Sample records for modulate cell behavior

  1. Nanochips of Tantalum Oxide Nanodots as artificial-microenvironments for monitoring Ovarian cancer progressiveness

    NASA Astrophysics Data System (ADS)

    Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang

    2016-08-01

    Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.

  2. Parallel processing by cortical inhibition enables context-dependent behavior.

    PubMed

    Kuchibhotla, Kishore V; Gill, Jonathan V; Lindsay, Grace W; Papadoyannis, Eleni S; Field, Rachel E; Sten, Tom A Hindmarsh; Miller, Kenneth D; Froemke, Robert C

    2017-01-01

    Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV + , SOM + , and VIP + interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.

  3. Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography

    PubMed Central

    Yang, Yong; Wang, Kai; Gu, Xiaosong; Leong, Kam W.

    2017-01-01

    The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine. PMID:29071164

  4. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  5. Bifacial solar cell measurements under standard test conditions and the impact on cell-to-module loss analysis

    NASA Astrophysics Data System (ADS)

    Singh, Jai Prakash; Chai, Jing; Hsian Saw, Min; Khoo, Yong Sheng

    2017-08-01

    Bifacial cells are conventionally measured using gold-plated chuck, which is conductive and reflective. This measurement setup does not portray the actual operating conditions of the bifacial cells in a module. The reflective chuck causes an overestimation of the current due to the cell transmittance for the infrared light. The conductive chuck creates a shorter current flow path in the rear side of the cell and causes an over inflation of the fill factor measurement. In this study, we characterize and quantitatively analyze the difference between the bifacial cell measurements on different mounting chucks and calculate the cell-to-module (CTM) loss. To characterize the optical behavior of the bifacial cell and module, we perform external quantum efficiency, reflectance and transmittance measurements. The electrical behavior of the bifacial cell is studied using in-house developed software Griddler. Using Griddler, we calculate the difference in the fill factor of the bifacial cell due to the measurement using a conductive and non-conductive chuck, and estimate the corresponding CTM resistive losses.

  6. Cell Adhesions: Actin-Based Modules that Mediate Cell-Extracellular Matrix and Cell-Cell Interactions

    PubMed Central

    Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.

    2018-01-01

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638

  7. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells.

    PubMed

    Bachir, Alexia I; Horwitz, Alan Rick; Nelson, W James; Bianchini, Julie M

    2017-07-05

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Cyclic adenosine monophosphate modulates cell morphology and behavior of a cultured renal epithelial.

    PubMed

    Amsler, K

    1990-07-01

    The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.

  9. Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase.

    PubMed

    Ryglewski, Stefanie; Duch, Carsten; Altenhein, Benjamin

    2017-01-01

    The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz.

  10. Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase

    PubMed Central

    Ryglewski, Stefanie; Duch, Carsten; Altenhein, Benjamin

    2017-01-01

    The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz. PMID:29021745

  11. Multifunctional ferromagnetic disks for modulating cell function

    PubMed Central

    Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

    2013-01-01

    In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544

  12. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    PubMed Central

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-01-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior. PMID:26469886

  13. Harmonizing HeLa cell cytoskeleton behavior by multi-Ti oxide phased nanostructure synthesized through ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Chinnakkannu Vijayakumar, Chandramouli; Venkatakrishnan, Krishnan; Tan, Bo

    2015-10-01

    Knowledge about cancer cell behavior on heterogeneous nanostructures is relevant for developing a distinct biomaterial that can actuate cancer cells. In this manuscript, we have demonstrated a harmonized approach of forming multi Ti-oxide phases in a nanostructure (MTOP nanostructure) for its unique cancer cell controlling behavior.Conventionally, single phases of TiO2 are used for targeted therapy and as drug carrier systems.In this research, we have shown a biomaterial that can control HeLa cells diligently using a combination of TiO, Ti3O and TiO2 phases when compared to fibroblast (NIH3T3) cells.MTOP-nanostructures are generated by varying the ionization energy in the vapor plume of the ultrashort pulse laser; this interaction with the material allows accurate tuning and composition of phases within the nanostructure. In addition, the lattice spacing of MTOP-nanostructures was analyzed as shown by HR-TEM investigations. An FESEM investigation of MTOP-nanostructures revealed a greater reduction of HeLa cells relative to fibroblast cells. Altered cell adhesion was followed by modulation of HeLa cell architecture with a significant reduction of actin stress fibers.The intricate combination of MTOP-nanostructures renders a biomaterial that can precisely alter HeLa cell but not fibroblast cell behavior, filling a void in the research for a biomaterial to modulate cancer cell behavior.

  14. Optical regulation of protein adsorption and cell adhesion by photoresponsive GaN nanowires.

    PubMed

    Li, Jingying; Han, Qiusen; Zhang, Ying; Zhang, Wei; Dong, Mingdong; Besenbacher, Flemming; Yang, Rong; Wang, Chen

    2013-10-09

    Interfacing nanowires with living cells is attracting more and more interest due to the potential applications, such as cell culture engineering and drug delivery. We report on the feasibility of using photoresponsive semiconductor gallium nitride (GaN) nanowires (NWs) for regulating the behaviors of biomolecules and cells at the nano/biointerface. The GaN NWs have been fabricated by a facile chemical vapor deposition method. The superhydrophobicity to superhydrophilicity transition of the NWs is achieved by UV illumination. Bovine serum albumin adsorption could be modulated by photoresponsive GaN NWs. Tunable cell detachment and adhesion are also observed. The mechanism of the NW surface responsible for modulating both of protein adsorption and cell adhesion is discussed. These observations of the modulation effects on protein adsorption and cell adhesion by GaN NWs could provide a novel approach toward the regulation of the behaviors of biomolecules and cells at the nano/biointerface, which may be of considerable importance in the development of high-performance semiconductor nanowire-based biomedical devices for cell culture engineering, bioseparation, and diagnostics.

  15. Charging a Capacitor with a Photovoltaic Module

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2017-01-01

    Charging a capacitor with a photovoltaic module is an experiment which reveals a lot about the modules characteristics. It is customary to represent these characteristics with an equivalent circuit whose elements represent its physical parameters. The behavior of a photovoltaic module is very similar to that of a single cell but the electric…

  16. Laminar-specific Scaling Down of Balanced Excitation and Inhibition in Auditory Cortex by Active Behavioral States

    PubMed Central

    Zhou, Mu; Liang, Feixue; Xiong, Xiaorui R.; Li, Lu; Li, Haifu; Xiao, Zhongju; Tao, Huizhong W.; Zhang, Li I.

    2014-01-01

    Cortical sensory processing is modulated by behavioral and cognitive states. How the modulation is achieved through impacting synaptic circuits remains largely unknown. In awake mouse auditory cortex, we reported that sensory-evoked spike responses of layer 2/3 (L2/3) excitatory cells were scaled down with preserved sensory tuning when animals transitioned from quiescence to active behaviors, while L4 and thalamic responses were unchanged. Whole-cell voltage-clamp recordings further revealed that tone-evoked synaptic excitation and inhibition exhibited a robust functional balance. Changes of behavioral state caused scaling down of excitation and inhibition at an approximately equal level in L2/3 cells, but no synaptic changes in L4 cells. This laminar-specific gain control could be attributed to an enhancement of L1–mediated inhibitory tone, with L2/3 parvalbumin inhibitory neurons suppressed as well. Thus, L2/3 circuits can adjust the salience of output in accordance with momentary behavioral demands while maintaining the sensitivity and quality of sensory processing. PMID:24747575

  17. Social context differentially modulates activity of two interneuron populations in an avian basal ganglia nucleus

    PubMed Central

    2016-01-01

    Basal ganglia circuits are critical for the modulation of motor performance across behavioral states. In zebra finches, a cortical-basal ganglia circuit dedicated to singing is necessary for males to adjust their song performance and transition between spontaneous singing, when they are alone (“undirected” song), and a performance state, when they sing to a female (“female-directed” song). However, we know little about the role of different basal ganglia cell types in this behavioral transition or the degree to which behavioral context modulates the activity of different neuron classes. To investigate whether interneurons in the songbird basal ganglia encode information about behavioral state, I recorded from two interneuron types, fast-spiking interneurons (FSI) and external pallidal (GPe) neurons, in the songbird basal ganglia nucleus area X during both female-directed and undirected singing. Both cell types exhibited higher firing rates, more frequent bursting, and greater trial-by-trial variability in firing when male zebra finches produced undirected songs compared with when they produced female-directed songs. However, the magnitude and direction of changes to the firing rate, bursting, and variability of spiking between when birds sat silently and when they sang undirected and female-directed song varied between FSI and GPe neurons. These data indicate that social modulation of activity important for eliciting changes in behavioral state is present in multiple cell types within area X and suggests that social interactions may adjust circuit dynamics during singing at multiple points within the circuit. PMID:27628208

  18. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    PubMed Central

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  19. Behavior related pauses in simple spike activity of mouse Purkinje cells are linked to spike rate modulation

    PubMed Central

    Cao, Ying; Maran, Selva K.; Dhamala, Mukesh; Jaeger, Dieter; Heck, Detlef H.

    2012-01-01

    Purkinje cells (PCs) in the mammalian cerebellum express high frequency spontaneous activity with average spike rates between 30 and 200 Hz. Cerebellar nuclear (CN) neurons receive converging input from many PCs resulting in a continuous barrage of inhibitory inputs. It has been hypothesized that pauses in PC activity trigger increases in CN spiking activity. A prediction derived from this hypothesis is that pauses in PC simple spike activity represent relevant behavioral or sensory events. Here we asked whether pauses in the simple spike activity of PCs related to either fluid licking or respiration, play a special role in representing information about behavior. Both behaviors are widely represented in cerebellar PC simple spike activity. We recorded PC activity in the vermis and lobus simplex of head fixed mice while monitoring licking and respiratory behavior. Using cross correlation and Granger causality analysis we examined whether short ISIs had a different temporal relation to behavior than long ISIs or pauses. Behavior related simple spike pauses occurred during low-rate simple spike activity in both licking and breathing related PCs. Granger causality analysis revealed causal relationships between simple spike pauses and behavior. However, the same results were obtained from an analysis of surrogate spike trains with gamma ISI distributions constructed to match rate modulations of behavior related Purkinje cells. Our results therefore suggest that the occurrence of pauses in simple spike activity does not represent additional information about behavioral or sensory events that goes beyond the simple spike rate modulations. PMID:22723707

  20. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  1. Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells

    PubMed Central

    Tian, Ang; Qin, Xiaofei; Wu, Anhua; Zhang, Hangzhou; Xu, Quan; Xing, Deguang; Yang, He; Qiu, Bo; Xue, Xiangxin; Zhang, Dongyong; Dong, Chenbo

    2015-01-01

    Cells respond to their surroundings through an interactive adhesion process that has direct effects on cell proliferation and migration. This research was designed to investigate the effects of TiO2 nanotubes with different topographies and structures on the biological behavior of cultured cells. The results demonstrated that the nanotube diameter, rather than the crystalline structure of the coatings, was a major factor for the biological behavior of the cultured cells. The optimal diameter of the nanotubes was 20 nm for cell adhesion, migration, and proliferation in both glioma and osteosarcoma cells. The expression levels of vitronectin and phosphor-focal adhesion kinase were affected by the nanotube diameter; therefore, it is proposed that the responses of vitronectin and phosphor-focal adhesion kinase to the nanotube could modulate cell fate. In addition, the geometry and size of the nanotube coating could regulate the degree of expression of acetylated α-tubulin, thus indirectly modulating cell migration behavior. Moreover, the expression levels of apoptosis-associated proteins were influenced by the topography. In conclusion, a nanotube diameter of 20 nm was the critical threshold that upregulated the expression level of Bcl-2 and obviously decreased the expression levels of Bax and caspase-3. This information will be useful for future biomedical and clinical applications. PMID:25848261

  2. Pou5f1-dependent EGF expression controls E-cad endocytosis, cell adhesion, and zebrafish epiboly movements

    PubMed Central

    Song, Sungmin; Eckerle, Stephanie; Onichtchouk, Daria; Marrs, James A.; Nitschke, Roland; Driever, Wolfgang

    2013-01-01

    Summary Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that in zebrafish MZspg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cad endosomal trafficking and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGFR may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other. PMID:23484854

  3. Soft Modular Robotic Cubes: Toward Replicating Morphogenetic Movements of the Embryo

    PubMed Central

    Mendoza-Garcia, Ricardo-Franco; Zagal, Juan Cristóbal

    2017-01-01

    In this paper we present a new type of simple, pneumatically actuated, soft modular robotic system that can reproduce fundamental cell behaviors observed during morphogenesis; the initial shaping stage of the living embryo. The fabrication method uses soft lithography for producing composite elastomeric hollow cubes and permanent magnets as passive docking mechanism. Actuation is achieved by controlling the internal pressurization of cubes with external micro air pumps. Our experiments show how simple soft robotic modules can serve to reproduce to great extend the overall mechanics of collective cell migration, delamination, invagination, involution, epiboly and even simple forms of self-reconfiguration. Instead of relying in complex rigid onboard docking hardware, we exploit the coordinated inflation/deflation of modules as a simple mechanism to detach/attach modules and even rearrange the spatial position of components. Our results suggest new avenues for producing inexpensive, yet functioning, synthetic morphogenetic systems and provide new tangible models of cell behavior. PMID:28060878

  4. Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells

    PubMed Central

    Popa, Laurentiu S.; Streng, Martha L.

    2017-01-01

    Abstract Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing. PMID:28413823

  5. Influence of Extracellular Matrix Proteins and Substratum Topography on Corneal Epithelial Cell Alignment and Migration

    PubMed Central

    Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul

    2013-01-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816

  6. Phagocytosis of Candida albicans Enhances Malignant Behavior of Murine Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ginsburg, Isaac; Fligiel, Suzanne E. G.; Kunkel, Robin G.; Riser, Bruce L.; Varani, James

    1987-12-01

    Murine tumor cells were induced to phagocytize either Candida albicans or group A streptococcal cells. The presence of microbial particles within the tumor cell cytoplasm had no effect on in vitro tumor cell growth. However, when Candida albicans-infected tumor cells were injected into syngeneic mice, they formed tumors that grew faster, invaded the surrounding normal tissue more rapidly and metastasized more rapidly than control tumor cells. Tumor cells infected with group A streptococcal particles did not grow faster or show increased malignant behavior. These data indicate that the in vivo behavior of malignant tumor cells can be modulated by microbial particles, which are often present in the microenvironment of the growing tumor.

  7. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

    PubMed Central

    Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.

    2012-01-01

    Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997

  8. Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling*

    PubMed Central

    Moreno, Estefanía; Andradas, Clara; Medrano, Mireia; Caffarel, María M.; Pérez-Gómez, Eduardo; Blasco-Benito, Sandra; Gómez-Cañas, María; Pazos, M. Ruth; Irving, Andrew J.; Lluís, Carme; Canela, Enric I.; Fernández-Ruiz, Javier; Guzmán, Manuel; McCormick, Peter J.; Sánchez, Cristina

    2014-01-01

    The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology. PMID:24942731

  9. Retroactivity in the Context of Modularly Structured Biomolecular Systems

    PubMed Central

    Pantoja-Hernández, Libertad; Martínez-García, Juan Carlos

    2015-01-01

    Synthetic biology has intensively promoted the technical implementation of modular strategies in the fabrication of biological devices. Modules are considered as networks of reactions. The behavior displayed by biomolecular systems results from the information processes carried out by the interconnection of the involved modules. However, in natural systems, module wiring is not a free-of-charge process; as a consequence of interconnection, a reactive phenomenon called retroactivity emerges. This phenomenon is characterized by signals that propagate from downstream modules (the modules that receive the incoming signals upon interconnection) to upstream ones (the modules that send the signals upon interconnection). Such retroactivity signals, depending of their strength, may change and sometimes even disrupt the behavior of modular biomolecular systems. Thus, analysis of retroactivity effects in natural biological and biosynthetic systems is crucial to achieve a deeper understanding of how this interconnection between functionally characterized modules takes place and how it impacts the overall behavior of the involved cell. By discussing the modules interconnection in natural and synthetic biomolecular systems, we propose that such systems should be considered as quasi-modular. PMID:26137457

  10. Failure propagation in multi-cell lithium ion batteries

    DOE PAGES

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; ...

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  11. Brain mast cells link the immune system to anxiety-like behavior

    PubMed Central

    Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae

    2008-01-01

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  12. Brain mast cells link the immune system to anxiety-like behavior.

    PubMed

    Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae

    2008-11-18

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.

  13. Solar cell and module performance assessment based on indoor calibration methods

    NASA Astrophysics Data System (ADS)

    Bogus, K.

    A combined space/terrestrial solar cell test calibration method that requires five steps and can be performed indoors is described. The test conditions are designed to qualify the cell or module output data in standard illumination and temperature conditions. Measurements are made of the short-circuit current, the open circuit voltage, the maximum power, the efficiency, and the spectral response. Standard sunlight must be replicated both in earth surface and AM0 conditions; Xe lamps are normally used for the light source, with spectral measurements taken of the light. Cell and module spectral response are assayed by using monochromators and narrow band pass monochromatic filters. Attention is required to define the performance characteristics of modules under partial shadowing. Error sources that may effect the measurements are discussed, as are previous cell performance testing and calibration methods and their effectiveness in comparison with the behaviors of satellite solar power panels.

  14. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  15. Nanotopographical Modulation of Cell Function through Nuclear Deformation

    PubMed Central

    Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong

    2016-01-01

    Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365

  16. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Quintana, Laura; López, Gabriela C; Somoza, Gustavo M; Silva, Ana C; Trudeau, Vance L

    2015-10-01

    Secretoneurin (SN) in the preoptic area and pituitary of mammals and fish has a conserved close association with the vasopressin and oxytocin systems, members of a peptide family that are key in the modulation of sexual and social behaviors. Here we show the presence of SN-immunoreactive cells and projections in the brain of the electric fish, Brachyhypopomus gauderio. Secretoneurin colocalized with vasotocin (AVT) and isotocin in cells and fibers of the preoptic area. In the rostral pars distalis of the pituitary, many cells were both SN and prolactin-positive. In the hindbrain, at the level of the command nucleus of the electric behavior (pacemaker nucleus; PN), some of SN-positive fibers colocalized with AVT. We also explored the potential neuromodulatory role of SN on electric behavior, specifically on the rate of the electric organ discharge (EOD) that signals arousal, dominance and subordinate status. Each EOD is triggered by the command discharge of the PN, ultimately responsible for the basal EOD rate. SN modulated diurnal basal EOD rate in freely swimming fish in a context-dependent manner; determined by the initial value of EOD rate. In brainstem slices, SN partially mimicked the in vivo behavioral effects acting on PN firing rate. Taken together, our results suggest that SN may regulate electric behavior, and that its effect on EOD rate may be explained by direct action of SN at the PN level through either neuroendocrine and/or endocrine mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    NASA Astrophysics Data System (ADS)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  18. Cell-type-specific role of ΔFosB in nucleus accumbens in modulating inter-male aggression.

    PubMed

    Aleyasin, Hossein; Flanigan, Meghan E; Golden, Sam A; Takahashi, Aki; Menard, Caroline; Pfau, Madeline L; Multer, Jacob; Pina, Jacqueline; McCabe, Kathryn A; Bhatti, Naemal; Hodes, Georgia E; Heshmati, Mitra; Neve, Rachael L; Nestler, Eric J; Heller, Elizabeth A; Russo, Scott J

    2018-06-11

    A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc)-a key reward region-in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1) expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior, without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward. Significance Statement: Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for the individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens (NAc) in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses. Copyright © 2018 the authors.

  19. Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae.

    PubMed

    Rohwedder, Astrid; Selcho, Mareike; Chassot, Bérénice; Thum, Andreas S

    2015-12-15

    All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae. © 2015 Wiley Periodicals, Inc.

  20. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less

  1. Selective modulation of cell response on engineered fractal silicon substrates

    PubMed Central

    Gentile, Francesco; Medda, Rebecca; Cheng, Ling; Battista, Edmondo; Scopelliti, Pasquale E.; Milani, Paolo; Cavalcanti-Adam, Elisabetta A.; Decuzzi, Paolo

    2013-01-01

    A plethora of work has been dedicated to the analysis of cell behavior on substrates with ordered topographical features. However, the natural cell microenvironment is characterized by biomechanical cues organized over multiple scales. Here, randomly rough, self-affinefractal surfaces are generated out of silicon,where roughness Ra and fractal dimension Df are independently controlled. The proliferation rates, the formation of adhesion structures, and the morphology of 3T3 murine fibroblasts are monitored over six different substrates. The proliferation rate is maximized on surfaces with moderate roughness (Ra ~ 40 nm) and large fractal dimension (Df ~ 2.4); whereas adhesion structures are wider and more stable on substrates with higher roughness (Ra ~ 50 nm) and lower fractal dimension (Df ~ 2.2). Higher proliferation occurson substrates exhibiting densely packed and sharp peaks, whereas more regular ridges favor adhesion. These results suggest that randomly roughtopographies can selectively modulate cell behavior. PMID:23492898

  2. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits

    PubMed Central

    Yavorska, Iryna; Wehr, Michael

    2016-01-01

    Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM) inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons. PMID:27746722

  3. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.

    PubMed

    Strowbridge, Ben W

    2010-02-11

    In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks. Copyright 2010 Elsevier Inc. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G.-H.; Pesaran, A.; Smith, K.

    The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

  5. Evaluation of a Treatment Approach Combining Nicotine Gum with Self-Guided Behavioral Treatments for Smoking Relapse Prevention.

    ERIC Educational Resources Information Center

    Killen, Joel D.; And Others

    1990-01-01

    Randomly assigned 1,218 smokers to cells in 4 (nicotine gum delivered ad lib, fixed regimen nicotine gum, placebo gum, no gum) x 3 (self-selected relapse prevention modules, randomly administered modules, no modules) design. Subjects receiving nicotine gum were more likely to be abstinent at 2- and 6-month followups. Fixed regimen accounted for…

  6. Sexy DEG/ENaC channels involved in gustatory detection of fruit fly pheromones.

    PubMed

    Pikielny, Claudio W

    2012-11-06

    Hydrocarbon pheromones on the cuticle of Drosophila melanogaster modulate the complex courtship behavior of males. Recently, three members of the degenerin/epithelial Na+ channel (DEG/ENaC) family of sodium channel subunits, Ppk25, Ppk23, and Ppk29 (also known as Nope), have been shown to function in gustatory perception of courtship-modulating contact pheromones. All three proteins are required for the activation of male courtship by female pheromones. Specific interactions between two of them have been demonstrated in cultured cells, suggesting that, in a subset of cells where they are coexpressed, these three subunits function within a common heterotrimeric DEG/ENaC channel. Such a DEG/ENaC channel may be gated by pheromones, either directly or indirectly, or alternatively may control the excitability of pheromone-sensing cells. In addition, these studies identify taste neurons that respond specifically to courtship-modulating pheromones and mediate their effects on male behavior. Two types of pheromone-sensing taste neurons, F and M cells, have been defined on the basis of their specific response to either female or male pheromones. These reports set the stage for the dissection of the molecular and cellular mechanisms that mediate gustatory detection of contact pheromones.

  7. TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.

    PubMed

    Palazuelos, Javier; Crawford, Howard C; Klingener, Michael; Sun, Bingru; Karelis, Jason; Raines, Elaine W; Aguirre, Adan

    2014-09-03

    Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Genetic deletion of TACE in oligodendrocyte progenitor cells (OPs) induces premature cell cycle exit and reduces OL cell survival during postnatal myelination of the subcortical white matter (SCWM). These cellular and molecular changes lead to deficits in SCWM myelination and motor behavior. Mechanistically, TACE regulates oligodendrogenesis by modulating the shedding of EGFR ligands TGFα and HB-EGF and, consequently, EGFR signaling activation in OL lineage cells. Constitutive TACE depletion in OPs in vivo leads to similar alterations in CNS myelination and motor behavior as to what is observed in the EGFR hypofunctional mouse line EgfrWa2. EGFR overexpression in TACE-deficient OPs restores OL survival and development. Our study reveals an essential function of TACE in oligodendrogenesis, and demonstrates how this molecule modulates EGFR signaling activation to regulate postnatal CNS myelination. Copyright © 2014 the authors 0270-6474/14/3411884-13$15.00/0.

  8. Remaining useful life assessment of lithium-ion batteries in implantable medical devices

    NASA Astrophysics Data System (ADS)

    Hu, Chao; Ye, Hui; Jain, Gaurav; Schmidt, Craig

    2018-01-01

    This paper presents a prognostic study on lithium-ion batteries in implantable medical devices, in which a hybrid data-driven/model-based method is employed for remaining useful life assessment. The method is developed on and evaluated against data from two sets of lithium-ion prismatic cells used in implantable applications exhibiting distinct fade performance: 1) eight cells from Medtronic, PLC whose rates of capacity fade appear to be stable and gradually decrease over a 10-year test duration; and 2) eight cells from Manufacturer X whose rates appear to be greater and show sharp increase after some period over a 1.8-year test duration. The hybrid method enables online prediction of remaining useful life for predictive maintenance/control. It consists of two modules: 1) a sparse Bayesian learning module (data-driven) for inferring capacity from charge-related features; and 2) a recursive Bayesian filtering module (model-based) for updating empirical capacity fade models and predicting remaining useful life. A generic particle filter is adopted to implement recursive Bayesian filtering for the cells from the first set, whose capacity fade behavior can be represented by a single fade model; a multiple model particle filter with fixed-lag smoothing is proposed for the cells from the second data set, whose capacity fade behavior switches between multiple fade models.

  9. Walking modulates speed sensitivity in Drosophila motion vision.

    PubMed

    Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek

    2010-08-24

    Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Material Cues as Potent Regulators of Epigenetics and Stem Cell Function.

    PubMed

    Crowder, Spencer W; Leonardo, Vincent; Whittaker, Thomas; Papathanasiou, Peter; Stevens, Molly M

    2016-01-07

    Biophysical signals act as potent regulators of stem cell function, lineage commitment, and epigenetic status. In recent years, synthetic biomaterials have been used to study a wide range of outside-in signaling events, and it is now well appreciated that material cues modulate the epigenome. Here, we review the role of extracellular signals in guiding stem cell behavior via epigenetic regulation, and we stress the role of physicochemical material properties as an often-overlooked modulator of intracellular signaling. We also highlight promising new research tools for ongoing interrogation of the stem cell-material interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Behavior-dependent specialization of identified hippocampal interneurons

    PubMed Central

    Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2012-01-01

    A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613

  12. Density fingering in spatially modulated Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Tamara; Horvath, Dezso; Toth, Agota

    Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.

  13. Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors

    NASA Astrophysics Data System (ADS)

    Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan

    The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.

  14. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    PubMed

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  15. Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network

    PubMed Central

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior. PMID:22438838

  16. Rate of deoxygenation modulates rheologic behavior of sickle red blood cells at a given mean corpuscular hemoglobin concentration.

    PubMed

    Kaul, D K; Liu, X D

    1999-01-01

    Although the mean corpuscular hemoglobin concentration (MCHC) plays a dominant role in the rheologic behavior of deoxygenated density-defined sickle red blood cells (SS RBCs), previous studies have not explored the relationship between the rate of deoxygenation and the bulk viscosity of SS RBCs at a given MCHC. In the present study, we have subjected density-defined SS classes (i.e., medium-density SS4 and dense SS5 discocytes) to varying deoxygenation rates. This approach has allowed us to minimize the effects of SS RBC heterogeneity and investigate the effect of deoxygenation rates at a given MCHC. The results show that the percentages of granular cells, classic sickle cells and holly leaf forms in deoxygenated samples are significantly influenced by the rate of deoxygenation and the MCHC of a given discocyte subpopulation. Increasing the deoxygenation rate using high K+ medium (pH 6.8), results in a greater percentage of granular cells in SS4 suspensions, accompanied by a pronounced increase in the bulk viscosity of these cells compared with gradually deoxygenated samples (mainly classic sickle cells and holly leaf forms). The effect of MCHC becomes apparent when SS5 dense cells are subjected to varying deoxygenation rates. At a given deoxygenation rate, SS5 dense discocytes show a greater increase in the percentage of granular cells than that observed for SS4 RBCs. Also, at a given deoxygenation rate, SS5 suspensions exhibit a higher viscosity than SS4 suspensions with fast deoxygenation resulting in maximal increase in viscosity. Although MCHC is the main determinant of SS RBC rheologic behavior, these studies demonstrate for the first time that at a given MCHC, the rate of deoxygenation (hence HbS polymerization rates) further modulates the rheologic behavior of SS RBCs. Thus, both MCHC and the deoxygenation rate may contribute to microcirculatory flow behavior of SS RBCs.

  17. Severe Accident Test Station Design Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Mary A.; Yan, Yong; Howell, Michael

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure tomore » provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.« less

  18. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    PubMed

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei

    PubMed Central

    Brunert, Daniela; Tsuno, Yusuke; Rothermel, Markus; Shipley, Michael T.

    2016-01-01

    Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo. Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1–4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo. These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior. PMID:27335411

  20. Nonlinearity in cytoplasm viscosity can generate an essential symmetry breaking in cellular behaviors.

    PubMed

    Tachikawa, Masashi; Mochizuki, Atsushi

    2015-01-07

    The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Direct observation of frequency modulated transcription in single cells using light activation

    PubMed Central

    Larson, Daniel R; Fritzsch, Christoph; Sun, Liang; Meng, Xiuhau; Lawrence, David S; Singer, Robert H

    2013-01-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI: http://dx.doi.org/10.7554/eLife.00750.001 PMID:24069527

  2. Segregation of Visual Response Properties in the Mouse Superior Colliculus and Their Modulation during Locomotion

    PubMed Central

    2017-01-01

    The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858

  3. Hippocampal cell proliferation regulation by repeated stress and antidepressants.

    PubMed

    Chen, Hu; Pandey, Ghanshyam N; Dwivedi, Yogesh

    2006-06-26

    A recent hypothesis suggests reduced hippocampal neurogenesis in depression. Here, we examined cell proliferation in the dentate gyrus and the subventricular zone of rats given repeated stress, a paradigm that prolongs learned helplessness behavior, and whether antidepressants modulate the learned helplessness-associated altered cell proliferation. Decreased cell proliferation, number of clusters, and cells/cluster were noted in the dentate gyrus, but not in the subventricular zone, of learned helplessness rats. Both fluoxetine and desipramine reversed the learned helplessness behavior and increased the cell proliferation and the number of clusters in learned helplessness rats; only fluoxetine did so significantly. Both fluoxetine and desipramine significantly increased the number of cells/cluster. Our results suggest modified hippocampal neurogenesis in prolonged depression and in the mechanism of antidepressant action.

  4. Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics

    NASA Astrophysics Data System (ADS)

    Zmurchok, Cole; Bhaskar, Dhananjay; Edelstein-Keshet, Leah

    2018-07-01

    Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal model (1 GTPase coupled to a Kelvin–Voigt element), we show that two-way feedback between signaling (‘RhoA’) and mechanical tension (stretching) leads to a spectrum of cell behaviors, including contracted or relaxed cells, and cells that oscillate between these extremes. When such ‘model cells’ are connected to one another in a row or in a 2D sheet (‘epithelium’), we observe waves of contraction/relaxation and GTPase activity sweeping through the tissue. The minimal model lends itself to full bifurcation analysis, and suggests a mechanism that explains behavior observed in the context of development and collective cell behavior.

  5. Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila.

    PubMed

    Pooryasin, Atefeh; Fiala, André

    2015-09-16

    Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect aspects of mating behavior, but not food uptake. This demonstrates that individual serotoninergic neurons can modulate distinct types of behavior selectively. Copyright © 2015 the authors 0270-6474/15/3512792-21$15.00/0.

  6. Integrative neurochemistry and neurobiology of social recognition and behavior analyzed with respect to CD38-dependent brain oxytocin secretion.

    PubMed

    Salmina, Alla B; Lopatina, Olga; Kuvacheva, Natalia V; Higashida, Haruhiro

    2013-01-01

    This review summarizes the literature and our own data regarding the role of NAD⁺-glycohydrolase/CD38-controlled molecular mechanisms of hypothalamic and pituitary oxytocin secretion in social behavior regulation. Current approaches to the modulation of both CD38 expression and brain cell activity that represent prospective treatments for disorders associated with altered social behavior are discussed.

  7. A model of the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva.

    PubMed

    Weinstein, Nathan; Ortiz-Gutiérrez, Elizabeth; Muñoz, Stalin; Rosenblueth, David A; Álvarez-Buylla, Elena R; Mendoza, Luis

    2015-03-13

    There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.

  8. Guiding principle for crystalline Si photovoltaic modules with high tolerance to acetic acid

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Hara, Yukiko

    2018-04-01

    A guiding principle for highly reliable crystalline Si photovoltaic modules, especially those with high tolerance to acetic acid generated by hydrolysis reaction between water vapor and an ethylene-vinyl acetate (EVA) encapsulant, is proposed. Degradation behavior evaluated by the damp heat test strongly depends on Ag finger electrodes and also EVA encapsulants. The acetic acid concentration in EVA on the glass side directly determines the degradation behavior. The most important factor for high tolerance is the type of Ag finger electrode materials when using an EVA encapsulant. Photovoltaic modules using newly developed crystalline Si cells with improved Ag finger electrode materials keep their maximum power of 80% of the initial value even after the damp heat test at 85 °C and 85% relative humidity for 10000 h. The pattern of dark regions in electroluminescence images is also discussed on the basis of the dynamics of acetic acid in the modules.

  9. Sampling-based Bayesian approaches reveal the importance of quasi-bistable behavior in cellular decision processes on the example of the MAPK signaling pathway in PC-12 cell lines.

    PubMed

    Jensch, Antje; Thomaseth, Caterina; Radde, Nicole E

    2017-01-25

    Positive and negative feedback loops are ubiquitous motifs in biochemical signaling pathways. The mitogen-activated protein kinase (MAPK) pathway module is part of many distinct signaling networks and comprises several of these motifs, whose functioning depends on the cell line at hand and on the particular context. The maintainance of specificity of the response of the MAPK module to distinct stimuli has become a key paradigm especially in PC-12 cells, where the same module leads to different cell fates, depending on the stimulating growth factor. This cell fate is regulated by differences in the ERK (MAPK) activation profile, which shows a transient response upon stimulation with EGF, while the response is sustained in case of NGF. This behavior was explained by different effective network topologies. It is widely believed that this sustained response requires a bistable system. In this study we present a sampling-based Bayesian model analysis on a dataset, in which PC-12 cells have been stimulated with different growth factors. This is combined with novel analysis methods to investigate the role of feedback interconnections to shape ERK response. Results strongly suggest that, besides bistability, an additional effect called quasi-bistability can contribute to explain the observed responses of the system to different stimuli. Quasi-bistability is the ability of a monostable system to maintain two distinct states over a long time period upon a transient signal, which is also related to positive feedback, but cannot be detected by standard steady state analysis methods. Although applied on a specific example, our framework is generic enough to be also relevant for other regulatory network modeling studies that comprise positive feedback to explain cellular decision making processes. Overall, this study advices to focus not only on steady states, but also to take transient behavior into account in the analysis.

  10. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization

    DOE PAGES

    Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.; ...

    2018-01-02

    To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less

  11. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mengjin; Kim, Dong Hoe; Klein, Talysa R.

    To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules withmore » a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.« less

  12. Potential roles of cholinergic modulation in the neural coding of location and movement speed

    PubMed Central

    Dannenberg, Holger; Hinman, James R.; Hasselmo, Michael E.

    2016-01-01

    Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations, via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks. PMID:27677935

  13. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    PubMed

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.

  14. Construction and analysis of a modular model of caspase activation in apoptosis

    PubMed Central

    Harrington, Heather A; Ho, Kenneth L; Ghosh, Samik; Tung, KC

    2008-01-01

    Background A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins. Results A model of caspase activation is constructed and analyzed. The apoptosis signaling network is simplified through modularization methodologies and equilibrium abstractions for three functional modules. The mathematical model is composed of a system of ordinary differential equations which is numerically solved. Multiple linear regression analysis investigates the role of each module and reduced models are constructed to identify key contributions of the extrinsic and intrinsic pathways in triggering apoptosis for different cell lines. Conclusion Through linear regression techniques, we identified the feedbacks, dissociation of complexes, and negative regulators as the key components in apoptosis. The analysis and reduced models for our model formulation reveal that the chosen cell lines predominately exhibit strong extrinsic caspase, typical of type I cell, behavior. Furthermore, under the simplified model framework, the selected cells lines exhibit different modes by which caspase activation may occur. Finally the proposed modularized model of apoptosis may generalize behavior for additional cells and tissues, specifically identifying and predicting components responsible for the transition from type I to type II cell behavior. PMID:19077196

  15. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    PubMed

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Motile membrane protrusions regulate cell-cell adhesion and migration of olfactory ensheathing glia.

    PubMed

    Windus, Louisa C E; Claxton, Christina; Allen, Chelsea L; Key, Brian; St John, James A

    2007-12-01

    Olfactory ensheathing cells (OECs) are candidates for therapeutic approaches for neural regeneration due to their ability to assist axon regrowth in central nervous system lesion models. However, little is understood about the processes and mechanisms underlying migration of these cells. We report here that novel lamellipodial protrusions, termed lamellipodial waves, are integral to OEC migration. Time-lapse imaging of migrating OECs revealed that these highly dynamic waves progress along the shaft of the cells and are crucial for mediating cell-cell adhesion. Without these waves, cell-cell adhesion does not occur and migrational rates decline. The activity of waves is modulated by both glial cell line-derived neurotrophic factor and inhibitors of the JNK and SRC kinases. Furthermore, the activity of lamellipodial waves can be modulated by Mek1, independently of leading edge activity. The ability to selectively regulate cell migration via lamellipodial waves has implications for manipulating the migratory behavior of OECs during neural repair. (c) 2007 Wiley-Liss, Inc.

  17. Light Activated Escape Circuits: A Behavior and Neurophysiology Lab Module using Drosophila Optogenetics

    PubMed Central

    Titlow, Josh S.; Johnson, Bruce R.; Pulver, Stefan R.

    2015-01-01

    The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion. PMID:26240526

  18. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  19. Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABAA Receptor Positive Allosteric Modulator

    PubMed Central

    Piantadosi, Sean C.; French, Beverly J.; Poe, Michael M.; Timić, Tamara; Marković, Bojan D.; Pabba, Mohan; Seney, Marianne L.; Oh, Hyunjung; Orser, Beverley A.; Savić, Miroslav M.; Cook, James M.; Sibille, Etienne

    2016-01-01

    Rationale: Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2’F-R-CH3 (denoted “α5-PAM”), a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with α5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as “behavioral emotionality”) across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities. PMID:27920723

  20. Strong Recurrent Networks Compute the Orientation-Tuning of Surround Modulation in Primate V1

    PubMed Central

    Shushruth, S.; Mangapathy, Pradeep; Ichida, Jennifer M.; Bressloff, Paul C.; Schwabe, Lars; Angelucci, Alessandra

    2012-01-01

    In macaque primary visual cortex (V1) neuronal responses to stimuli inside the receptive field (RF) are modulated by stimuli in the RF surround. This modulation is orientation-specific. Previous studies suggested that for some cells this specificity may not be fixed, but changes with the stimulus orientation presented to the RF. We demonstrate, in recording studies, that this tuning behavior is instead highly prevalent in V1 and, in theoretical work, that it arises only if V1 operates in a regime of strong local recurrence. Strongest surround suppression occurs when the stimuli in the RF and the surround are iso-oriented, and strongest facilitation when the stimuli are cross-oriented. This is the case even when the RF is sub-optimally activated by a stimulus of non-preferred orientation, but only if this stimulus can activate the cell when presented alone. This tuning behavior emerges from the interaction of lateral inhibition (via the surround pathways), which is tuned to the RF’s preferred orientation, with weakly-tuned, but strong, local recurrent connections, causing maximal withdrawal of recurrent excitation at the feedforward input orientation. Thus, horizontal and feedback modulation of strong recurrent circuits allows the tuning of contextual effects to change with changing feedforward inputs. PMID:22219292

  1. Modulation and transmission of sweet taste information for energy homeostasis.

    PubMed

    Sanematsu, Keisuke; Horio, Nao; Murata, Yoshihiro; Yoshida, Ryusuke; Ohkuri, Tadahiro; Shigemura, Noriatsu; Ninomiya, Yuzo

    2009-07-01

    Perception of sweet taste is important for animals to detect external energy source of calories. In mice, sweet-sensitive cells possess a leptin receptor. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. Data from our recent studies indicate that leptin may also modulate sweet taste sensation in humans with a diurnal variation in sweet sensitivity. This leptin modulation of sweet taste information to the brain may influence individuals' preference and ingestive behavior, thereby playing important roles in regulation of energy homeostasis.

  2. Stimulation of the Locus Ceruleus Modulates Signal-to-Noise Ratio in the Olfactory Bulb.

    PubMed

    Manella, Laura C; Petersen, Nicholas; Linster, Christiane

    2017-11-29

    Norepinephrine (NE) has been shown to influence sensory, and specifically olfactory processing at the behavioral and physiological levels, potentially by regulating signal-to-noise ratio (S/N). The present study is the first to look at NE modulation of olfactory bulb (OB) in regards to S/N in vivo We show, in male rats, that locus ceruleus stimulation and pharmacological infusions of NE into the OB modulate both spontaneous and odor-evoked neural responses. NE in the OB generated a non-monotonic dose-response relationship, suppressing mitral cell activity at high and low, but not intermediate, NE levels. We propose that NE enhances odor responses not through direct potentiation of the afferent signal per se, but rather by reducing the intrinsic noise of the system. This has important implications for the ways in which an animal interacts with its olfactory environment, particularly as the animal shifts from a relaxed to an alert behavioral state. SIGNIFICANCE STATEMENT Sensory perception can be modulated by behavioral states such as hunger, fear, stress, or a change in environmental context. Behavioral state often affects neural processing via the release of circulating neurochemicals such as hormones or neuromodulators. We here show that the neuromodulator norepinephrine modulates olfactory bulb spontaneous activity and odor responses so as to generate an increased signal-to-noise ratio at the output of the olfactory bulb. Our results help interpret and improve existing ideas for neural network mechanisms underlying behaviorally observed improvements in near-threshold odor detection and discrimination. Copyright © 2017 the authors 0270-6474/17/3711605-11$15.00/0.

  3. Graphene oxide assisted synthesis of GaN nanostructures for reducing cell adhesion.

    PubMed

    Yang, Rong; Zhang, Ying; Li, Jingying; Han, Qiusen; Zhang, Wei; Lu, Chao; Yang, Yanlian; Dong, Hongwei; Wang, Chen

    2013-11-21

    We report a general approach for the synthesis of large-scale gallium nitride (GaN) nanostructures by the graphene oxide (GO) assisted chemical vapor deposition (CVD) method. A modulation effect of GaN nanostructures on cell adhesion has been observed. The morphology of the GaN surface can be controlled by GO concentrations. This approach, which is based on the predictable choice of the ratio of GO to catalysts, can be readily extended to the synthesis of other materials with controllable nanostructures. Cell studies show that GaN nanostructures reduced cell adhesion significantly compared to GaN flat surfaces. The cell-repelling property is related to the nanostructure and surface wettability. These observations of the modulation effect on cell behaviors suggest new opportunities for novel GaN nanomaterial-based biomedical devices. We believe that potential applications will emerge in the biomedical and biotechnological fields.

  4. Planarians as a Model to Assess In Vivo the Role of Matrix Metalloproteinase Genes during Homeostasis and Regeneration

    PubMed Central

    Isolani, Maria Emilia; Abril, Josep F.; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies. PMID:23405188

  5. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration.

    PubMed

    Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.

  6. Neurofibromin Modulates Adult Hippocampal Neurogenesis and Behavioral Effects of Antidepressants

    PubMed Central

    Li, Yun; Li, Yanjiao; McKay, Renée M.; Riethmacher, Dieter; Parada, Luis F.

    2012-01-01

    Neurogenesis persists in the rodent dentate gyrus (DG) throughout adulthood but declines with age and stress. Neural progenitor cells (NPCs) residing in the subgranular zone of the DG are regulated by an array of growth factors and respond to the microenvironment, adjusting their proliferation level to determine the rate of neurogenesis. Here we report that genetic deletion of neurofibromin (Nf1), a tumor suppressor with RAS-GAP activity,in adult NPCs enhanced DG proliferation and increased generation of new neurons in mice. Nf1 loss-associated neurogenesis had the functional effect of enhancing behavioral responses to subchronic antidepressants and, over time, led to spontaneous antidepressive-like behaviors. Thus, our findings establish an important role for the Nf1-Ras pathway in regulating adult hippocampal neurogenesis, and demonstrate that activation of adult NPCs is sufficient to modulate depression- and anxiety-like behaviors. PMID:22399775

  7. Multiscale Modeling of Cardiac Cellular Energetics

    PubMed Central

    BASSINGTHWAIGHTE, JAMES B.; CHIZECK, HOWARD J.; ATLAS, LES E.; QIAN, HONG

    2010-01-01

    Multiscale modeling is essential to integrating knowledge of human physiology starting from genomics, molecular biology, and the environment through the levels of cells, tissues, and organs all the way to integrated systems behavior. The lowest levels concern biophysical and biochemical events. The higher levels of organization in tissues, organs, and organism are complex, representing the dynamically varying behavior of billions of cells interacting together. Models integrating cellular events into tissue and organ behavior are forced to resort to simplifications to minimize computational complexity, thus reducing the model’s ability to respond correctly to dynamic changes in external conditions. Adjustments at protein and gene regulatory levels shortchange the simplified higher-level representations. Our cell primitive is composed of a set of subcellular modules, each defining an intracellular function (action potential, tricarboxylic acid cycle, oxidative phosphorylation, glycolysis, calcium cycling, contraction, etc.), composing what we call the “eternal cell,” which assumes that there is neither proteolysis nor protein synthesis. Within the modules are elements describing each particular component (i.e., enzymatic reactions of assorted types, transporters, ionic channels, binding sites, etc.). Cell subregions are stirred tanks, linked by diffusional or transporter-mediated exchange. The modeling uses ordinary differential equations rather than stochastic or partial differential equations. This basic model is regarded as a primitive upon which to build models encompassing gene regulation, signaling, and long-term adaptations in structure and function. During simulation, simpler forms of the model are used, when possible, to reduce computation. However, when this results in error, the more complex and detailed modules and elements need to be employed to improve model realism. The processes of error recognition and of mapping between different levels of model form complexity are challenging but are essential for successful modeling of large-scale systems in reasonable time. Currently there is to this end no established methodology from computational sciences. PMID:16093514

  8. Dynamic carrier transport modulation for constructing advanced devices with improved performance by piezotronic and piezo-phototronic effects: a brief review

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Pan, Haixi; Li, Chuanyu; Zhang, Lili; Yan, Shuai; Zhang, Wei; Yao, Jia; Tang, Yuguo; Yang, Hongbo; Wu, Yihui; Feng, Liping; Zhou, Lianqun

    2017-08-01

    Carrier generation, transport, separation, and recombination behaviors can be modulated for improving the performance of semiconductor devices by using piezotronic and piezo-phototronic effects with creating piezopotential in crystals based on non-centrosymmetric semiconductor materials such as group II-VI and III-V semiconductors and transition metal dichalcogenides (TMDCs), which have emerged as attractive materials for electronic/photonic applications because of their novel properties. Until now, much effort has been devoted to improving the performance of devices based on the aforementioned materials through modulation of the carrier behavior. However, due to existing drawbacks, it has been difficult to further enhance the device performance for a built structure. However, effective exploration of the piezotronic and piezo-phototronic effects in these semiconducting materials could pave the way to the realization of high-performance devices. In general, the effective modulation of carrier behavior dynamically in devices such as light-emitting diodes, photodetectors, solar cells, nanogenerators, and so on, remains a key challenge. Due to the polarization of ions in semiconductor materials with noncentral symmetry under external strain, a piezopotential is created considering piezotronic and piezo-photoronic effects, which could dynamically modulate charge carrier transport behaviors across p-n junctions or metal-semiconductor interfaces. Through a combination of these effects and semiconductor properties, the performance of the related devices could be improved and new types of devices such as piezoelectric field-effect transistors and sensors have emerged, with potential applications in self-driven devices for effective energy harvesting and biosensing with high sensitivity, which are different from those traditionally designed and may have potential applications in strained triggered devices. The objective of this review is to briefly introduce the corresponding mechanisms for modulating carrier behavior on the basis of piezotronic and piezo-phototronic effects in materials such as group II-VI and group III-V semiconductors and TMDCs, as well as to discuss possible solutions to effectively enhance the performance of the devices via carrier modulation.

  9. Is there a geometric module for spatial orientation? Insights from a rodent navigation model.

    PubMed

    Sheynikhovich, Denis; Chavarriaga, Ricardo; Strösslin, Thomas; Arleo, Angelo; Gerstner, Wulfram

    2009-07-01

    Modern psychological theories of spatial cognition postulate the existence of a geometric module for reorientation. This concept is derived from experimental data showing that in rectangular arenas with distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference for the geometric (arena shape) over the nongeometric (landmarks) cues. Moreover, sensitivity of hippocampal cell firing to changes in the environment layout was taken in support of the geometric module hypothesis. Using a computational model of rat navigation, the authors proposed and tested the alternative hypothesis that the influence of spatial geometry on both behavioral and neuronal levels can be explained by the properties of visual features that constitute local views of the environment. Their modeling results suggest that the pattern of diagonal errors observed in reorientation tasks can be understood by the analysis of sensory information processing that underlies the navigation strategy employed to solve the task. In particular, 2 navigation strategies were considered: (a) a place-based locale strategy that relies on a model of grid and place cells and (b) a stimulus-response taxon strategy that involves direct association of local views with action choices. The authors showed that the application of the 2 strategies in the reorientation tasks results in different patterns of diagonal errors, consistent with behavioral data. These results argue against the geometric module hypothesis by providing a simpler and biologically more plausible explanation for the related experimental data. Moreover, the same model also describes behavioral results in different types of water-maze tasks. Copyright (c) 2009 APA, all rights reserved.

  10. Inflammatory Th17 cells promote depression-like behavior in mice

    PubMed Central

    Beurel, Eléonore; Harrington, Laurie E.; Jope, Richard S.

    2012-01-01

    Background Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact CNS functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models Th17 cells promote susceptibility to depression-like behaviors. Methods Behavioral characteristics were measured in male mice administered Th17 cells, CD4+ cells, or vehicle, and in RORγT+/GFP mice or male mice treated with RORγT inhibitor or anti-IL-17A antibodies. Results Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-IL-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. Conclusions These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. PMID:23174342

  11. Effects of ZnSO4-induced peripheral anosmia on zebrafish behavior and physiology.

    PubMed

    Abreu, Murilo S; Giacomini, Ana C V V; Rodriguez, Rubens; Kalueff, Allan V; Barcellos, Leonardo J G

    2017-03-01

    Olfaction plays a key role in modulating behavioral and physiological responses of various animal species, including fishes. Olfactory deficits can be induced in fish experimentally, and utilized to examine the role of olfaction in their normal and pathological behaviors. Here, we examine whether experimental anosmia, evoked by ZnSO 4 in adult zebrafish can be associated with behavioral and/or physiological responses. We show that experimental ZnSO 4 -induced anosmia caused acute, but not prolonged, anxiogenic-like effects on zebrafish behavior tested in the novel tank test. The procedure also elevated whole-body cortisol levels in zebrafish. Moreover, ZnSO4 treatment, but not sham, produced damage to olfactory epithelium, inducing overt basal cell vacuolization and intercellular edema. The loss of olfaction, assessed by the fish food preference behavior in the aquatic Y-maze, was present 1h, but not 24h, after the treatment. Collectively, this suggests that transient experimental anosmia by ZnSO 4 modulates zebrafish behavior and olfaction, which can be used to evoke and assess their stress-related anxiety-like states. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Behavioral effects of heavy ions and protons and potential countermeasure agents

    NASA Astrophysics Data System (ADS)

    Vazquez, M.; Gatley, J.; Bruneus, M.; Koslosky, S.; Billups, A.

    Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56 Fe, which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Exposure to HZE radiation may therefore cause progressive deterioration of brain function, adding to other inescapable damage involved in normal aging. We propose a study of the hypothesis that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron and silicon particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Our principal goal is to examine the neurological effects of high-LET radiation on C57BL/6 mice using a series of behavioral tests to unveil the temporal expression of altered behaviors in the radiation response, as well as the means, which can modulate these responses. The studies planned in this project are designed to: 1) Characterize the behavioral consequences after exposure to low-fluences of heavy ions and protons on C57BL/6 mice. The main behavioral endpoints to be used in these studies are locomotor activity to evaluate the integrity of striatal dopaminergic pathways, and spatial reference memory to probe hippocampal cholinergic pathways. 2) Characterize the neurochemical and structural changes induced by heavy ions and protons. 3) To develop countermeasures to protect neural cell populations exposed to low fluences of heavy ions and protons. The project will test methods to protect injured neural cells based on their molecular and cellular mechanisms that may regulate neural cell survival in the central nervous system. Among the methods that will be studied is the direct administration of neuroprotective molecules as well as the modulation of apoptotic pathways by pharmacological manipulation. The effects of 3 different neuro/radioprotectors (GM1, melatonin and PTF-) on the levels of radiation induced neurochemical and structural damage will be compared with the level of behavioral alterations to determine a cause/effect relationship

  13. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein.

    PubMed

    Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H

    2013-10-25

    Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.

  14. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  15. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiemann, H.; Bogus, K.P.

    The behavior of solar cell modules at high voltages in a surrounding simulated LEO plasma has been characterized over an applied voltage range from -700 to +500 V. Measurements were obtained in a large chamber under high vacuum using argon ions from a Kaufman source to generate a high-density plasma of up to 10 to the 6th/cu cm. The results suggest that secondary electrons contribute to the anomalous current increase noted at positive module voltages above 300 V. The surface potential on the coverglasses of the solar cells was shown to increase to high values only in the vicinity ofmore » the interconnectors. 27 references.« less

  17. An Autonomous BMP2 Regulatory Element in Mesenchymal Cells

    PubMed Central

    Kruithof, Boudewijn P.T.; Fritz, David T.; Liu, Yijun; Garsetti, Diane E.; Frank, David B.; Pregizer, Steven K.; Gaussin, Vinciane; Mortlock, Douglas P.; Rogers, Melissa B.

    2014-01-01

    BMP2 is a morphogen that controls mesenchymal cell differentiation and behavior. For example, BMP2 concentration controls the differentiation of mesenchymal precursors into myocytes, adipocytes, chondrocytes, and osteoblasts. Sequences within the 3′untranslated region (UTR) of the Bmp2 mRNA mediate a post-transcriptional block of protein synthesis. Interaction of cell and developmental stage-specific trans-regulatory factors with the 3′UTR is a nimble and versatile mechanism for modulating this potent morphogen in different cell types. We show here, that an ultra-conserved sequence in the 3′UTR functions independently of promoter, coding region, and 3′UTR context in primary and immortalized tissue culture cells and in transgenic mice. Our findings indicate that the ultra-conserved sequence is an autonomously functioning post-transcriptional element that may be used to modulate the level of BMP2 and other proteins while retaining tissue specific regulatory elements. PMID:21268088

  18. Cell–material interactions on biphasic polyurethane matrix

    PubMed Central

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  19. Memory trace replay: the shaping of memory consolidation by neuromodulation

    PubMed Central

    Atherton, Laura A.; Dupret, David; Mellor, Jack R.

    2015-01-01

    The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed. PMID:26275935

  20. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.

    PubMed

    Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A

    2015-09-30

    Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.

  1. Neural and Behavioral Correlates of PTSD and Alcohol Use

    DTIC Science & Technology

    2014-12-01

    monoamines to the amygdala arise from monoaminergic cell body regions in the brainstem. Specifically, the dorsal raphe nucleus (dRN) provides 5- HT ... effects of 5- HT manipulations within the different amygdala subregions across several well-validated tests of anxiety-like behaviors will better...antipsychotics also have high affinity for 5- HT receptors, the contribution of DA modulation to their anxiolytic effects in humans is currently unknown

  2. Nanofiber Orientation and Surface Functionalization Modulate Human Mesenchymal Stem Cell Behavior In Vitro

    PubMed Central

    Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.

    2014-01-01

    Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454

  3. Inflammatory T helper 17 cells promote depression-like behavior in mice.

    PubMed

    Beurel, Eléonore; Harrington, Laurie E; Jope, Richard S

    2013-04-01

    Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact central nervous system functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models, Th17 cells promote susceptibility to depression-like behaviors. Behavioral characteristics were measured in male mice administered Th17 cells, CD4(+) cells, or vehicle and in retinoid-related orphan receptor-γT (RORγT)(+/GFP) mice or male mice treated with RORγT inhibitor or anti-interleukin-17A antibodies. Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-interleukin-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression

    PubMed Central

    Hao, Tong; Zhou, Jin; Lü, Shuanghong; Yang, Boguang; Wang, Yan; Fang, Wancai; Jiang, Xiaoxia; Lin, Qiuxia; Li, Junjie; Wang, Changyong

    2016-01-01

    Zero-dimensional fullerenes can modulate the biological behavior of a variety of cell lines. However, the effects and molecular mechanisms of proliferation and cardiomyogenic differentiation in brown adipose-derived stem cells (BADSCs) are still unclear. In this study, we report the initial biological effects of fullerene-C60 on BADSCs at different concentrations. Results suggest that fullerene-C60 has no cytotoxic effects on BADSCs even at a concentration of 100 μg/mL. Fullerene-C60 improves the MAPK expression level and stem cell survival, proliferation, and cardiomyogenesis. Further, we found that the fullerene-C60 modulates cardiomyogenic differentiation. Fullerene-C60 improves the expression of cardiomyocyte-specific proteins (cTnT and α-sarcomeric actinin). At elevated concentration, fullerene-C60 reduces the incidence of diminished spontaneous cardiac differentiation of BADSCs with time. At the genetic level, fullerene-C60 (5 μg/mL) also improves the expression of cTnT. In addition, fullerene-C60 promotes the formation of gap junction among cells. These findings have important implications for clinical application of fullerenes in the treatment of myocardial infarction. PMID:26848263

  5. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability

    NASA Astrophysics Data System (ADS)

    Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio

    2018-07-01

    There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.

  6. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms.

    PubMed

    Clemente-Perez, Alexandra; Makinson, Stefanie Ritter; Higashikubo, Bryan; Brovarney, Scott; Cho, Frances S; Urry, Alexander; Holden, Stephanie S; Wimer, Matthew; Dávid, Csaba; Fenno, Lief E; Acsády, László; Deisseroth, Karl; Paz, Jeanne T

    2017-06-06

    Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT) gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV) and somatostatin (SOM) expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  8. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition

    PubMed Central

    Brown, Ritchie E.; Hussain Shuler, Marshall G.; Petersen, Carl C.H.; Kepecs, Adam

    2015-01-01

    The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning, and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer's disease, as well as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in neurological disorders. SIGNIFICANCE STATEMENT Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity. PMID:26468190

  9. Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism

    PubMed Central

    Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane

    2014-01-01

    Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein fibronectin polymerization promotes the SMC synthetic phenotype by modulating the expression of smooth muscle cell differentiation proteins. PMID:24752318

  10. Modulation of anxiety and fear via distinct intrahippocampal circuits.

    PubMed

    Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe

    2016-03-14

    Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus or CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry.

  11. Modulation of anxiety and fear via distinct intrahippocampal circuits

    PubMed Central

    Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe

    2016-01-01

    Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus and CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry. DOI: http://dx.doi.org/10.7554/eLife.14120.001 PMID:26971710

  12. Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α1

    PubMed Central

    Duhart, José M.; Leone, María Juliana; Paladino, Natalia; Evans, Jennifer A.; Castanon-Cervantes, Oscar; Davidson, Alec J.; Golombek, Diego A.

    2013-01-01

    The immune and the circadian systems interact in a bidirectional fashion. The master circadian oscillator, located in the suprachiasmatic nuclei of the hypothalamus (SCN), responds to peripheral and local immune stimuli, such as proinflammatory cytokines and bacterial endotoxin. Astrocytes exert several immune functions in the central nervous system and there is growing evidence that points towards a role of these cells in the regulation of circadian rhythms. The aim of this work was to assess the response of SCN astrocytes to immune stimuli, particularly to the proinflammatory cytokine TNF-α. TNF-α applied to cultures of SCN astrocytes from Per2luc knock in mice altered both the phase and amplitude of PER2 expression rhythms, in a phase dependent manner. Furthermore, conditioned media from SCN astrocytes cultures transiently challenged with TNF-α induced an increase in Per1 expression in NIH 3T3 cells, that was blocked by TNF-α antagonism. In addition, these conditioned media could induce phase shifts in SCN PER2 rhythms and, when administered intracerebroventricularly, induced phase delays in behavioral circadian rhythms and SCN activation in control mice, but not in TNF-Receptor-1 mutants. In summary, our results show that TNF-α modulates the molecular clock of SCN astrocytes in vitro and also that, in response to this molecule, SCN astrocytes can modulate clock gene expression in other cells and tissues, and induce phase shifts in a circadian behavioral output in vivo. These findings suggest a role for astroglial cells in the alteration of circadian timing by immune activation. PMID:24062487

  13. Physical principles of intracellular organization via active and passive phase transitions

    NASA Astrophysics Data System (ADS)

    Berry, Joel; Brangwynne, Clifford P.; Haataja, Mikko

    2018-04-01

    Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.

  14. Physical principles of intracellular organization via active and passive phase transitions.

    PubMed

    Berry, Joel; Brangwynne, Clifford P; Haataja, Mikko

    2018-04-01

    Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.

  15. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4.

    PubMed

    Chen, Chih-Chiang; Murray, Philip J; Jiang, Ting Xin; Plikus, Maksim V; Chang, Yun-Ting; Lee, Oscar K; Widelitz, Randall B; Chuong, Cheng-Ming

    2014-08-01

    Hair cycling is modulated by factors both intrinsic and extrinsic to hair follicles. Cycling defects lead to conditions such as aging-associated alopecia. Recently, we demonstrated that mouse skin exhibits regenerative hair waves, reflecting a coordinated regenerative behavior in follicle populations. Here, we use this model to explore the regenerative behavior of aging mouse skin. Old mice (>18 months) tracked over several months show that with progressing age, hair waves slow down, wave propagation becomes restricted, and hair cycle domains fragment into smaller domains. Transplanting aged donor mouse skin to a young host can restore donor cycling within a 3 mm range of the interface, suggesting that changes are due to extracellular factors. Therefore, hair stem cells in aged skin can be reactivated. Molecular studies show that extra-follicular modulators Bmp2, Dkk1, and Sfrp4 increase in early anagen. Further, we identify follistatin as an extra-follicular modulator, which is highly expressed in late telogen and early anagen. Indeed, follistatin induces hair wave propagation and its level decreases in aging mice. We present an excitable medium model to simulate the cycling behavior in aging mice and illustrate how the interorgan macroenvironment can regulate the aging process by integrating both "activator" and "inhibitor" signals.

  16. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    PubMed Central

    2017-01-01

    Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity. PMID:28154473

  17. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    NASA Astrophysics Data System (ADS)

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.

    2016-11-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.

  18. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    PubMed Central

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; De Zeeuw, Chris I.

    2016-01-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity. PMID:27805050

  19. Mosquito Protein Kinase G Phosphorylates Flavivirus NS5 and Alters Flight Behavior in Aedes aegypti and Anopheles gambiae

    PubMed Central

    Keating, Julie A.; Bhattacharya, Dipankar; Rund, Samuel S.C.; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J.; Duffield, Giles E.

    2013-01-01

    Abstract Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976

  20. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish.

    PubMed

    Dunlap, Kent D; Chung, Michael; Castellano, James F

    2013-07-01

    Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship.

  1. Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells.

    PubMed

    Desjardins, Stephane; Belkai, Emilie; Crete, Dominique; Cordonnier, Laurie; Scherrmann, Jean-Michel; Noble, Florence; Marie-Claire, Cynthia

    2008-12-01

    Chronic morphine treatment alters gene expression in brain structures. There are increasing evidences showing a correlation, in gene expression modulation, between blood cells and brain in psychological troubles. To test whether gene expression regulation in blood cells could be found in drug addiction, we investigated gene expression profiles in peripheral blood mononuclear (PBMC) cells of saline and morphine-treated rats. In rats chronically treated with morphine, the behavioral signs of spontaneous withdrawal were observed and a withdrawal score was determined. This score enabled to select the time points at which the animals displayed the mildest and strongest withdrawal signs (12 h and 36 h after the last injection). Oligonucleotide arrays were used to assess differential gene expression in the PBMCs and quantitative real-time RT-PCR to validate the modulation of several candidate genes 12 h and 36 h after the last injection. Among the 812 differentially expressed candidates, several genes (Adcy5, Htr2a) and pathways (Map kinases, G-proteins, integrins) have already been described as modulated in the brain of morphine-treated rats. Sixteen out of the twenty-four tested candidates were validated at 12 h, some of them showed a sustained modulation at 36 h while for most of them the modulation evolved as the withdrawal score increased. This study suggests similarities between the gene expression profile in PBMCs and brain of morphine-treated rats. Thus, the searching of correlations between the severity of the withdrawal and the PBMCs gene expression pattern by transcriptional analysis of blood cells could be promising for the study of the mechanisms of addiction.

  2. Role of GnRH-II and its receptor in testicular function

    USDA-ARS?s Scientific Manuscript database

    The highly conserved, second mammalian isoform of gonadotropin-releasing hormone (GnRH-II) regulates the interaction between energy balance and reproductive behavior in females, as well as exhibits anti-proliferative effects on cancer cells. Furthermore, GnRH-II is an inefficient modulator of gonado...

  3. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect.

    PubMed

    Capuano, Edoardo

    2017-11-02

    A diet rich in dietary fiber (DF) is considered healthy and recommended dietary intake of DF is established all over the world. The physiological effect of DF is mostly related to its behavior during digestion. In this review, the behavior of DF in the human digestive tract is discussed and linked to its physiological effect with special attention to four aspects of such behavior: (i) the modulation of bioavailability by the plant cell walls, (ii) the effect of DF on the rheological and colloidal state of digesta, (iii) the binding of DF with phenolic compounds, bile salts, mineral ions, and digestive enzymes, and (iv) DF fermentation in the large intestine and the corresponding effect on microbiota composition. It is stressed that the detailed chemical characterization of DF is crucial to explain its effect on health and that DF behavior in the digestive tract can be modulated by interactions with other food and meal components so that information of the bare content in DF of food is not sufficient to predict its physiological effect.

  4. Mathematical modeling of solid oxide fuel cells

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  5. Modeling oscillations and spiral waves in Dictyostelium populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj

    2015-06-01

    Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

  6. Imaging charge carriers in potential-induced degradation defects of c-Si solar cells by scanning capacitance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. -S.; Xiao, C.; Moutinho, H. R.

    We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less

  7. Imaging charge carriers in potential-induced degradation defects of c-Si solar cells by scanning capacitance microscopy

    DOE PAGES

    Jiang, C. -S.; Xiao, C.; Moutinho, H. R.; ...

    2018-02-13

    We report on nm-resolution imaging of charge-carrier distribution around local potential-induced degradation (PID) shunting defects using scanning capacitance microscopy. We imaged on cross sections of heavily field-degraded module areas, cored out and selected by mm-scale photoluminescence imaging. We found localized areas with abnormal carrier behavior induced by the PID defects: the apparent n-type carrier extends vertically into the absorber to ~1-2 um from the cell surface, and laterally in similar lengths; in defect-free areas, the n-type carrier extends ~0.5 um, which is consistent with the junction depth. For comparison, we also investigated areas of the same module exhibiting the leastmore » PID stress, and we found no such heavily damaged junction area. Instead, we found slightly abnormal carrier behavior, where the carrier-type inversion in the absorber did not occur, but the p-type carrier concentration changed slightly in a much smaller lateral length of ~300 nm. These nano-electrical findings may indicate a possible mechanism that the existing extended defects, which may not be significantly harmful to cell performance, can be changed by PID to heavily damaged junction areas.« less

  8. Gap Junction Coupling and Calcium Waves in the Pancreatic Islet

    PubMed Central

    Benninger, Richard K. P.; Zhang, Min; Head, W. Steven; Satin, Leslie S.; Piston, David W.

    2008-01-01

    The pancreatic islet is a highly coupled, multicellular system that exhibits complex spatiotemporal electrical activity in response to elevated glucose levels. The emergent properties of islets, which differ from those arising in isolated islet cells, are believed to arise in part by gap junctional coupling, but the mechanisms through which this coupling occurs are poorly understood. To uncover these mechanisms, we have used both high-speed imaging and theoretical modeling of the electrical activity in pancreatic islets under a reduction in the gap junction mediated electrical coupling. Utilizing islets from a gap junction protein connexin 36 knockout mouse model together with chemical inhibitors, we can modulate the electrical coupling in the islet in a precise manner and quantify this modulation by electrophysiology measurements. We find that after a reduction in electrical coupling, calcium waves are slowed as well as disrupted, and the number of cells showing synchronous calcium oscillations is reduced. This behavior can be reproduced by computational modeling of a heterogeneous population of β-cells with heterogeneous levels of electrical coupling. The resulting quantitative agreement between the data and analytical models of islet connectivity, using only a single free parameter, reveals the mechanistic underpinnings of the multicellular behavior of the islet. PMID:18805925

  9. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

    NASA Astrophysics Data System (ADS)

    Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi

    2017-12-01

    In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

  10. The cell's view of animal body-plan evolution.

    PubMed

    Lyons, Deirdre C; Martindale, Mark Q; Srivastava, Mansi

    2014-10-01

    An adult animal's form is shaped by the collective behavior of cells during embryonic development. To understand the forces that drove the divergence of animal body-plans, evolutionary developmental biology has focused largely on studying genetic networks operating during development. However, it is less well understood how these networks modulate characteristics at the cellular level, such as the shape, polarity, or migration of cells. We organized the "Cell's view of animal body plan evolution" symposium for the 2014 The Society for Integrative and Comparative Biology meeting with the explicit goal of bringing together researchers studying the cell biology of embryonic development in diverse animal taxa. Using a broad range of established and emerging technologies, including live imaging, single-cell analysis, and mathematical modeling, symposium participants revealed mechanisms underlying cells' behavior, a few of which we highlight here. Shape, adhesion, and movements of cells can be modulated over the course of evolution to alter adult body-plans and a major theme explored during the symposium was the role of actomyosin in coordinating diverse behaviors of cells underlying morphogenesis in a myriad of contexts. Uncovering whether conserved or divergent genetic mechanisms guide the contractility of actomyosin in these systems will be crucial to understanding the evolution of the body-plans of animals from a cellular perspective. Many speakers presented research describing developmental phenomena in which cell division and tissue growth can control the form of the adult, and other presenters shared work on studying cell-fate specification, an important source of novelty in animal body-plans. Participants also presented studies of regeneration in annelids, flatworms, acoels, and cnidarians, and provided a unifying view of the regulation of cellular behavior during different life-history stages. Additionally, several presentations highlighted technological advances that glean mechanistic insights from new and emerging model systems, thereby providing the phylogenetic breadth so essential for studying animal evolution. Thus, we propose that an explicit study of cellular phenomena is now possible for a wide range of taxa, and that it will be highly informative for understanding the evolution of animal body-plans. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells

    PubMed Central

    Plikus, Maksim V.; Baker, Ruth E.; Chen, Chih-Chiang; Fare, Clyde; de la Cruz, Damon; Andl, Thomas; Maini, Philip K.; Millar, Sarah E.; Widelitz, Randall; Chuong, Cheng-Ming

    2012-01-01

    Stem cells cycle through active and quiescent states. Large populations of stem cells in an organ may cycle randomly or in a coordinated manner. Although stem cell cycling within single hair follicles has been studied, less is known about regenerative behavior in a hair follicle population. By combining predictive mathematical modeling with in vivo studies in mice and rabbits, we show that a follicle progresses through cycling stages by continuous integration of inputs from intrinsic follicular and extrinsic environmental signals based on universal patterning principles. Signaling from the WNT/bone morphogenetic protein activator/inhibitor pair is coopted to mediate interactions among follicles in the population. This regenerative strategy is robust and versatile because relative activator/inhibitor strengths can be modulated easily, adapting the organism to different physiological and evolutionary needs. PMID:21527712

  12. Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, Dale C.

    1993-01-01

    The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.

  13. Engineered TAL Effector modulators for the large-scale gain-of-function screening

    PubMed Central

    Zhang, Hanshuo; Li, Juan; Hou, Sha; Wang, Gancheng; Jiang, Mingjun; Sun, Changhong; Hu, Xiongbing; Zhuang, Fengfeng; Dai, Zhifei; Dai, Junbiao; Xi, Jianzhong Jeff

    2014-01-01

    Recent effective use of TAL Effectors (TALEs) has provided an important approach to the design and synthesis of sequence-specific DNA-binding proteins. However, it is still a challenging task to design and manufacture effective TALE modulators because of the limited knowledge of TALE–DNA interactions. Here we synthesized more than 200 TALE modulators and identified two determining factors of transcription activity in vivo: chromatin accessibility and the distance from the transcription start site. The implementation of these modulators in a gain-of-function screen was successfully demonstrated for four cell lines in migration/invasion assays and thus has broad relevance in this field. Furthermore, a novel TALE–TALE modulator was developed to transcriptionally inhibit target genes. Together, these findings underscore the huge potential of these TALE modulators in the study of gene function, reprogramming of cellular behaviors, and even clinical investigation. PMID:24939900

  14. Protein nanoparticles are nontoxic, tuneable cell stressors.

    PubMed

    de Pinho Favaro, Marianna Teixeira; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Roldán, Mónica; Unzueta, Ugutz; Serna, Naroa; Cano-Garrido, Olivia; Azzoni, Adriano Rodrigues; Ferrer-Miralles, Neus; Villaverde, Antonio; Vázquez, Esther

    2018-02-01

    Nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.

  15. Migration of cells in a social context

    PubMed Central

    Vedel, Søren; Tay, Savaş; Johnston, Darius M.; Bruus, Henrik; Quake, Stephen R.

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified “cellular traffic rules” and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032

  16. Migration of cells in a social context.

    PubMed

    Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R

    2013-01-02

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.

  17. The role of heparins and nano-heparins as therapeutic tool in breast cancer.

    PubMed

    Afratis, Nikos A; Karamanou, Konstantina; Piperigkou, Zoi; Vynios, Demitrios H; Theocharis, Achilleas D

    2017-06-01

    Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.

  18. Embryonic cell-cell adhesion: a key player in collective neural crest migration.

    PubMed

    Barriga, Elias H; Mayor, Roberto

    2015-01-01

    Cell migration is essential for morphogenesis, adult tissue remodeling, wound healing, and cancer cell migration. Cells can migrate as individuals or groups. When cells migrate in groups, cell-cell interactions are crucial in order to promote the coordinated behavior, essential for collective migration. Interestingly, recent evidence has shown that cell-cell interactions are also important for establishing and maintaining the directionality of these migratory events. We focus on neural crest cells, as they possess extraordinary migratory capabilities that allow them to migrate and colonize tissues all over the embryo. Neural crest cells undergo an epithelial-to-mesenchymal transition at the same time than perform directional collective migration. Cell-cell adhesion has been shown to be an important source of planar cell polarity and cell coordination during collective movement. We also review molecular mechanisms underlying cadherin turnover, showing how the modulation and dynamics of cell-cell adhesions are crucial in order to maintain tissue integrity and collective migration in vivo. We conclude that cell-cell adhesion during embryo development cannot be considered as simple passive resistance to force, but rather participates in signaling events that determine important cell behaviors required for cell migration. © 2015 Elsevier Inc. All rights reserved.

  19. Transforming growth factor-β released by apoptotic white blood cells during red blood cell storage promotes transfusion-induced alloimmunomodulation.

    PubMed

    Vallion, Romain; Bonnefoy, Francis; Daoui, Anna; Vieille, Loredane; Tiberghien, Pierre; Saas, Philippe; Perruche, Sylvain

    2015-07-01

    Red blood cell (RBC) alloimmunization is a major immunologic risk of transfusion. However, RBC storage facilitates white blood cell (WBC) apoptosis and apoptotic cells have immunomodulatory properties. We investigated the behavior of WBCs, and apoptosis in particular, in RBC units during storage and then studied the impact of WBC apoptosis on the modulation of posttransfusion alloimmunization in RBC products stored short term. We used a mouse model of alloimmunization to transfused HEL-ovalbumin-Duffy (HOD) surface antigen expressed specifically on RBCs. The presence of circulating anti-HOD immunoglobulin G detected by flow cytometry confirmed immunization to HOD+ RBCs. WBC apoptosis and factors released by apoptotic WBCs during storage were determined and in particular the role of transforming growth factor (TGF)-β was assessed on RBC alloimmunization. In blood stored 72 hours, 30% of WBCs were apoptotic, and transfusion of short-term-stored blood resulted in lesser immunization than did fresh blood or stored leukoreduced (LR) RBCs. WBCs undergoing apoptosis released during short-term storage factors modulating RBC alloimmunization. Indeed apoptotic cell-released factors modulate alloimmunization whereas exogenous apoptotic cells directly transfused with LR RBCs did not. While microparticles released during RBC storage had no immunomodulatory role, TGF-β found in the supernatant of stored blood demonstrated the capacity to favor Treg polarization of naïve CD4+CD25- T cells in vitro and limited RBC alloimmunization in vivo. Indeed, addition of recombinant TGF-β to stored LR RBC transfusion strongly limited posttransfusion RBC alloimmunization. Our findings show that short-term storage of non-LR blood facilitates WBC apoptosis therefore releasing TGF-β that modulates posttransfusion RBC alloimmunization. © 2015 AABB.

  20. KIAA0100 Modulates Cancer Cell Aggression Behavior of MDA-MB-231 through Microtubule and Heat Shock Proteins.

    PubMed

    Zhong, Zhenyu; Pannu, Vaishali; Rosenow, Matthew; Stark, Adam; Spetzler, David

    2018-06-04

    The KIAA0100 gene was identified in the human immature myeloid cell line cDNA library. Recent studies have shown that its expression is elevated in breast cancer and associated with more aggressive cancer types as well as poor outcomes. However, its cellular and molecular function is yet to be understood. Here we show that silencing KIAA0100 by siRNA in the breast cancer cell line MDA-MB-231 significantly reduced the cancer cells' aggressive behavior, including cell aggregation, reattachment, cell metastasis and invasion. Most importantly, silencing the expression of KIAA0100 particularly sensitized the quiescent cancer cells in suspension culture to anoikis. Immunoprecipitation, mass spectrometry and immunofluorescence analysis revealed that KIAA0100 may play multiple roles in the cancer cells, including stabilizing microtubule structure as a microtubule binding protein, and contributing to MDA-MB-231 cells Anoikis resistance by the interaction with stress protein HSPA1A. Our study also implies that the interaction between KIAA0100 and HSPA1A may be targeted for new drug development to specifically induce anoikis cell death in the cancer cell.

  1. Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory

    PubMed Central

    2012-01-01

    Background The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates. Methods The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments. Results We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins). Conclusion We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina. PMID:22642675

  2. Modulation of taste responsiveness by the satiation hormone peptide YY

    PubMed Central

    La Sala, Michael S.; Hurtado, Maria D.; Brown, Alicia R.; Bohórquez, Diego V.; Liddle, Rodger A.; Herzog, Herbert; Zolotukhin, Sergei; Dotson, Cedrick D.

    2013-01-01

    It has been hypothesized that the peripheral taste system may be modulated in the context of an animal's metabolic state. One purported mechanism for this phenomenon is that circulating gastrointestinal peptides modulate the functioning of the peripheral gustatory system. Recent evidence suggests endocrine signaling in the oral cavity can influence food intake (FI) and satiety. We hypothesized that these hormones may be affecting FI by influencing taste perception. We used immunohistochemistry along with genetic knockout models and the specific reconstitution of peptide YY (PYY) in saliva using gene therapy protocols to identify a role for PYY signaling in taste. We show that PYY is expressed in subsets of taste cells in murine taste buds. We also show, using brief-access testing with PYY knockouts, that PYY signaling modulates responsiveness to bitter-tasting stimuli, as well as to lipid emulsions. We show that salivary PYY augmentation, via viral vector therapy, rescues behavioral responsiveness to a lipid emulsion but not to bitter stimuli and that this response is likely mediated via activation of Y2 receptors localized apically in taste cells. Our findings suggest distinct functions for PYY produced locally in taste cells vs. that circulating systemically.—La Sala, M. S., Hurtado, M. D., Brown, A. R., Bohórquez, D. V., Liddle, R. A., Herzog, H., Zolotukhin, S., Dotson, C. D. Modulation of taste responsiveness by the satiation hormone peptide YY. PMID:24043261

  3. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.

    PubMed

    Wright, Christopher L; Schwarz, Jaclyn S; Dean, Shannon L; McCarthy, Margaret M

    2010-09-01

    Gonadal steroids organize the developing brain during a perinatal sensitive period and have enduring consequences for adult behavior. In male rodents testicular androgens are aromatized in neurons to estrogens and initiate multiple distinct cellular processes that ultimately determine the masculine phenotype. Within specific brain regions, overall cell number and dendritic morphology are the principal targets for hormonal organization. Recent advances have been made in elucidating the cellular mechanisms by which the neurological underpinnings of sexually dimorphic physiology and behavior are determined. These include estradiol-mediated prostaglandin synthesis, presynaptic release of glutamate, postsynaptic changes in glutamate receptors and changes in cell adhesion molecules. Sex differences in cell death are mediated by hormonal modulation of survival and death factors such as TNFalpha and Bcl-2/BAX. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables.

    PubMed

    Wang, Wen; Yao, Lining; Cheng, Chin-Yi; Zhang, Teng; Atsumi, Hiroshi; Wang, Luda; Wang, Guanyun; Anilionyte, Oksana; Steiner, Helene; Ou, Jifei; Zhou, Kang; Wawrousek, Chris; Petrecca, Katherine; Belcher, Angela M; Karnik, Rohit; Zhao, Xuanhe; Wang, Daniel I C; Ishii, Hiroshi

    2017-05-01

    Cells' biomechanical responses to external stimuli have been intensively studied but rarely implemented into devices that interact with the human body. We demonstrate that the hygroscopic and biofluorescent behaviors of living cells can be engineered to design biohybrid wearables, which give multifunctional responsiveness to human sweat. By depositing genetically tractable microbes on a humidity-inert material to form a heterogeneous multilayered structure, we obtained biohybrid films that can reversibly change shape and biofluorescence intensity within a few seconds in response to environmental humidity gradients. Experimental characterization and mechanical modeling of the film were performed to guide the design of a wearable running suit and a fluorescent shoe prototype with bio-flaps that dynamically modulates ventilation in synergy with the body's need for cooling.

  5. Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction

    PubMed Central

    Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu

    2013-01-01

    Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998

  6. Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila

    PubMed Central

    Yuan, Quan; Song, Yuanquan; Yang, Chung-Hui; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    Intraspecific male-male aggression, important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral paradigm in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel, ppk29, and was mediated by male specific GABAergic neurons acting upon GABA-a receptor RDL in target cells. Silencing or activation of this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression. PMID:24241395

  7. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish

    PubMed Central

    Dunlap, Kent D.; Chung, Michael; Castellano, James F.

    2013-01-01

    Summary Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship. PMID:23761468

  8. Dim-light sensitivity of cells in the awake cat's lateral geniculate and medial interlaminar nuclei: a correlation with behavior.

    PubMed

    Kang, Incheol; Malpeli, Joseph G

    2009-08-01

    Contrast thresholds of cells in the dorsal lateral geniculate (LGNd) and medial interlaminar (MIN) nuclei of awake cats were measured for scotopic and mesopic vision with drifting sine gratings (1/8, 2, and 4 cycles/deg [cpd]; 4-Hz temporal frequency). Thresholds for mean firing rate (F0) and temporally modulated responses (F1) were derived with receiver-operating-characteristic analyses and compared with behavioral measures recently reported by Kang and colleagues. Behavioral sensitivity was predicted by the neural responses of the most sensitive combinations of cell class and response mode: Y-cell F1 responses for 1/8 cpd, X-cell F1 responses for 2 cpd, and Y-cell F0 responses for 4 cpd. All previous estimates of neural scotopic increment thresholds in animal models fell between Weber's law (proportional to retinal illuminance) and the deVries-Rose law (proportional to the square root of illuminance). However, psychophysical experiments suggest that under appropriate conditions human scotopic vision follows the deVries-Rose law. If behavioral sensitivity is assumed to be determined by the most sensitive class of cells, this discrepancy is resolved. Under scotopic conditions, off-center Y cells were the most sensitive and these followed the deVries-Rose law fairly closely. MIN Y cells were, on average, 0.25 log units more sensitive than LGNd Y cells under scotopic conditions, supporting a previous proposal that the MIN is a specialization of the carnivore for dim-light vision. We conclude that both physiologically and behaviorally, cat and human scotopic vision are fundamentally similar, including adherence to the deVries-Rose law for detection of Gabor functions.

  9. Biobehavioral Influences on Cancer Progression

    PubMed Central

    Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.

    2010-01-01

    Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927

  10. Gallium containing composites as a tunable material to understand neuronal behavior under variable stiffness and radiation conditions.

    PubMed

    Berg, Nora G; Pearce, Brady L; Rohrbaugh, Nathaniel; Jiang, Lin; Nolan, Michael W; Ivanisevic, Albena

    2017-02-01

    We report a composite biomaterial containing nanostructured GaOOH and Matrigel™ that can be modulated with respect to its stiffness and radiosensitization properties. A variety of concentrations of GaOOH were added to the composite to alter the mechanical properties of the material as well as to tune the radiosensitizing properties to the composite. PC-12 cells were used to study the combined effects of different stimuli on cell behavior. NGF was given to the cells to record their morphology as well as viability. An increase in the substrate stiffness caused an increase in neurite outgrowth but a decrease in cell viability. In addition, increasing the radiation dose decreased neurite outgrowth but increased cell viability when radiosensitizing particles were present. A subtractive effect between radiosensitizing and mechanical stimuli was observed when PC-12 cells were grown on the GaOOH containing composite. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus

    NASA Technical Reports Server (NTRS)

    Bassett, J. P.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2001-01-01

    Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal.

  12. About the Nutritional Science Research Group | Division of Cancer Prevention

    Cancer.gov

    The Nutritional Science Research Group (NSRG) promotes and supports studies establishing a comprehensive understanding of the precise role of diet and food components in modulating cancer risk and tumor cell behavior. This focus includes approaches to characterize molecular targets and variability in individual responses to nutrients and dietary patterns. |

  13. Bone matrix to growth factors: location, location, location

    PubMed Central

    Todorovic, Vesna

    2010-01-01

    The demonstration that fibrillin-1 mutations perturb transforming growth factor (TGF)–β bioavailability/signaling in Marfan syndrome (MFS) changed the view of the extracellular matrix as a passive structural support to a dynamic modulator of cell behavior. In this issue, Nistala et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003089) advance this concept by demonstrating how fibrillin-1 and -2 regulate TGF-β and bone morphogenetic protein (BMP) action during osteoblast maturation. PMID:20855500

  14. Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.

    PubMed

    Purvis, Jeremy E; Radhakrishnan, Ravi; Diamond, Scott L

    2009-03-01

    A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.

  15. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment.

    PubMed

    Palchesko, Rachelle N; Szymanski, John M; Sahu, Amrita; Feinberg, Adam W

    2014-09-01

    Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo . Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments.

  16. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment

    PubMed Central

    Palchesko, Rachelle N.; Szymanski, John M.; Sahu, Amrita; Feinberg, Adam W.

    2014-01-01

    Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments. PMID:25530816

  17. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit

    PubMed Central

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith EK; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-01-01

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state. DOI: http://dx.doi.org/10.7554/eLife.06914.001 PMID:26083710

  18. Local neuropeptide signaling modulates serotonergic transmission to shape the temporal organization of C. elegans egg-laying behavior

    PubMed Central

    Banerjee, Navonil; Bhattacharya, Raja; Francis, Michael M.

    2017-01-01

    Animal behaviors are often composed of distinct alternating behavioral states. Neuromodulatory signals are thought to be critical for establishing stable behavioral states and for orchestrating transitions between them. However, we have only a limited understanding of how neuromodulatory systems act in vivo to alter circuit performance and shape behavior. To address these questions, we have investigated neuromodulatory signaling in the context of Caenorhabditis elegans egg-laying. Egg-laying activity cycles between discrete states–short bursts of egg deposition (active phases) that alternate with prolonged quiescent periods (inactive phases). Here using genetic, pharmacological and optogenetic approaches for cell-specific activation and inhibition, we show that a group of neurosecretory cells (uv1) located in close spatial proximity to the egg-laying neuromusculature direct the temporal organization of egg-laying by prolonging the duration of inactive phases. We demonstrate that the modulatory effects of the uv1 cells are mediated by peptides encoded by the nlp-7 and flp-11 genes that act locally to inhibit circuit activity, primarily by inhibiting vesicular release of serotonin from HSN motor neurons. This peptidergic inhibition is achieved, at least in part, by reducing synaptic vesicle abundance in the HSN motor neurons. By linking the in vivo actions of specific neuropeptide signaling systems with the generation of stable behavioral outcomes, our study reveals how cycles of neuromodulation emanating from non-neuronal cells can fundamentally shape the organization of a behavioral program. PMID:28384151

  19. An Integrative Review on Role and Mechanisms of Ghrelin in Stress, Anxiety and Depression.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2016-01-01

    Ghrelin is orexigenic hormone primarily synthesized by endocrine X/A-like cells of gastric oxyntic mucosa to stimulate appetite and food intake along with regulation of growth hormone and insulin secretion; glucose and lipid metabolism; gastrointestinal motility; blood pressure, heart rate and neurogenesis. Furthermore, peripherally (after crossing the blood brain barrier) as well as centrally synthesized ghrelin (in the hypothalamus) regulates diverse functions of central nervous system including stress-associated behavioral functions. Exposure to stress alters the ghrelin levels and alteration in ghrelin levels significantly affects neuro-endocrinological parameters; metabolism-related physiology, behavior and mood. Studies have shown both anxiolytic and anxiogenic role of ghrelin suggesting its dual role in modulating anxiety-related behavior. However, it is proposed that increase in ghrelin levels during stress condition is an endogenous stress coping behavior and increased ghrelin levels may be required to prevent excessive anxiety. In preclinical and clinical studies, an elevation in ghrelin levels during depression has been correlated with their antidepressant activities. Ghrelin-induced modulation of stress and associated conditions has been linked to alteration in hypothalamic-pituitary-adrenal (HPA) axis; autonomic nervous system (mainly sympathetic nervous system and serotonergic neurotransmission. A reciprocal relationship has been reported between corticotropin-releasing hormone (CRH) and ghrelin as ghrelin increases the release of CRH, ACTH and corticosteroids; while CRH decreases the expression of ghrelin. Similarly, ghrelin increases the serotonin turnover and in turn, serotonin controls ghrelin signaling to modulate anxiety-related behavior. The present review discusses the dual role of ghrelin in stress and related behavioral disorders along with possible mechanisms.

  20. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    PubMed

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Piezoresistive pressure sensor array for robotic skin

    NASA Astrophysics Data System (ADS)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  2. Spatial distribution of filament elasticity determines the migratory behaviors of a cell

    PubMed Central

    Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer

    2016-01-01

    ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488

  3. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.

    PubMed

    Cao, Ye; Lee, Bae Hoon; Peled, Havazelet Bianco; Venkatraman, Subbu S

    2016-10-01

    Biosynthetic poly(ethylene glycol) (PEG)-based hydrogels have been extensively investigated as extracellular matrix (ECM) mimicking gels as they retain the benefits of both ECM (biological cues) and synthetic hydrogels (tunable mechanical properties). In this article, we developed and characterized a new gelatin-PEG (GP) hydrogel that retains the benefits of gelatin and synthetic hydrogels. In this strategy, the thiolation of gelatin was accomplished by reacting with Traut's reagent; the thiolated gelatin was then conjugated to one end of PEG diacrylate (PEGDA) by Michael-type addition reaction. Two kinds of GP precursors, GP30 and GP60, were synthesized by changing the amount of Traut's reagent, while the weight ratio between thiolated-gelatin and PEGDA of GP30 and GP60 was 1.451:1 and 0.785:1, respectively. Finally, neonatal human dermal fibroblasts were encapsulated into the hydrogel by cross-linking the remaining double bonds of precursor under ultraviolet light. These GP hydrogels can encapsulate the fibroblasts in situ with high cell viability. Moreover, the behaviors of cells within the GP hydrogels can be modulated by varying the cross-linking density of GP hydrogel (storage modulus from 40 to 2000 Pa). In particular, this article showed that a minimum amount of cell-binding motifs (gelatin >2.30 wt/vol % and 44.0% dry weight percentage) are required for attachment; and appropriate initial rheological and structural properties (storage modulus <∼100 Pa and mesh size >∼150 nm) can accelerate the attachment of cells and improve cell viability. Hence, this mixed-hydrogel platform allows an easily control hydrogel structure and modulates cell behavior to reconstruct new tissue in the three-dimensional microenvironments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2401-2411, 2016. © 2016 Wiley Periodicals, Inc.

  4. Sexual experience affects reproductive behavior and preoptic androgen receptors in male mice

    PubMed Central

    Swaney, William T.; Dubose, Brittany N.; Curley, James P.; Champagne, Frances A.

    2012-01-01

    Reproductive behavior in male rodents is made up of anticipatory and consummatory elements which are regulated in the brain by sensory systems, reward circuits and hormone signaling. Gonadal steroids play a key role in the regulation of male sexual behavior via steroid receptors in the hypothalamus and preoptic area. Typical patterns of male reproductive behavior have been characterized, however these are not fixed but are modulated by adult experience. We assessed the effects of repeated sexual experience on male reproductive behavior of C57BL/6 mice; including measures of olfactory investigation of females, mounting, intromission and ejaculation. The effects of sexual experience on the number of cells expressing either androgen receptor (AR) or estrogen receptor alpha (ERα) in the primary brain nuclei regulating male sexual behavior was also measured. Sexually experienced male mice engaged in less sniffing of females before initiating sexual behavior and exhibited shorter latencies to mount and intromit, increased frequency of intromission, and increased duration of intromission relative to mounting. No changes in numbers of ERα-positive cells were observed, however sexually experienced males had increased numbers of AR-positive cells in the medial preoptic area (MPOA); the primary regulatory nucleus for male sexual behavior. These results indicate that sexual experience results in a qualitative change in male reproductive behavior in mice that is associated with increased testosterone sensitivity in the MPOA and that this nucleus may play a key integrative role in mediating the effects of sexual experience on male behavior. PMID:22266118

  5. ANABOLIC STEROIDS ALTER THE PHYSIOLOGICAL ACTIVITY OF AGGRESSION CIRCUITS IN THE LATERAL ANTERIOR HYPOTHALAMUS

    PubMed Central

    Morrison, Thomas R.; Sikes, Robert W.; Melloni, Richard H.

    2016-01-01

    Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure. PMID:26691962

  6. Circadian Rhythms and Substance Abuse: Chronobiological Considerations for the Treatment of Addiction.

    PubMed

    Webb, Ian C

    2017-02-01

    Reward-related learning, including that associated with drugs of abuse, is largely mediated by the dopaminergic mesolimbic pathway. Mesolimbic neurophysiology and motivated behavior, in turn, are modulated by the circadian timing system which generates ∼24-h rhythms in cellular activity. Both drug taking and seeking and mesolimbic dopaminergic neurotransmission can vary widely over the day. Moreover, circadian clock genes are expressed in ventral tegmental area dopaminergic cells and in mesolimbic target regions where they can directly modulate reward-related neurophysiology and behavior. There also exists a reciprocal influence between drug taking and circadian timing as the administration of drugs of abuse can alter behavioral rhythms and circadian clock gene expression in mesocorticolimbic structures. These interactions suggest that manipulations of the circadian timing system may have some utility in the treatment of substance abuse disorders. Here, the literature on bidirectional interactions between the circadian timing system and drug taking is briefly reviewed, and potential chronotherapeutic considerations for the treatment of addiction are discussed.

  7. Specifying Software Behavior for Requirements and Design

    DTIC Science & Technology

    2013-01-01

    e.g., Behavior Hiding is comprised of the Function Driver and Shared Services modules. Blacked-out modules, which are concerned with mechanisms for...and Shared Services modules. “The Func- tion Driver Module consists of a set of modules called Func- tion Drivers; each Function Driver is the sole...system environment. Functions that capture the rules determining these output values specify that behavior. The Shared Services module concerns aspects of

  8. Laminar Organization of Attentional Modulation in Macaque Visual Area V4.

    PubMed

    Nandy, Anirvan S; Nassi, Jonathan J; Reynolds, John H

    2017-01-04

    Attention is critical to perception, serving to select behaviorally relevant information for privileged processing. To understand the neural mechanisms of attention, we must discern how attentional modulation varies by cell type and across cortical layers. Here, we test whether attention acts non-selectively across cortical layers or whether it engages the laminar circuit in specific and selective ways. We find layer- and cell-class-specific differences in several different forms of attentional modulation in area V4. Broad-spiking neurons in the superficial layers exhibit attention-mediated increases in firing rate and decreases in variability. Spike count correlations are highest in the input layer and attention serves to reduce these correlations. Superficial and input layer neurons exhibit attention-dependent decreases in low-frequency (<10 Hz) coherence, but deep layer neurons exhibit increases in coherence in the beta and gamma frequency ranges. Our study provides a template for attention-mediated laminar information processing that might be applicable across sensory modalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    PubMed

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. The chemotaxis-like Che1 pathway has an indirect role in adhesive cell properties of Azospirillum brasilense.

    PubMed

    Siuti, Piro; Green, Calvin; Edwards, Amanda Nicole; Doktycz, Mitchel J; Alexandre, Gladys

    2011-10-01

    The Azospirillum brasilense chemotaxis-like Che1 signal transduction pathway was recently shown to modulate changes in adhesive cell surface properties that, in turn, affect cell-to-cell aggregation and flocculation behaviors rather than flagellar-mediated chemotaxis. Attachment to surfaces and root colonization may be functions related to flocculation. Here, the conditions under which A. brasilense wild-type Sp7 and che1 mutant strains attach to abiotic and biotic surfaces were examined using in vitro attachment and biofilm assays combined with atomic force microscopy and confocal microscopy. The nitrogen source available for growth is found to be a major modulator of surface attachment by A. brasilense and could be promoted in vitro by lectins, suggesting that it depends on interaction with surface-exposed residues within the extracellular matrix of cells. However, Che1-dependent signaling is shown to contribute indirectly to surface attachment, indicating that distinct mechanisms are likely underlying flocculation and attachment to surfaces in A. brasilense. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Nicotine-mediated signals modulate cell death and survival of T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oloris, Silvia C.S.; Instituto de Ciencias Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoro, RN; Frazer-Abel, Ashley A.

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act bothmore » as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.« less

  12. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    NASA Astrophysics Data System (ADS)

    Horzum, Utku; Ozdil, Berrin; Pesen-Okvur, Devrim

    2014-04-01

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research.

  13. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb

    PubMed Central

    Stamataki, Evangelia; Harich, Benjamin; Guignard, Léo; Preibisch, Stephan; Shorte, Spencer; Keller, Philipp J

    2018-01-01

    During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. PMID:29595475

  14. PEG-chitosan hydrogel with tunable stiffness for study of drug response of breast cancer cells

    PubMed Central

    Chang, Fei-Chien; Tsao, Ching-Ting; Lin, Anqi; Zhang, Mengying; Levengood, Sheeny Lan; Zhang, Miqin

    2016-01-01

    Mechanical properties of the extracellular matrix have a profound effect on the behavior of anchorage-dependent cells. However, the mechanisms that define the effects of matrix stiffness on cell behavior remains unclear. Therefore, the development and fabrication of synthetic matrices with well-defined stiffness is invaluable for studying the interactions of cells with their biophysical microenvironment in vitro. We demonstrate a methoxypolyethylene glycol (mPEG)-modified chitosan hydrogel network where hydrogel stiffness can be easily modulated under physiological conditions by adjusting the degree of mPEG grafting onto chitosan (PEGylation). We show that the storage modulus of the hydrogel increases as PEGylation decreases and the gels exhibit instant self-recovery after deformation. Breast cancer cells cultured on the stiffest hydrogels adopt a more malignant phenotype with increased resistance to doxorubicin as compared with cells cultured on tissue culture polystyrene or Matrigel. This work demonstrates the utility of mPEG-modified chitosan hydrogel, with tunable mechanical properties, as an improved replacement of conventional culture system for in vitro characterization of breast cancer cell phenotype and evaluation of cancer therapies. PMID:27595012

  15. The role of membrane microdomains in transmembrane signaling through the epithelial glycoprotein Gp140/CDCP1

    PubMed Central

    Alvares, Stacy M.; Dunn, Clarence A.; Brown, Tod A.; Wayner, Elizabeth E.; Carter, William G.

    2008-01-01

    Cell adhesion to the extracellular matrix (ECM) via integrin adhesion receptors initiates signaling cascades leading to changes in cell behavior. While integrin clustering is necessary to initiate cell attachment to the matrix, additional membrane components are necessary to mediate the transmembrane signals and the cell adhesion response that alter downstream cell behavior. Many of these signaling components reside in glycosphingolipid-rich and cholesterol-rich membrane domains such as Tetraspanin Enriched Microdomains (TEMs)/Glycosynapse 3 and Detergent-Resistant Microdomains (DRMs), also known as lipid rafts. In the following article, we will review examples of how components in these membrane microdomains modulate integrin adhesion after initial attachment to the ECM. Additionally, we will present data on a novel adhesion-responsive transmembrane glycoprotein Gp140/CUB Domain Containing Protein 1, which clusters in epithelial cell-cell contacts. Gp140 can then be phosphorylated by Src Family Kinases at tyrosine 734 in response to outside-in signals- possibly through interactions involving the extracellular CUB domains. Data presented here suggests that outside-in signals through Gp140 in cell-cell contacts assemble membrane clusters that associate with membrane microdomains to recruit and activate SFKs. Active SFKs then mediate phosphorylation of Gp140, SFK and PKCδ with Gp140 acting as a transmembrane scaffold for these kinases. We propose that the clustering of Gp140 and signaling components in membrane microdomains in cell-cell contacts contributes to changes in cell behavior. PMID:18269919

  16. T Lymphocyte Activation Threshold and Membrane Reorganization Perturbations in Unique Culture Model

    NASA Technical Reports Server (NTRS)

    Adams, C. L.; Sams, C. F.

    2000-01-01

    Quantitative activation thresholds and cellular membrane reorganization are mechanisms by which resting T cells modulate their response to activating stimuli. Here we demonstrate perturbations of these cellular processes in a unique culture system that non-invasively inhibits T lymphocyte activation. During clinorotation, the T cell activation threshold is increased 5-fold. This increased threshold involves a mechanism independent of TCR triggering. Recruitment of lipid rafts to the activation site is impaired during clinorotation but does occur with increased stimulation. This study describes a situation in which an individual cell senses a change in its physical environment and alters its cell biological behavior.

  17. The Role of Neuropeptide Y (NPY) In Uncontrolled Alcohol Drinking and Relapse Behavior Resulting From Exposure to Stressful Events

    DTIC Science & Technology

    2009-11-01

    modulating neurobio - logical responses to ethanol and drugs of abuse, including the striatum, nucleus accumbens (NAc), ventral tegmental area (VTA...critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22, 5027–5035. Rasmussen, D.D., Bryant, C.A., Boldt, B.M., Colasurdo

  18. Thickness sensing of hMSCs on collagen gel directs stem cell fate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, Wen Shing; Tay, Chor Yong; Yu, Haiyang

    Research highlights: {yields} hMSCs appeared to sense thin collagen gel (130 {mu}m) with higher effective modulus as compared to thick gel (1440 {mu}m). {yields} Control of collagen gel thickness can modulate cellular behavior, even stem cell fate (neuronal vs. Quiescent). {yields} Distinct cellular behavior of hMSCs on thin and thick collagen gel suggests long range interaction of hMSCs with collagen gel. -- Abstract: Mechanically compliant substrate provides crucial biomechanical cues for multipotent stem cells to regulate cellular fates such as differentiation, proliferation and maintenance of their phenotype. Effective modulus of which cells sense is not only determined by intrinsic mechanicalmore » properties of the substrate, but also the thickness of substrate. From our study, it was found that interference from underlying rigid support at hundreds of microns away could induce significant cellular response. Human mesenchymal stem cells (hMSCs) were cultured on compliant biological gel, collagen type I, of different thickness but identical ECM composition and local stiffness. The cells sensed the thin gel (130 {mu}m) as having a higher effective modulus than the thick gel (1440 {mu}m) and this was reflected in their changes in morphology, actin fibers structure, proliferation and tissue specific gene expression. Commitment into neuronal lineage was observed on the thin gel only. Conversely, the thick gel (1440 {mu}m) was found to act like a substrate with lower effective modulus that inhibited actin fiber polymerization. Stem cells on the thick substrate did not express tissue specific genes and remained at their quiescent state. This study highlighted the need to consider not only the local modulus but also the thickness of biopolymer gel coating during modulation of cellular responses.« less

  19. Investigation of acoustic metasurfaces with constituent material properties considered

    NASA Astrophysics Data System (ADS)

    Gerard, Nikhil JRK; Li, Yong; Jing, Yun

    2018-03-01

    This paper examines the transmission behavior of two acoustic metasurfaces and their constituent structural units while including the various material properties that could affect their functionality. The unit cells and the metasurfaces are modeled numerically, and the impact of the structural interaction and thermoviscosity on sound transmission and phase modulation is studied. Each of these effects is viewed individually in order to better understand their influence. Various cases are presented, and the change in the behavior of the metasurfaces is investigated. The deviations from the ideal desired results are examined and highlighted to show that it is important to incorporate these effects to better predict the behavior of acoustic metasurfaces.

  20. Stimulus relevance modulates contrast adaptation in visual cortex

    PubMed Central

    Keller, Andreas J; Houlton, Rachael; Kampa, Björn M; Lesica, Nicholas A; Mrsic-Flogel, Thomas D; Keller, Georg B; Helmchen, Fritjof

    2017-01-01

    A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex. DOI: http://dx.doi.org/10.7554/eLife.21589.001 PMID:28130922

  1. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  2. Parent Skill Training (Trainer Modules). LEAP Outreach Project.

    ERIC Educational Resources Information Center

    Colorado Univ., Denver. Center for Collaborative Educational Leadership.

    This training manual, designed for teaching parents of young children with autism, contains nine modules on behavior modification techniques. The modules address: (1) the ABC's of behavior, which discusses discriminating among words that describe feelings and words that describe behaviors, identifying examples of learned behavior, and defining and…

  3. Parent Skill Training (Self-Study Modules). LEAP Outreach Project.

    ERIC Educational Resources Information Center

    Colorado Univ., Denver. Center for Collaborative Educational Leadership.

    This self-study training manual for parents of children with autism contains nine modules on behavior modification techniques. The modules address: (1) the ABC's of behavior, which discusses discriminating among words that describe feelings and words that describe behaviors, identifying examples of learned behavior, and defining and identifying…

  4. STEROID RECEPTOR COACTIVATOR 2 (SRC-2) MODULATES STEROID-DEPENDENT MALE SEXUAL BEHAVIOR AND NEUROPLASTICITY IN JAPANESE QUAIL (COTURNIX JAPONICA)

    PubMed Central

    Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.

    2011-01-01

    Steroid receptor coactivators are necessary for efficient transcriptional regulation by ligand-bound nuclear receptors, including estrogen and androgen receptors. SRC-2 modulates estrogen- and progesterone-dependent sexual behavior in female rats but its implication in the control of male sexual behavior has not been studied to our knowledge. We cloned and sequenced the complete quail SRC-2 transcript and showed by semi-quantitative PCR that SRC-2 expression is nearly ubiquitous, with high levels of expression in the kidney, cerebellum and diencephalon. Real time quantitative PCR did not reveal any differences between intact males and females the medial preoptic nucleus (POM), optic lobes and cerebellum. We next investigated the physiological and behavioral role of this coactivator using in vivo antisense oligonucleotide (AS) techniques. Daily injections in the third ventricle at the level of the POM of locked nucleic acid antisense targeting SRC-2 significantly reduced the expression of testosterone-dependent male-typical copulatory behavior but no inhibition of one aspect of the appetitive sexual behavior was observed. The volume of POM, defined by aromatase-immunoreactive cells, was markedly decreased in animals treated with AS as compared to controls. These results demonstrate that SRC-2 plays a prominent role in the control of steroid-dependent male sexual behavior and its associated neuroplasticity in Japanese quail. PMID:21854393

  5. Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats

    PubMed Central

    Sriram, Balaji; Meier, Philip M.

    2016-01-01

    Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions. PMID:26936980

  6. Central administration of a 5-HT2 receptor agonist and antagonist: lack of effect on rapid eye movement sleep and pgo waves.

    PubMed

    Sanford, L D; Hunt, W K; Ross, R J; Pack, A I; Morrison, A R

    1998-01-01

    Serotonin (5-HT) has a role in regulating behavioral state and controlling the production of ponto-geniculo-occipital (PGO) waves, though the exact mechanism of action is not known. The most prevailing explanation is that 5-HT exerts its influence on behavioral state and PGO waves by inhibiting and disinhibiting cholinergic cells in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT), which have been implicated in their generation. Recent work in rats has demonstrated 5-HT2 receptors on most cholinergic cells in PPT/LDT. We microinfused the relatively specific 5-HT2 agonist, DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane), the relatively specific 5-HT2 antagonist, ketanserin, and the nonspecific 5-HT antagonist, methysergide, locally into the peribrachial region of PPT in cats and monitored behavioral state and PGO waves. Neither drug significantly affected behavioral state or PGO wave activity. These results suggest that 5-HT2 receptors associated with cholinergic cells are minimally involved in the control of behavioral state and, together with the recent findings of others, suggest that 5-HT may not modulate PGO wave generation via direct action on cholinergic neurons in PPT/LDT, a departure from the long-held but minimally-tested view.

  7. Mixing of Honeybees with Different Genotypes Affects Individual Worker Behavior and Transcription of Genes in the Neuronal Substrate

    PubMed Central

    Bienefeld, Kaspar; Beye, Martin

    2012-01-01

    Division of labor in social insects has made the evolution of collective traits possible that cannot be achieved by individuals alone. Differences in behavioral responses produce variation in engagement in behavioral tasks, which as a consequence, generates a division of labor. We still have little understanding of the genetic components influencing these behaviors, although several candidate genomic regions and genes influencing individual behavior have been identified. Here, we report that mixing of worker honeybees with different genotypes influences the expression of individual worker behaviors and the transcription of genes in the neuronal substrate. These indirect genetic effects arise in a colony because numerous interactions between workers produce interacting phenotypes and genotypes across organisms. We studied hygienic behavior of honeybee workers, which involves the cleaning of diseased brood cells in the colony. We mixed ∼500 newly emerged honeybee workers with genotypes of preferred Low (L) and High (H) hygienic behaviors. The L/H genotypic mixing affected the behavioral engagement of L worker bees in a hygienic task, the cooperation among workers in uncapping single brood cells, and switching between hygienic tasks. We found no evidence that recruiting and task-related stimuli are the primary source of the indirect genetic effects on behavior. We suggested that behavioral responsiveness of L bees was affected by genotypic mixing and found evidence for changes in the brain in terms of 943 differently expressed genes. The functional categories of cell adhesion, cellular component organization, anatomical structure development, protein localization, developmental growth and cell morphogenesis were overrepresented in this set of 943 genes, suggesting that indirect genetic effects can play a role in modulating and modifying the neuronal substrate. Our results suggest that genotypes of social partners affect the behavioral responsiveness and the neuronal substrate of individual workers, indicating a complex genetic architecture underlying the expression of behavior. PMID:22348118

  8. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  9. Cerebellar Purkinje Cells Generate Highly Correlated Spontaneous Slow-Rate Fluctuations.

    PubMed

    Cao, Ying; Liu, Yu; Jaeger, Dieter; Heck, Detlef H

    2017-01-01

    Cerebellar Purkinje cells (PC) fire action potentials at high, sustained rates. Changes in spike rate that last a few tens of milliseconds encode sensory and behavioral events. Here we investigated spontaneous fluctuations of PC simple spike rate at a slow time scale of the order of 1 s. Simultaneous recordings from pairs of PCs that were aligned either along the sagittal or transversal axis of the cerebellar cortex revealed that simple spike rate fluctuations at the 1 s time scale were highly correlated. Each pair of PCs had either a predominantly positive or negative slow-rate correlation, with negative correlations observed only in PC pairs aligned along the transversal axis. Slow-rate correlations were independent of faster rate changes that were correlated with fluid licking behavior. Simultaneous recordings from PCs and cerebellar nuclear (CN) neurons showed that slow-rate fluctuations in PC and CN activity were also highly correlated, but their correlations continually alternated between periods of positive and negative correlation. The functional significance of this new aspect of cerebellar spike activity remains to be determined. Correlated slow-rate fluctuations seem too slow to be involved in the real-time control of ongoing behavior. However, slow-rate fluctuations of PCs converging on the same CN neuron are likely to modulate the excitability of the CN neuron, thus introduce a possible slow modulation of cerebellar output activity.

  10. Peripheral oxygen-sensing cells directly modulate the output of an identified respiratory central pattern generating neuron.

    PubMed

    Bell, Harold J; Inoue, Takuya; Shum, Kelly; Luk, Collin; Syed, Naweed I

    2007-06-01

    Breathing is an essential homeostatic behavior regulated by central neuronal networks, often called central pattern generators (CPGs). Despite ongoing advances in our understanding of the neural control of breathing, the basic mechanisms by which peripheral input modulates the activities of the central respiratory CPG remain elusive. This lack of fundamental knowledge vis-à-vis the role of peripheral influences in the control of the respiratory CPG is due in large part to the complexity of mammalian respiratory control centres. We have therefore developed a simpler invertebrate model to study the basic cellular and synaptic mechanisms by which a peripheral chemosensory input affects the central respiratory CPG. Here we report on the identification and characterization of peripheral chemoreceptor cells (PCRCs) that relay hypoxia-sensitive chemosensory information to the known respiratory CPG neuron right pedal dorsal 1 in the mollusk Lymnaea stagnalis. Selective perfusion of these PCRCs with hypoxic saline triggered bursting activity in these neurons and when isolated in cell culture these cells also demonstrated hypoxic sensitivity that resulted in membrane depolarization and spiking activity. When cocultured with right pedal dorsal 1, the PCRCs developed synapses that exhibited a form of short-term synaptic plasticity in response to hypoxia. Finally, osphradial denervation in intact animals significantly perturbed respiratory activity compared with their sham counterparts. This study provides evidence for direct synaptic connectivity between a peripheral regulatory element and a central respiratory CPG neuron, revealing a potential locus for hypoxia-induced synaptic plasticity underlying breathing behavior.

  11. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.

    PubMed

    Madl, Christopher M; Heilshorn, Sarah C

    2018-06-04

    Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.

  12. Nitric oxide-mediated modulation of the murine locomotor network

    PubMed Central

    Foster, Joshua D.; Dunford, Catherine; Sillar, Keith T.

    2013-01-01

    Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1–12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior. PMID:24259545

  13. α2δ ligands act as positive modulators of adult hippocampal neurogenesis and prevent depression-like behavior induced by chronic restraint stress.

    PubMed

    Valente, Maria Maddalena; Bortolotto, Valeria; Cuccurazzu, Bruna; Ubezio, Federica; Meneghini, Vasco; Francese, Maria Teresa; Canonico, Pier Luigi; Grilli, Mariagrazia

    2012-08-01

    Although the role of adult hippocampal neurogenesis remains to be fully elucidated, several studies suggested that the process is involved in cognitive and emotional functions and is deregulated in various neuropsychiatric disorders, including major depression. Several psychoactive drugs, including antidepressants, can modulate adult neurogenesis. Here we show for the first time that the α2δ ligands gabapentin [1-(aminomethyl)cyclohexaneacetic acid] and pregabalin (PGB) [(S)-(+)-3-isobutyl-GABA or (S)-3-(aminomethyl)-5-methylhexanoic acid] can produce concentration-dependent increases in the numbers of newborn mature and immature neurons generated in vitro from adult hippocampal neural progenitor cells and, in parallel, a decrease in the number of undifferentiated precursor cells. These effects were confirmed in vivo, because significantly increased numbers of adult cell-generated neurons were observed in the hippocampal region of mice receiving prolonged treatment with PGB (10 mg/kg i.p. for 21 days), compared with vehicle-treated mice. We demonstrated that PGB administration prevented the appearance of depression-like behaviors induced by chronic restraint stress and, in parallel, promoted hippocampal neurogenesis in adult stressed mice. Finally, we provided data suggesting involvement of the α2δ1 subunit and the nuclear factor-κB signaling pathway in drug-mediated proneurogenic effects. The new pharmacological activities of α2δ ligands may help explain their therapeutic activity as supplemental therapy for major depression and depressive symptoms in post-traumatic stress disorder and generalized anxiety disorders. These data contribute to the identification of novel molecular pathways that may represent potential targets for pharmacological modulation in depression.

  14. Use of microgravity bioreactors for development of an in vitro rat salivary gland cell culture model

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Moriarity, D. M.; Campbell, P. S.

    1993-01-01

    During development, salivary gland (SG) cells both secrete factors which modulate cellular behavior and express specific hormone receptors. Whether SG cell growth is modulated by an autocrine epidermal growth factor (EGF) receptor-mediated signal transduction pathway is not clearly understood. SG tissue is the synthesis site for functionally distinct products including growth factors, digestive enzymes, and homeostasis maintaining factors. Historically, SG cells have proven difficult to grow and may be only maintained as limited three-dimensional ductal-type structures in collagen gels or on reconstituted basement membrane gels. A novel approach to establishing primary rat SG cultures is use of microgravity bioreactors originally designed by NASA as low-shear culture systems for predicting cell growth and differentiation in the microgravity environment of space. These completely fluid-filled bioreactors, which are oriented horizontally and rotate, have proven advantageous for Earth-based culture of three-dimensional cell assemblies, tissue-like aggregates, and glandular structures. Use of microgravity bioreactors for establishing in vitro models to investigate steroid-mediated secretion of EGF by normal SG cells may also prove useful for the investigation of cancer and other salivary gland disorders. These microgravity bioreactors promise challenging opportunities for future applications in basic and applied cell research.

  15. Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications.

    PubMed

    Patel, Ravi Ghanshyam; Purwada, Alberto; Cerchietti, Leandro; Inghirami, Giorgio; Melnick, Ari; Gaharwar, Akhilesh K; Singh, Ankur

    2014-09-01

    Bioengineered hydrogels have been explored in cell and tissue engineering applications to support cell growth and modulate its behavior. A rationally designed scaffold should allow for encapsulated cells to survive, adhere, proliferate, remodel the niche, and can be used for controlled delivery of biomolecules. Here we report a microarray of composite bioadhesive microgels with modular dimensions, tunable mechanical properties and bulk modified adhesive biomolecule composition. Composite bioadhesive microgels of maleimide functionalized polyethylene glycol (PEG-MAL) with interpenetrating network (IPN) of gelatin ionically cross-linked with silicate nanoparticles were engineered by integrating microfabrication with Michael-type addition chemistry and ionic gelation. By encapsulating clinically relevant anchorage-dependent cervical cancer cells and suspension leukemia cells as cell culture models in these composite microgels, we demonstrate enhanced cell spreading, survival, and metabolic activity compared to control gels. The composite bioadhesive hydrogels represent a platform that could be used to study independent effect of stiffness and adhesive ligand density on cell survival and function. We envision that such microarrays of cell adhesive microenvironments, which do not require harsh chemical and UV crosslinking conditions, will provide a more efficacious cell culture platform that can be used to study cell behavior and survival, function as building blocks to fabricate 3D tissue structures, cell delivery systems, and high throughput drug screening devices.

  16. Microscale Bioadhesive Hydrogel Arrays for Cell Engineering Applications

    PubMed Central

    PATEL, RAVI GHANSHYAM; PURWADA, ALBERTO; CERCHIETTI, LEANDRO; INGHIRAMI, GIORGIO; MELNICK, ARI; GAHARWAR, AKHILESH K.; SINGH, ANKUR

    2014-01-01

    Bioengineered hydrogels have been explored in cell and tissue engineering applications to support cell growth and modulate its behavior. A rationally designed scaffold should allow for encapsulated cells to survive, adhere, proliferate, remodel the niche, and can be used for controlled delivery of biomolecules. Here we report a microarray of composite bioadhesive microgels with modular dimensions, tunable mechanical properties and bulk modified adhesive biomolecule composition. Composite bioadhesive microgels of maleimide functionalized polyethylene glycol (PEG-MAL) with interpenetrating network (IPN) of gelatin ionically cross-linked with silicate nanoparticles were engineered by integrating microfabrication with Michael-type addition chemistry and ionic gelation. By encapsulating clinically relevant anchorage-dependent cervical cancer cells and suspension leukemia cells as cell culture models in these composite microgels, we demonstrate enhanced cell spreading, survival, and metabolic activity compared to control gels. The composite bioadhesive hydrogels represent a platform that could be used to study independent effect of stiffness and adhesive ligand density on cell survival and function. We envision that such microarrays of cell adhesive microenvironments, which do not require harsh chemical and UV crosslinking conditions, will provide a more efficacious cell culture platform that can be used to study cell behavior and survival, function as building blocks to fabricate 3D tissue structures, cell delivery systems, and high throughput drug screening devices. PMID:25328548

  17. Temperature dependences of the electric polarization and wave number of incommensurate structures in multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, S. A., E-mail: pikin@ns.crys.ras.ru

    2016-05-15

    It is shown that the electric polarization and wave number of incommensurate modulations, proportional to each other, increase according to the Landau law in spin multiferroic cycloids near the Néel temperature. In this case, the constant magnetization component (including the one for a conical spiral) is oriented perpendicular to the spin incommensurability wave vector. A similar temperature behavior should manifest itself for spin helicoids, the axes of which are oriented parallel to the polarization vector but their spin rotation planes are oriented perpendicular to the antiferromagnetic order plane. When the directions of axes of the magnetization helicoid and polarization vectormore » coincide, the latter is quadratic with respect to magnetization and linearly depends on temperature, whereas the incommensurate-modulation wave number barely depends on temperature. Structural distortions of unit cells for multiferroics of different types determine their axial behavior.« less

  18. Silk-based biomaterials functionalized with fibronectin type II promotes cell adhesion.

    PubMed

    Pereira, Ana Margarida; Machado, Raul; da Costa, André; Ribeiro, Artur; Collins, Tony; Gomes, Andreia C; Leonor, Isabel B; Kaplan, David L; Reis, Rui L; Casal, Margarida

    2017-01-01

    The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches.

    PubMed

    Naghieh, Saman; Karamooz-Ravari, Mohammad Reza; Sarker, M D; Karki, Eva; Chen, Xiongbiao

    2018-04-01

    Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl 2 ) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression tests were used to measure the elastic modulus of each scaffold, then a finite element model was developed and a power model used to predict scaffold mechanical behavior. Results showed that crosslinking time and volume of crosslinker both play a decisive role in modulating the mechanical properties of 3D bioplotted scaffolds. Because mechanical properties of scaffolds can affect cell response, the findings of this study can be implemented to modulate the elastic modulus of scaffolds according to the intended application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Seven Transmembrane Receptors as Shapeshifting Proteins: The Impact of Allosteric Modulation and Functional Selectivity on New Drug Discovery

    PubMed Central

    Miller, Laurence J.

    2010-01-01

    It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures. PMID:20392808

  1. Experience Modulates Vicarious Freezing in Rats: A Model for Empathy

    PubMed Central

    Atsak, Piray; Orre, Marie; Bakker, Petra; Cerliani, Leonardo; Roozendaal, Benno

    2011-01-01

    The study of the neural basis of emotional empathy has received a surge of interest in recent years but mostly employing human neuroimaging. A simpler animal model would pave the way for systematic single cell recordings and invasive manipulations of the brain regions implicated in empathy. Recent evidence has been put forward for the existence of empathy in rodents. In this study, we describe a potential model of empathy in female rats, in which we studied interactions between two rats: a witness observes a demonstrator experiencing a series of footshocks. By comparing the reaction of witnesses with or without previous footshock experience, we examine the role of prior experience as a modulator of empathy. We show that witnesses having previously experienced footshocks, but not naïve ones, display vicarious freezing behavior upon witnessing a cage-mate experiencing footshocks. Strikingly, the demonstrator's behavior was in turn modulated by the behavior of the witness: demonstrators froze more following footshocks if their witness froze more. Previous experiments have shown that rats emit ultrasonic vocalizations (USVs) when receiving footshocks. Thus, the role of USV in triggering vicarious freezing in our paradigm is examined. We found that experienced witness-demonstrator pairs emitted more USVs than naïve witness-demonstrator pairs, but the number of USVs was correlated with freezing in demonstrators, not in witnesses. Furthermore, playing back the USVs, recorded from witness-demonstrator pairs during the empathy test, did not induce vicarious freezing behavior in experienced witnesses. Thus, our findings confirm that vicarious freezing can be triggered in rats, and moreover it can be modulated by prior experience. Additionally, our result suggests that vicarious freezing is not triggered by USVs per se and it influences back onto the behavior of the demonstrator that had elicited the vicarious freezing in witnesses, introducing a paradigm to study empathy as a social loop. PMID:21765921

  2. Dermal regulatory T cells display distinct migratory behavior that is modulated during adaptive and innate inflammation.

    PubMed

    Chow, Zachary; Mueller, Scott N; Deane, James A; Hickey, Michael J

    2013-09-15

    Regulatory T cells (Tregs) are important in controlling skin inflammation, an effect dependent on their ability to home to this organ. However, little is known regarding their behavior in the skin. In this study, we used multiphoton imaging in Foxp3-GFP mice to examine the behavior of endogenous Tregs in resting and inflamed skin. Although Tregs were readily detectable in the uninflamed dermis, most were nonmotile. Induction of contact sensitivity increased the proportion of motile Tregs, and also induced Treg recruitment. This response was significantly blunted in mice challenged with an irrelevant hapten, or by inhibition of effector cell recruitment, indicating a role for T cell-dependent inflammation in induction of Treg migration. Moreover, induction of Treg migration was inhibited by local injection of a CCR4 antagonist, indicating a role for CCR4 in this response. Exposure of naive mice to hapten also induced an increase in the proportion of migratory Tregs, demonstrating that innate signals can also induce Treg migration. Simultaneous examination of the migration of CD4⁺ effector cells and Tregs in the same region of uninflamed skin demonstrated that effector cells behaved differently, being uniformly highly migratory. These findings indicate that Treg behavior in skin differs from that of CD4⁺ effector cells, in that only a low proportion of Tregs is migratory under resting conditions. However, in response to both adaptive and innate inflammation, the proportion of migratory Tregs increases, raising the possibility that this response is important in multiple forms of skin inflammation.

  3. PF-06827443 Displays Robust Allosteric Agonist and Positive Allosteric Modulator Activity in High Receptor Reserve and Native Systems.

    PubMed

    Moran, Sean P; Cho, Hyekyung P; Maksymetz, James; Remke, Daniel H; Hanson, Ryan M; Niswender, Colleen M; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey

    2018-04-25

    Positive allosteric modulators (PAMs) of the M 1 subtype of muscarinic acetylcholine receptor have attracted intense interest as an exciting new approach for improving the cognitive deficits in schizophrenia and Alzheimer's disease. Recent evidence suggests that the presence of intrinsic agonist activity of some M 1 PAMs may reduce efficacy and contribute to adverse effect liability. However, the M 1 PAM PF-06827443 was reported to have only weak agonist activity at human M 1 receptors but produced M 1 -dependent adverse effects. We now report that PF-06827443 is an allosteric agonist in cell lines expressing rat, dog, and human M 1 and use of inducible cell lines shows that agonist activity of PF-06827443 is dependent on receptor reserve. Furthermore, PF-06827443 is an agonist in native tissue preparations and induces behavioral convulsions in mice similar to other ago-PAMs. These findings suggest that PF-06827443 is a robust ago-PAM, independent of species, in cell lines and native systems.

  4. Photovoltaic cell module and method of forming

    DOEpatents

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  5. Conditional deletion of Cadherin 13 perturbs Golgi cells and disrupts social and cognitive behaviors.

    PubMed

    Tantra, M; Guo, L; Kim, J; Zainolabidin, N; Eulenburg, V; Augustine, G J; Chen, A I

    2018-02-15

    Inhibitory interneurons mediate the gating of synaptic transmission and modulate the activities of neural circuits. Disruption of the function of inhibitory networks in the forebrain is linked to impairment of social and cognitive behaviors, but the involvement of inhibitory interneurons in the cerebellum has not been assessed. We found that Cadherin 13 (Cdh13), a gene implicated in autism spectrum disorder and attention-deficit hyperactivity disorder, is specifically expressed in Golgi cells within the cerebellar cortex. To assess the function of Cdh13 and utilize the manipulation of Cdh13 expression in Golgi cells as an entry point to examine cerebellar-mediated function, we generated mice carrying Cdh13-floxed alleles and conditionally deleted Cdh13 with GlyT2::Cre mice. Loss of Cdh13 results in a decrease in the expression/localization of GAD67 and reduces spontaneous inhibitory postsynaptic current (IPSC) in cerebellar Golgi cells without disrupting spontaneous excitatory postsynaptic current (EPSC). At the behavioral level, loss of Cdh13 in the cerebellum, piriform cortex and endopiriform claustrum have no impact on gross motor coordination or general locomotor behaviors, but leads to deficits in cognitive and social abilities. Mice lacking Cdh13 exhibit reduced cognitive flexibility and loss of preference for contact region concomitant with increased reciprocal social interactions. Together, our findings show that Cdh13 is critical for inhibitory function of Golgi cells, and that GlyT2::Cre-mediated deletion of Cdh13 in non-executive centers of the brain, such as the cerebellum, may contribute to cognitive and social behavioral deficits linked to neurological disorders. © 2018 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  6. Experimental study on the 300W class planar type solid oxide fuel cell stack: Investigation for appropriate fuel provision control and the transient capability of the cell performance

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.

    2012-11-01

    The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.

  7. Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: new insights in gas transport and metabolic modulation.

    PubMed

    De Rosa, Maria Cristina; Carelli Alinovi, Cristiana; Galtieri, Antonio; Russo, Annamaria; Giardina, Bruno

    2008-02-01

    Within the red blood cell the hemoglobin molecule is subjected to modulation mechanisms, namely homo- and heterotropic interactions, which optimize its functional behavior to the specific physiological requirements. At the cellular level, these modulation mechanisms are utilized to perform a number of other functions that are not minor with respect to the basic function of oxygen transport. Here we report some key examples concerning: (i) the interaction of hemoglobin with band 3 and its influence on glucose metabolism; (ii) the role of the ligand-linked quaternary transition of hemoglobin in the control of "NO bioactivity" and of gas diffusion; (iii) the interaction of plasma membrane with the various oxidative derivatives of the hemoglobin molecule. (c) 2008 IUBMB.

  8. Electromagnetically induced transparency in sinusoidal modulated ring resonator

    NASA Astrophysics Data System (ADS)

    Malik, Jagannath; Oruganti, Sai Kiran; Song, Seongkyu; Ko, Nak Young; Bien, Franklin

    2018-06-01

    In the present work, we demonstrate controlling the excitation of bright mode (continuum mode) resonance and dark mode (discrete mode) resonance in a planar metasurface made of sinusoidal modulation inside a closed rectangular metallic ring placed over a dielectric substrate. Unlike asymmetrical breaking of a meta-atom (often referred to as the unit cell) to achieve the dark mode response in regular metamaterials, in the present structure, the bright or dark mode resonance is achieved using even or odd half cycle modulation. The achieved dark-mode shows a sharp resonance for a particular polarization of the incident electric field, which results in an electromagnetically induced transparency like spectrum. The electromagnetic behavior of the proposed meta-atom has been investigated in the frequency domain using commercially available software and validated through experiments in the gigahertz regime.

  9. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    NASA Astrophysics Data System (ADS)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  10. Dynamics of microtubules: highlights of recent computational and experimental investigations

    NASA Astrophysics Data System (ADS)

    Barsegov, Valeri; Ross, Jennifer L.; Dima, Ruxandra I.

    2017-11-01

    Microtubules are found in most eukaryotic cells, with homologs in eubacteria and archea, and they have functional roles in mitosis, cell motility, intracellular transport, and the maintenance of cell shape. Numerous efforts have been expended over the last two decades to characterize the interactions between microtubules and the wide variety of microtubule associated proteins that control their dynamic behavior in cells resulting in microtubules being assembled and disassembled where and when they are required by the cell. We present the main findings regarding microtubule polymerization and depolymerization and review recent work about the molecular motors that modulate microtubule dynamics by inducing either microtubule depolymerization or severing. We also discuss the main experimental and computational approaches used to quantify the thermodynamics and mechanics of microtubule filaments.

  11. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence.

  12. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    PubMed

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-12-18

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.

  13. Dynamics of place, boundary and object encoding in rat anterior claustrum

    PubMed Central

    Jankowski, Maciej M.; O’Mara, Shane M.

    2015-01-01

    Discrete populations of brain cells signal differing types of spatial information. These “spatial cells” are largely confined to a closely-connected network of sites. We describe here, for the first time, cells in the anterior claustrum of the freely-moving rat encoding place, boundary and object information. This novel claustral spatial signal potentially directly modulates a wide variety of anterior cortical regions. We hypothesize that one of the functions of the claustrum is to provide information about body position, boundaries and landmark information, enabling dynamic control of behavior. PMID:26557060

  14. Regulation of Hematopoietic Stem Cell Behavior by the Nanostructured Presentation of Extracellular Matrix Components

    PubMed Central

    Muth, Christine Anna; Steinl, Carolin; Klein, Gerd; Lee-Thedieck, Cornelia

    2013-01-01

    Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)–derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7–10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors. PMID:23405094

  15. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review.

    PubMed

    Wang, Peng-Yuan; Thissen, Helmut; Kingshott, Peter

    2016-11-01

    The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Decrease the Development of Severe Experimental Autoimmune Uveitis in B10.RIII Mice.

    PubMed

    Qin, Yu; Chan, Ann M; Chang, Yu-Ling; Matynia, Anna; Kouris, Nicholas A; Kimbrel, Erin A; Ashki, Negin; Parikh, Sachin; Gorin, Michael B; Lanza, Robert; Levinson, Ralph D; Gordon, Lynn K

    2017-09-15

    We investigated the effect of exogenously administered human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) in experimental autoimmune uveitis (EAU) in B10.RIII mice, a murine model of severe uveitis. B10.RIII mice were immunized with an uveitogenic peptide, and intraperitoneal injections of 5 million hESC-MSCs per animal were given on the same day. Behavioral light sensitivity assays, histological evaluation, cytokine production, and regulatory T cells were analyzed at the peak of the disease. Histological and behavioral evidence demonstrated that early systemic treatment with hESC-MSCs decreases the development of severe EAU in B10.RIII mice. hESC-MSCs suppress Th17 and upregulate Th1 and Th2 responses as well as IL-2 and GM-CSF in splenocytes from hESC-MSC-treated mice. MSCs that originate from hESC decrease the development of severe EAU in B10.RIII mice, likely through systemic immune modulation. Further investigation is needed to determine any potential effect on active EAU.

  17. Associative memory cells and their working principle in the brain

    PubMed Central

    Wang, Jin-Hui; Cui, Shan

    2018-01-01

    The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors. PMID:29487741

  18. Rho GTPases at the crossroad of signaling networks in mammals

    PubMed Central

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization. PMID:24691223

  19. Bacterial determinants of the social behavior of Bacillus subtilis.

    PubMed

    Romero, Diego

    2013-09-01

    Bacteria utilize sophisticated cellular machinery to sense environmental changes and coordinate the most appropriate response. Fine sensors located on cell surfaces recognize a myriad of triggers and initiate genetic cascades leading to activation or repression of certain groups of genes. Structural elements such as pilli, exopolysaccharides and flagella are also exposed at the cell surface and contribute to modulating the intimate interaction with surfaces and host cells. This review will cover the latest advances in our understanding of the biology and functionality of these bacterial determinants within the context of biofilm formation of Bacillus subtilis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Cross-talk between the epigenome and neural circuits in drug addiction.

    PubMed

    Mews, Philipp; Calipari, Erin S

    2017-01-01

    Drug addiction is a behavioral disorder characterized by dysregulated learning about drugs and associated cues that result in compulsive drug seeking and relapse. Learning about drug rewards and predictive cues is a complex process controlled by a computational network of neural connections interacting with transcriptional and molecular mechanisms within each cell to precisely guide behavior. The interplay between rapid, temporally specific neuronal activation, and longer-term changes in transcription is of critical importance in the expression of appropriate, or in the case of drug addiction, inappropriate behaviors. Thus, these factors and their interactions must be considered together, especially in the context of treatment. Understanding the complex interplay between epigenetic gene regulation and circuit connectivity will allow us to formulate novel therapies to normalize maladaptive reward behaviors, with a goal of modulating addictive behaviors, while leaving natural reward-associated behavior unaffected. © 2017 Elsevier B.V. All rights reserved.

  1. A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity

    PubMed Central

    Suresh, S. N.; Chavalmane, Aravinda K.; DJ, Vidyadhara; Yarreiphang, Haorei; Rai, Shashank; Paul, Abhik; Clement, James P.; Alladi, Phalguni Anand; Manjithaya, Ravi

    2017-01-01

    ABSTRACT Parkinson disease (PD) is a life-threatening neurodegenerative movement disorder with unmet therapeutic intervention. We have identified a small molecule autophagy modulator, 6-Bio that shows clearance of toxic SNCA/α-synuclein (a protein implicated in synucleopathies) aggregates in yeast and mammalian cell lines. 6-Bio induces autophagy and dramatically enhances autolysosome formation resulting in SNCA degradation. Importantly, neuroprotective function of 6-Bio as envisaged by immunohistology and behavior analyses in a preclinical model of PD where it induces autophagy in dopaminergic (DAergic) neurons of mice midbrain to clear toxic protein aggregates suggesting that it could be a potential therapeutic candidate for protein conformational disorders. PMID:28350199

  2. Integrins in T Cell Physiology

    PubMed Central

    Alabiso, Oscar; Galetto, Alessandra Silvia; Baldanzi, Gianluca

    2018-01-01

    From the thymus to the peripheral lymph nodes, integrin-mediated interactions with neighbor cells and the extracellular matrix tune T cell behavior by organizing cytoskeletal remodeling and modulating receptor signaling. LFA-1 (αLβ2 integrin) and VLA-4 (α4β1 integrin) play a key role throughout the T cell lifecycle from thymocyte differentiation to lymphocyte extravasation and finally play a fundamental role in organizing immune synapse, providing an essential costimulatory signal for the T cell receptor. Apart from tuning T cell signaling, integrins also contribute to homing to specific target organs as exemplified by the importance of α4β7 in maintaining the gut immune system. However, apart from those well-characterized examples, the physiological significance of the other integrin dimers expressed by T cells is far less understood. Thus, integrin-mediated cell-to-cell and cell-to-matrix interactions during the T cell lifespan still represent an open field of research. PMID:29415483

  3. Behavior-associated Neuronal Activation After Kainic Acid-induced Hippocampal Neurotoxicity is Modulated in Time.

    PubMed

    Aguilar-Arredondo, Andrea; López-Hernández, Fernanda; García-Velázquez, Lizbeth; Arias, Clorinda; Zepeda, Angélica

    2017-02-01

    Kainic acid-induced (KA) hippocampal damage leads to neuronal death and further synaptic plasticity. Formation of aberrant as well as of functional connections after such procedure has been documented. However, the impact of such structural plasticity on cell activation along time after damage and in face of a behavioral demand has not been explored. We evaluated if the mRNA and protein levels of plasticity-related protein synaptophysin (Syp and SYP, respectively) and activity-regulated cytoskeleton-associated protein mRNA and protein levels (Arc and Arc, respectively) in the dentate gyrus were differentially modulated in time in response to a spatial-exploratory task after KA-induced hippocampal damage. In addition, we analyzed Arc+/NeuN+ immunopositive cells in the different experimental conditions. We infused KA intrahippocampally to young-adult rats and 10 or 30 days post-lesion (dpl) animals performed a hippocampus-activating spatial-exploratory task. Our results show that Syp mRNA levels significantly increase at 10dpl and return to control levels after 30dpl, whereas SYP protein levels are diminished at 10dpl, but significantly increase at 30dpl, as compared to 10dpl. Arc mRNA and protein levels are both increased at 30dpl as compared to sham. Also the number of NeuN+/Arc+ cells significantly increases at 30dpl in the group with a spatial-exploratory demand. These results provide information on the long-term modifications associated to structural plasticity and neuronal activation in the dentate gyrus after excitotoxic damage and in face of a spatial-exploratory behavior. Anat Rec, 300:425-432, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors.

    PubMed

    Husson, Steven J; Costa, Wagner Steuer; Wabnig, Sebastian; Stirman, Jeffrey N; Watson, Joseph D; Spencer, W Clay; Akerboom, Jasper; Looger, Loren L; Treinin, Millet; Miller, David M; Lu, Hang; Gottschalk, Alexander

    2012-05-08

    Nociception generally evokes rapid withdrawal behavior in order to protect the tissue from harmful insults. Most nociceptive neurons responding to mechanical insults display highly branched dendrites, an anatomy shared by Caenorhabditis elegans FLP and PVD neurons, which mediate harsh touch responses. Although several primary molecular nociceptive sensors have been characterized, less is known about modulation and amplification of noxious signals within nociceptor neurons. First, we analyzed the FLP/PVD network by optogenetics and studied integration of signals from these cells in downstream interneurons. Second, we investigated which genes modulate PVD function, based on prior single-neuron mRNA profiling of PVD. Selectively photoactivating PVD, FLP, and downstream interneurons via Channelrhodopsin-2 (ChR2) enabled the functional dissection of this nociceptive network, without interfering signals by other mechanoreceptors. Forward or reverse escape behaviors were determined by PVD and FLP, via integration by command interneurons. To identify mediators of PVD function, acting downstream of primary nocisensor molecules, we knocked down PVD-specific transcripts by RNAi and quantified light-evoked PVD-dependent behavior. Cell-specific disruption of synaptobrevin or voltage-gated Ca(2+) channels (VGCCs) showed that PVD signals chemically to command interneurons. Knocking down the DEG/ENaC channel ASIC-1 and the TRPM channel GTL-1 indicated that ASIC-1 may extend PVD's dynamic range and that GTL-1 may amplify its signals. These channels act cell autonomously in PVD, downstream of primary mechanosensory molecules. Our work implicates TRPM channels in modifying excitability of and DEG/ENaCs in potentiating signal output from a mechano-nociceptor neuron. ASIC-1 and GTL-1 homologs, if functionally conserved, may denote valid targets for novel analgesics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Cholinergic modulation of mesolimbic dopamine function and reward.

    PubMed

    Mark, Gregory P; Shabani, Shkelzen; Dobbs, Lauren K; Hansen, Stephen T

    2011-07-25

    The substantial health risk posed by obesity and compulsive drug use has compelled a serious research effort to identify the neurobiological substrates that underlie the development these pathological conditions. Despite substantial progress, an understanding of the neurochemical systems that mediate the motivational aspects of drug-seeking and craving remains incomplete. Important work from the laboratory of Bart Hoebel has provided key information on neurochemical systems that interact with dopamine (DA) as potentially important components in both the development of addiction and the expression of compulsive behaviors such as binge eating. One such modulatory system appears to be cholinergic pathways that interact with DA systems at all levels of the reward circuit. Cholinergic cells in the pons project to DA-rich cell body regions in the ventral tegmental area (VTA) and substantial nigra (SN) where they modulate the activity of dopaminergic neurons and reward processing. The DA terminal region of the nucleus accumbens (NAc) contains a small but particularly important group of cholinergic interneurons, which have extensive dendritic arbors that make synapses with a vast majority of NAc neurons and afferents. Together with acetylcholine (ACh) input onto DA cell bodies, cholinergic systems could serve a vital role in gating information flow concerning the motivational value of stimuli through the mesolimbic system. In this report we highlight evidence that CNS cholinergic systems play a pivotal role in behaviors that are motivated by both natural and drug rewards. We argue that the search for underlying neurochemical substrates of compulsive behaviors, as well as attempts to identify potential pharmacotherapeutic targets to combat them, must include a consideration of central cholinergic systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Terminal-Nerve-Derived Neuropeptide Y Modulates Physiological Responses in the Olfactory Epithelium of Hungry Axolotls (Ambystoma mexicanum)

    PubMed Central

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J.; Eisthen, Heather L.

    2007-01-01

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances. PMID:16855098

  7. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum).

    PubMed

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J; Eisthen, Heather L

    2006-07-19

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

  8. Astrocytes, Synapses and Brain Function: A Computational Approach

    NASA Astrophysics Data System (ADS)

    Nadkarni, Suhita

    2006-03-01

    Modulation of synaptic reliability is one of the leading mechanisms involved in long- term potentiation (LTP) and long-term depression (LTD) and therefore has implications in information processing in the brain. A recently discovered mechanism for modulating synaptic reliability critically involves recruitments of astrocytes - star- shaped cells that outnumber the neurons in most parts of the central nervous system. Astrocytes until recently were thought to be subordinate cells merely participating in supporting neuronal functions. New evidence, however, made available by advances in imaging technology has changed the way we envision the role of these cells in synaptic transmission and as modulator of neuronal excitability. We put forward a novel mathematical framework based on the biophysics of the bidirectional neuron-astrocyte interactions that quantitatively accounts for two distinct experimental manifestation of recruitment of astrocytes in synaptic transmission: a) transformation of a low fidelity synapse transforms into a high fidelity synapse and b) enhanced postsynaptic spontaneous currents when astrocytes are activated. Such a framework is not only useful for modeling neuronal dynamics in a realistic environment but also provides a conceptual basis for interpreting experiments. Based on this modeling framework, we explore the role of astrocytes for neuronal network behavior such as synchrony and correlations and compare with experimental data from cultured networks.

  9. Systemic treatment of focal brain injury in the rat by human umbilical cord blood cells being at different level of neural commitment.

    PubMed

    Gornicka-Pawlak, El Bieta; Janowski, Miroslaw; Habich, Aleksandra; Jablonska, Anna; Drela, Katarzyna; Kozlowska, Hanna; Lukomska, Barbara; Sypecka, Joanna; Domanska-Janik, Krystyna

    2011-01-01

    The aim of the study was to evaluate therapeutic effectiveness of intra-arterial infusion of human umbilical cord blood (HUCB) derived cells at different stages of their neural conversion. Freshly isolated mononuclear cells (D-0), neurally directed progenitors (D-3) and neural-like stem cells derived from umbilical cord blood (NSC) were compared. Focal brain damage was induced in rats by stereotactic injection of ouabain into dorsolateral striatum Three days later 10(7) of different subsets of HUCB cells were infused into the right internal carotid artery. Following surgery rats were housed in enriched environment for 30 days. Behavioral assessment consisted of tests for sensorimotor deficits (walking beam, rotarod, vibrissae elicited forelimb placing, apomorphine induced rotations), cognitive impairments (habit learning and object recognition) and exploratory behavior (open field). Thirty days after surgery the lesion volume was measured and the presence of donor cells was detected in the brain at mRNA level. At the same time immunohistochemical analysis of brain tissue was performed to estimate the local tissue response of ouabain injured rats and its modulation after HUCB cells systemic treatment. Functional effects of different subsets of cord blood cells shared substantial diversity in various behavioral tests. An additional analysis showed that D-0 HUCB cells were the most effective in functional restoration and reduction of brain lesion volume. None of transplanted cord blood derived cell fractions were detected in rat's brains at 30(th) day after treatment. This may suggest that the mechanism(s) underlying positive effects of HUCB derived cell may concern the other than direct neural cell supplementation. In addition increased immunoreactivity of markers indicating local cells proliferation and migration suggests stimulation of endogenous reparative processes by HUCB D-0 cell interarterial infusion.

  10. Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior.

    PubMed

    Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang

    2016-04-01

    It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates one of the possible mechanisms through which BG stimulates wound healing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.

    1977-01-01

    Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.

  12. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells.

    PubMed

    Tao, Shiyu; Niu, Liqiong; Cai, Liuping; Geng, Yali; Hua, Canfeng; Ni, Yingdong; Zhao, Ruqian

    2018-05-15

    The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P < 0.05) in LS174T cells after C12-HSL treatment, with elevated intracellular ATP generation (P < 0.05). Flow cytometry analysis revealed significantly increased intracellular Ca 2+ levels (P < 0.05), as well as disrupted mitochondrial activity and cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P < 0.05) in LS174T cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior.

    PubMed

    Pérez-Domínguez, Martha; Tovar-Y-Romo, Luis B; Zepeda, Angélica

    2018-01-26

    The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.

  14. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  15. Gap junctions modulate glioma invasion by direct transfer of microRNA.

    PubMed

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C

    2015-06-20

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.

  16. Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.

    PubMed

    Lin, Feng; Du, Feng; Huang, Jianyong; Chau, Alicia; Zhou, Yongsheng; Duan, Huiling; Wang, Jianxiang; Xiong, Chunyang

    2016-10-01

    Graphene is an emerging candidate for biomedical applications, including biosensor, drug delivery and scaffold biomaterials. Cellular functions and behaviors on different graphene-coated substrates, however, still remain elusive to a great extent. This paper explored the functional responses of cells such as adhesion and proliferation, to different kinds of substrates including coverslips, silicone, polydimethylsiloxane (PDMS) with different curing ratios, PDMS treated with oxygen plasma, and their counterparts coated with single layer graphene (SLG). Specifically, adherent cell number, spreading area and cytoskeleton configuration were exploited to characterize cell-substrate adhesion ability, while MTT assay was employed to test the proliferation capability of fibroblasts. Experimental outcome demonstrated graphene coating had excellent cytocompatibility, which could lead to an increase in early adhesion, spreading, proliferation, and remodeling of cytoskeletons of fibroblast cells. Notably, it was found that the underlying substrate effect, e.g., stiffness of substrate materials, could essentially regulate the adhesion and proliferation of cells cultured on graphene. The stiffer the substrates were, the stronger the abilities of adhesion and proliferation of fibroblasts were. This study not only deepens our understanding of substrate-modulated interfacial interactions between live cells and graphene, but also provides a valuable guidance for the design and application of graphene-based biomaterials in biomedical engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis

    NASA Astrophysics Data System (ADS)

    Joos, Stella; Weißhar, Björn; Bessler, Wolfgang G.

    2017-04-01

    Standard photovoltaic battery systems based on AC or DC architectures require power electronics and controllers, including inverters, MPP tracker, and battery charger. Here we investigate an alternative system design based on the parallel connection of a photovoltaic module with battery cells without any intermediate voltage conversion. This approach, for which we use the term passive hybridization, is based on matching the solar cell's and battery cell's respective current/voltage behavior. A battery with flat discharge characteristics can allow to pin the solar cell to its maximum power point (MPP) independently of the external power consumption. At the same time, upon battery full charge, voltage increase will drive the solar cell towards zero current and therefore self-prevent battery overcharge. We present a modeling and simulation analysis of passively hybridizing a 5 kWp PV system with a 5 kWh LFP/graphite lithium-ion battery. Dynamic simulations with 1-min time resolution are carried out for three exemplary summer and winter days using historic weather data and a synthetic single-family household consumer profile. The results demonstrate the feasibility of the system. The passive hybrid allows for high self-sufficiencies of 84.6% in summer and 25.3% in winter, which are only slightly lower than those of a standard system.

  18. Gap junctions modulate glioma invasion by direct transfer of microRNA

    PubMed Central

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.

    2015-01-01

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  19. Functional PDF Signaling in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent Modulation.

    PubMed

    Klose, Markus; Duvall, Laura; Li, Weihua; Liang, Xitong; Ren, Chi; Steinbach, Joe Henry; Taghert, Paul H

    2016-05-18

    The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness and does not require endogenous ligand (PDF) signaling or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additionally, cell-autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus, RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Functional PDF Signaling in the Drosophila Circadian Neural Circuit is Gated by Ral A-Dependent Modulation

    PubMed Central

    Liang, Xitong; Ren, Chi; Steinbach, Joe Henry; Taghert, Paul H.

    2016-01-01

    The neuropeptide PDF promotes the normal sequencing of circadian behavioral rhythms in Drosophila, but its signaling mechanisms are not well understood. We report daily rhythmicity in responsiveness to PDF in critical pacemakers called small LNvs. There is a daily change in potency, as great as 10-fold higher, around dawn. The rhythm persists in constant darkness, does not require endogenous ligand (PDF) signaling, or rhythmic receptor gene transcription. Furthermore, rhythmic responsiveness reflects the properties of the pacemaker cell type, not the receptor. Dopamine responsiveness also cycles, in phase with that of PDF, in the same pacemakers, but does not cycle in large LNv. The activity of RalA GTPase in s-LNv regulates PDF responsiveness and behavioral locomotor rhythms. Additional, cell autonomous PDF signaling reversed the circadian behavioral effects of lowered RalA activity. Thus RalA activity confers high PDF responsiveness, providing a daily gate around the dawn hours to promote functional PDF signaling. PMID:27161526

  1. Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior

    NASA Astrophysics Data System (ADS)

    Huang, Qingdao; Qian, Hong

    2009-09-01

    We establish a mathematical model for a cellular biochemical signaling module in terms of a planar differential equation system. The signaling process is carried out by two phosphorylation-dephosphorylation reaction steps that share common kinase and phosphatase with saturated enzyme kinetics. The pair of equations is particularly simple in the present mathematical formulation, but they are singular. A complete mathematical analysis is developed based on an elementary perturbation theory. The dynamics exhibits the canonical competition behavior in addition to bistability. Although widely understood in ecological context, we are not aware of a full range of biochemical competition in a simple signaling network. The competition dynamics has broad implications to cellular processes such as cell differentiation and cancer immunoediting. The concepts of homogeneous and heterogeneous multisite phosphorylation are introduced and their corresponding dynamics are compared: there is no bistability in a heterogeneous dual phosphorylation system. A stochastic interpretation is also provided that further gives intuitive understanding of the bistable behavior inside the cells.

  2. The CC chemokine receptor 5 regulates olfactory and social recognition in mice.

    PubMed

    Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K

    2011-12-01

    Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. A positional code and anisotropic forces control tissue remodeling in Drosophila

    NASA Astrophysics Data System (ADS)

    Zallen, Jennifer

    A major challenge in developmental biology is to understand how tissue-scale changes in organism structure arise from events that occur on a cellular and molecular level. We are using cell biological, biophysical, and quantitative live-embryo imaging approaches to understand how genes encode the forces that shape tissues, and to identify the mechanisms that modulate cell behavior in response to local forces. In many animals, the elongated head-to-tail body axis is achieved by rapid and coordinated movements of hundreds of cells. We found that in the fruit fly, these cell movements are regulated by subcellular asymmetries in the localization of proteins that generate contractile and adhesive forces between cells. Asymmetries in the force-generating machinery are in turn controlled by a positional code of spatial information provided by an ancient family of Toll-related receptors that are widely used for pathogen recognition by the innate immune system. I will describe how this spatial system systematically orients local cell movements and collective rosette-like clusters in the Drosophila embryo. Rosettes have now also been shown to shape the body axis in chicks, frogs, and mice, demonstrating that rosette behaviors are a general mechanism linking cellular asymmetry to tissue reorganization.

  4. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors

    PubMed Central

    García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto

    2012-01-01

    During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53–p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293

  6. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568

  7. γδT cells but not αβT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice.

    PubMed

    Zhang, Xiaoli; Rocha-Ferreira, Eridan; Li, Tao; Vontell, Regina; Jabin, Darakhshan; Hua, Sha; Zhou, Kai; Nazmi, Arshed; Albertsson, Anna-Maj; Sobotka, Kristina; Ek, Joakim; Thornton, Claire; Hagberg, Henrik; Mallard, Carina; Leavenworth, Jianmei W; Zhu, Changlian; Wang, Xiaoyang

    2017-12-20

    Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy. In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd -/- , lacking γδT cells), and TCRα-deficient (Tcra -/- , lacking αβT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze. White matter development was normal in Tcrd -/- and Tcrα -/- compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα -/- mice, but not in the Tcrd -/- mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα -/- mice, but no such effect was observed in Tcrd -/- mice. Our results suggest that γδT cells but not αβT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.

  8. Interrogation of inhibitor of nuclear factor κB α/nuclear factor κB (IκBα/NF-κB) negative feedback loop dynamics: from single cells to live animals in vivo.

    PubMed

    Moss, Britney L; Elhammali, Adnan; Fowlkes, Tiffanie; Gross, Shimon; Vinjamoori, Anant; Contag, Christopher H; Piwnica-Worms, David

    2012-09-07

    Full understanding of the biological significance of negative feedback processes requires interrogation at multiple scales as follows: in single cells, cell populations, and live animals in vivo. The transcriptionally coupled IκBα/NF-κB negative feedback loop, a pivotal regulatory node of innate immunity and inflammation, represents a model system for multiscalar reporters. Using a κB(5)→IκBα-FLuc bioluminescent reporter, we rigorously evaluated the dynamics of ΙκBα degradation and subsequent NF-κB transcriptional activity in response to diverse modes of TNFα stimulation. Modulating TNFα concentration or pulse duration yielded complex, reproducible, and differential ΙκBα dynamics in both cell populations and live single cells. Tremendous heterogeneity in the transcriptional amplitudes of individual responding cells was observed, which was greater than the heterogeneity in the transcriptional kinetics of responsive cells. Furthermore, administration of various TNFα doses in vivo generated ΙκBα dynamic profiles in the liver resembling those observed in single cells and populations of cells stimulated with TNFα pulses. This suggested that dose modulation of circulating TNFα was perceived by hepatocytes in vivo as pulses of increasing duration. Thus, a robust bioluminescent reporter strategy enabled rigorous quantitation of NF-κB/ΙκBα dynamics in both live single cells and cell populations and furthermore, revealed reproducible behaviors that informed interpretation of in vivo studies.

  9. Serotonergic raphe magnus cell discharge reflects ongoing autonomic and respiratory activities.

    PubMed

    Mason, Peggy; Gao, Keming; Genzen, Jonathan R

    2007-10-01

    Serotonergic cells are located in a restricted number of brain stem nuclei, send projections to virtually all parts of the CNS, and are critical to normal brain function. They discharge tonically at a rate modulated by the sleep-wake cycle and, in the case of medullary serotonergic cells in raphe magnus and the adjacent reticular formation (RM), are excited by cold challenge. Yet, beyond behavioral state and cold, endogenous factors that influence serotonergic cell discharge remain largely mysterious. The present study in the anesthetized rat investigated predictors of serotonergic RM cell discharge by testing whether cell discharge correlated to three rhythms observed in blood pressure recordings that averaged >30 min in length. A very slow frequency rhythm with a period of minutes, a respiratory rhythm, and a cardiac rhythm were derived from the blood pressure recording. Cross-correlations between each of the derived rhythms and cell activity revealed that the discharge of 38 of the 40 serotonergic cells studied was significantly correlated to the very slow and/or respiratory rhythms. Very few serotonergic cells discharged in relation to the cardiac cycle and those that did, did so weakly. The correlations between serotonergic cell discharge and the slow and respiratory rhythms cannot arise from baroreceptive input. Instead we hypothesize that they are by-products of ongoing adjustments to homeostatic functions that happen to alter blood pressure. Thus serotonergic RM cells integrate information about multiple homeostatic activities and challenges and can consequently modulate spinal processes according to the most pressing need of the organism.

  10. Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery

    PubMed Central

    Misra, Suniti; Hascall, Vincent C.; Atanelishvili, Ilia; Moreno Rodriguez, Ricardo; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer. PMID:26448753

  11. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    PubMed

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  12. Survival features of EBV-stabilized cells from centenarians: morpho-functional and transcriptomic analyses.

    PubMed

    Matarrese, Paola; Tinari, Antonella; Ascione, Barbara; Gambardella, Lucrezia; Remondini, Daniel; Salvioli, Stefano; Tenedini, Elena; Tagliafico, Enrico; Franceschi, Claudio; Malorni, Walter

    2012-12-01

    In the present work, we analyzed the survival features of six different Epstein-Barr virus (EBV)-stabilized lymphoid cell lines obtained from adult subjects and from subjects of more than 95 years. For the first, we found that lymphoid B cells from centenarians were more resistant to apoptosis induction and displayed a more developed lysosomal compartment, the most critical component of phagic machinery, in comparison with lymphoid B cells from adult subjects. In addition, cells from centenarians were capable of engulfing and digesting other cells, i.e., their siblings (even entire cells), whereas lymphoid cells from "control samples", i.e., from adults, did not. This behavior was improved by nutrient deprivation but, strikingly, it was unaffected by the autophagy-modulating drug, rapamycin, an autophagy inducer, and 3-methyladenine, an autophagy inhibitor. Transcriptomic analyses indicated that: (1) aspartyl proteases, (2) cell surface molecules such as integrins and cadherins, and (3) some components of cytoskeletal network could contribute to establish this survival phenotype. Also, Kyoto Encyclopedia of Genes and Genomes pathways such as Wnt signaling pathway, an essential contributor to cell migration and actin cytoskeleton remodeling, appeared as prominent. Although we cannot rule out the possibility that EBV-immortalization could play a role, since we observed this phagic behavior in cells from centenarians but not in those from adults, we hypothesize that it may represent an important survival determinant in cells from centenarians.

  13. Natural neural projection dynamics underlying social behavior

    PubMed Central

    Gunaydin, Lisa A.; Grosenick, Logan; Finkelstein, Joel C.; Kauvar, Isaac V.; Fenno, Lief E.; Adhikari, Avishek; Lammel, Stephan; Mirzabekov, Julie J.; Airan, Raag D.; Zalocusky, Kelly A.; Tye, Kay M.; Anikeeva, Polina; Malenka, Robert C.; Deisseroth, Karl

    2014-01-01

    Social interaction is a complex behavior essential for many species, and is impaired in major neuropsychiatric disorders. Pharmacological studies have implicated certain neurotransmitter systems in social behavior, but circuit-level understanding of endogenous neural activity during social interaction is lacking. We therefore developed and applied a new methodology, termed fiber photometry, to optically record natural neural activity in genetically- and connectivity-defined projections to elucidate the real-time role of specified pathways in mammalian behavior. Fiber photometry revealed that activity dynamics of a ventral tegmental area (VTA)-to-nucleus accumbens (NAc) projection could encode and predict key features of social but not novel-object interaction. Consistent with this observation, optogenetic control of cells specifically contributing to this projection was sufficient to modulate social behavior, which was mediated by type-1 dopamine receptor signaling downstream in the NAc. Direct observation of projection-specific activity in this way captures a fundamental and previously inaccessible dimension of circuit dynamics. PMID:24949967

  14. Nesting Behavior is Associated with VIP Expression and VIP-Fos Colocalization in a Network-Wide Manner

    PubMed Central

    Kingsbury, Marcy A.; Jan, Namratha; Klatt, James D.; Goodson, James L.

    2015-01-01

    Many species, including humans, engage in a series of behaviors that are preparatory to the arrival of offspring. Such "nesting behaviors" are of obvious importance, but relevant neuroendocrine mechanisms remain little studied. We here focus on the potential roles of vasoactive intestinal polypeptide (VIP) in the performance of appetitive and consummatory nesting behaviors in male and female zebra finches (Taeniopygia guttata). Using combined immunocytochemistry for Fos and in situ hybridization for VIP, we now show that many VIP cell groups show increased transcriptional activity in response to nest building in male and female zebra finches. Particularly strong data come from the preoptic area (medial preoptic area and medial preoptic nucleus), where VIP-Fos co-expression correlates positively with three different measures of nesting behavior, as does the number of VIP-expressing cells. Remarkably, we find that VIP mRNA and/or VIP-Fos co-expression is correlated with nesting behavior in virtually every brain area that we examined, including the medial amygdala (anterior and posterior), medial bed nucleus of the stria terminalis, medial preoptic area, medial preoptic nucleus, anterior hypothalamus, ventromedial hypothalamus, periaqueductal gray complex (central gray and nucleus intercollicularis), and ventral tegmental area. Near-significant effects are also obtained in the tuberoinfundibular hypothalamus. Although most correlations are positive, negative correlations are observed for the VIP cell group of the anterior hypothalamus, a population that selectively promotes aggression, and also the periaqueductal gray complex. These data demonstrate a network-wide relationship between peptide production and social behavior that is, to our knowledge, unparalleled by other peptidergic modulators. PMID:25573700

  15. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in C. elegans

    PubMed Central

    Beverly, Matthew; Anbil, Sriram; Sengupta, Piali

    2011-01-01

    Animals must ensure that they can execute behaviors important for physiological homeostasis under constantly changing environmental conditions. The neural mechanisms that regulate this behavioral robustness are not well understood. The nematode C. elegans thermoregulates primarily via modulation of navigation behavior. Upon encountering temperatures higher than its cultivation temperature (Tc), C. elegans exhibits negative thermotaxis towards colder temperatures using a biased random walk strategy. We find that C. elegans exhibits robust negative thermotaxis bias under conditions of varying Tc and temperature ranges. By cell ablation and cell-specific rescue experiments, we show that the ASI chemosensory neurons are newly identified components of the thermosensory circuit, and that different combinations of ASI and the previously identified AFD and AWC thermosensory neurons are necessary and sufficient under different conditions to execute a negative thermotaxis strategy. ASI responds to temperature stimuli within a defined operating range defined by Tc, and signaling from AFD regulates the bounds of this operating range, suggesting that neuromodulation among thermosensory neurons maintains coherence of behavioral output. Our observations demonstrate that a negative thermotaxis navigational strategy can be generated via different combinations of thermosensory neurons acting degenerately, and emphasize the importance of defining context when analyzing neuronal contributions to a behavior. PMID:21832201

  16. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  17. A turbulence-induced switch in phytoplankton swimming behavior

    NASA Astrophysics Data System (ADS)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  18. Recent Advances in Lgr5+ Stem Cell Research.

    PubMed

    Leung, Carly; Tan, Si Hui; Barker, Nick

    2018-05-01

    The discovery of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) as both a marker of adult stem cells and a critical modulator of their activity via its role as an effector of Wnt/R-spondin (Rspo) signaling has driven major advances in our understanding of stem cell biology during homeostasis, regeneration, and disease. Exciting new mouse and organoid culture models developed to study the endogenous behavior of Lgr5-expressing cells in health and disease settings have revealed the existence of facultative stem cell populations responsible for tissue regeneration, cancer stem cells (CSCs) driving metastasis in the gut, and Lgr5 + niche cells in the lung. Here we review these recent advances and discuss their impact on efforts to harness the therapeutic potential of adult stem cells and their cancer counterparts in the clinic. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.

    PubMed

    Schrum, Jacob; Miikkulainen, Risto

    2016-03-12

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.

  20. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks

    PubMed Central

    Schrum, Jacob; Miikkulainen, Risto

    2015-01-01

    Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games. PMID:27030803

  1. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.

    PubMed

    Bercik, P; Park, A J; Sinclair, D; Khoshdel, A; Lu, J; Huang, X; Deng, Y; Blennerhassett, P A; Fahnestock, M; Moine, D; Berger, B; Huizinga, J D; Kunze, W; McLean, P G; Bergonzelli, G E; Collins, S M; Verdu, E F

    2011-12-01

    The probiotic Bifidobacterium longum NCC3001 normalizes anxiety-like behavior and hippocampal brain derived neurotrophic factor (BDNF) in mice with infectious colitis. Using a model of chemical colitis we test whether the anxiolytic effect of B. longum involves vagal integrity, and changes in neural cell function. Methods  Mice received dextran sodium sulfate (DSS, 3%) in drinking water during three 1-week cycles. Bifidobacterium longum or placebo were gavaged daily during the last cycle. Some mice underwent subdiaphragmatic vagotomy. Behavior was assessed by step-down test, inflammation by myeloperoxidase (MPO) activity and histology. BDNF mRNA was measured in neuroblastoma SH-SY5Y cells after incubation with sera from B. longum- or placebo-treated mice. The effect of B. longum on myenteric neuron excitability was measured using intracellular microelectrodes. Chronic colitis was associated with anxiety-like behavior, which was absent in previously vagotomized mice. B. longum normalized behavior but had no effect on MPO activity or histological scores. Its anxiolytic effect was absent in mice with established anxiety that were vagotomized before the third DSS cycle. B. longum metabolites did not affect BDNF mRNA expression in SH-SY5Y cells but decreased excitability of enteric neurons. In this colitis model, anxiety-like behavior is vagally mediated. The anxiolytic effect of B. longum requires vagal integrity but does not involve gut immuno-modulation or production of BDNF by neuronal cells. As B. longum decreases excitability of enteric neurons, it may signal to the central nervous system by activating vagal pathways at the level of the enteric nervous system. © 2011 Blackwell Publishing Ltd.

  2. Epigenetic Principles and Mechanisms Underlying Nervous System Functions in Health and Disease

    PubMed Central

    Mehler, Mark F.

    2009-01-01

    Epigenetics and epigenomic medicine encompass a new science of brain and behavior that are already providing unique insights into the mechanisms underlying brain development, evolution, neuronal and network plasticity and homeostasis, senescence, the etiology of diverse neurological diseases and neural regenerative processes. Epigenetic mechanisms include DNA methylation, histone modifications, nucleosome repositioning, higher-order chromatin remodeling, non-coding RNAs, and RNA and DNA editing. RNA is centrally involved in directing these processes, implying that the transcriptional state of the cell is the primary determinant of epigenetic memory. This transcriptional state can be modified by internal and external cues affecting gene expression and post-transcriptional processing, but also by RNA and DNA editing through activity-dependent intracellular transport and modulation of RNAs and RNA regulatory supercomplexes, and through trans-neuronal and systemic trafficking of functional RNA subclasses. These integrated processes promote dynamic reorganization of nuclear architecture and the genomic landscape to modulate functional gene and neural networks with complex temporal and spatial trajectories. Epigenetics represents the long sought after molecular interface mediating gene-environmental interactions during critical periods throughout the lifecycle. The discipline of environmental epigenomics has begun to identify combinatorial profiles of environmental stressors modulating the latency, initiation and progression of specific neurological disorders, and more selective disease biomarkers and graded molecular responses to emerging therapeutic interventions. Pharmacoepigenomic therapies will promote accelerated recovery of impaired and seemingly irrevocably lost cognitive, behavioral, sensorimotor functions through epigenetic reprogramming of endogenous regional neural stem cell fate decisions, targeted tissue remodeling and restoration of neural network integrity, plasticity and connectivity. PMID:18940229

  3. Blue light-mediated transcriptional activation and repression of gene expression in bacteria

    PubMed Central

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-01-01

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  4. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    PubMed Central

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  5. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles

    PubMed Central

    Wilczynski, Walter; Quispe, Maricel; Muñoz, Matías I.; Penna, Mario

    2017-01-01

    Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens–amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT’s social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT’s many effects on behavior. PMID:28824546

  6. Arginine Vasotocin, the Social Neuropeptide of Amphibians and Reptiles.

    PubMed

    Wilczynski, Walter; Quispe, Maricel; Muñoz, Matías I; Penna, Mario

    2017-01-01

    Arginine vasotocin (AVT) is the non-mammalian homolog of arginine vasopressin (AVP) and, like vasopressin, serves as an important modulator of social behavior in addition to its peripheral functions related to osmoregulation, reproductive physiology, and stress hormone release. In amphibians and reptiles, the neuroanatomical organization of brain AVT cells and fibers broadly resembles that seen in mammals and other taxa. Both parvocellular and magnocellular AVT-containing neurons are present in multiple populations located mainly in the basal forebrain from the accumbens-amygdala area to the preoptic area and hypothalamus, from which originate widespread fiber connections spanning the brain with a particularly heavy innervation of areas associated with social behavior and decision-making. As for mammalian AVP, AVT is present in greater amounts in males in many brain areas, and its presence varies seasonally, with hormonal state, and in males with differing social status. AVT's social influence is also conserved across herpetological taxa, with significant effects on social signaling and aggression, and, based on the very small number of studies investigating more complex social behaviors in amphibians and reptiles, AVT may also modulate parental care and social bonding when it is present in these vertebrates. Within this conserved pattern, however, both AVT anatomy and social behavior effects vary significantly across species. Accounting for this diversity represents a challenge to understanding the mechanisms by which AVT exerts its behavioral effects, as well are a potential tool for discerning the structure-function relationships underlying AVT's many effects on behavior.

  7. Complex effect of hydroxyapatite nanoparticles on the differentiation and functional activity of human pre-osteoclastic cells.

    PubMed

    Costa-Rodrigues, João; Silva, Ana; Santos, Catarina; Almeida, Maria Margarida; Costa, Maria Elisabete; Fernandes, Maria Helena

    2014-12-01

    Nanosized hydroxyapatite (HA) is a promising material in clinical applications targeting the bone tissue. NanoHA is able to modulate bone cellular events, which accounts for its potential utility, but also raises safety concerns regarding the maintenance of the bone homeostasis. This work analyses the effects of HA nanoparticles (HAnp) on osteoclastic differentiation and activity, an issue that has been barely addressed. Rod-like HAnp, produced by a hydrothermal precipitation method, were tested on peripheral blood mononuclear cells (PBMC), which contains the CD14+ osteoclastic precursors, in unstimulated or osteoclastogenic-induced conditions. HAnp were added at three time-points during the osteoclastic differentiation pathway, and cell response was evaluated for osteoclastic related parameters. Results showed that HAnp modulated the differentiation and function of osteoclastic cells in a dose- and time-dependent manner. In addition, the effects were dependent on the stage of osteoclastic differentiation. In unstimulated PBMC, HAnp significantly increased osteoclastogenesis, leading to the formation of mature osteoclasts, as evident by the significant increase of TRAP activity, number of TRAP-positive multinucleated cells, osteoclastic gene expression and resorbing ability. However, in a population of mature osteoclasts (formed in osteoclastogenic-induced PBMC cultures), HAnp caused a dose-dependent decrease on the osteoclastic-related parameters. These results highlight the complex effects of HAnp in osteoclastic differentiation and activity, and suggest the possibility of HAnp to modulate/disrupt osteoclastic behavior, with eventual imbalances in the bone metabolism. This should be carefully considered in bone-related and other established and prospective biomedical applications of HAnp.

  8. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  9. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics.

    PubMed

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.

  10. A Macro-to-Micro Interface for the Control of Cellular Organization

    PubMed Central

    Hui, Elliot E.; Li, Chun; Agrawal, Amit; Bhatia, Sangeeta N.

    2015-01-01

    The spatial organization of cellular communities plays a fundamental role in determining intercellular communication and emergent behavior. However, few tools exist to modulate tissue organization at the scale of individual cells, particularly in the case of dynamic manipulation. Micromechanical reconfigurable culture achieves dynamic control of tissue organization by culturing adherent cells on microfabricated plates that can be shifted to reorganize the arrangement of the cells. While biological studies utilizing this approach have been previously reported, this paper focuses on the engineering of the device, including the mechanism for translating manual manipulation to precise microscale position control, fault-tolerant design for manufacture, and the synthetic-to-living interface. PMID:26167106

  11. Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia.

    PubMed

    Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak

    2013-01-08

    Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.

  12. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior

    PubMed Central

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Pereira Gimba, Etel Rodrigues; Soares, Paula

    2016-01-01

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches. PMID:27409830

  13. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior.

    PubMed

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Gimba, Etel Rodrigues Pereira; Soares, Paula

    2016-08-09

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches.

  14. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    PubMed Central

    Laranjeira, Marta S; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. PMID:27877662

  15. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    NASA Astrophysics Data System (ADS)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  16. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  17. Intermittent fasting uncovers and rescues cognitive phenotypes in PTEN neuronal haploinsufficient mice.

    PubMed

    Cabral-Costa, J V; Andreotti, D Z; Mello, N P; Scavone, C; Camandola, S; Kawamoto, E M

    2018-06-05

    Phosphatase and tensin homolog (PTEN) is an important protein with key modulatory functions in cell growth and survival. PTEN is crucial during embryogenesis and plays a key role in the central nervous system (CNS), where it directly modulates neuronal development and synaptic plasticity. Loss of PTEN signaling function is associated with cognitive deficits and synaptic plasticity impairment. Accordingly, Pten mutations have a strong link with autism spectrum disorder. In this study, neuronal Pten haploinsufficient male mice were subjected to a long-term environmental intervention - intermittent fasting (IF) - and then evaluated for alterations in exploratory, anxiety and learning and memory behaviors. Although no significant effects on spatial memory were observed, mutant mice showed impaired contextual fear memory in the passive avoidance test - an outcome that was effectively rescued by IF. In this study, we demonstrated that IF modulation, in addition to its rescue of the memory deficit, was also required to uncover behavioral phenotypes otherwise hidden in this neuronal Pten haploinsufficiency model.

  18. SHANK3 controls maturation of social reward circuits in the VTA

    PubMed Central

    Glangetas, Christelle; Prévost-Solié, Clément; Pucci, Luca; Viguié, Joanna; Bezzi, Paola; O’Connor, Eoin C.; Georges, François; Lüscher, Christian; Bellone, Camilla

    2016-01-01

    Summary Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of Autism Spectrum Disorder (ASD). How SHANK3 insufficiency affects specific neural circuits and this is related to specific ASD symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the Ventral Tegmental Area (VTA) of mice. We identified dopamine (DA) and GABA cell-type specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors (mGluR1) during the first postnatal week restored DA neuron excitatory synapse transmission and rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired VTA function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy. PMID:27273769

  19. Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior

    PubMed Central

    Li, Suyan; Kumar T, Peeyush; Joshee, Sampada; Kirschstein, Timo; Subburaju, Sivan; Khalili, Jahan S; Kloepper, Jonas; Du, Chuang; Elkhal, Abdallah; Szabó, Gábor; Jain, Rakesh K; Köhling, Rüdiger; Vasudevan, Anju

    2018-01-01

    The cerebral cortex is essential for integration and processing of information that is required for most behaviors. The exquisitely precise laminar organization of the cerebral cortex arises during embryonic development when neurons migrate successively from ventricular zones to coalesce into specific cortical layers. While radial glia act as guide rails for projection neuron migration, pre-formed vascular networks provide support and guidance cues for GABAergic interneuron migration. This study provides novel conceptual and mechanistic insights into this paradigm of vascular-neuronal interactions, revealing new mechanisms of GABA and its receptor-mediated signaling via embryonic forebrain endothelial cells. With the use of two new endothelial cell specific conditional mouse models of the GABA pathway (Gabrb3ΔTie2-Cre and VgatΔTie2-Cre), we show that partial or complete loss of GABA release from endothelial cells during embryogenesis results in vascular defects and impairs long-distance migration and positioning of cortical interneurons. The downstream effects of perturbed endothelial cell-derived GABA signaling are critical, leading to lasting changes to cortical circuits and persistent behavioral deficits. Furthermore, we illustrate new mechanisms of activation of GABA signaling in forebrain endothelial cells that promotes their migration, angiogenesis and acquisition of blood-brain barrier properties. Our findings uncover and elucidate a novel endothelial GABA signaling pathway in the CNS that is distinct from the classical neuronal GABA signaling pathway and shed new light on the etiology and pathophysiology of neuropsychiatric diseases, such as autism spectrum disorders, epilepsy, anxiety, depression and schizophrenia. PMID:29086765

  20. Single-cell in vivo imaging of adult neural stem cells in the zebrafish telencephalon.

    PubMed

    Barbosa, Joana S; Di Giaimo, Rossella; Götz, Magdalena; Ninkovic, Jovica

    2016-08-01

    Adult neural stem cells (aNSCs) in zebrafish produce mature neurons throughout their entire life span in both the intact and regenerating brain. An understanding of the behavior of aNSCs in their intact niche and during regeneration in vivo should facilitate the identification of the molecular mechanisms controlling regeneration-specific cellular events. A greater understanding of the process in regeneration-competent species may enable regeneration to be achieved in regeneration-incompetent species, including humans. Here we describe a protocol for labeling and repetitive imaging of aNSCs in vivo. We label single aNSCs, allowing nonambiguous re-identification of single cells in repetitive imaging sessions using electroporation of a red-reporter plasmid in Tg(gfap:GFP)mi2001 transgenic fish expressing GFP in aNSCs. We image using two-photon microscopy through the thinned skull of anesthetized and immobilized fish. Our protocol allows imaging every 2 d for a period of up to 1 month. This methodology allowed the visualization of aNSC behavior in vivo in their natural niche, in contrast to previously available technologies, which rely on the imaging of either dissociated cells or tissue slices. We used this protocol to follow the mode of aNSC division, fate changes and cell death in both the intact and injured zebrafish telencephalon. This experimental setup can be widely used, with minimal prior experience, to assess key factors for processes that modulate aNSC behavior. A typical experiment with data analysis takes up to 1.5 months.

  1. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate

    PubMed Central

    Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J.; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego

    2015-01-01

    The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5+ satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine. PMID:26055324

  2. Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), Modulates Purinoceptor-Coupled Calcium Signaling and Murine Nociceptive Behavior.

    PubMed

    Liu, Pei-Shan; Chueh, Sheau-Huei; Chen, Chin-Chu; Lee, Li-Ya; Shiu, Li-Yen

    2017-01-01

    Hericium erinaceus is well known for the neurotrophic effect it confers by promoting nerve growth factor biosynthesis. We discovered a novel bioactivity of H. erinaceus in its ability to suppress adenosine triphosphate (ATP)-induced calcium signaling in neuronal PC12 cells. ATP, known primarily as a neurotransmitter, also acts on purinoceptors (P2 purinergic receptor [P2R]) to generate the cellular calcium signaling and secretion that mediate P2R physiological manifestations, including pain. Chronic pain reduces quality of life. However, constant analgesic administration can cause liver and kidney injury, as well as loss of the analgesic effect because of desensitization. In this study we investigated the analgesic potential of H. erinaceus through measurements of ATP-induced Ca2+ signaling in cell lines and observation of pain behaviors in mice. In P2R-coupled Ca2+ signaling measurements, extracts of H. erinaceus mycelia (HEEs) blocked ATP-induced Ca2+ signaling in both rat PC12 cells and human HOS cells. HEEs completely blocked ATP-induced Ca2+ signaling in human HOS cells, suggesting that this effect of HEEs is exerted through the P2R subtypes present in HOS cells, which include the P2X4, P2X7, P2Y2, and P2Y4 subtypes. In observations of animal behavior during pain, HEEs significantly reduced heat-induced pain, including postponing both the tail-flick response to heat stimulation and the paw-lifting response to a hot plate. This study demonstrates novel characteristics of H. erinaceus in reducing nociceptive behavior and blocking the functional activity of P2R. Further studies are required to verify this linkage and its molecular mechanisms.

  3. E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways

    PubMed Central

    Jasaitis, Audrius; Estevez, Maruxa; Heysch, Julie; Ladoux, Benoit; Dufour, Sylvie

    2012-01-01

    The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior. PMID:22853894

  4. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  5. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, G. H.; Smith, K.; Ireland, J.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ionmore » battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.« less

  6. Mechanical tolerances study through simulations and experimental characterization for a 1000X micro-concentrator CPV module

    NASA Astrophysics Data System (ADS)

    Ritou, Arnaud; Voarino, Philippe; Goubault, Baptiste; David, Nadine; Bernardis, Sarah; Raccurt, Olivier; Baudrit, Mathieu

    2017-09-01

    Existing CPV technology markets are not compliant with a standard configuration. Concentrations vary from several suns to more than 1000 suns and the optical technology used could be very different. Nowadays, the market trends are moving toward more and more compact optical systems in order to exploit the Light Emitting Diode (LED) like approach. The aim is to increase the optical efficiency by using an ultra-short focal distance and to improve thermal management. Moreover the efficiency to weight ratio is increasing and the solar cell size becomes sub-millimetric. With these conditions, more stringent mechanical tolerances are essential to ensure an optimum optical alignment between cells and optics. A new process of micro-concentrator manufacturing is developed in this work. This process enables manufacturing and auto-alignment of Primary Optical Elements (POE) with Secondary Optical Elements (SOE) and solar cells with respect to certain mechanical tolerances. A 1000X micro-concentrator is manufactured with 0.6 x 0.6 mm² triple-junction cells and molded silicone optics. Mechanical alignment defects are studied by ray-tracing simulations and a prototype is characterized with respect to its mechanical behavior. An efficiency of 33.4% is measured with a Cell-to-Module ratio of 77.8%.

  7. Parameter variation of the one-diode model of a-Si and a- Si/μc-Si solar cells for modeling light-induced degradation

    NASA Astrophysics Data System (ADS)

    Weicht, J. A.; Hamelmann, F. U.; Behrens, G.

    2014-11-01

    For analyzing the long-term behavior of thin film a-Si/μc-Si photovoltaic modules, it is important to observe the light-induced degradation (LID) in dependence of the temperature for the parameters of the one-diode model for solar cells. According to the IEC 61646 standard, the impact of LID on module parameters of these thin film cells is determined at a constant temperature of 50°C with an irradiation of 1000 W/m2 at open circuit conditions. Previous papers examined the LID of thin film a-Si cells with different temperatures and some others are about a-Si/μc-Si. In these previous papers not all parameters of the one-diode model are examined. We observed the serial resistance (Rs), parallel resistance (Rp), short circuit current (Isc), open circuit voltage (Uoc), the maximum power point (MPP: Umpp, Impp and Pmpp) and the diode factor (n). Since the main reason for the LID of silicon-based thin films is the Staebler Wronski effect in the a-Si part of the cell, the temperature dependence of the healing of defects for all parameters of the one-diode model is also taken into account. We are also measuring modules with different kind of transparent conductive oxides: In a-Si thin film solar cells fluorine-doped tin oxide (FTO) is used and for thin film solar cells of a-Si/μc-Si boron- doped zinc oxide is used. In our work we describe an approach for transferring the parameters of a one-diode model for tandem thin film solar cells into the one-diode model for each part of the solar cell. The measurement of degradation and regeneration at higher temperatures is the necessary base for optimization of the different silicon-based thin films in warm hot climate.

  8. The availability of filament ends modulates actin stochastic dynamics in live plant cells

    PubMed Central

    Li, Jiejie; Staiger, Benjamin H.; Henty-Ridilla, Jessica L.; Abu-Abied, Mohamad; Sadot, Einat; Blanchoin, Laurent; Staiger, Christopher J.

    2014-01-01

    A network of individual filaments that undergoes incessant remodeling through a process known as stochastic dynamics comprises the cortical actin cytoskeleton in plant epidermal cells. From images at high spatial and temporal resolution, it has been inferred that the regulation of filament barbed ends plays a central role in choreographing actin organization and turnover. How this occurs at a molecular level, whether different populations of ends exist in the array, and how individual filament behavior correlates with the overall architecture of the array are unknown. Here we develop an experimental system to modulate the levels of heterodimeric capping protein (CP) and examine the consequences for actin dynamics, architecture, and cell expansion. Significantly, we find that all phenotypes are the opposite for CP-overexpression (OX) cells compared with a previously characterized cp-knockdown line. Specifically, CP OX lines have fewer filament–filament annealing events, as well as reduced filament lengths and lifetimes. Further, cp-knockdown and OX lines demonstrate the existence of a subpopulation of filament ends sensitive to CP concentration. Finally, CP levels correlate with the biological process of axial cell expansion; for example, epidermal cells from hypocotyls with reduced CP are longer than wild-type cells, whereas CP OX lines have shorter cells. On the basis of these and other genetic studies in this model system, we hypothesize that filament length and lifetime positively correlate with the extent of axial cell expansion in dark-grown hypocotyls. PMID:24523291

  9. Regulation of bacteria population behaviors by AI-2 "consumer cells" and "supplier cells".

    PubMed

    Quan, Yufen; Meng, Fankang; Ma, Xinyu; Song, Xinhao; Liu, Xiao; Gao, Weixia; Dang, Yulei; Meng, Yao; Cao, Mingfeng; Song, Cunjiang

    2017-09-19

    Autoinducer-2 (AI-2) is a universal signal molecule and enables an individual bacteria to communicate with each other and ultimately control behaviors of the population. Harnessing the character of AI-2, two kinds of AI-2 "controller cells" ("consumer cells" and "supplier cells") were designed to "reprogram" the behaviors of entire population. For the consumer cells, genes associated with the uptake and processing of AI-2, which includes LsrACDB, LsrFG, LsrK, were overexpressed in varying combinations. Four consumer cell strains were constructed: Escherichia coli MG1655 pLsrACDB (NK-C1), MG1655 pLsrACDBK (NK-C2), MG1655 pLsrACDBFG (NK-C3) and MG1655 pLsrACDBFGK (NK-C4). The key enzymes responsible for production of AI-2, LuxS and Mtn, were also overexpressed, yielding strains MG1655 pLuxS (NK-SU1), and MG1655 pLuxS-Mtn (NK-SU2). All the consumer cells could decrease the environmental AI-2 concentration. NK-C2 and NK-C4 were most effective in AI-2 uptake and inhibited biofilm formation. While suppliers can increase the environmental AI-2 concentration and NK-SU2 was most effective in supplying AI-2 and facilitated biofilm formation. Further, reporter strain, MG1655 pLGFP was constructed. The expression of green fluorescent protein (GFP) in reporter cells was initiated and guided by AI-2. Mixture of consumer cells and reporter cells suggest that consumer cells can decrease the AI-2 concentration. And the supplier cells were co-cultured with reporter cells, indicating that supplier cells can provide more AI-2 compared to the control. The consumer cells and supplier cells could be used to regulate environmental AI-2 concentration and the biofilm formation. They can also modulate the AI-2 concentration when they were co-cultured with reporter cells. It can be envisioned that this system will become useful tools in synthetic biology and researching new antimicrobials.

  10. Effects of Mechanical Loading on the Dynamics of Hair-Cell Stereociliary Bundles

    NASA Astrophysics Data System (ADS)

    Fredrickson, Lea

    Hearing is remarkably sensitive and still not entirely understood. Hair cells of the inner ear are the mechano-electrical transducers of sound and understanding how they function is essential to the understanding of hearing in general. Spontaneous oscillations exhibited by stereociliary bundles of the bullfrog sacculus provide a useful probe for the study of the hair cells' internal dynamic state. In this work we study the effects of mechanical loading on these hair-cell bundles in order to study their dynamics. When applying stiffness loads, we find that the spontaneous oscillation profile changes from multimode to single mode with light loading, and decreases in amplitude and increases in frequency with stiffer loads. We also find that tuning decreases with increasing load such that at loads comparable to in vivo conditions the tuning is flat. We further explore loading via deflections to hair cell bundles, both in the form of steady-state offsets and slow ramps. We find that steady state offsets lead to significant modulation of the characteristic frequency of response, decreasing the frequency in the channels closed direction (negative) and increasing it in the channels open direction (positive). Attachment to the overlying membrane was found, in vitro, to affect bundle offset position in hair cells of the bullfrog sacculus. Application of similar offsets on free-standing, spontaneously oscillating hair bundles shows modulation of their dynamic state, i.e. oscillation profile, characteristic frequency, and response to stimulus. Large offsets are found to arrest spontaneous oscillations, which recover upon reversal of the stimulus. The dynamical state of the hair bundle is dependent on both the history and direction of the offset stimulus. Oscillation suppression occurs much more readily in the negative direction and the bundle behavior approaching quiescence is distinct from that in the positive direction. With the change in spontaneous oscillation frequency and profile comes a change in the phase-locked response amplitude, dependent on bundle offset, winch extends the range of detection frequencies of the hair cell. We explore the broadband phase-locked response of spontaneously oscillating saccular hair cell bundles subject to time-dependent mechanical deflections. The experimental phase-locked amplitude shows an Arnold Tongue, consistent with theoretically predicted dynamical behavior. An offset that steadily increases in time, imposed on the position of the bundle to explore its dynamics at the zero frequency limit, is observed to progressively suppress spontaneous oscillations in a transition that displays strong frequency modulation, with the frequency vanishing at the critical point. When deflected at a faster rate and when allowed to recover to the oscillatory regime, the bundles also displayed a modulation in the amplitude of oscillation. We propose the dynamics of this transition to be dominated by a multi-critical region such that slight variations of a control parameter can produce either an infinite-period, supercritical Hopf, or Bogdanov-Takens bifurcation.

  11. Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light.

    PubMed

    Taxis, Christof

    2017-01-01

    In eukaryotic cells, virtually all regulatory processes are influenced by proteolysis. Thus, synthetic control of protein stability is a powerful approach to influence cellular behavior. To achieve this, selected target proteins are modified with a conditional degradation sequence (degron) that responds to a distinct signal. For development of a synthetic degron, an appropriate sensor domain is fused with a degron such that activity of the degron is under control of the sensor. This chapter describes the development of a light-activated, synthetic degron in the model organism Saccharomyces cerevisiae. This photosensitive degron module is composed of the light-oxygen-voltage (LOV) 2 photoreceptor domain of Arabidopsis thaliana phototropin 1 and a degron derived from murine ornithine decarboxylase (ODC). Excitation of the photoreceptor with blue light induces a conformational change that leads to exposure and activation of the degron. Subsequently, the protein is targeted for degradation by the proteasome. Here, the strategy for degron module development and optimization is described in detail together with experimental aspects, which were pivotal for successful implementation of light-controlled proteolysis. The engineering of the photosensitive degron (psd) module may well serve as a blueprint for future development of sophisticated synthetic switches.

  12. The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function

    PubMed Central

    Apostolopoulou, Anthi A.; Widmann, Annekathrin; Pfitzenmaier, Johanna E.; Maiolo, Elena M.; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G.; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F.; Thum, Andreas S.

    2012-01-01

    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed. PMID:23082175

  13. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    PubMed

    Huser, Annina; Rohwedder, Astrid; Apostolopoulou, Anthi A; Widmann, Annekathrin; Pfitzenmaier, Johanna E; Maiolo, Elena M; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F; Thum, Andreas S

    2012-01-01

    The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  14. New frontiers in gut nutrient sensor research: nutrient sensors in the gastrointestinal tract: modulation of sweet taste sensitivity by leptin.

    PubMed

    Horio, Nao; Jyotaki, Masafumi; Yoshida, Ryusuke; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2010-01-01

    The ability to perceive sweet compounds is important for animals to detect an external carbohydrate source of calories and has a critical role in the nutritional status of animals. In mice, a subset of sweet-sensitive taste cells possesses leptin receptors. Increase of plasma leptin with increasing internal energy storage in the adipose tissue suppresses sweet taste responses via this receptor. The data from recent studies indicate that leptin may also act as a modulator of sweet taste sensation in humans with a diurnal variation in sweet sensitivity. The plasma leptin level and sweet taste sensitivity are proposed to link with post-ingestive plasma glucose level. This leptin modulation of sweet taste sensitivity may influence an individual's preference, ingestive behavior, and absorption of nutrients, thereby playing important roles in regulation of energy homeostasis.

  15. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  16. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.

    PubMed

    Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S

    2018-02-22

    Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.

  17. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans.

    PubMed

    Flavell, Steven W; Pokala, Navin; Macosko, Evan Z; Albrecht, Dirk R; Larsch, Johannes; Bargmann, Cornelia I

    2013-08-29

    Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here, we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Serotonin and the Neuropeptide PDF Initiate and Extend Opposing Behavioral States in C. elegans

    PubMed Central

    Flavell, Steven W.; Pokala, Navin; Macosko, Evan Z.; Albrecht, Dirk R.; Larsch, Johannes; Bargmann, Cornelia I.

    2013-01-01

    SUMMARY Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states. PMID:23972393

  19. Peptidoglycan sensing by octopaminergic neurons modulates Drosophila oviposition

    PubMed Central

    Kurz, C Leopold; Charroux, Bernard; Chaduli, Delphine; Viallat-Lieutaud, Annelise; Royet, Julien

    2017-01-01

    As infectious diseases pose a threat to host integrity, eukaryotes have evolved mechanisms to eliminate pathogens. In addition to develop strategies reducing infection, animals can engage in behaviors that lower the impact of the infection. The molecular mechanisms by which microbes impact host behavior are not well understood. We demonstrate that bacterial infection of Drosophila females reduces oviposition and that peptidoglycan, the component that activates Drosophila antibacterial response, is also the elicitor of this behavioral change. We show that peptidoglycan regulates egg-laying rate by activating NF-κB signaling pathway in octopaminergic neurons and that, a dedicated peptidoglycan degrading enzyme acts in these neurons to buffer this behavioral response. This study shows that a unique ligand and signaling cascade are used in immune cells to mount an immune response and in neurons to control fly behavior following infection. This may represent a case of behavioral immunity. DOI: http://dx.doi.org/10.7554/eLife.21937.001 PMID:28264763

  20. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...

  1. Classroom Staff Training (Self-Study Packet). LEAP Outreach Project.

    ERIC Educational Resources Information Center

    Colorado Univ., Denver. Center for Collaborative Educational Leadership.

    This self-study training manual for teachers of young children with autism contains nine modules on behavior modification techniques. The modules address: (1) the ABC's of behavior, which discusses discriminating among words that describe feelings and words that describe behaviors, identification of examples of learned behavior, and defining and…

  2. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  3. Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells.

    PubMed

    Liu, Yao; Yang, Guang; Ji, Huanzhong; Xiang, Tao; Luo, En; Zhou, Shaobing

    2017-06-01

    Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. ANTIGENIC MODULATION

    PubMed Central

    Old, Lloyd J.; Stockert, Elisabeth; Boyse, Edward A.; Kim, Jae Ho

    1968-01-01

    Antigenic modulation (the loss of TL antigens from TL+ cells exposed to TL antibody in the absence of lytic complement) has been demonstrated in vitro. An ascites leukemia, phenotype TL.1,2,3, which modulates rapidly and completely when incubated with TL antiserum in vitro, was selected for further study of the phenomenon. Over a wide range of TL antibody concentrations modulation at 37°C was detectable within 10 min and was complete within approximately 1 hr. The cells were initially sensitized to C' by their contact with antibody, thereafter losing this sensitivity to C' lysis together with their sensitivity to TL antibody and C' in the cytotoxic test. The capacity of the cells to undergo modulation was abolished by actinomycin D and by iodoacetamide, and by reducing the temperature of incubation to 0°C. Thus modulation apparently is an active cellular process. Antigens TL. 1,2, and 3 are all modulated by anti-TL.1,3 serum and by anti-TL.3 serum. This modulation affects all three TL components together, even when antibody to one or two of them is lacking. aAnti-TL.2 serum does not induce modulation and in fact impairs modulation by the other TL antibodies. The influence of the TL phenotype of cells upon the demonstrable content of H-2 (D region) isoantigen, first shown in cells modulated in vivo, has been observed with cells modulated in vitro. Cells undergoing modulation show a progressive increase in H-2 (D region) antigen over a period of 4 hr, with no change in H-2 antigens of the K region. Restoration of the TL+ phenotype of modulated cells after removal of antibody is less rapid than TL+ → TL- modulation and may require several cell divisions. PMID:5636556

  5. Acute Neuroimmune Modulation Attenuates the Development of Anxiety-Like Freezing Behavior in an Animal Model of Traumatic Brain Injury

    PubMed Central

    Rodgers, Krista M.; Bercum, Florencia M.; McCallum, Danielle L.; Rudy, Jerry W.; Frey, Lauren C.; Johnson, Kirk W.; Watkins, Linda R.

    2012-01-01

    Abstract Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans. PMID:22435644

  6. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: The importance of assessing the amount of running in transgenic mice studies

    PubMed Central

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.

    2014-01-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600

  7. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    PubMed Central

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  8. The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells

    PubMed Central

    Dumenieu, Mael; Senkov, Oleg; Mironov, Andrey; Bourinet, Emmanuel; Kreutz, Michael R; Dityatev, Alexander; Heine, Martin; Bikbaev, Arthur

    2018-01-01

    Abstract Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids. PMID:29790938

  9. At the Edge of Translation – Materials to Program Cells for Directed Differentiation

    PubMed Central

    Arany, Praveen R; Mooney, David J

    2010-01-01

    The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763

  10. 77 FR 73017 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Countervailing... photovoltaic cells, whether or not assembled into modules (solar cells), from the People's Republic of China... material injury to a U.S. industry.\\1\\ \\1\\ See Crystalline Silicon Photovoltaic Cells and Modules from...

  11. Day-night cycles and the sleep-promoting factor, Sleepless, affect stem cell activity in the Drosophila testis.

    PubMed

    Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita

    2014-02-25

    Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.

  12. Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation.

    PubMed

    Lima, A F; May, G; Colunga, J; Pedreiro, S; Paiva, A; Ferreira, L; Enver, T; Iborra, F J; Pires das Neves, R

    2018-05-08

    Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II (Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This technology was tested in model protocols of induced pluripotency and transdifferentiation in cells growing in suspension and adherent to substrates, CD34 + umbilical-cord-blood (UCB), fibroblasts and B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient hyposmotic modulation of the cell environment.

  13. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...)] Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1... injured by reason of imports from China of crystalline silicon photovoltaic cells and modules, provided... imports of crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October...

  14. Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain.

    PubMed

    Singh, Anamika; Gebhart, Mathias; Fritsch, Reinhard; Sinnegger-Brauns, Martina J; Poggiani, Chiara; Hoda, Jean-Charles; Engel, Jutta; Romanin, Christoph; Striessnig, Jörg; Koschak, Alexandra

    2008-07-25

    Low voltage activation of Ca(V)1.3 L-type Ca(2+) channels controls excitability in sensory cells and central neurons as well as sinoatrial node pacemaking. Ca(V)1.3-mediated pacemaking determines neuronal vulnerability of dopaminergic striatal neurons affected in Parkinson disease. We have previously found that in Ca(V)1.4 L-type Ca(2+) channels, activation, voltage, and calcium-dependent inactivation are controlled by an intrinsic distal C-terminal modulator. Because alternative splicing in the Ca(V)1.3 alpha1 subunit C terminus gives rise to a long (Ca(V)1.3(42)) and a short form (Ca(V)1.3(42A)), we investigated if a C-terminal modulatory mechanism also controls Ca(V)1.3 gating. The biophysical properties of both splice variants were compared after heterologous expression together with beta3 and alpha2delta1 subunits in HEK-293 cells. Activation of calcium current through Ca(V)1.3(42A) channels was more pronounced at negative voltages, and inactivation was faster because of enhanced calcium-dependent inactivation. By investigating several Ca(V)1.3 channel truncations, we restricted the modulator activity to the last 116 amino acids of the C terminus. The resulting Ca(V)1.3(DeltaC116) channels showed gating properties similar to Ca(V)1.3(42A) that were reverted by co-expression of the corresponding C-terminal peptide C(116). Fluorescence resonance energy transfer experiments confirmed an intramolecular protein interaction in the C terminus of Ca(V)1.3 channels that also modulates calmodulin binding. These experiments revealed a novel mechanism of channel modulation enabling cells to tightly control Ca(V)1.3 channel activity by alternative splicing. The absence of the C-terminal modulator in short splice forms facilitates Ca(V)1.3 channel activation at lower voltages expected to favor Ca(V)1.3 activity at threshold voltages as required for modulation of neuronal firing behavior and sinoatrial node pacemaking.

  15. Environmental testing of block 3 solar cell modules. Part 1: Qualification testing of standard production modules

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1979-01-01

    Qualification tests of solar cell modules are described. These modules continue to show improvement over earlier type modules tested. Cell cracking and delamination are less prevalent, and interconnect problems and electrical degradation from environmental testing are now rare.

  16. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    PubMed Central

    Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175

  17. Close Encounters of Lymphoid Cells and Bacteria

    PubMed Central

    Cruz-Adalia, Aranzazu; Veiga, Esteban

    2016-01-01

    During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter. PMID:27774092

  18. AKT Kinase Activity Is Required for Lithium to Modulate Mood-Related Behaviors in Mice

    PubMed Central

    Pan, Jen Q; Lewis, Michael C; Ketterman, Josh K; Clore, Elizabeth L; Riley, Misha; Richards, Keenan R; Berry-Scott, Erin; Liu, Xiulin; Wagner, Florence F; Holson, Edward B; Neve, Rachael L; Biechele, Travis L; Moon, Randall T; Scolnick, Edward M; Petryshen, Tracey L; Haggarty, Stephen J

    2011-01-01

    Bipolar disorder (BP) is a debilitating psychiatric disorder, affecting ∼2% of the worldwide population, for which the etiological basis, pathogenesis, and neurocircuitry remain poorly understood. Individuals with BP suffer from recurrent episodes of mania and depression, which are commonly treated with the mood stabilizer lithium. However, nearly half of BP patients do not respond adequately to lithium therapy and the clinically relevant mechanisms of lithium for mood stabilization remain elusive. Here, we modeled lithium responsiveness using cellular assays of glycogen synthase kinase 3 (GSK-3) signaling and mood-related behavioral assays in inbred strains of mice that differ in their response to lithium. We found that activating AKT through phosphosrylation of a key regulatory site (Thr308) was associated with lithium response—activation of signaling pathways downstream of GSK-3 in cells and attenuation of mood-related behaviors in mice—and this response was attenuated by selective and direct inhibition of AKT kinase activity. Conversely, the expression of constitutively active AKT1 in both the cellular and behavioral assays conferred lithium sensitivity. In contrast, selective and direct GSK-3 inhibition by the ATP-competitive inhibitor CHIR99021 bypassed the requirement for AKT activation and modulated behavior in both lithium-responsive and non-responsive mouse strains. These results distinguish the mechanism of action of lithium from direct GSK-3 inhibition both in vivo and in vitro, and highlight the therapeutic potential for selective GSK-3 inhibitors in BP treatment. PMID:21389981

  19. Stimulus-Response-Outcome Coding in the Pigeon Nidopallium Caudolaterale

    PubMed Central

    Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.

    2013-01-01

    A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S–) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments. PMID:23437383

  20. 77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1\\ developed... imports of crystalline silicon photovoltaic cells and modules from China, provided for in subheadings 8501... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean A...

  1. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling

    PubMed Central

    Likhite, Neah; Jackson, Christopher A.; Liang, Mao-Shih; Krzyzanowski, Michelle C.; Lei, Pedro; Wood, Jordan F.; Birkaya, Barbara; Michaels, Kerry L.; Andreadis, Stelios T.; Clark, Stewart D.; Yu, Michael C.; Ferkey, Denise M.

    2017-01-01

    Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyl-transferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor–mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5–deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide–binding protein–coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins. PMID:26554819

  2. Hotspot Endurance Of Solar-Cell Modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1989-01-01

    Procedure for evaluating modules for use with concentrators now available. Solar simulator illuminates photovoltaic cells through Fresnel lens of concentrator module. Module and test cells inspected visually at 24-h intervals during test and again when test completed. After test, electrical characteristics of module measured for comparison with pretest characteristics.

  3. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells

    PubMed Central

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M.; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-01-01

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584

  4. Roles for Hedgehog signaling in adult organ homeostasis and repair

    PubMed Central

    Petrova, Ralitsa; Joyner, Alexandra L.

    2014-01-01

    The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner. PMID:25183867

  5. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.

    2010-01-01

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  6. Overexpression of the VSSC-associated CAM, β-2, enhances LNCaP cell metastasis associated behavior.

    PubMed

    Jansson, Keith H; Lynch, Jill E; Lepori-Bui, Nadia; Czymmek, Kirk J; Duncan, Randall L; Sikes, Robert A

    2012-07-01

    Prostate cancer (PCa) is the second-leading cause of cancer death in American men. This is due largely to the "silent" nature of the disease until it has progressed to a highly metastatic and castrate resistant state. Voltage sensitive sodium channels (VSSCs) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two β subunits. The β-subunits modulate surface expression and gating kinetics of the channels but also have inherent cell adhesion molecule (CAM) functions. We hypothesize that PCa cells use VSSC β-subunits as CAMs during PCa progression and metastasis. We overexpressed the beta-2 isoform as a C-terminal fusion protein with enhanced cyan fluorescence protein (ECFP) in the weakly metastatic LNCaP cells. The effect of beta-2 overexpression on cell morphology was examined using confocal microscopy while metastasis-associated behavior was tested by performing several in vitro metastatic functional assays and in vivo subcutaneous tumor studies. We found that cells overexpressing beta-2 (2BECFP) converted to a bipolar fibroblastic morphology. 2BECFP cells were more adhesive than control (ECFP) to vitronectin (twofold) and Matrigel® (1.3-fold), more invasive through Matrigel® (3.6-fold in 72 hr), and had enhanced migration (2.1-fold in 96 hr) independent of proliferation in wound-healing assays. In contrast, 2BECFP cells have a reduced tumor-take and tumor volume in vivo even though the overexpression of beta-2 was maintained. Functional overexpression of VSSC β-subunits in PCa may be one mechanism leading to increased metastatic behavior while decreasing the ability to form localized tumor masses. Copyright © 2011 Wiley Periodicals, Inc.

  7. An immunohistochemical study on the distribution of vasotocin neurons in the brain of two weakly electric fish, Gymnotus omarorum and Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Radmilovich, Milka; Silva, Ana

    2017-04-01

    Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sensorimotor-correlated discharge recorded from ensembles of cerebellar Purkinje cells varies across the estrous cycle of the rat.

    PubMed

    Smith, S S

    1995-09-01

    1. In the present study, locomotor-correlated activity of cerebellar Purkinje cells, recorded using arrays of microwires chronically implanted in adult female rats, was examined across estrous-cycle-associated fluctuations in endogenous sex steroids. Ongoing studies from this laboratory have shown that systemic and local administration of the sex steroid 17 beta-estradiol (E2) augments excitatory responses of cerebellar Purkinje cells to iontophoretically applied glutamate, recorded in vivo from anesthetized female rats. In addition, this steroid potentiated discharge correlated with limb movement. For the present study, extracellular single-unit activity was recorded from as many as 5-11 Purkinje cells simultaneously during treadmill locomotion paradigms. Motor modulation of activity was recorded across three to five consecutive estrous cycles from behaviorally identified cohorts of neurons to test the hypothesis that fluctuations in endogenous sex steroids alter motor modulation of Purkinje cell discharge. 2. Locomotor-associated discharge correlated with treadmill locomotion was increased by a mean of 47% on proestrus, when E2 levels are elevated, relative to diestrus 1. These changes in discharge rate during treadmill locomotion were of significantly greater magnitude than corresponding cyclic alterations in discharge during stationary periods. 3. Correlations with the circadian cycle were also significant, because peak levels of locomotor-associated discharge on the night of behavioral estrus, following elevations in circulating E2, were on average 67% greater than corresponding discharge recorded during the light (proestrus). 4. Alterations in the step cycle were also observed across the estrous cycle: significant decreases in the duration of the flexion phase (by 265 ms, P < 0.05) were noted on estrus compared with diestrus. 5. When recorded on estrus, Purkinje cell discharge correlated with the stance or flexion phase of the step cycle was greater in magnitude and preceded the event by an average of 130 ms, compared with values determined on diestrus. 6. On estrus, responses of Purkinje neurons to iontophoretically applied quisqualate were enhanced fourfold after administration of exogenous E2, assessed in urethan-anesthetized female rats. 7. In addition, systemic administration of E2 (30 ng iv) potentiated responses of cerebellar Purkinje cells to electrical stimulation of the forepaw by an average of 150%, recorded in anesthetized female rats. 8. These results are consistent with the hypothesis that elevations in circulating E2 are associated with enhanced discharge of cerebellar Purkinje cells in response to pharmacological or electrical stimuli or associated with locomotor behavior.

  9. From modulated Hebbian plasticity to simple behavior learning through noise and weight saturation.

    PubMed

    Soltoggio, Andrea; Stanley, Kenneth O

    2012-10-01

    Synaptic plasticity is a major mechanism for adaptation, learning, and memory. Yet current models struggle to link local synaptic changes to the acquisition of behaviors. The aim of this paper is to demonstrate a computational relationship between local Hebbian plasticity and behavior learning by exploiting two traditionally unwanted features: neural noise and synaptic weight saturation. A modulation signal is employed to arbitrate the sign of plasticity: when the modulation is positive, the synaptic weights saturate to express exploitative behavior; when it is negative, the weights converge to average values, and neural noise reconfigures the network's functionality. This process is demonstrated through simulating neural dynamics in the autonomous emergence of fearful and aggressive navigating behaviors and in the solution to reward-based problems. The neural model learns, memorizes, and modifies different behaviors that lead to positive modulation in a variety of settings. The algorithm establishes a simple relationship between local plasticity and behavior learning by demonstrating the utility of noise and weight saturation. Moreover, it provides a new tool to simulate adaptive behavior, and contributes to bridging the gap between synaptic changes and behavior in neural computation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. 76 FR 81914 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... investigation of crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People..., 2012. \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the...

  11. Improving Research Participant Ethics: The Utility of an Online Educational Module

    ERIC Educational Resources Information Center

    Barber, Larissa K.; Bailey, Sarah F.; Bagsby, Patricia G.

    2015-01-01

    The undergraduate psychology curriculum often does not address guidelines for acceptable participant behavior. This two-part study tested the efficacy of a recently developed online learning module on ethical perceptions, knowledge, and behavior. In the preliminary quasi-experiment, students who viewed the module did not have higher…

  12. Myeloid dendritic cells frequencies are increased in children with autism spectrum disorder and associated with amygdala volume and repetitive behaviors

    PubMed Central

    Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A.; Rogers, Sally J.; Amaral, David; Ashwood, Paul

    2012-01-01

    The pathophysiology of Autism Spectrum Disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1−BDCA1+CD11c+ and Lin-1−BDCA3+CD123−) and plasmacytoid dendritic cells (Lin-1− BDCA2+CD123+ or Lin-1−BDCA4+ CD11c−) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (p < 0.03). Elevated frequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD. PMID:23063420

  13. Evaluation of Mismatch Losses due to Shunts in industrial Silicon Photovoltaic Modules

    NASA Astrophysics Data System (ADS)

    Somasundaran, P.; Shilpi, M.; Gupta, R.

    2017-05-01

    In order to achieve higher efficiencies in photovoltaic module technology, it is important to characterize the shunts and other defects which degrade the performance of cells and modules as well as decrease their efficiency. These shunts also affect the reliability of cells and modules. It is important to understand how much fill factor and power loss is caused by the presence of shunts in the module. Shunts not only reduce the module power output, but also affect the I-V characteristics of the cell and hence the characteristics of the shunted cells are different from those of the shunt-free cells connected in the module leading to the mismatch effect. This is an interesting effect which has been systematically investigated in the present work. Moreover, the flow of increased shunt current will give rise to increased temperature in the region of shunt, which will affect the cell and hence module performance. In the present study, the distributed diode model has been extended to the module level and applied to evaluate the electrical mismatch losses and thermal mismatch losses due to shunts in industrial Silicon PV modules.

  14. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice.

    PubMed

    Yang, Liu; Shi, Li-Jun; Yu, Jin; Zhang, Yu-Qiu

    2016-01-08

    Social defeat (SD) stress induces social avoidance and anxiety-like phenotypes. Amygdala is recognized as an emotion-related brain region such as fear, aversion and anxiety. It is conceivable to hypothesize that activation of amygdala is involved in SD-dependent behavioral defects. SD model was established using C57BL/6J mice that were physically defeated by different CD-1 mice for 10 days. Stressed mice exhibited decreased social interaction level in social interaction test and significant anxiety-like behaviors in elevated plus maze and open field tests. Meanwhile, a higher phosphorylation of PKA and CREB with a mutually linear correlation, and increased Fos labeled cells in the basolateral amygdala (BLA) were observed. Activation of PKA in the BLA by 8-Br-cAMP, a PKA activitor, significantly upregulated pCREB and Fos expression. To address the role of PKA activation on SD stress-induced social avoidance and anxiety-like behaviors, 8-Br-cAMP or H-89, a PKA inhibitor, was continuously administered into the bilateral BLA by a micro-osmotic pump system during the 10-day SD period. Neither H-89 nor 8-Br-cAMP affected the social behavior. Differently, 8-Br-cAMP significantly relieved anxiety-like behaviors in both general and moderate SD protocols. H-89 per se did not have anxiogenic effect in naïve mice, but aggravated moderate SD stress-induced anxiety-like behaviors. The antidepressant clomipramine reduced SD-induced anxiety and up-regulated pPKA level in the BLA. These results suggest that SD-driven PKA activation in the basolateral amygdala is actually a compensatory rather than pathogenic response in the homeostasis, and modulating amygdaloid PKA may exhibit potency in the therapy of social derived disorders.

  15. Neurogenesis and Helplessness are Mediated by Controllability in Males but not in Females

    PubMed Central

    Shors, Tracey J.; Mathew, Jason; Sisti, Helene M.; Edgecomb, Carol; Beckoff, Steven; Dalla, Christina

    2009-01-01

    Background Numerous studies have implicated neurogenesis in the hippocampus in animal models of depression, especially those related to controllability and learned helplessness. Here, we tested the hypothesis that uncontrollable, but not controllable stress would reduce cell proliferation in the hippocampus of male and female rats, and would relate to the expression of helplessness behavior. Methods To manipulate controllability, groups of male and female rats were trained in one session (acute stress) or over seven sessions (repeated stress) to escape a footshock, while yoked controls could not escape, but were exposed to the same amount of stress. Cell proliferation was assessed with immunohistochemistry of BrdU and immunofluorescence of BrdU and NeuN. Separate groups were exposed to either controllable or uncontrollable stress and their ability to learn to escape during training on a more difficult task was used as a behavioral measure of helplessness. Results Acute stress reduced cell proliferation in males, but did not affect proliferation in the female hippocampus. When animals were given the opportunity to learn to control the stress over days, males produced more cells than the yoked males without control. Repeated training with controllable stress did not influence proliferation in females. Under all conditions, males were more likely than females to express helplessness behavior, even males that were not previously stressed. Conclusions The modulation of neurogenesis by controllability was evident in males but not in females, as was the expression of helplessness behavior, despite the fact that men are less likely than women to experience depression. PMID:17306770

  16. Neurogenesis and helplessness are mediated by controllability in males but not in females.

    PubMed

    Shors, Tracey J; Mathew, Jason; Sisti, Helene M; Edgecomb, Carol; Beckoff, Steven; Dalla, Christina

    2007-09-01

    Numerous studies have implicated neurogenesis in the hippocampus in animal models of depression, especially those related to controllability and learned helplessness. Here, we tested the hypothesis that uncontrollable but not controllable stress would reduce cell proliferation in the hippocampus of male and female rats and would relate to the expression of helplessness behavior. To manipulate controllability, groups of male and female rats were trained in one session (acute stress) or over seven sessions (repeated stress) to escape a footshock, whereas yoked control subjects could not escape but were exposed to the same amount of stress. Cell proliferation was assessed with immunohistochemistry of bromodeoxyuridine (BrdU) and immunofluorescence of BrdU and neuronal nuclei (NeuN). Separate groups were exposed to either controllable or uncontrollable stress, and their ability to learn to escape during training on a more difficult task was used as a behavioral measure of helplessness. Acute stress reduced cell proliferation in males but did not affect proliferation in the female hippocampus. When animals were given the opportunity to learn to control the stress over seven days, males produced more cells than the yoked males without control. Repeated training with controllable stress did not influence proliferation in females. Under all conditions, males were more likely than females to express helplessness behavior, even males that were not previously stressed. The modulation of neurogenesis by controllability was evident in males but not in females, as was the expression of helplessness behavior, despite the fact that men are less likely than women to experience depression.

  17. Netrin-G1 regulates fear-like and anxiety-like behaviors in dissociable neural circuits.

    PubMed

    Zhang, Qi; Sano, Chie; Masuda, Akira; Ando, Reiko; Tanaka, Mika; Itohara, Shigeyoshi

    2016-06-27

    In vertebrate mammals, distributed neural circuits in the brain are involved in emotion-related behavior. Netrin-G1 is a glycosyl-phosphatidylinositol-anchored synaptic adhesion molecule whose deficiency results in impaired fear-like and anxiety-like behaviors under specific circumstances. To understand the cell type and circuit specificity of these responses, we generated netrin-G1 conditional knockout mice with loss of expression in cortical excitatory neurons, inhibitory neurons, or thalamic neurons. Genetic deletion of netrin-G1 in cortical excitatory neurons resulted in altered anxiety-like behavior, but intact fear-like behavior, whereas loss of netrin-G1 in inhibitory neurons resulted in attenuated fear-like behavior, but intact anxiety-like behavior. These data indicate a remarkable double dissociation of fear-like and anxiety-like behaviors involving netrin-G1 in excitatory and inhibitory neurons, respectively. Our findings support a crucial role for netrin-G1 in dissociable neural circuits for the modulation of emotion-related behaviors, and provide genetic models for investigating the mechanisms underlying the dissociation. The results also suggest the involvement of glycosyl-phosphatidylinositol-anchored synaptic adhesion molecules in the development and pathogenesis of emotion-related behavior.

  18. Curcumin inhibits the invasion of lung cancer cells by modulating the PKCα/Nox-2/ROS/ATF-2/MMP-9 signaling pathway.

    PubMed

    Fan, Zhigang; Duan, Xiaoyi; Cai, Hui; Wang, Li; Li, Min; Qu, Jingkun; Li, Wanjun; Wang, Yongheng; Wang, Jiansheng

    2015-08-01

    Invasion and metastasis are the major causes of tumor-related mortality in lung cancer. It is believed that curcumin is an effective drug possessing anti-invasive and anti-metastatic activities in the treatment of cancer. However, the specific mechanisms remain unclear. In the present study, we investigated whether the PKCα/Nox-2/ATF-2/MMP-9 signaling pathway is involved in the invasive behavior of lung cancer and whether curcumin could inhibit invasion by modulating this pathway. The cytotoxic effect of curcumin was evaluated by MTT assay and the capacity of invasion was assessed by Transwell assay. siRNA and plasmid transfection techniques were used to study the function of targeted genes. Real-time PCR and western blot analysis were used to evaluate the expression levels of PKCα, Nox-2, MMP-9 and the phosphorylation of ATF-2. The results showed that curcumin inhibited the proliferation and invasion of A549 cells in a dose-dependent manner. Overexpression of MMP-9 enhanced the invasion of A549 cells. However, inhibition of MMP-9 by siRNA or curcumin suppressed cell invasion. Moreover, we also demonstrated the catalytic role of PKCα in expression of MMP-9 and cellular invasion in A549 cells, which was dependent on the expression of Nox-2 and phosphorylation of ATF-2. Finally, we also showed that curcumin dose-dependently reduced the expression of PKCα, P47phox, Nox-2 and phosphorylated ATF-2, as well as intracellular ROS generation, suggesting the inhibitory effect of curcumin on the activation of the PKCα/Nox-2/ROS/ATF-2 pathway. In conclusion, the PKCα/Nox-2/ROS/ATF-2/MMP-9 signaling pathway is activated in lung cancer A549 cells, which could be modulated by curcumin to inhibit cell invasiveness.

  19. To Modulate and Be Modulated: Estrogenic Influences on Auditory Processing of Communication Signals within a Socio-Neuro-Endocrine Framework

    PubMed Central

    Yoder, Kathleen M.; Vicario, David S.

    2012-01-01

    Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1. Local estradiol action within an auditory area is necessary for socially-relevant sounds to induce normal physiological responses in the brains of both sexes; 2. These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3. Estradiol action within the auditory forebrain enables behavioral discrimination among socially-relevant sounds in males; and 4. Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors. Keywords: Estrogens, Songbird, Social Context, Auditory Perception PMID:22201281

  20. C-fos down-regulation inhibits testosterone-dependent male sexual behavior and the associated learning

    PubMed Central

    Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.

    2013-01-01

    Environmental stimulation results in an increased expression of transcription factors called immediate early genes (IEG) in specific neuronal populations. In male Japanese quail, copulation with a female increases the expression of the IEGs zenk and c-fos in the medial preoptic nucleus (POM), a key nucleus controlling male sexual behavior. The functional significance of this increased IEG expression that follows performance of copulatory behavior is unknown. We addressed this question by repeatedly quantifying the performance of appetitive (learned social proximity response) and consummatory (actual copulation) sexual behavior in castrated, testosterone-treated males that received daily intracerebroventricular injection of an antisense oligodeoxynucleotide targeting c-fos or control vehicle. Daily antisense injections significantly inhibited expression of copulatory behavior as well as acquisition of the learned social proximity response. A strong reduction of the proximity response was still observed in antisense-treated birds that copulated with a female, ruling out the indirect effect of the absence of interactions with females on the learning process. After a two-day interruption of behavioral testing but not of antisense injections, birds were submitted to a final copulatory test that confirmed the behavioral inhibition in antisense-injected birds. Brains were collected 90 min after the behavioral testing for quantification of c-fos immunoreactive cells. A significant reduction of the number of c-fos-positive cells in POM but not in other brain regions was observed following antisense injection. Together, data suggest that c-fos expression in POM modulates copulatory behavior and sexual learning in male quail. PMID:23895306

  1. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior.

    PubMed

    Tsao, Chang-Hui; Chen, Chien-Chun; Lin, Chen-Han; Yang, Hao-Yu; Lin, Suewei

    2018-03-16

    The fruit fly can evaluate its energy state and decide whether to pursue food-related cues. Here, we reveal that the mushroom body (MB) integrates hunger and satiety signals to control food-seeking behavior. We have discovered five pathways in the MB essential for hungry flies to locate and approach food. Blocking the MB-intrinsic Kenyon cells (KCs) and the MB output neurons (MBONs) in these pathways impairs food-seeking behavior. Starvation bi-directionally modulates MBON responses to a food odor, suggesting that hunger and satiety controls occur at the KC-to-MBON synapses. These controls are mediated by six types of dopaminergic neurons (DANs). By manipulating these DANs, we could inhibit food-seeking behavior in hungry flies or promote food seeking in fed flies. Finally, we show that the DANs potentially receive multiple inputs of hunger and satiety signals. This work demonstrates an information-rich central circuit in the fly brain that controls hunger-driven food-seeking behavior. © 2018, Tsao et al.

  2. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network

    PubMed Central

    Krzyzanowski, Michelle C.; Wood, Jordan F.; Brueggemann, Chantal; Bowitch, Alexander; Bethke, Mary; L’Etoile, Noelle D.; Ferkey, Denise M.

    2016-01-01

    All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal’s life history and its present internal state. Based on the integration of these variables, an animal’s needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal’s internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit. PMID:27459302

  3. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network.

    PubMed

    Krzyzanowski, Michelle C; Woldemariam, Sarah; Wood, Jordan F; Chaubey, Aditi H; Brueggemann, Chantal; Bowitch, Alexander; Bethke, Mary; L'Etoile, Noelle D; Ferkey, Denise M

    2016-07-01

    All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal's internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit.

  4. Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior

    PubMed Central

    Tsao, Chang-Hui; Chen, Chien-Chun; Lin, Chen-Han; Yang, Hao-Yu

    2018-01-01

    The fruit fly can evaluate its energy state and decide whether to pursue food-related cues. Here, we reveal that the mushroom body (MB) integrates hunger and satiety signals to control food-seeking behavior. We have discovered five pathways in the MB essential for hungry flies to locate and approach food. Blocking the MB-intrinsic Kenyon cells (KCs) and the MB output neurons (MBONs) in these pathways impairs food-seeking behavior. Starvation bi-directionally modulates MBON responses to a food odor, suggesting that hunger and satiety controls occur at the KC-to-MBON synapses. These controls are mediated by six types of dopaminergic neurons (DANs). By manipulating these DANs, we could inhibit food-seeking behavior in hungry flies or promote food seeking in fed flies. Finally, we show that the DANs potentially receive multiple inputs of hunger and satiety signals. This work demonstrates an information-rich central circuit in the fly brain that controls hunger-driven food-seeking behavior. PMID:29547121

  5. A single-molecule view of gene regulation in cancer

    NASA Astrophysics Data System (ADS)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.

  6. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 5 - Phase 2 Implementation of the Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Batten, Adam; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; Johnson, Mark; Lewis, Chris; hide

    2009-01-01

    This report describes the second phase of the implementation of the Concept Demonstrator experimental test-bed system containing sensors and processing hardware distributed throughout the structure, which uses multi-agent algorithms to characterize impacts and determine a suitable response to these impacts. This report expands and adds to the report of the first phase implementation. The current status of the system hardware is that all 192 physical cells (32 on each of the 6 hexagonal prism faces) have been constructed, although only four of these presently contain data-acquisition sub-modules to allow them to acquire sensor data. Impact detection.. location and severity have been successfully demonstrated. The software modules for simulating cells and controlling the test-bed are fully operational. although additional functionality will be added over time. The visualization workstation displays additional diagnostic information about the array of cells (both real and simulated) and additional damage information. Local agent algorithms have been developed that demonstrate emergent behavior of the complex multi-agent system, through the formation of impact damage boundaries and impact networks. The system has been shown to operate well for multiple impacts. and to demonstrate robust reconfiguration in the presence of damage to numbers of cells.

  7. The critical chemical and mechanical regulation of folic acid on neural engineering.

    PubMed

    Kim, Gloria B; Chen, Yongjie; Kang, Weibo; Guo, Jinshan; Payne, Russell; Li, Hui; Wei, Qiong; Baker, Julianne; Dong, Cheng; Zhang, Sulin; Wong, Pak Kin; Rizk, Elias B; Yan, Jiazhi; Yang, Jian

    2018-04-03

    The mandate of folic acid supplementation in grained products has reduced the occurrence of neural tube defects by one third in the U.S since its introduction by the Food and Drug Administration in 1998. However, the advantages and possible mechanisms of action of using folic acid for peripheral nerve engineering and neurological diseases still remain largely elusive. Herein, folic acid is described as an inexpensive and multifunctional niche component that modulates behaviors in different cells in the nervous system. The multiple benefits of modulation include: 1) generating chemotactic responses on glial cells, 2) inducing neurotrophin release, and 3) stimulating neuronal differentiation of a PC-12 cell system. For the first time, folic acid is also shown to enhance cellular force generation and global methylation in the PC-12 cells, thereby enabling both biomechanical and biochemical pathways to regulate neuron differentiation. These findings are evaluated in vivo for clinical translation. Our results suggest that folic acid-nerve guidance conduits may offer significant benefits as a low-cost, off-the-shelf product for reaching the functional recovery seen with autografts in large sciatic nerve defects. Consequently, folic acid holds great potential as a critical and convenient therapeutic intervention for neural engineering, regenerative medicine, medical prosthetics, and drug delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. More than a drainage fluid: the role of CSF in signaling in the brain and other effects on brain tissue.

    PubMed

    Illes, Sebastian

    2017-01-01

    Current progress in neuroscience demonstrates that the brain is not an isolated organ and is influenced by the systemic environment and extracerebral processes within the body. In view of this new concept, blood and cerebrospinal fluid (CSF) are important body fluids linking extracerebral and intracerebral processes. For decades, substantial evidence has been accumulated indicating that CSF modulates brain states and influences behavior as well as cognition. This chapter provides an overview of how CSF directly modulates the function of different types of brain cells, such as neurons, neural stem cells, and CSF-contacting cells. Alterations in CSF content occur in most pathologic central nervous system (CNS) conditions. In a classic view, the function of CSF is to drain waste products and detrimental factors derived from diseased brain parenchyma. This chapter presents examples for how intra- and extracerebral pathologic processes lead to alterations in the CSF content. Current knowledge about how pathologically altered CSF influences the functionality of brain cells will be presented. Thereby, it becomes evident that CSF has more than a drainage function and has a causal role for the etiology and pathogenesis of different CNS diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nanomechanics of multidomain neuronal cell adhesion protein contactin revealed by single molecule AFM and SMD.

    PubMed

    Mikulska-Ruminska, Karolina; Kulik, Andrej J; Benadiba, Carine; Bahar, Ivet; Dietler, Giovanni; Nowak, Wieslaw

    2017-08-18

    Contactin-4 (CNTN4) is a complex cell adhesion molecule (CAM) localized at neuronal membranes, playing a key role in maintaining the mechanical integrity and signaling properties of the synapse. CNTN4 consists of six immunoglobulin C2 type (IgC2) domains and four fibronectin type III (FnIII) domains that are shared with many other CAMs. Mutations in CNTN4 gene have been linked to various psychiatric disorders. Toward elucidating the response of this modular protein to mechanical stress, we studied its force-induced unfolding using single molecule atomic force microscopy (smAFM) and steered molecular dynamics (SMD) simulations. Extensive smAFM and SMD data both indicate the distinctive mechanical behavior of the two types of modules distinguished by unique force-extension signatures. The data also reveal the heterogeneity of the response of the individual FNIII and IgC2 modules, which presumably plays a role in the adaptability of CNTN4 to maintaining cell-cell communication and adhesion properties under different conditions. Results show that extensive sampling of force spectra, facilitated by robot-enhanced AFM, can help reveal the existence of weak stabilizing interactions between the domains of multidomain proteins, and provide insights into the nanomechanics of such multidomain or heteromeric proteins.

  10. Cranberry proanthocyanidins inhibit esophageal adenocarcinoma in vitro and in vivo through pleiotropic cell death induction and PI3K/AKT/mTOR inactivation

    PubMed Central

    Kresty, Laura A.; Weh, Katherine M.; Zeyzus-Johns, Bree; Perez, Laura N.; Howell, Amy B.

    2015-01-01

    Cranberries are rich in bioactive constituents known to improve urinary tract health and more recent evidence supports cranberries possess cancer inhibitory properties. However, mechanisms of cancer inhibition by cranberries remain to be elucidated, particularly in vivo. Properties of a purified cranberry-derived proanthocyanidin extract (C-PAC) were investigated utilizing acid-sensitive and acid-resistant human esophageal adenocarcinoma (EAC) cell lines and esophageal tumor xenografts in athymic NU/NU mice. C-PAC induced caspase-independent cell death mainly via autophagy and low levels of apoptosis in acid-sensitive JHAD1 and OE33 cells, but resulted in cellular necrosis in acid-resistant OE19 cells. Similarly, C-PAC induced necrosis in JHAD1 cells pushed to acid-resistance via repeated exposures to an acidified bile cocktail. C-PAC associated cell death involved PI3K/AKT/mTOR inactivation, pro-apoptotic protein induction (BAX, BAK1, deamidated BCL-xL, Cytochrome C, PARP), modulation of MAPKs (P-P38/P-JNK) and G2-M cell cycle arrest in vitro. Importantly, oral delivery of C-PAC significantly inhibited OE19 tumor xenograft growth via modulation of AKT/mTOR/MAPK signaling and induction of the autophagic form of LC3B supporting in vivo efficacy against EAC for the first time. C-PAC is a potent inducer of EAC cell death and is efficacious in vivo at non-toxic behaviorally achievable concentrations, holding promise for preventive or therapeutic interventions in cohorts at increased risk for EAC, a rapidly rising and extremely deadly malignancy. PMID:26378019

  11. Nanosurface design of dental implants for improved cell growth and function

    NASA Astrophysics Data System (ADS)

    Pan, Hsu-An; Hung, Yao-Ching; Chiou, Jin-Chern; Tai, Shih-Ming; Chen, Hsin-Hung; Huang, G. Steven

    2012-08-01

    A strategy was proposed for the topological design of dental implants based on an in vitro survey of optimized nanodot structures. An in vitro survey was performed using nanodot arrays with dot diameters ranging from 10 to 200 nm. MG63 osteoblasts were seeded on nanodot arrays and cultured for 3 days. Cell number, percentage undergoing apoptotic-like cell death, cell adhesion and cytoskeletal organization were evaluated. Nanodots with a diameter of approximately 50 nm enhanced cell number by 44%, minimized apoptotic-like cell death to 2.7%, promoted a 30% increase in microfilament bundles and maximized cell adhesion with a 73% increase in focal adhesions. An enhancement of about 50% in mineralization was observed, determined by von Kossa staining and by Alizarin Red S staining. Therefore, we provide a complete range of nanosurfaces for growing osteoblasts to discriminate their nanoscale environment. Nanodot arrays present an opportunity to positively and negatively modulate cell behavior and maturation. Our results suggest a topological approach which is beneficial for the design of dental implants.

  12. The functional role for condensin in the regulation of chromosomal organization during the cell cycle.

    PubMed

    Kagami, Yuya; Yoshida, Kiyotsugu

    2016-12-01

    In all organisms, the control of cell cycle progression is a fundamental process that is essential for cell growth, development, and survival. Through each cell cycle phase, the regulation of chromatin organization is essential for natural cell proliferation and maintaining cellular homeostasis. During mitosis, the chromatin morphology is dramatically changed to have a "thread-like" shape and the condensed chromosomes are segregated equally into two daughter cells. Disruption of the mitotic chromosome architecture physically impedes chromosomal behaviors, such as chromosome alignment and chromosome segregation; therefore, the proper mitotic chromosome structure is required to maintain chromosomal stability. Accumulating evidence has demonstrated that mitotic chromosome condensation is induced by condensin complexes. Moreover, recent studies have shown that condensin also modulates interphase chromatin and regulates gene expression. This review mainly focuses on the molecular mechanisms that condensin uses to exert its functions during the cell cycle progression. Moreover, we discuss the condensin-mediated chromosomal organization in cancer cells.

  13. Sleep and immune function: glial contributions and consequences of aging

    PubMed Central

    Ingiosi, Ashley M.; Opp, Mark R.; Krueger, James M.

    2013-01-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5′-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. PMID:23452941

  14. Sleep and immune function: glial contributions and consequences of aging.

    PubMed

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  15. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction.

    PubMed

    Micevych, Paul E; Mermelstein, Paul G; Sinchak, Kevin

    2017-11-01

    Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    PubMed

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  17. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology

    PubMed Central

    Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.

    2011-01-01

    SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257

  18. Electromagnetic behavior of spatial terahertz wave modulators based on reconfigurable micromirror gratings in Littrow configuration.

    PubMed

    Kappa, Jan; Schmitt, Klemens M; Rahm, Marco

    2017-08-21

    Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.

  19. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior.

    PubMed

    Mason, Brooke N; Starchenko, Alina; Williams, Rebecca M; Bonassar, Lawrence J; Reinhart-King, Cynthia A

    2013-01-01

    Numerous studies have described the effects of matrix stiffening on cell behavior using two-dimensional synthetic surfaces; however, less is known about the effects of matrix stiffening on cells embedded in three-dimensional in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in three dimensions is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a threefold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation end products is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Synaptogenesis Is Modulated by Heparan Sulfate in Caenorhabditis elegans

    PubMed Central

    Lázaro-Peña, María I.; Díaz-Balzac, Carlos A.; Bülow, Hannes E.; Emmons, Scott W.

    2018-01-01

    The nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in Caenorhabditis elegans. It is composed of sequential steps that are governed by > 3000 chemical connections. Here, we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. HS, sulfated in position 3 by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase and attached to the HS proteoglycan glypicans LON-2/glypican and GPN-1/glypican, functions cell-autonomously and nonautonomously for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, and disrupted the formation of synapses in a component of the mating circuits. We also show that the neural cell adhesion protein NRX-1/neurexin promotes and the neural cell adhesion protein NLG-1/neuroligin inhibits the formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections. PMID:29559501

  1. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  2. Thermodynamics of protein destabilization in live cells.

    PubMed

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-10-06

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.

  3. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences

    PubMed Central

    Basson, M. Albert; Wingate, Richard J.

    2013-01-01

    Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function. PMID:24027500

  4. Hippo signaling pathway in liver and pancreas: the potential drug target for tumor therapy.

    PubMed

    Kong, Delin; Zhao, Yicheng; Men, Tong; Teng, Chun-Bo

    2015-02-01

    Cell behaviors, including proliferation, differentiation and apoptosis, are intricately controlled during organ development and tissue regeneration. In the past 9 years, the Hippo signaling pathway has been delineated to play critical roles in organ size control, tissue regeneration and tumorigenesis through regulating cell behaviors. In mammals, the core modules of the Hippo signaling pathway include the MST1/2-LATS1/2 kinase cascade and the transcriptional co-activators YAP/TAZ. The activity of YAP/TAZ is suppressed by cytoplasmic retention due to phosphorylation in the canonical MST1/2-LATS1/2 kinase cascade-dependent manner or the non-canonical MST1/2- and/or LATS1/2-independent manner. Hippo signaling pathway, which can be activated or inactivated by cell polarity, contact inhibition, mechanical stretch and extracellular factors, has been demonstrated to be involved in development and tumorigenesis of liver and pancreas. In addition, we have summarized several small molecules currently available that can target Hippo-YAP pathway for potential treatment of hepatic and pancreatic cancers, providing clues for other YAP initiated cancers therapy as well.

  5. Sensation during Active Behaviors

    PubMed Central

    Cardin, Jessica A.; Chiappe, M. Eugenia; Halassa, Michael M.; McGinley, Matthew J.; Yamashita, Takayuki

    2017-01-01

    A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field. PMID:29118211

  6. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability

    NASA Astrophysics Data System (ADS)

    Tavolaro, Palmira; Catalano, Silvia; Martino, Guglielmo; Tavolaro, Adalgisa

    2016-09-01

    The design, preparation and selection of inorganic materials useful as functional scaffolds for cell adhesion is a complex question based both on the understanding of the chemical behavior of the materials and individual cells, and on their interactions. Pure zeolite membranes formed from synthetic crystals offer chemically-capable being modulated silanolic surfaces that are amenable to adhesion and growth of fibroblasts. We report the facile preparation of reusable, very longlasting, biocompatible, easily sterilized synthetic scaffolds in a zeolite membrane configuration, which are very stable in aqueous media (apart from ionic strength and pH values), able to adsorb pollutant species and to confine undesired toxic ions (present in culture media). This may ultimately lead to the development of cell supports for economic antibiotic-free culture media.

  7. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory

    PubMed Central

    Uematsu, Akira; Tan, Bao Zhen

    2015-01-01

    Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity. PMID:26330494

  8. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function

    PubMed Central

    Saxena, Amit; Dobaczewski, Marcin; Rai, Vikrant; Haque, Zaffar; Chen, Wei; Li, Na

    2014-01-01

    Regulatory T cells (Tregs) play a pivotal role in suppressing immune responses regulating behavior and gene expression in effector T cells, macrophages, and dendritic cells. Tregs infiltrate the infarcted myocardium; however, their role the inflammatory and reparative response after myocardial infarction remains poorly understood. We used FoxP3EGFP reporter mice to study Treg trafficking in the infarcted heart and examined the effects of Treg depletion on postinfarction remodeling using an anti-CD25 antibody. Moreover, we investigated the in vitro effects of Tregs on cardiac fibroblast phenotype and function. Low numbers of Tregs infiltrated the infarcted myocardium after 24–72 h of reperfusion. Treg depletion had no significant effects on cardiac dysfunction and scar size after reperfused myocardial infarction but accelerated ventricular dilation and accentuated apical remodeling. Enhanced myocardial dilation in Treg-depleted animals was associated with increased expression of chemokine (C-C motif) ligand 2 and accentuated macrophage infiltration. In vitro, Tregs modulated the cardiac fibroblast phenotype, reducing expression of α-smooth muscle actin, decreasing expression of matrix metalloproteinase-3, and attenuating contraction of fibroblast-populated collagen pads. Our findings suggest that endogenous Tregs have modest effects on the inflammatory and reparative response after myocardial infarction. However, the anti-inflammatory and matrix-preserving properties of Tregs may suggest a role for Treg-based cell therapy in the attenuation of adverse postinfarction remodeling. PMID:25128167

  9. Lightweight fuel cell powerplant components program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1980-01-01

    A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.

  10. Automated solar module assembly line

    NASA Technical Reports Server (NTRS)

    Bycer, M.

    1980-01-01

    The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.

  11. Modulation of thymus-leukemia antigens on mouse leukemia cells induced by IgG, but not IgM, antibody.

    PubMed

    Stackpole, C W

    1980-04-01

    Exposure of mouse leukemia cells bearing thymus-leukemia (TL) surface antigens to whole TL alloantiserum has previously been shown to desensitize the cells to subsequent lysis by guinea pig complement (C) and fresh antiserum (antigenic modulation) and to correlate with the ability of cells to escape immune destruction in mice immunized against TL antigens. Tested in vitro, IgG of TL.1,2,3,5 antiserum modulated RADA1 leukemia cells (TL.1,2,3,5) completely within 2 hours at 37 degrees C when fully sensitizing amounts were used, with normal mouse serum as a source of C3. Similar results were obtained with IgG1, IgG2a, and IgG2b fractions of TL antiserum. An IgG2a monoclonal TL.3 antibody also completely modulated TL.3 antigens and partially modulated all antigens detected with TL.1,2,3,5 antiserum. IgM anti-TL.1,2,3,5 failed to modulate RADA1 cells even after 6 hours in vitro when fully sensitizing amounts of antibody were used. An IgM monoclonal TL antibody also failed to induce modulation. Modulation did occur on cells incubated with fully sensitizing amounts of IgG and IgM TL.1,2,3,5 antibody simultaneously, and nearly all cell-bound immunoglobulins were IgG. In mice passively immunized with IgG TL antibody, RADA1 cells modulated completely within 24 hours, whereas no modulation occurred during 4 days in mice immunized with IgM antibody. However, in both instances, tumor cells grew actively, which indicated that tumor escape did not depend on achievement of a modulated state.

  12. The Roles of Orbital Frontal Cortex in the Modulation of Antisocial Behavior

    ERIC Educational Resources Information Center

    Blair, R. J. R.

    2004-01-01

    This article considers potential roles of orbital frontal cortex in the modulation of antisocial behavior. Two forms of aggression are distinguished: reactive aggression elicited in response to frustration/threat and goal directed, instrumental aggression. It is suggested that orbital frontal cortex is directly involved in the modulation of…

  13. Probing Mechanoregulation of Neuronal Differentiation by Plasma Lithography Patterned Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Jamilpour, Nima; Mfoumou, Etienne; Wang, Fei-Yue; Zhang, Donna D.; Wong, Pak Kin

    2014-11-01

    Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.

  14. Performance improvement of PEFC modules with cell containing low amount of platinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Y.; Kadowaki, M.; Hamada, A.

    1996-12-31

    Cell components of the PEFC module were studied to improve the module performance. The cell performance in a high air utilization region was improved by selecting an air channel design of the separator in which high air flow speed was obtained. Optimization of Teflon{reg_sign} amount on the cathode backing carbon paper also contributed the cell performance. Modifications of the gas channel design and the backing carbon paper were carried out in a 200 cm{sup 2} x 20-cell module and 36-cell module. Dependence of air utilization on module performance was remarkably improved and power density of more than 0.3 W/cm{sup 2}more » was achieved in spite of the platinum amount in the cells was decreased to 1.1 Mg/cm{sup 2}.« less

  15. A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle.

    PubMed

    Linke, Christian; Chasapi, Anastasia; González-Novo, Alberto; Al Sawad, Istabrak; Tognetti, Silvia; Klipp, Edda; Loog, Mart; Krobitsch, Sylvia; Posas, Francesc; Xenarios, Ioannis; Barberis, Matteo

    2017-01-01

    Precise timing of cell division is achieved by coupling waves of cyclin-dependent kinase (Cdk) activity with a transcriptional oscillator throughout cell cycle progression. Although details of transcription of cyclin genes are known, it is unclear which is the transcriptional cascade that modulates their expression in a timely fashion. Here, we demonstrate that a Clb/Cdk1-mediated regulation of the Fkh2 transcription factor synchronizes the temporal mitotic CLB expression in budding yeast. A simplified kinetic model of the cyclin/Cdk network predicts a linear cascade where a Clb/Cdk1-mediated regulation of an activator molecule drives CLB3 and CLB2 expression. Experimental validation highlights Fkh2 as modulator of CLB3 transcript levels, besides its role in regulating CLB2 expression. A Boolean model based on the minimal number of interactions needed to capture the information flow of the Clb/Cdk1 network supports the role of an activator molecule in the sequential activation, and oscillatory behavior, of mitotic Clb cyclins. This work illustrates how transcription and phosphorylation networks can be coupled by a Clb/Cdk1-mediated regulation that synchronizes them.

  16. Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules

    NASA Technical Reports Server (NTRS)

    Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.

    1992-01-01

    In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.

  17. Solar Cell Modules with Parallel Oriented Interconnections

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.

  18. Hot-spot qualification testing of concentrator modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.

  19. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  20. Flexible, FEP-Teflon covered solar cell module development

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.; Cannady, M. D.

    1976-01-01

    Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.

  1. Elucidating Neuronal Mechanisms Using Intracellular Recordings during Behavior.

    PubMed

    Lee, Albert K; Brecht, Michael

    2018-06-01

    Intracellular recording allows measurement and perturbation of the membrane potential of identified neurons with sub-millisecond and sub-millivolt precision. This gives intracellular recordings a unique capacity to provide rich information about individual cells (e.g., high-resolution characterization of inputs, outputs, excitability, and structure). Hence, such recordings can elucidate the mechanisms that underlie fundamental phenomena, such as brain state, sparse coding, gating, gain modulation, and learning. Technical developments have increased the range of behaviors during which intracellular recording methods can be employed, such as in freely moving animals and head-fixed animals actively performing tasks, including in virtual environments. Such advances, and the combination of intracellular recordings with genetic and imaging techniques, have enabled investigation of the mechanisms that underlie neural computations during natural and trained behaviors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography.

    PubMed

    Ding, Yonghui; Yang, Meng; Yang, Zhilu; Luo, Rifang; Lu, Xiong; Huang, Nan; Huang, Pingbo; Leng, Yang

    2015-03-01

    A wide variety of environmental cues provided by the extracellular matrix, including biophysical and biochemical cues, are responsible for vascular cell behavior and function. In particular, substrate topography and surface chemistry have been shown to regulate blood and vascular compatibility individually. The combined impact of chemical and topographic cues on blood and vascular compatibility, and the interplay between these two types of cues, are subjects that are currently being explored. In the present study, a facile polydopamine-mediated approach is introduced for immobilization of heparin on topographically patterned substrates, and the combined effects of these cues on blood compatibility and re-endothelialization are systematically investigated. The results show that immobilized heparin and substrate topography cooperatively modulate anti-coagulation activity, endothelial cell (EC) attachment, proliferation, focal adhesion formation and endothelial marker expression. Meanwhile, the substrate topography is the primary determinant of cell alignment and elongation, driving in vivo-like endothelial organization. Importantly, combining immobilized heparin with substrate topography empowers substantially greater competitive ability of ECs over smooth muscle cells than each cue individually. Moreover, a model is proposed to elucidate the cooperative interplay between immobilized heparin and substrate topography in regulating cell behavior. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Temporal Dynamics of Visual Attention Measured with Event-Related Potentials

    PubMed Central

    Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro; Shioiri, Satoshi

    2013-01-01

    How attentional modulation on brain activities determines behavioral performance has been one of the most important issues in cognitive neuroscience. This issue has been addressed by comparing the temporal relationship between attentional modulations on neural activities and behavior. Our previous study measured the time course of attention with amplitude and phase coherence of steady-state visual evoked potential (SSVEP) and found that the modulation latency of phase coherence rather than that of amplitude was consistent with the latency of behavioral performance. In this study, as a complementary report, we compared the time course of visual attention shift measured by event-related potentials (ERPs) with that by target detection task. We developed a novel technique to compare ERPs with behavioral results and analyzed the EEG data in our previous study. Two sets of flickering stimulus at different frequencies were presented in the left and right visual hemifields, and a target or distracter pattern was presented randomly at various moments after an attention-cue presentation. The observers were asked to detect targets on the attended stimulus after the cue. We found that two ERP components, P300 and N2pc, were elicited by the target presented at the attended location. Time-course analyses revealed that attentional modulation of the P300 and N2pc amplitudes increased gradually until reaching a maximum and lasted at least 1.5 s after the cue onset, which is similar to the temporal dynamics of behavioral performance. However, attentional modulation of these ERP components started later than that of behavioral performance. Rather, the time course of attentional modulation of behavioral performance was more closely associated with that of the concurrently recorded SSVEPs analyzed. These results suggest that neural activities reflected not by either the P300 or N2pc, but by the SSVEPs, are the source of attentional modulation of behavioral performance. PMID:23976966

  4. Exposure to 4100K fluorescent light elicits sex specific transcriptional responses in Xiphophorus maculatus skin.

    PubMed

    Boswell, William T; Boswell, Mikki; Walter, Dylan J; Navarro, Kaela L; Chang, Jordan; Lu, Yuan; Savage, Markita G; Shen, Jianjun; Walter, Ronald B

    2018-06-01

    It has been reported that exposure to artificial light may affect oxygen intake, heart rate, absorption of vitamins and minerals, and behavioral responses in humans. We have reported specific gene expression responses in the skin of Xiphophorus fish after exposure to ultraviolet light (UV), as well as, both broad spectrum and narrow waveband visible light. In regard to fluorescent light (FL), we have shown that male X. maculatus exposed to 4100K FL (i.e. "cool white") rapidly suppress transcription of many genes involved with DNA replication and repair, chromosomal segregation, and cell cycle progression in skin. We have also detailed sex specific transcriptional responses of Xiphophorus skin after exposure to UVB. However, investigation of gender differences in global gene expression response after exposure to 4100K FL has not been reported, despite common use of this FL source for residential, commercial, and animal facility illumination. Here, we compare RNA-Seq results analyzed to assess changes in the global transcription profiles of female and male X. maculatus skin in response to 4100K FL exposure. Our results suggest 4100K FL exposure incites a sex-biased genetic response including up-modulation of inflammation in females and down modulation of DNA repair/replication in males. In addition, we identify clusters of genes that become oppositely modulated in males and females after FL exposure that are principally involved in cell death and cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. PubMed Central

    MOROSETTI, R.; GLIUBIZZI, C.; BROCCOLINI, A.; SANCRICCA, C.; MIRABELLA, M.

    2011-01-01

    SUMMARY Mesoangioblasts are a class of adult stem cells of mesoderm origin, potentially useful for the treatment of primitive myopathies of different etiology. Extensive in vitro and in vivo studies in animal models of muscular dystrophy have demonstrated the ability of mesoangioblast to repair skeletal muscle when injected intra-arterially. In a previous work we demonstrated that mesoangioblasts obtained from diagnostic muscle biopsies of IBM patients display a defective differentiation down skeletal muscle and this block can be corrected in vitro by transient MyoD transfection. We are currently investigating different pathways involved in mesoangioblasts skeletal muscle differentiation and exploring alternative stimulatory approaches not requiring extensive cell manipulation. This will allow to obtain safe, easy and efficient molecular or pharmacological modulation of pro-myogenic pathways in IBM mesoangioblasts. It is of crucial importance to identify factors (ie. cytokines, growth factors) produced by muscle or inflammatory cells and released in the surrounding milieu that are able to regulate the differentiation ability of IBM mesoangioblasts. To promote myogenic differentiation of endogenous mesoangioblasts in IBM muscle, the modulation of such target molecules selectively dysregulated would be a more handy approach to enhance muscle regeneration compared to transplantation techniques. Studies on the biological characteristics of IBM mesoangioblasts with their aberrant differentiation behavior, the signaling pathways possibly involved in their differentiation block and the possible strategies to overcome it in vivo, might provide new insights to better understand the etiopathogenesis of this crippling disorder and to identify molecular targets susceptible of therapeutic modulation. PMID:21842589

  6. Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks

    PubMed Central

    Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.

    2013-01-01

    Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602

  7. Miniaturized neural sensing and optogenetic stimulation system for behavioral studies in the rat

    NASA Astrophysics Data System (ADS)

    Kim, Min Hyuck; Nam, Ilho; Ryu, Youngki; Wellman, Laurie W.; Sanford, Larry D.; Yoon, Hargsoon

    2015-04-01

    Real time sensing of localized electrophysiological and neurochemical signals associated with spontaneous and evoked neural activity is critically important for understanding neural networks in the brain. Our goal is to enhance the functionality and flexibility of a neural sensing and stimulation system for the observation of brain activity that will enable better understanding from the level of individual cells to that of global structures. We have thus developed a miniaturized electronic system for in-vivo neurotransmitter sensing and optogenetic stimulation amenable to behavioral studies in the rat. The system contains a potentiostat, a data acquisition unit, a control unit, and a wireless data transfer unit. For the potentiostat, we applied embedded op-amps to build single potential amperometry for electrochemical sensing of dopamine. A light emitting diode is controlled by a microcontroller and pulse width modulation utilized to control optogenetic stimulation within a sub-millisecond level. In addition, this proto-typed electronic system contains a Bluetooth module for wireless data communication. In the future, an application-specific integrated circuit (ASIC) will be designed for further miniaturization of the system.

  8. PV Degradation Curves: Non-Linearities and Failure Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually,more » in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.« less

  9. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  10. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications.

    PubMed

    Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J

    2017-10-20

    The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.

  11. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE PAGES

    Huang, Lu; Tian, Mengkun; Wu, Dong; ...

    2017-11-24

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  12. Surface Mechanoengineering of a Zr-based Bulk Metallic Glass via Ar-Nanobubble Doping to Probe Cell Sensitivity to Rigid Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lu; Tian, Mengkun; Wu, Dong

    In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less

  13. Role of differential physical properties in the collective mechanics and dynamics of tissues

    NASA Astrophysics Data System (ADS)

    Das, Moumita

    Living cells and tissues are highly mechanically sensitive and active. Mechanical stimuli influence the shape, motility, and functions of cells, modulate the behavior of tissues, and play a key role in several diseases. In this talk I will discuss how collective biophysical properties of tissues emerge from the interplay between differential mechanical properties and statistical physics of underlying components, focusing on two complementary tissue types whose properties are primarily determined by (1) the extracellular matrix (ECM), and (2) individual and collective cell properties. I will start with the structure-mechanics-function relationships in articular cartilage (AC), a soft tissue that has very few cells, and its mechanical response is primarily due to its ECM. AC is a remarkable tissue: it can support loads exceeding ten times our body weight and bear 60+ years of daily mechanical loading despite having minimal regenerative capacity. I will discuss the biophysical principles underlying this exceptional mechanical response using the framework of rigidity percolation theory, and compare our predictions with experiments done by our collaborators. Next I will discuss ongoing theoretical work on how the differences in cell mechanics, motility, adhesion, and proliferation in a co-culture of breast cancer cells and healthy breast epithelial cells may modulate experimentally observed differential migration and segregation. Our results may provide insights into the mechanobiology of tissues with cell populations with different physical properties present together such as during the formation of embryos or the initiation of tumors. This work was partially supported by a Cottrell College Science Award.

  14. Involvement of the lateral septum and the ventral Hippocampus in the emotional sequelae induced by social defeat: role of glucocorticoid receptors.

    PubMed

    Calfa, Gastón; Bussolino, Daniela; Molina, Victor A

    2007-07-19

    An important area of the brain aversive circuitry is the lateral septum (LS), together with its principal connections to diverse Hippocampal regions. The aim of this work was to evaluate whether the LS-Hippocampus network participates in the increased anxiety-like behavior produced by a previous defeat experience. The neural activation of different regions of the Hippocampus was assessed by the number of Fos positive cells in animals previously defeated. A notable elevation in the expression of this protein was observed in CA1, CA2, CA3, and Dentate Gyrus, for both dorsal and ventral Hippocampus. The local administration of a glucocorticoid receptor (GR or type II) antagonist, but not of a mineralcorticoid receptor (MR or type II) antagonist, into the LS before the stressful stimuli prevented a rise in the number of Fos positive cells, especially in the ventral portion of the Hippocampus. Furthermore, to evaluate the role of these hippocampal portions in the modulation of the emotional sequelae induced by defeat, the dorsal or the ventral Hippocampus were inactivated by lidocaine at different times following the social confrontation, with the anxiety-like behavior being assessed in the elevated plus maze the next day. Only the inactivation of the ventral region attenuated the excessive anxiety exhibited by defeated animals. The infusion of lidocaine, 1h after the confrontation, did not affect this behavioral response. These data suggest a preferential participation of the LS and its connections to the ventral Hippocampus in the emotional sequelae induced by the social defeat. Moreover, the GR localized within the LS played an essential role in the modulation of this emotional state.

  15. Developmental and Adult GAP-43 Deficiency in Mice Dynamically Alters Hippocampal Neurogenesis and Mossy Fiber Volume

    PubMed Central

    Latchney, Sarah E.; Masiulis, Irene; Zaccaria, Kimberly J.; Lagace, Diane C.; Powell, Craig M.; McCasland, James S.; Eisch, Amelia J.

    2014-01-01

    Growth Associated Protein-43 (GAP-43) is a pre-synaptic protein that plays key roles in axonal growth and guidance and in modulating synapse formation. Previous work has demonstrated that mice lacking one allele of this gene [GAP-43(+/-) mice] exhibit hippocampal structural abnormalities and impaired spatial learning and stress-induced behavioral withdrawal and anxiety (Zaccaria et al., 2010), behaviors that are dependent on proper hippocampal circuitry and function. Given the correlation between hippocampal function, synaptic connectivity, and neurogenesis, we tested if behaviorally-naïve GAP-43(+/-) mice had alterations in either neurogenesis or synaptic connectivity in the hippocampus during early postnatal development and young adulthood, and following behavior testing in older adults. To test our hypothesis, we examined hippocampal cell proliferation (Ki67), number of immature neuroblasts (DCX), and mossy fiber volume (synaptoporin) in behaviorally-naïve postnatal (P) day 9 (P9), P26, and behaviorally-experienced 5-7 month old GAP-43(+/-) and (+/+) littermate mice. P9 GAP-43(+/-) mice had fewer Ki67+ and DCX+ cells compared to (+/+) mice, particularly in the posterior dentate gyrus, and smaller mossy fiber volume in the same region. In young adulthood, however, male GAP-43(+/-) mice had more Ki67+ and DCX+ cells and greater mossy fiber volume in the posterior dentate gyrus relative to male (+/+). These increases were not seen in females. In 5-7 month old GAP-43(+/-) mice whose behaviors were the focus of our prior publication (Zaccaria et al., 2010), there was no global change in number of proliferating or immature neurons relative to (+/+) mice. However, more detailed analysis revealed fewer proliferative DCX+ cells in the anterior dentate gyrus of male GAP-43(+/-) mice compared to male (+/+) mice. This reduction was not observed in females. These results suggest that young GAP-43(+/-) mice have decreased hippocampal neurogenesis and synaptic connectivity, but slightly older mice have greater hippocampal neurogenesis and synaptic connectivity. In conjunction with our previous study, these findings suggest GAP-43 is dynamically involved in early postnatal and adult hippocampal neurogenesis and synaptic connectivity, possibly contributing to the GAP-43(+/-) behavioral phenotype. PMID:24576816

  16. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: the importance of assessing the amount of running in transgenic mice studies.

    PubMed

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J

    2013-11-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  17. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling.

    PubMed

    de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E

    2013-06-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.

  18. Block 2 solar cell module environmental test program

    NASA Technical Reports Server (NTRS)

    Holloway, K. L.

    1978-01-01

    Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.

  19. Module level solutions to solar cell polarization

    DOEpatents

    Xavier, Grace , Li; Bo, [San Jose, CA

    2012-05-29

    A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

  20. A nanobiosensor for dynamic single cell analysis during microvascular self-organization.

    PubMed

    Wang, S; Sun, J; Zhang, D D; Wong, P K

    2016-10-14

    The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.

  1. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems.

    PubMed

    Ou, Jian Zhen; Chrimes, Adam F; Wang, Yichao; Tang, Shi-yang; Strano, Michael S; Kalantar-zadeh, Kourosh

    2014-02-12

    Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.

  2. 77 FR 37877 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Preliminary... crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells''), from the... names of these companies in the table in the ``Preliminary Determination'' section in the solar cells...

  3. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation.more » Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.« less

  4. Lateral Hypothalamus GABAergic Neurons Modulate Consummatory Behaviors Regardless of the Caloric Content or Biological Relevance of the Consumed Stimuli.

    PubMed

    Navarro, Montserrat; Olney, Jeffrey J; Burnham, Nathan W; Mazzone, Christopher M; Lowery-Gionta, Emily G; Pleil, Kristen E; Kash, Thomas L; Thiele, Todd E

    2016-05-01

    It was recently reported that activation of a subset of lateral hypothalamus (LH) GABAergic neurons induced both appetitive (food-seeking) and consummatory (eating) behaviors in vGat-ires-cre mice, while inhibition or deletion of GABAergic neurons blunted these behaviors. As food and caloric-dense liquid solutions were used, the data reported suggest that these LH GABAergic neurons may modulate behaviors that function to maintain homeostatic caloric balance. Here we report that chemogenetic activation of this GABAergic population in vGat-ires-cre mice increased consummatory behavior directed at any available stimulus, including those entailing calories (food, sucrose, and ethanol), those that do not (saccharin and water), and those lacking biological relevance (wood). Chemogenetic inhibition of these neurons attenuated consummatory behaviors. These data indicate that LH GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli.

  5. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  6. Customized color patterning of photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  7. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    PubMed

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.

  8. NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.

    1985-01-01

    A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.

  9. Module Cluster: TTP-003.00 (GSC) Modifying Academic Behavior.

    ERIC Educational Resources Information Center

    Brent, George

    The purpose of this module cluster is to enable students to demonstrate that they can plan for changes in the academic behavior of their elementary school pupils and then change the behavior. The cluster is intended for use after the completion of normal college entrance competencies, liberal arts requirements, practicum experience, methods…

  10. Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies

    PubMed Central

    Pandya, Anshul. A.; Yakel, Jerrel L.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs. PMID:23732296

  11. Descending glutamatergic pathways of PFC are involved in acute and chronic action of methylphenidate.

    PubMed

    Wanchoo, S J; Swann, A C; Dafny, N

    2009-12-08

    Progressive augmentation of behavioral response following repeated psychostimulant administrations is known as behavioral sensitization, and is an indicator of a drug's liability for abuse. It is known that methylphenidate (MPD) (also known as Ritalin), a drug used to treat attention-deficit hyperactivity disorder (ADHD), induces sensitization in animals following repeated injections. It was recently reported that bilateral electric (non-specific) lesion of prefrontal cortex (PFC) prevented MPD elicited behavioral sensitization. Since PFC sends glutamatergic afferents to both ventral tegmental area (VTA) and nucleus accumbens (NAc), sites that are involved in induction and expression of behavioral sensitization respectively and glutamate from PFC is known to modulate dopamine cell activity in VTA and NAc, this study investigated the role of descending glutamate from PFC in MPD elicited behavioral sensitization. Locomotor activity of three groups of rats-control, sham operated and group with specific chemical lesion of glutamate neurons of PFC-was recorded using an open-field assay. On experimental day (ED) 1, the locomotor activity was recorded post a saline injection. The sham and lesion groups underwent respective surgeries on ED 2, and were allowed to recover for 5 days (from ED 3 to ED 7). The post-surgery baseline was recorded on ED 8 following a saline injection. On ED's 9 through 14, 2.5 mg/kg MPD was given, followed by a 4-day washout period (ED 15 -18). All three groups received a rechallenge injection of 2.5 mg/kg on ED 19 and their locomotor activity on various days was analyzed. It was found that ibotenic acid lesion modulated the acute and chronic effects of MPD and hence suggests that PFC glutamatergic afferents are involved in the acute effect of MPD as well as in its chronic effects such as behavioral sensitization to MPD.

  12. The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O') tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice.

    PubMed

    Gross, Moshe; Stanciu, Emanuel; Kenigsbuch-Sredni, Dvora; Sredni, Benjamin; Pinhasov, Albert

    2017-09-01

    Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.

  13. Climbing fibers mediate vestibular modulation of both "complex" and "simple spikes" in Purkinje cells.

    PubMed

    Barmack, N H; Yakhnitsa, V

    2015-10-01

    Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.

  14. Fisetin inhibits IL-31 production in stimulated human mast cells: Possibilities of fisetin being exploited to treat histamine-independent pruritus.

    PubMed

    Che, Denis Nchang; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Kim, Young-Soo; Jang, Seon Il

    2018-05-15

    Interleukin-31 (IL-31) is a recently discovered cytokine that is tightly linked to the pathogenesis of pruritus seen in atopic dermatitis. Flavonoids, like fisetin, are naturally occurring molecules with antioxidant, cytoprotective, and anti-inflammatory actions. the present study sought to investigate whether fisetin modulates IL-31 and histamine release in human mast cells (HMC-1). HMC-1 cells were pretreated with fisetin at various doses and stimulated with phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PI) for different time intervals. We evaluated IL-31 production and histamine release and signaling mechanism of the action of fisetin on IL-31 production. We also investigated the effects of fisetin on scratching behaviors in mice. Fisetin decreased PI-stimulated mRNA expression and production of IL-31 in HMC-1 cells. Fisetin inhibited PI-induced phosphorylation of mitogen-activated protein kinases that further suppressed nuclear factor (NF-κB) activation and translocation to the nucleus through the inhibition of IκB-α phosphorylation. Fisetin also prevented mast cell release of histamine in HMC-1 cells. Mice in-vivo studies show that fisetin reduced scratching behaviors in mice. These pharmacological actions of fisetin provide new suggestions that fisetin can be of potential use for the treatment of pruritus that cannot be treated with histamine receptor blockers alone. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Circular RNA circNASP modulates the malignant behaviors in osteosarcoma via miR-1253/FOXF1 pathway.

    PubMed

    Huang, Lipeng; Chen, Mangmang; Pan, Jun; Yu, Weiyang

    2018-06-02

    Increasing evidences demonstrate that circular RNAs (circRNAs) serve as essential regulators in various human diseases, including cancer. However, the study on circRNA function in osteosarcoma (OS) is just emerging. In the present study, we screened out a novel circRNA termed circNASP which was significantly upregulated in OS tissues compared to adjacent normal tissues. We found that circNASP knockdown dramatically inhibited the proliferation, cell cycle progression and invasion of OS cells. Moreover, we showed that circNASP expression was positively correlated with tumor size and metastasis in OS patients. In terms of mechanism, we found that circNASP acts as a sponge of miR-1253 targeting FOXF1 in OS cells. By inhibiting miR-1253 availability, circNASP promoted FOXF1 expression. Rescue assays indicated that inhibition of miR-1253 could significantly reverse the effects of circNASP knockdown on OS cell proliferation and invasion while restoration of FOXF1 rescued the proliferation and invasion of OS cells transfected with miR-1253 mimics. Taken together, our findings demonstrated that circNASP contributes to malignant behaviors of OS cells by miR-1253/FOXF1 pathway, which suggested circNASP/miR-1253/FOXF1axis might be a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. HA and double-layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior.

    PubMed

    Ferraz, M P; Fernandes, M H; Santos, J D; Monteiro, F J

    2001-07-01

    Human osteoblastic bone marrow derived cells were cultured for 28 days onto the surface of a glass reinforced hydroxyapatite (HA) composite and a commercial type HA plasma sprayed coatings, both in the "as-received" condition and after an immersion treatment with culture medium during 21 days. Cell proliferation and differentiation were analyzed as a function of the chemical composition of the coatings and the immersion treatment. Cell attachment, growth and differentiation of osteoblastic bone marrow cells seeded onto "as-received" plasma sprayed coatings were strongly affected by the time-dependent variation of the surface structure occurring during the first hours of culture. Initial interactions leading to higher amounts of adsorbed protein and zeta potential shifts towards negative charges appeared to result in surface structures with better biological performance. Cultures grown onto the pretreated coatings showed higher rate of cell proliferation and increased functional activity, as compared to those grown onto the corresponding "as-received" materials. However, the cell behavior was similar in the glass composite and HA coatings. The results showed that the glass composites present better characteristics for bone cell growth and function than HA. In addition, this work also provide evidence that the biological performance of the glass composites can be modulated and improved by manipulations in the chemical composition, namely in the content of glass added to HA. Copyright 2001 Kluwer Academic Publishers

  17. A Dual-Mode Bioreactor System for Tissue Engineered Vascular Models.

    PubMed

    Bono, N; Meghezi, S; Soncini, M; Piola, M; Mantovani, D; Fiore, Gianfranco Beniamino

    2017-06-01

    In the past decades, vascular tissue engineering has made great strides towards bringing engineered vascular tissues to the clinics and, in parallel, obtaining in-lab tools for basic research. Herein, we propose the design of a novel dual-mode bioreactor, useful for the fabrication (construct mode) and in vitro stimulation (culture mode) of collagen-based tubular constructs. Collagen-based gels laden with smooth muscle cells (SMCs) were molded directly within the bioreactor culture chamber. Based on a systematic characterization of the bioreactor culture mode, constructs were subjected to 10% cyclic strain at 0.5 Hz for 5 days. The effects of cyclic stimulation on matrix re-arrangement and biomechanical/viscoelastic properties were examined and compared vs. statically cultured constructs. A thorough comparison of cell response in terms of cell localization and expression of contractile phenotypic markers was carried out as well. We found that cyclic stimulation promoted cell-driven collagen matrix bi-axial compaction, enhancing the mechanical strength of strained samples with respect to static controls. Moreover, cyclic strain positively affected SMC behavior: cells maintained their contractile phenotype and spread uniformly throughout the whole wall thickness. Conversely, static culture induced a noticeable polarization of cell distribution to the outer rim of the constructs and a sharp reduction in total cell density. Overall, coupling the use of a novel dual-mode bioreactor with engineered collagen-gel-based tubular constructs demonstrated to be an interesting technology to investigate the modulation of cell and tissue behavior under controlled mechanically conditioned in vitro maturation.

  18. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  19. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    PubMed

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  20. Walking Drosophila align with the e-vector of linearly polarized light through directed modulation of angular acceleration

    PubMed Central

    Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.

    2014-01-01

    Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784

  1. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    PubMed

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  2. User handbook for block IV silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1982-01-01

    The essential electrical and mechanical characteristics of block 4 photovoltaic solar cell modules are described. Such module characteristics as power output, nominal operating voltage, current-voltage characteristics, nominal operating cell temperature, and dimensions are tabulated. The limits of the environmental and other stress tests to which the modules are subjected are briefly described.

  3. ORION - Crew Module Side Hatch: Proof Pressure Test Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Evernden, Brent A.; Guzman, Oscar J.

    2018-01-01

    The Orion Multi-Purpose Crew Vehicle program was performing a proof pressure test on an engineering development unit (EDU) of the Orion Crew Module Side Hatch (CMSH) assembly. The purpose of the proof test was to demonstrate structural capability, with margin, at 1.5 times the maximum design pressure, before integrating the CMSH to the Orion Crew Module structural test article for subsequent pressure testing. The pressure test was performed at lower pressures of 3 psig, 10 psig and 15.75 psig with no apparent abnormal behavior or leaking. During pressurization to proof pressure of 23.32 psig, a loud 'pop' was heard at 21.3 psig. Upon review into the test cell, it was noted that the hatch had prematurely separated from the proof test fixture, thus immediately ending the test. The proof pressure test was expected be a simple verification but has since evolved into a significant joint failure investigation from both Lockheed Martin and NASA.

  4. Rab7-a novel redox target that modulates inflammatory pain processing.

    PubMed

    Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim

    2017-07-01

    Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.

  5. JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration.

    PubMed

    Mandicourt, Guillaume; Iden, Sandra; Ebnet, Klaus; Aurrand-Lions, Michel; Imhof, Beat A

    2007-01-19

    Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.

  6. Dynamic interactions between cells and their extracellular matrix mediate embryonic development.

    PubMed

    Goody, Michelle F; Henry, Clarissa A

    2010-06-01

    Cells and their surrounding extracellular matrix microenvironment interact throughout all stages of life. Understanding the continuously changing scope of cell-matrix interactions in vivo is crucial to garner insights into both congenital birth defects and disease progression. A current challenge in the field of developmental biology is to adapt in vitro tools and rapidly evolving imaging technology to study cell-matrix interactions in a complex 4-D environment. In this review, we highlight the dynamic modulation of cell-matrix interactions during development. We propose that individual cell-matrix adhesion proteins are best considered as complex proteins that can play multiple, often seemingly contradictory roles, depending upon the context of the microenvironment. In addition, cell-matrix proteins can also exert different short versus long term effects. It is thus important to consider cell behavior in light of the microenvironment because of the constant and dynamic reciprocal interactions occurring between them. Finally, we suggest that analysis of cell-matrix interactions at multiple levels (molecules, cells, tissues) in vivo is critical for an integrated understanding because different information can be acquired from all size scales. Copyright 2010 Wiley-Liss, Inc.

  7. Persistency and flexibility of complex brain networks underlie dual-task interference.

    PubMed

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.

  8. 22.7% efficient PERL silicon solar cell module with a textured front surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J.; Wang, A.; Campbell, P.

    1997-12-31

    This paper describes a solar cell module efficiency of 22.7% independently measured at Sandia National Laboratories. This is the highest ever confirmed efficiency for a photovoltaic module of this size achieved by cells made from any material. This 778-cm{sup 2} module used 40 large-area double layer antireflection coated PERL (passivated emitter, rear locally-diffused) silicon cells of average efficiency of 23.1%. A textured front module surface considerably improve the module efficiency. Also reported is an independently confirmed efficiency of 23.7% for a 21.6 cm{sup 2} cell of the type used in the module. Using these PERL cells in the 1996 Worldmore » Solar Challenge solar car race from Darwin to Adelaide across Australia, Honda`s Dream and Aisin Seiki`s Aisol III were placed first and third, respectively. Honda also set a new record by reaching Adelaide in four days with an average speed of 90km/h over the 3010 km course.« less

  9. Angiotensin II modulates salty and sweet taste sensitivities.

    PubMed

    Shigemura, Noriatsu; Iwata, Shusuke; Yasumatsu, Keiko; Ohkuri, Tadahiro; Horio, Nao; Sanematsu, Keisuke; Yoshida, Ryusuke; Margolskee, Robert F; Ninomiya, Yuzo

    2013-04-10

    Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes.

  10. 77 FR 25400 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Alignment of... crystalline silicon photovoltaic cells, whether or not assembled into modules (solar cells) from the People's... Department initiated the AD and CVD investigations of solar cells from the PRC.\\1\\ On March 26, 2012, the...

  11. Modulation of Sonic hedgehog-induced mouse embryonic stem cell behaviors through E-cadherin expression and Integrin β1-dependent F-actin formation.

    PubMed

    Oh, Ji Young; Suh, Han Na; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Kim, Jun Sung; Chae, Chang Woo; Lee, Chang-Kyu; Han, Ho Jae

    2018-06-22

    Sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behavior in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly described. Thus, we investigated the effect of Shh on the regulation of mESC behaviors as well as the effect of Shh-pretreated mESCs in skin wound healing. The present study investigated the underlying mechanisms of Shh signaling pathway in growth and motility of mESCs using western blot analysis, cell proliferation assay, and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using mouse excisional wound splinting model. Shh induced adherens junction disruption through proteolysis by activating matrix metallopeptidases. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 upregulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, skin wound healing assay revealed that Shh-treated mESCs induced angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation involving FAK/Src and Rac1/Cdc42 signaling pathways in mESCs. This article is protected by copyright. All rights reserved.

  12. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells.

    PubMed

    Quentin, Michaëel; Abad, Pierre; Favery, Bruno

    2013-01-01

    Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.

  13. Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis

    PubMed Central

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-01-01

    Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  14. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease

    PubMed Central

    Karuppuchamy, Thangaraj; Behrens, En-hui; González-Cabrera, Pedro; Sarkisyan, Gor; Gima, Lauren; Boyer, Joshua D.; Bamias, Giorgos; Jedlicka, Paul; Veny, Marisol; Clark, David; Peach, Robert; Scott, Fiona; Rosen, Hugh; Rivera-Nieves, Jesús

    2016-01-01

    The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here we examine the cell subsets that express S1P1 in intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after administration of DSS, after colitis induced by transfer of CD4+CD45RBhi cells and by crossing a mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 expression, while the enzymes that control tissue S1P levels in mice and humans with IBD were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T cell velocity and induced S1P1 degradation and retention of naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function. PMID:27049060

  15. A mental retardation gene, motopsin/prss12, modulates cell morphology by interaction with seizure-related gene 6.

    PubMed

    Mitsui, Shinichi; Hidaka, Chiharu; Furihata, Mutsuo; Osako, Yoji; Yuri, Kazunari

    2013-07-12

    A serine protease, motopsin (prss12), plays a significant role in cognitive function and the development of the brain, since the loss of motopsin function causes severe mental retardation in humans and enhances social behavior in mice. Motopsin is activity-dependently secreted from neuronal cells, is captured around the synaptic cleft, and cleaves a proteoglycan, agrin. The multi-domain structure of motopsin, consisting of a signal peptide, a proline-rich domain, a kringle domain, three scavenger receptor cysteine-rich domains, and a protease domain at the C-terminal, suggests the interaction with other molecules through these domains. To identify a protein interacting with motopsin, we performed yeast two-hybrid screening and found that seizure-related gene 6 (sez-6), a transmembrane protein on the plasma membrane of neuronal cells, bound to the proline-rich/kringle domain of motopsin. Pull-down and immunoprecipitation analyses indicated the interaction between these proteins. Immunocytochemical and immunohistochemical analyses suggested the co-localization of motopsin and sez-6 at neuronal cells in the developmental mouse brain and at motor neurons in the anterior horn of human spinal cords. Transient expression of motopsin in neuro2a cells increased the number and length of neurites as well as the level of neurite branching. Interestingly, co-expression of sez-6 with motopsin restored the effect of motopsin at the basal level, while sez-6 expression alone showed no effects on cell morphology. Our results suggest that the interaction of motopsin and sez-6 modulates the neuronal cell morphology. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.

    PubMed

    Dong, Shoubin; Huang, Zetao; Tang, Liqun; Zhang, Xiaoyang; Zhang, Yongrou; Jiang, Yi

    2017-07-01

    The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-dimensional (3D) collagen-fiber network model to simulate the micro structure and mechanical behaviors of the ECM and studied the stress-strain relationship as well as the deformation of the ECM under tension. In the model, the collagen-fiber network consists of abundant random distributed collagen fibers and some crosslinks, in which each fiber is modeled as an elastic beam and a crosslink is modeled as a linear spring with tensile limit, it means crosslinks will fail while the tensile forces exceed the limit of spring. With the given parameters of the beam and the spring, the simulated tensile stress-strain relation of the ECM highly matches the experimental results including damaged and failed behaviors. Moreover, by applying the maximal inscribed sphere method, we measured the size distribution of pores in the fiber network and learned the variation of the distribution with deformation. We also defined the alignment of the collagen-fibers to depict the orientation of fibers in the ECM quantitatively. By the study of changes of the alignment and the damaged crosslinks against the tensile strain, this paper reveals the comprehensive mechanisms of four stages of 'toe', 'linear', 'damage' and 'failure' in the tensile stress-strain relation of the ECM which can provide further insight in the study of cell-ECM interaction.

  17. 77 FR 4764 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Second... preliminary determination of the countervailing duty investigation of crystalline silicon photovoltaic cells... February 13, 2012.\\1\\ \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules...

  18. Research activities at the Loma Linda University and Proton Treatment Facility--an overview

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.

    2001-01-01

    The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.

  19. A Corticothalamic Circuit for Refining Tactile Encoding.

    PubMed

    Pauzin, François Philippe; Krieger, Patrik

    2018-05-01

    A fundamental task for the brain is to determine which aspects of the continuous flow of information is the most relevant in a given behavioral situation. The information flow is regulated via dynamic interactions between feedforward and feedback pathways. One such pathway is via corticothalamic feedback. Layer 6 (L6) corticothalamic (CT) cells make both cortical and thalamic connections and, therefore, are key modulators of activity in both areas. The functional properties of L6 CT cells in sensory processing were investigated in the mouse whisker system. Optogenetic activation of L6 CT neurons decreased spontaneous spiking, with the net effect that a whisker-evoked response was more accurately detected (larger evoked-to-spontaneous spiking ratio) but at the expense of reducing the response probability. In addition, L6 CT activation decreases sensory adaptation in both the thalamus and cortex. L6 CT activity can thus tune the tactile system, depending on the behaviorally relevant tactile input. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila

    PubMed Central

    Aso, Yoshinori; Sitaraman, Divya; Ichinose, Toshiharu; Kaun, Karla R; Vogt, Katrin; Belliart-Guérin, Ghislain; Plaçais, Pierre-Yves; Robie, Alice A; Yamagata, Nobuhiro; Schnaitmann, Christopher; Rowell, William J; Johnston, Rebecca M; Ngo, Teri-T B; Chen, Nan; Korff, Wyatt; Nitabach, Michael N; Heberlein, Ulrike; Preat, Thomas; Branson, Kristin M; Tanimoto, Hiromu; Rubin, Gerald M

    2014-01-01

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection. DOI: http://dx.doi.org/10.7554/eLife.04580.001 PMID:25535794

  1. Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells.

    PubMed

    Salado, Manuel; Calio, Laura; Berger, Rüdiger; Kazim, Samrana; Ahmad, Shahzada

    2016-10-05

    Lead halide based perovskite solar cells are presently the flagship among the third generation solution-processed photovoltaic technologies. The organic cation part in the perovskite plays an important role in terms of crystal structure tuning from tetragonal to trigonal or pseudocubic or vice versa depending on the organic cations used, while it also displays different microstructure. In this paper, we demonstrate the influence of the organic cation part with respect to optical properties, hysteresis behavior, and stability. This study offers a clear understanding of the perovskite properties and how they can be modulated by compositional engineering. With a rational choice, light harvesting abilities and hysteresis behavior can be controlled in these systems. The substitution of formamidinium cation by methylammonium cation allows achieving low temperature annealing and inducing stability in perovskites together with enhanced photovoltaic properties. By the use of in-situ scanning force microscopy experiments the conversion of precursors to perovskite at a particular temperature can be visualized.

  2. Long-term training modifies the modular structure and organization of walking balance control

    PubMed Central

    Allen, Jessica L.

    2015-01-01

    How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. PMID:26467521

  3. Long-term training modifies the modular structure and organization of walking balance control.

    PubMed

    Sawers, Andrew; Allen, Jessica L; Ting, Lena H

    2015-12-01

    How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. Copyright © 2015 the American Physiological Society.

  4. Design and operating experience of a 40 MW, highly-stabilized power supply

    NASA Astrophysics Data System (ADS)

    Boenig, Heinrich J.; Ferner, James A.; Bogdan, Ferenc; Morris, Gary C.; Rumrill, Ron S.

    Four 10 MW, highly-stabilized power supply modules have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL, to energize water-cooled, resistive, high-field research magnets. The power supply modules achieve a long term current stability if 10 ppM over a 12 h period with a short term ripple and noise variation of less than 10 ppM over a time period of one cycle. The power supply modules can operate independently, feeding four separate magnets, or two, three or four modules can operate in parallel. Each power supply module consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors, and a passive and an active filter. Two different transformer tap settings allow rated dc supply output voltages of 400 and 500 V. The rated current of a supply module is 17 kA and each supply module has a one-hour overload capability of 20 kA. The isolated output terminals of each power supply module are connected to a reversing switch. An extensive high-current bus system allows the modules to be connected to 16 magnet cells. This paper presents the detailed design of the power supply components. Various test results taken during the commissioning phase with a 10 MW resistive load and results taken with the research magnets are shown. The effects of the modules on the electrical supply system and the operational behavior of the power factor correction/harmonic filters are described. Included also are results of a power supply module feeding a superconducting magnet during quench propagation tests. Problems with the power supply design and solutions are presented. Some suggestions on how to improve the performance of these supplies are outlined.

  5. Wound signaling: The missing link in plant regeneration.

    PubMed

    Chen, Lyuqin; Sun, Beibei; Xu, Lin; Liu, Wu

    2016-10-02

    Wounding is the first event that occurs in plant regeneration. However, wound signaling in plant regeneration is barely understood. Using a simple system of de novo root organogenesis from Arabidopsis thaliana leaf explants, we analyzed the genes downstream of wound signaling. Leaf explants may produce at least two kinds of wound signals to trigger short-term and long-term wound signaling. Short-term wound signaling is primarily involved in controlling auxin behavior and the fate transition of regeneration-competent cells, while long-term wound signaling mainly modulates the cellular environment at the wound site and maintains the auxin level in regeneration-competent cells. YUCCA (YUC) genes, which are involved in auxin biogenesis, are targets of short-term wound signaling in mesophyll cells and of long-term wound signaling in regeneration-competent cells. The expression patterns of YUCs provide important information about the molecular basis of wound signaling in plant regeneration.

  6. Adult oligodendrocyte progenitor cells - multifaceted regulators of the CNS in health and disease

    PubMed Central

    Fernandez-Castaneda, Anthony; Gaultier, Alban

    2016-01-01

    Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of the OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS. PMID:26796621

  7. From retinal waves to activity-dependent retinogeniculate map development.

    PubMed

    Markowitz, Jeffrey; Cao, Yongqiang; Grossberg, Stephen

    2012-01-01

    A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  8. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOEpatents

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  9. Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context

    PubMed Central

    Bredewold, Remco; Smith, Caroline J. W.; Dumais, Kelly M.; Veenema, Alexa H.

    2014-01-01

    We recently demonstrated that vasopressin (AVP) in the lateral septum modulates social play behavior differently in male and female juvenile rats. However, the extent to which different social contexts (i.e., exposure to an unfamiliar play partner in different environments) affect the regulation of social play remains largely unknown. Given that AVP and the closely related neuropeptide oxytocin (OXT) modulate social behavior as well as anxiety-like behavior, we hypothesized that these neuropeptides may regulate social play behavior differently in novel (novel cage) as opposed to familiar (home cage) social environments. Administration of the specific AVP V1a receptor (V1aR) antagonist (CH2)5Tyr(Me2)AVP into the lateral septum enhanced home cage social play behavior in males but reduced it in females, confirming our previous findings. These effects were context-specific because V1aR blockade did not alter novel cage social play behavior in either sex. Furthermore, social play in females was reduced by AVP in the novel cage and by OXT in the home cage. Additionally, females administered the specific OXT receptor antagonist desGly-NH2,d(CH2)5−[Tyr(Me)2,Thr4]OVT showed less social play in the novel as compared to the home cage. AVP enhanced anxiety-related behavior in males (tested on the elevated plus-maze), but failed to do so in females, suggesting that exogenous AVP alters social play and anxiety-related behavior via distinct and sex-specific mechanisms. Moreover, none of the other drug treatments that altered social play had an effect on anxiety, suggesting that these drug-induced behavioral alterations are relatively specific to social behavior. Overall, we showed that AVP and OXT systems in the lateral septum modulate social play in juvenile rats in neuropeptide-, sex- and social context-specific ways. These findings underscore the importance of considering not only sex, but also social context, in how AVP and OXT modulate social behavior. PMID:24982623

  10. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances.

    PubMed

    Broaders, Kyle E; Cerchiari, Alec E; Gartner, Zev J

    2015-12-01

    Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.

  11. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  12. Study on the regulation of focal adesions and cortical actin by matrix nanotopography in 3D environment

    NASA Astrophysics Data System (ADS)

    Han, Jingjing; Lin, Keng-Hui; Chew, Lock Yue

    2017-11-01

    Matrix nanotopography plays an important role in regulating cell behaviors by providing spatial as well as mechanical cues for cells to sense. It has been proposed that nanoscale topography is possible to modulate the tensions which direct the formation of cytoskeleton and the organization of the membrane receptor within the cell, which in turn regulate intracellular mechanical and biochemical signaling. With current studies on this topic being performed mainly in 2D platforms, the question on how nanotopography can influence cell bahaviors in 3D environments has yet to be addressed. In this paper, we explored this question by placing cells in 3D hollow spherical polydimethylsiloxane scaffolds. After culturing rat embryonic fibroblast cells in two kinds of scaffold, one with smooth surface and the other with numerous nano-spikes, we observed that cells in the smooth scaffold have more anchoring sites and more focal adhesions than in the etched scaffold. Moreover, we found the presence of correlation between cortical actin, the important component for supporting cell attachment, and local cell geometry.

  13. Matrix stiffness modulates infection of endothelial cells by Listeria monocytogenes via expression of cell surface vimentin.

    PubMed

    Bastounis, Effie E; Yeh, Yi-Ting; Theriot, Julie A

    2018-05-02

    Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been previously studied, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens was hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically-relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm), and found that adhesion of Lm onto host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.

  14. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing

    PubMed Central

    Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook

    2017-01-01

    Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. SIGNIFICANCE STATEMENT Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine neuron activity and behavioral reinforcement. PMID:28053028

  15. Endogenously Released Neuropeptide Y Suppresses Hippocampal Short-Term Facilitation and Is Impaired by Stress-Induced Anxiety

    PubMed Central

    Li, Qin; Bartley, Aundrea F.

    2017-01-01

    Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner. PMID:28053027

  16. Peptide neuromodulation in invertebrate model systems

    PubMed Central

    Taghert, Paul H.; Nitabach, Michael N.

    2012-01-01

    Neuropeptides modulate neural circuits controlling adaptive animal behaviors and physiological processes, such as feeding/metabolism, reproductive behaviors, circadian rhythms, central pattern generation, and sensorimotor integration. Invertebrate model systems have enabled detailed experimental analysis using combined genetic, behavioral, and physiological approaches. Here we review selected examples of neuropeptide modulation in crustaceans, mollusks, insects, and nematodes, with a particular emphasis on the genetic model organisms Drosophila melanogaster and Caenorhabditis elegans, where remarkable progress has been made. On the basis of this survey, we provide several integrating conceptual principles for understanding how neuropeptides modulate circuit function, and also propose that continued progress in this area requires increased emphasis on the development of richer, more sophisticated behavioral paradigms. PMID:23040808

  17. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    PubMed

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with these rationally designed materials either intra- or extracellularly. We last delve into the use of these materials in sensing mechanical forces and electrical signals in various cellular systems as well as in instructing cellular behaviors. Future research in this area may shift the paradigm in fundamental biophysical research and biomedical applications through (1) the design and synthesis of new semiconductor-based materials and devices that interact specifically with targeted cells, (2) the clarification of many developmental, physiological, and anatomical aspects of cellular communications, (3) an understanding of how signaling between cells regulates synaptic development (e.g., information like this would offer new insight into how the nervous system works and provide new targets for the treatment of neurological diseases), (4) and the creation of new cellular materials that have the potential to open up completely new areas of application, such as in hybrid information processing systems.

  18. Multi-agent Simulations of Population Behavior: A Promising Tool for Systems Biology.

    PubMed

    Colosimo, Alfredo

    2018-01-01

    This contribution reports on the simulation of some dynamical events observed in the collective behavior of different kinds of populations, ranging from shape-changing cells in a Petri dish to functionally correlated brain areas in vivo. The unifying methodological approach, based upon a Multi-Agent Simulation (MAS) paradigm as incorporated in the NetLogo™ interpreter, is a direct consequence of the cornerstone that simple, individual actions within a population of interacting agents often give rise to complex, collective behavior.The discussion will mainly focus on the emergence and spreading of synchronous activities within the population, as well as on the modulation of the collective behavior exerted by environmental force-fields. A relevant section of this contribution is dedicated to the extension of the MAS paradigm to Brain Network models. In such a general framework some recent applications taken from the direct experience of the author, and exploring the activation patterns characteristic of specific brain functional states, are described, and their impact on the Systems-Biology universe underlined.

  19. Economic competitiveness of III-V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios

    DOE PAGES

    Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael; ...

    2016-09-05

    Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells.more » We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.« less

  20. Economic competitiveness of III-V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael

    Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells.more » We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.« less

  1. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  2. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp

    2016-06-15

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less

  3. Impulse voltage control of continuously tunable bipolar resistive switching in Pt/Bi0.9Eu0.1FeO3/Nb-doped SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Wei, Maocai; Liu, Meifeng; Wang, Xiuzhang; Li, Meiya; Zhu, Yongdan; Zhao, Meng; Zhang, Feng; Xie, Shuai; Hu, Zhongqiang; Liu, Jun-Ming

    2017-03-01

    Epitaxial Bi0.9Eu0.1FeO3 (BEFO) thin films are deposited on Nb-doped SrTiO3 (NSTO) substrates by pulsed laser deposition to fabricate the Pt/BEFO/NSTO (001) heterostructures. These heterostructures possess bipolar resistive switching, where the resistances versus writing voltage exhibits a distinct hysteresis loop and a memristive behavior with good retention and anti-fatigue characteristics. The local resistive switching is confirmed by the conductive atomic force microscopy (C-AFM), suggesting the possibility to scale down the memory cell size. The observed memristive behavior could be attributed to the ferroelectric polarization effect, which modulates the height of potential barrier and width of depletion region at the BEFO/NSTO interface. The continuously tunable resistive switching behavior could be useful to achieve non-volatile, high-density, multilevel random access memory with low energy consumption.

  4. Stochastic dynamics for idiotypic immune networks

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Agliari, Elena

    2010-12-01

    In this work we introduce and analyze the stochastic dynamics obeyed by a model of an immune network recently introduced by the authors. We develop Fokker-Planck equations for the single lymphocyte behavior and coarse grained Langevin schemes for the averaged clone behavior. After showing agreement with real systems (as a short path Jerne cascade), we suggest, both with analytical and numerical arguments, explanations for the generation of (metastable) memory cells, improvement of the secondary response (both in the quality and quantity) and bell shaped modulation against infections as a natural behavior. The whole emerges from the model without being postulated a-priori as it often occurs in second generation immune networks: so the aim of the work is to present some out-of-equilibrium features of this model and to highlight mechanisms which can replace a-priori assumptions in view of further detailed analysis in theoretical systemic immunology.

  5. Luminance and chromatic signals interact differently with melanopsin activation to control the pupil light response.

    PubMed

    Barrionuevo, Pablo A; Cao, Dingcai

    2016-09-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary responses measured using stimuli generated with a five-primary photostimulator that selectively modulated melanopsin, rod, S-, M-, and L-cone excitations in isolation, or in combination to produce postreceptoral signals. We first analyzed the light adaptation behavior of melanopsin activation and rod and cones signals. Second, we determined how melanopsin is integrated with postreceptoral signals by testing with cone luminance, chromatic blue-yellow, and chromatic red-green stimuli that were processed by magnocellular (MC), koniocellular (KC), and parvocellular (PC) pathways, respectively. A combined rod and melanopsin response was also measured. The relative phase of the postreceptoral signals was varied with respect to the melanopsin phase. The results showed that light adaptation behavior for all conditions was weaker than typical Weber adaptation. Melanopsin activation combined linearly with luminance, S-cone, and rod inputs, suggesting the locus of integration with MC and KC signals was retinal. The melanopsin contribution to phasic pupil responses was lower than luminance contributions, but much higher than S-cone contributions. Chromatic red-green modulation interacted with melanopsin activation nonlinearly as described by a "winner-takes-all" process, suggesting the integration with PC signals might be mediated by a postretinal site.

  6. Sensory and motor properties of the cerebellar uvula and modulus

    NASA Technical Reports Server (NTRS)

    Robinson, F. R.

    1985-01-01

    The uvula and nodulus (vermal lobules 9 and 10) of the vestibulocerebellum are implicated by behavioral evidence in the control of eye and head movements and in the production of motion sickness. The uvula and nodulus could play a role in these functions through known output pathways. Purkinje cells in both structures project via the fastigial and vestibular nuceli to the ventral horn of the cervical spin cord, to oculomotor neurons, and to the emetic region of the reticular formation (ablation of which abolishes susceptability to motion sickness). Uvula and nodulus Purkinje cells will be analyzed in cats trained to make controlled head movements. The activity of these neurons is expected to modulate well during head and/or eye movements because the uvula and nodulus receive heavy projections from sources of visual, vestibular and neck proprioceptive information. How neuron activity contributes to movement and how different sensory inputs converge to influence this contribution may be determined by characterizing movement related properties of these neurons. A population of neurons that modulates powerfully to the conflict between different head movement signals that can cause motion sickness may be identified.

  7. Spatially Resolved Imaging on Photocarrier Generations and Band Alignments at Perovskite/PbI2 Heterointerfaces of Perovskite Solar Cells by Light-Modulated Scanning Tunneling Microscopy.

    PubMed

    Shih, Min-Chuan; Li, Shao-Sian; Hsieh, Cheng-Hua; Wang, Ying-Chiao; Yang, Hung-Duen; Chiu, Ya-Ping; Chang, Chia-Seng; Chen, Chun-Wei

    2017-02-08

    The presence of the PbI 2 passivation layers at perovskite crystal grains has been found to considerably affect the charge carrier transport behaviors and device performance of perovskite solar cells. This work demonstrates the application of a novel light-modulated scanning tunneling microscopy (LM-STM) technique to reveal the interfacial electronic structures at the heterointerfaces between CH 3 NH 3 PbI 3 perovskite crystals and PbI 2 passivation layers of individual perovskite grains under light illumination. Most importantly, this technique enabled the first observation of spatially resolved mapping images of photoinduced interfacial band bending of valence bands and conduction bands and the photogenerated electron and hole carriers at the heterointerfaces of perovskite crystal grains. By systematically exploring the interfacial electronic structures of individual perovskite grains, enhanced charge separation and reduced back recombination were observed when an optimal design of interfacial PbI 2 passivation layers consisting of a thickness less than 20 nm at perovskite crystal grains was applied.

  8. CANNABINOID AND OPIOID MODULATION OF SOCIAL PLAY BEHAVIOR IN ADOLESCENT RATS: DIFFERENTIAL BEHAVIORAL MECHANISMS

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J.M.J.

    2008-01-01

    We have recently shown that the pharmacological mechanisms through which cannabinoid and opioid drugs influence social play behavior in adolescent rats can be partially dissociated. Here, we characterize the effects of the direct cannabinoid agonist WIN55,212-2, the indirect cannabinoid agonist URB597 and the opioid agonist morphine on social play at the behavioral level. By treating either one or both partners of the test dyad, we show that these drugs differentially affect play solicitation and play responsiveness. By testing these drugs in animals which were either familiar or unfamiliar to the test cage, we show that environmental factors differentially modulate the effects of cannabinoid and opioid drugs on social play. These results support and extend our previous findings suggesting that, although cannabinoid and opioid systems interact in the modulation of social play behavior in adolescent rats, they do so through partially dissociable behavioral and pharmacological mechanisms. PMID:18434104

  9. Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Mesch, H. G.

    1984-01-01

    The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).

  10. One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior.

    PubMed

    Marinkovic, Milos; Block, Travis J; Rakian, Rubie; Li, Qihong; Wang, Exing; Reilly, Matthew A; Dean, David D; Chen, Xiao-Dong

    2016-01-01

    For more than 100years, cells and tissues have been studied in vitro using glass and plastic surfaces. Over the last 10-20years, a great body of research has shown that cells are acutely sensitive to their local environment (extracellular matrix, ECM) which contains both chemical and physical cues that influence cell behavior. These observations suggest that modern cell culture systems, using tissue culture polystyrene (TCP) surfaces, may fail to reproduce authentic cell behavior in vitro, resulting in "artificial outcomes." In the current study, we use bone marrow (BM)- and adipose (AD)-derived stromal cells to prepare BM-ECM and AD-ECM, which are decellularized after synthesis by the cells, to mimic the cellular niche for each of these tissues. Each ECM was characterized for its ability to affect BM- and AD-mesenchymal stem cell (MSC) proliferation, as well as proliferation of three cancer cell lines (HeLa, MCF-7, and MDA-MB-231), modulate cell spreading, and direct differentiation relative to standard TCP surfaces. We found that both ECMs promoted the proliferation of MSCs, but that this effect was enhanced when the tissue-origin of the cells matched that of the ECM (i.e. BM-ECM promoted the proliferation of BM-MSCs over AD-MSCs, and vice versa). Moreover, BM- and AD-ECM were shown to preferentially direct MSC differentiation towards either osteogenic or adipogenic lineage, respectively, suggesting that the effects of the ECM were tissue-specific. Further, each ECM influenced cell morphology (i.e. circularity), irrespective of the origin of the MSCs, lending more support to the idea that effects were tissue specific. Interestingly, unlike MSCs, these ECMs did not promote the proliferation of the cancer cells. In an effort to further understand how these three culture substrates influence cell behavior, we evaluated the chemical (protein composition) and physical properties (architecture and mechanical) of the two ECMs. While many structural proteins (e.g. collagen and fibronectin) were found at equivalent levels in both BM- and AD-ECM, the architecture (i.e. fiber orientation; surface roughness) and physical properties (storage modulus, surface energy) of each were unique. These results, demonstrating differences in cell behavior when cultured on the three different substrates (BM- and AD-ECM and TCP) with differences in chemical and physical properties, provide evidence that the two ECMs may recapitulate specific elements of the native stem cell niche for bone marrow and adipose tissues. More broadly, it could be argued that ECMs, elaborated by cells ex vivo, serve as an ideal starting point for developing tissue-specific culture environments. In contrast to TCP, which relies on the "one size fits all" paradigm, native tissue-specific ECM may be a more rational model to approach engineering 3D tissue-specific culture systems to replicate the in vivo niche. We suggest that this approach will provide more meaningful information for basic research studies of cell behavior as well as cell-based therapeutics. Published by Elsevier B.V.

  11. Serotonergic and peptidergic modulation of the buccal mass protractor muscle (I2) in aplysia.

    PubMed

    Hurwitz, I; Cropper, E C; Vilim, F S; Alexeeva, V; Susswein, A J; Kupfermann, I; Weiss, K R

    2000-12-01

    Plasticity of Aplysia feeding has largely been measured by noting changes in radula protraction. On the basis of previous work, it has been suggested that peripheral modulation may contribute to behavioral plasticity. However, peripheral plasticity has not been demonstrated in the neuromuscular systems that participate in radula protraction. Therefore in this study we investigated whether contractions of a major radula protraction muscle (I2) are subject to modulation. We demonstrate, first, that an increase in the firing frequency of the cholinergic I2 motoneurons will increase the amplitude of the resulting muscle contraction but will not modulate its relaxation rate. We show, second, that neuronal processes on the I2 muscle are immunoreactive to myomodulin (MM), RFamide, and serotonin (5-HT), but not to small cardioactive peptide (SCP) or buccalin. The I2 motoneurons B31, B32, B61, and B62 are not immunoreactive to RFamide, 5-HT, SCP, or buccalin. However, all four cells are MM immunoreactive and are capable of synthesizing MMa. Third, we show that the bioactivity of the different modulators is somewhat different; while the MMs (i.e., MMa and MMb) and 5-HT increase I2 muscle relaxation rate, and potentiate muscle contraction amplitude, MMa, at high concentrations, depresses muscle contractions. Fourth, our data suggest that cAMP at least partially mediates effects of modulators on contraction amplitude and relaxation rate.

  12. Enhanced expression of PD-1 and other activation markers by CD4+ T cells of young but not old patients with metastatic melanoma.

    PubMed

    van den Brom, Rob R H; van der Geest, Kornelis S M; Brouwer, Elisabeth; Hospers, Geke A P; Boots, Annemieke M H

    2018-06-01

    The biological behavior of melanoma is unfavorable in the elderly when compared to young subjects. We hypothesized that differences in T-cell responses might underlie the distinct behavior of melanoma in young and old melanoma patients. Therefore, we investigated the circulating T-cell compartment of 34 patients with metastatic melanoma and 42 controls, which were classified as either young or old. Absolute numbers of CD4+ T cells were decreased in young and old melanoma patients when compared to the age-matched control groups. Percentages of naive and memory CD4+ T cells were not different when comparing old melanoma patients to age-matched controls. Percentages of memory CD4+ T cells tended to be increased in young melanoma patients compared to young controls. Proportions of naive CD4+ T cells were lower in young patients than in age-matched controls, and actually comparable to those in old patients and controls. This was accompanied with increased percentages of memory CD4+ T cells expressing HLA-DR, Ki-67, and PD-1 in young melanoma patients in comparison to the age-matched controls, but not in old patients. Proportions of CD45RA-FOXP3 high memory regulatory T cells were increased in young and old melanoma patients when compared to their age-matched controls, whereas those of CD45RA+FOXP3 low naive regulatory T cells were similar. We observed no clear modulation of the circulating CD8+ T-cell repertoire in melanoma patients. In conclusion, we show that CD4+ T cells of young melanoma patients show signs of activation, whereas these signs are less clear in CD4+ T cells of old patients.

  13. 77 FR 63788 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Final... (solar cells) from the People's Republic of China (PRC). The Department further determines that there... Cells, Whether or Not Assembled Into Modules, from the People's Republic of China (Decision Memorandum...

  14. 77 FR 10478 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... determination in the countervailing duty investigation of crystalline silicon photovoltaic cells, whether or not... Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of...

  15. Stimulus encoding and feature extraction by multiple sensory neurons.

    PubMed

    Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter

    2002-03-15

    Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.

  16. Ellipsoidal cell flow system

    DOEpatents

    Salzman, Gary C.; Mullaney, Paul F.

    1976-01-01

    The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

  17. Monetary reward magnitude effects on behavior and brain function during goal-directed behavior.

    PubMed

    Rosell-Negre, P; Bustamante, J C; Fuentes-Claramonte, P; Costumero, V; Benabarre, S; Barrós-Loscertales, A

    2017-08-01

    Reward may modulate the cognitive processes required for goal achievement, while individual differences in personality may affect reward modulation. Our aim was to test how different monetary reward magnitudes modulate brain activation and performance during goal-directed behavior, and whether individual differences in reward sensitivity affect this modulation. For this purpose, we scanned 37 subjects with a parametric design in which we varied the magnitude of monetary rewards (€0, €0.01, €0.5, €1 or €1.5) in a blocked fashion while participants performed an interference counting-Stroop condition. The results showed that the brain activity of left dorsolateral prefrontal cortex (DLPFC) and the striatum were modulated by increasing and decreasing reward magnitudes, respectively. Behavioral performance improved as the magnitude of monetary reward increased while comparing the non reward (€0) condition to any other reward condition, or the lower €0.01 to any other reward condition, and this improvement was related with individual differences in reward sensitivity. In conclusion, the locus of influence of monetary incentives overlaps the activity of the regions commonly involved in cognitive control.

  18. Antimicrobial Action and Cell Agglutination by the Eosinophil Cationic Protein Are Modulated by the Cell Wall Lipopolysaccharide Structure

    PubMed Central

    Pulido, David; Moussaoui, Mohammed; Andreu, David; Nogués, M. Victòria

    2012-01-01

    Antimicrobial proteins and peptides (AMPs) are essential effectors of innate immunity, acting as a first line of defense against bacterial infections. Many AMPs exhibit high affinity for cell wall structures such as lipopolysaccharide (LPS), a potent endotoxin able to induce sepsis. Hence, understanding how AMPs can interact with and neutralize LPS endotoxin is of special relevance for human health. Eosinophil cationic protein (ECP) is an eosinophil secreted protein with high activity against both Gram-negative and Gram-positive bacteria. ECP has a remarkable affinity for LPS and a distinctive agglutinating activity. By using a battery of LPS-truncated E. coli mutant strains, we demonstrate that the polysaccharide moiety of LPS is essential for ECP-mediated bacterial agglutination, thereby modulating its antimicrobial action. The mechanism of action of ECP at the bacterial surface is drastically affected by the LPS structure and in particular by its polysaccharide moiety. We have also analyzed an N-terminal fragment that retains the whole protein activity and displays similar cell agglutination behavior. Conversely, a fragment with further minimization of the antimicrobial domain, though retaining the antimicrobial capacity, significantly loses its agglutinating activity, exhibiting a different mechanism of action which is not dependent on the LPS composition. The results highlight the correlation between the protein's antimicrobial activity and its ability to interact with the LPS outer layer and promote bacterial agglutination. PMID:22330910

  19. Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure.

    PubMed

    Pulido, David; Moussaoui, Mohammed; Andreu, David; Nogués, M Victòria; Torrent, Marc; Boix, Ester

    2012-05-01

    Antimicrobial proteins and peptides (AMPs) are essential effectors of innate immunity, acting as a first line of defense against bacterial infections. Many AMPs exhibit high affinity for cell wall structures such as lipopolysaccharide (LPS), a potent endotoxin able to induce sepsis. Hence, understanding how AMPs can interact with and neutralize LPS endotoxin is of special relevance for human health. Eosinophil cationic protein (ECP) is an eosinophil secreted protein with high activity against both Gram-negative and Gram-positive bacteria. ECP has a remarkable affinity for LPS and a distinctive agglutinating activity. By using a battery of LPS-truncated E. coli mutant strains, we demonstrate that the polysaccharide moiety of LPS is essential for ECP-mediated bacterial agglutination, thereby modulating its antimicrobial action. The mechanism of action of ECP at the bacterial surface is drastically affected by the LPS structure and in particular by its polysaccharide moiety. We have also analyzed an N-terminal fragment that retains the whole protein activity and displays similar cell agglutination behavior. Conversely, a fragment with further minimization of the antimicrobial domain, though retaining the antimicrobial capacity, significantly loses its agglutinating activity, exhibiting a different mechanism of action which is not dependent on the LPS composition. The results highlight the correlation between the protein's antimicrobial activity and its ability to interact with the LPS outer layer and promote bacterial agglutination.

  20. Optical cell stimulation for neuronal excitation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Johannsmeier, Sonja; Heeger, Patrick; Terakawa, Mitsuhiro; Heisterkamp, Alexander; Ripken, Tammo; Heinemann, Dag

    2017-02-01

    Optical manipulation of cellular functions represents a growing field in biomedical sciences. The possibility to modulate specific targets with high spatial and temporal precision in a contactless manner allows a broad range of applications. Here, we present a study on stimulation of neuronal cells by optical means. As a long-term objective, we seek to improve the performance of current electric neurostimulation, especially in the context of cochlear implants. Firstly, we tested a gold nanoparticle mediated approach to modulate transmembrane conductivity by irradiation using a picosecond pulsed Nd:YAG laser at 532 nm for 40 ms in a neuroblastoma cell line (N2A) and primary murine neurons. The light absorption leads to a rapid temperature increase of the gold nanoparticles, which can induce an increased permeabilisation of the cellular membrane. Calcium transients were recorded as an indicator of neuronal activity. Although calcium signals were reliably detected upon laser irradiation, the temporal behavior did not resemble action potentials. The origin of these signals was investigated by an inhibitor study. These results indicate calcium induced calcium release (CICR) as the major source of the calcium transients. Consecutively, we tested alternative approaches for cell stimulation, such as glutamate release and optogenetics, and evaluated the potential of these methods for the application in a cochlear implant. Compared to the gold nanoparticle approach, both techniques induce less cellular stress and reliably produce action potentials.

  1. The selective effect of glycyrrhizin and glycyrrhetinic acid on topoisomerase IIα and apoptosis in combination with etoposide on triple negative breast cancer MDA-MB-231 cells.

    PubMed

    Cai, Yun; Zhao, Boxin; Liang, Qianying; Zhang, Yunqi; Cai, Jieying; Li, Guofeng

    2017-08-15

    Triple negative breast cancer(TNBC) has generated growing interests due to its aggressive biologic behavior and absence of targeted therapy approach. Glycyrrhizin(GL) from licorice root and its metabolite, glycyrrhetinic acid(GA) have shown extensive bioactivities in clinic. Here, we demonstrate that GL and GA have contrary anti-cancer effect on TNBC MDA-MB-231 cells. Beside its inhibition of cell proliferation, GA at non-cytotoxic concentration showed synergistic effect in combination with anti-cancer drug, etoposide(VP-16). Specifically, GA enhanced cytotoxicity through regulating topoisomerase IIα(TOPO 2A) targeted by etoposide. GA sensitized the cells to etoposide through elevating TOPO 2A with a 2.4 fold rate at 12h. From 12 to 48h, GA halved the expression of TOPO 2A and stimulated apoptosis, which exhibited its antineoplastic effect. Our experiments showed that GSH depletion, modulation of MAPK and AKT pathways accounted for the regulation of topoisomerase IIα and apoptosis. However, GL showed protection and detoxication by decreasing reactive oxygen species generation, maintaining GSH and differentially modulating apoptosis, AKT pathway, ERK and JNK of MAPK pathway. Collectively, our results demonstrate that GA, instead of GL, is a better candidate for TNBC treatment because of its anti-cancer effect and sensitization of topoisomerase IIα inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain

    PubMed Central

    Neilans, Erikson G.; Abrams, Kristina S.; Idrobo, Fabio; Carney, Laurel H.

    2016-01-01

    Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16–512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608

  3. The 40 KW of Solar Cell Modules for the Large Scale Production Task a Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1977-01-01

    Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60 C and 100 mW/sq cm. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. This final report covers the solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations.

  4. Locomotor activity modulates associative learning in mouse cerebellum.

    PubMed

    Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R

    2018-05-01

    Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.

  5. Modulating the Behaviors of Mesenchymal Stem Cells Via the Combination of High-Frequency Vibratory Stimulations and Fibrous Scaffolds

    PubMed Central

    Tong, Zhixiang; Duncan, Randall L.

    2013-01-01

    We are interested in the in vitro engineering of artificial vocal fold tissues via the strategic combination of multipotent mesenchymal stem cells (MSCs), physiologically relevant mechanical stimulations, and biomimetic artificial matrices. We have constructed a vocal fold bioreactor that is capable of imposing vibratory stimulations on the cultured cells at human phonation frequencies. Separately, fibrous poly (ɛ-caprolactone) (PCL) scaffolds emulating the ligamentous structure of the vocal fold were prepared by electrospinning, were incorporated in the vocal fold bioreactor, and were driven into a wave-like motion in an axisymmetrical fashion by the oscillating air. MSC-laden PCL scaffolds were subjected to vibrations at 200 Hz with a normal center displacement of ∼40 μm for a total of 7 days. A continuous (CT) or a 1 h-on-1 h-off (OF) regime with a total dynamic culture time of 12 h per day was applied. The dynamic loading did not cause any physiological trauma to the cells. Immunohistotochemical staining revealed the reinforcement of the actin filament and the enhancement of α5β1 integrin expression under selected dynamic culture conditions. Cellular expression of essential vocal fold extracellular matrix components, such as elastin, hyaluronic acid, and matrix metalloproteinase-1, was significantly elevated as compared with the static controls, and the OF regime is more conducive to matrix production than the CT vibration mode. Analyses of genes of typical fibroblast hallmarks (tenascin-C, collagen III, and procollagen I) as well as markers for MSC differentiation into nonfibroblastic lineages confirmed MSCs' adaptation of fibroblastic behaviors. Overall, the high-frequency vibratory stimulation, when combined with a synthetic fibrous scaffold, serves as a potent modulator of MSC functions. The novel bioreactor system presented here, as a versatile, yet well-controlled model, offers an in vitro platform for understanding vibration-induced mechanotransduction and for engineering of functional vocal fold tissues. PMID:23516973

  6. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    PubMed

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  7. Neural basis of imprinting behavior in chicks.

    PubMed

    Nakamori, Tomoharu; Maekawa, Fumihiko; Sato, Katsushige; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2013-01-01

    Newly hatched chicks memorize the characteristics of the first moving object they encounter, and subsequently show a preference for it. This "imprinting" behavior is an example of infant learning and is elicited by visual and/or auditory cues. Visual information of imprinting stimuli in chicks is first processed in the visual Wulst (VW), a telencephalic area corresponding to the mammalian visual cortex, congregates in the core region of the hyperpallium densocellulare (HDCo) cells, and transmitted to the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. The imprinting memory is stored in the IMM, and activities of IMM neurons are altered by imprinting. Imprinting also induces functional and structural plastic changes of neurons in the circuit that links the VW and the IMM. Of these neurons, the activity of the HDCo cells is strongly influenced by imprinting. Expression and modulation of NR2B subunit-containing N-methyl-D-aspartate (NMDA) receptors in the HDCo cells are crucial for plastic changes in this circuit as well as the process of visual imprinting. Thus, elucidation of cellular and molecular mechanisms underlying the plastic changes that occurred in the HDCo cells may provide useful knowledge about infant learning. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  8. Balanced ionotropic receptor dynamics support signal estimation via voltage-dependent membrane noise.

    PubMed

    Marcoux, Curtis M; Clarke, Stephen E; Nesse, William H; Longtin, Andre; Maler, Leonard

    2016-01-01

    Encoding behaviorally relevant stimuli in a noisy background is critical for animals to survive in their natural environment. We identify core biophysical and synaptic mechanisms that permit the encoding of low-frequency signals in pyramidal neurons of the weakly electric fish Apteronotus leptorhynchus, an animal that can accurately encode even miniscule amplitude modulations of its self-generated electric field. We demonstrate that slow NMDA receptor (NMDA-R)-mediated excitatory postsynaptic potentials (EPSPs) are able to summate over many interspike intervals (ISIs) of the primary electrosensory afferents (EAs), effectively eliminating the baseline EA ISI correlations from the pyramidal cell input. Together with a dynamic balance of NMDA-R and GABA-A-R currents, this permits stimulus-evoked changes in EA spiking to be transmitted efficiently to target electrosensory lobe (ELL) pyramidal cells, for encoding low-frequency signals. Interestingly, AMPA-R activity is depressed and appears to play a negligible role in the generation of action potentials. Instead, we hypothesize that cell-intrinsic voltage-dependent membrane noise supports the encoding of perithreshold sensory input; this noise drives a significant proportion of pyramidal cell spikes. Together, these mechanisms may be sufficient for the ELL to encode signals near the threshold of behavioral detection. Copyright © 2016 the American Physiological Society.

  9. Optimization of active cell area on the dye-sensitized solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Putri, A. W.; Nurosyid, F.; Supriyanto, Agus

    2017-11-01

    This study is aimed to obtain optimal active area producing high efficiency of DSSC module. The DSSC structure is constructed of TiO2 as working electrode, dye as photosensitizer, platinum as counter electrode, and electrolyte as electron transfer media. TiO2 paste was deposited on Fluorine-doped Tin Oxide (FTO) by screen printing method. Meanwhile, platinum was also coated on FTO via brush painting method. Keithley I-V meter was performed to characterize DSSC electrical property. The active area of each cell was varied of 4.5 cm2, 9 cm2, and 13.5 cm2. Each cell was assembled into a module using an external series connection of Z type. The module was consisted of 12 cells, 6 cells, and 4 cells with module active area of 54 cm2. The optimal active area of DSSC cell is 4.5 cm2 resulting 0.4149% efficiency. In addition, the highest efficiency of DSSC module is 0.2234% acquired by 6 cells assembling.

  10. Integrated circuits, and design and manufacture thereof

    DOEpatents

    Auracher, Stefan; Pribbernow, Claus; Hils, Andreas

    2006-04-18

    A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.

  11. The Role of Sensory Modulation Deficits and Behavioral Symptoms in a Diagnosis for Early Childhood

    ERIC Educational Resources Information Center

    Perez-Robles, Ruth; Doval, Eduardo; Jane, Ma Claustre; da Silva, Pedro Caldeira; Papoila, Ana Luisa; Virella, Daniel

    2013-01-01

    To contribute to the validation of the sensory and behavioral criteria for Regulation Disorders of Sensory Processing (RDSP) (DC:0-3R, 2005), this study examined a sample of toddlers in a clinical setting to analyze: (1) the severity of sensory modulation deficits and the behavioral symptoms of RDSP; (2) the associations between sensory and…

  12. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules.

    PubMed

    Linden, Rafael

    2017-01-01

    The prion glycoprotein (PrP C ) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrP C is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer's Disease (AD). PrP C is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrP C at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrP C , despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrP C with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrP C serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.

  13. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications.

    PubMed

    Neves, Mariana I; Wechsler, Marissa E; Gomes, Manuela E; Reis, Rui L; Granja, Pedro L; Peppas, Nicholas A

    2017-02-01

    The development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cell-cell and cell-matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.

  14. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    PubMed

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  15. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  16. Is there an association between hypercholesterolemia and depression? Behavioral evidence from the LDLr(-/-) mouse experimental model.

    PubMed

    Engel, Daiane Fátima; de Oliveira, Jade; Lopes, Jadna Bogado; Santos, Danúbia Bonfanti; Moreira, Eduardo Luiz Gasnhar; Farina, Marcelo; Rodrigues, Ana Lúcia S; de Souza Brocardo, Patricia; de Bem, Andreza Fabro

    2016-09-15

    Although epidemiological studies have reported an association between hypercholesterolemia and mood disorders, there is a lack of data regarding depressive-like behavior in animal models of hypercholesterolemia. To address these questions, we assessed depressive-like behavior and hippocampal and cortical monoaminergic metabolism in three-month-old, low-density lipoprotein receptor knockout (LDLr(-/-)) and C57BL/6 wild-type mice. The LDLr(-/-) mice exhibited depressive-like behavior in the sucrose preference test, splash test, and tail suspension test. Increased monoamine oxidase (MAO) A and B activity was evidenced in the hippocampus of LDLr(-/-) mice. Furthermore, to address whether or not cholesterol modulates MAO activity, we exposed SH-SY5Y human neuroblastoma cells to human isolated low-density lipoprotein (LDL). Notably, LDL increased the activity of MAO-A and stimulated the reactive species generation in vitro. These findings indicate that depressive-like behavior in hypercholesterolemic mice is accompanied by alterations in the monoaminergic metabolism, providing new evidence about the association between hypercholesterolemia and depression. Copyright © 2016. Published by Elsevier B.V.

  17. Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms.

    PubMed

    Laredo, Sarah A; Villalon Landeros, Rosalina; Trainor, Brian C

    2014-10-01

    Estradiol can modulate neural activity and behavior via both genomic and nongenomic mechanisms. Environmental cues have a major impact on the relative importance of these signaling pathways with significant consequences for behavior. First we consider how photoperiod modulates nongenomic estrogen signaling on behavior. Intriguingly, short days permit rapid effects of estrogens on aggression in both rodents and song sparrows. This highlights the importance of considering photoperiod as a variable in laboratory research. Next we review evidence for rapid effects of estradiol on ecologically-relevant behaviors including aggression, copulation, communication, and learning. We also address the impact of endocrine disruptors on estrogen signaling, such as those found in corncob bedding used in rodent research. Finally, we examine the biochemical mechanisms that may mediate rapid estrogen action on behavior in males and females. A common theme across these topics is that the effects of estrogens on social behaviors vary across different environmental conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. High levels of wheel running protect against behavioral sensitization to cocaine.

    PubMed

    Renteria Diaz, Laura; Siontas, Dora; Mendoza, Jose; Arvanitogiannis, Andreas

    2013-01-15

    Although there is no doubt that the direct action of stimulant drugs on the brain is necessary for sensitization to their behavioral stimulating effects, several experiments indicate that drug action is often not sufficient to produce sensitization. There is considerable evidence that many individual characteristics and experiential variables can modulate the behavioral and neural changes that are seen following repeated exposure to stimulant drugs. In the work presented here, we examined whether chronic wheel running would modulate behavioral sensitization to cocaine, and whether any such influence was contingent on individual differences in wheel running. We found that a 5- or 10-week experience with wheel running protects against behavioral sensitization to cocaine but only in animals with a natural tendency to run the most. Understanding the mechanism underlying the modulating effect of wheel running on behavioral sensitization may have important implications for future studies on the link between drug-induced behavioral and neural adaptations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts

    PubMed Central

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-01-01

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688

  20. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts.

    PubMed

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-07-28

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma.

Top