, as reflected by the calculated negligible enthalpy of formation of MAPbI 3 (with respect to MAI and PbI 2), has an unusual and important consequence for defect properties, i.e., defect formation energies in low-carrier-density MAPbI 3 are nearly independent of the chemical potentials of constituent elements and thus can be uniquely determined. This allows straightforward calculations of defect concentrations and the activation energy of ionic conductivity (the sum of the formation energy and the diffusion barrier of the charged mobile defect) in MAPbI 3. Furthermore, the calculated activation energy for ionic conductivity due to Vmore » $$+\\atop{1}$$ diffusion is in excellent agreement with the experimental values, which demonstrates unambiguously that V$$+\\atop{1}$$ is the dominant diffusing defect and is responsible for the observed ion migration and device polarization in MAPbI3 solar cells. The calculated low formation energy of a Frenkel pair (V$$+\\atop{1}$$ -I$$-\\atop{i}$$ and low diffusion barriers of V$$+\\atop{1}$$ and Image I$$-\\atop{i}$$ suggest that the iodine ion migration and the resulting device polarization may occur even in single-crystal devices and grain-boundary-passivated polycrystalline thin film devices (which were previously suggested to be free from ion-migration-induced device polarization), leading to device degradation. Moreover, the device polarization due to the Frenkel pair (which has a relatively low concentration) may take a long time to develop and thus may avoid the appearance of the current–voltage hysteresis at typical scan rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Anh, Le, E-mail: letheanh@jaist.ac.jp; Lam, Pham Tien; Manoharan, Muruganathan
We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs withmore » P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies.« less
Ac electronic tunneling at optical frequencies
NASA Technical Reports Server (NTRS)
Faris, S. M.; Fan, B.; Gustafson, T. K.
1974-01-01
Rectification characteristics of non-superconducting metal-barrier-metal junctions deduced from electronic tunneling have been observed experimentally for optical frequency irradiation of the junction. The results provide verification of optical frequency Fermi level modulation and electronic tunneling current modulation.
Schleicher, F; Halisdemir, U; Lacour, D; Gallart, M; Boukari, S; Schmerber, G; Davesne, V; Panissod, P; Halley, D; Majjad, H; Henry, Y; Leconte, B; Boulard, A; Spor, D; Beyer, N; Kieber, C; Sternitzky, E; Cregut, O; Ziegler, M; Montaigne, F; Beaurepaire, E; Gilliot, P; Hehn, M; Bowen, M
2014-08-04
Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.
Electrical Properties of the V-Defects of Epitaxial HgCdTe
NASA Astrophysics Data System (ADS)
Novikov, V. A.; Grigoryev, D. V.; Bezrodnyy, D. A.; Voitsekhovskii, A. V.; Dvoretsky, S. A.; Mikhailov, N. N.
2017-07-01
The manufacturing process of wide-band-gap matrix photodetector devices and miniaturization of their individual pixels gave rise to increased demands on the material quality and research methods. In the present paper we propose using the methods of atomic-force microscopy to study the local distribution of electrical properties of the V-defects that form in epitaxial films of HgCdTe during their growth process via molecular beam epitaxy. We demonstrate that a complex approach to studying the electrical properties of a predefined region of a V-defect allows one to obtain more detailed information on its properties. Using scanning spreading resistance microscopy, we show that, for a V-defect when the applied bias is increased, the surface area that participates in the process of charge carrier transfer also increases almost linearly. The presence of a potential barrier on the periphery of individual crystal grains that form the V-defect interferes with the flow of current and also affects the distribution of surface potential and capacitive contrast.
Wetting hysteresis induced by nanodefects
Giacomello, Alberto; Schimmele, Lothar; Dietrich, Siegfried
2016-01-01
Wetting of actual surfaces involves diverse hysteretic phenomena stemming from ever-present imperfections. Here, we clarify the origin of wetting hysteresis for a liquid front advancing or receding across an isolated defect of nanometric size. Various kinds of chemical and topographical nanodefects, which represent salient features of actual heterogeneous surfaces, are investigated. The most probable wetting path across surface heterogeneities is identified by combining, within an innovative approach, microscopic classical density functional theory and the string method devised for the study of rare events. The computed rugged free-energy landscape demonstrates that hysteresis emerges as a consequence of metastable pinning of the liquid front at the defects; the barriers for thermally activated defect crossing, the pinning force, and hysteresis are quantified and related to the geometry and chemistry of the defects allowing for the occurrence of nanoscopic effects. The main result of our calculations is that even weak nanoscale defects, which are difficult to characterize in generic microfluidic experiments, can be the source of a plethora of hysteretical phenomena, including the pinning of nanobubbles. PMID:26721395
Dinwoodie, Thomas L [Piedmont, CA
2008-02-12
A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. Water resistant junctions may be formed between the bases of adjacent shingle assemblies of an array of shingle assemblies. The base may include an insulation layer underlying a water barrier. The base may also include a waterproofing element; the width and height of the barrier may be shorter than the width and height of the waterproofing element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Steven P.; Moseley, John; Norman, Andrew
We investigated the potential-induced degradation (PID) shunting mechanism in multicrystalline-silicon photovoltaic modules by using a multiscale, multitechnique characterization approach. Both field-stressed modules and laboratory-stressed mini modules were studied. We used photoluminescence, electroluminescence, and dark lock-in thermography imaging to identify degraded areas at the module scale. Small samples were then removed from degraded areas, laser marked, and imaged by scanning electron microscopy. We used simultaneous electron-beam induced current imaging and focused ion beam milling to mark around PID shunts for chemical analysis by time-of-flight secondary-ion mass spectrometry or to isolate individual shunt defects for transmission electron microscopy and atom-probe tomography analysis.more » By spanning a range of 10 orders of magnitude in size, this approach enabled us to investigate the root-cause mechanisms for PID shunting. We observed a direct correlation between recombination active shunts and sodium content. The sodium content in shunted areas peaks at the SiNX/Si interface and is consistently observed at a concentration of 0.1% to 2% in shunted areas. Analysis of samples subjected to PID recovery, either activated by electron beam or thermal effects only, reveals that recovery of isolated shunts correlates with diffusion of sodium out of the structural defects to the silicon surface. We observed the role of oxygen and chlorine in PID shunting and found that those species - although sometimes present in structural defects where PID shunting was observed - do not play a consistent role in PID shunting.« less
Proksch, E; Elias, P M; Feingold, K R
1990-01-01
Epidermal cholesterol biosynthesis is regulated by barrier function. We quantitated the amount and activation state (phosphorylation-dephosphorylation) of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, in epidermis before and after barrier disruption. In murine epidermis we found high enzyme activity (1.75 +/- 0.02 nmol/min per mg protein). After acute barrier disruption, enzyme activity began to increase after 1.5 h, reaching a maximum increase by 2.5 h, and returned to normal by 15 h. Chronic barrier disruption increased total enzyme activity by 83%. In normal epidermis, measurement of HMG CoA reductase activity in microsomes isolated in NaF- vs. NaCl-containing buffers demonstrated that 46 +/- 2% of the enzyme was in the active form. After acute or chronic barrier disruption, a marked increase in the percentage of HMG CoA reductase in the active form was observed. Acute disruption increased enzyme activation state as early as 15 min, reaching a maximum after 2.5 h, with an increase still present at 15 h, indicating that changes in activation state had a close temporal relationship with barrier function. Increases in total HMG CoA reductase activity occurred only after profound barrier disruption, whereas changes in activation state occur with lesser degrees of barrier disruption. Artificial correction of barrier function prevented the increase in total HMG CoA reductase activity, and partially prevented the increase in enzyme activation. These results show that barrier requirements regulate epidermal cholesterol synthesis by modulating both the HMG CoA reductase amount and activation state. Images PMID:2312730
NASA Astrophysics Data System (ADS)
Sweetman, A.; Jarvis, S.; Danza, R.; Bamidele, J.; Kantorovich, L.; Moriarty, P.
2011-08-01
We use small-amplitude qPlus frequency modulated atomic force microscopy (FM-AFM), at 5 K, to investigate the atomic-scale mechanical stability of the Si(100) surface. By operating at zero applied bias the effect of tunneling electrons is eliminated, demonstrating that surface manipulation can be performed by solely mechanical means. Striking differences in surface response are observed between different regions of the surface, most likely due to variations in strain associated with the presence of surface defects. We investigate the variation in local energy surface by ab initio simulation, and comment on the dynamics observed during force spectroscopy.
Microbial barrier assessment of Tyvek stopper packaging for rubber closures.
Moldenhauer, J E; Bass, S A; Kupinski, M J; Walters, M L; Rubio, S L
1996-01-01
Two types of Tyvek and high density polyethylene or polypropylene packaging used for sterilization of rubber closures were evaluated for Microbial Barrier properties. The packaging evaluated was "Ready to Sterilize" (1) stoppers and a second test package (Test 2) which was designated as appropriate for a clean room, filled with washed and siliconized stoppers and then heat sealed. Each type of packaging was subjected to three different sterilization temperatures (125 degrees C, 128 degrees C and 131 degrees C) in a production sterilizer (15-18 psi). Following sterilization, a microbial barrier assessment was performed, using Bacillus subtilis niger (ATCC 9372), to determine whether the packaging could maintain a sterile barrier following sterilization. Results of the testing indicated that a microbial barrier was maintained for products in "Ready to Sterilize" packages at 125 degrees C and 128 degrees C. For products sterilized in the Test 2 container a microbial barrier could not be maintained at 128 degrees C, and no further testing was performed. Following sterilization at 131 degrees C physical defects were noted for the "Ready to Sterilize" bag and a microbial barrier could not be maintained.
A Dynamic Pathway for Stone-Wales Bond Rotation on Carbon Nanotubes through Diamond-Like Bonds
NASA Technical Reports Server (NTRS)
Wei, Chen-Yu; Srivastava, Deepak; Cho, Kyeong-Jae; Menon, Madhu
2003-01-01
A new lower energy barrier with a two-step pathway of Stone-Wales (SW) ,ond rotation on carbon nanotubes (CNTs) is found through molecular dynamics (MD) simulations of CNTs under tension. The first step involves going over to a stable sp3-like metastable configuration with half rotated and partially tilted C-C bond. The second step involves going over to the fully rotated C-C bond with the formation of a SW defect in the nanotube. The energy barrier for this two-step dynamic pathway is significantly lower than the previously known static barrier for in-plane rotation of the C-C bond on a tensile strained (> 4%) CNT.
NASA Astrophysics Data System (ADS)
Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping
2016-12-01
Using the first-principles method which combines the nonequilibrium Green’s function (NEGF) with density functional theory (DFT), the role of defect, dopant, barrier length and geometric deformation for low-bias negative differential resistance (NDR) in two capped armchair carbon nanotubes (CNTs) sandwiching σ barrier are systematically analyzed. We found that this method can regulate the negative differential resistance (NDR) effects such as current peak and peak position. The adjusting mechanism may originate from orbital interaction and orbital reconstruction. Our calculations try to manipulate the transport characteristics in energy space by simply manipulating the structure in real space, which may promise the potential applications in nanomolecular-electronics in the future.
Plichta, Jennifer K.; Holmes, Casey J.; Gamelli, Richard L.; Radek, Katherine A.
2016-01-01
Burn injury increases the risk of morbidity and mortality by promoting severe hemodynamic shock and risk for local or systemic infection. Graft failure due to poor wound healing or infection remains a significant problem for burn subjects. The mechanisms by which local burn injury compromises the epithelial antimicrobial barrier function in the burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue, are largely unknown. The objective of this study was to establish defects in epidermal barrier function in human donor skin and burn margin, in order to identify potential mechanisms that may lead to graft failure and/or impaired burn wound healing. In the present study, we established that epidermal lipids and respective lipid synthesis enzymes were significantly reduced in both donor skin and burn margin. We further identified diverse changes in the gene expression and protein production of several candidate skin antimicrobial peptides (AMPs) in both donor skin and burn margin. These results also parallel changes in cutaneous AMP activity against common burn wound pathogens, aberrant production of epidermal proteases known to regulate barrier permeability and AMP activity, and greater production of pro-inflammatory cytokines known to be induced by AMPs. These findings suggest that impaired epidermal lipid and AMP regulation could contribute to graft failure and infectious complications in subjects with burn or other traumatic injury. PMID:27183442
Wang, Bingjie; McHugh, Brian J; Qureshi, Ayub; Campopiano, Dominic J; Clarke, David J; Fitzgerald, J Ross; Dorin, Julia R; Weller, Richard; Davidson, Donald J
2017-01-01
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that results in significant morbidity. A hallmark of AD is disruption of the critical barrier function of upper epidermal layers, causatively linked to environmental stimuli, genetics, and infection, and a critical current target for the development of new therapeutic and prophylactic interventions. Staphylococcus aureus is an AD-associated pathogen producing virulence factors that induce skin barrier disruption in vivo and contribute to AD pathogenesis. We show, using immortalized and primary keratinocytes, that S. aureus protease SspA/V8 is the dominant secreted factor (in laboratory and AD clinical strains of S. aureus) inducing barrier integrity impairment and tight junction damage. V8-induced integrity damage was inhibited by an IL-1β-mediated mechanism, independent of effects on claudin-1. Induction of keratinocyte expression of the antimicrobial/host defense peptide human β-defensin 2 (hBD2) was found to be the mechanism underpinning this protective effect. Endogenous hBD2 expression was required and sufficient for protection against V8 protease-mediated integrity damage, and exogenous application of hBD2 was protective. This modulatory property of hBD2, unrelated to antibacterial effects, gives new significance to the defective induction of hBD2 in the barrier-defective skin lesions of AD and indicates therapeutic potential. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Inflammatory Bowel Disease in Primary Immunodeficiencies.
Kelsen, Judith R; Sullivan, Kathleen E
2017-08-01
Inflammatory bowel disease is most often a polygenic disorder with contributions from the intestinal microbiome, defects in barrier function, and dysregulated host responses to microbial stimulation. There is, however, increasing recognition of single gene defects that underlie a subset of patients with inflammatory bowel disease, particularly those with early-onset disease, and this review focuses on the primary immunodeficiencies associated with early-onset inflammatory bowel disease. The advent of next-generation sequencing has led to an improved recognition of single gene defects underlying some cases of inflammatory bowel disease. Among single gene defects, immune response genes are the most frequent category identified. This is also true of common genetic variants associated with inflammatory bowel disease, supporting a pivotal role for host responses in the pathogenesis. This review focuses on practical aspects related to diagnosis and management of children with inflammatory bowel disease who have underlying primary immunodeficiencies.
Electronic transport in armchair graphene nanoribbon under double magnetic barrier modulation
NASA Astrophysics Data System (ADS)
Wang, Haiyan; Wu, Chao; Xie, Fang; Zhang, Xiaojiao; Zhou, Guanghui
2018-03-01
We present a theoretical investigation of the transport properties and the magnetoresistance effect in armchair graphene nanoribbons (AGNRs) under modulation by two magnetic barriers. The energy levels are found to be degenerate for a metallic AGNR but are not degenerate for a semiconducting AGNR. However, the conductance characteristics show quantized plateaus in both the metallic and semiconducting cases. When the magnetization directions of the barriers change from parallel to antiparallel, the conductance plateau in the metallic AGNR shows a degenerate feature due to matching between the transport modes in different regions. As the barrier height increases, the conductance shows more oscillatory behavior with sharp peaks and troughs. Specifically, the initial position of nonzero conductance for the metallic AGNR system moves towards a higher energy regime, which indicates that an energy gap has been opened. In addition, the magnetoresistance ratio also shows plateau structures in certain specific energy regions. These results may be useful in the design of electron devices based on AGNR nanostructures.
Interacting and self-organized two-level states in tunnel barriers
NASA Technical Reports Server (NTRS)
Pesenson, L.; Robertazzi, R. P.; Buhrman, R. A.; Cypher, S. R.; Hunt, B. D.
1991-01-01
The excess low-frequency 1/f noise and discrete two-level resistance fluctuations (TLFs) were studied in small-area NbN-MgO-NbN tunnel junctions with a high, low-temperature density of active defects. Strong and evolving interactions between large TLFs indicate that these fluctuations result from the self-organization of interacting defect elements. In the low-T tunneling regime, an unusual slowing down of the rates and a decrease in amplitude with increasing T is sometimes observed indicative of a thermally induced change in the self-organized two-level state.
Suppressing Nonradiative Recombination in Crown-Shaped Quantum Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kwangwook; Ju, Gunwu; Na, Byung Hoon
We examined the structural and optical properties of a crown-shaped quantum well (CSQW) to suppress nonradiative recombination. To reduce carrier loss in defect traps at the well/barrier interface, the CSQW was designed to concentrate carriers in the central region by tailoring the bandgap energy. Temperature-dependent photoluminescence measurements showed that the CSQW had a high activation energy and low potential fluctuation. In addition, the long carrier lifetime of the CSQW at high temperatures can be interpreted as indicating a decrease in carrier loss at defect traps.
NASA Astrophysics Data System (ADS)
Mamor, M.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.; Myburg, G.
1998-06-01
Titanium (Ti) Schottky barrier diodes on epitaxially grown boron-doped p-type Si films with a free carrier density of 6-8×1016cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. We report the electronic and transformation characteristics of an α-particle irradiation-induced defect Hα2 in epitaxially grown p-Si with metastable properties. The energy level and apparent capture cross section, as determined by deep-level transient spectroscopy, are Ev+0.43 eV and 1.4×10-15 cm2, respectively. This defect can be removed and re-introduced using a conventional bias-on/off cooling technique.
Anti-site defected MoS2 sheet for catalytic application
NASA Astrophysics Data System (ADS)
Sharma, Archana; Husain, Mushahid; Khan, Mohd. Shahid
2018-04-01
To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to investigate CO oxidation on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (anti-site defect). The stronger interaction between Mo metal with O2 molecule as compared with CO molecule suggests high catalytic activity. The complete oxidation of CO is studied in a two-step procedure using Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms with a low overall energy barrier of 0.35 eV. Creation of anti-site defect makes the surface of MoS2 nanosheet catalytically active for the CO oxidation to take place.
Self-organized ferromagnetic nanowires in MgO-based magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Seike, Masayoshi; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi
2013-08-01
The focus of this study is to examine the distribution of defects and defect-induced properties in MgO-based magnetic tunnel junctions (MTJs). To this end, first-principles calculations were performed to estimate the electronic structures and total energies of MgO with various defects by using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. From connections drawn between the calculated results and previously reported experimental data, we propose that self-organized ferromagnetic nanowires of magnesium vacancies can be formed in MgO-based MTJs. This self-organization may provide the foundation for a comprehensive understanding of the conductivity, tunnel barriers and quantum oscillations of MgO-based MTJs. Further experimental verification is needed before firm conclusions can be drawn.
Influence of plasma conditions on the defect formation mechanism in amorphous hydrogenated silicon
NASA Astrophysics Data System (ADS)
Kounavis, P.; Mataras, D.; Spiliopoulos, N.; Mytilineou, E.; Rapakoulias, D.
1994-02-01
The variation of a-Si:H film quality, deposited by a rf glow discharge of pure silane, is examined as a function of the interelectrode distance for two different pressures. Constant photocurrent and modulated photocurrent methods are used to estimate the magnitude and the shape of the defect states in the valence band and the conduction band, respectively. An effort is made to correlate the film quality parameters and the defect formation with the plasma macroscopic and microscopic parameters. The results suggest that, at low interelectrode distances, high sticking coefficient radicals modify the film growth and the defect formation mechanisms, leading to the deterioration of the film quality. The conclusions drawn are compared with the predictions of recent theoretical models concerning the defect formation in a-Si:H.
Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D.
2014-01-01
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between C. remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane’s rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin’s corollary to Haldane’s rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. PMID:25196892
Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D
2014-01-01
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. © 2014 Wiley Periodicals, Inc.
Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers
NASA Astrophysics Data System (ADS)
Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.
2014-09-01
The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.
Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.
2016-01-01
Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836
Seventh workshop on the role of impurities and defects in silicon device processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
This workshop is the latest in a series which has looked at technological issues related to the commercial development and success of silicon based photovoltaic (PV) modules. PV modules based on silicon are the most common at present, but face pressure from other technologies in terms of cell performance and cell cost. This workshop addresses a problem which is a factor in the production costs of silicon based PV modules.
Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei
2016-10-31
We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.
Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide
Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; ...
2015-03-03
We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO 2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO 2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect tomore » the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.« less
Effect of an Interfacial Layer on Electron Tunneling through Atomically Thin Al2O3 Tunnel Barriers.
Wilt, Jamie; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z
2017-10-25
Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al 2 O 3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering atomic layer deposition (ALD) to synthesize Al 2 O 3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al 2 O 3 . The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al 2 O 3 . The IL forms primarily due to exposure of the Al to trace O 2 and/or H 2 O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al 2 O 3 barrier height from 0.9 to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step toward the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.
Sommerhalter, Kristin M; Insaf, Tabassum Z; Akkaya-Hocagil, Tugba; McGarry, Claire E; Farr, Sherry L; Downing, Karrie F; Lui, George K; Zaidi, Ali N; Van Zutphen, Alissa R
2017-11-01
Many individuals with congenital heart defects (CHDs) discontinue cardiac care in adolescence, putting them at risk of adverse health outcomes. Because geographic barriers may contribute to cessation of care, we sought to characterize geographic access to comprehensive cardiac care among adolescents with CHDs. Using a population-based, 11-county surveillance system of CHDs in New York, we characterized proximity to the nearest pediatric cardiac surgical care center among adolescents aged 11 to 19 years with CHDs. Residential addresses were extracted from surveillance records documenting 2008 to 2010 healthcare encounters. Addresses were geocoded using ArcGIS and the New York State Street and Address Maintenance Program, a statewide address point database. One-way drive and public transit time from residence to nearest center were calculated using R packages gmapsdistance and rgeos with the Google Maps Distance Matrix application programming interface. A marginal model was constructed to identify predictors associated with one-way travel time. We identified 2522 adolescents with 3058 corresponding residential addresses and 12 pediatric cardiac surgical care centers. The median drive time from residence to nearest center was 18.3 min, and drive time was 30 min or less for 2475 (80.9%) addresses. Predicted drive time was longest for rural western addresses in high poverty census tracts (68.7 min). Public transit was available for most residences in urban areas but for few in rural areas. We identified areas with geographic barriers to surgical care. Future research is needed to determine how these barriers influence continuity of care among adolescents with CHDs. Birth Defects Research 109:1494-1503, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Modulation of ferroelectricity and resistance switching in SrTiO3 films
NASA Astrophysics Data System (ADS)
Yang, Fang; Wang, Weihua; Guo, Jiandong
SrTiO3 has remarkable dielectric property; it also exhibits ferroelectricity in thin films with strain or defects. It is expected that modulation of its ferroelectricity and electricity is potential in oxide electronics. The nonstoichiometry SrTiO3 thin films with different cation concentrations were prepared on Si (001) substrates. Piezoresponse force microscopy measurements show that those films with Sr deficiency display obvious ferroelectricity. The scanning transmission electron microscopy results show that there are interstitial Ti atoms in the unit cells. Polar defect pairs can be formed by the interstitial Ti atoms and Sr vacancies along [100] or [110] direction. Such antisitelike defects observed in SrTiO3 films are considered as the origin of the ferroelectricity. In this way, the SrTiO3 ferroelectricity can be modulated by control the concentration of the antisitelike defects via changing the cation concentration. Further, [(SrTiO3)3 /(LaTiO3)2 ]3 superlattices have been prepared on 0.67[Pb(Mg1/3Nb2/3) O3]-0.33[PbTiO3] (PMN-PT) substrate. The superlattices show resistance switching under the ferroelectric polarization of the PMN-PT substrate. The on/off ratio of the interfacial resistance is about 20% 25%. This can be applied in oxide electronics in potential. This work is supported by Chinese MOST (Grant No. 2014CB921001), Chinese NSFC (Grant No. 11404381 & Grant No. 11225422) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07030100).
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network.
Han, Ruisong; Yang, Wei; Zhang, Li
2018-02-10
Barrier coverage has been widely used to detect intrusions in wireless sensor networks (WSNs). It can fulfill the monitoring task while extending the lifetime of the network. Though barrier coverage in WSNs has been intensively studied in recent years, previous research failed to consider the problem of intrusion in transversal directions. If an intruder knows the deployment configuration of sensor nodes, then there is a high probability that it may traverse the whole target region from particular directions, without being detected. In this paper, we introduce the concept of crossed barrier coverage that can overcome this defect. We prove that the problem of finding the maximum number of crossed barriers is NP-hard and integer linear programming (ILP) is used to formulate the optimization problem. The branch-and-bound algorithm is adopted to determine the maximum number of crossed barriers. In addition, we also propose a multi-round shortest path algorithm (MSPA) to solve the optimization problem, which works heuristically to guarantee efficiency while maintaining near-optimal solutions. Several conventional algorithms for finding the maximum number of disjoint strong barriers are also modified to solve the crossed barrier problem and for the purpose of comparison. Extensive simulation studies demonstrate the effectiveness of MSPA.
Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery.
Vazana, Udi; Veksler, Ronel; Pell, Gaby S; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio; Friedman, Alon
2016-07-20
The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. Copyright © 2016 the authors 0270-6474/16/367727-13$15.00/0.
Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery
Vazana, Udi; Veksler, Ronel; Pell, Gaby S.; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio
2016-01-01
The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo. Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood–brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood–brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood–brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. PMID:27445149
Emitter/absorber interface of CdTe solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tao, E-mail: tsong241@gmail.com; Sites, James R.; Kanevce, Ana
The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interfacemore » defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C}. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.« less
NASA Astrophysics Data System (ADS)
Lagger, P.; Steinschifter, P.; Reiner, M.; Stadtmüller, M.; Denifl, G.; Naumann, A.; Müller, J.; Wilde, L.; Sundqvist, J.; Pogany, D.; Ostermaier, C.
2014-07-01
The high density of defect states at the dielectric/III-N interface in GaN based metal-insulator-semiconductor structures causes tremendous threshold voltage drifts, ΔVth, under forward gate bias conditions. A comprehensive study on different dielectric materials, as well as varying dielectric thickness tD and barrier thickness tB, is performed using capacitance-voltage analysis. It is revealed that the density of trapped electrons, ΔNit, scales with the dielectric capacitance under spill-over conditions, i.e., the accumulation of a second electron channel at the dielectric/AlGaN barrier interface. Hence, the density of trapped electrons is defined by the charging of the dielectric capacitance. The scaling behavior of ΔNit is explained universally by the density of accumulated electrons at the dielectric/III-N interface under spill-over conditions. We conclude that the overall density of interface defects is higher than what can be electrically measured, due to limits set by dielectric breakdown. These findings have a significant impact on the correct interpretation of threshold voltage drift data and are of relevance for the development of normally off and normally on III-N/GaN high electron mobility transistors with gate insulation.
Comparing different VIT formulations on near-road dispersion of particulate and gaseous pollutants
Traffic-related air pollution is associated with a range of health issues including respiratory and cardiovascular problems, birth defects, and cancer. Recent studies suggest that the presence of roadside barriers can potentially mitigate exposure to air pollution for those livin...
Bosen, Felicitas; Celli, Anna; Crumrine, Debra; vom Dorp, Katharina; Ebel, Philipp; Jastrow, Holger; Dörmann, Peter; Winterhager, Elke; Mauro, Theodora; Willecke, Klaus
2015-07-08
The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e. exhibiting epidermal hyperplasia and hearing impairments. Newborn Cx26S17F mice show a defective epidermal water barrier as well as altered epidermal lipid secretion and location. Linoleoyl ω-esterified ceramides are strongly decreased on the skin surface of Cx26S17F mice. Moreover, the epidermal calcium gradient is altered in the mutant mice. These alterations may be caused by an abnormal Cx26S17F channel function that leads to a defective epidermal water barrier, which in turn may trigger the hyperproliferation seen in the KID syndrome. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu
2017-09-01
A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.
Oji, Vinzenz; Eckl, Katja-Martina; Aufenvenne, Karin; Nätebus, Marc; Tarinski, Tatjana; Ackermann, Katharina; Seller, Natalia; Metze, Dieter; Nürnberg, Gudrun; Fölster-Holst, Regina; Schäfer-Korting, Monika; Hausser, Ingrid; Traupe, Heiko; Hennies, Hans Christian
2010-08-13
Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past.
Oji, Vinzenz; Eckl, Katja-Martina; Aufenvenne, Karin; Nätebus, Marc; Tarinski, Tatjana; Ackermann, Katharina; Seller, Natalia; Metze, Dieter; Nürnberg, Gudrun; Fölster-Holst, Regina; Schäfer-Korting, Monika; Hausser, Ingrid; Traupe, Heiko; Hennies, Hans Christian
2010-01-01
Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past. PMID:20691404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaldi, O.; Kassmi, M.; El Manar University, LMOP, 2092 Tunis
2014-08-28
Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearitiesmore » are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.« less
Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation
NASA Astrophysics Data System (ADS)
Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M. F.-X.; Fähler, S.
2016-06-01
Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.
Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...
2015-06-16
We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less
Computational study of graphene-based vertical field effect transistor
NASA Astrophysics Data System (ADS)
Chen, Wenchao; Rinzler, Andrew; Guo, Jing
2013-03-01
Poisson and drift-diffusion equations are solved in a three-dimensional device structure to simulate graphene-based vertical field effect transistors (GVFETs). Operation mechanisms of the GVFET with and without punched holes in the graphene source contact are presented and compared. The graphene-channel Schottky barrier can be modulated by gate electric field due to graphene's low density of states. For the graphene contact with punched holes, the contact barrier thinning and lowering around punched hole edge allow orders of magnitude higher tunneling current compared to the region away from the punched hole edge, which is responsible for significant performance improvement as already verified by experiments. Small hole size is preferred due to less electrostatic screening from channel inversion layer, which gives large electric field around the punched hole edge, thus, leading to a thinner and lower barrier. Bilayer and trilayer graphenes as the source contact degrade the performance improvement because stronger electrostatic screening leads to smaller contact barrier lowering and thinning. High punched hole area percentage improves current performance by allowing more gate electric field to modulate the graphene-channel barrier. Low effective mass channel material gives better on-off current ratio.
NASA Astrophysics Data System (ADS)
Geniusz, Malwina; ZajÄ c, Marek
2016-09-01
Intraocular lens (IOL) is an artificial lens implanted into the eye in order to restore correct vision after the removal of natural lens cloudy due to cataract. The IOL prolonged stay in the eyeball causes the creation of different changes on the surface and inside the implant mainly in form of small-size local defects such as vacuoles and calcium deposites. Their presence worsens the imaging properties of the eye mainly due to occurence of scattered light thus deteriorating the vision quality of patients after cataract surgery. It is very difficult to study influence the effects of these changes on image quality in real patients. To avoid these difficulties two other possibilities were chosen: the analysis of the image obtained in an optomechanical eye model with artificially aged IOL as well as numerical calculation of the image characteristics while the eye lens is burdened with adequately modeled defects. In experiments the optomechanical model of an eye consisting of a glass "cornea", chamber filled with liquid where the IOL under investigation was inserted and a high resulution CCC detector serving as a "retina" was used. The Modulation Transfer Function (MTF) of such "eye" was evaluated on the basis of image of an edge. Experiments show that there is significant connection between ageing defects and decrease in MTF parameters. Numerical part was performed with a computer programme for optical imaging analysis (OpticStudio Professional, Zemax Professional from Radiant Zemax, LLC). On the basis of Atchison eye model with lens burdened with defects Modulation Transfer Functio was calculated. Particular parameters of defects used in a numerical model were based on own measurements. Numerical simulation also show significant connection between ageing defects and decrease of MTF parameters. With this technique the influence of types, density and distribution of local defect in the IOL on the retinal image quality can be evaluated quickly without the need of performing very difficult and even dangereous experiments on real human patients.
Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L
2013-01-07
Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.
ERIC Educational Resources Information Center
Tucker, James D.
This training module on the troubleshooting of an electromechanical system, The Westinghouse Programmable Logic Controller (PLC) controlling a pneumatic robot, is used for a troubleshooting unit in an electromechanical systems/robotics and automation systems course. In this unit, students locate and repair a defect in a PLC-operated machine. The…
N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization
NASA Astrophysics Data System (ADS)
Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis
2004-02-01
In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.
Migration mechanisms and diffusion barriers of vacancies in Ga2O3
NASA Astrophysics Data System (ADS)
Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico
2017-06-01
We employ the nudged elastic band and the dimer methods within the standard density functional theory (DFT) formalism to study the migration of the oxygen and gallium vacancies in the monoclinic structure of β -Ga2O3 . We identify all the first nearest neighbor paths and calculate the migration barriers for the diffusion of the oxygen and gallium vacancies. We also identify the metastable sites of the gallium vacancies which are critical for the diffusion of the gallium atoms. The migration barriers for the diffusion of the gallium vacancies are lower than the migration barriers for oxygen vacancies by 1 eV on average, suggesting that the gallium vacancies are mobile at lower temperatures. Using the calculated migration barriers we estimate the annealing temperature of these defects within the harmonic transition state theory formalism, finding excellent agreement with the observed experimental annealing temperatures. Finally, we suggest the existence of percolation paths which enable the migration of the species without utilizing all the migration paths of the crystal.
Transport of triplet excitons along continuous 100 nm polyfluorene chains
Xi, Liang; Bird, Matthew; Mauro, Gina; ...
2014-12-03
Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore » triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a result, a second set of polyfluorenes with 2-butyloctyl side chains was found to have a much lower completeness of end capping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Liang; Bird, Matthew; Mauro, Gina
Triplet excitons created in poly-2,7-(9,9-dihexyl)fluorene (pF) chains with end trap groups in solution are efficiently transported to and captured by the end groups. The triplets explore the entire lengths of the chains, even for ~100 nm long chains enabling determination of the completeness of end capping. The results show that the chains continuous: they may contain transient barriers or traps, such as those from fluctuations of dihedral angles, but are free of major defects that stop motion of the triplets. Quantitative determinations are aided by the addition of a strong electron donor, TMPD, which removes absorption bands of the end-trappedmore » triplets. For chains having at least one end trap, triplet capture is quantitative on the 1 µs timescale imposed by the use of the donor. Fractions of chains having no end traps were 0.15 for pF samples with anthraquinone (AQ) end traps and 0.063 with naphthylimide (NI) end traps. These determinations agreed with measurements by NMR for short (<40 polymer repeat units (PRU)) chains, where NMR determinations are accurate. The results find no evidence for traps or barriers to transport of triplets, and places limits on the possible presence of defects as impenetrable barriers to less than one per 300 PRU. The present results present a paradigm different from the current consensus, derived from observations of singlet excitons, that conjugated chains are divided into “segments,” perhaps by some kind of defects. For the present pF chains, the segmentation either does not apply to triplet excitons or is transient so that the defects are healed or surmounted in times much shorter than 1 µs. Triplets on chains without end trap groups transfer to chains with end traps on a slower time scale. Rate constants for these bimolecular triplet transfer reactions were found to increase with the length of the accepting chain, as did rate constants for triplet transfer to the chains from small molecules like biphenyl. As a result, a second set of polyfluorenes with 2-butyloctyl side chains was found to have a much lower completeness of end capping.« less
A sharp interface model for void growth in irradiated materials
NASA Astrophysics Data System (ADS)
Hochrainer, Thomas; El-Azab, Anter
2015-03-01
A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.
2014-02-20
Density functional theory (DFT) is used to calculate the thermodynamic and kinetic properties of transmutant Mg in 3C-SiC due to high-energy neutron irradiation associated with the fusion nuclear environment. The formation and binding energies of intrinsic defects, Mg-related defects, and clusters in 3C-SiC are systematically calculated. The minimum energy paths and activation energies during point defect migration and small cluster evolution are studied using a generalized solid-state elastic band (G-SSNEB) method with DFT energy calculations. Stable defect structures and possible defect migration mechanisms are identified. The evolution of binding energies during Mg2Si formation demonstrates that the formation of Mg2Si needsmore » to overcome a critical nucleus size and nucleation barrier. It is also found that a compressive stress field exists around the Mg2Si nucleus. These data are important inputs in meso- and macro-scale modeling and experiments to understand and predict the impact of Mg on phase stability, microstructure evolution, and performance of SiC and SiC-based materials during long-term neutron exposures.« less
Douglas, Lois M; Wang, Hong X; Konopka, James B
2013-11-26
Invasive growth of the fungal pathogen Candida albicans into tissues promotes disseminated infections in humans. The plasma membrane is essential for pathogenesis because this important barrier mediates morphogenesis and invasive growth, as well as secretion of virulence factors, cell wall synthesis, nutrient import, and other processes. Previous studies showed that the Sur7 tetraspan protein that localizes to MCC (membrane compartment occupied by Can1)/eisosome subdomains of the plasma membrane regulates a broad range of key functions, including cell wall synthesis, morphogenesis, and resistance to copper. Therefore, a distinct tetraspan protein found in MCC/eisosomes, Nce102, was investigated. Nce102 belongs to the MARVEL domain protein family, which is implicated in regulating membrane structure and function. Deletion of NCE102 did not cause the broad defects seen in sur7Δ cells. Instead, the nce102Δ mutant displayed a unique phenotype in that it was defective in forming hyphae and invading low concentrations of agar but could invade well in higher agar concentrations. This phenotype was likely due to a defect in actin organization that was observed by phalloidin staining. In support of this, the invasive growth defect of a bni1Δ mutant that mislocalizes actin due to lack of the Bni1 formin was also reversed at high agar concentrations. This suggests that a denser matrix provides a signal that compensates for the actin defects. The nce102Δ mutant displayed decreased virulence and formed abnormal hyphae in mice. These studies identify novel ways that Nce102 and the physical environment surrounding C. albicans regulate morphogenesis and pathogenesis. The plasma membrane promotes virulence of the human fungal pathogen Candida albicans by acting as a protective barrier around the cell and mediating dynamic activities, such as morphogenesis, cell wall synthesis, secretion of virulence factors, and nutrient uptake. To better understand how the plasma membrane contributes to virulence, we analyzed a set of eight genes encoding MARVEL family proteins that are predicted to function in membrane organization. Interestingly, deletion of one gene, NCE102, caused a strong defect in formation of invasive hyphal growth in vitro and decreased virulence in mice. The nce102Δ mutant cells showed defects in actin organization that underlie the morphogenesis defect, since mutation of a known regulator of actin organization caused a similar defect. These studies identify a novel way in which the plasma membrane regulates the actin cytoskeleton and contributes to pathogenesis.
Danielsson, Karin; Ebrahimi, Majid; Nylander, Elisabet; Wahlin, Ylva Britt; Nylander, Karin
2017-02-08
Lichen planus is a chronic recurrent inflammatory disease affecting both skin and mucosa, mainly in oral and/or genital regions. Keratinocytes go through a well-regulated process of proliferation and differentiation, alterations in which may result in defects in the protective epithelial barrier. Long-term barrier impairment might lead to chronic inflammation. In order to broaden our understanding of the differentiation process in mucosal lichen planus, we mapped the expression of 4 factors known to be involved in differentiation. Biopsies were collected from oral and genital lichen planus lesions and normal controls. Altered expression of all 4 factors in epithelium from lichen planus lesions was found, clearly indicating disturbed epithelial differentiation in lichen planus lesions.
Low conductivity and sintering-resistant thermal barrier coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)
2007-01-01
A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.
Low conductivity and sintering-resistant thermal barrier coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)
2006-01-01
A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.
Photoresponse in graphene induced by defect engineering
NASA Astrophysics Data System (ADS)
Du, Ruxia; Wang, Wenhui; Du, Jianxin; Guo, Xitao; Liu, Er; Bing, Dan; Bai, Jing
2016-11-01
We present a photoresponse study on a lateral defect/pristine graphene junction device fabricated by a simple plasma irradiation method. The junction between pristine graphene and plasma-modified graphene was created by controlling the location of Ar+ plasma treatment. We found that a distinct photocurrent was generated at the junction by photocurrent line scanning measurements, and further analysis reveals that the photo-thermoelectric (PTE) effect, instead of the photovoltaic (PV) effect, dominates the photocurrent generation at the interface. Additionally, the obtained results suggest that tuning the defect density could be effective in modulating the optoelectronic performance of junctions in our device.
Some failure modes and analysis techniques for terrestrial solar cell modules
NASA Technical Reports Server (NTRS)
Shumka, A.; Stern, K. H.
1978-01-01
Analysis data are presented on failed/defective silicon solar cell modules of various types and produced by different manufacturers. The failure mode (e.g., internal short and open circuits, output power degradation, isolation resistance degradation, etc.) are discussed in detail and in many cases related to the type of technology used in the manufacture of the modules; wherever applicable, appropriate corrective actions are recommended. Consideration is also given to some failure analysis techniques that are applicable to such modules, including X-ray radiography, capacitance measurement, cell shunt resistance measurement by the shadowing technique, steady-state illumination test station for module performance illumination, laser scanning techniques, and the SEM.
Defect and field-enhancement characterization through electron-beam-induced current analysis
NASA Astrophysics Data System (ADS)
Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne
2017-05-01
To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.
Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells
NASA Astrophysics Data System (ADS)
Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin
2016-05-01
We proposed a new model for controlling the optical bistability (OB) and optical multistability (OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3 Ga0.7As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.
Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.
2016-08-01
Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.
Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.
Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects havemore » a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.« less
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Meyer, W. E.
1994-05-01
Radiation damage effects were studied in n-GaAs grown by organo-metallic vapour phase epitaxy (OMVPE) for a wide range of alpha-particle (2.0 MeV and 5.4 MeV) and proton (2.0 MeV) particle fluences, using an americium-241 (Am-241) radio-nuclide and a linear Van de Graaff accelerator as the particle sources. The samples were irradiated at 300 K, after fabricating palladium Schottky barrier diodes (SBDs) on the 1.2 × 10 16 cm 3 Si-doped epitaxial layers. The irradiation-induced defects are characterized using conventional deep level transient spectroscopy (DLTS). A correlation is made between the change in SBD characteristics and the quantity and type of defects introduced during irradiation. It is shown that the two parameters most susceptible to this irradiation are the reverse leakage current of the SBDs and the free carrier density of the epilayer. The introduction rate and the "signatures" of the alpha-particle and proton irradiation-induced defects are calculated and compared to those of similar defects introduced during electron irradiation.
Cao, Moyuan; Li, Zhe; Ma, Hongyu; Geng, Hui; Yu, Cunming; Jiang, Lei
2018-06-20
Superhydrophobic surfaces have long been considered as superaerophilic surfaces while being placed in the aqueous environment. However, versatile gas/solid interacting phenomena were reported by utilizing different superhydrophobic substrates, indicating that these two wetting states cannot be simply equated. Herein, we demonstrate how the hydrophilic defects on the superhydrophobic track manipulate the underwater gas delivery, without deteriorating the water repellency of the surface in air. The versatile gas-transporting processes can be achieved on the defected superhydrophobic surfaces; on the contrary, in air, a water droplet is able to roll on those surfaces indistinguishably. Results show that the different media pressures applied on the two wetting states determine the diversified fluid-delivering phenomena; that is, the pressure-induced hydrophilic defects act as a gas barrier to regulate the bubble motion behavior under water. Through the rational incorporation of hydrophilic defects, a series of gas-transporting behaviors are achieved purposively, for example, gas film delivery, bubble transporting, and anisotropic bubble gating, which proves the feasibility of this underwater air-controlling strategy.
Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2002-01-01
Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Tunneling of heat: Beyond linear response regime
NASA Astrophysics Data System (ADS)
Walczak, Kamil; Saroka, David
2018-02-01
We examine nanoscale processes of heat (energy) transfer as carried by electrons tunneling via potential barriers and molecular interconnects between two heat reservoirs (thermal baths). For that purpose, we use Landauer-type formulas to calculate thermal conductance and quadratic correction to heat flux flowing via quantum systems. As an input, we implement analytical expressions for transmission functions related to simple potential barriers and atomic bridges. Our results are discussed with respect to energy of tunneling electrons, temperature, the presence of resonant states, and specific parameters characterizing potential barriers as well as heat carriers. The simplicity of semi-analytical models developed by us allows to fit experimental data and extract crucial information about the values of model parameters. Further investigations are expected for more realistic transmission functions, while time-dependent aspects of nanoscale heat transfer may be addressed by using the concept of wave packets scattered on potential barriers and point-like defects within regular (periodic) nanostructures.
First-principles study of transition-metal nitrides as diffusion barriers against Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Zhi-Gang; Yacout, Abdellatif M.; Kim, Yeon Soo
2016-04-01
Using density-functional theory based first-principles calculations we provided a comparative study of the diffusion barrier properties of TiN, ZrN, and HfN against Al for U-Mo dispersion fuel applications. We firstly examined the thermodynamic stability of these transition-metal nitrides with Al. The calculated heats of reaction show that both TiN and ZrN are thermodynamically unstable diffusion barrier materials, which might be decomposed by Al at relatively high temperatures. As a comparison, HfN is a stable diffusion barrier material for Al. To evaluate the kinetic stability of these nitride systems against Al diffusion, we investigated the diffusion mechanisms of Al in TiN,more » ZrN and HfN using atomic scale simulations. The effect of non-stoichiometry on the defect formation and Al migration was systematically studied. (C) 2015 ELSEVIER B.V. All rights reserved« less
Development of Advanced Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Advanced multi-component, low conductivity oxide thermal barrier coatings have been developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and electron beam-physical vapor deposited (EB-PVD) thermal barrier coatings under the NASA Ultra-Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities and improved thermal stability due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.
Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity
Salomon, Julie; Gaston, Cécile; Magescas, Jérémy; Duvauchelle, Boris; Canioni, Danielle; Sengmanivong, Lucie; Mayeux, Adeline; Michaux, Grégoire; Campeotto, Florence; Lemale, Julie; Viala, Jérôme; Poirier, Françoise; Minc, Nicolas; Schmitz, Jacques; Brousse, Nicole; Ladoux, Benoit; Goulet, Olivier; Delacour, Delphine
2017-01-01
Monolayered epithelia are composed of tight cell assemblies that ensure polarized exchanges. EpCAM, an unconventional epithelial-specific cell adhesion molecule, is assumed to modulate epithelial morphogenesis in animal models, but little is known regarding its cellular functions. Inspired by the characterization of cellular defects in a rare EpCAM-related human intestinal disease, we find that the absence of EpCAM in enterocytes results in an aberrant apical domain. In the course of this pathological state, apical translocation towards tricellular contacts (TCs) occurs with striking tight junction belt displacement. These unusual cell organization and intestinal tissue defects are driven by the loss of actomyosin network homoeostasis and contractile activity clustering at TCs, yet is reversed by myosin-II inhibitor treatment. This study reveals that adequate distribution of cortical tension is crucial for individual cell organization, but also for epithelial monolayer maintenance. Our data suggest that EpCAM modulation protects against epithelial dysplasia and stabilizes human tissue architecture. PMID:28084299
Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
NASA Astrophysics Data System (ADS)
Qi, Bingkun; Zhang, Lingxuan; Ge, Li
2018-03-01
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
Remote defect imaging for plate-like structures based on the scanning laser source technique
NASA Astrophysics Data System (ADS)
Hayashi, Takahiro; Maeda, Atsuya; Nakao, Shogo
2018-04-01
In defect imaging with a scanning laser source technique, the use of a fixed receiver realizes stable measurements of flexural waves generated by laser at multiple rastering points. This study discussed the defect imaging by remote measurements using a laser Doppler vibrometer as a receiver. Narrow-band burst waves were generated by modulating laser pulse trains of a fiber laser to enhance signal to noise ratio in frequency domain. Averaging three images obtained at three different frequencies suppressed spurious distributions due to resonance. The experimental system equipped with these newly-devised means enabled us to visualize defects and adhesive objects in plate-like structures such as a plate with complex geometries and a branch pipe.
A Personalized Health Information Retrieval System
Wang, Yunli; Liu, Zhenkai
2005-01-01
Consumers face barriers when seeking health information on the Internet. A Personalized Health Information Retrieval System (PHIRS) is proposed to recommend health information for consumers. The system consists of four modules: (1) User modeling module captures user’s preference and health interests; (2) Automatic quality filtering module identifies high quality health information; (3) Automatic text difficulty rating module classifies health information into professional or patient educational materials; and (4) User profile matching module tailors health information for individuals. The initial results show that PHIRS could assist consumers with simple search strategies. PMID:16779435
NASA Astrophysics Data System (ADS)
Li, Ruixing; Tang, Qing; Yin, Shu; Sato, Tsugio
According to both the first principle and materials chemistry, a method for fabricating [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y ceramic was investigated. It was considered that the sintering was promoted by self-accelerated diffusion due to the formation of point defects caused by doping with Li2Si2O5. Consequently, a concept of non-stoichiometrically activated sintering, which was enhanced by point defects without the help of a grain boundary phase, was systematically studied in the Ca1-xSrxTiO3-Li2Si2O5 system. The mechanical and dielectric properties of [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y were greatly enhanced by adding Li2Si2O5. To improve CO2 decomposition activity, [(Ca1-xSrx)2-2y](Ti2-2yLi2y)Si2yO6-y, which possesses both high permittivity and high dielectric strength was used as a dielectric barrier to decompose CO2 by dielectric barrier discharges (DBDs) plasma without using any catalyst and auxiliary substance. It successfully generated DBDs plasma and the CO2 conversion was much higher than that using an alumina or a silica glass barrier which was widely used as the dielectric barrier in previous studies.
Synchrotron Radiation and the Far-Infrared and Mid-Infrared Spectra of Ncncs
NASA Astrophysics Data System (ADS)
Winnewisser, Manfred; Winnewisser, Brenda P.; De Lucia, Frank C.; Tokaryk, Dennis; Ross, Stephen Cary; Billinghurst, Brant E.
2014-06-01
The large-amplitude in-plane bending vibration of NCNCS at 85 wn has a potential energy function which includes a barrier to linearity with a height of about 285 wn. The topology of the surface of the space defined by this two-dimensional potential function exhibits non-trivial monodromy. Therefore an energy/momentum map for a quantum system with its motion determined by such a potential takes the form of a lattice which contains a defect associated with the top of the barrier. In NCNCS, the wavenumber values of the fundamental vibrational excitation and the barrier height mean that easily accessible energy levels allow us to observe 3 bending vibrational levels below and 3 above the barrier, yet still below all of the other vibrational levels, allowing the study of all the levels in the neighborhood of the defect. In three measuring campaigns at the Canadian Light Source in May of the years 2011, 2012, and 2013 we have now obtained 8 of the 9 fundamental vibrational band systems of NCNCS in high resolution, in particular that of the large-amplitude bend in the FIR. So far only a-type spectra have been assigned. Thus we have now determined the Δvb = 1, and ΔKa = 0 vibrational intervals (using bent molecule notation) but do not yet have experimental values for either rotational ΔKa = +/- 1 intervals nor ro-vibrational Δvb = 1, ΔKa = +/- 1 intervals. In May of 2014 we will have our last measuring campaign and hope to observe the more elusive b-type transitions.
Development of Thermal Barriers for Solid Rocket Motor Nozzle Joints
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H., Jr.
1999-01-01
The Space Shuttle solid rocket motor case assembly joints are sealed using conventional 0-ring seals. The 5500+F combustion gases are kept a safe distance away from the seals by thick layers of insulation. Special joint-fill compounds are used to fill the joints in the insulation to prevent a direct flowpath to the seals. On a number of occasions. NASA has observed in several of the rocket nozzle assembly joints hot gas penetration through defects in the joint- fill compound. The current nozzle-to-case joint design incorporates primary, secondary and wiper (inner-most) 0-rings and polysulfide joint-fill compound. In the current design, 1 out of 7 motors experience hot gas to the wiper 0-ring. Though the condition does not threaten motor safety, evidence of hot gas to the wiper 0-ring results in extensive reviews before resuming flight. NASA and solid rocket motor manufacturer Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and a thermal barrier, This paper presents burn-resistance, temperature drop, flow and resiliency test results for several types of NASA braided carbon-fiber thermal barriers. Burn tests were performed to determine the time to burn through each of the thermal barriers when exposed to the flame of an oxy-acetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Thermal barriers braided out of carbon fibers endured the flame for over 6 minutes, three times longer than solid rocket motor burn time. Tests were performed on two thermal barrier braid architectures, denoted Carbon-3 and Carbon-6, to measure the temperature drop across and along the barrier in a compressed state when subjected to the flame of an oxyacetylene torch. Carbon-3 and Carbon-6 thermal barriers were excellent insulators causing temperature drops through their diameter of up to a 2800 and 2560 F. respectively. Gas temperature 1/4" downstream of the thermal barrier were within the downstream Viton 0-ring temperature limit of 600 F. Carbon-6 performed extremely well in subscale rocket "char" motor tests when subjected to hot gas at 3200 F for an 11 second rocket firing, simulating the maximum downstream joint cavity fill time. The thermal barrier reduced the incoming hot gas temperature by 2200 F in an intentionally oversized gap defect, spread the incoming jet flow, and blocked hot slag, thereby offering protection to the downstream 0-rings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, R. J.; Shimakawa, K.; Department of Electrical and Electronic Engineering, Gifu University, Gifu 501-1193
The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.
Dissociation of methane on the surface of charged defective carbon nanotubes
NASA Astrophysics Data System (ADS)
Guo, Z. H.; Yan, X. H.; Xiao, Y.
2010-03-01
Based on the framework of density functional theory (CASTEP and DMOL 3 codes), we simulate the dissociation of methane (CH 4) molecule on the surface of charged defective carbon nanotubes (CNTs). The results display that a charged CNT with carbon (C) and molybdenum (Mo) dopants can effectively dissociate CH 4 molecule, and the adsorption strength of H and CH 3 can be controlled by the injected negative charges. Moreover, the barrier between the transition state (TS) and the reactant is 0.1014 eV, and a single imaginary frequency of -0.3 cm is found for the transition state structure.
GLUT-1 deficiency without epilepsy--an exceptional case.
Overweg-Plandsoen, W C G; Groener, J E M; Wang, D; Onkenhout, W; Brouwer, O F; Bakker, H D; De Vivo, D C
2003-01-01
The GLUT-1 deficiency is a metabolic disorder caused by a defect in glucose transport across the blood-brain barrier as a result of a defect in the glucose-transport protein. Patients present with epileptic seizures, delayed development, ataxia and hypotonia, and in many cases acquired microcephaly. In most patients, treatment with a ketogenic diet proved to be successful in controlling the epilepsy. We report a 9-year-old boy with retardation and ataxia, but without epilepsy, caused by GLUT-1 deficiency, proven biochemically and by DNA analysis. Treatment with a medium-chain triglyceride ketogenic diet had a beneficial effect.
Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis.
Young, Li-Sen; Harrison, Benjamin R; Narayana Murthy, U M; Moffatt, Barbara A; Gilroy, Simon; Masson, Patrick H
2006-10-01
Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-L-methionine pathway in the control of root gravitropism and cap morphogenesis.
Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis1[W][OA
Young, Li-Sen; Harrison, Benjamin R.; U.M., Narayana Murthy; Moffatt, Barbara A.; Gilroy, Simon; Masson, Patrick H.
2006-01-01
Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-l-methionine pathway in the control of root gravitropism and cap morphogenesis. PMID:16891550
Tsai, Julie; Qiu, Wei; Kohen-Avramoglu, Rita; Adeli, Khosrow
2007-01-01
Hepatic VLDL assembly is defective in HepG2 cells, resulting in the secretion of immature triglyceride-poor LDL-sized apoB particles. We investigated the mechanisms underlying defective VLDL assembly in HepG2 and have obtained evidence implicating the MEK-ERK pathway. HepG2 cells exhibited considerably higher levels of the ERK1/2 mass and activity compared with primary hepatocytes. Inhibition of ERK1/2 using the MEK1/MEK2 inhibitor, U0126 (but not the inactive analogue) led to a significant increase in apoB secretion. In the presence of oleic acid, ERK1/2 inhibition caused a major shift in the lipoprotein distribution with a majority of particles secreted as VLDL, an effect independent of insulin. In contrast, overexpression of constitutively active MEK1 decreased apoB and large VLDL secretion. MEK1/2 inhibition significantly increased both cellular and microsomal TG mass, and mRNA levels for DGAT-1 and DGAT-2. In contrast to ERK, modulation of the PI3-K pathway or inhibition of the p38 MAP kinase, had no effect on lipoprotein density profile. Modulation of the MEK-ERK pathway in primary hamster hepatocytes led to changes in apoB secretion and altered the density profile of apoB-containing lipoproteins. Inhibition of the overactive ras-MEK-ERK pathway in HepG2 cells can correct the defect in VLDL assembly leading to the secretion of large, VLDL-sized particles, similar to primary hepatocytes, implicating the MEK-ERK cascade in VLDL assembly in the HepG2 model. Modulation of this pathway in primary hepatocytes also regulates apoB secretion and appears to alter the formation of VLDL-1 sized particles.
NASA Astrophysics Data System (ADS)
Xia, Y.-Y.; Yuan, R.-Y.; Yang, Q.-J.; Sun, Q.; Zheng, J.; Guo, Y.
In this paper, with the three-band tight-binding model and non-equilibrium Green’s function technique, we investigate spin transport in electric-barrier-modulated Ferromagnetic/Normal/Ferromagnetic (F/N/F) monolayer (ML) zigzag MoS2 nanoribbon junction. The results demonstrate that once the double electric barriers structure emerges, the oscillations of spin conductances become violent, especially for spin-down conductance, the numbers of resonant peaks increase obviously, thus we can obtain 100% spin polarization in the low energy region. It is also found that with the intensity of the exchange field enhancement, the resonant peaks of spin-up and spin-down conductances move in the opposite direction in a certain energy region. As a consequence, the spin-down conductance can be filtered out completely. The findings here indicate that the present structure may be considered as a good candidate for spin filter.
Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina
2011-12-01
The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione modulators or by inhibitors of neutral sphingomyelinase, p38 MAPK, JNK, and Rho kinase. Amelioration of endothelial permeability may alleviate lung and systemic vascular dysfunction associated with smoking-related chronic obstructive lung diseases.
Long, Meixiao; Slaiby, Aaron M.; Hagymasi, Adam T.; Mihalyo, Marianne A.; Lichtler, Alexander C.; Reiner, Steven L.; Adler, Adam J.
2010-01-01
When Th1 effector CD4 cells encounter tolerizing Ag in vivo, their capacity to express the effector cytokines IFN-γ and TNF-α is lost more rapidly than noneffector functions such as IL-2 production and proliferation. To localize the relevant intracellular signaling defects, cytokine expression was compared following restimulation with Ag vs agents that bypass TCR-proximal signaling. IFN-γ and TNF-α expression were both partially rescued when TCR-proximal signaling was bypassed, indicating that both TCR-proximal and -distal signaling defects impair the expression of these two effector cytokines. In contrast, bypassing TCR-proximal signaling fully rescued IL-2 expression. T-bet, a transcription and chromatin remodeling factor that is required to direct the differentiation of naive CD4 cells into IFN-γ -expressing Th1 effectors, was partially down-modulated in tolerized Th1 effectors. Enforcing T-bet expression during tolerization selectively rescued the ability to express IFN-γ, but not TNF-α. Conversely, expression of a dominant-negative T-bet in Th1 effectors selectively impaired the ability to express IFN-γ, but not TNF-α. Analysis of histone acetylation at the IFN-γ promoter further suggested that down-modulation of T-bet expression during Th1 effector CD4 cell tolerization does not impair IFN-γ expression potential through alterations in chromatin structure. PMID:16393991
ERIC Educational Resources Information Center
Bell, Raoul; Buchner, Axel; Musch, Jochen
2010-01-01
A popular assumption in evolutionary psychology is that the human mind comprises specialized cognitive modules for social exchange, including a module that serves to enhance memory for faces of cheaters. In the present study, participants played a trust game with computerized opponents, who either defected or cooperated. In a control condition, no…
Derichs, Nico
2013-03-01
Cystic fibrosis (CF) is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR) protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.
Optimum inhomogeneity of local lattice distortions in La2CuO4+y
Poccia, Nicola; Ricci, Alessandro; Campi, Gaetano; Fratini, Michela; Puri, Alessandro; Gioacchino, Daniele Di; Marcelli, Augusto; Reynolds, Michael; Burghammer, Manfred; Saini, Naurang Lal; Aeppli, Gabriel; Bianconi, Antonio
2012-01-01
Electronic functionalities in materials from silicon to transition metal oxides are, to a large extent, controlled by defects and their relative arrangement. Outstanding examples are the oxides of copper, where defect order is correlated with their high superconducting transition temperatures. The oxygen defect order can be highly inhomogeneous, even in optimal superconducting samples, which raises the question of the nature of the sample regions where the order does not exist but which nonetheless form the “glue” binding the ordered regions together. Here we use scanning X-ray microdiffraction (with a beam 300 nm in diameter) to show that for La2CuO4+y, the glue regions contain incommensurate modulated local lattice distortions, whose spatial extent is most pronounced for the best superconducting samples. For an underdoped single crystal with mobile oxygen interstitials in the spacer La2O2+y layers intercalated between the CuO2 layers, the incommensurate modulated local lattice distortions form droplets anticorrelated with the ordered oxygen interstitials, and whose spatial extent is most pronounced for the best superconducting samples. In this simplest of high temperature superconductors, there are therefore not one, but two networks of ordered defects which can be tuned to achieve optimal superconductivity. For a given stoichiometry, the highest transition temperature is obtained when both the ordered oxygen and lattice defects form fractal patterns, as opposed to appearing in isolated spots. We speculate that the relationship between material complexity and superconducting transition temperature Tc is actually underpinned by a fundamental relation between Tc and the distribution of ordered defect networks supported by the materials. PMID:22961255
Hayashi, Takahiro; Ishihara, Ken
2017-05-01
Pulsed laser equipment can be used to generate elastic waves through the instantaneous reaction of thermal expansion or ablation of the material; however, we cannot control the waveform generated by the laser in the same manner that we can when piezoelectric transducers are used as exciters. This study investigates the generation of narrowband tone-burst waves using a fiber laser of the type that is widely used in laser beam machining. Fiber lasers can emit laser pulses with a high repetition rate on the order of MHz, and the laser pulses can be modulated to a burst train by external signals. As a consequence of the burst laser emission, a narrowband tone-burst elastic wave is generated. We experimentally confirmed that the elastic waves agreed well with the modulation signals in time domain waveforms and their frequency spectra, and that waveforms can be controlled by the generation technique. We also apply the generation technique to defect imaging with a scanning laser source. In the experiments, with small laser emission energy, we were not able to obtain defect images from the signal amplitude due to low signal-to-noise ratio, whereas using frequency spectrum peaks of the tone-burst signals gave clear defect images, which indicates that the signal-to-noise ratio is improved in the frequency domain by using this technique for the generation of narrowband elastic waves. Moreover, even for defect imaging at a single receiving point, defect images were enhanced by taking an average of distributions of frequency spectrum peaks at different frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varley, J. B.; Lordi, V.; He, X.
2016-01-14
We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se{sub 2} (CIGSe) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ∼400 °C. Cu is predicted to stronglymore » favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ∼400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.« less
A Quality Control Mechanism Coordinates Meiotic Prophase Events to Promote Crossover Assurance
Deshong, Alison J.; Ye, Alice L.; Lamelza, Piero; Bhalla, Needhi
2014-01-01
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase. PMID:24762417
Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies
Jiao, Yang; Liu, Yang; Zhu, Guanghui; ...
2017-09-21
Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less
Scaffold Translation: Barriers Between Concept and Clinic
Murphy, William L.
2011-01-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613
Richter, Heiko; Kierdorf, Uwe; Richards, Alan; Kierdorf, Horst
2010-04-20
This study analyses the severity and distribution of mineralization defects in the dentin of red and roe deer teeth (mandibular fourth premolars, first and third molars) obtained from individuals that had lived in a fluoride-polluted area along the Czech-German border. Mineralization defects presented as hypomineralized or interglobular dentin. In the P(4)s and M(3)s the entire dentin exhibited areas of defective mineralization, whereas in the M(1)s only the central and inner dentin portions were affected. This suggests that the early periods of dentin formation in the first molar, occurring during the late fetal and early postnatal (milk-feeding) periods of life, are protected against exposure to excess fluoride levels. Our findings are consistent with the hypothesis that certain protective mechanisms (partial placental diffusion barrier and blood-milk barrier to fluoride, clearance of fluoride from plasma by the rapidly growing skeleton) operate during these ontogenetic periods. Studying fluoride-induced dentin abnormalities in addition to enamel fluorosis broadens the time window during which fluoride effects on the developing dental hard tissues can be recorded. Including dentin in the analysis of dental fluorosis allows a more detailed reconstruction of lifetime fluoride exposure than would be possible by studying enamel fluorosis only, thereby adding to the significance of free-ranging deer as bioindicators of fluoride pollution. Copyright 2010 Elsevier GmbH. All rights reserved.
The Epidermis of Grhl3-Null Mice Displays Altered Lipid Processing and Cellular Hyperproliferation
Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M
2005-01-01
The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin. PMID:19521564
The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation.
Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M; Jane, Stephen M
2005-04-01
The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin.
NASA Astrophysics Data System (ADS)
Li, Shujing; Zhou, Mei; Li, Menglei; Wang, Xiaohui; Zheng, Fawei; Zhang, Ping
2018-05-01
The adsorption of the Pu atom on perfect and defective graphene and hexagonal boron nitride (h-BN) sheet has been systematically investigated by using first-principles calculations. Pu atom is most likely to trap at the hollow site in pure graphene, and the energy barrier is as high as 78.3 meV. For ideal h-BN, the top site of the boron atom is the most stable adsorption site for adatom Pu, and the maximal energy barrier is only 12 meV. Comparing Pu on pure graphene and h-BN sheet, Pu atom is easy to migrate on the surface of ideal h-BN at room temperature, while it is bound to perfect graphene. Besides, Pu atom adsorbed on defective graphene and h-BN sheet, with large adsorption energies in the range of 2.66 ∼ 14.95 eV, is more stable than that on pure graphene and h-BN sheet. We have also found that all the adsorption systems are spin-polarized with the largest magnetic moments of Pu to be 7.67 μ B on graphene and 6.71 μ B on h-BN with a single vacancy of N atom. These findings suggest that graphene and h-BN two-dimensional materials can be effectively applied in the growth of high-quality plutonium single crystal thin films, as well as in nuclear waste recovery.
Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.
2012-01-01
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822
Ackerman, Paul J.; Qi, Zhiyuan; Lin, Yiheng; Twombly, Christopher W.; Laviada, Mauricio J.; Lansac, Yves; Smalyukh, Ivan I.
2012-01-01
Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators. PMID:22679553
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, P. J.; Qi, Z. Y.; Lin, Y. H.
2012-06-07
Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable 'optical drawing' of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies ofmore » defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators.« less
Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects
NASA Astrophysics Data System (ADS)
Solodov, Igor; Döring, Daniel; Busse, Gerd
2008-06-01
Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.
Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro
2018-06-01
The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.
Optical studies of native defects in π-conjugated donor-acceptor copolymers
NASA Astrophysics Data System (ADS)
Baniya, Sangita; Khanal, Dipak; Lafalce, Evan; You, Wei; Valy Vardeny, Z.
2018-04-01
We used multiple spectroscopies such as photoinduced absorption (PIA), magneto photoinduced absorption, and doping induced absorption for studying native defects in π-conjugated donor-acceptor copolymer chains of benzodithio-phene fluorinated benzotriazole. The PIA spectrum contains characteristic photoinduced absorption bands that are due to polarons and triplet exciton species, whose strengths have different dependencies on the modulation frequency, temperature, and laser excitation, as well as magnetic field response. We found that the native defects in the copolymer chains serve as efficient traps that ionize the photoexcited excitons, thereby generating charge carriers whose characteristic optical properties are similar, but not equal to those of intrachain polarons formed by doping. The native defects density is of the order of 1017 cm-3 indicating that most of the copolymer chains contain native defects upon synthesis; however, this does not preclude their used-for photovoltaic applications.
NASA Astrophysics Data System (ADS)
Kawai, Hiroki; Nakasaki, Yasushi; Kanemura, Takahisa; Ishihara, Takamitsu
2018-04-01
Dopant segregation at Si/SiO2 interface has been a serious problem in silicon device technology. This paper reports a comprehensive density-functional study on the segregation mechanisms of boron, phosphorous, and arsenic at the Si/SiO2 interface. We found that three kinds of interfacial defects, namely, interstitial oxygen, oxygen vacancy, and silicon vacancy with two oxygen atoms, are stable in the possible chemical potential range. Thus, we consider these defects as trap sites for the dopants. For these defects, the dopant segregation energies, the electrical activities of the trapped dopants, and the kinetic energy barriers of the trapping/detrapping processes are calculated. As a result, trapping at the interstitial oxygen site is indicated to be the most plausible mechanism of the dopant segregation. The interstitial oxygen works as a major trap site since it has a high areal density at the Si/SiO2 interface due to the low formation energy.
The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Yau, A.
Nanosizing can dramatically alter material properties by enhancing surface thermodynamic contributions, shortening diffusion lengths, and increasing the number of catalytically active sites per unit volume. These mechanisms have been used to explain the improved properties of catalysts, battery materials, plasmonic materials, etc. Here we show that Pd nanoparticles also have the ability to self-heal defects in their crystal structures. Using Bragg coherent diffractive imaging, we image dislocations nucleated deep in a Pd nanoparticle during the forward hydriding phase transformation that heal during the reverse transformation, despite the region surrounding the dislocations remaining in the hydrogen-poor phase. We show that defectivemore » Pd nanoparticles exhibit sloped isotherms, indicating that defects act as additional barriers to the phase transformation. Our results resolve the formation and healing of structural defects during phase transformations at the single nanoparticle level and offer an additional perspective as to how and why nanoparticles differ from their bulk counterparts.« less
Non-random walk diffusion enhances the sink strength of semicoherent interfaces
Vattré, A.; Jourdan, T.; Ding, H.; ...
2016-01-29
Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migrationmore » barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface stress fields. Lastly, such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.« less
First-principles investigation of diffusion and defect properties of Fe and Ni in Cr2O3
NASA Astrophysics Data System (ADS)
Rak, Zs.; Brenner, D. W.
2018-04-01
Diffusion of Fe and Ni and the energetics of Fe- and Ni-related defects in chromium oxide (α-Cr2O3) are investigated using first-principles Density Functional Theory calculations in combination with the climbing-image nudged elastic band method. The orientations of the spin magnetic moments of the migrating ions are taken into account and their effects on migration barriers are examined. Several possible diffusion pathways were explored through interstitial and vacancy mechanisms, and it was found that the principal mode of ion transport in Cr2O3 is via vacancies. Both interstitial- and vacancy-mediated diffusions are anisotropic, with diffusion being faster in the z-direction. The energetics of defect formation indicates that the Ni-related defects are less stable than the Fe-related ones. This is consistent with Ni-diffusion being faster than Fe-diffusion. The results are compared with previous theoretical and experimental data and possible implications in corrosion control are discussed.
NASA Astrophysics Data System (ADS)
Das, H.; Sunkari, S.; Naas, H.
2018-06-01
In high-volume manufacturing of SiC power devices like Schottky barrier diodes and MOSFETs, especially with the high demands of high reliability applications like the automotive market, the issue of reliability needs to be tackled from multiple angles. It becomes important to isolate and eliminate failure mechanisms at the source rather than just rely on electrical tests. As we enter volume production on 150-mm substrates, an added layer of reliability and improved yield can be added if potential sources of defects are identified and removed. In this work, we present the non-destructive detection of a subset of screw dislocations in N+ doped substrates, trace the preferential nucleation of V-type epitaxial defects and stacking faults from these screw dislocations, and study their electrical effects on Schottky diodes. This enables the screening of highly defective substrates even before committing them to epitaxial growth.
Enthalpy Landscape Dictates the Irradiation-Induced Disordering of Quartz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, N. M. Anoop; Wang, Bu; Yu, Yingtian
Here, under irradiation, minerals tend to experience an accumulation of structural defects, ultimately leading to a disordered atomic network. Despite the critical importance of understanding and predicting irradiation-induced damage, the physical origin of the initiation and saturation of defects remains poorly understood. Here, based on molecular dynamics simulations of α-quartz, we show that the topography of the enthalpy landscape governs irradiation-induced disordering. Specifically, we show that such disordering differs from that observed upon vitrification in that, prior to saturation, irradiated quartz accesses forbidden regions of the enthalpy landscape, i.e., those that are inaccessible by simply heating and cooling. Furthermore, wemore » demonstrate that damage saturates when the system accesses a local region of the enthalpy landscape corresponding to the configuration of an allowable liquid. At this stage, a sudden decrease in the heights of the energy barriers enhances relaxation, thereby preventing any further accumulation of defects and resulting in a defect-saturated disordered state.« less
Enthalpy Landscape Dictates the Irradiation-Induced Disordering of Quartz
Krishnan, N. M. Anoop; Wang, Bu; Yu, Yingtian; ...
2017-07-28
Here, under irradiation, minerals tend to experience an accumulation of structural defects, ultimately leading to a disordered atomic network. Despite the critical importance of understanding and predicting irradiation-induced damage, the physical origin of the initiation and saturation of defects remains poorly understood. Here, based on molecular dynamics simulations of α-quartz, we show that the topography of the enthalpy landscape governs irradiation-induced disordering. Specifically, we show that such disordering differs from that observed upon vitrification in that, prior to saturation, irradiated quartz accesses forbidden regions of the enthalpy landscape, i.e., those that are inaccessible by simply heating and cooling. Furthermore, wemore » demonstrate that damage saturates when the system accesses a local region of the enthalpy landscape corresponding to the configuration of an allowable liquid. At this stage, a sudden decrease in the heights of the energy barriers enhances relaxation, thereby preventing any further accumulation of defects and resulting in a defect-saturated disordered state.« less
Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition
Song, H. S.; Li, S. L.; Miyazaki, H.; Sato, S.; Hayashi, K.; Yamada, A.; Yokoyama, N.; Tsukagoshi, K.
2012-01-01
The reasons for the relatively low transport mobility of graphene grown through chemical vapor deposition (CVD-G), which include point defect, surface contamination, and line defect, were analyzed in the current study. A series of control experiments demonstrated that the determinant factor for the low transport mobility of CVD-G did not arise from point defects or surface contaminations, but stemmed from line defects induced by grain boundaries. Electron microscopies characterized the presence of grain boundaries and indicated the polycrystalline nature of the CVD-G. Field-effect transistors based on CVD-G without the grain boundary obtained a transport mobility comparative to that of Kish graphene, which directly indicated the detrimental effect of grain boundaries. The effect of grain boundary on transport mobility was qualitatively explained using a potential barrier model. Furthermore, the conduction mechanism of CVD-G was also investigated using the temperature dependence measurements. This study can help understand the intrinsic transport features of CVD-G. PMID:22468224
Wong, Raymond C W; Tideman, Henk; Merkx, Matthias A W; Jansen, John; Goh, Suk Ming
2012-12-01
Problems with loosening of the modules for the modular endoprosthesis were encountered in animal studies for mandibular body replacement. We performed a finite element analysis to look at the stress distribution and areas of stress concentration in a human sized mandible. Variations were made to the stem and defect length to look at how the forces changed. The hypothesis was: (1) reconstruction with a modular endoprosthesis did not lead to areas of stress concentration beyond the material strength of cortical bone and titanium alloy; (2) changes in dimensions of the endoprosthesis did not cause a corresponding linear increase to the stresses. The endoprosthesis was modelled to create a male, female part with stems and a connection screw (Case I). The stem length was halved (Case II) and defect length doubled (Case III). Geometric data of a human sized mandible were obtained, a continuity defect created digitally at the right molar area and the models combined. Boundary conditions were set and the model loaded to get a bite force of 300 N at the incisor region. An intact mandible was used as a control. The right side of the reconstructed mandible became less rigid and flexed more. The highest stresses were within the endoprosthesis at two areas of stress concentration: (1) shear stress at the superior surface of the stems close to the junction of the stem and the module body; (2) compressive stresses at the bottom bevel of the dove-tailed connection. The stress distribution for Case I and II did not differ much except for the magnitude which was slightly higher for Case II. There was a tendency for outward bending at the module connection for Case III which potentially might cause loosening of the module connection. Displacements of the mandible were less than 1 mm throughout. The endoprosthesis with its present dimensions would be expected to perform adequately at a bite force of 300 N. An increase in defect length caused a tendency for bending at the stem and the module connection. With a decrease in stem length, there were little differences except a slight increase in magnitude. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Wavelength-modulated photocapacitance spectroscopy
NASA Technical Reports Server (NTRS)
Kamieniecki, E.; Lagowski, J.; Gatos, H. C.
1980-01-01
Derivative deep-level spectroscopy was achieved with wavelength-modulated photocapacitance employing MOS structures and Schottky barriers. The energy position and photoionization characteristics of deep levels of melt-grown GaAs and the Cr level in high-resistivity GaAs were determined. The advantages of this method over existing methods for deep-level spectroscopy are discussed.
Diffusion of One-Dimensional Crystals in Channels of Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Zhigalina, V. G.; Kumskov, A. S.; Falaleev, N. S.; Vasiliev, A. L.; Kiselev, N. A.
2018-05-01
The transport of one-dimensional CuI crystals in channels of single-walled carbon nanotubes (SWCNTs) has been studied by high resolution electron microscopy. The diffusion kinetics has been investigated by counting the number of CuI atoms escaping from the nanotube channel. The diffusivity is calculated to be 6.8 × 10-21 m2/s, which corresponds to an activation-barrier height of 1 eV/atom. A comparison with the theoretically estimated height of the energy barrier for molecular transport through a graphene layer is indicative of mass transfer through vacancy defects in graphene.
Preparation of Simulated LBL Defects for Round Robin Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Baldwin, Charles A.; Hunn, John D.
2016-01-01
A critical characteristic of the TRISO fuel design is its ability to retain fission products. During reactor operation, the TRISO layers act as barriers to release of fission products not stabilized in the kernel. Each component of the TRISO particle and compact construction plays a unique role in retaining select fission products, and layer performance is often interrelated. The IPyC, SiC, and OPyC layers are barriers to the release of fission product gases such as Kr and Xe. The SiC layer provides the primary barrier to release of metallic fission products not retained in the kernel, as transport across themore » SiC layer is rate limiting due to the greater permeability of the IPyC and OPyC layers to many metallic fission products. These attributes allow intact TRISO coatings to successfully retain most fission products released from the kernel, with the majority of released fission products during operation being due to defective, damaged, or failed coatings. This dominant release of fission products from compromised particles contributes to the overall source term in reactor; causing safety and maintenance concerns and limiting the lifetime of the fuel. Under these considerations, an understanding of the nature and frequency of compromised particles is an important part of predicting the expected fission product release and ensuring safe and efficient operation.« less
Natsuga, Ken; Cipolat, Sara; Watt, Fiona M
2016-01-01
Mice lacking three epidermal barrier proteins-envoplakin, periplakin, and involucrin (EPI-/- mice)-have a defective cornified layer, reduced epidermal γδ T cells, and increased dermal CD4(+) T cells. They are also resistant to developing skin tumors. The tumor-protective mechanism involves signaling between Rae-1 expressing keratinocytes and the natural killer group 2D receptor on immune cells, which also plays a role in host defenses against infection. Given the emerging link between bacteria and cancer, we investigated whether EPI-/- mice have an altered skin microbiota. The bacterial phyla were similar in wild-type and EPI-/- skin. However, bacteria were threefold more abundant in EPI-/- skin and penetrated deeper into the epidermis. The major epithelial defense mechanism against bacteria is production of antimicrobial proteins (AMPs). EPI-/- skin exhibited enhanced expression of antimicrobial peptides. However, reducing the bacterial load by antibiotic treatment or breeding mice under specific pathogen-free conditions did not reduce AMP expression or alleviate the abnormalities in T-cell populations. We conclude that the atopic characteristics of EPI-/- skin are a consequence of the defective barrier rather than a response to the increased bacterial load. It is therefore unlikely that the increase in skin microbiota contributes directly to the observed cancer resistance. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis
Bardet, Claire; Ribes, Sandy; Wu, Yong; Diallo, Mamadou Tidiane; Salmon, Benjamin; Breiderhoff, Tilman; Houillier, Pascal; Müller, Dominik; Chaussain, Catherine
2017-01-01
Claudins are a family of proteins that forms paracellular barriers and pores determining tight junctions (TJ) permeability. Claudin-16 and -19 are pore forming TJ proteins allowing calcium and magnesium reabsorption in the thick ascending limb of Henle's loop (TAL). Loss-of-function mutations in the encoding genes, initially identified to cause Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis (FHHNC), were recently shown to be also involved in Amelogenesis Imperfecta (AI). In addition, both claudins were expressed in the murine tooth germ and Claudin-16 knockout (KO) mice displayed abnormal enamel formation. Claudin-3, an ubiquitous claudin expressed in epithelia including kidney, acts as a barrier-forming tight junction protein. We determined that, similarly to claudin-16 and claudin-19, claudin-3 was expressed in the tooth germ, more precisely in the TJ located at the apical end of secretory ameloblasts. The observation of Claudin-3 KO teeth revealed enamel defects associated to impaired TJ structure at the secretory ends of ameloblasts and accumulation of matrix proteins in the forming enamel. Thus, claudin-3 protein loss-of-function disturbs amelogenesis similarly to claudin-16 loss-of-function, highlighting the importance of claudin proteins for the TJ structure. These findings unravel that loss-of-function of either pore or barrier-forming TJ proteins leads to enamel defects. Hence, the major structural function of claudin proteins appears essential for amelogenesis. PMID:28596736
Claudin Loss-of-Function Disrupts Tight Junctions and Impairs Amelogenesis.
Bardet, Claire; Ribes, Sandy; Wu, Yong; Diallo, Mamadou Tidiane; Salmon, Benjamin; Breiderhoff, Tilman; Houillier, Pascal; Müller, Dominik; Chaussain, Catherine
2017-01-01
Claudins are a family of proteins that forms paracellular barriers and pores determining tight junctions (TJ) permeability. Claudin-16 and -19 are pore forming TJ proteins allowing calcium and magnesium reabsorption in the thick ascending limb of Henle's loop (TAL). Loss-of-function mutations in the encoding genes, initially identified to cause Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis (FHHNC), were recently shown to be also involved in Amelogenesis Imperfecta (AI). In addition, both claudins were expressed in the murine tooth germ and Claudin-16 knockout (KO) mice displayed abnormal enamel formation. Claudin-3, an ubiquitous claudin expressed in epithelia including kidney, acts as a barrier-forming tight junction protein. We determined that, similarly to claudin-16 and claudin-19, claudin-3 was expressed in the tooth germ, more precisely in the TJ located at the apical end of secretory ameloblasts. The observation of Claudin-3 KO teeth revealed enamel defects associated to impaired TJ structure at the secretory ends of ameloblasts and accumulation of matrix proteins in the forming enamel. Thus, claudin-3 protein loss-of-function disturbs amelogenesis similarly to claudin-16 loss-of-function, highlighting the importance of claudin proteins for the TJ structure. These findings unravel that loss-of-function of either pore or barrier-forming TJ proteins leads to enamel defects. Hence, the major structural function of claudin proteins appears essential for amelogenesis.
How good is the neosquamous epithelium?
Orlando, Roy C
2014-01-01
Endoscopic radiofrequency ablation of dysplastic Barrett's esophagus (BE) combined with proton pump inhibitor therapy is commonly utilized for preventing progression of dysplastic BE to esophageal adenocarcinoma. Fundamental to the success of this and all ablative approaches is the healing of the ablated areas of BE with a stratified squamous epithelium referred to as 'neosquamous epithelium' (NSE). Although NSE appears 'normal' endoscopically, the reemergence of BE over time in the previously ablated segments raises the question of the health and integrity of NSE. The health of NSE was recently investigated in endoscopic biopsies in vitro in a group of patients after ablation while on proton pump inhibitors. Biopsies of NSE were compared to upper squamous epithelium (USE) from the same patients morphologically (light microscopy) and with respect to barrier function by measuring electrical resistance and fluorescein flux in mini-Ussing chambers. Compared to USE, NSE exhibited dilated intercellular spaces and inflammation and defective barrier function by low electrical resistance and high fluorescein flux. Moreover, NSE exhibited downregulation of claudin-4, a highly expressed protein in squamous tight junctions. NSE has defective barrier function in part due to downregulation of claudin-4. Since downregulation of claudin-4 increases paracellular permeability to cations, e.g. hydrogen ions, NSE is more vulnerable to attack and damage by acidic and weakly acidic refluxates--a phenomenon that may contribute in part to the reemergence of BE. 2014 S. Karger AG, Basel.
Lee, Jung-Seok; Sohn, Joo-Yeon; Lim, Hyun-Chang; Jung, Ui-Won; Choi, Seong-Ho
2016-08-01
This study aimed to determine healing patterns in periimplant gap defect grafted with demineralized bovine bone mineral (DBBM) and porous titanium granules (PTG), which are known to induce a minimal tissue reaction and to undergo minimal biodegradation in healing process. Experiments were performed using a standardized periimplant gap-defect model in dogs with two observational periods: 4 and 8 weeks. Circumferential defects were surgically induced around dental implants on unilateral mandibles in five dogs, and collagen barrier membranes were placed over the DBBM and PTG grafts at two experimental sites and over a nongrafted site. Four weeks later, the same procedures were performed on the contralateral mandible, and the animals allowed to heal for a further 4 weeks, after which they were sacrificed and their mandibles with graft/control sites harvested for histologic evaluation. Both types of grafted biomaterials significantly enhanced the defect fill with newly formed bone, but the bone-to-implant contact (BIC) was significantly increased only at sites that had been grafted with DBBM. The two experimental sites exhibited different healing patterns, with new bone formation being observed on the surface of the DBBM particles throughout the defect, while there was no de novo bone formation on the PTG surface, but rather appositional bone growth from the base and lateral walls of the defect. It has been suggested that gap-defect filling with DBBM around dental implants may enhance both BIC and defect fill; however, the present findings show that defect grafting with PTG enhances only defect fill and not BIC. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1202-1209, 2016. © 2015 Wiley Periodicals, Inc.
Electroluminescence of thin-film CdTe solar cells and modules
NASA Astrophysics Data System (ADS)
Raguse, John Michael
Thin-film photovoltaics has the potential to be a major source of world electricity. Mitigation of non-uniformities in thin-film solar cells and modules may help improve photovoltaic conversion efficiencies. In this manuscript, a measurement technique is discussed in detail which has the capability of detecting such non-uniformities in a form useful for analysis. Thin-film solar cells emit radiation while operating at forward electrical bias, analogous to an LED, a phenomena known as electroluminescence (EL). This process relatively is inefficient for polycrystalline CdTe devices, on the order of 10-4%, as most of the energy is converted into heat, but still strong enough for many valuable measurements. A EL system was built at the Colorado State University Photovoltaics Laboratory to measure EL from CdTe cells and modules. EL intensity normalized to exposure time and injection current density has been found to correlate very well with the difference between ideal and measured open-circuit voltage from devices that include a GaAs cell, an AlGaAs LED, and several CdTe cells with variations in manufacturing. Furthermore, these data points were found to be in good agreement when overlaid with calibrated data from two additional sources. The magnitude of the inverse slope of the fit is in agreement with the thermal voltage and the intercept was found to have a value near unity, in agreement with theory. The expanded data set consists of devices made from one of seven different band gaps and spans eight decades of EQELED efficiencies. As expected, cells which exhibit major failure of light-dark J-V superposition did not follow trend of well-behaved cells. EL images of selected defects from CdTe cells and modules are discussed and images are shown to be highly sensitive to defects in devices, since the intensity depends exponentially on the cells' voltages. The EL technique has proven to be a useful high-throughput tool for screening of cells. In addition to EL images, other opto-electronics characterization techniques were used to analyze defects in cells and modules such as weak-diode areas, cell delineation near substrate edge, non-uniform chlorine passivation, holes in back contact, high-resistance foreign layer, high back-contact sheet resistance, a discontinuous P3 line scribe (intercell shunt) and shunt through a cell (intracell shunt). Although EL images are proficient at illustrating the location and severity of defects with potentially high spatial resolution and short measurement times, their ability to identify the cause of such defects is limited. EL in concert with Light-Beam-Induced Current (LBIC), however, makes for a powerful ensemble as LBIC can probe different film layers at arbitrary voltage bias conditions, albeit with increased measurement times and potentially reduced spatial resolution.
NASA Astrophysics Data System (ADS)
Alexeyev, C. N.; Lapin, B. P.; Yavorsky, M. A.
2018-01-01
We have studied the influence of a spacer introduced into a Bragg multihelicoidal fiber with a twist defect on the existence of defect-localized states. We have shown that in the presence of a Gaussian pump the energy of the electromagnetic field stored in topologically charged defect-localized modes essentially depends on the length of the spacer. We have demonstrated that by changing this length on the wavelength scale it is possible to strongly modulate such energy. This property can be used for generation and controlled emission of topologically charged light. We have also shown that if the value of an isotropic spacer’s refractive index deviates from the optimal value defined by the parameters of the multihelicoidal fiber parts the effect of localization disappears.
Sun, Yujie; Kaur, Kawaljit; Kanayama, Keiichi; Morinaga, Kenzo; Park, Sil; Hokugo, Akishige; Kozlowska, Anna; McBride, William H; Li, Jun; Jewett, Anahid; Nishimura, Ichiro
2016-09-23
Injury to the barrier tissue initiates a rapid distribution of myeloid immune cells from bone marrow, which guide sound wound healing. Bisphosphonates, a widely used anti-bone resorptive drug with minimal systemic side effects, have been linked to an abnormal wound healing in the oral barrier tissue leading to, in some cases, osteonecrosis of the jaw (ONJ). Here we report that the development of ONJ may involve abnormal phenotypic plasticity of Ly6G+/Gr1+ myeloid cells in the oral barrier tissue undergoing tooth extraction wound healing. A bolus intravenous zoledronate (ZOL) injection to female C57Bl/6 mice followed by maxillary first molar extraction resulted in the development of ONJ-like lesion during the second week of wound healing. The multiplex assay of dissociated oral barrier cells exhibited the secretion of cytokines and chemokines, which was significantly modulated in ZOL mice. Tooth extraction-induced distribution of Ly6G+/Gr1+ cells in the oral barrier tissue increased in ZOL mice at week 2. ONJ-like lesion in ZOL mice contained Ly6G+/Gr1+ cells with abnormal size and morphology as well as different flow cytometric staining intensity. When anti-Ly6G (Gr1) antibody was intraperitoneally injected for 5 days during the second week of tooth extraction, CD11b+GR1(hi) cells in bone marrow and Ly6G+ cells in the oral barrier tissue were depleted, and the development of ONJ-like lesion was significantly attenuated. This study suggests that local modulation of myeloid cell plasticity in the oral barrier tissue may provide the basis for pathogenesis and thus therapeutic as well as preventive strategy of ONJ. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens
2016-01-01
Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044
Cystoid edema, neovascularization and inflammatory processes in the murine Norrin-deficient retina.
Beck, Susanne C; Karlstetter, Marcus; Garcia Garrido, Marina; Feng, Yuxi; Dannhausen, Katharina; Mühlfriedel, Regine; Sothilingam, Vithiyanjali; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W; Langmann, Thomas
2018-04-13
Mutations in the Norrin (NDP) gene cause severe developmental blood vessel defects in the retina leading to congenital blindness. In the retina of Ndph-knockout mice only the superficial capillary network develops. Here, a detailed characterization of this mouse model at late stages of the disease using in vivo retinal imaging revealed cystoid structures that closely resemble the ovoid cysts in the inner nuclear layer of the human retina with cystoid macular edema (CME). In human CME an involvement of Müller glia cells is hypothesized. In Ndph-knockout retinae we could demonstrate that activated Müller cells were located around and within these cystoid spaces. In addition, we observed extensive activation of retinal microglia and development of neovascularization. Furthermore, ex vivo analyses detected extravasation of monocytic cells suggesting a breakdown of the blood retina barrier. Thus, we could demonstrate that also in the developmental retinal vascular pathology present in the Ndph-knockout mouse inflammatory processes are active and may contribute to further retinal degeneration. This observation delivers a new perspective for curative treatments of retinal vasculopathies. Modulation of inflammatory responses might reduce the symptoms and improve visual acuity in these diseases.
Performances and failure of field-aged PV modules operating in Saharan region of Algeria
NASA Astrophysics Data System (ADS)
Sadok, M.; Benyoucef, B.; Othmani, M.; Mehdaoui, A.
2016-07-01
This article deals with behaviour of PV modules, of different technologies and manufacturers, exposed for long periods in Saharan region of Algeria. These modules are exposed in Adrar in the south-western part of Algeria. The study uses experimental I-V curves of PV modules for determining their performances. The datasheet information of modules will be useful in determination of degradation rates of the modules. Three types of modules have been tested: Photowatt (PWX 500), UDTS-50 and Isofoton (I-75 and I-100 serials). Results showed that Isofoton I-100 modules present the highest degradation rate while the lowest degradation rate was reached with I-75 serial. However, these rates tallies with other studies. The visual inspection of the modules has revealed various kinds of failures and defects responsible of performances drop (EVA browning, delamination, burn marks,…).
Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach
NASA Astrophysics Data System (ADS)
Jiang, Hao
Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.
Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaunbrecher, Katherine N.; National Renewable Energy Laboratory, Golden, Colorado 80401; Kuciauskas, Darius
Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have amore » zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.« less
Effect Of Fluorine Doping On Radiation Hardness Of Graded Index Optical Fibers
NASA Astrophysics Data System (ADS)
Wei, T.; Singh, M. P.; Miniscalco, W. J.; Onorato, P. I. K.; Wall, J. A.
1987-01-01
We report an experimental and theoretical investigation of the effects of doping and processing on precursor defects in graded index multimode fibers. Fabrication parameters that significantly influence radiation sensitivity have been identified. In particular, we examined the role of fluorine doping in defect formation and its relationship to radiation sensitivity. The experimental effort included fiber fabrication and radiation-induced loss measurements on graded index, Ge-doped core fibers. Fluorine was added to the core and/or the cladding of test fibers. Two critical parameters, barrier layer thickness and core dopants, have been identified and correlate with induced loss. In addition, the reproducibility of both fiber fabrication and measurement with respect to induced loss has been tested and found to be excellent. Induced loss was found to be proportional to Ge concentration in the core; however, the trend with fluorine doping was less clear. The experimental results are consistent with molecular dynamics simulations which indicate the types and numbers of structural defects in the glasses. The simulations revealed significant differences in defect types and concentrations among glass corn-positions that included pure silica, Ge-doped silica, and Ge/F-codoped silica. Fluorine codoping decreases the number of germanium-related defects but increases the number of defects associated with silicon.
Process defects and in situ monitoring methods in metal powder bed fusion: a review
NASA Astrophysics Data System (ADS)
Grasso, Marco; Colosimo, Bianca Maria
2017-04-01
Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.
Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement
Lee, Hock Beng; Ginting, Riski Titian; Tan, Sin Tee; Tan, Chun Hui; Alshanableh, Abdelelah; Oleiwi, Hind Fadhil; Yap, Chi Chin; Jumali, Mohd Hafizuddin Hj.; Yahaya, Muhammad
2016-01-01
Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface –OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device. PMID:27587295
Exciton transport in π-conjugated polymers with conjugation defects.
Meng, Ruixuan; Li, Yuan; Li, Chong; Gao, Kun; Yin, Sun; Wang, Luxia
2017-09-20
In π-conjugated polymers for photovoltaic applications, intrinsic conjugation defects are known to play crucial roles in impacting exciton transport after photoexcitation. However, the understanding of the associated microscopic processes still remains limited. Here, we present a theoretical investigation of the effects of different conjugation defects on the dynamics of exciton transport in two linearly coupled poly(p-phenylene vinylene) (PPV) molecules. The model system is constructed by employing an extended version of the Su-Schrieffer-Heeger model and the exciton behaviors are simulated by means of a quantum nonadiabatic dynamics. We identify two types of conjugation defects, i.e., weakening conjugation and strengthening conjugation, which are demonstrated to play different roles in impacting the dynamics of exciton transport in the system. The weakening conjugation acts as an energy well inclined to trap a moving exciton, while the strengthening conjugation acts as an energy barrier inclined to block the exciton. We also systematically simulate both intrachain and interchain dynamics of exciton transport, and find that an exciton could experience a "short-time delaying", "trapping", "blocking", or "hopping" process, which is determined by the defect type, strength, and position. These findings provide a microscopic understanding of how the exciton transport dynamics can be impacted by conjugation defects in an actual polymer system.
Furnace Cyclic Oxidation Behavior of Multicomponent Low Conductivity Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Zhu, Dongming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.
2004-03-01
Ceramic thermal barrier coatings (TBCs) will play an increasingly important role in advanced gas turbine engines due to their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency, and improved reliability goals. Advanced multicomponent zirconia (ZrO2)-based TBCs are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high-temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed ZrO2-based defect cluster TBCs was investigated at 1163°C using 45 min hot-time cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with x-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.
Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors
Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao
2015-01-01
Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi, Ting; Tao, Tao; Liu, Bin, E-mail: bliu@nju.edu.cn, E-mail: rzhang@nju.edu.cn
Through investigating the temperature dependent current-voltage (T-I-V) properties of GaN based blue and green LEDs in this study, we propose an asymmetric tunneling model to understand the leakage current below turn-on voltage (V < 3.2 V): At the forward bias within 1.5 V ∼ 2.1 V (region 1), the leakage current is main attributed to electrons tunneling from the conduction band of n-type GaN layer to the valence band of p-type GaN layer via defect states in space-charge region (SCR); While, at the forward bias within 2 V ∼ 2.4 V (region 2), heavy holes tunneling gradually becomes dominant atmore » low temperature (T < 200K) as long as they can overcome the energy barrier height. The tunneling barrier for heavy holes is estimated to be lower than that for electrons, indicating the heavy holes might only tunnel to the defect states. This asymmetric tunneling model shows a novel carrier transport process, which provides better understanding of the leakage characteristics and is vital for future device improvements.« less
Mutations in ABCA12 Underlie the Severe Congenital Skin Disease Harlequin Ichthyosis
Kelsell, David P.; Norgett, Elizabeth E.; Unsworth, Harriet; Teh, Muy-Teck; Cullup, Thomas; Mein, Charles A.; Dopping-Hepenstal, Patricia J.; Dale, Beverly A.; Tadini, Gianluca; Fleckman, Philip; Stephens, Karen G.; Sybert, Virginia P.; Mallory, Susan B.; North, Bernard V.; Witt, David R.; Sprecher, Eli; E. M. Taylor, Aileen; Ilchyshyn, Andrew; Kennedy, Cameron T.; Goodyear, Helen; Moss, Celia; Paige, David; Harper, John I.; Young, Bryan D.; Leigh, Irene M.; Eady, Robin A. J.; O’Toole, Edel A.
2005-01-01
Harlequin ichthyosis (HI) is the most severe and frequently lethal form of recessive congenital ichthyosis. Although defects in lipid transport, protein phosphatase activity, and differentiation have been described, the genetic basis underlying the clinical and cellular phenotypes of HI has yet to be determined. By use of single-nucleotide–polymorphism chip technology and homozygosity mapping, a common region of homozygosity was observed in five patients with HI in the chromosomal region 2q35. Sequencing of the ABCA12 gene, which maps within the minimal region defined by homozygosity mapping, revealed disease-associated mutations, including large intragenic deletions and frameshift deletions in 11 of the 12 screened individuals with HI. Since HI epidermis displays abnormal lamellar granule formation, ABCA12 may play a critical role in the formation of lamellar granules and the discharge of lipids into the intercellular spaces, which would explain the epidermal barrier defect seen in this disorder. This finding paves the way for early prenatal diagnosis. In addition, functional studies of ABCA12 will lead to a better understanding of epidermal differentiation and barrier formation. PMID:15756637
Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors
NASA Astrophysics Data System (ADS)
Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao
2015-12-01
Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.
Gogliotti, Rocco G.; Senter, Rebecca K.; Rook, Jerri M.; Ghoshal, Ayan; Zamorano, Rocio; Malosh, Chrysa; Stauffer, Shaun R.; Bridges, Thomas M.; Bartolome, Jose M.; Daniels, J. Scott; Jones, Carrie K.; Lindsley, Craig W.; Conn, P. Jeffrey; Niswender, Colleen M.
2016-01-01
Rett syndrome (RS) is a neurodevelopmental disorder that shares many symptomatic and pathological commonalities with idiopathic autism. Alterations in protein synthesis-dependent synaptic plasticity (PSDSP) are a hallmark of a number of syndromic forms of autism; in the present work, we explore the consequences of disruption and rescue of PSDSP in a mouse model of RS. We report that expression of a key regulator of synaptic protein synthesis, the metabotropic glutamate receptor 5 (mGlu5) protein, is significantly reduced in both the brains of RS model mice and in the motor cortex of human RS autopsy samples. Furthermore, we demonstrate that reduced mGlu5 expression correlates with attenuated DHPG-induced long-term depression in the hippocampus of RS model mice, and that administration of a novel mGlu5 positive allosteric modulator (PAM), termed VU0462807, can rescue synaptic plasticity defects. Additionally, treatment of Mecp2-deficient mice with VU0462807 improves motor performance (open-field behavior and gait dynamics), corrects repetitive clasping behavior, as well as normalizes cued fear-conditioning defects. Importantly, due to the rationale drug discovery approach used in its development, our novel mGlu5 PAM improves RS phenotypes and synaptic plasticity defects without evoking the overt adverse effects commonly associated with potentiation of mGlu5 signaling (i.e. seizures), or affecting cardiorespiratory defects in RS model mice. These findings provide strong support for the continued development of mGlu5 PAMs as potential therapeutic agents for use in RS, and, more broadly, for utility in idiopathic autism. PMID:26936821
Kinetic Monte Carlo Simulation of Oxygen Diffusion in Ytterbium Disilicate
NASA Technical Reports Server (NTRS)
Good, Brian S.
2015-01-01
Ytterbium disilicate is of interest as a potential environmental barrier coating for aerospace applications, notably for use in next generation jet turbine engines. In such applications, the transport of oxygen and water vapor through these coatings to the ceramic substrate is undesirable if high temperature oxidation is to be avoided. In an effort to understand the diffusion process in these materials, we have performed kinetic Monte Carlo simulations of vacancy-mediated and interstitial oxygen diffusion in Ytterbium disilicate. Oxygen vacancy and interstitial site energies, vacancy and interstitial formation energies, and migration barrier energies were computed using Density Functional Theory. We have found that, in the case of vacancy-mediated diffusion, many potential diffusion paths involve large barrier energies, but some paths have barrier energies smaller than one electron volt. However, computed vacancy formation energies suggest that the intrinsic vacancy concentration is small. In the case of interstitial diffusion, migration barrier energies are typically around one electron volt, but the interstitial defect formation energies are positive, with the result that the disilicate is unlikely to exhibit experience significant oxygen permeability except at very high temperature.
Homoepitaxial graphene tunnel barriers for spin transport
NASA Astrophysics Data System (ADS)
Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.
2016-05-01
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.
Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis
Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu
2016-01-01
Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis. PMID:27111231
Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis.
Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Dainichi, Teruki; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Ohno, Hiroshi; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu; Yoshida, Hisahiro
2016-06-01
Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, R.R.; Bond, J.A.
1994-03-29
A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.
NASA Astrophysics Data System (ADS)
Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.
2016-09-01
Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.
Respiration and Photosynthesis: A Teaching Module. Occasional Paper No. 90.
ERIC Educational Resources Information Center
Bishop, Beth A.; And Others
Designed to address the major conceptual problems associated with respiration and photosynthesis, this module can be used with high school students or college nonscience majors including those in elementary education. It is one in a series developed by the project Overcoming Critical Barriers to Learning in Nonmajors' Science Courses. The…
Du, Yan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Yang, Cuixia; Wu, Man; Zhang, Guoliang; Gao, Feng
2016-01-01
Endothelial integrity defects initiate lymphatic metastasis of tumor cells. Low-molecular-weight hyaluronan (LMW-HA) derived from plasma and interstitial fluid was reported to be associated with tumor lymphatic metastasis. In addition, LMW-HA was proved to disrupt lymphatic vessel endothelium integrity, thus promoting lymphatic metastasis of tumor cells. Until now, there are few reports on how LMW-HA modulates lymphatic endothelial cells adhesion junctions and affects cancer cells metastasizing into lymph vessels. The aim of our study is to unravel the novel mechanism of LMW-HA in mediating tumor lymphatic metastasis. Here, we employed a melanoma metastasis model to investigate whether LMW-HA facilitates tumor cells transferring from foci to remote lymph nodes by disrupting the lymphatic endothelial integrity. Our data indicate that LMW-HA significantly induces metastasis of melanoma cells to lymph nodes and accelerates interstitial-lymphatic flow in vivo . Further experiments show that increased migration of melanoma cells across human dermal lymphatic endothelial cell (HDLEC) monolayers is accompanied by impaired lymphatic endothelial barrier function and increased permeability. The mechanism study reveals that VE-cadherin-β-catenin pathway and relevant signals are involved in modulating the interactions between endothelial cells and that a significant inhibition of lymphatic endothelium disruption is observed when antibodies to the LMW-HA receptor (LYVE-1) are present. Thus, our findings demonstrate a disruptive effect of LMW-HA on lymphatic endothelium continuity which leads to a promotion on melanoma lymphatic metastasis and also suggest a cellular signaling mechanism associated with VE-cadherin-mediated lymphatic intercellular junctions.
Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.
Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J
2017-04-01
Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.
Using carrier-depletion silicon modulators for optical power monitoring.
Yu, Hui; Korn, Dietmar; Pantouvaki, Marianna; Van Campenhout, Joris; Komorowska, Katarzyna; Verheyen, Peter; Lepage, Guy; Absil, Philippe; Hillerkuss, David; Alloatti, Luca; Leuthold, Juerg; Baets, Roel; Bogaerts, Wim
2012-11-15
Defect-mediated subbandgap absorption is observed in ion-implanted silicon-on-oxide waveguides that experience a rapid thermal annealing at 1075°C. With this effect, general carrier-depletion silicon modulators exhibit the capability of optical power monitoring. Responsivity is measured to be 22 mA/W for a 3 mm long Mach-Zehnder modulator of 2×10(18) cm(-3) doping concentration at -7.1 V bias voltage and 5.9 mA/W for a ring modulator of 1×10(18) cm(-3) doping concentration at -10 V bias voltage. The former is used to demonstrate data detection of up to 35 Gbits/s.
Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN
NASA Astrophysics Data System (ADS)
Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.
2008-10-01
The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.
Selective high-resolution electrodeposition on semiconductor defect patterns.
Schmuki, P; Erickson, L E
2000-10-02
We report a new principle and technique that allows one to electrodeposit material patterns of arbitrary shape down to the submicrometer scale. We demonstrate that an electrochemical metal deposition reaction can be initiated selectively at surface defects created in a p-type Si(100) substrate by Si (++) focused ion beam bombardment. The key principle is that, for cathodic electrochemical polarization of p-type material in the dark, breakdown of the blocking Schottky barrier at the semiconductor/electrolyte interface occurs at significantly lower voltages at implanted locations than for an unimplanted surface. This difference in the threshold voltages is exploited to achieve selective electrochemical deposition.
Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd 2Ti 2O 7
Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...
2015-11-10
In this research, the structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd 2Ti 2O 7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region ismore » predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. From these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less
The stability of vacancy-like defects in amorphous silicon
NASA Astrophysics Data System (ADS)
Joly, Jean-Francois; Mousseau, Normand
2013-03-01
The contribution of vacancy-like defects to the relaxation of amorphous silicon (a-Si) has been a matter of debate for a long time. Due to their disordered nature, there is a large number local environments in which such a defect can exists. Previous numerical studies the vacancy in a-Si have been limited to small systems and very short timescales. Here we use kinectic ART (k-ART), an off-lattice kinetic Monte-Carlo simulation method with on-the-fly catalog building to study the time evolution of 1000 different single vacancy configurations in a well-relaxed a-Si model. Our results show that most of the vacancies are annihlated quickly. In fact, while 16% of the 1000 isolated vacancies survive for more than 1 ns of simulated time, 0.043% remain after 1 ms and only 6 of them survive longer than 0.1 second. Diffusion of the full vacancy is only seen in 19% of the configurations and diffusion usually leads directly to the annihilation of the defect. The actual annihilation event, in which one of the defective atoms fills the vacancy, is usually similar in all the configurations but local bonding environment heavily influence its activation barrier and relaxation energy.
[Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].
Sabel, B A
2017-02-01
Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Kim, D.; Youn, J.; Kim, C.
2017-08-01
As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.
Swaminathan, Shankar; Lu, Hong; Williams, Robert W; Lu, Lu; Jablonski, Monica M
2013-01-01
We investigated the contributions of Tyrp1 and Gpnmb to the iris transillumination defect (TID) in five age cohorts of BXD mice. Using systems genetics, we also evaluated the role of other known pigmentation genes (PGs). Mapping studies indicate that Tyrp1 contributes to the phenotype at all ages, yet the TID maps to Gpnmb only in the oldest cohort. Composite interval mapping reveals secondary loci viz. Oca2, Myo5a, Prkcz, and Zbtb20 that modulate the phenotype in the age groups up to 10–13 months. The contributions of Tyrp1 and Gpnmb were highly significant in all age cohorts. Moreover, in young mice, all six gene candidates had substantial interactions in our model. Our model accounted for 71–88% of the explained variance of the TID phenotype across the age bins. These results demonstrate that along with Tyrp1 and Gpnmb, Oca2, Myo5a, Prkcz, and Zbtb20 modulate the TID in an age-dependent manner. PMID:23582180
USDA-ARS?s Scientific Manuscript database
The present study investigated the effects of B. subtilis-based probiotics on performance, modulation of host inflammatory responses and intestinal barrier integrity of broilers subjected to LPS challenge. Birds at day 0 of age were randomly allocated to one of the 3 dietary treatments - controls, ...
Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo
2017-07-01
The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.
Kekenes-Huskey, Peter M.; Eun, Changsun; McCammon, J. A.
2015-01-01
Biochemical reaction networks consisting of coupled enzymes connect substrate signaling events with biological function. Substrates involved in these reactions can be strongly influenced by diffusion “barriers” arising from impenetrable cellular structures and macromolecules, as well as interactions with biomolecules, especially within crowded environments. For diffusion-influenced reactions, the spatial organization of diffusion barriers arising from intracellular structures, non-specific crowders, and specific-binders (buffers) strongly controls the temporal and spatial reaction kinetics. In this study, we use two prototypical biochemical reactions, a Goodwin oscillator, and a reaction with a periodic source/sink term to examine how a diffusion barrier that partitions substrates controls reaction behavior. Namely, we examine how conditions representative of a densely packed cytosol, including reduced accessible volume fraction, non-specific interactions, and buffers, impede diffusion over nanometer length-scales. We find that diffusion barriers can modulate the frequencies and amplitudes of coupled diffusion-influenced reaction networks, as well as give rise to “compartments” of decoupled reactant populations. These effects appear to be intensified in the presence of buffers localized to the diffusion barrier. These findings have strong implications for the role of the cellular environment in tuning the dynamics of signaling pathways. PMID:26342355
Vancamelbeke, Maaike; Vanuytsel, Tim; Farré, Ricard; Verstockt, Sare; Ferrante, Marc; Van Assche, Gert; Rutgeerts, Paul; Schuit, Frans; Vermeire, Séverine; Arijs, Ingrid; Cleynen, Isabelle
2017-10-01
Intestinal barrier defects are common in patients with inflammatory bowel disease (IBD). To identify which components could underlie these changes, we performed an in-depth analysis of epithelial barrier genes in IBD. A set of 128 intestinal barrier genes was selected. Polygenic risk scores were generated based on selected barrier gene variants that were associated with Crohn's disease (CD) or ulcerative colitis (UC) in our study. Gene expression was analyzed using microarray and quantitative reverse transcription polymerase chain reaction. Influence of barrier gene variants on expression was studied by cis-expression quantitative trait loci mapping and comparing patients with low- and high-risk scores. Barrier risk scores were significantly higher in patients with IBD than controls. At single-gene level, the associated barrier single-nucleotide polymorphisms were most significantly enriched in PTGER4 for CD and HNF4A for UC. As a group, the regulating proteins were most enriched for CD and UC. Expression analysis showed that many epithelial barrier genes were significantly dysregulated in active CD and UC, with overrepresentation of mucus layer genes. In uninflamed CD ileum and IBD colon, most barrier gene levels restored to normal, except for MUC1 and MUC4 that remained persistently increased compared with controls. Expression levels did not depend on cis-regulatory variants nor combined genetic risk. We found genetic and transcriptomic dysregulations of key epithelial barrier genes and components in IBD. Of these, we believe that mucus genes, in particular MUC1 and MUC4, play an essential role in the pathogenesis of IBD and could represent interesting targets for treatment.
Thin-film reliability and engineering overview
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1984-01-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Thin-film reliability and engineering overview
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1984-10-01
The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.
Infrared Photothermal Radiometry.
1984-04-10
changes whenever the transmitted thermal wave crosses a void. This provides a means of nondestructive subsurface imaging of defects, and Busse found that...15 In the flash excitation, the excitation beam is modulated by a broad spectrum of Fourier modulation frequencies. In all cases of subsurface imaging , the...technique of Nordal and Kanstad 2 1t 23 is not only good for spectroscopic detection, but also for subsurface imaging applications as well. 2.4 Pulsed
1985-02-15
Wave Mach-Zehnder Interferometric Modulator with Center-Tapped Electrode. The Two Y Junctions have 2° Full Branching Angles, and the Direction of...and < 110> Directions 20 3-6 Nomarski Micrographs of Seeded 50-/um Ge-on-Insulator Islands After ZMR and Defect Etching 21 3-7 Scanning Electron...achieved to date in this long- wavelength region. A LiNb03 guided-wave interferometric modulator has been demonstrated at A. = 3.39 /um with a
Graphene-based stretchable and transparent moisture barrier
NASA Astrophysics Data System (ADS)
Won, Sejeong; Van Lam, Do; Lee, Jin Young; Jung, Hyun-June; Hur, Min; Kim, Kwang-Seop; Lee, Hak-Joo; Kim, Jae-Hyun
2018-03-01
We propose an alumina-deposited double-layer graphene (2LG) as a transparent, scalable, and stretchable barrier against moisture; this barrier is indispensable for foldable or stretchable organic displays and electronics. Both the barrier property and stretchability were significantly enhanced through the introduction of 2LG between alumina and a polymeric substrate. 2LG with negligible polymeric residues was coated on the polymeric substrate via a scalable dry transfer method in a roll-to-roll manner; an alumina layer was deposited on the graphene via atomic layer deposition. The effect of the graphene layer on crack generation in the alumina layer was systematically studied under external strain using an in situ micro-tensile tester, and correlations between the deformation-induced defects and water vapor transmission rate were quantitatively analyzed. The enhanced stretchability of alumina-deposited 2LG originated from the interlayer sliding between the graphene layers, which resulted in the crack density of the alumina layer being reduced under external strain.
CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome
Query, Charles C.; Konarska, Maria M.
2012-01-01
Conformational change within the spliceosome is required between the first and second catalytic steps of pre-mRNA splicing. A prior genetic screen for suppressors of an intron mutant that stalls between the two steps yielded both prp8 and non-prp8 alleles that suppressed second-step splicing defects. We have now identified the strongest non-prp8 suppressors as alleles of the NTC (Prp19 complex) component, CEF1. These cef1 alleles generally suppress second-step defects caused by a variety of intron mutations, mutations in U6 snRNA, or deletion of the second-step protein factor Prp17, and they can activate alternative 3′ splice sites. Genetic and functional interactions between cef1 and prp8 alleles suggest that they modulate the same event(s) in the first-to-second-step transition, most likely by stabilization of the second-step spliceosome; in contrast, alleles of U6 snRNA that also alter this transition modulate a distinct event, most likely by stabilization of the first-step spliceosome. These results implicate a myb-like domain of Cef1/CDC5 in interactions that modulate conformational states of the spliceosome and suggest that alteration of these events affects splice site use, resulting in alternative splicing-like patterns in yeast. PMID:22408182
Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes.
Senga, Ryosuke; Pichler, Thomas; Yomogida, Yohei; Tanaka, Takeshi; Kataura, Hiromichi; Suenaga, Kazu
2018-06-13
Measurements of optical properties at a nanometer level are of central importance for the characterization of optoelectronic devices. It is, however, difficult to use conventional light-probe measurements to determine the local optical properties from a single quantum object with nanometrical inhomogeneity. Here, we successfully measured the optical gap transitions of an individual semiconducting carbon nanotube with defects by using a monochromated electron source as a probe. The optical conductivity extracted from an electron energy-loss spectrum for a certain type of defect presents a characteristic modification near the lowest excitation peak ( E 11 ), where excitons and nonradiative transitions, as well as phonon-coupled excitations, are strongly involved. Detailed line-shape analysis of the E 11 peak clearly shows different degrees of exciton lifetime shortening and electronic state modification according to the defect type.
Mechanism of electromigration failure in Damascene processed copper interconnects
NASA Astrophysics Data System (ADS)
Michael, Nancy Lyn
2002-11-01
A major unresolved issue in Cu interconnect reliability is the interface role in the failure mechanism of real structures. The present study investigates failure in single-level damascene Cu interconnects with variations in interface condition, passivation and barrier, and linewidth. In the first phase, accelerated electromigration testing of 0.25mum Cu interconnects capped with SiN or SiCN, shows that lifetime and failure mode vary with capping layer. The first mode, seen primarily in SiN samples, is characterized by gradual resistance increase and extensive interface damage, believed to result from failure led by interface electromigration. The competing failure mode, found in SiCN capped samples, is characterized by abrupt resistance increase and localized voiding. The second phase fixes SiCN as the capping material and varies barrier material and line width. The three barrier materials, Ta, TaN, and Ta/TaN, produce similar lifetime statistics and failure is abrupt. Line width, however, does have a strong influence on failure time. The line width/grain size ratio ranged from 0.53 to 2.2 but does not correlate with mean time to failure (MTF). The strong dependence on interface fraction, combined with the conclusion from phase one that interface electromigration is not rate controlling, suggests another mechanism related to the interface is a controlling factor. The possibility that contamination and defects at the interface are key to this failure mode was investigated using electro-thermal fatigue (ETF). In ETF, where lines are simultaneously subjected to thermal cycling and constant current, damage caused by thermal stress is accelerated. Tests reveal that in 80 nm lines, transient failure occurs at times far below MTF in electromigration tests at higher temperatures. Failure found in ETF is clearly a result of damage growth due to thermal/mechanical stress rather than electromigration. At the stress levels created by the moderate ETF test conditions, the only place voids are likely to nucleate and grow is at pre-existing defects and impurities. In narrower lines, where smaller voids can cause catastrophic damage, defects have a greater effect on MTF. Results from this investigation suggest that impurities and defects in the Cu and at the interface, must be carefully controlled to make reliable narrow Cu interconnects.
Successful demonstration of a comprehensive lithography defect monitoring strategy
NASA Astrophysics Data System (ADS)
Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael
2003-07-01
This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the widest range of sizes, from full-wafer to suboptical, and with the largest variety of characteristics. Some of these defects fall into the categories of coating problems, focus and exposure defects, developer defects, edge-bead removal problems, contamination and scratches usually defined as lithography macro defects as shown in Figure 1. Others fall into the category of lithography micro defects, Figure 2. They are characterized as having low topography such as stains, developer spots, satellites, are very small such as micro-bridging, partial micro-bridging, micro-bubbles, CD variation and single isolated missing or deformed contacts or vias. Lithography is the only area of the fab besides CMP in which defect excursions can be corrected by reworking the wafers. The opportunity to fix defect problems without scrapping wafers is best served by a defect inspection strategy that captures the full range of all relevant defect types with a proper balance between the costs of monitoring and inspection and the potential cost of yield loss. In the previous paper [1] it was shown that a combination of macro inspection and high numerical aperture (NA) brightfield imaging inspection technology is best suited for the application in the case of the idealized fab modeled. In this paper we will report on the successful efforts in implementing and validating the lithography defect monitoring strategy at two existing 200 mm factories running 0.15 μm and 0.13 μm design rules.
Gómez-Hurtado, Isabel; Moratalla, Alba; Moya-Pérez, Ángela; Peiró, Gloria; Zapater, Pedro; González-Navajas, José M; Giménez, Paula; Such, José; Sanz, Yolanda; Francés, Rubén
2014-10-01
Bacterial endotoxin is present in patients with advanced cirrhosis and can induce an immunogenic response without an overt infection. Norfloxacin is a gram-negative bactericidal drug able to maintain low endotoxin levels and stimulate IL-10 production. We aimed at investigating the role of IL-10 in decreasing endotoxin absorption in cirrhotic mice treated with norfloxacin. Cirrhosis was induced by carbon tetrachloride or bile duct ligation in wild type and IL10-deficient mice with or without norfloxacin prior to an intragastrical administration of E. coli, K. pneumonia or E. faecalis. Spontaneous and induced bacterial translocation, free endotoxin and cytokine levels were evaluated in mesenteric lymph nodes. Intestinal permeability was followed by fluorimetry and barrier integrity markers were measured in disrupted intestinal samples. The inflammatory-modulating mechanism was characterized in purified intestinal mononuclear cells. Norfloxacin reduced spontaneous and induced MLN positive-cultures in wild type and IL-10-deficient animals. However, reduction of free endotoxin levels was associated with norfloxacin in wild type but not in IL-10-deficient mice. Wild type but not IL-10-deficient mice treated with norfloxacin significantly normalized intestinal permeability and improved gut barrier integrity markers. The toll-like receptor 4-mediated pro-inflammatory milieu was modulated by norfloxacin in a concentration-dependent manner in cultured intestinal mononuclear cells of wild type mice but not of IL-10-deficient mice. The restoration of IL-10 levels in IL-10-deficient animals reactivated the norfloxacin effect on inflammatory-modulation, gut barrier permeability, and luminal endotoxin absorption. Norfloxacin not only reduces gram-negative intestinal flora but also participates in an IL-10-driven modulation of gut barrier permeability, thus reducing luminal free endotoxin absorption in experimental cirrhosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Billington, Charles J; Schmidt, Brian; Zhang, Lei; Hodges, James S; Georgieff, Michael K; Schotta, Gunnar; Gopalakrishnan, Rajaram; Petryk, Anna
2013-03-01
Diets rich in methyl-donating compounds, including folate, can provide protection against neural tube defects, but their role in preventing craniofacial defects is less clear. Mice deficient in Twisted gastrulation (TWSG1), an extracellular modulator of bone morphogenetic protein signaling, manifest both midline facial defects and jaw defects, allowing study of the effects of methyl donors on various craniofacial defects in an experimentally tractable animal model. The goal of this study was to examine the effects of maternal dietary supplementation with methyl donors on the incidence and type of craniofacial defects among Twsg1(-/-) offspring. Nulliparous and primiparous female mice were fed an NIH31 standard diet (control) or a methyl donor supplemented (MDS) diet (folate, vitamin B-12, betaine, and choline). Observed defects in the pups were divided into those derived mostly from the first branchial arch (BA1) (micrognathia, agnathia, cleft palate) and midline facial defects in the holoprosencephaly spectrum (cyclopia, proboscis, and anterior truncation). In the first pregnancy, offspring of mice fed the MDS diet had lower incidence of BA1-derived defects (12.8% in MDS vs. 32.5% in control; P = 0.02) but similar incidence of midline facial defects (6.4% in MDS vs. 5.2% in control; P = 1.0). Increased maternal parity was independently associated with increased incidence of craniofacial defects after adjusting for diet (from 37.7 to 59.5% in control, P = 0.04 and from 19.1 to 45.3% in MDS, P = 0.045). In conclusion, methyl donor supplementation shows protective effects against jaw defects, but not midline facial defects, and increased parity can be a risk factor for some craniofacial defects.
Ghosh, Siddhartha S; He, Hongliang; Wang, Jing; Gehr, Todd W; Ghosh, Shobha
2018-01-02
Curcumin has anti-inflammatory, anti-oxidant and anti-proliferative properties established largely by in vitro studies. Accordingly, oral administration of curcumin beneficially modulates many diseases including diabetes, fatty-liver disease, atherosclerosis, arthritis, cancer and neurological disorders such as depression, Alzheimer's or Parkinson's disease. However, limited bioavailability and inability to detect curcumin in circulation or target tissues has hindered the validation of a causal role. We established curcumin-mediated decrease in the release of gut bacteria-derived lipopolysaccharide (LPS) into circulation by maintaining the integrity of the intestinal barrier function as the mechanism underlying the attenuation of metabolic diseases (diabetes, atherosclerosis, kidney disease) by curcumin supplementation precluding the need for curcumin absorption. In view of the causative role of circulating LPS and resulting chronic inflammation in the development of diseases listed above, this review summarizes the mechanism by which curcumin affects the several layers of the intestinal barrier and, despite negligible absorption, can beneficially modulate these diseases.
Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation
Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine
2017-01-01
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136
Penetration of alkali atoms throughout a graphene membrane: theoretical modeling
NASA Astrophysics Data System (ADS)
Boukhvalov, D. W.; Virojanadara, C.
2012-02-01
Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.
Penetration of alkali atoms throughout a graphene membrane: theoretical modeling.
Boukhvalov, D W; Virojanadara, C
2012-03-07
Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout a graphene membrane grown on a silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate a rather low (about 0.8 eV) energy barrier for the formation of temporary defects in the carbon layer required for the penetration of Li at a high concentration of adatoms, a higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from the graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100 °C and impenetrability of the graphene membrane for Rb and Cs. Differences between epitaxial and free-standing graphene for the penetration of alkali ions are also discussed.
Basement Membrane Defects in Genetic Kidney Diseases
Chew, Christine; Lennon, Rachel
2018-01-01
The glomerular basement membrane (GBM) is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1) and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell–matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease. PMID:29435440
Scaffold translation: barriers between concept and clinic.
Hollister, Scott J; Murphy, William L
2011-12-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.
Influence of functional food components on gut health.
Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F
2018-01-30
Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.
Karvinen, Kristina H; Balneaves, Lynda; Courneya, Kerry S; Perry, Beth; Truant, Tracy; Vallance, Jeff
2017-11-01
To examine the effectiveness of online learning modules for improving physical activity counseling practices among oncology nurses. . Randomized, controlled trial. . Online. . 54 oncology nurses. . Oncology nurses were randomly assigned to the learning modules group or control group. The learning modules group completed six online learning modules and quizzes focused on physical activity for cancer survivors, general physical activity principles, and motivational interviewing. . Percentage of cancer survivors counseled, self-efficacy for physical activity counseling, knowledge of physical activity, and perceived barriers and benefits of physical activity counseling. . Analyses of covariance revealed no significant difference between the learning modules and control groups in the percentage of cancer survivors that oncology nurses counseled. Significant differences were found in self-efficacy for physical activity counseling and perceived barriers to physical activity counseling at postintervention. . The online learning intervention tested in this study improved some parameters of physical activity counseling but did not increase the percentage of cancer survivors that oncology nurses counseled. Additional pilot work is needed to refine the intervention. . This study suggests the potential utility of an evidence-based online learning strategy for oncology nurses that includes information on physical activity and its benefits in cancer survivorship. The findings offer a framework on how to implement physical activity counseling skills in oncology nursing practice.
How to boost the sluggish lithium-ion hopping dynamic in borophene?
NASA Astrophysics Data System (ADS)
Liu, Jia; Chen, Xianfei; Deng, Xiaoyu; Zhang, Wentao; Li, Junfeng; Xiao, Beibei; Pu, Min
2018-05-01
In light of low atomic mass, three types of experimentally synthetized borophene including β12, χ3 and striped t-sheet have been predicted to be promising anode materials for lithium-ion batteries (LIBs) with extremely high capacity. However, the rate performances of β12 and χ3 are quite poor with high diffusion barrier of 0.66-0.81 eV on β12 and 0.60-0.85 eV on χ3 in contrast with that in t-sheet (typically <0.1 eV). Isolation of t-sheet from their blend remains a fundamental challenge in the field of nanotechnology and a mechanistic understanding and control over the hopping dynamic of Li+ therein are thus of extremely important to facilitate the development of borophene-based anode material, but still lacking. In this work, we performed a comprehensive theoretical investigation on the adsorptions and migrations of Li+ on perfect and defective β12 and χ3 based on density functional theory. We determined a new kind of vacancy in β12 that modulates the adsorption and boosts the diffusion of Li+ nearby remarkably. With the aid of charge doping, we uncover a general mechanism (charge-concentration mechanism) involved with the celebrated bonding theory of borophene, where the hopping barrier of Li+ on β12 could be reduced to be 0.06 eV, rationalizing the boosting Li+ hopping as a result of electron deficiency in vacant borophene. By extending our calculations to H functionalized borophene and Ag supported borophene, we further confirm the validity of the "charge-concentration mechanism" under more realistic experimental conditions. The proposed mechanism could be used as a guiding principle to improve or develop new borophene-based electrode materials with high rate performance for LIBs.
Murchie, Ryan; Guo, Cong-Hui; Persaud, Avinash; Muise, Aleixo; Rotin, Daniela
2014-01-01
Protein tyrosine phosphatase (PTP)σ (PTPRS) was shown previously to be associated with susceptibility to inflammatory bowel disease (IBD). PTPσ−/− mice exhibit an IBD-like phenotype in the intestine and show increased susceptibility to acute models of murine colitis. However, the function of PTPσ in the intestine is uncharacterized. Here, we show an intestinal epithelial barrier defect in the PTPσ−/− mouse, demonstrated by a decrease in transepithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. Increased tyrosine phosphorylation was observed at the plasma membrane of epithelial cells lining the crypts of the small bowel and colon of the PTPσ−/− mouse, suggesting the presence of PTPσ substrates in these regions. Using mass spectrometry, we identified several putative PTPσ intestinal substrates that were hyper–tyrosine-phosphorylated in the PTPσ−/− mice relative to wild type. Among these were proteins that form or regulate the apical junction complex, including ezrin. We show that ezrin binds to and is dephosphorylated by PTPσ in vitro, suggesting it is a direct PTPσ substrate, and identified ezrin-Y353/Y145 as important sites targeted by PTPσ. Moreover, subcellular localization of the ezrin phosphomimetic Y353E or Y145 mutants were disrupted in colonic Caco-2 cells, similar to ezrin mislocalization in the colon of PTPσ−/− mice following induction of colitis. Our results suggest that PTPσ is a positive regulator of intestinal epithelial barrier, which mediates its effects by modulating epithelial cell adhesion through targeting of apical junction complex-associated proteins (including ezrin), a process impaired in IBD. PMID:24385580
Ultrasound Burst Phase Thermography (UBP) for Applications in the Automotive Industry
NASA Astrophysics Data System (ADS)
Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.
2003-03-01
The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented.
Enhanced Healing of Segmental Bone Defects by Modulation of the Mechanical Environment
2012-10-01
5.5 µg BMP-2, it was largely disorganized, woven bone with non-osseous soft tissue interspersed. The highest 4 dose (11 µg) of BMP-2, in contrast...various doses of BMP-2. Top row: 16x magnification Bottom row: 100x magnification N= new cortex M= marrow T=trabecular bone F= fibrous tissue ...areas of cartilagenous tissue (figure 5) it was clear that substantial areas of cartilage remained in the defects treated with 5.5 µg BMP-2. These may
NASA Astrophysics Data System (ADS)
Maggioni, G.; Carturan, S.; Raniero, W.; Riccetto, S.; Sgarbossa, F.; Boldrini, V.; Milazzo, R.; Napoli, D. R.; Scarpa, D.; Andrighetto, A.; Napolitani, E.; De Salvador, D.
2018-03-01
A new method for the formation of hole-barrier contacts in high purity germanium (HPGe) is described, which consists in the sputter deposition of a Sb film on HPGe, followed by Sb diffusion produced through laser annealing of the Ge surface in the melting regime. This process gives rise to a very thin ( ≤ 100 nm) n-doped layer, as determined by SIMS measurement, while preserving the defect-free morphology of HPGe surface. A small prototype of gamma ray detector with a Sb laser-diffused contact was produced and characterized, showing low leakage currents and good spectroscopy data with different gamma ray sources.
Sheikh, Zeeshan; Khan, Abdul Samad; Roohpour, Nima; Glogauer, Michael; Rehman, Ihtesham U
2016-11-01
Periodontal disease if left untreated can result in creation of defects within the alveolar ridge. Barrier membranes are frequently used with or without bone replacement graft materials for achieving periodontal guided tissue regeneration (GTR). Surface properties of barrier membranes play a vital role in their functionality and clinical success. In this study polyetherurethane (PEU) membranes were synthesized by using 4,4'-methylene-diphenyl diisocyanate (MDI), polytetramethylene oxide (PTMO) and 1,4-butane diol (BDO) as a chain extender via solution polymerization. Hydroxyl terminated polydimethylsiloxane (PDMS) due to having inherent surface orientation towards air was used for surface modification of PEU on one side of the membranes. This resulting membranes had one surface being PEU and the other being PDMS coated PEU. The prepared membranes were treated with solutions of bovine serum albumin (BSA) in de-ionized water at 37°C at a pH of 7.2. The surface protein adsorptive potential of PEU membranes was observed using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman spectroscopy and Confocal Raman spectroscopy. The contact angle measurement, tensile strength and modulus of prepared membranes were also evaluated. PEU membrane (89.86±1.62°) exhibited less hydrophobic behavior than PEU-PDMS (105.87±3.16°). The ultimate tensile strength and elastic modulus of PEU (27±1MPa and 14±2MPa) and PEU-PDMS (8±1MPa and 26±1MPa) membranes was in required range. The spectral analysis revealed adsorption of BSA proteins on the surface of non PDMS coated PEU surface. The PDMS modified PEU membranes demonstrated a lack of BSA adsorption. The non PDMS coated side of the membrane which adsorbs proteins could potentially be used facing towards the defect attracting growth factors for periodontal tissue regeneration. Whereas, the PDMS coated side could serve as an occlusive barrier for preventing gingival epithelial cells from proliferating and migrating into the defect space by facing the soft tissue flaps. This study demonstrates the potential of a dual natured PEU barrier membrane for use in periodontal tissue engineering applications and further investigations are required. Copyright © 2016 Elsevier B.V. All rights reserved.
Wan, Jiawei; Chen, Wenxing; Jia, Chuanyi; Zheng, Lirong; Dong, Juncai; Zheng, Xusheng; Wang, Yu; Yan, Wensheng; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong
2018-03-01
Isolated single atomic site catalysts have attracted great interest due to their remarkable catalytic properties. Because of their high surface energy, single atoms are highly mobile and tend to form aggregate during synthetic and catalytic processes. Therefore, it is a significant challenge to fabricate isolated single atomic site catalysts with good stability. Herein, a gentle method to stabilize single atomic site metal by constructing defects on the surface of supports is presented. As a proof of concept, single atomic site Au supported on defective TiO 2 nanosheets is prepared and it is discovered that (1) the surface defects on TiO 2 nanosheets can effectively stabilize Au single atomic sites through forming the Ti-Au-Ti structure; and (2) the Ti-Au-Ti structure can also promote the catalytic properties through reducing the energy barrier and relieving the competitive adsorption on isolated Au atomic sites. It is believed that this work paves a way to design stable and active single atomic site catalysts on oxide supports. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective Nanoscale Mass Transport across Atomically Thin Single Crystalline Graphene Membranes.
Kidambi, Piran R; Boutilier, Michael S H; Wang, Luda; Jang, Doojoon; Kim, Jeehwan; Karnik, Rohit
2017-05-01
Atomically thin single crystals, without grain boundaries and associated defect clusters, represent ideal systems to study and understand intrinsic defects in materials, but probing them collectively over large area remains nontrivial. In this study, the authors probe nanoscale mass transport across large-area (≈0.2 cm 2 ) single-crystalline graphene membranes. A novel, polymer-free picture frame assisted technique, coupled with a stress-inducing nickel layer is used to transfer single crystalline graphene grown on silicon carbide substrates to flexible polycarbonate track etched supports with well-defined cylindrical ≈200 nm pores. Diffusion-driven flow shows selective transport of ≈0.66 nm hydrated K + and Cl - ions over ≈1 nm sized small molecules, indicating the presence of selective sub-nanometer to nanometer sized defects. This work presents a framework to test the barrier properties and intrinsic quality of atomically thin materials at the sub-nanometer to nanometer scale over technologically relevant large areas, and suggests the potential use of intrinsic defects in atomically thin materials for molecular separations or desalting. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wei-Li, Ma, Weiping; Pan-Qi, Wen-jiao, Dou; Yuan, Xin'an; Yin, Xiaokang
2018-04-01
Stainless steel is widely used in nuclear power plants, such as various high-radioactive pool, tools storage and fuel transportation channel, and serves as an important barrier to stop the leakage of high-radioactive material. NonDestructive Evaluation (NDE) methods, eddy current testing (ET), ultrasonic examination (UT), penetration testing (PT) and hybrid detection method, etc., have been introduced into the inspection of a nuclear plant. In this paper, the Alternating Current Field Measurement (ACFM) was fully applied to detect and evaluate the defects in the welds of the stainless steel. Simulations were carried out on different defect types, crack lengths, and orientation to reveal the relationship between the signals and dimensions to determine whether methods could be validated by the experiment. A 3-axis ACFM probe was developed and three plates including 16 defects, which served in nuclear plant before, were examined by automatic detection equipment. The result shows that the minimum detectable crack length on the surface is 2mm and ACFM shows excellent inspection results for a weld in stainless steel and gives an encouraging prospect of broader application.
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-08-08
Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less
Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.
Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna
2016-04-27
Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.
Harnessing extracellular vesicles to direct endochondral repair of large bone defects
Ferreira, E.
2018-01-01
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006. PMID:29922444
Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion.
Konar, S; Guha, R; Kundu, B; Nandi, S; Ghosh, T K; Kundu, S C; Konar, A; Hazra, S
2017-02-01
Adhesion formation remains a major complication following hernia repair surgery. Physical barriers though effective for adhesion prevention in clinical settings are associated with major disadvantages, therefore, needs further investigation. This study evaluates silk fibroin hydrogel as a physical barrier on polypropylene mesh for the prevention of adhesion following ventral hernia repair. Peritoneal explants were cultured on silk fibroin scaffold to evaluate its support for mesothelial cell growth. Full thickness uniform sized defects were created on the ventral abdominal wall of rabbits, and the defects were covered either with silk hydrogel coated polypropylene mesh or with plain polypropylene mesh as a control. The animals were killed after 1 month, and the adhesion formation was graded; healing response of peritoneum was evaluated by immunohistochemistry with calretinin, collagen staining of peritoneal sections, and expression of PCNA, collagen-I, TNFα, IL6 by real time PCR; and its adverse effect if any was determined. Silk fibroin scaffold showed excellent support for peritoneal cell growth in vitro and the cells expressed calretinin. A remarkable prevention of adhesion formation was observed in the animals implanted with silk hydrogel coated mesh compared to the control group; in these animals peritoneal healing was complete and predominantly by mesothelial cells with minimum fibrotic changes. Expression of inflammatory cytokines decreased compared to control animals, histology of abdominal organs, haematological and blood biochemical parameters remained normal. Therefore, silk hydrogel coating of polypropylene mesh can improve peritoneal healing, minimize adhesion formation, is safe and can augment the outcome of hernia surgery.
Electrical insulator assembly with oxygen permeation barrier
Van Der Beck, Roland R.; Bond, James A.
1994-01-01
A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.
Long term endurance test and contact degradation of CIGS solar cells
NASA Astrophysics Data System (ADS)
Ott, Thomas; Schönberger, Francillina; Walter, Thomas; Hariskos, Dimitrios; Kiowski, Oliver; Schäffler, Raymund
2013-09-01
CIGS is the most promising technology for thin-film solar cells with record efficiencies of 20.4 % on laboratory scale and 17.8 % aperture area efficiency on a 900 cm² module. Another important factor besides the cell efficiency is the reliability and long term stability of the manufactured modules, which can be assessed by accelerated ageing. In this contribution the accelerated ageing of CIGS mini modules has been investigated. Therefore, modules were dark annealed under dry heat conditions at different temperatures. During the endurance test a positive or negative bias was applied to the cells. In regular intervals the IV- and CV-characteristics were measured at room temperature. After an overall stress time of 3500 h the IV-characteristics were determined under different illumination conditions (intensity, spectral illumination). Our previous publications suggest a barrier at the back contact to explain the observed parameter drifts. This contribution is focused on the influence of different bias conditions during the endurance test on the generation of a back diode and on the change of the acceptor concentration. These parameter drifts have an impact on the open circuit voltage, fill factor and on the appearance of a cross over between dark and illuminated IV-characteristics. The interpretation of the observed parameter drifts was supported by SCAPS simulations based on the above mentioned back barrier model. As an outcome of the simulations signatures for the existence of a back barrier diode were established. IVmeasurements, temperature dependent Voc measurements and SunsVoc measurements are helpful means to detect such back diodes.
Mayanagi, Taira; Yasuda, Hiroki; Sobue, Kenji
2015-10-21
Dysregulation of synapse formation and plasticity is closely related to the pathophysiology of psychiatric and neurodevelopmental disorders. The prefrontal cortex (PFC) is particularly important for executive functions such as working memory, cognition, and emotional control, which are impaired in the disorders. PSD-Zip70 (Lzts1/FEZ1) is a postsynaptic density (PSD) protein predominantly expressed in the frontal cortex, olfactory bulb, striatum, and hippocampus. Here we found that PSD-Zip70 knock-out (PSD-Zip70KO) mice exhibit working memory and cognitive defects, and enhanced anxiety-like behaviors. These abnormal behaviors are caused by impaired glutamatergic synapse transmission accompanied by tiny-headed immature dendritic spines in the PFC, due to aberrant Rap2 activation, which has roles in synapse formation and plasticity. PSD-Zip70 modulates the Rap2 activity by interacting with SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) in the postsynapse. Furthermore, suppression of the aberrant Rap2 activation in the PFC rescued the behavioral defects in PSD-Zip70KO mice. Our data demonstrate a critical role for PSD-Zip70 in Rap2-dependent spine synapse development in the PFC and underscore the importance of this regulation in PFC-dependent behaviors. PSD-Zip70 deficiency causes behavioral defects in working memory and cognition, and enhanced anxiety due to prefrontal hypofunction. This study revealed that PSD-Zip70 plays essential roles in glutamatergic synapse maturation via modulation of the Rap2 activity in the PFC. PSD-Zip70 interacts with both SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) and modulates the Rap2 activity in postsynaptic sites. Our results provide a novel Rap2-specific regulatory mechanism in synaptic maturation involving PSD-Zip70. Copyright © 2015 the authors 0270-6474/15/3514327-14$15.00/0.
Staat, Christian; Coisne, Caroline; Dabrowski, Sebastian; Stamatovic, Svetlana M; Andjelkovic, Anuska V; Wolburg, Hartwig; Engelhardt, Britta; Blasig, Ingolf E
2015-06-01
In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.
1984-08-08
transmission PTR signal changes whenever the transmitted thermal wave crosses a void. This provides a means of nondestructive subsurface imaging of defects...and Busse and Renk( 2 2 ) have demonstrated a new stereoscopic subsurface imaging technique involving two adjacent modulated PT source for...modulation frequencies. In all cases of subsurface imaging , the authors preferred to use the shape or the phase of the PTR signal rather than the amplitude
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films.
Precner, M; Polaković, T; Qiao, Qiao; Trainer, D J; Putilov, A V; Di Giorgio, C; Cone, I; Zhu, Y; Xi, X X; Iavarone, M; Karapetrov, G
2018-04-30
We report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the work function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2 . Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2 -based integrated electronics and indicate the importance of defect control and layer passivation.
Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces
Acik, Muge; Park, In Kee; Koritala, Rachel E.; ...
2017-12-21
Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less
Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acik, Muge; Park, In Kee; Koritala, Rachel E.
Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films
Precner, Marian; Polakovic, T.; Qiao, Qiao; ...
2018-04-30
Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less