Cutini, Simone; Szűcs, Dénes; Mead, Natasha; Huss, Martina; Goswami, Usha
2016-12-01
Phase entrainment of neuronal oscillations is thought to play a central role in encoding speech. Children with developmental dyslexia show impaired phonological processing of speech, proposed theoretically to be related to atypical phase entrainment to slower temporal modulations in speech (<10Hz). While studies of children with dyslexia have found atypical phase entrainment in the delta band (~2Hz), some studies of adults with developmental dyslexia have shown impaired entrainment in the low gamma band (~35-50Hz). Meanwhile, studies of neurotypical adults suggest asymmetric temporal sensitivity in auditory cortex, with preferential processing of slower modulations by right auditory cortex, and faster modulations processed bilaterally. Here we compared neural entrainment to slow (2Hz) versus faster (40Hz) amplitude-modulated noise using fNIRS to study possible hemispheric asymmetry effects in children with developmental dyslexia. We predicted atypical right hemisphere responding to 2Hz modulations for the children with dyslexia in comparison to control children, but equivalent responding to 40Hz modulations in both hemispheres. Analyses of HbO concentration revealed a right-lateralised region focused on the supra-marginal gyrus that was more active in children with dyslexia than in control children for 2Hz stimulation. We discuss possible links to linguistic prosodic processing, and interpret the data with respect to a neural 'temporal sampling' framework for conceptualizing the phonological deficits that characterise children with developmental dyslexia across languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kappen, Claudia
2016-01-01
The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes. PMID:26800342
Heath, Christopher J; Picciotto, Marina R
2009-01-01
Despite a great deal of progress, more than 10% of pregnant women in the USA smoke. Epidemiological studies have demonstrated correlations between developmental tobacco smoke exposure and sensory processing deficits, as well as a number of neuropsychiatric conditions, including attention deficit hyperactivity disorder. Significantly, data from animal models of developmental nicotine exposure have suggested that the nicotine in tobacco contributes significantly to the effects of developmental smoke exposure. Consequently, we hypothesize that nicotinic acetylcholine receptors (nAChRs) are important for setting and refining the strength of corticothalamic-thalamocortical loops during critical periods of development and that disruption of this process by developmental nicotine exposure can result in long-lasting dysregulation of sensory processing. The ability of nAChR activation to modulate synaptic plasticity is likely to underlie the effects of both endogenous cholinergic signaling and pharmacologically administered nicotine to alter cellular, physiological and behavioral processes during critical periods of development.
ERIC Educational Resources Information Center
Hardin, Michael G.; Schroth, Elizabeth; Pine, Daniel S.; Ernst, Monique
2007-01-01
Background: Developmental changes in cognitive and affective processes contribute to adolescent risk-taking behavior, emotional intensification, and psychopathology. The current study examined adolescent development of cognitive control processes and their modulation by incentive, in health and psychopathology. Predictions include 1) better…
Wen, Kuang-Yi; Miller, Suzanne M; Stanton, Annette L; Fleisher, Linda; Morra, Marion E; Jorge, Alexandra; Diefenbach, Michael A; Ropka, Mary E; Marcus, Alfred C
2012-08-01
This paper describes the development of a theory-guided and evidence-based multimedia training module to facilitate breast cancer survivors' preparedness for effective communication with their health care providers after active treatment. The iterative developmental process used included: (1) theory and evidence-based content development and vetting; (2) user testing; (3) usability testing; and (4) participant module utilization. Formative evaluation of the training module prototype occurred through user testing (n = 12), resulting in modification of the content and layout. Usability testing (n = 10) was employed to improve module functionality. Preliminary web usage data (n = 256, mean age = 53, 94.5% White, 75% college graduate and above) showed that 59% of the participants accessed the communication module, for an average of 7 min per login. The iterative developmental process was informative in enhancing the relevance of the communication module. Preliminary web usage results demonstrate the potential feasibility of such a program. Our study demonstrates survivors' openness to the use of a web-based communication skills training module and outlines a systematic iterative user and interface program development and testing process, which can serve as a prototype for others considering such an approach. Copyright © 2012. Published by Elsevier Ireland Ltd.
Wen, Kuang-Yi; Miller, Suzanne M.; Stanton, Annette L.; Fleisher, Linda; Morra, Marion E.; Jorge, Alexandra; Diefenbach, Michael A.; Ropka, Mary E.; Marcus, Alfred C.
2012-01-01
Objective This paper describes the development of a theory-guided and evidence-based multimedia training module to facilitate breast cancer survivors’ preparedness for effective communication with their health care providers after active treatment. Methods The iterative developmental process used included: (1) theory and evidence-based content development and vetting; (2) user testing; (3) usability testing; and (4) participant module utilization. Results Formative evaluation of the training module prototype occurred through user testing (n = 12), resulting in modification of the content and layout. Usability testing (n = 10) was employed to improve module functionality. Preliminary web usage data (n = 256, mean age = 53, 94.5% White, 75% college graduate and above) showed that 59% of the participants accessed the communication module, for an average of 7 min per login. Conclusion The iterative developmental process was informative in enhancing the relevance of the communication module. Preliminary web usage results demonstrate the potential feasibility of such a program. Practice implications Our study demonstrates survivors’ openness to the use of a web-based communication skills training module and outlines a systematic iterative user and interface program development and testing process, which can serve as a prototype for others considering such an approach. PMID:22770812
Developmental Conductive Hearing Loss Reduces Modulation Masking Release
Chen, Yi-Wen; Sanes, Dan H.
2016-01-01
Hearing-impaired individuals experience difficulties in detecting or understanding speech, especially in background sounds within the same frequency range. However, normally hearing (NH) human listeners experience less difficulty detecting a target tone in background noise when the envelope of that noise is temporally gated (modulated) than when that envelope is flat across time (unmodulated). This perceptual benefit is called modulation masking release (MMR). When flanking masker energy is added well outside the frequency band of the target, and comodulated with the original modulated masker, detection thresholds improve further (MMR+). In contrast, if the flanking masker is antimodulated with the original masker, thresholds worsen (MMR−). These interactions across disparate frequency ranges are thought to require central nervous system (CNS) processing. Therefore, we explored the effect of developmental conductive hearing loss (CHL) in gerbils on MMR characteristics, as a test for putative CNS mechanisms. The detection thresholds of NH gerbils were lower in modulated noise, when compared with unmodulated noise. The addition of a comodulated flanker further improved performance, whereas an antimodulated flanker worsened performance. However, for CHL-reared gerbils, all three forms of masking release were reduced when compared with NH animals. These results suggest that developmental CHL impairs both within- and across-frequency processing and provide behavioral evidence that CNS mechanisms are affected by a peripheral hearing impairment. PMID:28215119
Salgado, Teresa M; Fedrigon, Alexa; Riccio Omichinski, Donna; Meade, Michelle A
2018-01-01
Background Smartphone apps can be a tool to facilitate independent medication management among persons with developmental disabilities. At present, multiple medication management apps exist in the market, but only 1 has been specifically designed for persons with developmental disabilities. Before initiating further app development targeting this population, input from stakeholders including persons with developmental disabilities, caregivers, and professionals regarding the most preferred features should be obtained. Objective The aim of this study was to identify medication management app features that are suitable to promote independence in the medication management process by young adults with developmental disabilities using a Delphi consensus method. Methods A compilation of medication management app features was performed by searching the iTunes App Store, United States, in February 2016, using the following terms: adherence, medication, medication management, medication list, and medication reminder. After identifying features within the retrieved apps, a final list of 42 features grouped into 4 modules (medication list, medication reminder, medication administration record, and additional features) was included in a questionnaire for expert consensus rating. A total of 52 experts in developmental disabilities, including persons with developmental disabilities, caregivers, and professionals, were invited to participate in a 3-round Delphi technique. The purpose was to obtain consensus on features that are preferred and suitable to promote independence in the medication management process among persons with developmental disabilities. Consensus for the first, second, and third rounds was defined as ≥90%, ≥80%, and ≥75% agreement, respectively. Results A total of 75 responses were received over the 3 Delphi rounds—30 in the first round, 24 in the second round, and 21 in the third round. At the end of the third round, cumulative consensus was achieved for 60% (12/20) items in the medication list module, 100% (3/3) in the medication reminder module, 67% (2/3) in the medication administration record module, and 63% (10/16) in the additional features module. In addition to the medication list, medication reminder, and medication administration record features, experts selected the following top 3 most important additional features: automatic refills through pharmacies; ability to share medication information from the app with providers; and ability to share medication information from the app with family, friends, and caregivers. The top 3 least important features included a link to an official drug information source, privacy settings and password protection, and prescription refill reminders. Conclusions Although several mobile apps for medication management exist, few are specifically designed to support persons with developmental disabilities in the complex medication management process. Of the 42 different features assessed, 64% (27/42) achieved consensus for inclusion in a future medication management app. This study provides information on the features of a medication management app that are most important to persons with developmental disabilities, caregivers, and professionals. PMID:29792292
Nutritional management of osteoarthritis.
Richardson, D C; Schoenherr, W D; Zicker, S C
1997-07-01
Nutrition can influence developmental orthopedic diseases and the inflammatory process of arthritis. Developmental skeletal disease is a group of skeletal abnormalities that primarily affect fast-growing, large-breed dogs. Nutrient excesses (calcium and energy) and rapid growth (overfeeding and excess energy) are known risk factors. Inflammation can be directly or indirectly affected by nutritional influences. A direct effect can be achieved by modulating the immune response and inflammatory process with fatty acids. Weight control can indirectly influence the degenerative joint disease process by reducing the stresses on the joint.
The changing landscape of functional brain networks for face processing in typical development.
Joseph, Jane E; Swearingen, Joshua E; Clark, Jonathan D; Benca, Chelsie E; Collins, Heather R; Corbly, Christine R; Gathers, Ann D; Bhatt, Ramesh S
2012-11-15
Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of functional segregation and integration of brain regions throughout development. The present study examined developmental changes in face network functional connectivity in children (5-12 years) and adults (18-43 years) during face-viewing using a graph-theory approach. A face-specific developmental change involved connectivity of the right occipital face area. During childhood, this node increased in strength and within-module clustering based on positive connectivity. These changes reflect an important role of the ROFA in segregation of function during childhood. In addition, strength and diversity of connections within a module that included primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-limbic integration. This integration was pronounced for faces but also emerged for natural objects. Taken together, the primary face-specific developmental changes involved segregation of a posterior visual module during childhood, possibly implicated in early stage perceptual face processing, and greater integration of visuo-limbic connections from childhood to adulthood, which may reflect processing related to development of perceptual expertise for individuation of faces and other visually homogenous categories. Copyright © 2012 Elsevier Inc. All rights reserved.
Conaway, Mark A; Schroeder, Lauren; von Cramon-Taubadel, Noreen
2018-03-22
Integration and modularity reflect the coordinated action of past evolutionary processes and, in turn, constrain or facilitate phenotypic evolvability. Here, we analyze magnitudes of integration in the macaque postcranium to test whether 20 a priori defined modules are (1) more tightly integrated than random sets of postcranial traits, and (2) are differentiated based on mode of definition, with developmental modules expected to be more integrated than functional or anatomical modules. The 3D morphometric data collected for eight limb and girdle bones for 60 macaques were collated into anatomical, developmental, and functional modules. A resampling technique was used to create random samples of integration values for each module for statistical comparison. Our results found that not all a priori defined modules were more strongly integrated than random samples of postcranial traits and that specific types of modules did not present consistent patterns of integration. Rather, girdle and joint modules were consistently less integrated than limb modules, and forelimb elements were less integrated than hindlimbs. The results suggest that morphometrically complex modules tend to be less integrated than simple limb bones, irrespective of the number of available traits. However, differences in integration of the fore- and hindlimb more likely reflects the multitude of locomotory, feeding, and social functions involved. It remains to be tested whether patterns of integration identified here are primate universals, and to what extent they vary depending on phylogenetic or functional factors. © 2018 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Yorke, Jan
2010-01-01
Emotional stress and trauma impacts the neurobiology of children. They are especially vulnerable given the developmental plasticity of the brain. The neural synaptic circular processes between the anterior cingulated cortex, prefrontal cortex, amygdala and the hypothalamus are altered. Trauma results in the release of the peptide glucocortisoid,…
Enhancing Child Development: The Beginning Years. Fostering Families.
ERIC Educational Resources Information Center
Schatz, Mona Struhsaker; And Others
This module is part of a training program for foster parents and foster care workers offered at Colorado State University. The module's learning objectives address: (1) factors that interact to affect child development; (2) developmental milestones for infants and young children; (3) parenting processes appropriate to the childhood years; (4)…
Rate change detection of frequency modulated signals: developmental trends.
Cohen-Mimran, Ravit; Sapir, Shimon
2011-08-26
The aim of this study was to examine developmental trends in rate change detection of auditory rhythmic signals (repetitive sinusoidally frequency modulated tones). Two groups of children (9-10 years old and 11-12 years old) and one group of young adults performed a rate change detection (RCD) task using three types of stimuli. The rate of stimulus modulation was either constant (CR), raised by 1 Hz in the middle of the stimulus (RR1) or raised by 2 Hz in the middle of the stimulus (RR2). Performance on the RCD task significantly improved with age. Also, the different stimuli showed different developmental trajectories. When the RR2 stimulus was used, results showed adult-like performance by the age of 10 years but when the RR1 stimulus was used performance continued to improve beyond 12 years of age. Rate change detection of repetitive sinusoidally frequency modulated tones show protracted development beyond the age of 12 years. Given evidence for abnormal processing of auditory rhythmic signals in neurodevelopmental conditions, such as dyslexia, the present methodology might help delineate the nature of these conditions.
Goswami, Usha; Fosker, Tim; Huss, Martina; Mead, Natasha; Szucs, Dénes
2011-01-01
Across languages, children with developmental dyslexia have a specific difficulty with the neural representation of the sound structure (phonological structure) of speech. One likely cause of their difficulties with phonology is a perceptual difficulty in auditory temporal processing (Tallal, 1980). Tallal (1980) proposed that basic auditory processing of brief, rapidly successive acoustic changes is compromised in dyslexia, thereby affecting phonetic discrimination (e.g. discriminating /b/ from /d/) via impaired discrimination of formant transitions (rapid acoustic changes in frequency and intensity). However, an alternative auditory temporal hypothesis is that the basic auditory processing of the slower amplitude modulation cues in speech is compromised (Goswami et al., 2002). Here, we contrast children's perception of a synthetic speech contrast (ba/wa) when it is based on the speed of the rate of change of frequency information (formant transition duration) versus the speed of the rate of change of amplitude modulation (rise time). We show that children with dyslexia have excellent phonetic discrimination based on formant transition duration, but poor phonetic discrimination based on envelope cues. The results explain why phonetic discrimination may be allophonic in developmental dyslexia (Serniclaes et al., 2004), and suggest new avenues for the remediation of developmental dyslexia. © 2010 Blackwell Publishing Ltd.
Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly
NASA Technical Reports Server (NTRS)
1979-01-01
A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.
Auxin, the organizer of the hormonal/environmental signals for root hair growth
Lee, Richard D.-W.; Cho, Hyung-Taeg
2013-01-01
The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth. PMID:24273547
Hardin, Michael G; Schroth, Elizabeth; Pine, Daniel S; Ernst, Monique
2007-05-01
Developmental changes in cognitive and affective processes contribute to adolescent risk-taking behavior, emotional intensification, and psychopathology. The current study examined adolescent development of cognitive control processes and their modulation by incentive, in health and psychopathology. Predictions include 1) better cognitive control in adults than adolescents, and in healthy adolescents than anxious and depressed adolescents, and 2) a stronger influence of incentives in adolescents than adults, and in healthy adolescents than their depressed and anxious counterparts. Antisaccadic eye movement parameters, which provide a measure of cognitive control, were collected during a reward antisaccade task that included parameterized incentive levels. Participants were 20 healthy adults, 30 healthy adolescents, 16 adolescents with an anxiety disorder, and 11 adolescents with major depression. Performance accuracy and saccade latency were analyzed to test both developmental and psychopathology hypotheses. Development and psychopathology group differences in cognitive control were found. Specifically, adults performed better than healthy adolescents, and healthy adolescents than anxious and depressed adolescents. Incentive improved accuracy for all groups; however, incremental increases were not sufficiently large to further modulate performance. Incentives also affected saccade latencies, pushing healthy adolescent latencies to adult levels, while being less effective in adolescents with depression or anxiety. This latter effect was partially mediated by anxiety symptom severity. Current findings evidence the modulation of cognitive control processes by incentives. While seen in both healthy adults and healthy adolescents, this modulatory effect was stronger in youth. While anxious and depressed adolescents exhibited improved cognitive control under incentives, this effect was smaller than that in healthy adolescents. These findings suggest differential incentive and/or cognitive control processing in anxiety and depression, and across development. Differences could result from disorder specific, or combined developmental and pathological mechanisms.
Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents
Hardin, Michael G.; Schroth, Elizabeth; Pine, Daniel S.; Ernst, Monique
2009-01-01
Background Developmental changes in cognitive and affective processes contribute to adolescent risk-taking behavior, emotional intensification, and psychopathology. The current study examined adolescent development of cognitive control processes and their modulation by incentive, in health and psychopathology. Predictions include 1) better cognitive control in adults than adolescents, and in healthy adolescents than anxious and depressed adolescents, and 2) a stronger influence of incentives in adolescents than adults, and in healthy adolescents than their depressed and anxious counterparts. Methods Antisaccadic eye movement parameters, which provide a measure of cognitive control, were collected during a reward antisaccade task that included parameterized incentive levels. Participants were 20 healthy adults, 30 healthy adolescents, 16 adolescents with an anxiety disorder, and 11 adolescents with major depression. Performance accuracy and saccade latency were analyzed to test both developmental and psychopathology hypotheses. Results Development and psychopathology group differences in cognitive control were found. Specifically, adults performed better than healthy adolescents, and healthy adolescents than anxious and depressed adolescents. Incentive improved accuracy for all groups; however, incremental increases were not sufficiently large to further modulate performance. Incentives also affected saccade latencies, pushing healthy adolescent latencies to adult levels, while being less effective in adolescents with depression or anxiety. This latter effect was partially mediated by anxiety symptom severity. Conclusions Current findings evidence the modulation of cognitive control processes by incentives. While seen in both healthy adults and healthy adolescents, this modulatory effect was stronger in youth. While anxious and depressed adolescents exhibited improved cognitive control under incentives, this effect was smaller than that in healthy adolescents. These findings suggest differential incentive and/or cognitive control processing in anxiety and depression, and across development. Differences could result from disorder specific, or combined developmental and pathological mechanisms. PMID:17501725
ERIC Educational Resources Information Center
Karmiloff-Smith, Annette; Thomas, Michael; Annaz, Dagmara; Humphreys, Kate; Ewing, Sandra; Brace, Nicola; Van Duuren, Mike; Pike, Graham; Grice, Sarah; Campbell, Ruth
2004-01-01
Background: Face processing in Williams syndrome (WS) has been a topic of heated debate over the past decade. Initial claims about a normally developing ("intact") face-processing module were challenged by data suggesting that individuals with WS used a different balance of cognitive processes from controls, even when their behavioural scores fell…
When modularization fails to occur: a developmental perspective.
D'Souza, Dean; Karmiloff-Smith, Annette
2011-05-01
We argue that models of adult cognition defined in terms of independently functioning modules cannot be applied to development, whether typical or atypical. The infant brain starts out highly interconnected, and it is only over developmental time that neural networks become increasingly specialized-that is, relatively modularized. In the case of atypical development, even when behavioural scores fall within the normal range, they are frequently underpinned by different cognitive and neural processes. In other words, in neurodevelopmental disorders the gradual process of relative modularization may fail to occur.
Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix
2015-01-15
Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.
Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh
2017-09-01
Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Developmental Commonalities between Object and Face Recognition in Adolescence
Jüttner, Martin; Wakui, Elley; Petters, Dean; Davidoff, Jules
2016-01-01
In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains. PMID:27014176
Sanders, Carla; Kleinert, Harold L; Boyd, Sara E; Herren, Chris; Theiss, Lynn; Mink, John
2008-01-01
An interactive, virtual-patient module was produced on compact disc (CD-ROM) in response to the critical need to increase dental students' clinical exposure to patients with developmental disabilities. A content development team consisting of dental faculty members, parents of children with developmental disabilities, an individual with a developmental disability, and educational specialists developed the interactive, virtual-patient module. The module focused on a young man with congenital deafblindness presenting as a new patient with a painful molar. Students were required to make decisions regarding clinical interactions throughout the module. Differences in both comfort and knowledge level were measured pre- and post-module completion, as well as the dental students' overall satisfaction with the learning experience. Significant results were obtained in students' perceived comfort and knowledge base. Participants reported overall satisfaction using the modules. This study demonstrated that an interactive, multi-media (CD-ROM), virtual patient learning module for dental students could be an effective tool in providing students needed clinical exposure to patients with developmental disabilities.
Strategies to identify microRNA targets: New advances
USDA-ARS?s Scientific Manuscript database
MicroRNAs (miRNAs) are small regulatory RNA molecules functioning to modulate gene expression at the post-transcriptional level, and playing an important role in many developmental and physiological processes. Ten thousand miRNAs have been discovered in various organisms. Although considerable progr...
Martins, Torcato; Meghini, Francesco; Florio, Francesca; Kimata, Yuu
2017-01-09
The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Fleisher, Linda; Buzaglo, Joanne; Collins, Michael; Millard, Jennifer; Miller, Suzanne M; Egleston, Brian L; Solarino, Nicholas; Trinastic, Jonathan; Cegala, Donald J; Benson, Al B; Schulman, Kevin A; Weinfurt, Kevin P; Sulmasy, Daniel; Diefenbach, Michael A; Meropol, Neal J
2008-06-01
Although there is broad consensus that careful content vetting and user testing is important in the development of technology-based educational interventions, often these steps are overlooked. This paper highlights the development of a theory-guided, web-based communication aid (CONNECT), designed to facilitate treatment decision-making among patients with advanced cancer. The communication aid included an on-line survey, patient skills training module and an automated physician report. Development steps included: (1) evidence-based content development; (2) usability testing; (3) pilot testing; and (4) patient utilization and satisfaction. Usability testing identified some confusing directions and navigation for the on-line survey and validated the relevance of the "patient testimonials" in the skills module. Preliminary satisfaction from the implementation of the communication aid showed that 66% found the survey length reasonable and 70% found it helpful in talking with the physician. Seventy percent reported the skills module helpful and about half found it affected the consultation. Designing patient education interventions for translation into practice requires the integration of health communication best practice including user feedback along the developmental process. This developmental process can be translated to a broad array of community-based patient and provider educational interventions.
Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir
2017-06-01
Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.
Evolutionary and Developmental Modules
Lacquaniti, Francesco; Ivanenko, Yuri P.; d’Avella, Andrea; Zelik, Karl E.; Zago, Myrka
2013-01-01
The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates. PMID:23730285
Evolutionary and developmental modules.
Lacquaniti, Francesco; Ivanenko, Yuri P; d'Avella, Andrea; Zelik, Karl E; Zago, Myrka
2013-01-01
The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates.
Karmiloff-Smith, Annette; Thomas, Michael; Annaz, Dagmara; Humphreys, Kate; Ewing, Sandra; Brace, Nicola; Duuren, Mike; Pike, Graham; Grice, Sarah; Campbell, Ruth
2004-10-01
Face processing in Williams syndrome (WS) has been a topic of heated debate over the past decade. Initial claims about a normally developing ('intact') face-processing module were challenged by data suggesting that individuals with WS used a different balance of cognitive processes from controls, even when their behavioural scores fell within the normal range. Measurement of evoked brain potentials also point to atypical processes. However, two recent studies have claimed that people with WS process faces exactly like normal controls. In this paper, we examine the details of this continuing debate on the basis of three new face-processing experiments. In particular, for two of our experiments we built task-specific full developmental trajectories from childhood to adolescence/adulthood and plotted the WS data on these trajectories. The first experiment used photos of real faces. While it revealed broadly equivalent accuracy across groups, the WS participants were worse at configural processing when faces were upright and less sensitive than controls to face inversion. In Experiment 2, measuring face processing in a storybook context, the face inversion effect emerged clearly in controls but only weakly in the WS developmental trajectory. Unlike the controls, the Benton Face Recognition Test and the Pattern Construction results were not correlated in WS, highlighting the different developmental patterns in the two groups. Again in contrast to the controls, Experiment 3 with schematic faces and non-face stimuli revealed a configural-processing deficit in WS both with respect to their chronological age (CA) and to their level of performance on the Benton. These findings point to both delay and deviance in WS face processing and illustrate how vital it is to build developmental trajectories for each specific task.
ERIC Educational Resources Information Center
Todd, Valerie J.; McIlroy, David
2014-01-01
There has been considerable criticism of assessment methods because of inconsistencies across modules and a focus on the measurement of learning rather than assessment for learning. The aim of the current study was to formalise the process of assessment feedback to feed-forward, and assess the impact on student learning. A cohort of undergraduate…
Goepfrich, Anja A; Friemel, Chris M; Pauen, Sabina; Schneider, Miriam
2017-06-01
Adolescence and puberty are highly susceptible developmental periods during which the neuronal organization and maturation of the brain is completed. The endocannabinoid (eCB) system, which is well known to modulate cognitive processing, undergoes profound and transient developmental changes during adolescence. With the present study we were aiming to examine the ontogeny of cognitive skills throughout adolescence in male rats and clarify the potential modulatory role of CB1 receptor signalling. Cognitive skills were assessed repeatedly every 10th day in rats throughout adolescence. All animals were tested for object recognition memory and prepulse inhibition of the acoustic startle reflex. Although cognitive performance in short-term memory as well as sensorimotor gating abilities were decreased during puberty compared to adulthood, both tasks were found to show different developmental trajectories throughout adolescence. A low dose of the CB1 receptor antagonist/inverse agonist SR141716 was found to improve recognition memory specifically in pubertal animals while not affecting behavioral performance at other ages tested. The present findings demonstrate that the developmental trajectory of cognitive abilities does not occur linearly for all cognitive processes and is strongly influenced by pubertal maturation. Developmental alterations within the eCB system at puberty onset may be involved in these changes in cognitive processing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions
Nascimento, Francisco X.; Rossi, Márcio J.; Glick, Bernard R.
2018-01-01
Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection. PMID:29520283
De Vos, Astrid; Vanvooren, Sophie; Vanderauwera, Jolijn; Ghesquière, Pol; Wouters, Jan
2017-08-01
Recent evidence suggests that a fundamental deficit in the synchronization of neural oscillations to temporal information in speech may underlie phonological processing problems in dyslexia. Since previous studies were performed cross-sectionally in school-aged children or adults, developmental aspects of neural auditory processing in relation to reading acquisition and dyslexia remain to be investigated. The present longitudinal study followed 68 children during development from pre-reader (5 years old) to beginning reader (7 years old) and more advanced reader (9 years old). Thirty-six children had a family risk for dyslexia and 14 children eventually developed dyslexia. EEG recordings of auditory steady-state responses to 4 and 20 Hz modulations, corresponding to syllable and phoneme rates, were collected at each point in time. Our results demonstrate an increase in neural synchronization to phoneme-rate modulations around the onset of reading acquisition. This effect was negatively correlated with later reading and phonological skills, indicating that children who exhibit the largest increase in neural synchronization to phoneme rates, develop the poorest reading and phonological skills. Accordingly, neural synchronization to phoneme-rate modulations was found to be significantly higher in beginning and more advanced readers with dyslexia. We found no developmental effects regarding neural synchronization to syllable rates, nor any effects of a family risk for dyslexia. Altogether, our findings suggest that the onset of reading instruction coincides with an increase in neural responsiveness to phoneme-rate modulations, and that the extent of this increase is related to (the outcome of) reading development. Hereby, dyslexic children persistently demonstrate atypically high neural synchronization to phoneme rates from the beginning of reading acquisition onwards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Hong; Li, Yu; Liang, Meng; Guan, Connie Qun; Zhang, Linjun; Shu, Hua; Zhang, Yang
2017-01-01
The goal of this developmental speech perception study was to assess whether and how age group modulated the influences of high-level semantic context and low-level fundamental frequency ( F 0 ) contours on the recognition of Mandarin speech by elementary and middle-school-aged children in quiet and interference backgrounds. The results revealed different patterns for semantic and F 0 information. One the one hand, age group modulated significantly the use of F 0 contours, indicating that elementary school children relied more on natural F 0 contours than middle school children during Mandarin speech recognition. On the other hand, there was no significant modulation effect of age group on semantic context, indicating that children of both age groups used semantic context to assist speech recognition to a similar extent. Furthermore, the significant modulation effect of age group on the interaction between F 0 contours and semantic context revealed that younger children could not make better use of semantic context in recognizing speech with flat F 0 contours compared with natural F 0 contours, while older children could benefit from semantic context even when natural F 0 contours were altered, thus confirming the important role of F 0 contours in Mandarin speech recognition by elementary school children. The developmental changes in the effects of high-level semantic and low-level F 0 information on speech recognition might reflect the differences in auditory and cognitive resources associated with processing of the two types of information in speech perception.
Wnt affects symmetry and morphogenesis during post-embryonic development in colonial chordates.
Di Maio, Alessandro; Setar, Leah; Tiozzo, Stefano; De Tomaso, Anthony W
2015-01-01
Wnt signaling is one of the earliest and most highly conserved regulatory pathways for the establishment of the body axes during regeneration and early development. In regeneration, body axes determination occurs independently of tissue rearrangement and early developmental cues. Modulation of the Wnt signaling in either process has shown to result in unusual body axis phenotypes. Botryllus schlosseri is a colonial ascidian that can regenerate its entire body through asexual budding. This processes leads to an adult body via a stereotypical developmental pathway (called blastogenesis), without proceeding through any embryonic developmental stages. In this study, we describe the role of the canonical Wnt pathway during the early stages of asexual development. We characterized expression of three Wnt ligands (Wnt2B, Wnt5A, and Wnt9A) by in situ hybridization and qRT-PCR. Chemical manipulation of the pathway resulted in atypical budding due to the duplication of the A/P axes, supernumerary budding, and loss of the overall cell apical-basal polarity. Our results suggest that Wnt signaling is used for equivalent developmental processes both during embryogenesis and asexual development in an adult organism, suggesting that patterning mechanisms driving morphogenesis are conserved, independent of embryonic, or regenerative development.
Methanol and ethanol modulate responses to danger- and microbe-associated molecular patterns
USDA-ARS?s Scientific Manuscript database
Methanol is a byproduct of cell wall modification, released through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play not only a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. Mol...
Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila
USDA-ARS?s Scientific Manuscript database
Neuropeptides are ubiquitous in both mammals and invertebrates and play essential roles in regulation and modulation of many developmental and physiological processes through activation of G-protein-coupled-receptors (GPCRs). However, the mechanisms by which many of the neuropeptides regulate speci...
Goswami, Usha; Cumming, Ruth; Chait, Maria; Huss, Martina; Mead, Natasha; Wilson, Angela M.; Barnes, Lisa; Fosker, Tim
2016-01-01
Here we use two filtered speech tasks to investigate children’s processing of slow (<4 Hz) versus faster (∼33 Hz) temporal modulations in speech. We compare groups of children with either developmental dyslexia (Experiment 1) or speech and language impairments (SLIs, Experiment 2) to groups of typically-developing (TD) children age-matched to each disorder group. Ten nursery rhymes were filtered so that their modulation frequencies were either low-pass filtered (<4 Hz) or band-pass filtered (22 – 40 Hz). Recognition of the filtered nursery rhymes was tested in a picture recognition multiple choice paradigm. Children with dyslexia aged 10 years showed equivalent recognition overall to TD controls for both the low-pass and band-pass filtered stimuli, but showed significantly impaired acoustic learning during the experiment from low-pass filtered targets. Children with oral SLIs aged 9 years showed significantly poorer recognition of band pass filtered targets compared to their TD controls, and showed comparable acoustic learning effects to TD children during the experiment. The SLI samples were also divided into children with and without phonological difficulties. The children with both SLI and phonological difficulties were impaired in recognizing both kinds of filtered speech. These data are suggestive of impaired temporal sampling of the speech signal at different modulation rates by children with different kinds of developmental language disorder. Both SLI and dyslexic samples showed impaired discrimination of amplitude rise times. Implications of these findings for a temporal sampling framework for understanding developmental language disorders are discussed. PMID:27303348
Fleisher, Linda; Buzaglo, Joanne; Collins, Michael; Millard, Jennifer; Miller, Suzanne M.; Egleston, Brian L.; Solarino, Nicholas; Trinastic, Jonathan; Cegala, Donald J.; Benson, Al B.; Schulman, Kevin A.; Weinfurt, Kevin P.; Sulmasy, Daniel; Diefenbach, Michael A.; Meropol, Neal J.
2008-01-01
Objective Although there is broad consensus that careful content vetting and user testing is important in the development of technology-based educational interventions, often these steps are overlooked. This paper highlights the development of a theory-guided, web-based communication aid (CONNECT™), designed to facilitate treatment decision making among patients with advanced cancer. Methods The communication aid included an online survey, patient skills training module and an automated physician report. Development steps included: 1) evidence-based content development, 2) usability testing, 3) pilot testing, and 4) patient utilization and satisfaction. Results Usability testing identified some confusing directions and navigation for the on-line survey and validated the relevance of the “patient testimonials” in the skills module. Preliminary satisfaction from the implementation of the communication aid showed that 66% found the survey length reasonable and 70% found it helpful in talking with the physician. Seventy percent reported the skills module helpful and about half found it affected the consultation. Conclusion Designing patient education interventions for translation into practice requires the integration of health communication best practice including user feedback along the developmental process. Practice Implications This developmental process can be translated to a broad array of community based patient and provider educational interventions. PMID:18417312
Attentional networks in developmental dyscalculia
2010-01-01
Background Very little is known about attention deficits in developmental dyscalculia, hence, this study was designed to provide the missing information. We examined attention abilities of participants suffering from developmental dyscalculia using the attention networks test - interactions. This test was designed to examine three different attention networks--executive function, orienting and alerting--and the interactions between them. Methods Fourteen university students that were diagnosed as suffering from developmental dyscalculia--intelligence and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder--and 14 matched controls were tested using the attention networks test - interactions. All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence. Results The results revealed deficits in the alerting network--a larger alerting effect--and in the executive function networks--a larger congruity effect in developmental dyscalculia participants. The interaction between the alerting and executive function networks was also modulated by group. In addition, developmental dyscalculia participants were slower to respond in the non-cued conditions. Conclusions These results imply specific attentional deficits in pure developmental dyscalculia. Namely, those with developmental dyscalculia seem to be deficient in the executive function and alertness networks. They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing. PMID:20157427
Attentional networks in developmental dyscalculia.
Askenazi, Sarit; Henik, Avishai
2010-01-07
Very little is known about attention deficits in developmental dyscalculia, hence, this study was designed to provide the missing information. We examined attention abilities of participants suffering from developmental dyscalculia using the attention networks test - interactions. This test was designed to examine three different attention networks--executive function, orienting and alerting--and the interactions between them. Fourteen university students that were diagnosed as suffering from developmental dyscalculia--intelligence and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder--and 14 matched controls were tested using the attention networks test-interactions. All participants were given preliminary tests to measure mathematical abilities, reading, attention and intelligence. The results revealed deficits in the alerting network--a larger alerting effect--and in the executive function networks--a larger congruity effect in developmental dyscalculia participants. The interaction between the alerting and executive function networks was also modulated by group. In addition, developmental dyscalculia participants were slower to respond in the non-cued conditions. These results imply specific attentional deficits in pure developmental dyscalculia. Namely, those with developmental dyscalculia seem to be deficient in the executive function and alertness networks. They suffer from difficulty in recruiting attention, in addition to the deficits in numerical processing.
Esteve-Altava, Borja; Rasskin-Gutman, Diego
2015-07-20
Bone fusion has occurred repeatedly during skull evolution in all tetrapod lineages, leading to a reduction in the number of bones and an increase in their morphological complexity. The ontogeny of the human skull includes also bone fusions as part of its normal developmental process. However, several disruptions might cause premature closure of cranial sutures (craniosynostosis), reducing the number of bones and producing new skull growth patterns that causes shape changes. Here, we compare skull network models of a normal newborn with different craniosynostosis conditions, the normal adult stage, and phylogenetically reconstructed forms of a primitive tetrapod, a synapsid, and a placental mammal. Changes in morphological complexity of newborn-to-synostosed skulls are two to three times less than in newborn-to-adult; and even smaller when we compare them to the increases among the reconstructed ancestors in the evolutionary transitions. In addition, normal, synostosed, and adult human skulls show the same connectivity modules: facial and cranial. Differences arise in the internal structure of these modules. In the adult skull the facial module has an internal hierarchical organization, whereas the cranial module has a regular network organization. However, all newborn forms, normal and synostosed, do not reach such kind of internal organization. We conclude that the subtle changes in skull complexity at the developmental scale can change the modular substructure of the newborn skull to more integrated modules in the adult skull, but is not enough to generate radical changes as it occurs at a macroevolutionary scale. The timing of closure of craniofacial sutures, together with the conserved patterns of morphological modularity, highlights a potential relation between the premature fusion of bones and the evolution of the shape of the skull in hominids.
Haist, Frank; Adamo, Maha; Han, Jarnet; Lee, Kang; Stiles, Joan
2013-01-01
Expertise in processing faces is a cornerstone of human social interaction. However, the developmental course of many key brain regions supporting face preferential processing in the human brain remains undefined. Here, we present findings from an FMRI study using a simple viewing paradigm of faces and objects in a continuous age sample covering the age range from 6 years through adulthood. These findings are the first to use such a sample paired with whole-brain FMRI analyses to investigate development within the core and extended face networks across the developmental spectrum from middle childhood to adulthood. We found evidence, albeit modest, for a developmental trend in the volume of the right fusiform face area (rFFA) but no developmental change in the intensity of activation. From a spatial perspective, the middle portion of the right fusiform gyrus most commonly found in adult studies of face processing was increasingly likely to be included in the FFA as age increased to adulthood. Outside of the FFA, the most striking finding was that children hyperactivated nearly every aspect of the extended face system relative to adults, including the amygdala, anterior temporal pole, insula, inferior frontal gyrus, anterior cingulate gyrus, and parietal cortex. Overall, the findings suggest that development is best characterized by increasing modulation of face-sensitive regions throughout the brain to engage only those systems necessary for task requirements. PMID:23948645
Kaunhoven, Rebekah Jane; Dorjee, Dusana
2017-03-01
Pre-adolescence is a key developmental period in which complex intrinsic volitional methods of self-regulation are acquired as a result of rapid maturation within the brain networks underlying the self-regulatory processes of attention control and emotion regulation. Fostering adaptive self-regulation skills during this stage of development has strong implications for physical health, emotional and socio-economic outcomes during adulthood. There is a growing interest in mindfulness-based programmes for pre-adolescents with initial findings suggesting self-regulation improvements, however, neurodevelopmental studies on mindfulness with pre-adolescents are scarce. This analytical review outlines an integrative neuro-developmental approach, which combines self-report and behavioural assessments with event related brain potentials (ERPs) to provide a systemic multilevel understanding of the neurocognitive mechanisms of mindfulness in pre-adolescence. We specifically focus on the N2, error related negativity (ERN), error positivity (Pe), P3a, P3b and late positive potential (LPP) ERP components as indexes of mindfulness related modulations in non-volitional bottom-up self-regulatory processes (salience detection, stimulus driven orienting and mind wandering) and volitional top-down self-regulatory processes (endogenous orienting and executive attention). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Ku, Hsiao-Yun; Huang, Yu-Fei; Chao, Pei-Hsuan; Huang, Chiung-Chun; Hsu, Kuei-Sen
2008-11-01
Activity-dependent alterations of synaptic efficacy or connectivity are essential for the development, signal processing, and learning and memory functions of the nervous system. It was observed that, in particular in the CA1 region of the hippocampus, low-frequency stimulation (LFS) became progressively less effective at inducing long-term depression (LTD) with advancing developmental age. The physiological factors regulating this developmental plasticity change, however, have not yet been elucidated. Here we examined the hypothesis that neonatal isolation (once per day for 1 h from postnatal days 1-7) is able to alter processes underlying the developmental decline of LTD. We confirm that the magnitude of LTD induced by LFS (900 stimuli at 1 Hz) protocol correlates negatively with developmental age and illustrates that neonatal isolation delays this developmental decline via the activation of corticotrophin-releasing factor (CRF) system. Furthermore, this modulation appears to be mediated by an increased transcription of N-methyl-D-aspartate receptor NR2B subunits. We also demonstrate that intracerebroventricular injection of CRF postnatally mimicked the effect of neonatal isolation to increase the expression of NR2B subunits and delayed the developmental decline of LTD, which was specifically blocked by CRF receptor 1 antagonist NBI27914 pretreatment. These results suggest a novel role for CRF in regulating developmental events in the hippocampus and indicate that although maternal deprivation is stressful for neonate, appropriate neonatal isolation can serve to promote an endocrine state that may regulate the gradual developmental change in the induction rules for synaptic plasticity in the hippocampal CA1 region.
Colzato, Lorenza S.; van Muijden, Jesse; Band, Guido P. H.; Hommel, Bernhard
2011-01-01
Western society has an increasing proportion of older adults. Increasing age is associated with a general decrease in the control over task-relevant mental processes. In the present study we investigated the possibility that successful transfer of game-based cognitive improvements to untrained tasks in elderly people is modulated by preexisting neuro-developmental factors as genetic variability related to levels of the brain-derived neurotrophic factor (BDNF), an important neuromodulator underlying cognitive processes. We trained participants, genotyped for the BDNF Val66Met polymorphism, on cognitive tasks developed to improve dynamic attention. Pre-training (baseline) and post-training measures of attentional processes (divided and selective attention) were acquired by means of the useful field of view task. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects. PMID:21909331
Schiele, Miriam A; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen; Pauli, Paul
2016-05-01
Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc.
An epigenetic view of developmental diseases: new targets, new therapies.
Xie, Pei; Zang, Li-Qun; Li, Xue-Kun; Shu, Qiang
2016-08-01
Function of epigenetic modifications is one of the most competitive fields in life science. Over the past several decades, it has been revealed that epigenetic modifications play essential roles in development and diseases including developmental diseases. In the present review, we summarize the recent progress about the function of epigenetic regulation, especially DNA and RNA modifications in developmental diseases. Original research articles and literature reviews published in PubMed-indexed journals. DNA modifications including methylation and demethylation can regulate gene expression, and are involved in development and multiple diseases including Rett syndrome, Autism spectrum disorders, congenital heart disease and cancer, etc. RNA methylation and demethylation play important roles in RNA processing, reprogramming, circadian, and neuronal activity, and then modulate development. DNA and RNA modifications play important roles in development and diseases through regulating gene expression. Epigenetic components could serve as novel targets for the treatment of developmental diseases.
Savill, Nicola J; Thierry, Guillaume
2012-06-01
Whilst there is general consensus that phonological processing is deficient in developmental dyslexia, recent research also implicates visuo-attentional contributions. Capitalising on the P3a wave of event-related potentials as an index of attentional capture, we tested dyslexic and normal readers on a novel variant of a visual oddball task to examine the interplay of orthographic-phonological integration and attentional engagement. Targets were animal words (10% occurrence). Amongst nontarget stimuli were two critical conditions: pseudohomophones of targets (10%) and control pseudohomophones (of fillers; 10%). Pseudohomophones of targets (but not control pseudohomophones) elicited a large P3 wave in normal readers only, revealing a lack of attentional engagement with these phonologically salient stimuli in dyslexic participants. Critically, both groups showed similar early phonological discrimination as indexed by posterior P2 modulations. Furthermore, phonological engagement, as indexed by P3a differences between pseudohomophone conditions, correlated with several measures of reading. Meanwhile, an analogous experiment using coloured shapes instead of orthographic stimuli failed to show group differences between experimental modulations in the P2 or P3 ranges. Overall, our results show that, whilst automatic aspects of phonological processing appear intact in developmental dyslexia, the breakdown in pseudoword reading occurs at a later stage, when attention is oriented to orthographic-phonological information. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Gamma band activity (30-50 Hz) is a significant EEG component related to intelligence, memory and language processes, but there is limited information regarding the early development of this activity and none considering how infant diet may influence this development. The present study examined chan...
Progressive Modularization: Reframing Our Understanding of Typical and Atypical Language Development
ERIC Educational Resources Information Center
D'Souza, Dean; Filippi, Roberto
2017-01-01
The ability to acquire language is a critical part of human development. Yet there is no consensus on how the skill emerges in early development. Does it constitute an innately-specified, language-processing module or is it acquired progressively? One of Annette Karmiloff-Smith's (1938-2016) key contributions to developmental science addresses…
A test for patterns of modularity in sequences of developmental events.
Poe, Steven
2004-08-01
This study presents a statistical test for modularity in the context of relative timing of developmental events. The test assesses whether sets of developmental events show special phylogenetic conservation of rank order. The test statistic is the correlation coefficient of developmental ranks of the N events of the hypothesized module across taxa. The null distribution is obtained by taking correlation coefficients for randomly sampled sets of N events. This test was applied to two datasets, including one where phylogenetic information was taken into account. The events of limb development in two frog species were found to behave as a module.
Cartocci, Veronica; Segatto, Marco; Di Tunno, Ilenia; Leone, Stefano; Pfrieger, Frank W; Pallottini, Valentina
2016-09-01
During differentiation, neurons acquire their typical shape and functional properties. At present, it is unclear, whether this important developmental step involves metabolic changes. Here, we studied the contribution of the mevalonate (MVA) pathway to neuronal differentiation using the mouse neuroblastoma cell line N1E-115 as experimental model. Our results show that during differentiation, the activity of 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMGR), a key enzyme of MVA pathway, and the level of Low Density Lipoprotein receptor (LDLr) decrease, whereas the level of LDLr-related protein-1 (LRP1) and the dimerization of Scavanger Receptor B1 (SRB-1) rise. Pharmacologic inhibition of HMGR by simvastatin accelerated neuronal differentiation by modulating geranylated proteins. Collectively, our data suggest that during neuronal differentiation, the activity of the MVA pathway decreases and we postulate that any interference with this process impacts neuronal morphology and function. Therefore, the MVA pathway appears as an attractive pharmacological target to modulate neurological and metabolic symptoms of developmental neuropathologies. J. Cell. Biochem. 117: 2036-2044, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Hoehn, Alexander; Gomez, Shawn; Luttges, Marvin W.
1992-01-01
The evolutionarily-developed Lunar Controlled Ecological Life Support System (CELSS) Test Module presented can address questions concerning long-term human presence-related issues both at LEO and in the lunar environment. By achieving well-defined research goals at each of numerous developmental stages (each economically modest), easily justifiable operations can be undertaken. Attention is given to the possibility of maximizing non-NASA involvement in these CELSS developmental efforts via the careful definability and modest risk of each developmental stage.
Molecular and Chemical Genetic Approaches to Developmental Origins of Aging and Disease in Zebrafish
Sasaki, Tomoyuki; Kishi, Shuji
2013-01-01
The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. PMID:23660559
Courtship song preferences in female zebra finches are shaped by developmental auditory experience.
Chen, Yining; Clark, Oliver; Woolley, Sarah C
2017-05-31
The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance. © 2017 The Author(s).
Sleep and Circadian Contributions to Adolescent Alcohol Use Disorder
Hasler, Brant P.; Soehner, Adriane M.; Clark, Duncan B.
2014-01-01
Adolescence is a time of marked changes across sleep, circadian rhythms, brain function, and alcohol use. Starting at puberty, adolescents’ endogenous circadian rhythms and preferred sleep times shift later, often leading to a mismatch with the schedules imposed by secondary education. This mismatch induces circadian misalignment and sleep loss, which have been associated with affect dysregulation, increased drug and alcohol use, and other risk-taking behaviors in adolescents and adults. In parallel to developmental changes in sleep, adolescent brains are undergoing structural and functional changes in the circuits subserving the pursuit and processing of rewards. These developmental changes in reward processing likely contribute to the initiation of alcohol use during adolescence. Abundant evidence indicates that sleep and circadian rhythms modulate reward function, suggesting that adolescent sleep and circadian disturbance may contribute to altered reward function, and in turn, alcohol involvement. In this review, we summarize the relevant evidence and propose that these parallel developmental changes in sleep, circadian rhythms, and neural processing of reward interact to increase risk for alcohol use disorder (AUD). PMID:25442171
Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration
Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.
2012-01-01
Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429
Materials and Process Activities for NASA's Composite Crew Module
NASA Technical Reports Server (NTRS)
Polis, Daniel L.
2012-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). The overall goal of the CCM project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project s baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. The materials and process activities were prioritized based on a rapid prototype approach. This approach focused developmental activities on design details with greater risk and uncertainty, such as out-of-autoclave joining, over some of the more traditional lamina and laminate building block levels. While process development and associated building block testing were performed, several anomalies were still observed at the full-scale level due to interactions between process robustness and manufacturing scale-up. This paper describes the process anomalies that were encountered during the CCM development and the subsequent root cause investigations that led to the final design solutions. These investigations highlight the importance of full-scale developmental work early in the schedule of a complex composite design/build project.
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Core Information Processing Deficits in Developmental Dyscalculia and Low Numeracy
ERIC Educational Resources Information Center
Iuculano, Teresa; Tang, Joey; Hall, Charles W. B.; Butterworth, Brian
2008-01-01
There are two different conceptions of the innate basis for numerical abilities. On the one hand, it is claimed that infants possess a "number module" that enables them to construct concepts of the exact numerosities of sets upon which arithmetic develops (e.g. Butterworth, 1999 ; Gelman & Gallistel, 1978). On the other hand, it has been proposed…
ERIC Educational Resources Information Center
Lee, Courtland C.
This series of five interrelated modules is an update and revision of "Saving the Native Son: Empowerment Strategies for Young Black Males (1996)." It offers specific strategies for empowering young African American males to help them achieve optimal educational and social success. Empowerment is a developmental process by which people who are…
ERIC Educational Resources Information Center
Jednorog, K.; Marchewka, A.; Tacikowski, P.; Grabowska, A.
2010-01-01
Dyslexia is characterized by a core phonological deficit, although recent studies indicate that semantic impairment also contributes to this condition. In this study, event-related potentials (ERP) were used to examine whether the N400 wave in dyslexic children is modulated by phonological or semantic priming, similarly to age-matched controls.…
Kleinert, Harold L; Sanders, Carla; Mink, John; Nash, David; Johnson, Jeff; Boyd, Sara; Challman, Sandra
2007-02-01
An interactive, multimedia, virtual patient module was designed and developed on compact disc (CD-ROM) to address the need for student dentists to increase their competence and decrease their perception of difficulty in caring for children with developmental disabilities. A development team consisting of pediatric dentistry faculty members, parents of children with developmental disabilities, an individual with a developmental disability, and educational specialists developed an interactive virtual patient case. The case involved a ten-year-old child with Down syndrome presenting with a painful tooth. Student dentists were required to make decisions regarding proper interactions with the child, as well as appropriate clinical procedures throughout the case. Differences in perceived difficulty level and knowledge change were measured, as well as the student dentists' overall satisfaction with the learning experience. Significant results were obtained in both perceived difficulty level and knowledge-based measures for student dentists. Participants reported overall satisfaction with the modules. Preparing student dentists to provide sensitive and competent care for children with developmental disabilities is a critical need within dentistry. This study demonstrated that an interactive, multimedia (CD-ROM), virtual patient learning module for student dentists is potentially an effective tool in meeting this need.
2017-01-01
Background EDUCERE (“Ubiquitous Detection Ecosystem to Care and Early Stimulation for Children with Developmental Disorders”) is an ecosystem for ubiquitous detection, care, and early stimulation of children with developmental disorders. The objectives of this Spanish government-funded research and development project are to investigate, develop, and evaluate innovative solutions to detect changes in psychomotor development through the natural interaction of children with toys and everyday objects, and perform stimulation and early attention activities in real environments such as home and school. Thirty multidisciplinary professionals and three nursery schools worked in the EDUCERE project between 2014 and 2017 and they obtained satisfactory results. Related to EDUCERE, we found studies based on providing networks of connected smart objects and the interaction between toys and social networks. Objective This research includes the design, implementation, and validation of an EDUCERE smart toy aimed to automatically detect delays in psychomotor development. The results from initial tests led to enhancing the effectiveness of the original design and deployment. The smart toy, based on stackable cubes, has a data collector module and a smart system for detection of developmental delays, called the EDUCERE developmental delay screening system (DDSS). Methods The pilot study involved 65 toddlers aged between 23 and 37 months (mean=29.02, SD 3.81) who built a tower with five stackable cubes, designed by following the EDUCERE smart toy model. As toddlers made the tower, sensors in the cubes sent data to a collector module through a wireless connection. All trials were video-recorded for further analysis by child development experts. After watching the videos, experts scored the performance of the trials to compare and fine-tune the interpretation of the data automatically gathered by the toy-embedded sensors. Results Judges were highly reliable in an interrater agreement analysis (intraclass correlation 0.961, 95% CI 0.937-0.967), suggesting that the process was successful to separate different levels of performance. A factor analysis of collected data showed that three factors, trembling, speed, and accuracy, accounted for 76.79% of the total variance, but only two of them were predictors of performance in a regression analysis: accuracy (P=.001) and speed (P=.002). The other factor, trembling (P=.79), did not have a significant effect on this dependent variable. Conclusions The EDUCERE DDSS is ready to use the regression equation obtained for the dependent variable “performance” as an algorithm for the automatic detection of psychomotor developmental delays. The results of the factor analysis are valuable to simplify the design of the smart toy by taking into account only the significant variables in the collector module. The fine-tuning of the toy process module will be carried out by following the specifications resulting from the analysis of the data to improve the efficiency and effectiveness of the product. PMID:28526666
Development of REM sleep drive and clinical implications
Kobayashi, T.; Good, C.; Mamiya, K.; Skinner, R.D.; Garcia-Rill, E.
2015-01-01
REM sleep in the human declines from about 50% of total sleep time (~8 hours) in the newborn to about 15% of total sleep time (~1 hour) in the adult, and this decrease takes place mainly between birth and the end of puberty. We hypothesize that, if this developmental decrease in REM drive does not occur, lifelong increases in REM sleep drive may ensue. In the rat, the developmental decrease in REM sleep occurs between 10 and 30 days after birth, declining from over 70% of total sleep time in the newborn to the adult level of about 15% of sleep time during this period. Rats aged 12–21 days were anaesthetized with Ketamine, decapitated and brainstem slices cut for intracellular recordings. We found that excitatory responses of pedunculopontine nucleus (PPN) neurons to NMDA decrease, while responses to kainic acid increase, over this critical period. Serotonergic type 1 agonists have increasing inhibitory responses, while serotonergic type 2 agonists do not change, during this developmental period. The results suggest that, as PPN neurons develop, they are increasingly activated by kainic acid and increasingly inhibited by serotonergic type 1 receptors. These processes may be related to the developmental decrease in REM sleep. Developmental disturbances in each of these systems could induce differential increases in REM sleep drive, accounting for the post-pubertal onset of a number of different disorders manifesting increases in REM sleep drive. Examination of modulation by PPN projections to ascending and descending targets revealed the presence of common signals modulating both ascending arousal-related functions and descending postural/locomotor-related functions. PMID:14527968
HnRNP-like proteins as post-transcriptional regulators.
Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling
2014-10-01
Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Schiele, Miriam A.; Reinhard, Julia; Reif, Andreas; Domschke, Katharina; Romanos, Marcel; Deckert, Jürgen
2016-01-01
ABSTRACT Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues. © 2016 The Authors. Developmental Psychobiology Published by Wiley Periodicals, Inc. Dev Psychobiol 58: 471–481, 2016. PMID:26798984
Endocytosis and Signaling during Development
Bökel, Christian
2014-01-01
The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling. PMID:24591521
[Polish version of the ADOS (autism diagnostic observation schedule-generic)].
Chojnicka, Izabela; Płoski, Rafał
2012-01-01
The article presents the Polish version of the autism diagnostic observation schedule-generic (ADOS), which together with the autism diagnostic interview-revised (ADI-R) is cited as the "gold standard" for the diagnosis of autism. The ADOS is a standardised, semistructured observation protocol appropriate for children and adults of differing age and language levels. It is linked to ICD-10 and DSM-IV-TR criteria. The ADOS consists of four modules, ranging from module 1 for nonverbal individuals to module 4 for verbally fluent adults. The adequate inter-rater reliability for items has been established. The protocol has high discriminant validity and distinguishes children with pervasive developmental disorders from children, who are outside of the spectrum. Although it does not enable to distinguish individuals with pervasive developmental disorder, unspecified from individuals with childhood autism. The paper presents subsequent steps of the translation process of the original version into Polish, as well as a chosen adaptation strategy of the Polish version. The ADOS is a very useful tool both for clinical diagnosis and for the scientific purpose diagnosis. In this last case it is extremely important to use a standardised method. Until now, there was no standardised diagnostic tool for autism in Poland.
Pérez-Claros, Juan Antonio; Jiménez-Arenas, Juan Manuel; Palmqvist, Paul
2015-01-01
The relative importance of the two main cranial complexes, the neurocranium and the splanchnocranium, has been examined in the five species of extant hominoids and in a huge sample of extinct hominins using six standard craniometric variables that measure the length, width and height of each cranial module. Factor analysis and two-block partial least squares were used for establishing the major patterns of developmental and evolutionary integration between both cranial modules. The results obtained show that all extant hominoids (including the anatomically modern humans) share a conserved pattern of developmental integration, a result that agrees with previous studies. The pattern of evolutionary integration between both cranial modules in australopiths runs in parallel to developmental integration. In contrast, the pattern of evolutionary and developmental integration of the species of the genus Homo is the opposite, which is probably the consequence of distinctive selective regimes for both hominin groups. PMID:26177535
Pérez-Claros, Juan Antonio; Jiménez-Arenas, Juan Manuel; Palmqvist, Paul
2015-01-01
The relative importance of the two main cranial complexes, the neurocranium and the splanchnocranium, has been examined in the five species of extant hominoids and in a huge sample of extinct hominins using six standard craniometric variables that measure the length, width and height of each cranial module. Factor analysis and two-block partial least squares were used for establishing the major patterns of developmental and evolutionary integration between both cranial modules. The results obtained show that all extant hominoids (including the anatomically modern humans) share a conserved pattern of developmental integration, a result that agrees with previous studies. The pattern of evolutionary integration between both cranial modules in australopiths runs in parallel to developmental integration. In contrast, the pattern of evolutionary and developmental integration of the species of the genus Homo is the opposite, which is probably the consequence of distinctive selective regimes for both hominin groups.
What has fMRI told us about the Development of Cognitive Control through Adolescence?
Luna, Beatriz; Padmanabhan, Aarthi; O’Hearn, Kirsten
2009-01-01
Cognitive control, the ability to voluntarily guide our behavior, continues to improve throughout adolescence. Below we review the literature on age-related changes in brain function related to response inhibition and working memory, which support cognitive control. Findings from studies using functional magnetic imaging (fMRI) indicate that processing errors, sustaining a cognitive control state, and reaching adult levels of precision, persist through adolescence. Developmental changes in patterns of brain function suggest that core regions of the circuitry underlying cognitive control are on-line early in development. However, age-related changes in localized processes across the brain and in establishing long range connections that support top-down modulation of behavior may support more effective neural processing for optimal mature executive function. While great progress has been made in understanding the age-related changes in brain processes underlying cognitive development, there are still important challenges in developmental neuroimaging methods and the interpretation of data that need to be addressed. PMID:19765880
Image processing and recognition for biological images.
Uchida, Seiichi
2013-05-01
This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
The impact of transposable elements on mammalian development
Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.
2018-01-01
Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251
Developmental Bisphenol A Exposure Modulates Immune-Related Diseases
Xu, Joella; Huang, Guannan; Guo, Tai L.
2016-01-01
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427
Developmental Bisphenol A Exposure Modulates Immune-Related Diseases.
Xu, Joella; Huang, Guannan; Guo, Tai L
2016-09-26
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.
Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences
Basson, M. Albert; Wingate, Richard J.
2013-01-01
Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function. PMID:24027500
Chen, Dongqin; Xu, Gang; Tang, Weijiang; Jing, Yanjun; Ji, Qiang; Fei, Zhangjun; Lin, Rongcheng
2013-01-01
The critical developmental switch from heterotrophic to autotrophic growth of plants involves light signaling transduction and the production of reactive oxygen species (ROS). ROS function as signaling molecules that regulate multiple developmental processes, including cell death. However, the relationship between light and ROS signaling remains unclear. Here, we identify transcriptional modules composed of the basic helix-loop-helix and bZIP transcription factors PHYTOCHROME-INTERACTING FACTOR1 (PIF1), PIF3, ELONGATED HYPOCOTYL5 (HY5), and HY5 HOMOLOGY (HYH) that bridge light and ROS signaling to regulate cell death and photooxidative response. We show that pif mutants release more singlet oxygen and exhibit more extensive cell death than the wild type during Arabidopsis thaliana deetiolation. Genome-wide expression profiling indicates that PIF1 represses numerous ROS and stress-related genes. Molecular and biochemical analyses reveal that PIF1/PIF3 and HY5/HYH physically interact and coordinately regulate the expression of five ROS-responsive genes by directly binding to their promoters. Furthermore, PIF1/PIF3 and HY5/HYH function antagonistically during the seedling greening process. In addition, phytochromes, cryptochromes, and CONSTITUTIVE PHOTOMORPHOGENIC1 act upstream to regulate ROS signaling. Together, this study reveals that the PIF1/PIF3-HY5/HYH transcriptional modules mediate crosstalk between light and ROS signaling and sheds light on a new mechanism by which plants adapt to the light environments. PMID:23645630
ERIC Educational Resources Information Center
Hoehl, Stefanie; Reid, Vincent M.; Parise, Eugenio; Handl, Andrea; Palumbo, Letizia; Striano, Tricia
2009-01-01
The importance of eye gaze as a means of communication is indisputable. However, there is debate about whether there is a dedicated neural module, which functions as an eye gaze detector and when infants are able to use eye gaze cues in a referential way. The application of neuroscience methodologies to developmental psychology has provided new…
Gutiérrez García, María Angeles; Martín Ruiz, María Luisa; Rivera, Diego; Vadillo, Laura; Valero Duboy, Miguel Angel
2017-05-19
EDUCERE ("Ubiquitous Detection Ecosystem to Care and Early Stimulation for Children with Developmental Disorders") is an ecosystem for ubiquitous detection, care, and early stimulation of children with developmental disorders. The objectives of this Spanish government-funded research and development project are to investigate, develop, and evaluate innovative solutions to detect changes in psychomotor development through the natural interaction of children with toys and everyday objects, and perform stimulation and early attention activities in real environments such as home and school. Thirty multidisciplinary professionals and three nursery schools worked in the EDUCERE project between 2014 and 2017 and they obtained satisfactory results. Related to EDUCERE, we found studies based on providing networks of connected smart objects and the interaction between toys and social networks. This research includes the design, implementation, and validation of an EDUCERE smart toy aimed to automatically detect delays in psychomotor development. The results from initial tests led to enhancing the effectiveness of the original design and deployment. The smart toy, based on stackable cubes, has a data collector module and a smart system for detection of developmental delays, called the EDUCERE developmental delay screening system (DDSS). The pilot study involved 65 toddlers aged between 23 and 37 months (mean=29.02, SD 3.81) who built a tower with five stackable cubes, designed by following the EDUCERE smart toy model. As toddlers made the tower, sensors in the cubes sent data to a collector module through a wireless connection. All trials were video-recorded for further analysis by child development experts. After watching the videos, experts scored the performance of the trials to compare and fine-tune the interpretation of the data automatically gathered by the toy-embedded sensors. Judges were highly reliable in an interrater agreement analysis (intraclass correlation 0.961, 95% CI 0.937-0.967), suggesting that the process was successful to separate different levels of performance. A factor analysis of collected data showed that three factors, trembling, speed, and accuracy, accounted for 76.79% of the total variance, but only two of them were predictors of performance in a regression analysis: accuracy (P=.001) and speed (P=.002). The other factor, trembling (P=.79), did not have a significant effect on this dependent variable. The EDUCERE DDSS is ready to use the regression equation obtained for the dependent variable "performance" as an algorithm for the automatic detection of psychomotor developmental delays. The results of the factor analysis are valuable to simplify the design of the smart toy by taking into account only the significant variables in the collector module. The fine-tuning of the toy process module will be carried out by following the specifications resulting from the analysis of the data to improve the efficiency and effectiveness of the product. ©María Angeles Gutiérrez García, María Luisa Martín Ruiz, Diego Rivera, Laura Vadillo, Miguel Angel Valero Duboy. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.05.2017.
Developmental Reading at Livingston College, 1974-1976. A Final Report.
ERIC Educational Resources Information Center
Kussat, Reinhart; Farrow, Earl V.
A developmental reading program with a unified approach to the teaching of developmental reading to nontraditional freshmen was designed and initiated at Livingston College, Rutgers University. The two-level program, consisting of curriculum modules based on behavioral objectives and performance criteria, was required for all freshmen who ranked…
Engaging Pediatricians in Developmental Screening: The Effectiveness of Academic Detailing
ERIC Educational Resources Information Center
Honigfeld, Lisa; Chandhok, Laura; Spiegelman, Kenneth
2012-01-01
Use of formal developmental screening tools in the pediatric medical home improves early identification of children with developmental delays and disorders, including Autism Spectrum Disorders. A pilot study evaluated the impact of an academic detailing module in which trainers visited 43 pediatric primary care practices to provide education about…
Developmental disabilities: improving competence in care using virtual patients.
Sanders, Carla L; Kleinert, Harold L; Free, Teresa; King, Pam; Slusher, Ida; Boyd, Sara
2008-02-01
Nurse practitioners (NPs) have an increasingly important role in health care provision in the United States. However, most nurses report that they receive little or no clinical training in the area of developmental disabilities. A core development team consisting of NP faculty members from three universities, one physician assistant faculty member, the parents of children with developmental disabilities, and educational specialists developed two multimedia interactive pediatric instructional modules in CD-ROM format: one involving a child with Down syndrome and the other, an infant born at 26 weeks gestation. Participants were required to make decisions about proper clinical interaction throughout the cases. The modules on CD were piloted with NP students at three universities. Effectiveness study results demonstrated significant gains in both knowledge and comfort level regarding the care of patients with developmental disabilities.
NASA Technical Reports Server (NTRS)
Obrien, David L.
1994-01-01
This paper presents the design and developmental testing associated with the bearing, motor, and roll ring module (BMRRM) used for the beta rotation axis on International Space Station Alpha (ISSA). The BMRRM with its controllers located in the electronic control unit (ECU), provides for the solar array pointing and tracking functions as well as power and signal transfer across a rotating interface.
Hsieh, Ru-Lan; Hsieh, Wen-Huei; Lee, Wen-Chung
2016-08-01
We investigated the clinical efficacy on family functioning and parental satisfaction of a short-term family-centered workshop for children with developmental delays.A total of 32 children with developmental delays and their parents participated in 2-hour weekly group therapy sessions over 6 weeks. The workshop was conducted by rehabilitation professionals and teachers using a family-centered multidisciplinary approach. Both before and after the 6-week workshop, the parents were administered the Pediatric Quality of Life Inventory (PedsQL) Family Impact Module, the PedsQL Healthcare Satisfaction Module, the Hospital Anxiety and Depression Scale, and the World Health Organization Quality of Life brief assessment instrument. Overall satisfaction with the workshop was also evaluated.Significant improvements were noted in physical aspect (P = 0.03), communication (P = 0.002), and daily activities (P = 0.04) in the PedsQL Family Impact Module, and in communication (P = 0.03) and technical skills (P = 0.05) in the PedsQL Healthcare Satisfaction Module. Overall satisfaction with the workshop was rated as very high. There was no significant effect on psychological distress or quality of life.Short-term family-centered workshops for children with developmental delays improved family functioning and the parental perception of satisfaction, including health care satisfaction.
Li, Yongxin; Kikuchi, Mani; Li, Xueyan; Gao, Qionghua; Xiong, Zijun; Ren, Yandong; Zhao, Ruoping; Mao, Bingyu; Kondo, Mariko; Irie, Naoki; Wang, Wen
2018-01-01
Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate. Copyright © 2017 Elsevier Inc. All rights reserved.
The impact of transposable elements on mammalian development.
Garcia-Perez, Jose L; Widmann, Thomas J; Adams, Ian R
2016-11-15
Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks. © 2016. Published by The Company of Biologists Ltd.
Plant hormone signaling lightens up: integrators of light and hormones.
Lau, On Sun; Deng, Xing Wang
2010-10-01
Light is an important environmental signal that regulates diverse growth and developmental processes in plants. In these light-regulated processes, multiple hormonal pathways are often modulated by light to mediate the developmental changes. Conversely, hormone levels in plants also serve as endogenous cues in influencing light responsiveness. Although interactions between light and hormone signaling pathways have long been observed, recent studies have advanced our understanding by identifying signaling integrators that connect the pathways. These integrators, namely PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), PIF4, PIF3-LIKE 5 (PIL5)/PIF1 and LONG HYPOCOTYL 5 (HY5), are key light signaling components and they link light signals to the signaling of phytohormones, such as gibberellin (GA), abscisic acid (ABA), auxin and cytokinin, in regulating seedling photomorphogenesis and seed germination. This review focuses on these integrators in illustrating how light and hormone interact. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kishi, Shuji
2014-01-01
Can we reset, reprogram, rejuvenate or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact/noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes, in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show shortened lifespan, while some others would be expected to live longer in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes/genotypes and epigenotype that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. PMID:24239812
Acharya, Aviseka; Brungs, Sonja; Henry, Margit; Rotshteyn, Tamara; Singh Yaduvanshi, Nirmala; Wegener, Lucia; Jentzsch, Simon; Hescheler, Jürgen; Hemmersbach, Ruth; Boeuf, Helene; Sachinidis, Agapios
2018-06-15
Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-β signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.
Gohil, Krutika; Bluschke, Annet; Roessner, Veit; Stock, Ann-Kathrin; Beste, Christian
2017-10-01
Many everyday tasks require executive functions to achieve a certain goal. Quite often, this requires the integration of information derived from different sensory modalities. Children are less likely to integrate information from different modalities and, at the same time, also do not command fully developed executive functions, as compared to adults. Yet still, the role of developmental age-related effects on multisensory integration processes has not been examined within the context of multicomponent behavior until now (i.e., the concatenation of different executive subprocesses). This is problematic because differences in multisensory integration might actually explain a significant amount of the developmental effects that have traditionally been attributed to changes in executive functioning. In a system, neurophysiological approach combining electroencephaloram (EEG) recordings and source localization analyses, we therefore examined this question. The results show that differences in how children and adults accomplish multicomponent behavior do not solely depend on developmental differences in executive functioning. Instead, the observed developmental differences in response selection processes (reflected by the P3 ERP) were largely dependent on the complexity of integrating temporally separated stimuli from different modalities. This effect was related to activation differences in medial frontal and inferior parietal cortices. Primary perceptual gating or attentional selection processes (P1 and N1 ERPs) were not affected. The results show that differences in multisensory integration explain parts of transformations in cognitive processes between childhood and adulthood that have traditionally been attributed to changes in executive functioning, especially when these require the integration of multiple modalities during response selection. Hum Brain Mapp 38:4933-4945, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hoxha, Eriola; Lippiello, Pellegrino; Scelfo, Bibiana; Tempia, Filippo; Ghirardi, Mirella; Miniaci, Maria Concetta
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Lippiello, Pellegrino; Scelfo, Bibiana
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization. PMID:28894610
Neuromechanical principles underlying movement modularity and their implications for rehabilitation
Ting, Lena H.; Chiel, Hillel J.; Trumbower, Randy D.; Allen, Jessica L.; McKay, J. Lucas; Hackney, Madeleine E.; Kesar, Trisha M.
2015-01-01
Summary Neuromechanical principles define the properties and problems that shape neural solutions for movement. Although the theoretical and experimental evidence is debated, we present arguments for consistent structures in motor patterns, i.e. motor modules, that are neuromechanical solutions for movement particular to an individual and shaped by evolutionary, developmental, and learning processes. As a consequence, motor modules may be useful in assessing sensorimotor deficits specific to an individual, and define targets for the rational development of novel rehabilitation therapies that enhance neural plasticity and sculpt motor recovery. We propose that motor module organization is disrupted and may be improved by therapy in spinal cord injury, stroke, and Parkinson’s disease. Recent studies provide insights into the yet unknown underlying neural mechanisms of motor modules, motor impairment and motor learning, and may lead to better understanding of the causal nature of modularity and its underlying neural substrates. PMID:25856485
Audio-visual speech perception: a developmental ERP investigation
Knowland, Victoria CP; Mercure, Evelyne; Karmiloff-Smith, Annette; Dick, Fred; Thomas, Michael SC
2014-01-01
Being able to see a talking face confers a considerable advantage for speech perception in adulthood. However, behavioural data currently suggest that children fail to make full use of these available visual speech cues until age 8 or 9. This is particularly surprising given the potential utility of multiple informational cues during language learning. We therefore explored this at the neural level. The event-related potential (ERP) technique has been used to assess the mechanisms of audio-visual speech perception in adults, with visual cues reliably modulating auditory ERP responses to speech. Previous work has shown congruence-dependent shortening of auditory N1/P2 latency and congruence-independent attenuation of amplitude in the presence of auditory and visual speech signals, compared to auditory alone. The aim of this study was to chart the development of these well-established modulatory effects over mid-to-late childhood. Experiment 1 employed an adult sample to validate a child-friendly stimulus set and paradigm by replicating previously observed effects of N1/P2 amplitude and latency modulation by visual speech cues; it also revealed greater attenuation of component amplitude given incongruent audio-visual stimuli, pointing to a new interpretation of the amplitude modulation effect. Experiment 2 used the same paradigm to map cross-sectional developmental change in these ERP responses between 6 and 11 years of age. The effect of amplitude modulation by visual cues emerged over development, while the effect of latency modulation was stable over the child sample. These data suggest that auditory ERP modulation by visual speech represents separable underlying cognitive processes, some of which show earlier maturation than others over the course of development. PMID:24176002
Polarised Organisation of the Cytoskeleton: Regulation by Cell Polarity Proteins.
Raman, Renuka; Savio, Clyde; Sonawane, Mahendra
2018-06-24
Polarity is one of the fundamental properties displayed by living organisms. In metazoans, cell polarity governs developmental processes and plays an essential role during maintenance of forms of tissues as well as their functions. The mechanisms of establishment and maintenance of cell polarity have been investigated extensively in the last two decades. This has resulted in identification of "core cell polarity modules" that control anterior-posterior, front-rear and apical-basal polarity across various cell types. Here, we review how these polarity modules interact closely with the cytoskeleton during establishment and maintenance of cytoskeletal polarity. We further suggest that reciprocal interactions between cell polarity modules and the cytoskeleton consolidate the initial weaker polarity, arising from an external cue, into a committed polarised system. Copyright © 2018. Published by Elsevier Ltd.
Boyd, Sara E; Sanders, Carla L; Kleinert, Harold L; Huff, Marlene B; Lock, Sharon; Johnson, Stephanie; Clevenger, Kim; Bush, Nathania A; Van Dyke, Eileen; Clark, Tara L
2008-01-01
A multimedia virtual patient module, involving the case of a young woman with mild intellectual disabilities with a complaint of diffuse abdominal pain, was developed as a clinical training tool for students in health care professions. Primary objectives following use of the module included improved knowledge and reduced perception of difficulty in treating women's health patients with intellectual disabilities. The module was developed using an iterative, collaborative process of a core development team that included medical professionals, multimedia specialists, the parent of a child with intellectual disability, and a disability advocate. Over the course of the module, students were required to identify appropriate and effective clinician-patient interactions in addition to relevant medical and developmental concerns for this patient population. Pilot data from a sample of nursing, physician assistant, and medical students suggest that the module is an effective tool for both improving students' knowledge and reducing their perception of difficulty in providing care to women's health patients with intellectual disabilities.
Design and Testing of CPAS Main Deployment Bag Energy Modulator
NASA Technical Reports Server (NTRS)
Mollmann, Catherine
2017-01-01
During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.
Putting the face in context: Body expressions impact facial emotion processing in human infants.
Rajhans, Purva; Jessen, Sarah; Missana, Manuela; Grossmann, Tobias
2016-06-01
Body expressions exert strong contextual effects on facial emotion perception in adults. Specifically, conflicting body cues hamper the recognition of emotion from faces, as evident on both the behavioral and neural level. We examined the developmental origins of the neural processes involved in emotion perception across body and face in 8-month-old infants by measuring event-related brain potentials (ERPs). We primed infants with body postures (fearful, happy) that were followed by either congruent or incongruent facial expressions. Our results revealed that body expressions impact facial emotion processing and that incongruent body cues impair the neural discrimination of emotional facial expressions. Priming effects were associated with attentional and recognition memory processes, as reflected in a modulation of the Nc and Pc evoked at anterior electrodes. These findings demonstrate that 8-month-old infants possess neural mechanisms that allow for the integration of emotion across body and face, providing evidence for the early developmental emergence of context-sensitive facial emotion perception. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Challa, Krishna Reddy; Aggarwal, Pooja; Nath, Utpal
2016-09-05
Cell expansion is an essential process in plant morphogenesis and is regulated by the coordinated action of environmental stimuli and endogenous factors, such as the phytohormones auxin and brassinosteroid. Although the biosynthetic pathways that generate these hormones and their downstream signaling mechanisms have been extensively studied, the upstream transcriptional network that modulates their levels and connects their action to cell morphogenesis is less clear. Here we show that the miR319-regulated TCP (TEOSINTE BRANCHED 1, CYCLODEA, PROLIFERATING CELL FACTORS) transcription factors, notably TCP4, directly activate YUCCA5 transcription and integrate the auxin response to a brassinosteroid-dependent molecular circuit that promotes cell elongation in Arabidopsis hypocotyls. Further, TCP4 modulates the common transcriptional network downstream to auxin-BR signaling, which is also triggered by environmental cues, such as light, to promote cell expansion. Our study links TCP function with the hormone response during cell morphogenesis and shows that developmental and environmental signals converge on a common transcriptional network to promote cell elongation. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.
MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.
Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim
2011-05-17
Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model
Marques, Hugo Gravato; Bharadwaj, Arjun; Iida, Fumiya
2014-01-01
In mammals, the developmental path that links the primary behaviours observed during foetal stages to the full fledged behaviours observed in adults is still beyond our understanding. Often theories of motor control try to deal with the process of incremental learning in an abstract and modular way without establishing any correspondence with the mammalian developmental stages. In this paper, we propose a computational model that links three distinct behaviours which appear at three different stages of development. In order of appearance, these behaviours are: spontaneous motor activity (SMA), reflexes, and coordinated behaviours, such as locomotion. The goal of our model is to address in silico four hypotheses that are currently hard to verify in vivo: First, the hypothesis that spinal reflex circuits can be self-organized from the sensor and motor activity induced by SMA. Second, the hypothesis that supraspinal systems can modulate reflex circuits to achieve coordinated behaviour. Third, the hypothesis that, since SMA is observed in an organism throughout its entire lifetime, it provides a mechanism suitable to maintain the reflex circuits aligned with the musculoskeletal system, and thus adapt to changes in body morphology. And fourth, the hypothesis that by changing the modulation of the reflex circuits over time, one can switch between different coordinated behaviours. Our model is tested in a simulated musculoskeletal leg actuated by six muscles arranged in a number of different ways. Hopping is used as a case study of coordinated behaviour. Our results show that reflex circuits can be self-organized from SMA, and that, once these circuits are in place, they can be modulated to achieve coordinated behaviour. In addition, our results show that our model can naturally adapt to different morphological changes and perform behavioural transitions. PMID:25057775
The Systemic Control of Growth
Boulan, Laura; Milán, Marco; Léopold, Pierre
2015-01-01
Growth is a complex process that is intimately linked to the developmental program to form adults with proper size and proportions. Genetics is an important determinant of growth, as exemplified by the role of local diffusible molecules setting up organ proportions. In addition, organisms use adaptive responses allowing modulating the size of individuals according to environmental cues, for example, nutrition. Here, we describe some of the physiological principles participating in the determination of final individual size. PMID:26261282
Does attentional training improve numerical processing in developmental dyscalculia?
Ashkenazi, Sarit; Henik, Avishai
2012-01-01
Recently, a deficit in attention was found in those with pure developmental dyscalculia (DD). Accordingly, the present study aimed to examine the influence of attentional training on attention abilities, basic numerical abilities, and arithmetic in participants who were diagnosed as having DD. Nine university students diagnosed as having DD (IQ and reading abilities in the normal range and no indication of attention-deficit hyperactivity disorder) and nine matched controls participated in attentional training (i.e., video game training). First, training modulated the orienting system; after training, the size of the validity effect (i.e., effect of valid vs. invalid) decreased. This effect was comparable in the two groups. Training modulated abnormalities in the attention systems of those with DD, that is, it reduced their enlarged congruity effect (i.e., faster responding when flanking arrows pointed to the same location as a center arrow). Second, in relation to the enumeration task, training reduced the reaction time of the DD group in the subitizing range but did not change their smaller-than-normal subitizing range. Finally, training improved performance in addition problems in both the DD and control groups. These results imply that attentional training does improve most of the attentional deficits of those with DD. In contrast, training did not improve the abnormalities of the DD group in arithmetic or basic numerical processing. Thus, in contrast to the domain-general hypothesis, the deficits in attention among those with DD and the deficits in numerical processing appear to originate from different sources.
β-Adrenergic enhancement of neuronal excitability in the lateral amygdala is developmentally gated.
Fink, Ann E; LeDoux, Joseph E
2018-05-01
Noradrenergic signaling in the amygdala is important for processing threats and other emotionally salient stimuli, and β-adrenergic receptor activation is known to enhance neuronal spiking in the lateral amygdala (LA) of juvenile animals. Nevertheless, intracellular recordings have not yet been conducted to determine the effect of β-adrenergic receptor activation on spike properties in the adult LA, despite the potential significance of developmental changes between adolescence and adulthood. Here we demonstrate that the β-adrenergic agonist isoproterenol (15 μM) enhances spike frequency in dorsal LA principal neurons of juvenile male C57BL/6 mice and fails to do so in strain- and sex-matched adults. Furthermore, we find that the age-dependent effect of isoproterenol on spike frequency is occluded by the GABA A receptor blocker picrotoxin (75 μM), suggesting that β-adrenergic receptors downregulate tonic inhibition specifically in juvenile animals. These findings indicate a significant shift during adolescence in the cellular mechanisms of β-adrenergic modulation in the amygdala. NEW & NOTEWORTHY β-Adrenergic receptors (β-ARs) in amygdala are important in processing emotionally salient stimuli. Most cellular recordings have examined juvenile animals, while behavioral data are often obtained from adults. We replicate findings showing that β-ARs enhance spiking of principal cells in the lateral amygdala of juveniles, but we fail to find this in adults. These findings have notable scientific and clinical implications regarding the noradrenergic modulation of threat processing, alterations of which underlie fear and anxiety disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
A major challenge in understanding substance-use disorders lies in uncovering why some individuals become addicted when exposed to drugs, whereas others do not. Although genetic, developmental, and environmental factors are recognized as major contributors to a person's risk of becoming addicted, the neurobiological processes that underlie this vulnerability are still poorly understood. Imaging studies suggest that individual variations in key dopamine-modulated brain circuits, including circuits involved in reward, memory, executive function, and motivation, contribute to some of the differences in addiction vulnerability. A better understanding of the main circuits affected by chronic drug use and the influence of social stressors,more » developmental trajectories, and genetic background on these circuits is bound to lead to a better understanding of addiction and to more effective strategies for the prevention and treatment of substance-use disorders.« less
Developmental origins of brain disorders: roles for dopamine
Money, Kelli M.; Stanwood, Gregg D.
2013-01-01
Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541
Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J
2015-06-01
Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.
2015-01-01
Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721
Building blocks of a fish head: Developmental and variational modularity in a complex system.
Lehoux, Caroline; Cloutier, Richard
2015-11-01
Evolution of the vertebrate skull is developmentally constrained by the interactions among its anatomical systems, such as the dermatocranium and the sensory system. The interaction between the dermal bones and lateral line canals has been debated for decades but their morphological integration has never been tested. An ontogenetic series of 97 juvenile and adult Amia calva (Actinopterygii) was used to describe the patterning and modularity of sensory lateral line canals and their integration with supporting cranial bones. Developmental modules were tested for the otic canal and supratemporal commissure by computing correlations in the branching sequence of groups of pores. Landmarks were digitized on 25 specimens to test a priori hypotheses of variational and developmental modularity at the level of canals and dermal bones. Branching sequence suggests a specific patterning supported by significant positive correlations in the sequence of appearance of branches between bilateral sides. Differences in patterning between the otic canal and the supratemporal commissure and tests of modularity with geometric morphometrics suggest that both canals form distinct modules. The integration between bones and canals was insufficient to detect a module. However, both components were not independent. Groups of pores tended to disappear without affecting other groups of pores suggesting that they are quasi-independent units acting as modules. This study provides evidence of a hierarchical organization for the modular sensory system that could explain variation of pattern of canals among species and their association with dermal bones. © 2015 Wiley Periodicals, Inc.
Glycan Engineering for Cell and Developmental Biology.
Griffin, Matthew E; Hsieh-Wilson, Linda C
2016-01-21
Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Concerted and mosaic evolution of functional modules in songbird brains
DeVoogd, Timothy J.
2017-01-01
Vertebrate brains differ in overall size, composition and functional capacities, but the evolutionary processes linking these traits are unclear. Two leading models offer opposing views: the concerted model ascribes major dimensions of covariation in brain structures to developmental events, whereas the mosaic model relates divergent structures to functional capabilities. The models are often cast as incompatible, but they must be unified to explain how adaptive changes in brain structure arise from pre-existing architectures and developmental mechanisms. Here we show that variation in the sizes of discrete neural systems in songbirds, a species-rich group exhibiting diverse behavioural and ecological specializations, supports major elements of both models. In accordance with the concerted model, most variation in nucleus volumes is shared across functional domains and allometry is related to developmental sequence. Per the mosaic model, residual variation in nucleus volumes is correlated within functional systems and predicts specific behavioural capabilities. These comparisons indicate that oscine brains evolved primarily as a coordinated whole but also experienced significant, independent modifications to dedicated systems from specific selection pressures. Finally, patterns of covariation between species and brain areas hint at underlying developmental mechanisms. PMID:28490627
Neuromodulation, development and synaptic plasticity.
Foehring, R C; Lorenzon, N M
1999-03-01
We discuss parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. We discuss examples of modulation of voltage-gated Ca2+ channels and Ca(2+)-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. We discuss examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity.
A unified approach to computer analysis and modeling of spacecraft environmental interactions
NASA Technical Reports Server (NTRS)
Katz, I.; Mandell, M. J.; Cassidy, J. J.
1986-01-01
A new, coordinated, unified approach to the development of spacecraft plasma interaction models is proposed. The objective is to eliminate the unnecessary duplicative work in order to allow researchers to concentrate on the scientific aspects. By streamlining the developmental process, the interchange between theories and experimentalists is enhanced, and the transfer of technology to the spacecraft engineering community is faster. This approach is called the UNIfied Spacecraft Interaction Model (UNISIM). UNISIM is a coordinated system of software, hardware, and specifications. It is a tool for modeling and analyzing spacecraft interactions. It will be used to design experiments, to interpret results of experiments, and to aid in future spacecraft design. It breaks a Spacecraft Ineraction analysis into several modules. Each module will perform an analysis for some physical process, using phenomenology and algorithms which are well documented and have been subject to review. This system and its characteristics are discussed.
Joubert, Chandré; Young, Philip R.; Eyéghé-Bickong, Hans A.; Vivier, Melané A.
2016-01-01
Light quantity and quality modulate grapevine development and influence berry metabolic processes. Here we studied light as an information signal for developing and ripening grape berries. A Vitis vinifera Sauvignon Blanc field experiment was used to identify the impacts of UVB on core metabolic processes in the berries under both high light (HL) and low light (LL) microclimates. The primary objective was therefore to identify UVB-specific responses on berry processes and metabolites and distinguish them from those responses elicited by variations in light incidence. Canopy manipulation at the bunch zone via early leaf removal, combined with UVB-excluding acrylic sheets installed over the bunch zones resulted in four bunch microclimates: (1) HL (control); (2) LL (control); (3) HL with UVB attenuation and (4) LL with UVB attenuation. Metabolite profiles of three berry developmental stages showed predictable changes to known UV-responsive compound classes in a typical UV acclimation (versus UV damage) response. Interestingly, the berries employed carotenoids and the associated xanthophyll cycles to acclimate to UV exposure and the berry responses differed between HL and LL conditions, particularly in the developmental stages where berries are still photosynthetically active. The developmental stage of the berries was an important factor to consider in interpreting the data. The green berries responded to the different exposure and/or UVB attenuation signals with metabolites that indicate that the berries actively managed its metabolism in relation to the exposure levels, displaying metabolic plasticity in the photosynthesis-related metabolites. Core processes such as photosynthesis, photo-inhibition and acclimation were maintained by differentially modulating metabolites under the four treatments. Ripe berries also responded metabolically to the light quality and quantity, but mostly formed compounds (volatiles and polyphenols) that have direct antioxidant and/or “sunscreening” abilities. The data presented for the green berries and those for the ripe berries conform to what is known for UVB and/or light stress in young, active leaves and older, senescing tissues respectively and provide scope for further evaluation of the sink/source status of fruits in relation to photosignalling and/or stress management. PMID:27375645
The DAN family: modulators of TGF-β signaling and beyond.
Nolan, Kristof; Thompson, Thomas B
2014-08-01
Extracellular binding proteins or antagonists are important factors that modulate ligands in the transforming growth factor (TGF-β) family. While the interplay between antagonists and ligands are essential for developmental and normal cellular processes, their imbalance can lead to the pathology of several disease states. In particular, recent studies have implicated members of the differential screening-selected gene in neuroblastoma (DAN) family in disease such as renal fibrosis, pulmonary arterial hypertension, and reactivation of metastatic cancer stem cells. DAN family members are known to inhibit the bone morphogenetic proteins (BMP) of the TGF-β family. However, unlike other TGF-β antagonist families, DAN family members have roles beyond ligand inhibition and can modulate Wnt and vascular endothelial growth factor (VEGF) signaling pathways. This review describes recent structural and functional advances that have expanded our understanding of DAN family proteins with regards to BMP inhibition and also highlights their emerging roles in the modulation of Wnt and VEGF signaling pathways. © 2014 The Protein Society.
Mucin-Type O-Glycosylation in Invertebrates.
Staudacher, Erika
2015-06-09
O-Glycosylation is one of the most important posttranslational modifications of proteins. It takes part in protein conformation, protein sorting, developmental processes and the modulation of enzymatic activities. In vertebrates, the basics of the biosynthetic pathway of O-glycans are already well understood. However, the regulation of the processes and the molecular aspects of defects, especially in correlation with cancer or developmental abnormalities, are still under investigation. The knowledge of the correlating invertebrate systems and evolutionary aspects of these highly conserved biosynthetic events may help improve the understanding of the regulatory factors of this pathway. Invertebrates display a broad spectrum of glycosylation varieties, providing an enormous potential for glycan modifications which may be used for the design of new pharmaceutically active substances. Here, overviews of the present knowledge of invertebrate mucin-type O-glycan structures and the currently identified enzymes responsible for the biosynthesis of these oligosaccharides are presented, and the few data dealing with functional aspects of O-glycans are summarised.
Rigas, Stamatis; Ditengou, Franck Anicet; Ljung, Karin; Daras, Gerasimos; Tietz, Olaf; Palme, Klaus; Hatzopoulos, Polydefkis
2013-03-01
Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
TVA-based assessment of visual attentional functions in developmental dyslexia
Bogon, Johanna; Finke, Kathrin; Stenneken, Prisca
2014-01-01
There is an ongoing debate whether an impairment of visual attentional functions constitutes an additional or even an isolated deficit of developmental dyslexia (DD). Especially performance in tasks that require the processing of multiple visual elements in parallel has been reported to be impaired in DD. We review studies that used parameter-based assessment for identifying and quantifying impaired aspect(s) of visual attention that underlie this multi-element processing deficit in DD. These studies used the mathematical framework provided by the “theory of visual attention” (Bundesen, 1990) to derive quantitative measures of general attentional resources and attentional weighting aspects on the basis of behavioral performance in whole- and partial-report tasks. Based on parameter estimates in children and adults with DD, the reviewed studies support a slowed perceptual processing speed as an underlying primary deficit in DD. Moreover, a reduction in visual short term memory storage capacity seems to present a modulating component, contributing to difficulties in written language processing. Furthermore, comparing the spatial distributions of attentional weights in children and adults suggests that having limited reading and writing skills might impair the development of a slight leftward bias, that is typical for unimpaired adult readers. PMID:25360129
Reproductive competence: a recurrent logic module in eukaryotic development
Noble, Luke M.; Andrianopoulos, Alex
2013-01-01
Developmental competence is the ability to differentiate in response to an appropriate stimulus, as first elaborated by Waddington in relation to organs and tissues. Competence thresholds operate at all levels of biological systems from the molecular (e.g. the cell cycle) to the ontological (e.g. metamorphosis and reproduction). Reproductive competence, an organismal process, is well studied in mammals (sexual maturity) and plants (vegetative phase change), though far less than later stages of terminal differentiation. The phenomenon has also been documented in multiple species of multicellular fungi, mostly in early, disparate literature, providing a clear example of physiological differentiation in the absence of morphological change. This review brings together data on reproductive competence in Ascomycete fungi, particularly the model filamentous fungus Aspergillus nidulans, contrasting mechanisms within Unikonts and plants. We posit reproductive competence is an elementary logic module necessary for coordinated development of multicellular organisms or functional units. This includes unitary multicellular life as well as colonial species both unicellular and multicellular (e.g. social insects such as ants). We discuss adaptive hypotheses for developmental and reproductive competence systems and suggest experimental work to address the evolutionary origins, generality and genetic basis of competence in the fungal kingdom. PMID:23864594
Neurobehavioral foundation of environmental reactivity.
Moore, Sarah R; Depue, Richard A
2016-02-01
Sensitivity to environmental context has been of interest for many years, but the nature of individual differences in environmental sensitivity has become of particular focus over the past 2 decades. What is particularly uncertain are the neural variables and processes that mediate the effects of environment on developmental outcomes. Accordingly, we provide a neurobehavioral foundation of reactivity to the environment in several steps. First, the different patterns of environmental sensitivity are defined to identify the significant factors involved in the manifestation of these patterns. Second, we focus on neurobiological reactivity as the construct underlying variation in sensitivity to the environment by (a) providing an organizing threshold model of elicitation of neurobiology by environmental context; and (b) integrating the literature on 2 sets of neuromodulators in terms of each modulator's (a) contribution to neural and behavioral reactivity to stimulation, and (b) relation to emotional-motivational systems (dopamine, opiates and oxytocin, corticotropin-releasing hormone) or the general modulation of those systems (serotonin, norepinephrine, and GABA). Discussion concludes with (a) a comprehensive neurobehavioral framework of environmental reactivity based on a combinatorial model of a supertrait, (b) methodological implications of the model, and (c) a developmental perspective on environmental reactivity. (c) 2016 APA, all rights reserved).
Sánchez, Lucas; Chaouiya, Claudine
2016-05-26
Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.
Extending juvenility in grasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian
The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstratemore » altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.« less
Cannabinoid Receptors Modulate Neuronal Morphology and AnkyrinG Density at the Axon Initial Segment
Tapia, Mónica; Dominguez, Ana; Zhang, Wei; del Puerto, Ana; Ciorraga, María; Benitez, María José; Guaza, Carmen; Garrido, Juan José
2017-01-01
Neuronal polarization underlies the ability of neurons to integrate and transmit information. This process begins early in development with axon outgrowth, followed by dendritic growth and subsequent maturation. In between these two steps, the axon initial segment (AIS), a subcellular domain crucial for generating action potentials (APs) and maintaining the morphological and functional polarization, starts to develop. However, the cellular/molecular mechanisms and receptors involved in AIS initial development and maturation are mostly unknown. In this study, we have focused on the role of the type-1 cannabinoid receptor (CB1R), a highly abundant G-protein coupled receptor (GPCR) in the nervous system largely involved in different phases of neuronal development and differentiation. Although CB1R activity modulation has been related to changes in axons or dendrites, its possible role as a modulator of AIS development has not been yet explored. Here we analyzed the potential role of CB1R on neuronal morphology and AIS development using pharmacological and RNA interference approaches in cultured hippocampal neurons. CB1R inhibition, at a very early developmental stage, has no effect on axonal growth, yet CB1R activation can promote it. By contrast, subsequent dendritic growth is impaired by CB1R inhibition, which also reduces ankyrinG density at the AIS. Moreover, our data show a significant correlation between early dendritic growth and ankyrinG density. However, CB1R inhibition in later developmental stages after dendrites are formed only reduces ankyrinG accumulation at the AIS. In conclusion, our data suggest that neuronal CB1R basal activity plays a role in initial development of dendrites and indirectly in AIS proteins accumulation. Based on the lack of CB1R expression at the AIS, we hypothesize that CB1R mediated modulation of dendritic arbor size during early development indirectly determines the accumulation of ankyrinG and AIS development. Further studies will be necessary to determine which CB1R-dependent mechanisms can coordinate these two domains, and what may be the impact of these early developmental changes once neurons mature and are embedded in a functional brain network. PMID:28179879
Organogenesis in deep time: A problem in genomics, development, and paleontology.
Pieretti, Joyce; Gehrke, Andrew R; Schneider, Igor; Adachi, Noritaka; Nakamura, Tetsuya; Shubin, Neil H
2015-04-21
The fossil record is a unique repository of information on major morphological transitions. Increasingly, developmental, embryological, and functional genomic approaches have also conspired to reveal evolutionary trajectory of phenotypic shifts. Here, we use the vertebrate appendage to demonstrate how these disciplines can mutually reinforce each other to facilitate the generation and testing of hypotheses of morphological evolution. We discuss classical theories on the origins of paired fins, recent data on regulatory modulations of fish fins and tetrapod limbs, and case studies exploring the mechanisms of digit loss in tetrapods. We envision an era of research in which the deep history of morphological evolution can be revealed by integrating fossils of transitional forms with direct experimentation in the laboratory via genome manipulation, thereby shedding light on the relationship between genes, developmental processes, and the evolving phenotype.
Brg1 modulates enhancer activation in mesoderm lineage commitment
Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; ...
2015-03-26
The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less
Development and regulation of chloride homeostasis in the central nervous system.
Watanabe, Miho; Fukuda, Atsuo
2015-01-01
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the mature central nervous system (CNS). The developmental switch of GABAergic transmission from excitation to inhibition is induced by changes in Cl(-) gradients, which are generated by cation-Cl(-) co-transporters. An accumulation of Cl(-) by the Na(+)-K(+)-2Cl(-) co-transporter (NKCC1) increases the intracellular Cl(-) concentration ([Cl(-)]i) such that GABA depolarizes neuronal precursors and immature neurons. The subsequent ontogenetic switch, i.e., upregulation of the Cl(-)-extruder KCC2, which is a neuron-specific K(+)-Cl(-) co-transporter, with or without downregulation of NKCC1, results in low [Cl(-)]i levels and the hyperpolarizing action of GABA in mature neurons. Development of Cl(-) homeostasis depends on developmental changes in NKCC1 and KCC2 expression. Generally, developmental shifts (decreases) in [Cl(-)]i parallel the maturation of the nervous system, e.g., early in the spinal cord, hypothalamus and thalamus, followed by the limbic system, and last in the neocortex. There are several regulators of KCC2 and/or NKCC1 expression, including brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and cystic fibrosis transmembrane conductance regulator (CFTR). Therefore, regionally different expression of these regulators may also contribute to the regional developmental shifts of Cl(-) homeostasis. KCC2 and NKCC1 functions are also regulated by phosphorylation by enzymes such as PKC, Src-family tyrosine kinases, and WNK1-4 and their downstream effectors STE20/SPS1-related proline/alanine-rich kinase (SPAK)-oxidative stress responsive kinase-1 (OSR1). In addition, activation of these kinases is modulated by humoral factors such as estrogen and taurine. Because these transporters use the electrochemical driving force of Na(+) and K(+) ions, topographical interaction with the Na(+)-K(+) ATPase and its modulators such as creatine kinase (CK) should modulate functions of Cl(-) transporters. Therefore, regional developmental regulation of these regulators and modulators of Cl(-) transporters may also play a pivotal role in the development of Cl(-) homeostasis.
ERIC Educational Resources Information Center
Wakschlag, Lauren S.; Choi, Seung W.; Carter, Alice S.; Hullsiek, Heide; Burns, James; McCarthy, Kimberly; Leibenluft, Ellen; Briggs-Gowan, Margaret J.
2012-01-01
Background: Temper modulation problems are both a hallmark of early childhood and a common mental health concern. Thus, characterizing specific behavioral manifestations of temper loss along a dimension from normative misbehaviors to clinically significant problems is an important step toward identifying clinical thresholds. Methods:…
The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics.
Sonuga-Barke, Edmund J S
2003-11-01
The currently dominant neuro-cognitive model of Attention Deficit Hyperactivity Disorder (AD/HD) presents the condition as executive dysfunction (EDF) underpinned by disturbances in the fronto-dorsal striatal circuit and associated dopaminergic branches (e.g. meso-cortical). In contrast, motivationally-based accounts focus on altered reward processes and implicate fronto-ventral striatal reward circuits and those meso-limbic branches that terminate in the ventral striatum especially the nucleus accumbens. One such account, delay aversion (DEL), presents AD/HD as a motivational style-characterised by attempts to escape or avoid delay-arising from fundamental disturbances in these reward centres. While traditionally regarded as competing, EDF and DEL models have recently been presented as complimentary accounts of two psycho-patho-physiological subtypes of AD/HD with different developmental pathways, underpinned by different cortico-striatal circuits and modulated by different branches of the dopamine system. In the current paper we describe the development of this model in more detail. We elaborate on the neuro-circuitry possibly underpinning these two pathways and explore their developmental significance within a neuro-ecological framework.
Apollo experience report: Lunar module landing radar and rendezvous radar
NASA Technical Reports Server (NTRS)
Rozas, P.; Cunningham, A. R.
1972-01-01
A developmental history of the Apollo lunar module landing and rendezvous radar subsystems is presented. The Apollo radar subsystems are discussed from initial concept planning to flight configuration testing. The major radar subsystem accomplishments and problems are discussed.
FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila
Tang, Hui Yuan; Smith-Caldas, Martha S. B.; Driscoll, Michael V.; Salhadar, Samy; Shingleton, Alexander W.
2011-01-01
Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes. PMID:22102829
Vitale, Jennifer E; Newman, Joseph P; Bates, John E; Goodnight, Jackson; Dodge, Kenneth A; Pettit, Gregory S
2005-08-01
Socialization is the important process by which individuals learn and then effectively apply the rules of appropriate societal behavior. Response modulation is a psychobiological process theorized to aid in socialization by allowing individuals to utilize contextual information to modify ongoing behavior appropriately. Using Hare's (1991) Psychopathy Checklist and the Welsh (1956) anxiety scale, researchers have identified a relatively specific form of a response modulation deficit in low-anxious, Caucasian psychopaths. Preliminary evidence suggests that the Antisocial Process Screening Device (APSD; Frick & Hare, 2001) may be used to identify children with a similar vulnerability. Using a representative community sample of 308 16-year-olds from the Child Development Project (Dodge, Bates, & Pettit, 1990), we tested and corroborated the hypotheses that participants with relatively low anxiety and high APSD scores would display poorer passive avoidance learning and less interference on a spatially separated, picture-word Stroop task than controls. Consistent with hypotheses, the expected group differences in picture-word Stroop interference were found with male and female participants, whereas predicted differences in passive avoidance were specific to male participants. To the extent that response modulation deficits contributing to poor socialization among psychopathic adult offenders also characterize a subgroup of adolescents with mild conduct problems, clarification of the developmental processes that moderate the expression of this vulnerability could inform early interventions.
Mendes, Cláudia C.; Mirth, Christen K.
2016-01-01
Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called “critical weight”; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity. PMID:26715667
Descriptive vs. mechanistic network models in plant development in the post-genomic era.
Davila-Velderrain, J; Martinez-Garcia, J C; Alvarez-Buylla, E R
2015-01-01
Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.
Coco is a dual activity modulator of TGFβ signaling
Deglincerti, Alessia; Haremaki, Tomomi; Warmflash, Aryeh; Sorre, Benoit; Brivanlou, Ali H.
2015-01-01
The TGFβ signaling pathway is a crucial regulator of developmental processes and disease. The activity of TGFβ ligands is modulated by various families of soluble inhibitors that interfere with the interactions between ligands and receptors. In an unbiased, genome-wide RNAi screen to identify genes involved in ligand-dependent signaling, we unexpectedly identified the BMP/Activin/Nodal inhibitor Coco as an enhancer of TGFβ1 signaling. Coco synergizes with TGFβ1 in both cell culture and Xenopus explants. Molecularly, Coco binds to TGFβ1 and enhances TGFβ1 binding to its receptor Alk5. Thus, Coco acts as both an inhibitor and an enhancer of signaling depending on the ligand it binds. This finding raises the need for a global reconsideration of the molecular mechanisms regulating TGFβ signaling. PMID:26116664
Modulation of Food Reward by Endocrine and Environmental Factors: Update and Perspective.
Figlewicz, Dianne P
2015-01-01
Palatable foods are frequently high in energy density. Chronic consumption of high-energy density foods can contribute to the development of cardiometabolic pathology including obesity, diabetes, and cardiovascular disease. This article reviews the contributions of extrinsic and intrinsic factors that influence the reward components of food intake. A narrative review was conducted to determine the behavioral and central nervous system (CNS) related processes involved in the reward components of high-energy density food intake. The rewarding aspects of food, particularly palatable and preferred foods, are regulated by CNS circuitry. Overlaying this regulation is modulation by intrinsic endocrine systems and metabolic hormones relating to energy homeostasis, developmental stage, or gender. It is now recognized that extrinsic or environmental factors, including ambient diet composition and the provocation of stress or anxiety, also contribute substantially to the expression of food reward behaviors such as motivation for, and seeking of, preferred foods. High-energy density food intake is influenced by both physiological and pathophysiological processes. Contextual, behavioral, and psychological factors and CNS-related processes represent potential targets for multiple types of therapeutic intervention.
The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development
Li, Shutian
2015-01-01
The TCP family of transcription factors is named after the first 4 characterized members, namely TEOSINTE BRANCHED1 (TB1) from maize (Zea mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), as well as PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) and PCF2 from rice (Oryza sativa). Phylogenic analysis of this plant-specific protein family unveils a conserved bHLH-containing DNA-binding motif known as the TCP domain. In accordance with the structure of this shared domain, TCP proteins are grouped into class I (TCP-P) and class II (TCP-C), which are suggested to antagonistically modulate plant growth and development via competitively binding similar cis-regulatory modules called site II elements. Over the last decades, TCPs across the plant kingdom have been demonstrated to control a plethora of plant processes. Notably, TCPs also regulate plant development and defense responses via stimulating the biosynthetic pathways of bioactive metabolites, such as brassinosteroid (BR), jasmonic acid (JA) and flavonoids. Besides, mutagenesis analysis coupled with biochemical experiments identifies several crucial amino acids located within the TCP domain, which confer the redox sensitivity of class I TCPs and determine the distinct DNA-binding properties of TCPs. In this review, developmental functions of TCPs in various biological pathways are briefly described with an emphasis on their involvement in the synthesis of bioactive substances. Furthermore, novel biochemical aspects of TCPs with respect to redox regulation and DNA-binding preferences are elaborated. In addition, the unexpected participation of TCPs in effector-triggered immunity (ETI) and defense against insects indicates that the widely recognized developmental regulators are capable of fine-tuning defense signaling and thereby enable plants to evade deleterious developmental phenotypes. Altogether, these recent impressive breakthroughs remarkably advance our understanding as to how TCPs integrate internal developmental cues with external environmental stimuli to orchestrate plant development. PMID:26039357
The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development.
Li, Shutian
2015-01-01
The TCP family of transcription factors is named after the first 4 characterized members, namely TEOSINTE BRANCHED1 (TB1) from maize (Zea mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), as well as PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) and PCF2 from rice (Oryza sativa). Phylogenic analysis of this plant-specific protein family unveils a conserved bHLH-containing DNA-binding motif known as the TCP domain. In accordance with the structure of this shared domain, TCP proteins are grouped into class I (TCP-P) and class II (TCP-C), which are suggested to antagonistically modulate plant growth and development via competitively binding similar cis-regulatory modules called site II elements. Over the last decades, TCPs across the plant kingdom have been demonstrated to control a plethora of plant processes. Notably, TCPs also regulate plant development and defense responses via stimulating the biosynthetic pathways of bioactive metabolites, such as brassinosteroid (BR), jasmonic acid (JA) and flavonoids. Besides, mutagenesis analysis coupled with biochemical experiments identifies several crucial amino acids located within the TCP domain, which confer the redox sensitivity of class I TCPs and determine the distinct DNA-binding properties of TCPs. In this review, developmental functions of TCPs in various biological pathways are briefly described with an emphasis on their involvement in the synthesis of bioactive substances. Furthermore, novel biochemical aspects of TCPs with respect to redox regulation and DNA-binding preferences are elaborated. In addition, the unexpected participation of TCPs in effector-triggered immunity (ETI) and defense against insects indicates that the widely recognized developmental regulators are capable of fine-tuning defense signaling and thereby enable plants to evade deleterious developmental phenotypes. Altogether, these recent impressive breakthroughs remarkably advance our understanding as to how TCPs integrate internal developmental cues with external environmental stimuli to orchestrate plant development.
Gaigg, Sebastian B.
2012-01-01
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviors and an inflexible adherence to routinised patterns of thought and behavior. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognizing and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding, and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterized by more widespread anomalies in the domain of emotions. In this review I summarize the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world. PMID:23316143
Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma
Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi; ...
2015-12-01
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less
Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less
Gaigg, Sebastian B
2012-01-01
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is clinically defined by abnormalities in reciprocal social and communicative behaviors and an inflexible adherence to routinised patterns of thought and behavior. Laboratory studies repeatedly demonstrate that autistic individuals experience difficulties in recognizing and understanding the emotional expressions of others and naturalistic observations show that they use such expressions infrequently and inappropriately to regulate social exchanges. Dominant theories attribute this facet of the ASD phenotype to abnormalities in a social brain network that mediates social-motivational and social-cognitive processes such as face processing, mental state understanding, and empathy. Such theories imply that only emotion related processes relevant to social cognition are compromised in ASD but accumulating evidence suggests that the disorder may be characterized by more widespread anomalies in the domain of emotions. In this review I summarize the relevant literature and argue that the social-emotional characteristics of ASD may be better understood in terms of a disruption in the domain-general interplay between emotion and cognition. More specifically I will suggest that ASD is the developmental consequence of early emerging anomalies in how emotional responses to the environment modulate a wide range of cognitive processes including those that are relevant to navigating the social world.
Neuronal Control of Metabolism through Nutrient-Dependent Modulation of Tracheal Branching
Linneweber, Gerit A.; Jacobson, Jake; Busch, Karl Emanuel; Hudry, Bruno; Christov, Christo P.; Dormann, Dirk; Yuan, Michaela; Otani, Tomoki; Knust, Elisabeth; de Bono, Mario; Miguel-Aliaga, Irene
2014-01-01
Summary During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives—rather than responds to—metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture. PMID:24439370
New developments in microbial interspecies signaling.
Shank, Elizabeth Anne; Kolter, Roberto
2009-04-01
There is a growing appreciation that in addition to well-documented intraspecies quorum sensing systems, small molecules act as signals between microbes of different species. This review will focus on how bacterial small molecules modulate these interspecies interactions. We will particularly emphasize complex relationships such as those between microbes and insects, interactions resulting in non-antagonistic outcomes (i.e. developmental and morphological processes), how co-culture can lead to the discovery of new small molecules, and the use of known compounds to evoke unexpected responses and mediate crosstalk between microbes.
How Do Children Deal With Conflict? A Developmental Study of Sequential Conflict Modulation
Smulders, Silvan F. A.; Soetens, Eric L. L.; van der Molen, Maurits W.
2018-01-01
This study examined age-related differences in sequential conflict modulation (SCM), elicited in three tasks requiring the inhibition of pre-potent responses; a Simon task, an S-R compatibility (SRC) task and a hybrid Choice-reaction/NoGo task. The primary focus was on age-related changes in performance changes following a conflict trial. A secondary aim was to assess whether SCM follows different developmental trajectories depending on the type of conflict elicited by the tasks. The tasks were presented to three different groups of participants with an age range between 7- to 25-years—one group of participants for each task. For each task, the response-to-stimulus interval (RSI) was manipulated (50 vs. 500 ms) across trial blocks to assess time-dependent changes in conflict modulation. The results showed SCM for all three tasks, although the specific patterns differed between tasks and RSIs. Importantly, the magnitude of SCM decreased with advancing age, but this developmental trend did not survive when considering age-group differences in basic response speed. The current results contribute to the emerging evidence suggesting that patterns of SCM are task specific and were interpreted in terms of multiple bottom-up control mechanisms. PMID:29875718
Rabaneda-Lombarte, Neus; Gelabert, Maria; Xie, Jianlei; Wu, Wei
2017-01-01
β-Catenin, the core element of the Wnt/β-catenin pathway, is a multifunctional and evolutionarily conserved protein which performs essential roles in a variety of developmental and homeostatic processes. Despite its crucial roles, the mechanisms that control its context-specific functions in time and space remain largely unknown. The Wnt/β-catenin pathway has been extensively studied in planarians, flatworms with the ability to regenerate and remodel the whole body, providing a ‘whole animal’ developmental framework to approach this question. Here we identify a C-terminally truncated β-catenin (β-catenin4), generated by gene duplication, that is required for planarian photoreceptor cell specification. Our results indicate that the role of β-catenin4 is to modulate the activity of β-catenin1, the planarian β-catenin involved in Wnt signal transduction in the nucleus, mediated by the transcription factor TCF-2. This inhibitory form of β-catenin, expressed in specific cell types, would provide a novel mechanism to modulate nuclear β-catenin signaling levels. Genomic searches and in vitro analysis suggest that the existence of a C-terminally truncated form of β-catenin could be an evolutionarily conserved mechanism to achieve a fine-tuned regulation of Wnt/β-catenin signaling in specific cellular contexts. PMID:28976975
Developmental emergence of different forms of neuromodulation in Aplysia sensory neurons.
Marcus, E A; Carew, T J
1998-04-14
The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a "retrograde" manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.
Su, Hanxia; Sureda-Gomez, Miquel; Rabaneda-Lombarte, Neus; Gelabert, Maria; Xie, Jianlei; Wu, Wei; Adell, Teresa
2017-10-01
β-Catenin, the core element of the Wnt/β-catenin pathway, is a multifunctional and evolutionarily conserved protein which performs essential roles in a variety of developmental and homeostatic processes. Despite its crucial roles, the mechanisms that control its context-specific functions in time and space remain largely unknown. The Wnt/β-catenin pathway has been extensively studied in planarians, flatworms with the ability to regenerate and remodel the whole body, providing a 'whole animal' developmental framework to approach this question. Here we identify a C-terminally truncated β-catenin (β-catenin4), generated by gene duplication, that is required for planarian photoreceptor cell specification. Our results indicate that the role of β-catenin4 is to modulate the activity of β-catenin1, the planarian β-catenin involved in Wnt signal transduction in the nucleus, mediated by the transcription factor TCF-2. This inhibitory form of β-catenin, expressed in specific cell types, would provide a novel mechanism to modulate nuclear β-catenin signaling levels. Genomic searches and in vitro analysis suggest that the existence of a C-terminally truncated form of β-catenin could be an evolutionarily conserved mechanism to achieve a fine-tuned regulation of Wnt/β-catenin signaling in specific cellular contexts.
Sleep and memory in the making. Are current concepts sufficient in children?
Peigneux, P
2014-01-01
Memory consolidation is an active process wired in brain plasticity. How plasticity mechanisms develop and are modulated after learning is at the core of current models of sleep-dependent memory consolidation. Nowadays, two main classes of sleep-related memory consolidation theories are proposed, namely system consolidation and synaptic homeostasis. However, novel models of consolidation emerge, that might better account for the highly dynamic and interactive processes of encoding and memory consolidation. Processing steps can take place at various temporal phases and be modulated by interactions with prior experiences and ongoing events. In this perspective, sleep might support (or not) memory consolidation processes under specific neurophysiological and environmental circumstances leading to enduring representations in long-term memory stores. We outline here a discussion about how current and emergent models account for the complexity and apparent inconsistency of empirical data. Additionally, models aimed at understanding neurophysiological and/or cognitive processes should not only provide a satisfactory explanation for the phenomena at stake, but also account for their ontogeny and the conditions that disrupt their organisation. Looking at the available literature, this developmental condition appears to remain unfulfilled when trying to understand the relationships between sleep, learning and memory consolidation processes, both in healthy children and in children with pathological conditions.
Sequential establishment of stripe patterns in an expanding cell population.
Liu, Chenli; Fu, Xiongfei; Liu, Lizhong; Ren, Xiaojing; Chau, Carlos K L; Li, Sihong; Xiang, Lu; Zeng, Hualing; Chen, Guanhua; Tang, Lei-Han; Lenz, Peter; Cui, Xiaodong; Huang, Wei; Hwa, Terence; Huang, Jian-Dong
2011-10-14
Periodic stripe patterns are ubiquitous in living organisms, yet the underlying developmental processes are complex and difficult to disentangle. We describe a synthetic genetic circuit that couples cell density and motility. This system enabled programmed Escherichia coli cells to form periodic stripes of high and low cell densities sequentially and autonomously. Theoretical and experimental analyses reveal that the spatial structure arises from a recurrent aggregation process at the front of the continuously expanding cell population. The number of stripes formed could be tuned by modulating the basal expression of a single gene. The results establish motility control as a simple route to establishing recurrent structures without requiring an extrinsic pacemaker.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw
1990-01-01
Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.
Overview of research on Bombyx mori microRNA
Wang, Xin; Tang, Shun-ming; Shen, Xing-jia
2014-01-01
Abstract MicroRNAs (miRNAs) constitute some of the most significant regulatory factors involved at the post-transcriptional level after gene expression, contributing to the modulation of a large number of physiological processes such as development, metabolism, and disease occurrence. This review comprehensively and retrospectively explores the literature investigating silkworm, Bombyx mori L. (Lepidoptera: Bombicidae), miRNAs published to date, including discovery, identification, expression profiling analysis, target gene prediction, and the functional analysis of both miRNAs and their targets. It may provide experimental considerations and approaches for future study of miRNAs and benefit elucidation of the mechanisms of miRNAs involved in silkworm developmental processes and intracellular activities of other unknown non-coding RNAs. PMID:25368077
Telkemeyer, Silke; Rossi, Sonja; Nierhaus, Till; Steinbrink, Jens; Obrig, Hellmuth; Wartenburger, Isabell
2010-01-01
Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory-evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language acquisition. PMID:21716574
ERIC Educational Resources Information Center
Demery, Marie
A module consisting of eight academic skills is presented to help students achieve success and graduate from Northwestern State University (Louisiana) and other institutions. The elective course is open to all students, and especially for entering freshmen who have a grade point average of 2.0 or who are enrolled in developmental education…
Secreted and Transmembrane Wnt Inhibitors and Activators
Cruciat, Cristina-Maria; Niehrs, Christof
2013-01-01
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand–receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770
Gouvêa, Devin Y.; Aprison, Erin Z.; Ruvinsky, Ilya
2015-01-01
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments. PMID:26713620
Vogel, Stephan E; Goffin, Celia; Ansari, Daniel
2015-04-01
The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS) becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number). Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liu, Kaidong; Yuan, Changchun; Li, Haili; Lin, Wanhuang; Yang, Yanjun; Shen, Chenjia; Zheng, Xiaolin
2015-11-05
Auxin and auxin signaling are involved in a series of developmental processes in plants. Auxin Response Factors (ARFs) is reported to modulate the expression of target genes by binding to auxin response elements (AuxREs) and influence the transcriptional activation of down-stream target genes. However, how ARF genes function in flower development and fruit ripening of papaya (Carica papaya L.) is largely unknown. In this study, a comprehensive characterization and expression profiling analysis of 11 C. papaya ARF (CpARF) genes was performed using the newly updated papaya reference genome data. We analyzed CpARF expression patterns at different developmental stages. CpARF1, CpARF2, CpARF4, CpARF5, and CpARF10 showed the highest expression at the initial stage of flower development, but decreased during the following developmental stages. CpARF6 expression increased during the developmental process and reached its peak level at the final stage of flower development. The expression of CpARF1 increased significantly during the fruit ripening stages. Many AuxREs were included in the promoters of two ethylene signaling genes (CpETR1 and CpETR2) and three ethylene-synthesis-related genes (CpACS1, CpACS2, and CpACO1), suggesting that CpARFs might be involved in fruit ripening via the regulation of ethylene signaling. Our study provided comprehensive information on ARF family in papaya, including gene structures, chromosome locations, phylogenetic relationships, and expression patterns. The involvement of CpARF gene expression changes in flower and fruit development allowed us to understand the role of ARF-mediated auxin signaling in the maturation of reproductive organs in papaya.
Modular evolution of the Cetacean vertebral column.
Buchholtz, Emily A
2007-01-01
Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).
Rittschof, Clare C; Bukhari, Syed Abbas; Sloofman, Laura G; Troy, Joseph M; Caetano-Anollés, Derek; Cash-Ahmed, Amy; Kent, Molly; Lu, Xiaochen; Sanogo, Yibayiri O; Weisner, Patricia A; Zhang, Huimin; Bell, Alison M; Ma, Jian; Sinha, Saurabh; Robinson, Gene E; Stubbs, Lisa
2014-12-16
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Regulation of mouse lung development by the extracellular calcium-sensing receptor, CaR
Finney, Brenda A; del Moral, Pierre M; Wilkinson, William J; Cayzac, Sebastien; Cole, Martin; Warburton, David; Kemp, Paul J; Riccardi, Daniela
2008-01-01
Postnatal lung function is critically dependent upon optimal embryonic lung development. As the free ionized plasma calcium concentration ([Ca2+]o) of the fetus is higher than that of the adult, the process of lung development occurs in a hypercalcaemic environment. In the adult, [Ca2+]o is monitored by the G-protein coupled, extracellular calcium-sensing receptor (CaR), but neither its ontogeny nor its potential role in lung development are known. Here, we demonstrate that CaR is expressed in the mouse lung epithelium, and that its expression is developmentally regulated, with a peak of expression at embryonic day 12.5 (E12.5) and a subsequent decrease by E18, after which the receptor is absent. Experiments carried out using the lung explant culture model in vitro show that lung branching morphogenesis is sensitive to [Ca2+]o, being maximal at physiological adult [Ca2+]o (i.e. 1.0–1.3 mm) and lowest at the higher, fetal (i.e. 1.7 mm) [Ca2+]o. Administration of the specific CaR positive allosteric modulator, the calcimimetic R-568, mimics the suppressive effects of high [Ca2+]o on branching morphogenesis while both phospholipase C and PI3 kinase inhibition reverse these effects. CaR activation suppresses cell proliferation while it enhances intracellular calcium signalling, lung distension and fluid secretion. Conditions which are restrictive either to branching or to secretion can be rescued by manipulating [Ca2+]o in the culture medium. In conclusion, fetal Cao2+, acting through a developmentally regulated CaR, is an important extrinsic factor that modulates the intrinsic lung developmental programme. Our observations support a novel role for the CaR in preventing hyperplastic lung disease in utero. PMID:18955379
ERIC Educational Resources Information Center
Macari, Suzanne L.; Campbell, Daniel; Gengoux, Grace W.; Saulnier, Celine A.; Klin, Ami J.; Chawarska, Katarzyna
2012-01-01
The study examined whether performance profiles on individual items of the Toddler Module of the Autism Diagnostic Observation Schedule at 12 months are associated with developmental status at 24 months in infants at high and low risk for developing Autism Spectrum Disorder (ASD). A nonparametric decision-tree learning algorithm identified sets of…
ERIC Educational Resources Information Center
Naumova, Oksana Yu.; Hein, Sascha; Suderman, Matthew; Barbot, Baptiste; Lee, Maria; Raefski, Adam; Dobrynin, Pavel V.; Brown, Pamela J.; Szyf, Moshe; Luthar, Suniya S.; Grigorenko, Elena L.
2016-01-01
This study attempted to establish and quantify the connections between parenting, offspring psychosocial adjustment, and the epigenome. The participants, 35 African American young adults (19 females and 16 males; age = 17-29.5 years), represented a subsample of a 3-wave longitudinal 15-year study on the developmental trajectories of low-income…
Saramma, P P; Sarma, P S; Thomas, Sanjeev V
2014-06-01
Women with epilepsy (WWE) have poorer knowledge and skill in child rearing than women without epilepsy. To evaluate the effect of a self-instructional module (SIM) on the child rearing knowledge (CRK) and practice (CRP) of WWE and developmental outcome of their babies. One hundred women in first trimester of pregnancy that were enrolled in to the Kerala Registry of Epilepsy and Pregnancy and consenting to participate were given a self instructional module (SIM) or a comparator booklet by random concealed allocation. Their child rearing knowledge (CRK) was assessed by a standardized protocol at entry (first trimester) and at 3-4 months postpartum. Their child rearing practice (CRP) was evaluated in third postpartum month. The developmental outcome of babies was assessed at 1 year of age as per registry protocol. Eighty eight women completed this 1 year study. The CRK score was significantly higher (p=.034) for the intervention group (32.91±5) when compared to the comparator group (30.61±5) However, a corresponding improvement in CRP score was not observed for the former. Developmental outcome of 68 babies showed a positive weak correlation between CRP and developmental quotient both mental and motor. The intervention group demonstrated significant increase in their CRK. Nevertheless the results did not indicate a significant improvement in the CRP. The SIM improved the CRK of WWE. Nevertheless, the child rearing practices did not show corresponding improvement. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Retrospective Evaluation of a Collaborative LearningScience Module: The Users' Perspective
ERIC Educational Resources Information Center
DeWitt, Dorothy; Siraj, Saedah; Alias, Norlidah; Leng, Chin Hai
2013-01-01
This study focuses on the retrospective evaluation of collaborative mLearning (CmL) Science module for teaching secondary school science which was designed based on social constructivist learning theories and Merrill's First Principle of Instruction. This study is part of a developmental research in which computer-mediated communication (CMC)…
Parthasarathy, Aravindakshan; Bartlett, Edward
2012-07-01
Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.
Processing Ordinality and Quantity: The Case of Developmental Dyscalculia
Rubinsten, Orly; Sury, Dana
2011-01-01
In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made “ordered” or “non-ordered” judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information. PMID:21935374
Processing ordinality and quantity: the case of developmental dyscalculia.
Rubinsten, Orly; Sury, Dana
2011-01-01
In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made "ordered" or "non-ordered" judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information.
Martín, Mariana L; Lechner, Leandra; Zabaleta, Eduardo J; Salerno, Graciela L
2013-03-01
Recent findings demonstrate that alkaline/neutral invertases (A/N-Invs), enzymes that catalyze the breakdown of sucrose into glucose and fructose, are essential proteins in plant life. The fact that different isoforms are present in multiple locations makes them candidates for the coordination of metabolic processes. In the present study, we functionally characterized the encoding gene of a novel A/N-Inv (named A/N-InvC) from Arabidopsis, which localizes in mitochondria. A/N-InvC is expressed in roots, in aerial parts (shoots and leaves) and flowers. A detailed phenotypic analysis of knockout mutant plants (invc) reveals an impaired growth phenotype. Shoot growth was severely reduced, but root development was not affected as reported for A/N-InvA mutant (inva) plants. Remarkably, germination and flowering, two energy demanding processes, were the most affected stages. The effect of exogenous growth regulators led us to suggest that A/N-InvC may be modulating hormone balance in relation to the radicle emergence. We also show that oxygen consumption is reduced in inva and invc in comparison with wild-type plants, indicating that both organelle isoenzymes may play a fundamental role in mitochondrion functionality. Taken together, our results emphasize the involvement of mitochondrial A/N-Invs in developmental processes and uncover the possibility of playing different roles for the two isoforms located in the organelle.
2012-01-01
Background A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis. PMID:22541006
Amplifying genetic logic gates.
Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew
2013-05-03
Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Reduce, reuse, and recycle: developmental evolution of trait diversification.
Preston, Jill C; Hileman, Lena C; Cubas, Pilar
2011-03-01
A major focus of evolutionary developmental (evo-devo) studies is to determine the genetic basis of variation in organismal form and function, both of which are fundamental to biological diversification. Pioneering work on metazoan and flowering plant systems has revealed conserved sets of genes that underlie the bauplan of organisms derived from a common ancestor. However, the extent to which variation in the developmental genetic toolkit mirrors variation at the phenotypic level is an active area of research. Here we explore evidence from the angiosperm evo-devo literature supporting the frugal use of genes and genetic pathways in the evolution of developmental patterning. In particular, these examples highlight the importance of genetic pleiotropy in different developmental modules, thus reducing the number of genes required in growth and development, and the reuse of particular genes in the parallel evolution of ecologically important traits.
Evidence of an evolutionary hourglass pattern in herbivory-induced transcriptomic responses.
Durrant, Matthew; Boyer, Justin; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing
2017-08-01
Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes. Highly conserved and evolutionarily ancient genes of primary metabolism were activated at intermediate time points (2-6 h) after elicitation, while less constrained and young genes associated with defense signaling and biosynthesis of specialized metabolites were activated at early (before 2 h) and late (after 6 h) stages of the induced response, respectively - a pattern resembling the evolutionary hourglass pattern observed during embryogenesis in animals and the developmental process in plants and fungi. The hourglass patterns found in herbivory-induced defense responses and developmental process are both likely to be a result of signaling modularization and differential evolutionary constraints on the modules involved in the signaling cascade. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Cystoid edema, neovascularization and inflammatory processes in the murine Norrin-deficient retina.
Beck, Susanne C; Karlstetter, Marcus; Garcia Garrido, Marina; Feng, Yuxi; Dannhausen, Katharina; Mühlfriedel, Regine; Sothilingam, Vithiyanjali; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W; Langmann, Thomas
2018-04-13
Mutations in the Norrin (NDP) gene cause severe developmental blood vessel defects in the retina leading to congenital blindness. In the retina of Ndph-knockout mice only the superficial capillary network develops. Here, a detailed characterization of this mouse model at late stages of the disease using in vivo retinal imaging revealed cystoid structures that closely resemble the ovoid cysts in the inner nuclear layer of the human retina with cystoid macular edema (CME). In human CME an involvement of Müller glia cells is hypothesized. In Ndph-knockout retinae we could demonstrate that activated Müller cells were located around and within these cystoid spaces. In addition, we observed extensive activation of retinal microglia and development of neovascularization. Furthermore, ex vivo analyses detected extravasation of monocytic cells suggesting a breakdown of the blood retina barrier. Thus, we could demonstrate that also in the developmental retinal vascular pathology present in the Ndph-knockout mouse inflammatory processes are active and may contribute to further retinal degeneration. This observation delivers a new perspective for curative treatments of retinal vasculopathies. Modulation of inflammatory responses might reduce the symptoms and improve visual acuity in these diseases.
The pro-differentiating role of miR-124: indicating the road to become a neuron.
Maiorano, Nicola Antonio; Mallamaci, Antonello
2010-01-01
miRNAs are essential post-transcriptional modulators affecting cell identity and fate, with a central role in cellular and developmental processes. The brain-enriched neuronal specific miRNAs-124 has been identified as a promoter of neuronogenesis in various conditions, in vitro and in vivo, with a potential role in regulating also activities of post-mitotic neurons, such as synaptic plasticity and memory formation. In this point of view, we recapitulate the main experimental findings substantiating the positive correlation between miR-124 expression and neuronogenesis progression. Then, we describe the impact of miR-124 on the molecular network driving the profound changes which take place in differentiating neuronal cells. Finally, we consider the possibility of a post-transcriptional modulation of miR-124 biogenesis, which may finely regulate--in turn--the activities of miR-124 in neural precursor cells.
Repulsive Guidance Molecules (RGMs) and Neogenin in Bone Morphogenetic Protein (BMP) signaling
Tian, Chenxi; Liu, Jun
2015-01-01
Summary Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type I and type II serine/threonine kinase receptors and intracellular Smad proteins. The BMP pathway regulates multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type I trans-membrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction. PMID:23740870
Comparison of advanced engines for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Fujita, T.; Bowyer, J. M.; Gajanana, B. C.
1980-01-01
A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.
Margolis, Kara Gross
2017-10-01
Many disease conditions considered CNS-predominant harbor significant intestinal comorbidities. Serotonin (5-HT) and the serotonin reuptake transporter (SERT) have increasingly been shown to play important roles in both brain and intestinal development and long-term function. 5-HT and SERT may thus modulate critical functions in the development and perpetuation of brain-gut axis disease. We discuss the potential roles of 5-HT and SERT in the brain and intestinal manifestations of autism spectrum disorders and developmental antidepressant exposure. The potential therapeutic value of 5-HT 4 modulation in the subsequent treatment of these conditions is also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.
Putting together the clues of the everlasting neuro-cardiac liaison.
Franzoso, Mauro; Zaglia, Tania; Mongillo, Marco
2016-07-01
Starting from the late embryonic development, the sympathetic nervous system extensively innervates the heart and modulates its activity during the entire lifespan. The distribution of myocardial sympathetic processes is finely regulated by the secretion of limiting amounts of pro-survival neurotrophic factors by cardiac cells. Norepinephrine release by the neurons rapidly modulates myocardial electrophysiology, and increases the rate and force of cardiomyocyte contractions. Sympathetic processes establish direct interaction with cardiomyocytes, characterized by the presence of neurotransmitter vesicles and reduced cell-cell distance. Whether such contacts have a functional role in both neurotrophin- and catecholamine-dependent communication between the two cell types, is poorly understood. In this review we will address the effects of the sympathetic neuron activity on the myocardium and the hypothesis that the direct neuro-cardiac contact might have a key role both in norepinephrine and neurotrophin mediated signaling. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.
Refurbishment of one-person regenerative air revitalization system
NASA Technical Reports Server (NTRS)
Powell, Ferolyn T.
1989-01-01
Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.
NASA Technical Reports Server (NTRS)
Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.
2000-01-01
This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.
Zhou, Guifei; Liu, Jiangang; Ding, Xiao Pan; Fu, Genyue; Lee, Kang
2016-01-01
Numerous developmental studies have suggested that other-race effect (ORE) in face recognition emerges as early as in infancy and develops steadily throughout childhood. However, there is very limited research on the neural mechanisms underlying this developmental ORE. The present study used Granger causality analysis (GCA) to examine the development of children's cortical networks in processing own- and other-race faces. Children were between 3 and 13 years. An old-new paradigm was used to assess their own- and other-race face recognition with ETG-4000 (Hitachi Medical Co., Japan) acquiring functional near infrared spectroscopy (fNIRS) data. After preprocessing, for each participant and under each face condition, we obtained the causal map by calculating the weights of causal relations between the time courses of [oxy-Hb] of each pair of channels using GCA. To investigate further the differential causal connectivity for own-race faces and other-race faces at the group level, a repeated measure analysis of variance (ANOVA) was performed on the GCA weights for each pair of channels with the face race task (own-race face vs. other-race face) as the within-subject variable and the age as a between-subject factor (continuous variable). We found an age-related increase in functional connectivity, paralleling a similar age-related improvement in behavioral face processing ability. More importantly, we found that the significant differences in neural functional connectivity between the recognition of own-race faces and that of other-race faces were modulated by age. Thus, like the behavioral ORE, the neural ORE emerges early and undergoes a protracted developmental course. PMID:27713696
The cells of cajal-retzius: still a mystery one century after.
Soriano, Eduardo; Del Río, José Antonio
2005-05-05
Cajal-Retzius (CR) cells are an enigmatic class of neurons located at the surface of the cerebral cortex, playing a major role in cortical development. In this review, we discuss several distinct features of these neurons and the mechanisms by which they regulate cortical development. Many CR cells likely have extracortical origin and undergo cell death during development. Recent genetic studies report unique patterns of gene expression in CR cells, which may help to explain the developmental processes in which they participate. Moreover, a number of studies indicate that CR cells, and their secreted gene product, reelin, are involved in neuronal migration by acting on two key partners, migrating neurons and radial glial cells. Emerging data show that these neurons are a critical part of an early and complex network of neural activity in layer I, supporting the notion that CR cells modulate cortical maturation. Given these key and complex developmental properties, it is therefore conceivable for CR cells to be implicated in the pathogenesis of a variety of neurological disorders.
Pervasive, Coordinated Protein-Level Changes Driven by Transcript Isoform Switching during Meiosis.
Cheng, Ze; Otto, George Maxwell; Powers, Emily Nicole; Keskin, Abdurrahman; Mertins, Philipp; Carr, Steven Alfred; Jovanovic, Marko; Brar, Gloria Ann
2018-02-22
To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein. By this pervasive mechanism for the modulation of protein levels through a natural developmental program, a single transcription factor can coordinately activate and repress protein synthesis for distinct sets of genes. The distinction is not based on whether or not an mRNA is induced but rather on the type of transcript produced. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Dali, Mohd Hasani; Shaari, Abdull Shukur; Ghazali, Mohd Izam; Yusoff, Nuraini
2012-01-01
Development of module has great impact on literacy today. This paper highlights the challenges and experiences of the researchers in an academic institution where the research project which initially began as part of an academic research initiative expanded to helping a marginalized community in need. Literacy pedagogy has to be relevant to the…
ERIC Educational Resources Information Center
Thanabalan, T. Vanitha; Siraj, Saedah; Alias, Norlidah
2015-01-01
This study involved the development of a literacy pedagogy for the indigenous people in Malaysia. The Developmental Research Approach was used where insights about the indigenous people and their lifestyle were gathered and analysed for content in developing a literacy pedagogical module. Several principles emerged from the data collected and…
Vandelle, Elodie; Vannozzi, Alessandro; Wong, Darren; Danzi, Davide; Digby, Anne-Marie; Dal Santo, Silvia; Astegno, Alessandra
2018-06-04
Calcium (Ca 2+ ) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca 2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca 2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca 2+ -binding proteins in grapevine and to explore their potential for further biotechnological applications. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
ERIC Educational Resources Information Center
Morrier, Michael J.; Ousley, Opal Y.; Caceres-Gamundi, Gabriella A.; Segall, Matthew J.; Cubells, Joseph F.; Young, Larry J.; Andari, Elissar
2017-01-01
The ADOS-2 Modules 1-3 now include a standardized calibrated severity score (CSS) from 1 to 10 based on the overall total raw score. Subsequent research published CSS for Module 4 (Hus, Lord, "Journal of Autism and Developmental Disorders" 44(8):1996-2012, 2014); however more research is needed to examine the psychometric properties of…
Intra-individual variation and evolution of modular structure in Draba plants.
Grigorieva, Olga V; Cherdantsev, Vladimir G
2014-09-01
We studied the evolution of quantitative traits related to shoot system architecture in a large genus Draba (Brassicaceae) making emphasis on the dynamics of relationship between individual and intra-individual variation. The results suggest that selection leading to origin of different life forms arises mainly from a necessity of moderation of the non-adaptive contest between the egoistic plant modules, taking care of self-reproduction of their own. We separated two evolutionary trends, one leading to the formation of short-lived monocarpic, and the other to long-lived polycarpic forms from the short-lived polycarpic plants. The first trend concerns with transformation of the innovation shoots into the axillary inflorescences by shortening of their vegetative developmental phase, while the second one - with individuation of the plant modules owing to acquisition of the capacity of rooting and separating from the mother plant. In both trends, the turning points of the evolution are those of originating of the negative for individual plants interactions between the plant modules being indirect non-adaptive consequences of the previous adaptive evolution and initiating selection for rebuilding of the plant modular structure. The difference between selection operating on intra-individual and individual variations is that, in the first case, combining of the characters of different individuals is infeasible. This leaves no choice for the evolution but to change the developmental mechanisms. In the case considered in this work, this is a change in shoot architecture using the material afforded by the natural variability of developmental pathways of the plant modules. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Vernon, Claire G; Swanson, Geoffrey T
2017-03-22
Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. Copyright © 2017 the authors 0270-6474/17/373352-12$15.00/0.
Vernon, Claire G.
2017-01-01
Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG–dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2−/− neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG–dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. PMID:28235897
Bacterial differentiation via gradual activation of global regulators.
Kovács, Ákos T
2016-02-01
Bacteria have evolved to adapt to various conditions and respond to certain stress conditions. The ability to sense and efficiently reply to these environmental effects involve versatile array of sensors and global or specific regulators. Interestingly, modulation of the levels of active global regulators enables bacteria to respond to diverse signals via a single central transcriptional regulator and to activate or repress certain differentiation pathways at a spatio-temporal manner. The Gram-positive Bacillus subtilis is an ideal bacterium to study how membrane bound and cytoplasmic sensor kinases affect the level of phosphorylated global regulator, Spo0A which in response activates genes related to sliding, biofilm formation, and sporulation. In addition, other global regulators, including the two-component system DegS-DegU, modulate overlapping and complementary genes in B. subtilis related to surface colonization and biofilm formation. The intertwinement of global regulatory systems also allows the accurate modulation of differentiation pathways. Studies in the last decade enable us to get a deeper insight into the role of global regulators on the smooth transition of developmental processes in B. subtilis.
Perlman, Susan B.; Hein, Tyler C.; Stepp, Stephanie D.
2013-01-01
Attention modulation when confronted with emotional stimuli is considered a critical aspect of executive function, yet rarely studied during childhood and adolescence, a developmental period marked with changes in these processes. We employed a novel, and child-friendly fMRI task that used emotional faces to investigate the neural underpinnings of the attention-emotion interaction in a child and adolescent sample (n=23, Age m=13.46, sd=2.86, range=8.05–16.93 years). Results implied modulation of activation in the orbitofrontal cortex (OFC) due to emotional distractor valence, which marginally correlated with participant age. Additionally, parent-reported emotional reactivity predicted the trajectory of BOLD signal increase for fearful emotional face distractors such that participants low in emotional reactivity had a steeper latency to peak activation. Results imply that the use of the OFC to modulate attention in the face of social/emotional stimuli may mature with age and may be tightly coupled with adaptive emotional functioning. Findings are discussed in the context of risk for the development of psychiatric disorders, where increased emotional reactivity is particularly apparent. PMID:24055416
MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons
Kos, Aron; Olde Loohuis, Nikkie; Meinhardt, Julia; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard; Aschrafi, Armaz
2016-01-01
MicroRNAs (miRs) are non-coding gene transcripts abundantly expressed in both the developing and adult mammalian brain. They act as important modulators of complex gene regulatory networks during neuronal development and plasticity. miR-181c is highly abundant in cerebellar cortex and its expression is increased in autism patients as well as in an animal model of autism. To systematically identify putative targets of miR-181c, we repressed this miR in growing cortical neurons and found over 70 differentially expressed target genes using transcriptome profiling. Pathway analysis showed that the miR-181c-modulated genes converge on signaling cascades relevant to neurite and synapse developmental processes. To experimentally examine the significance of these data, we inhibited miR-181c during rat cortical neuronal maturation in vitro; this loss-of miR-181c function resulted in enhanced neurite sprouting and reduced synaptogenesis. Collectively, our findings suggest that miR-181c is a modulator of gene networks associated with cortical neuronal maturation. PMID:27017280
Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.
Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R
2016-01-01
Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the freezing, senescence, and drought stresses modulating factor ATAF1 and various other transcription factors and pathways, which in turn act to regulate chlorophyll degradation by up-regulating PAO expression.
NASA Astrophysics Data System (ADS)
Newman, Stuart A.; Bhat, Ramray
2008-03-01
The shapes and forms of multicellular organisms arise by the generation of new cell states and types and changes in the numbers and rearrangements of the various kinds of cells. While morphogenesis and pattern formation in all animal species are widely recognized to be mediated by the gene products of an evolutionarily conserved 'developmental-genetic toolkit', the link between these molecular players and the physics underlying these processes has been generally ignored. This paper introduces the concept of 'dynamical patterning modules' (DPMs), units consisting of one or more products of the 'toolkit' genes that mobilize physical processes characteristic of chemically and mechanically excitable meso- to macroscopic systems such as cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on lateral inhibition and multistable and oscillatory dynamics. We suggest that ancient toolkit gene products, most predating the emergence of multicellularity, assumed novel morphogenetic functions due to change in the scale and context inherent to multicellularity. We show that DPMs, acting individually and in concert with each other, constitute a 'pattern language' capable of generating all metazoan body plans and organ forms. The physical dimension of developmental causation implies that multicellular forms during the explosive radiation of animal body plans in the middle Cambrian, approximately 530 million years ago, could have explored an extensive morphospace without concomitant genotypic change or selection for adaptation. The morphologically plastic body plans and organ forms generated by DPMs, and their ontogenetic trajectories, would subsequently have been stabilized and consolidated by natural selection and genetic drift. This perspective also solves the apparent 'molecular homology-analogy paradox', whereby widely divergent modern animal types utilize the same molecular toolkit during development by proposing, in contrast to the Neo-Darwinian principle, that phenotypic disparity early in evolution occurred in advance of, rather than closely tracked, genotypic change.
Developmental Stage of Parasites Influences the Structure of Fish-Parasite Networks
Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis
2013-01-01
Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries. PMID:24124506
Developmental stage of parasites influences the structure of fish-parasite networks.
Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis
2013-01-01
Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries.
Schramm, Andreas; Lee, Bongsoo; Higgs, Penelope I.
2012-01-01
Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple “two-component” systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program. PMID:22661709
Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong
2017-03-01
Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus. Copyright © 2016 Elsevier Inc. All rights reserved.
Developmental origins of novel gut morphology in frogs
Bloom, Stephanie; Ledon-Rettig, Cris; Infante, Carlos; Everly, Anne; Hanken, James; Nascone-Yoder, Nanette
2013-01-01
SUMMARY Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation. PMID:23607305
Adolescent transformations of behavioral and neural processes as potential targets for prevention.
Eldreth, Dana; Hardin, Michael G; Pavletic, Nevia; Ernst, Monique
2013-06-01
Adolescence is a transitional period in development that is marked by a distinct, typical behavioral profile of high rates of exploration, novelty-seeking, and emotional lability. While these behaviors generally assist the adolescent transition to independence, they can also confer vulnerability for excessive risk-taking and psychopathology, particularly in the context of specific environmental or genetic influences. As prevention research depends on the identification of targets of vulnerability, the following review will discuss the interplay among motivational systems including reward-related, avoidance-related, and regulatory processes in typical and atypical adolescent development. Each set of processes will be discussed in relation to their underlying neural correlates and distinct developmental trajectories. Evidence suggests that typical adolescent behavior and the risk for atypical development are mediated by heightened adolescent responsiveness of reward-related and avoidance-related systems under specific conditions, concurrent with poor modulation by immature regulatory processes. Finally, we will propose strategies to exploit heightened reward processing to reinforce inhibitory control, which is an essential component of regulatory processes in prevention interventions.
Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.
Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther
2017-01-01
Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.
Houwink, Annemieke; Geerdink, Yvonne A; Steenbergen, Bert; Geurts, Alexander C H; Aarts, Pauline B M
2013-01-01
To investigate the validity and reliability of the revised Video-Observation Aarts and Aarts module: Determine Developmental Disregard (VOAA-DDD-R). Upper-limb capacity and performance were assessed in children with unilateral spastic cerebral palsy (CP) by measuring overall duration of affected upper-limb use and the frequency of specific behaviours during a task in which bimanual activity was demanded ('stringing beads') and stimulated ('decorating a muffin'). Developmental disregard was defined as the difference in duration of affected upper-limb use between both tasks. Raters were two occupational and one physical therapist who received 3 hours of training. Construct validity was determined by comparing children with CP with typically developing children. Intrarater, interrater, and test-retest reliability were determined using the intraclass correlation coefficient. Standard errors of measurement and smallest detectable differences were also calculated. Twenty-five children with CP (15 females, 10 males; mean age 4 y 9 mo [SD 1 y 7 mo], range 2 y 9 mo-8 y; Manual Ability Classification System levels I-III) scored lower on capacity (p=0.052) and performance (p<0.001), and higher on developmental disregard (p<0.001) than 46 age- and sex-matched typically developing children (23 males; mean age 5 y 3 mo [SD 1 y 5 mo], range 2 y 6 mo-8 y). The intraclass correlation coefficients (0.79-1.00) indicated good reliability. Absolute agreement was high, standard errors of measurement ranged from 4.5 to 6.8%, and smallest detectable differences ranged from 12.5 to 19.0%. The VOAA-DDD-R can be reliably and validly used by occupational and physical therapists to assess upper-limb capacity, performance, and developmental disregard in children (2 y 6 mo-8 y) with CP. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module reviews the various regulatory requirements associated with used oil management. The goal of the training module is to provide an overview of the used oil management program and to explain the different regulatory scenarios that can apply to used oil. The module begins by briefly tracing the developmental history of the regulations concerning used oil. A summary of the present used oil management program, as well as a brief summary of the former program, provides a basic comparison and introduction to both programs.
Acting without seeing: eye movements reveal visual processing without awareness.
Spering, Miriam; Carrasco, Marisa
2015-04-01
Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. Here, we review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movement. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging, and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Yuanyuan; Tollefsbol, Trygve O
2016-01-01
Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781
Spering, Miriam; Carrasco, Marisa
2015-01-01
Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. We review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movements. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. PMID:25765322
Application programs written by using customizing tools of a computer-aided design system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X.; Huang, R.; Juricic, D.
1995-12-31
Customizing tools of Computer-Aided Design Systems have been developed to such a degree as to become equivalent to powerful higher-level programming languages that are especially suitable for graphics applications. Two examples of application programs written by using AutoCAD`s customizing tools are given in some detail to illustrate their power. One tool uses AutoLISP list-processing language to develop an application program that produces four views of a given solid model. The other uses AutoCAD Developmental System, based on program modules written in C, to produce an application program that renders a freehand sketch from a given CAD drawing.
Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions
Wu, Hao; Zhang, Yi
2014-01-01
Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes. PMID:24439369
ERIC Educational Resources Information Center
Emde, Robert N.
1992-01-01
Considers contributions of Sigmund Freud and Rene Spitz to developmental psychology. Freud's contributions include his observations about play, perspectives on developmental processes, and ideas about unconscious mental activity. Spitz's contributions include his assessments of infants, perspectives on developmental processes, and his concept of…
Modulators of inhibitor of growth (ING) family expression in development and disease.
Maher, Stacey K; Helbing, Caren C
2009-05-01
The inhibitor of growth (ING) gene family proteins regulate many critical cellular processes such as cell proliferation and growth, apoptosis, DNA repair, senescence, angiogenesis, and drug resistance. Their transcripts and proteins are differentially expressed in health and disease and there is evidence for developmental regulation. The vast majority of studies have characterized ING levels in the context of cancer. However, relatively little attention has been paid to the expression of ING family members in other contexts. This review summarizes the findings from human and animal model systems that provide insight into the factors influencing the expression of these important proteins. We examine the influence of cell cycle and aging as well as genotoxic stress on ING expression levels and evaluate several emerging areas of inquiry demonstrating that ING gene activity may be modulated by factors such as the p53 tumor suppressor, DNA methylation, and ING proteins themselves with external factors such as hormones, reactive oxygen species, TGFbeta signalling, and other proteins of pathological significance also influencing ING levels. We then briefly discuss the influence of post-translational modification and changes in subcellular localization as it pertains to modulation of ING expression. Understanding how ING expression is modulated represents a vital aspect of effective drug targeting strategies.
Zhu, Xin-Guang; Lynch, Jonathan P; LeBauer, David S; Millar, Andrew J; Stitt, Mark; Long, Stephen P
2016-05-01
A paradigm shift is needed and timely in moving plant modelling from largely isolated efforts to a connected community endeavour that can take full advantage of advances in computer science and in mechanistic understanding of plant processes. Plants in silico (Psi) envisions a digital representation of layered dynamic modules, linking from gene networks and metabolic pathways through to cellular organization, tissue, organ and whole plant development, together with resource capture and use efficiency in dynamic competitive environments, ultimately allowing a mechanistically rich simulation of the plant or of a community of plants in silico. The concept is to integrate models or modules from different layers of organization spanning from genome to phenome to ecosystem in a modular framework allowing the use of modules of varying mechanistic detail representing the same biological process. Developments in high-performance computing, functional knowledge of plants, the internet and open-source version controlled software make achieving the concept realistic. Open source will enhance collaboration and move towards testing and consensus on quantitative theoretical frameworks. Importantly, Psi provides a quantitative knowledge framework where the implications of a discovery at one level, for example, single gene function or developmental response, can be examined at the whole plant or even crop and natural ecosystem levels. © 2015 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Basnet, Ram Kumar; Moreno-Pachon, Natalia; Lin, Ke; Bucher, Johan; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje
2013-12-01
Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.
NASA Technical Reports Server (NTRS)
Reina, B., Jr.; Patterson, H. G.
1975-01-01
The conceptual aspects of the command and service module entry monitor subsystem, together with an interpretation of the displays and their associated relationship to entry trajectory control, are presented. The entry monitor subsystem is described, and the problems encountered during the developmental phase and the first five manned Apollo flights are discussed in conjunction with the design improvements implemented.
Ferguson, Brielle R.; Gao, Wen-Jun
2015-01-01
The mediodorsal thalamus (MD) represents a fundamental subcortical relay to the prefrontal cortex (PFC), and is thought to be highly implicated in modulation of cognitive performance. Additionally, it undergoes highly conserved developmental stages, which, when dysregulated, can have detrimental consequences. Embryonically, the MD experiences a tremendous surge in neurogenesis and differentiation, and disruption of this process may underlie the pathology in certain neurodevelopmental disorders. However, during the postnatal period, a vast amount of cell loss in the MD occurs. These together may represent an extended critical period for postnatal development, in which disturbances in the normal growth or reduction of the MD afferents to the PFC, can result in PFC-dependent cognitive, affective, or psychotic abnormalities. In this review, we explore the current knowledge supporting this hypothesis of a protracted critical period, and propose how developmental changes in the MD contribute to successful prefrontal cortical development and function. Specifically, we elaborate on the unique properties of MD-PFC connections compared with other thalamocortical afferents in sensory cortices, examine how MD-PFC innervation modulates synaptic transmission in the local prefrontal circuitry, and speculate on what occurs during postnatal development, particularly within the early neonatal stage, as well as juvenile and adolescent periods. Finally, we discuss the questions that remain and propose future experiments in order to provide perspective and novel insights into the cause of neuropsychiatric disorders associated with MD-PFC development. PMID:25620923
Processing LiDAR Data to Predict Natural Hazards
NASA Technical Reports Server (NTRS)
Fairweather, Ian; Crabtree, Robert; Hager, Stacey
2008-01-01
ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.
Age-related influence of contingencies on a saccade task
Jazbec, Sandra; Hardin, Michael G.; Schroth, Elizabeth; McClure, Erin; Pine, Daniel S.; Ernst, Monique
2009-01-01
Adolescence is characterized by increased risk-taking and sensation-seeking, presumably brought about by developmental changes within reward-mediating brain circuits. A better understanding of the neural mechanisms underlying reward-seeking during adolescence can have critical implications for the development of strategies to enhance adolescent performance in potentially dangerous situations. Yet little research has investigated the influence of age on the modulation of behavior by incentives with neuroscience-based methods. A monetary reward antisaccade task (the RST) was used with 23 healthy adolescents and 30 healthy adults. Performance accuracy, latency and peak velocity of saccade responses (prosaccades and antisaccades) were analyzed. Performance accuracy across all groups was improved by incentives (obtain reward, avoid punishment) for both, prosaccades and antisaccades. However, modulation of antisaccade errors (direction errors) by incentives differed between groups: adolescents modulated saccade latency and peak velocity depending on contingencies, with incentives aligning their performance to that of adults; adults did not show a modulation by incentives. These findings suggest that incentives modulate a global measure of performance (percent direction errors) in adults and adolescents, and exert a more powerful influence on the control of incorrect motor responses in adolescents than in adults. These findings suggest that this task can be used in neuroimaging studies as a probe of the influence of incentives on cognitive control from a developmental perspective as well as in health and disease. PMID:16733706
Age-related influence of contingencies on a saccade task.
Jazbec, Sandra; Hardin, Michael G; Schroth, Elizabeth; McClure, Erin; Pine, Daniel S; Ernst, Monique
2006-10-01
Adolescence is characterized by increased risk-taking and sensation-seeking, presumably brought about by developmental changes within reward-mediating brain circuits. A better understanding of the neural mechanisms underlying reward-seeking during adolescence can have critical implications for the development of strategies to enhance adolescent performance in potentially dangerous situations. Yet little research has investigated the influence of age on the modulation of behavior by incentives with neuroscience-based methods. A monetary reward antisaccade task (the RST) was used with 23 healthy adolescents and 30 healthy adults. Performance accuracy, latency and peak velocity of saccade responses (prosaccades and antisaccades) were analyzed. Performance accuracy across all groups was improved by incentives (obtain reward, avoid punishment) for both, prosaccades and antisaccades. However, modulation of antisaccade errors (direction errors) by incentives differed between groups: adolescents modulated saccade latency and peak velocity depending on contingencies, with incentives aligning their performance to that of adults; adults did not show a modulation by incentives. These findings suggest that incentives modulate a global measure of performance (percent direction errors) in adults and adolescents, and exert a more powerful influence on the control of incorrect motor responses in adolescents than in adults. These findings suggest that this task can be used in neuroimaging studies as a probe of the influence of incentives on cognitive control from a developmental perspective as well as in health and disease.
Emotions and voluntary action: what link in children with autism?
Vernazza-Martin, S; Longuet, S; Chamot, J M; Orève, M J
2013-08-15
This research focuses on the impact of emotions--defined as "motivational states"--on the organization of goal directed locomotion in children with autism. Walking toward a goal involves both cognitive processes responsible for movement planning and automatic processes linked to movement programming. To these processes, motivation leading to achieving the goal is added. For some authors, a deficit of planning and/or programming processes is highlighted in autism. Others stand for some impairment of the emotional system. The aim of this research is to link these two viewpoints and to determine if, in children with autism, the organization of locomotion is affected by a positive/aversive emotion conferred to an object to fetch. Twenty-nine children participated in the study (11 children with autism--mean age 122 months; 9 mental age-matched controls--mean age 36 months; and 9 chronological age-matched controls--mean age 122 months). They were instructed to go and get a positive or aversive emotional valence object located straight ahead, at 30° to the right or straight ahead then moved at mid-distance to the right. Gait analysis was performed using the Vicon system. The main results suggest that a positive emotional context promotes the cognitive processes involved in movement planning while an aversive emotional context blocks it or disturbs it in children with autism. No emotions effect is observed on movement programming. It is suggested that emotions triggered off and modulated movement planning and that the deficit observed was related to a developmental impairment rather than to a developmental delay. Copyright © 2013 Elsevier B.V. All rights reserved.
Staples, M C; Somkuwar, S S; Mandyam, C D
2015-10-01
Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.
2015-01-01
Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171
MtMAPKK4 is an essential gene for growth and reproduction of Medicago truncatula.
Chen, Tao; Zhou, Bo; Duan, Liujian; Zhu, Hui; Zhang, Zhongming
2017-04-01
Mitogen-activated protein kinase (MAPK) cascades are universal signaling modules in eukaryotes, including yeasts, animals and plants. They are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. A MAPK cascade is composed of three functionally tiered protein kinases, namely MAPK, MAPK kinases (MAPKKs) and MAPK kinase kinases (MAPKKKs). These kinases have been intensively studied for their roles in developmental and physiological processes in various organisms. In this study, a Medicago truncatula MtMAPKK4 mutant with the tobacco retrotransposon Tnt1 insertion was identified using reverse genetics methods. No homozygous progeny could be produced by self-pollination of mapkk4/+ heterozygotes for 5 generations. Heterozygous mapkk4/+ mutant plants exhibited growth retardation, chlorosis symptoms and significantly reduced numbers of infection threads and nodules. The interaction between MtMAPKK4 and MtMAPK3/6 occurred both in yeast and in planta. Green fluorescent protein-tagged MtMAPKK4, MtMAPK3 and MtMAPK6 were all localized to membranes, cytoplasm and nuclei. Expression of MtMAPKK4, MtMAPK3 and MtMAPK6 was detected in various tissues of M. truncatula plants at the nodule maturation stage. Transcript levels of these genes were decreased in roots at the early symbiotic stage. © 2016 Scandinavian Plant Physiology Society.
Glucocorticoid programming of neuroimmune function.
Walker, David J; Spencer, Karen A
2018-01-15
Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
O'Brien, Beth A.; Wolf, Maryanne; Miller, Lynne T.; Lovett, Maureen W.; Morris, Robin
2011-01-01
Reading fluency beyond decoding is a limitation to many children with developmental reading disorders. In the interest of remediating dysfluency, contributing factors need to be explored and understood in a developmental framework. The focus of this study is orthographic processing in developmental dyslexia, and how it may contribute to reading…
Is Transcriptomic Regulation of Berry Development More Important at Night than During the Day?
Rienth, Markus; Torregrosa, Laurent; Kelly, Mary T.; Luchaire, Nathalie; Pellegrino, Anne; Grimplet, Jérôme; Romieu, Charles
2014-01-01
Diurnal changes in gene expression occur in all living organisms and have been studied on model plants such as Arabidopsis thaliana. To our knowledge the impact of the nycthemeral cycle on the genetic program of fleshly fruit development has been hitherto overlooked. In order to circumvent environmental changes throughout fruit development, young and ripening berries were sampled simultaneously on continuously flowering microvines acclimated to controlled circadian light and temperature changes. Gene expression profiles along fruit development were monitored during both day and night with whole genome microarrays (Nimblegen® vitis 12x), yielding a total number of 9273 developmentally modulated probesets. All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Very similar developmental patterns of gene expression were observed using independent hierarchical clustering of day and night data, whereas functional categories of allocated transcripts varied according to time of day. Many transcripts within pathways, known to be up-regulated during ripening, in particular those linked to secondary metabolism exhibited a clearer developmental regulation at night than during the day. Functional enrichment analysis also indicated that diurnally modulated genes considerably varied during fruit development, with a shift from cellular organization and photosynthesis in green berries to secondary metabolism and stress-related genes in ripening berries. These results reveal critical changes in gene expression during night development that differ from daytime development, which have not been observed in other transcriptomic studies on fruit development thus far. PMID:24551177
Is transcriptomic regulation of berry development more important at night than during the day?
Rienth, Markus; Torregrosa, Laurent; Kelly, Mary T; Luchaire, Nathalie; Pellegrino, Anne; Grimplet, Jérôme; Romieu, Charles
2014-01-01
Diurnal changes in gene expression occur in all living organisms and have been studied on model plants such as Arabidopsis thaliana. To our knowledge the impact of the nycthemeral cycle on the genetic program of fleshly fruit development has been hitherto overlooked. In order to circumvent environmental changes throughout fruit development, young and ripening berries were sampled simultaneously on continuously flowering microvines acclimated to controlled circadian light and temperature changes. Gene expression profiles along fruit development were monitored during both day and night with whole genome microarrays (Nimblegen® vitis 12x), yielding a total number of 9273 developmentally modulated probesets. All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Very similar developmental patterns of gene expression were observed using independent hierarchical clustering of day and night data, whereas functional categories of allocated transcripts varied according to time of day. Many transcripts within pathways, known to be up-regulated during ripening, in particular those linked to secondary metabolism exhibited a clearer developmental regulation at night than during the day. Functional enrichment analysis also indicated that diurnally modulated genes considerably varied during fruit development, with a shift from cellular organization and photosynthesis in green berries to secondary metabolism and stress-related genes in ripening berries. These results reveal critical changes in gene expression during night development that differ from daytime development, which have not been observed in other transcriptomic studies on fruit development thus far.
The dynamic lift of developmental process.
Smith, Linda B; Breazeal, Cynthia
2007-01-01
What are the essential properties of human intelligence, currently unparalleled in its power relative to other biological forms and relative to artificial forms of intelligence? We suggest that answering this question depends critically on understanding developmental process. This paper considers three principles potentially essential to building human-like intelligence: the heterogeneity of the component processes, the embedding of development in a social world, and developmental processes that change the cognitive system as a function of the history of soft-assemblies of these heterogeneous processes in specific tasks. The paper uses examples from human development and from developmental robotics to show how these processes also may underlie biological intelligence and enable us to generate more advanced forms of artificial intelligence.
Sibout, Richard; Proost, Sebastian; Hansen, Bjoern Oest; Vaid, Neha; Giorgi, Federico M; Ho-Yue-Kuang, Severine; Legée, Frédéric; Cézart, Laurent; Bouchabké-Coussa, Oumaya; Soulhat, Camille; Provart, Nicholas; Pasha, Asher; Le Bris, Philippe; Roujol, David; Hofte, Herman; Jamet, Elisabeth; Lapierre, Catherine; Persson, Staffan; Mutwil, Marek
2017-08-01
While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.
Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong
2014-04-01
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.
Long non-coding RNAs and mRNAs profiling during spleen development in pig.
Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou
2018-01-01
Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.
ERIC Educational Resources Information Center
Morehead State Univ., KY.
Three types of instruction were used in the Ohio Module Project: traditional classes, programmed learning centers, and home instruction. Four major objectives of the project are: (1) to determine the kind of training program necessary to prepare paraprofessionals to operate an instructional program utilizing programmed materials, (2) to compare…
ERIC Educational Resources Information Center
Wilson, E. C.
This catalog contains a listing of the audio-visual aids used in the Alabama State Module of the Appalachian Adult Basic Education Program. Aids listed include filmstrips utilized by the following organizations: Columbia, South Carolina State Department of Education; Raleigh, North Carolina State Department of Education; Alden Films of Brooklyn,…
Viola, Ivana L.; Gonzalez, Daniel H.
2016-01-01
TCP proteins integrate a family of transcription factors involved in the regulation of developmental processes and hormone responses. It has been shown that most members of class I, one of the two classes in which the TCP family is divided, contain a conserved Cys that leads to inhibition of DNA binding when oxidized. In this work, we describe that the class-I TCP protein TCP15 inhibits anthocyanin accumulation during exposure of plants to high light intensity by modulating the expression of transcription factors involved in the induction of anthocyanin biosynthesis genes, as suggested by the study of plants that express TCP15 from the 35SCaMV promoter and mutants in TCP15 and the related gene TCP14. In addition, the effect of TCP15 on anthocyanin accumulation is lost after prolonged incubation under high light intensity conditions. We provide evidence that this is due to inactivation of TCP15 by oxidation of Cys-20 of the TCP domain. Thus, redox modulation of TCP15 activity in vivo by high light intensity may serve to adjust anthocyanin accumulation to the duration of exposure to high irradiation conditions. PMID:26574599
Information Propagation in Developmental Enhancers
NASA Astrophysics Data System (ADS)
Jena, Siddhartha; Levine, Michael
Rather than encoding information about protein sequence, certain lengths of noncoding DNA, called enhancers, interact with protein machinery such as transcription factors to precisely regulate gene expression. Enhancers have been studied extensively in the fruit fly Drosophila melanogaster, where they regulate the expression of developmental genes that establish the blueprint of the adult fly. It has been suggested that enhancer sequences possess a specific but unknown syntax with regards to the placement and strength of transcription factor binding sites. Moreover, studies in divergent fly species have shown that compensatory evolution allows for maintenance of enhancer functionality despite considerable variation in primary DNA sequence. Here, the possible role of enhancers as signal processing modules is studied as a way of explaining these two findings. We first demonstrate how this framework can be used to explain the fine-tuned spatiotemporal dynamics of gene expression. We then explore the evolutionary pressure on enhancer sequences and the resulting emergence of enhancers that are linked by compensatory mutations. This study provides a possible mechanism for the function of multiple enhancers linked to a single gene.
miR-14 regulates autophagy during developmental cell death by targeting ip3-kinase 2.
Nelson, Charles; Ambros, Victor; Baehrecke, Eric H
2014-11-06
Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in the fat body. Importantly, miR-14 regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (ip3k2), thereby affecting inositol 1,4,5-trisphosphate (IP3) signaling and calcium levels during salivary gland cell death. This study provides in vivo evidence of microRNA regulation of autophagy through modulation of IP3 signaling. Copyright © 2014 Elsevier Inc. All rights reserved.
FGF signaling refines Wnt gradients to regulate the patterning of taste papillae.
Prochazkova, Michaela; Häkkinen, Teemu J; Prochazka, Jan; Spoutil, Frantisek; Jheon, Andrew H; Ahn, Youngwook; Krumlauf, Robb; Jernvall, Jukka; Klein, Ophir D
2017-06-15
The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes. © 2017. Published by The Company of Biologists Ltd.
An association account of false belief understanding.
De Bruin, L C; Newen, A
2012-05-01
The elicited-response false belief task has traditionally been considered as reliably indicating that children acquire an understanding of false belief around 4 years of age. However, recent investigations using spontaneous-response tasks suggest that false belief understanding emerges much earlier. This leads to a developmental paradox: if young infants already understand false belief, then why do they fail the elicited-response false belief task? We postulate two systems to account for the development of false belief understanding: an association module, which provides infants with the capacity to register congruent associations between agents and objects, and an operating system, which allows them to transform these associations into incongruent associations through a process of inhibition, selection and representation. The interaction between the association module and the operating system enables infants to register increasingly complex associations on the basis of another agent's movements, visual perspective and propositional attitudes. This allows us account for the full range of findings on false belief understanding. Copyright © 2012 Elsevier B.V. All rights reserved.
An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling1[OPEN
2015-01-01
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. PMID:25897001
Lluis, Frederic; Pedone, Elisa; Pepe, Stefano; Cosma, Maria Pia
2010-11-01
Cell-cell fusion contributes to cell differentiation and developmental processes. We have previously showed that activation of Wnt/β-catenin enhances somatic cell reprograming after polyethylene glycol (PEG)-mediated fusion. Here, we show that neural stem cells and ESCs can fuse spontaneously in cocultures, although with very low efficiency (about 2%), as the hybrids undergo apoptosis. In contrast, when Wnt/β-catenin signaling is activated in ESCs and leads to accumulation of low amounts of β-catenin in the nucleus, activated ESCs can reprogram somatic cells with very high efficiency after spontaneous fusion. Furthermore, we also show that different levels of β-catenin accumulation in the ESC nuclei can modulate cell proliferation, although in our experimental setting, cell proliferation does not modulate the reprograming efficiency per se. Overall, the present study provides evidence that spontaneous fusion occurs, while the survival of the reprogramed clones is strictly dependent on induction of a Wnt-mediated reprograming pathway. Copyright © 2010 AlphaMed Press.
Developmental origins of a novel gut morphology in frogs.
Bloom, Stephanie; Ledon-Rettig, Cris; Infante, Carlos; Everly, Anne; Hanken, James; Nascone-Yoder, Nanette
2013-05-01
Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation. © 2013 Wiley Periodicals, Inc.
Hashida, Shin-Nosuke; Itami, Taketo; Takahara, Kentaro; Hirabayashi, Takayuki; Uchimiya, Hirofumi; Kawai-Yamada, Maki
2016-11-01
NAD is a well-known co-enzyme that mediates hundreds of redox reactions and is the basis of various processes regulating cell responses to different environmental and developmental cues. The regulatory mechanism that determines the amount of cellular NAD and the rate of NAD metabolism remains unclear. We created Arabidopsis thaliana plants overexpressing the NAD synthase (NADS) gene that participates in the final step of NAD biosynthesis. NADS overexpression enhanced the activity of NAD biosynthesis but not the amounts of NAD + , NADH, NADP + or NADPH. However, the amounts of some intermediates were elevated, suggesting that NAD metabolism increased. The NAD redox state was greatly facilitated by an imbalance between NAD generation and degradation in response to bolting. Metabolite profiling and transcriptional analysis revealed that the drastic modulation of NAD redox homeostasis increased tricarboxylic acid flux, causing the ectopic generation of reactive oxygen species. Vascular bundles suffered from oxidative stress, leading to a malfunction in amino acid and organic acid transportation that caused early wilting of the flower stalk and shortened plant longevity, probably due to malnutrition. We concluded that the mechanism regulating the balance between NAD synthesis and degradation is important in the systemic plant response to developmental cues during the growth-phase transition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths
Quah, Shan; Hui, Jerome H.L.; Holland, Peter W.H.
2015-01-01
MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. PMID:25576364
Limbic control of aggression in the cat.
Adamec, R E; Stark-Adamec, C I
1983-01-01
Over a decade of work by Flynn and colleagues has delineated a network of limbic circuits which function to modulate the expression of predatory aggression and defence in the cat, and aspects of this work are reviewed. In particular, Flynn's work revealed a circuit involving the basomedial amygdala which functions to suppress attack, and at the same time facilitates defence. A second circuit, involving the ventral hippocampus, is involved in attack facilitation. Studies relating stable differences in excitability in these two circuits to developmentally determined behavioural dispositions toward aggression or defence are summarized. Finally, the impact of experimentally induced limbic seizures on interictally maintained expression of aggression and defence behaviourally, and on limbic excitability are reviewed. Taken together, the data indicate that the behavioural balance of attack and defence is under the tonic control of opponent limbic circuits, which are themselves biased in a measureable manner. Developmental studies indicate that adult defensiveness is determined early in life, so early as to suggest some pre-programmed neuro-developmental process. Experimentally induced seizures alter behaviour lastingly, producing an increase in defensive disposition. At the same time there is an equally lasting potentiation of interictal transmission of neural activity from the amygdala to the hypothalamus. Moreover, seizures may reduce interictal transmission of activity through the ventral hippocampus by potentiating recurrent inhibition. These effects of seizures are of interest since seizures reproduce naturally occurring differences in limbic excitability seen in naturally defensive cats.
Applying a Lifespan Developmental Perspective to Chronic Pain: Pediatrics to Geriatrics.
Walco, Gary A; Krane, Elliot J; Schmader, Kenneth E; Weiner, Debra K
2016-09-01
An ideal taxonomy of chronic pain would be applicable to people of all ages. Developmental sciences focus on lifespan developmental approaches, and view the trajectory of processes in the life course from birth to death. In this article we provide a review of lifespan developmental models, describe normal developmental processes that affect pain processing, and identify deviations from those processes that lead to stable individual differences of clinical interest, specifically the development of chronic pain syndromes. The goals of this review were 1) to unify what are currently separate purviews of "pediatric pain," "adult pain," and "geriatric pain," and 2) to generate models so that specific elements of the chronic pain taxonomy might include important developmental considerations. A lifespan developmental model is applied to the forthcoming Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks-American Pain Society Pain Taxonomy to ascertain the degree to which general "adult" descriptions apply to pediatric and geriatric populations, or if age- or development-related considerations need to be invoked. Copyright © 2016. Published by Elsevier Inc.
From emotion resonance to empathic understanding: a social developmental neuroscience account.
Decety, Jean; Meyer, Meghan
2008-01-01
The psychological construct of empathy refers to an intersubjective induction process by which positive and negative emotions are shared, without losing sight of whose feelings belong to whom. Empathy can lead to personal distress or to empathic concern (sympathy). The goal of this paper is to address the underlying cognitive processes and their neural underpinnings that constitute empathy within a developmental neuroscience perspective. In addition, we focus on how these processes go awry in developmental disorders marked by impairments in social cognition, such as autism spectrum disorder, and conduct disorder. We argue that empathy involves both bottom-up and top-down information processing, underpinned by specific and interacting neural systems. We discuss data from developmental psychology as well as cognitive neuroscience in support of such a model, and highlight the impact of neural dysfunctions on social cognitive developmental behavior. Altogether, bridging developmental science and cognitive neuroscience helps approach a more complete understanding of social cognition. Synthesizing these two domains also contributes to a better characterization of developmental psychopathologies that impacts the development of effective treatment strategies.
Van Cauwenberge, Valerie; Van Leeuwen, Karla; Hoppenbrouwers, Karel; Wiersema, Jan R
2017-01-27
The reduction of the amplitude of the late positive potential (LPP) following cognitive reappraisal has been used as a neural marker of emotion regulation. However, studies employing this neural marker in children are scarce and findings are not conclusive, with most studies showing a lack of LPP modulation after reappraisal in children in the age range of 5-12 years. The aim of the current study was therefore to investigate developmental changes in sensitivity of LPP modulation to cognitive reappraisal. To do so, LPP modulation due to cognitive reappraisal of negative pictures was compared between two age groups (8- to 11- versus 12- to 15-year-olds) and regression analyses were applied within the total sample to test whether sensitivity of LPP modulation shows a linear increase with age. In 63 children the LPP was measured after negative pictures that were either combined with a negative story or with a neutral, reappraising story. Although groups did not differ for self-reports on reappraisal, a significant reduction of LPP following cognitive reappraisal was only found in the older children, whereas such an effect was absent in the younger children. Findings were similar for boys and girls. Additional analyses showed a linear increase in sensitivity of LPP modulation with age. The results indicate that LPP modulation as measured in the current paradigm can be used as a valid index of emotion regulation in boys and girls but that caution is recommended using it in younger children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate's Role2
Yang, Thomas P.; Berry, Robert J; Bailey, Lynn B.
2012-01-01
ABSTRACT DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes. PMID:22332098
The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation
Dancevic, Carolyn M.; Gibert, Yann; Smith, Adam D.; Ward, Alister C.; McCulloch, Daniel R.
2018-01-01
The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated. PMID:29518972
Plant chromatin warms up in Madrid
Jarillo, José A; Gaudin, Valerie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel
2014-01-01
The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC. PMID:24504145
Role of plant hormones in plant defence responses.
Bari, Rajendra; Jones, Jonathan D G
2009-03-01
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to a wide range of biotic and abiotic stresses. Significant progress has been made in identifying the key components and understanding the role of salicylic acid (SA), jasmonates (JA) and ethylene (ET) in plant responses to biotic stresses. Recent studies indicate that other hormones such as abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinin (CK), brassinosteroids (BR) and peptide hormones are also implicated in plant defence signaling pathways but their role in plant defence is less well studied. Here, we review recent advances made in understanding the role of these hormones in modulating plant defence responses against various diseases and pests.
Getting over "the problem of other minds": communication in context.
Costall, Alan; Leudar, Ivan
2007-05-01
Theories of communication often assume that communication has a single, essential form or telos, the culmination of a one-track developmental process where precursors eventually give rise to the real thing. At one time, this essence of communication was identified with linguistic competence, whereas now it is largely defined in terms of "Theory of Mind." But the fundamental problem with "Theory of Mind" is the very problem it pretends to solve: "the problem of other minds."That problem, as formulated, is insoluble, even with the aid of theory or innate modules. In this article, we reject the superficial depth psychology of "Theory of Mind" in favour of a breadth psychology based on context.
Developmental mechanisms facilitating the evolution of bills and quills
Schneider, Richard A
2005-01-01
Beaks and feathers epitomize inimitable avian traits. Within individuals and across species there exists astounding diversity in the size, shape, arrangement, and colour of beaks and feathers in association with various functional adaptations. What has enabled the concomitantly divergent evolution of beaks and feathers? The common denominator may lie in their developmental programmes. As revealed through recent transplant experiments using quail and duck embryos, the developmental programme for each structure utilizes mesenchyme as a dominant source of species-specific patterning information, acts as a module of closely coupled molecular and histogenic events, and operates with a high degree of spatial and temporal plasticity. By synergizing these three features, the developmental programmes underlying beaks and feathers likely have the essential potential to react spontaneously to novel conditions and new gene functions, and as a consequence are well equipped to generate and accommodate innovative phenotypes during the course of evolution. PMID:16313392
Integrating fundamental movement skills in late childhood.
Gimenez, Roberto; Manoel, Edison de J; de Oliveira, Dalton Lustosa; Dantas, Luiz; Marques, Inara
2012-04-01
The study examined how children of different ages integrate fundamental movement skills, such as running and throwing, and whether their developmental status was related to the combination of these skills. Thirty children were divided into three groups (G1 = 6-year-olds, G2 = 9-year-olds, and G3 = 12-year-olds) and filmed performing three tasks: running, overarm throwing, and the combined task. Patterns were identified and described, and the efficiency of integration was calculated (distance differences of the ball thrown in two tasks, overarm throwing and combined task). Differences in integration were related to age: the 6-year-olds were less efficient in combining the two skills than the 9- and 12-year-olds. These differences may be indicative of a phase of integrating fundamental movement skills in the developmental sequence. This developmental status, particularly throwing, seems to be related to the competence to integrate skills, which suggests that fundamental movement skills may be developmental modules.
Zebrafish as a Model System for Environmental Health Studies in the Grade 9–12 Classroom
Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A.; Petering, David H.
2014-01-01
Abstract Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular. PMID:24941301
Sanders, Carla L; Kleinert, Harold L; Free, Teresa; Slusher, Ida; Clevenger, Kim; Johnson, Stephanie; Boyd, Sara E
2007-12-01
Nurses play a vital role in providing health care to children with developmental disability (DD) throughout the United States. Unfortunately, most nurses continue to report that they receive little or no clinical education in the area of DDs. In response to this need, a core development team consisting of nurse practitioners and nursing faculty from three universities, one physician assistant faculty, parents of children with DD, and educational specialists developed two multimedia (virtual patient) pediatric instructional modules in CD-ROM format--one involving a child with Down syndrome, and the other involving an infant born at 26 weeks' gestation. Participants were required to make clinical decisions throughout the cases. The modules on CD were piloted with nursing students from three universities. Results of the effectiveness study demonstrated significant gains in knowledge and comfort level regarding the care of children with DD.
Gori, Simone; Facoetti, Andrea
2015-01-14
Developmental dyslexia (DD) is the most common neurodevelopmental disorder (about 10% of children across cultures) characterized by severe difficulties in learning to read. According to the dominant view, DD is considered a phonological processing impairment that might be linked to a cross-modal, letter-to-speech sound integration deficit. However, new theories-supported by consistent data-suggest that mild deficits in low-level visual and auditory processing can lead to DD. This evidence supports the probabilistic and multifactorial approach for DD. Among others, an interesting visual deficit that is often associated with DD is excessive visual crowding. Crowding is defined as difficulty in the ability to recognize objects when surrounded by similar items. Crowding, typically observed in peripheral vision, could be modulated by attentional processes. The direct consequence of stronger crowding on reading is the inability to recognize letters when they are surrounded by other letters. This problem directly translates to reading at a slower speed and being more prone to making errors while reading. Our aim is to review the literature supporting the important role of crowding in DD. Moreover, we are interested in proposing new possible studies in order to clarify whether the observed excessive crowding could be a cause rather than an effect of DD. Finally, we also suggest possible remediation and even prevention programs that could be based on reducing the crowding in children with or at risk for DD without involving any phonological or orthographic training. © 2015 ARVO.
ERIC Educational Resources Information Center
Morehead State Univ., KY.
This workshop was held for the purpose of training selected staff members of the Ohio Module Field Unit of the Appalachian Adult Basic Education Demonstration Center (AABEDC). Twelve persons, six teachers and six paraprofessionals, were selected to participate in the workshop. While their specific jobs vary, all will be concerned with utilization…
The Residency as a Developmental Process.
ERIC Educational Resources Information Center
Brent, David A.
1981-01-01
The residency is examined from the standpoint of adult developmental theory, and significant developmental tasks facing residents are described. Recommendations for management of common developmental conflicts occurring in residency are discussed. (Author/MLW)
The Computational Development of Reinforcement Learning during Adolescence
Palminteri, Stefano; Coricelli, Giorgio; Blakemore, Sarah-Jayne
2016-01-01
Adolescence is a period of life characterised by changes in learning and decision-making. Learning and decision-making do not rely on a unitary system, but instead require the coordination of different cognitive processes that can be mathematically formalised as dissociable computational modules. Here, we aimed to trace the developmental time-course of the computational modules responsible for learning from reward or punishment, and learning from counterfactual feedback. Adolescents and adults carried out a novel reinforcement learning paradigm in which participants learned the association between cues and probabilistic outcomes, where the outcomes differed in valence (reward versus punishment) and feedback was either partial or complete (either the outcome of the chosen option only, or the outcomes of both the chosen and unchosen option, were displayed). Computational strategies changed during development: whereas adolescents’ behaviour was better explained by a basic reinforcement learning algorithm, adults’ behaviour integrated increasingly complex computational features, namely a counterfactual learning module (enabling enhanced performance in the presence of complete feedback) and a value contextualisation module (enabling symmetrical reward and punishment learning). Unlike adults, adolescent performance did not benefit from counterfactual (complete) feedback. In addition, while adults learned symmetrically from both reward and punishment, adolescents learned from reward but were less likely to learn from punishment. This tendency to rely on rewards and not to consider alternative consequences of actions might contribute to our understanding of decision-making in adolescence. PMID:27322574
Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus
2014-01-01
The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868
Bai, Gaobo; Zheng, Wenling; Ma, Wenli
2018-05-01
Hepatitis C virus (HCV)-induced human hepatocellular carcinoma (HCC) progression may be due to a complex multi-step processes. The developmental mechanism of these processes is worth investigating for the prevention, diagnosis and therapy of HCC. The aim of the present study was to investigate the molecular mechanism underlying the progression of HCV-induced hepatocarcinogenesis. First, the dynamic gene module, consisting of key genes associated with progression between the normal stage and HCC, was identified using the Weighted Gene Co-expression Network Analysis tool from R language. By defining those genes in the module as seeds, the change of co-expression in differentially expressed gene sets in two consecutive stages of pathological progression was examined. Finally, interaction pairs of HCV viral proteins and their directly targeted proteins in the identified module were extracted from the literature and a comprehensive interaction dataset from yeast two-hybrid experiments. By combining the interactions between HCV and their targets, and protein-protein interactions in the Search Tool for the Retrieval of Interacting Genes database (STRING), the HCV-key genes interaction network was constructed and visualized using Cytoscape software 3.2. As a result, a module containing 44 key genes was identified to be associated with HCC progression, due to the dynamic features and functions of those genes in the module. Several important differentially co-expressed gene pairs were identified between non-HCC and HCC stages. In the key genes, cyclin dependent kinase 1 (CDK1), NDC80, cyclin A2 (CCNA2) and rac GTPase activating protein 1 (RACGAP1) were shown to be targeted by the HCV nonstructural proteins NS5A, NS3 and NS5B, respectively. The four genes perform an intermediary role between the HCV viral proteins and the dysfunctional module in the HCV key genes interaction network. These findings provided valuable information for understanding the mechanism of HCV-induced HCC progression and for seeking drug targets for the therapy and prevention of HCC.
Allen, Susan; Casey, Jackie
2017-09-01
Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Records of children meeting Diagnostic and Statistical Manual - V criteria for developmental coordination disorder ( n = 93) age 5 to 12 years were examined. Data on motor skills (Movement Assessment Battery for Children - 2) and sensory processing and integration (Sensory Processing Measure) were interrogated. Of the total sample, 88% exhibited some or definite differences in sensory processing and integration. No apparent relationship was observed between motor coordination and sensory processing and integration. The full sample showed high rates of some difficulties in social participation, hearing, body awareness, balance and motion, and planning and ideation. Further, children with co-morbid autistic spectrum disorder showed high rates of difficulties with touch and vision. Most, but not all, children with developmental coordination disorder presented with some difficulties in sensory processing and integration that impacted on their participation in everyday activities. Sensory processing and integration difficulties differed significantly between those with and without co-morbid autistic spectrum disorder.
Lapébie, Pascal; Ruggiero, Antonella; Barreau, Carine; Chevalier, Sandra; Chang, Patrick; Dru, Philippe; Houliston, Evelyn; Momose, Tsuyoshi
2014-01-01
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at “oral” and “aboral” poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes. PMID:25233086
Lapébie, Pascal; Ruggiero, Antonella; Barreau, Carine; Chevalier, Sandra; Chang, Patrick; Dru, Philippe; Houliston, Evelyn; Momose, Tsuyoshi
2014-09-01
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at "oral" and "aboral" poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes.
Lachowiec, Jennifer; Queitsch, Christine; Kliebenstein, Daniel J.
2016-01-01
Background Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. Scope and Conclusions This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied. PMID:26473020
NPK macronutrients and microRNA homeostasis.
Kulcheski, Franceli R; Côrrea, Régis; Gomes, Igor A; de Lima, Júlio C; Margis, Rogerio
2015-01-01
Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant-microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding.
Adolescent development and risk of injury: Using developmental science to improve interventions
Johnson, Sara B.; Jones, Vanya C.
2015-01-01
In adolescence, there is a complex interaction among physical, cognitive, and psychosocial developmental processes, culminating in greater risk-taking and novelty-seeking. Concurrently, adolescents face an increasingly demanding environment, which results in heightened vulnerability to injury. In this paper, we provide an overview of developmental considerations for adolescent injury interventions based on developmental science including findings from behavioral neuroscience and psychology. We examine the role that typical developmental processes play in the way adolescents perceive and respond to risk and how this integrated body of developmental research adds to our understanding of how to do injury prevention with adolescents. We then highlight strategies to improve the translation of developmental research into adolescent injury prevention practice, calling on examples of existing interventions including graduated driver licensing. PMID:20876765
The ocular skeleton through the eye of evo-devo.
Franz-Odendaal, Tamara Anne
2011-09-15
An evolutionary developmental (evo-devo) approach to understanding the evolution, homology, and development of structures has proved important for unraveling complex integrated skeletal systems through the use of modules, or modularity. An ocular skeleton, which consists of cartilage and sometimes bone, is present in many vertebrates; however, the origin of these two components remains elusive. Using both paleontological and developmental data, I propose that the vertebrate ocular skeleton is neural crest derived and that a single cranial neural crest module divided early in vertebrate evolution, possibly during the Ordovician, to give rise to an endoskeletal component and an exoskeletal component within the eye. These two components subsequently became uncoupled with respect to timing, placement within the sclera and inductive epithelia, enabling them to evolve independently and to diversify. In some extant groups, these two modules have become reassociated with one another. Furthermore, the data suggest that the endoskeletal component of the ocular skeleton was likely established and therefore evolved before the exoskeletal component. This study provides important insights into the evolution of the ocular skeleton, a region with a long evolutionary history among vertebrates. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.
Batra, Vijay; Batra, Meenakshi; Pandey, Ravindra Mohan; Sharma, Vijai Prakash; Agarwal, Girdhar Gopal
2015-01-01
Objective To compare the efficacy of a Neurofacilitation of Developmental Reaction (NFDR) approach with that of a Conventional approach in the modulation of tone in children with neurodevelopmental delay. Methods Experimental control design. A total of 30 spastic children ranging in age from 4 to 7 years with neurodevelopmental delay were included. Baseline evaluations of muscle tone and gross motor functional performance abilities were performed. The children were allocated into two intervention groups of 15 subjects each. In groups A and B, the NFDR and conventional approaches were applied, respectively, for 3 months and were followed by subsequent re-evaluations. Results Between group analyses were performed using independent t test for tone and primitive reflex intensity and a Mann-Whitney U test for gross motor functional ability. For the within-group analyses, paired t tests were used for tone and primitive reflex intensity, and a Wilcoxon signed-rank test was used for gross motor functional ability. Conclusion The NFDR approach/technique prepares the muscle to undergo tonal modulation and thereby enhances motor development and improves the motor functional performance abilities of the children with neurodevelopmental delay. PMID:28239268
Yu, Fu-Dong; Yang, Shao-You; Li, Yuan-Yuan; Hu, Wei
2013-04-10
Malaria continues to be one of the most severe global infectious diseases, as a major threat to human health and economic development. Network-based biological analysis is a promising approach to uncover key genes and biological processes from a network viewpoint, which could not be recognized from individual gene-based signatures. We integrated gene co-expression profile with protein-protein interaction and transcriptional regulation information to construct a comprehensive gene co-expression network of Plasmodium falciparum. Based on this network, we identified 10 core modules by using ICE (Iterative Clique Enumeration) algorithm, which were essential for malaria parasite development in intraerythrocytic developmental cycle (IDC) stages. In each module, all genes were highly correlated probably due to co-regulation or formation of a protein complex. Some of these genes were recognized to be differentially coexpressed among three close-by IDC stages. The gene of prpf8 (PFD0265w) encoding pre-mRNA processing splicing factor 8 product was identified as DCGs (differentially co-expressed genes) among IDC stages, although this gene function was seldom reported in previous researches. Integrating the species-specific gene prediction and differential co-expression gene detection, we found some modules could perform species-specific functions according to some of genes in these modules were species-specific genes, like the module 10. Furthermore, in order to reveal the underlying mechanisms of the erythrocyte invasion by P. falciparum, Steiner Tree algorithm was employed to identify the invasion subnetwork from our gene co-expression network. The subnetwork-based analysis indicated that some important Plasmodium parasite specific genes could corporate with each other and be co-regulated during the parasite invasion process, which including a head-to-head gene pair of PfRH2a (PF13_0198) and PfRH2b (MAL13P1.176). This study based on gene co-expression network could shed new insights on the mechanisms of pathogenesis, even virulence and P. falciparum development. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Molecular locks and keys: the role of small molecules in phytohormone research
Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea
2014-01-01
Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283
A Strategy to Validate the Role of Callose-mediated Plasmodesmal Gating in the Tropic Response.
Kumar, Ritesh; Wu, Shu Wei; Iswanto, Arya Bagus Boedi; Kumar, Dhinesh; Han, Xiao; Kim, Jae-Yean
2016-04-17
The plant hormone auxin plays an important role in many growth and developmental processes, including tropic responses to light and gravity. The establishment of an auxin gradient is a key event leading to phototropism and gravitropism. Previously, polar auxin transport (PAT) was shown to establish an auxin gradient in different cellular domains of plants. However, Han et al. recently demonstrated that for proper auxin gradient formation, plasmodesmal callose-mediated symplasmic connectivity between the adjacent cells is also a critical factor. In this manuscript, the strategy to elucidate the role of particular genes, which can affect phototropism and gravitropism by altering the symplasmic connectivity through modulating plasmodesmal callose synthesis, is discussed. The first step is to screen aberrant tropic responses from 3-day-old etiolated seedlings of mutants or over-expression lines of a gene along with the wild type. This preliminary screening can lead to the identification of a range of genes functioning in PAT or controlling symplasmic connectivity. The second screening involves the sorting of candidates that show altered tropic responses by affecting symplasmic connectivity. To address such candidates, the movement of a symplasmic tracer and the deposition of plasmodesmal callose were examined. This strategy would be useful to explore new candidate genes that can regulate symplasmic connectivity directly or indirectly during tropic responses and other developmental processes.
Insights into the mechanisms and the emergence of sex-differences in pain.
Melchior, Meggane; Poisbeau, Pierrick; Gaumond, Isabelle; Marchand, Serge
2016-12-03
Recent studies describe sex and gender as critical factors conditioning the experience of pain and the strategies to respond to it. It is now clear that men and women have different physiological and behavioral responses to pain. Some pathological pain states are also highly sex-specific. This clinical observation has been often verified with animal studies which helped to decipher the mechanisms underlying the observed female hyper-reactivity and hyper-sensitivity to pain states. The role of gonadal hormones in the modulation of pain responses has been a straightforward hypothesis but, if pertinent in many cases, cannot fully account for this complex sensation, which includes an important cognitive component. Clinical and fundamental data are reviewed here with a special emphasis on possible developmental processes giving rise to sex-differences in pain processing. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
What Aspects of Face Processing Are Impaired in Developmental Prosopagnosia?
ERIC Educational Resources Information Center
Le Grand, Richard; Cooper, Philip A.; Mondloch, Catherine J.; Lewis, Terri L.; Sagiv, Noam; de Gelder, Beatrice; Maurer, Daphne
2006-01-01
Developmental prosopagnosia (DP) is a severe impairment in identifying faces that is present from early in life and that occurs despite no apparent brain damage and intact visual and intellectual function. Here, we investigated what aspects of face processing are impaired/spared in developmental prosopagnosia by examining a relatively large group…
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth Orbital Rendezvous (EOR) configuration for the piloted mission is composed of three propulsive elements in addition to the Crew Module (CM): Primary Trans-Lunar Injection (PTLI), Lunar Braking Module (LBM), and Earth Return Module (ERM). The precursor mission is also composed of three propulsive elements in addition to its surface payloads: PTLI, LBM and the Payload Landing Module (PLM). Refer to Volume 1, Section 5.1 and 5.2 for a break-up of the different stages into the four launches. A quick summary is as follows: PTLI is on Launch 1 and 3 while the LBM, PLM, and surface payloads are on Launch 2 and another LBM, ERM, and CM on Launch 4. The precursor mission is designed to be as modular as possible with the piloted mission for developmental cost considerations. The following topics are discussed: launch vehicle description; primary trans-lunar injection stage; lunar braking module; earth return module; crew module; payload landing module; and surface payload description.
Conditioned pain modulation (CPM) in children and adolescents: Effects of sex and age
Tsao, Jennie C. I.; Seidman, Laura C.; Evans, Subhadra; Lung, Kirsten C.; Zeltzer, Lonnie K.; Naliboff, Bruce D.
2013-01-01
Conditioned pain modulation (CPM) refers to the diminution of perceived pain intensity for a test stimulus following application of a conditioning stimulus to a remote area of the body, and is thought to reflect the descending inhibition of nociceptive signals. Studying CPM in children may inform interventions to enhance central pain inhibition within a developmental framework. We assessed CPM in 133 healthy children (mean age = 13 years; 52.6% girls) and tested the effects of sex and age. Participants were exposed to four trials of a pressure test stimulus before, during, and after the application of a cold water conditioning stimulus. CPM was documented by a reduction in pressure pain ratings during cold water administration. Older children (12–17 years) exhibited greater CPM than younger (8–11 years) children. No sex differences in CPM were found. Lower heart rate variability (HRV) at baseline and after pain induction was associated with less CPM controlling for child age. The findings of greater CPM in the older age cohort suggest a developmental improvement in central pain inhibitory mechanisms. The results highlight the need to examine developmental and contributory factors in central pain inhibitory mechanisms in children to guide effective, age appropriate, pain interventions. PMID:23541066
Holistic face training enhances face processing in developmental prosopagnosia
Cohan, Sarah; Nakayama, Ken
2014-01-01
Prosopagnosia has largely been regarded as an untreatable disorder. However, recent case studies using cognitive training have shown that it is possible to enhance face recognition abilities in individuals with developmental prosopagnosia. Our goal was to determine if this approach could be effective in a larger population of developmental prosopagnosics. We trained 24 developmental prosopagnosics using a 3-week online face-training program targeting holistic face processing. Twelve subjects with developmental prosopagnosia were assessed before and after training, and the other 12 were assessed before and after a waiting period, they then performed the training, and were then assessed again. The assessments included measures of front-view face discrimination, face discrimination with view-point changes, measures of holistic face processing, and a 5-day diary to quantify potential real-world improvements. Compared with the waiting period, developmental prosopagnosics showed moderate but significant overall training-related improvements on measures of front-view face discrimination. Those who reached the more difficult levels of training (‘better’ trainees) showed the strongest improvements in front-view face discrimination and showed significantly increased holistic face processing to the point of being similar to that of unimpaired control subjects. Despite challenges in characterizing developmental prosopagnosics’ everyday face recognition and potential biases in self-report, results also showed modest but consistent self-reported diary improvements. In summary, we demonstrate that by using cognitive training that targets holistic processing, it is possible to enhance face perception across a group of developmental prosopagnosics and further suggest that those who improved the most on the training task received the greatest benefits. PMID:24691394
Developmental mechanisms underlying variation in craniofacial disease and evolution.
Fish, Jennifer L
2016-07-15
Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. Copyright © 2015 Elsevier Inc. All rights reserved.
Episodic future thinking reduces temporal discounting in healthy adolescents.
Bromberg, Uli; Lobatcheva, Maria; Peters, Jan
2017-01-01
Episodic Future Thinking has proven efficient in reducing impulsive behavior in several adult populations. Whether it also has a beneficial impact on decision making in adolescents is not known. Here the impact of episodic future thinking on discounting behavior was investigated in a sample of healthy adolescents (n = 44, age range 13-16 years). Discounting behavior in trials including episodic future thinking was significantly less impulsive than in control trials (t = 2.74, p = .009, dz = .44). In a subsample we controlled for executive function, alcohol use and developmental measures. Neither executive function nor alcohol use but developmental measures explained variability in the effect of episodic future thinking. These findings reveal that episodic future thinking can improve adolescent decision making while the effect is to some degree modulated by developmental measures.
Booij, Linda; Tremblay, Richard E.; Szyf, Moshe; Benkelfat, Chawki
2015-01-01
Background Despite more than 60 years of research in the role of serotonin (5-HT) in psychopathology, many questions still remain. From a developmental perspective, studies have provided more insight into how 5-HT dysfunctions acquired in utero or early in life may modulate brain development. This paper discusses the relevance of the developmental role of 5-HT for the understanding of psychopathology. We review developmental milestones of the 5-HT system, how genetic and environmental 5-HT disturbances could affect brain development and the potential role of DNA methylation in 5-HT genes for brain development. Methods Studies were identified using common databases (e.g., PubMed, Google Scholar) and reference lists. Results Despite the widely supported view that the 5-HT system matures in early life, different 5-HT receptors, proteins and enzymes have different developmental patterns, and development is brain region–specific. A disruption in 5-HT homeostasis during development may lead to structural and functional changes in brain circuits that modulate emotional stress responses, including subcortical limbic and (pre)frontal areas. This may result in a predisposition to psychopathology. DNA methylation might be one of the underlying physiologic mechanisms. Limitations There is a need for prospective studies. The impact of stressors during adolescence on the 5-HT system is understudied. Questions regarding efficacy of drugs acting on 5-HT still remain. Conclusion A multidisciplinary and longitudinal approach in designing studies on the role of 5-HT in psychopathology might help to bring us closer to the understanding of the role of 5-HT in psychopathology. PMID:25285876
Regulatory gene networks and the properties of the developmental process
NASA Technical Reports Server (NTRS)
Davidson, Eric H.; McClay, David R.; Hood, Leroy
2003-01-01
Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.
Controlling Destiny through Chemistry: Small-Molecule Regulators of Cell Fate
2009-01-01
Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics. PMID:20000447
Controlling destiny through chemistry: small-molecule regulators of cell fate.
Firestone, Ari J; Chen, James K
2010-01-15
Controlling cell fate is essential for embryonic development, tissue regeneration, and the prevention of human disease. With each cell in the human body sharing a common genome, achieving the appropriate spectrum of stem cells and their differentiated lineages requires the selective activation of developmental signaling pathways, the expression of specific target genes, and the maintenance of these cellular states through epigenetic mechanisms. Small molecules that target these regulatory processes are therefore valuable tools for probing and manipulating the molecular mechanisms by which stem cells self-renew, differentiate, and arise from somatic cell reprogramming. Pharmacological modulators of cell fate could also help remediate human diseases caused by dysregulated cell proliferation or differentiation, heralding a new era in molecular therapeutics.
The Arabidopsis EIN2 restricts organ growth by retarding cell expansion
Feng, Guanping; Liu, Gang; Xiao, Jianhua
2015-01-01
The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion. PMID:26039475
Frodo proteins: modulators of Wnt signaling in vertebrate development.
Brott, Barbara K; Sokol, Sergei Y
2005-09-01
The Frodo/dapper (Frd) proteins are recently discovered signaling adaptors, which functionally and physically interact with Wnt and Nodal signaling pathways during vertebrate development. The Frd1 and Frd2 genes are expressed in dynamic patterns in early embryos, frequently in cells undergoing epithelial-mesenchymal transition. The Frd proteins function in multiple developmental processes, including mesoderm and neural tissue specification, early morphogenetic cell movements, and organogenesis. Loss-of-function studies using morpholino antisense oligonucleotides demonstrate that the Frd proteins regulate Wnt signal transduction in a context-dependent manner and may be involved in Nodal signaling. The identification of Frd-associated factors and cellular targets of the Frd proteins should shed light on the molecular mechanisms underlying Frd functions in embryonic development and in cancer.
Ror receptor tyrosine kinases: orphans no more.
Green, Jennifer L; Kuntz, Steven G; Sternberg, Paul W
2008-11-01
Receptor tyrosine kinase-like orphan receptor (Ror) proteins are a conserved family of tyrosine kinase receptors that function in developmental processes including skeletal and neuronal development, cell movement and cell polarity. Although Ror proteins were originally named because the associated ligand and signaling pathway were unknown, recent studies in multiple species have now established that Ror proteins are Wnt receptors. Depending on the cellular context, Ror proteins can either activate or repress transcription of Wnt target genes and can modulate Wnt signaling by sequestering Wnt ligands. New evidence implicates Ror proteins in planar cell polarity, an alternative Wnt pathway. Here, we review the progress made in understanding these mysterious proteins and, in particular, we focus on their function as Wnt receptors.
Development of attention networks and their interactions in childhood.
Pozuelos, Joan P; Paz-Alonso, Pedro M; Castillo, Alejandro; Fuentes, Luis J; Rueda, M Rosario
2014-10-01
In the present study, we investigated developmental trajectories of alerting, orienting, and executive attention networks and their interactions over childhood. Two cross-sectional experiments were conducted with different samples of 6- to 12-year-old children using modified versions of the attention network task (ANT). In Experiment 1 (N = 106), alerting and orienting cues were independently manipulated, thus allowing examination of interactions between these 2 networks, as well as between them and the executive attention network. In Experiment 2 (N = 159), additional changes were made to the task in order to foster exogenous orienting cues. Results from both studies consistently revealed separate developmental trajectories for each attention network. Children younger than 7 years exhibited stronger benefits from having an alerting auditory signal prior to the target presentation. Developmental changes in orienting were mostly observed on response accuracy between middle and late childhood, whereas executive attention showed increases in efficiency between 7 years and older ages, and further improvements in late childhood. Of importance, across both experiments, significant interactions between alerting and orienting, as well as between each of these and the executive attention network, were observed. Alerting cues led to speeding shifts of attention and enhancing orienting processes. Also, both alerting and orienting cues modulated the magnitude of the flanker interference effect. These findings inform current theoretical models of human attention and its development, characterizing for the first time, the age-related course of attention networks interactions that, present in adults, stem from further refinements over childhood.
Early-Life Nutrition and Neurodevelopment: Use of the Piglet as a Translational Model12
Mudd, Austin T
2017-01-01
Optimal nutrition early in life is critical to ensure proper structural and functional development of infant organ systems. Although pediatric nutrition historically has emphasized research on the relation between nutrition, growth rates, and gastrointestinal maturation, efforts increasingly have focused on how nutrition influences neurodevelopment. The provision of human milk is considered the gold standard in pediatric nutrition; thus, there is interest in understanding how functional nutrients and bioactive components in milk may modulate developmental processes. The piglet has emerged as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young pigs and humans, the piglet is being used increasingly in developmental nutritional neuroscience studies. The piglet primarily has been used to assess the effects of dietary fatty acids and their accretion in the brain throughout neurodevelopment. However, recent research indicates that other dietary components, including choline, iron, cholesterol, gangliosides, and sialic acid, among other compounds, also affect neurodevelopment in the pig model. Moreover, novel analytical techniques, including but not limited to MRI, behavioral assessments, and molecular quantification, allow for a more holistic understanding of how nutrition affects neurodevelopmental patterns. By combining early-life nutritional interventions with innovative analytical approaches, opportunities abound to quantify factors affecting neurodevelopmental trajectories in the neonate. This review discusses research using the translational pig model with primary emphasis on early-life nutrition interventions assessing neurodevelopment outcomes, while also discussing nutritionally-sensitive methods to characterize brain maturation. PMID:28096130
Viola, Ivana L; Camoirano, Alejandra; Gonzalez, Daniel H
2016-01-01
TCP proteins integrate a family of transcription factors involved in the regulation of developmental processes and hormone responses. It has been shown that most members of class I, one of the two classes in which the TCP family is divided, contain a conserved Cys that leads to inhibition of DNA binding when oxidized. In this work, we describe that the class-I TCP protein TCP15 inhibits anthocyanin accumulation during exposure of plants to high light intensity by modulating the expression of transcription factors involved in the induction of anthocyanin biosynthesis genes, as suggested by the study of plants that express TCP15 from the 35SCaMV promoter and mutants in TCP15 and the related gene TCP14. In addition, the effect of TCP15 on anthocyanin accumulation is lost after prolonged incubation under high light intensity conditions. We provide evidence that this is due to inactivation of TCP15 by oxidation of Cys-20 of the TCP domain. Thus, redox modulation of TCP15 activity in vivo by high light intensity may serve to adjust anthocyanin accumulation to the duration of exposure to high irradiation conditions. © 2016 American Society of Plant Biologists. All Rights Reserved.
ERIC Educational Resources Information Center
Smith, Allen G.; And Others
This interim report describes the development of program implementation and cost studies for Year II of the process evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. Specific areas focused…
Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…
Capitalizing on Basic Brain Processes in Developmental Algebra--Part One
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…
ERIC Educational Resources Information Center
Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R.
2017-01-01
Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level…
Sexual Knowledge Acquisition and Retention for Individuals with Autism
ERIC Educational Resources Information Center
Pask, Liza; Hughes, Tammy L.; Sutton, Lawrence R.
2016-01-01
"Healthy Relationships & Autism" is a developmentally sequenced, manualized intervention intended for children and adolescents with an autism spectrum disorder (ASD). The curriculum is designed to facilitate healthy interpersonal relationships; three modules cover personal hygiene, sexual knowledge, and a variety of productive…
Werner's Relevance for Contemporary Developmental Psychology.
ERIC Educational Resources Information Center
Glick, Joseph A.
1992-01-01
Considers the contributions of Heinz Werner to developmental psychology and identifies the tensions between Werner's theory and the practices of contemporary developmental psychology. Core issues of Werner's psychology concern: (1) development as heuristic, rather than phenomenon; (2) developmental process analysis; and (3) conceptions of the…
NASA Technical Reports Server (NTRS)
di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.
2000-01-01
The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.
The developmental genetics of biological robustness
Mestek Boukhibar, Lamia; Barkoulas, Michalis
2016-01-01
Background Living organisms are continuously confronted with perturbations, such as environmental changes that include fluctuations in temperature and nutrient availability, or genetic changes such as mutations. While some developmental systems are affected by such challenges and display variation in phenotypic traits, others continue consistently to produce invariable phenotypes despite perturbation. This ability of a living system to maintain an invariable phenotype in the face of perturbations is termed developmental robustness. Biological robustness is a phenomenon observed across phyla, and studying its mechanisms is central to deciphering the genotype–phenotype relationship. Recent work in yeast, animals and plants has shown that robustness is genetically controlled and has started to reveal the underlying mechinisms behind it. Scope and Conclusions Studying biological robustness involves focusing on an important property of developmental traits, which is the phenotypic distribution within a population. This is often neglected because the vast majority of developmental biology studies instead focus on population aggregates, such as trait averages. By drawing on findings in animals and yeast, this Viewpoint considers how studies on plant developmental robustness may benefit from strict definitions of what is the developmental system of choice and what is the relevant perturbation, and also from clear distinctions between gene effects on the trait mean and the trait variance. Recent advances in quantitative developmental biology and high-throughput phenotyping now allow the design of targeted genetic screens to identify genes that amplify or restrict developmental trait variance and to study how variation propagates across different phenotypic levels in biological systems. The molecular characterization of more quantitative trait loci affecting trait variance will provide further insights into the evolution of genes modulating developmental robustness. The study of robustness mechanisms in closely related species will address whether mechanisms of robustness are evolutionarily conserved. PMID:26292993
ERIC Educational Resources Information Center
Ackerman, Brian P.; And Others
1990-01-01
Results of four experiments show that developmental differences in elaborative conceptual processing at acquisition and retrieval contribute independently to developmental increases in recall. Item identification processes for both words and pictures constrain children's elaborative processing. The constraints are time limited. (RH)
Mozzi, Alessandra; Riva, Valentina; Forni, Diego; Sironi, Manuela; Marino, Cecilia; Molteni, Massimo; Riva, Stefania; Guerini, Franca R; Clerici, Mario; Cagliani, Rachele; Mascheretti, Sara
2017-04-24
Language-based Learning Disabilities (LLDs) encompass a group of complex, comorbid, and developmentally associated deficits in communication. Language impairment and developmental dyslexia (DD) represent the most recognized forms of LLDs. Substantial genetic correlations exist between language and reading (dis)abilities. Common variants in the FOXP2 gene were consistently associated with language- and reading-related neuropsychological and neuroanatomical phenotypes. We tested the effect of a FOXP2 common variant, that is, rs6980093 (A/G), on quantitative measures of language and reading in two independent Italian samples: a population-based cohort of 699 subjects (3-11 years old) and a sample of 572 children with DD (6-18 years old). rs6980093 modulates expressive language in the general population sample, with an effect on fluency scores. In the DD sample, the variant showed an association with the accuracy in the single word reading task. rs6980093 shows distinct genetic models of association in the two cohorts, with a dominant effect of the G allele in the general population sample and heterozygote advantage in the DD cohort. We provide preliminary evidence that rs6980093 associates with language and reading (dis)abilities in two independent Italian cohorts. rs6980093 is an intronic SNP, suggesting that it (or a linked variant) modulates phenotypic association via regulation of FOXP2 expression. Because FOXP2 brain expression is finely regulated, both temporally and spatially, it is possible that the two alleles at rs6980093 differentially modulate expression levels in a developmental stage- or brain area-specific manner. This might help explaining the heterozygote advantage effect and the different genetic models in the two cohorts. © 2017 Wiley Periodicals, Inc.
Wilczynski, Bartek; Furlong, Eileen E M
2010-04-15
Development is regulated by dynamic patterns of gene expression, which are orchestrated through the action of complex gene regulatory networks (GRNs). Substantial progress has been made in modeling transcriptional regulation in recent years, including qualitative "coarse-grain" models operating at the gene level to very "fine-grain" quantitative models operating at the biophysical "transcription factor-DNA level". Recent advances in genome-wide studies have revealed an enormous increase in the size and complexity or GRNs. Even relatively simple developmental processes can involve hundreds of regulatory molecules, with extensive interconnectivity and cooperative regulation. This leads to an explosion in the number of regulatory functions, effectively impeding Boolean-based qualitative modeling approaches. At the same time, the lack of information on the biophysical properties for the majority of transcription factors within a global network restricts quantitative approaches. In this review, we explore the current challenges in moving from modeling medium scale well-characterized networks to more poorly characterized global networks. We suggest to integrate coarse- and find-grain approaches to model gene regulatory networks in cis. We focus on two very well-studied examples from Drosophila, which likely represent typical developmental regulatory modules across metazoans. Copyright (c) 2009 Elsevier Inc. All rights reserved.
The flowering hormone florigen functions as a general systemic regulator of growth and termination
Shalit, Akiva; Rozman, Alexander; Goldshmidt, Alexander; Alvarez, John P.; Bowman, John L.; Eshed, Yuval; Lifschitz, Eliezer
2009-01-01
The florigen paradigm implies a universal flowering-inducing hormone that is common to all flowering plants. Recent work identified FT orthologues as originators of florigen and their polypeptides as the likely systemic agent. However, the developmental processes targeted by florigen remained unknown. Here we identify local balances between SINGLE FLOWER TRUSS (SFT), the tomato precursor of florigen, and SELF-PRUNING (SP), a potent SFT-dependent SFT inhibitor as prime targets of mobile florigen. The graft-transmissible impacts of florigen on organ-specific traits in perennial tomato show that in addition to import by shoot apical meristems, florigen is imported by organs in which SFT is already expressed. By modulating local SFT/SP balances, florigen confers differential flowering responses of primary and secondary apical meristems, regulates the reiterative growth and termination cycles typical of perennial plants, accelerates leaf maturation, and influences the complexity of compound leaves, the growth of stems and the formation of abscission zones. Florigen is thus established as a plant protein functioning as a general growth hormone. Developmental interactions and a phylogenetic analysis suggest that the SFT/SP regulatory hierarchy is a recent evolutionary innovation unique to flowering plants. PMID:19416824
OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice1[OPEN
Khong, Giang Ngan; Richaud, Frédérique; Parizot, Boris; Mai, Chung Duc; Bès, Martine; Bourrié, Isabelle; Meynard, Donaldo; Beeckman, Tom; Selvaraj, Michael Gomez; Manabu, Ishitani; Brugidou, Christophe; Nang Do, Vinh; Guiderdoni, Emmanuel; Morel, Jean-Benoit; Gantet, Pascal
2015-01-01
Functional analyses of MADS-box transcription factors in plants have unraveled their role in major developmental programs (e.g. flowering and floral organ identity) as well as stress-related developmental processes, such as abscission, fruit ripening, and senescence. Overexpression of the rice (Oryza sativa) MADS26 gene in rice has revealed a possible function related to stress response. Here, we show that OsMADS26-down-regulated plants exhibit enhanced resistance against two major rice pathogens: Magnaporthe oryzae and Xanthomonas oryzae. Despite this enhanced resistance to biotic stresses, OsMADS26-down-regulated plants also displayed enhanced tolerance to water deficit. These phenotypes were observed in both controlled and field conditions. Interestingly, alteration of OsMADS26 expression does not have a strong impact on plant development. Gene expression profiling revealed that a majority of genes misregulated in overexpresser and down-regulated OsMADS26 lines compared with control plants are associated to biotic or abiotic stress response. Altogether, our data indicate that OsMADS26 acts as an upstream regulator of stress-associated genes and thereby, a hub to modulate the response to various stresses in the rice plant. PMID:26424158
Franco, Heather L; Yao, Humphrey H-C
2012-01-01
The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.
Representing Ontogeny Through Ontology: A Developmental Biologist’s Guide to The Gene Ontology
Hill, David P.; Berardini, Tanya Z.; Howe, Douglas G.; Van Auken, Kimberly M.
2010-01-01
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible. PMID:19921742
QI, Xiaonan; LI, Huatao; CONG, Xia; WANG, Xin; JIANG, Zhongling; CAO, Rongfeng; TIAN, Wenru
2016-01-01
Scutellaria baicalensis has been effectively used in Chinese traditional medicine to prevent miscarriages. However, little information is available on its mechanism of action. This study is designed specifically to reveal how baicalin, the main effective ingredient of S. baicalensis, improves developmental competence of embryos in vitro, using the mouse as a model. Mouse pronuclear embryos were cultured in KSOM medium supplemented with (0, 2, 4 and 8 μg/ml) baicalin. The results demonstrated that in vitro culture conditions significantly decreased the blastocyst developmental rate and blastocyst quality, possibly due to increased cellular stress and apoptosis. Baicalin (4 µg/ml) significantly increased 2- and 4-cell cleavage rates, morula developmental rate, and blastocyst developmental rate and cell number of in vitro-cultured mouse embryos. Moreover, baicalin increased the expression of Gja1, Cdh1, Bcl-2, and Dnmt3a genes, decreased the expression of Dnmt1 gene, and decreased cellular stress and apoptosis as it decreased the expression of HSP70, CASP3, and BAX and increased BCL-2 expression in blastocysts cultured in vitro. In conclusion, baicalin improves developmental competence of in vitro-cultured mouse embryos through inhibition of cellular apoptosis and HSP70 expression, and improvement of DNA methylation. PMID:27478062
Fernandez-Valverde, Selene L; Aguilera, Felipe; Ramos-Díaz, René Alexander
2018-06-18
The advent of high-throughput sequencing technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyse cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in high-throughput sequencing technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global of gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control
Rothenberg, Ellen V.; Ungerbäck, Jonas; Champhekar, Ameya
2016-01-01
T lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of Innate Lymphoid Cells (ILCs) that share transcriptional regulation programs extensively with T cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly-common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. PMID:26791859
Grasso, Esteban; Gori, Soledad; Paparini, Daniel; Soczewski, Elizabeth; Fernández, Laura; Gallino, Lucila; Salamone, Gabriela; Martinez, Gustavo; Irigoyen, Marcela; Ruhlmann, Claudio; Pérez Leirós, Claudia; Ramhorst, Rosanna
2018-01-15
The decidualization process involves phenotype and functional changes on endometrial cells and the modulation of mediators with immunoregulatory properties as the vasoactive intestinal peptide (VIP). We investigate VIP contribution to the decidualization program and to immunoregulation throughout the human embryo implantation process. The decidualization of Human endometrial stromal cell line (HESC) with Medroxyprogesterone-dibutyryl-cAMP increased VIP/VPAC-receptors system. In fact, VIP could induce decidualization increasing differentiation markers (IGFBP1, PRL, KLF13/KLF9 ratio, CXCL12, CXCL8 and CCL2) and allowing Blastocyst-like spheroids (BLS) invasion in an in vitro model of embryo implantation. Focus on the tolerogenic effects, decidualized cells induced a semi-mature profile on maternal dendritic cells; restrained CD4 + cells recruitment while increased regulatory T-cells recruitment. Interestingly, the human blastocyst conditioned media from developmentally impaired embryos diminished the invasion and T-regulatory cells recruitment in these settings. These evidences suggest that VIP contributes to the implantation process inducing decidualization, allowing BLS invasion and favoring a tolerogenic micro-environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysing growth and development of plants jointly using developmental growth stages
Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann
2015-01-01
Background and Aims Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Methods Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Key Results Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Conclusions Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. PMID:25452250
An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.
Lucas-Reina, Eva; Romero-Campero, Francisco J; Romero, José M; Valverde, Federico
2015-06-01
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. © 2015 American Society of Plant Biologists. All Rights Reserved.
Cho, Young-Hee; Hong, Jung-Woo; Kim, Eun-Chul; Yoo, Sang-Dong
2012-04-01
Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1-null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergence-dependent manner. From early seedling development through late senescence, SnRK1 activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stress-responsive gene regulation and in plant growth and development throughout the life cycle.
Prediction of C. elegans Longevity Genes by Human and Worm Longevity Networks
de Magalhães, João Pedro; Ruvkun, Gary; Fraifeld, Vadim E.; Curran, Sean P.
2012-01-01
Intricate and interconnected pathways modulate longevity, but screens to identify the components of these pathways have not been saturating. Because biological processes are often executed by protein complexes and fine-tuned by regulatory factors, the first-order protein-protein interactors of known longevity genes are likely to participate in the regulation of longevity. Data-rich maps of protein interactions have been established for many cardinal organisms such as yeast, worms, and humans. We propose that these interaction maps could be mined for the identification of new putative regulators of longevity. For this purpose, we have constructed longevity networks in both humans and worms. We reasoned that the essential first-order interactors of known longevity-associated genes in these networks are more likely to have longevity phenotypes than randomly chosen genes. We have used C. elegans to determine whether post-developmental inactivation of these essential genes modulates lifespan. Our results suggest that the worm and human longevity networks are functionally relevant and possess a high predictive power for identifying new longevity regulators. PMID:23144747
The Emerging Role of Epigenetics in Stroke
Qureshi, Irfan A.; Mehler, Mark F.
2013-01-01
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain. PMID:21403016
Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography
Yang, Yong; Wang, Kai; Gu, Xiaosong; Leong, Kam W.
2017-01-01
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine. PMID:29071164
Math CAMMP: A Constructivist Summer Camp for Teachers and Students
ERIC Educational Resources Information Center
Green, Michael; Piel, John A.
2012-01-01
A summer session, math methods course for elementary teachers incorporates 30 hours of instruction that emphasizes (1) developmentally appropriate instructional strategies, (2) hierarchical levels of increasingly abstract manipulatives, (3) ongoing assessment of student learning, (4) integrated thematic instructional modules, (5) team planning and…
Pollettini, Juliana T; Panico, Sylvia R G; Daneluzzi, Julio C; Tinós, Renato; Baranauskas, José A; Macedo, Alessandra A
2012-12-01
Surveillance Levels (SLs) are categories for medical patients (used in Brazil) that represent different types of medical recommendations. SLs are defined according to risk factors and the medical and developmental history of patients. Each SL is associated with specific educational and clinical measures. The objective of the present paper was to verify computer-aided, automatic assignment of SLs. The present paper proposes a computer-aided approach for automatic recommendation of SLs. The approach is based on the classification of information from patient electronic records. For this purpose, a software architecture composed of three layers was developed. The architecture is formed by a classification layer that includes a linguistic module and machine learning classification modules. The classification layer allows for the use of different classification methods, including the use of preprocessed, normalized language data drawn from the linguistic module. We report the verification and validation of the software architecture in a Brazilian pediatric healthcare institution. The results indicate that selection of attributes can have a great effect on the performance of the system. Nonetheless, our automatic recommendation of surveillance level can still benefit from improvements in processing procedures when the linguistic module is applied prior to classification. Results from our efforts can be applied to different types of medical systems. The results of systems supported by the framework presented in this paper may be used by healthcare and governmental institutions to improve healthcare services in terms of establishing preventive measures and alerting authorities about the possibility of an epidemic.
Stamps, Judy A; Groothuis, Ton G G
2010-12-27
Developmental processes can have major impacts on the correlations in behaviour across contexts (contextual generality) and across time (temporal consistency) that are the hallmarks of animal personality. Personality can and does change: at any given age or life stage it is contingent upon a wide range of experiential factors that occurred earlier in life, from prior to conception through adulthood. We show how developmental reaction norms that describe the effects of prior experience on a given behaviour can be used to determine whether the effects of a given experience at a given age will affect contextual generality at a later age, and to illustrate how variation within individuals in developmental plasticity leads to variation in contextual generality across individuals as a function of experience. We also show why niche-picking and niche-construction, behavioural processes which allow individuals to affect their own developmental environment, can affect the contextual generality and the temporal consistency of personality. We conclude by discussing how an appreciation of developmental processes can alert behavioural ecologists studying animal personality to critical, untested assumptions that underlie their own research programmes, and outline situations in which a developmental perspective can improve studies of the functional significance and evolution of animal personality.
[Contemporary cognitive theories about developmental dyscalculia].
Castro-Cañizares, D; Estévez-Pérez, N; Reigosa-Crespo, V
To analyze the current theories describing the cognitive mechanisms underlying developmental dyscalculia. The four most researched hypotheses concerning the cognitive deficits related to developmental dyscalculia, as well as experimental evidences supporting or refusing them are presented. The first hypothesis states that developmental dyscalculia is consequence of domain general cognitive deficits. The second hypothesis suggests that it is due to a failure in the development of specialized brain systems dedicated to numerosity processing. The third hypothesis asserts the disorder is caused by a deficit in accessing quantity representation through numerical symbols. The last hypothesis states developmental dyscalculia appears as a consequence of impairments in a generalized magnitude system dedicated to the processing of continuous and discrete magnitudes. None of the hypotheses has been proven more plausible than the rest. Relevant issues rose by them need to be revisited and answered in the light of new experimental designs. In the last years the understanding of cognitive disorders involved in developmental dyscalculia has remarkably increased, but it is nonetheless insufficient. Additional research is required in order to achieve a comprehensive cognitive model of numerical processing development and its disorders. This will improve the diagnostic precision and the effectiveness of developmental dyscalculia intervention strategies.
Degraded attentional modulation of cortical neural populations in strabismic amblyopia
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628
Degraded attentional modulation of cortical neural populations in strabismic amblyopia.
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.
Schubert, Jonathan T. W.; Badde, Stephanie; Röder, Brigitte
2017-01-01
Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically (“palm” or “back” of the hand), or externally (“up” or “down” in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top-down information—here, task instruction—even in the absence of developmental vision. PMID:29228023
Normal composite face effects in developmental prosopagnosia.
Biotti, Federica; Wu, Esther; Yang, Hua; Jiahui, Guo; Duchaine, Bradley; Cook, Richard
2017-10-01
Upright face perception is thought to involve holistic processing, whereby local features are integrated into a unified whole. Consistent with this view, the top half of one face appears to fuse perceptually with the bottom half of another, when aligned spatially and presented upright. This 'composite face effect' reveals a tendency to integrate information from disparate regions when faces are presented canonically. In recent years, the relationship between susceptibility to the composite effect and face recognition ability has received extensive attention both in participants with normal face recognition and participants with developmental prosopagnosia. Previous results suggest that individuals with developmental prosopagnosia may show reduced susceptibility to the effect suggestive of diminished holistic face processing. Here we describe two studies that examine whether developmental prosopagnosia is associated with reduced composite face effects. Despite using independent samples of developmental prosopagnosics and different composite procedures, we find no evidence for reduced composite face effects. The experiments yielded similar results; highly significant composite effects in both prosopagnosic groups that were similar in magnitude to the effects found in participants with normal face processing. The composite face effects exhibited by both samples and the controls were greatly diminished when stimulus arrangements were inverted. Our finding that the whole-face binding process indexed by the composite effect is intact in developmental prosopagnosia indicates that other factors are responsible for developmental prosopagnosia. These results are also inconsistent with suggestions that susceptibility to the composite face effect and face recognition ability are tightly linked. While the holistic process revealed by the composite face effect may be necessary for typical face perception, it is not sufficient; individual differences in face recognition ability likely reflect variability in multiple sequential processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
A developmental-psychobiological approach to developmental neuropsychology.
Michel, G F
2001-01-01
Although both developmental psychobiology and developmental neuropsychology examine the interface between biological and psychological processes, they differ in conceptual framework. This article argues for the incorporation into developmental neuropsychology of certain aspects of the conceptual framework of developmental psychobiology. Three principles of dynamic psychobiological interaction are described and applied to four issues in neuropsychology (handedness, sex differences in behavior, critical periods, and modularity of structure-function relations). Then, it is proposed that developmental psychobiology can make four direct contributions to developmental neuropsychology. Finally, it is argued that the value of the conceptual framework provided by developmental psychobiology depends, in part, on how well it translates into procedures that can be applied in the clinical settings of the developmental neuropsychologist.
EXTRAPOLATION FROM IN VITRO MECHANISMS TO IN VIVO EFFECTS FOR DEVELOPMENTAL NEUROTOXICOLOGY.
Processes that are critical to development of the nervous system can be altered by both genetic and epigenetic factors. Developmental exposure to neurotoxicants can alter these processes and lead to perturbation of normal neural development. As numerous processes occur in tande...
Auditory Processing of Amplitude Envelope Rise Time in Adults Diagnosed with Developmental Dyslexia
ERIC Educational Resources Information Center
Pasquini, Elisabeth S.; Corriveau, Kathleen H.; Goswami, Usha
2007-01-01
Studies of basic (nonspeech) auditory processing in adults thought to have developmental dyslexia have yielded a variety of data. Yet there has been little consensus regarding the explanatory value of auditory processing in accounting for reading difficulties. Recently, however, a number of studies of basic auditory processing in children with…
Developing workshop module of realistic mathematics education: Follow-up workshop
NASA Astrophysics Data System (ADS)
Palupi, E. L. W.; Khabibah, S.
2018-01-01
Realistic Mathematics Education (RME) is a learning approach which fits the aim of the curriculum. The success of RME in teaching mathematics concepts, triggering students’ interest in mathematics and teaching high order thinking skills to the students will make teachers start to learn RME. Hence, RME workshop is often offered and done. This study applied development model proposed by Plomp. Based on the study by RME team, there are three kinds of RME workshop: start-up workshop, follow-up workshop, and quality boost. However, there is no standardized or validated module which is used in that workshops. This study aims to develop a module of RME follow-up workshop which is valid and can be used. Plopm’s developmental model includes materials analysis, design, realization, implementation, and evaluation. Based on the validation, the developed module is valid. While field test shows that the module can be used effectively.
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod
2015-01-01
Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7–9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. PMID:22682904
Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Tenison, Caitlin; Menon, Vinod
2012-02-15
Developmental dyscalculia (DD) is a disability that impacts math learning and skill acquisition in school-age children. Here we investigate arithmetic problem solving deficits in young children with DD using univariate and multivariate analysis of fMRI data. During fMRI scanning, 17 children with DD (ages 7-9, grades 2 and 3) and 17 IQ- and reading ability-matched typically developing (TD) children performed complex and simple addition problems which differed only in arithmetic complexity. While the TD group showed strong modulation of brain responses with increasing arithmetic complexity, children with DD failed to show such modulation. Children with DD showed significantly reduced activation compared to TD children in the intraparietal sulcus, superior parietal lobule, supramarginal gyrus and bilateral dorsolateral prefrontal cortex in relation to arithmetic complexity. Critically, multivariate representational similarity revealed that brain response patterns to complex and simple problems were less differentiated in the DD group in bilateral anterior IPS, independent of overall differences in signal level. Taken together, these results show that children with DD not only under-activate key brain regions implicated in mathematical cognition, but they also fail to generate distinct neural responses and representations for different arithmetic problems. Our findings provide novel insights into the neural basis of DD. Copyright © 2011 Elsevier Ltd. All rights reserved.
How we launched a developmental student-as-teacher (SAT) program for all medical students.
Blanco, Maria A; Maderer, Ann; Oriel, Amanda; Epstein, Scott K
2014-05-01
Teaching is a necessary skill for medical trainees and physicians. We designed and launched a developmental Student-as-Teacher program for all students, beginning with the class of 2016. A task force of faculty and students designed the program. The goal is to enable all students to acquire basic principles of teaching and learning at different stages in their four-year medical school career. Upon completion, students will achieve twenty-eight learning objectives grouped within four competency domains: (1) Adult and Practice-Based Learning; (2) Learning Environment; (3) Instructional Design and Performance; and, (4) Learner's Assessment and Evaluation. The program combines online learning modules and a field teaching experience. The entire class of 2016 (N = 200) completed the first online module. Students found the module effective, and 70% reported an increase in their level of knowledge. Although most students are expected to complete their field teaching experience in fourth year, twelve students completed their field experience in first year. Reported strengths of these experiences include reinforcement of their medical knowledge and improvement of their adult teaching skills. The program was successfully launched, and students are already experiencing the benefits of training in basic teaching skills in the first year of the program.
Blood Flow Modulation of Vascular Dynamics
Lee, Juhyun; Sevag Packard, René R.; Hsiai, Tzung K.
2015-01-01
Purpose of review Blood flow is intimately linked with cardiovascular development, repair, and dysfunction. The current review will build on the fluid mechanical principle underlying hemodynamic shear forces, mechanotransduction, and metabolic effects. Recent findings Pulsatile flow produces both time- (∂τ /∂t)and spatial-varying shear stress (∂τ /∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological significance to atherosclerosis. The characteristics of hemodynamic shear forces; namely, steady laminar (∂τ /∂t= 0), pulsatile (PSS: unidirectional forward flow), and oscillatory shear stress (OSS: bidirectional with a near net 0 forward flow) modulate mechano-signal transduction to influence metabolic effects on vascular endothelial function. Atheroprotective PSS promotes anti-oxidant, anti-inflammatory, and anti-thrombotic responses, whereas atherogenic OSS induces NADPH oxidase–JNK signaling to increase mitochondrial superoxide production, protein degradation of manganese superoxide dismutase (MnSOD), and post-translational protein modifications of LDL particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, shear stress has been implicated in re-activation of developmental genes; namely, Wnt and Notch signaling, for vascular development and repair. Summary Blood flow imparts a dynamic continuum from vascular development to repair. Augmentation of PSS confers atheroprotection and re-activation of developmental signaling pathways for regeneration. PMID:26218416
Vijayasarathy, S; Ernest, I; Itzhaki, J E; Sherman, D; Mowatt, M R; Michels, P A; Clayton, C E
1990-01-01
The fructose bisphosphate aldolase genes of Trypanosoma brucei are interspersed with unrelated genes whose transcript levels show no developmental modulation. Transcription appears approximately constant across the entire locus, suggesting that aldolase mRNA abundance is regulated post-transcriptionally. Images PMID:2349093
Simulations in the Consumer Economics Classroom. Consumer Education Training Module.
ERIC Educational Resources Information Center
Kachaturoff, Grace
This inservice manual provides guidelines to help elementary, secondary, and adult education teachers select, use, and design simulation experiences for consumer education. Four example simulations provide students with opportunities to develop decision-making skills as consumers. Simulations may be used as an introductory, developmental, or…
Maternal high-fat diet modulates brown adipose tissue response to B-adrenergic agonist
USDA-ARS?s Scientific Manuscript database
Maternal obesity increases offspring risk for several metabolic diseases. We previously showed that offspring of obese dams are predisposed to obesity, liver and adipose tissue anomalies. However, the effect of maternal obesity on developmental programing brown adipose tissue (BAT) is poorly underst...
Virtual Tissue Models in Developmental Toxicity Research
Prenatal exposure to drugs and chemicals may perturb, directly or indirectly, core developmental processes in the embryo (patterning, morphogenesis, proliferation and apoptosis, and cell differentiation), leading to adverse developmental outcomes. Because embryogenesis entails a...
Lee, Kyounghee; Lee, Hong Gil; Kim, Hyun Uk; Seo, Pil Joon
2015-01-01
Seed germination is a key developmental transition that initiates the plant life cycle. The timing of germination is determined by the coordinated action of two phytohormones, gibberellin and abscisic acid (ABA). In particular, ABA plays a key role in integrating environmental information and inhibiting the germination process. The utilization of embryonic lipid reserves contributes to seed germination by acting as an energy source, and ABA suppresses lipid degradation to modulate the germination process. Here, we report that the ABA-responsive R2R3-type MYB transcription factor MYB96, which is highly expressed in embryo, regulates seed germination by controlling the expression of ABSCISIC ACID-INSENSITIVE4 (ABI4) in Arabidopsis (Arabidopsis thaliana). In the presence of ABA, germination was accelerated in MYB96-deficient myb96-1 seeds, whereas the process was significantly delayed in MYB96-overexpressing activation-tagging myb96-ox seeds. Consistently, myb96-1 seeds degraded a larger extent of lipid reserves even in the presence of ABA, while reduced lipid mobilization was observed in myb96-ox seeds. MYB96 directly regulates ABI4, which acts as a repressor of lipid breakdown, to define its spatial and temporal expression. Genetic analysis further demonstrated that ABI4 is epistatic to MYB96 in the control of seed germination. Taken together, the MYB96-ABI4 module regulates lipid mobilization specifically in the embryo to ensure proper seed germination under suboptimal conditions. PMID:25869652
Neurobiology of autism gene products: towards pathogenesis and drug targets.
Kleijer, Kristel T E; Schmeisser, Michael J; Krueger, Dilja D; Boeckers, Tobias M; Scheiffele, Peter; Bourgeron, Thomas; Brose, Nils; Burbach, J Peter H
2014-03-01
The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.
Delayed in vitro development of Up states but normal network plasticity in Fragile X circuits.
Motanis, Helen; Buonomano, Dean
2015-09-01
A broad range of neurophysiological phenotypes have been reported since the generation of the first mouse model of Fragile X syndrome (FXS). However, it remains unclear which phenotypes are causally related to the cognitive deficits associated with FXS. Indeed, because many of these phenotypes are known to be modulated by experience, a confounding factor in the interpretation of many studies is whether some phenotypes are an indirect consequence of abnormal development and experience. To help diminish this confound we first conducted an in vitro developmental study of spontaneous neural dynamics in cortical organotypic cultures. A significant developmental increase in network activity and Up states was observed in both wild-type and Fmr1(-/y) circuits, along with a specific developmental delay in the emergence of Up states in knockout circuits. To determine whether Up state regulation is generally impaired in FXS circuits, we examined Up state plasticity using chronic optogenetic stimulation. Wild-type and Fmr1(-/y) stimulated circuits exhibited a significant decrease in overall spontaneous activity including Up state frequency; however, no significant effect of genotype was observed. These results demonstrate that developmental delays characteristic of FXS are recapitulated during in vitro development, and that Up state abnormalities are probably a direct consequence of the disease, and not an indirect consequence of abnormal experience. However, the fact that Fmr1(-/y) circuits exhibited normal homeostatic modulation of Up states suggests that these plasticity mechanisms are largely intact, and that some of the previously reported plasticity deficits could reflect abnormal experience or the engagement of compensatory mechanisms. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Bakare, Muideen O; Okoye, Jane O; Obindo, James T
2014-01-01
This study investigates the possibility of introducing depression and developmental screening tools into the National Programme on Immunization (NPI) in southeast Nigeria. The specific objectives were to determine the prevalence of postpartum depression (PPD) among mothers attending immunization clinics and to assess the association of maternal PPD and infant growth in relation to World Health Organization (WHO) recommendations. Four hundred and eight (408) mothers completed the sociodemographic questionnaire and the self-report Edinburgh Postnatal Depression Scale (EPDS). The weights, lengths and head circumferences of their infants were recorded, while the WHO recommended equivalents at 50th percentiles were also recorded for each child. The mothers were then interviewed with the major depressive episode module of Mini International Neuropsychiatric Interview (M.I.N.I.) to make diagnosis of depression. About 24.8% and 15.2% of the mothers were found to be depressed using EPDS and major depressive episode module of M.I.N.I., respectively. It was found that maternal PPD is significantly associated with the growth parameters of weights and lengths of the infants studied but not their head circumference. NPI may provide appropriate forum for early screening of mothers for PPD and interventions in Nigeria. The NPI would also serve a useful avenue of screening for developmental concerns in Nigerian children. © 2014.
Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B
2013-01-08
It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.
Fetal Sex Modulates Developmental Response to Maternal Malnutrition
Gonzalez-Bulnes, Antonio; Torres-Rovira, Laura; Astiz, Susana; Ovilo, Cristina; Sanchez-Sanchez, Raul; Gomez-Fidalgo, Ernesto; Perez-Solana, Mariluz; Martin-Lluch, Mercedes; Garcia-Contreras, Consuelo; Vazquez-Gomez, Marta
2015-01-01
The incidence of obesity and metabolic diseases is dramatically high in rapidly developing countries. Causes have been related to intrinsic ethnic features with development of a thrifty genotype for adapting to food scarcity, prenatal programming by undernutrition, and postnatal exposure to obesogenic lifestyle. Observational studies in humans and experimental studies in animal models evidence that the adaptive responses of the offspring may be modulated by their sex. In the contemporary context of world globalization, the new question arising is the existence and extent of sex-related differences in developmental and metabolic traits in case of mixed-race. Hence, in the current study, using a swine model, we compared male and female fetuses that were crossbred from mothers with thrifty genotype and fathers without thrifty genotype. Female conceptuses evidence stronger protective strategies for their adequate growth and postnatal survival. In brief, both male and female fetuses developed a brain-sparing effect but female fetuses were still able to maintain the development of other viscerae than the brain (mainly liver, intestine and kidneys) at the expense of carcass development. Furthermore, these morphometric differences were reinforced by differences in nutrient availability (glucose and cholesterol) favoring female fetuses with severe developmental predicament. These findings set the basis for further studies aiming to increase the knowledge on the interaction between genetic and environmental factors in the determination of adult phenotype PMID:26544862
Emotion and Cognition: An Intricately Bound Developmental Process
ERIC Educational Resources Information Center
Bell, Martha Ann; Wolfe, Christy D.
2004-01-01
Regulatory aspects of development can best be understood by research that conceptualizes relations between cognition and emotion. The neural mechanisms associated with regulatory processes may be the same as those associated with higher order cognitive processes. Thus, from a developmental cognitive neuroscience perspective, emotion and cognition…
Developmental trends in adaptive memory.
Otgaar, Henry; Howe, Mark L; Smeets, Tom; Garner, Sarah R
2014-01-01
Recent studies have revealed that memory is enhanced when information is processed for fitness-related purposes. The main objective of the current experiments was to test developmental trends in the evolutionary foundation of memory using different types of stimuli and paradigms. In Experiment 1, 11-year-olds and adults were presented with neutral, negative, and survival-related DRM word lists. We found a memory benefit for the survival-related words and showed that false memories were more likely to be elicited for the survival-related word lists than for the other lists. Experiment 2 examined developmental trends in the survival processing paradigm using neutral, negative, and survival-related pictures. A survival processing advantage was found for survival-related pictures in adults, for negative pictures in 11/12-year-olds, and for neutral pictures in 7/8-year-olds. In Experiment 3, 11/12-year-olds and adults had to imagine the standard survival scenario or an adapted survival condition (or pleasantness condition) that was designed to reduce the possibilities for elaborative processing. We found superior memory retention for both survival scenarios in children and adults. Collectively, our results evidently show that the survival processing advantage is developmentally invariant and that certain proximate mechanisms (elaboration and distinctiveness) underlie these developmental trends.
Analysing growth and development of plants jointly using developmental growth stages.
Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann
2015-01-01
Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Effectiveness of Aligned Developmental Feedback on the Overhand Throw in Third-Grade Students
ERIC Educational Resources Information Center
Cohen, Rona; Goodway, Jacqueline D.; Lidor, Ronnie
2012-01-01
Background: To improve student performance, teachers need to evaluate the developmental level of the child and to deliver feedback statements that correspond with the student's ability to process the information delivered. Therefore, feedback aligned with the developmental level of the child (aligned developmental feedback--ADF) is sometimes…
Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jirí; Juergens, Gerd; Hwang, Inhwan
2013-08-01
Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2-dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs.
Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jiří; Juergens, Gerd; Hwang, Inhwan
2013-01-01
Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs. PMID:23975898
ERIC Educational Resources Information Center
Tong, Xiuhong; Tong, Xiuli; King Yiu, Fung
2018-01-01
Increasing evidence suggests that children with developmental dyslexia exhibit a deficit not only at the segmental level of phonological processing but also, by extension, at the suprasegmental level. However, it remains unclear whether such a suprasegmental phonological processing deficit is due to a difficulty in processing acoustic cues of…
Brain and Social Networks: Fundamental Building Blocks of Human Experience.
Falk, Emily B; Bassett, Danielle S
2017-09-01
How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nativism versus Neuroconstructivism: Rethinking the Study of Developmental Disorders
ERIC Educational Resources Information Center
Karmiloff-Smith, Annette
2009-01-01
This article argues that one dominant position in psychology, linguistics, neuroscience, and philosophy about how genetic disorders point to the innate specification of dissociated modules in the human brain should be replaced by a dynamic, neuroconstructivist approach in which genes, brain, cognition, and environment interact multidirectionally.…
Candidate Socioemotional Remediation Program for Individuals with Intellectual Disability
ERIC Educational Resources Information Center
Glaser, Bronwyn; Lothe, Amelie; Chabloz, Melanie; Dukes, Daniel; Pasca, Catherine; Redoute, Jerome; Eliez, Stephan
2012-01-01
The authors developed a computerized program, Vis-a-Vis (VAV), to improve socioemotional functioning and working memory in children with developmental disabilities. The authors subsequently tested whether participants showed signs of improving the targeted skills. VAV is composed of three modules: Focus on the Eyes, Emotion Recognition and…
ERIC Educational Resources Information Center
Rushin, John W.; Baller, William
1981-01-01
Tests the effect of developmental level objectives on student achievement and efficiency in a zoology course. These objectives were found to have no significant effect on achievement, but they did significantly increase student efficiency in learning the content material of the module. (Author)
Math 3008--Developmental Mathematics II. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This is designed as the second of a two-semester sequence. Topics include performing operations with radicals and exponents; learning to solve equations;…
Math 3007--Developmental Mathematics I. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course designed to develop student proficiency in the basic algebraic skills. This course is designed as the first of a two-semester sequence. Topics include operations with signed numbers; simple operations on monomials and…
Math 3013--Developmental Mathematics I and II. Course Outline.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
This document contains the course syllabus and 12 independent practice modules for an introductory college algebra course that requires some previous knowledge of algebra and the ability to work at a rapid pace. Topics include the basic operations with signed integers; fractions; decimals; literal expressions; algebraic fractions; radicals;…
Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit
USDA-ARS?s Scientific Manuscript database
Little is known about how plants regulate their folate content, including whether the expression of folate biosynthesis genes is orchestrated during development or modulated by folate levels. Nor is much known about how folate levels impact the expression of other genes. These points were addressed ...
Regulation of PCP by the Fat signaling pathway
Matis, Maja; Axelrod, Jeffrey D.
2013-01-01
Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations. PMID:24142873
The Complexity of Developmental Predictions from Dual Process Models
ERIC Educational Resources Information Center
Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.
2011-01-01
Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…
Developmental Implications of the Levels of Processing Memory Framework.
ERIC Educational Resources Information Center
Naus, Mary J.
The levels of processing framework for understanding memory development has generated little empirical or theoretical work that furthers an understanding of the developmental memory system. Although empirical studies by those testing the levels of processing framework have demonstrated that mnemonic strategies employed by children are the critical…
Cultural Variations in Global versus Local Processing: A Developmental Perspective
ERIC Educational Resources Information Center
Oishi, Shigehiro; Jaswal, Vikram K.; Lillard, Angeline S.; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro
2014-01-01
We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 ("N" = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 ("N" =…
Cognitive Development and Reading Processes. Developmental Program Report Number 76.
ERIC Educational Resources Information Center
West, Richard F.
In discussing the relationship between cognitive development (perception, pattern recognition, and memory) and reading processes, this paper especially emphasizes developmental factors. After an overview of some issues that bear on how written language is processed, the paper presents a discussion of pattern recognition, including general pattern…
Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles
2014-04-28
Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.
Plants: Novel Developmental Processes.
ERIC Educational Resources Information Center
Goldberg, Robert B.
1988-01-01
Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)
Gatto, Cheryl L.; Broadie, Kendal
2011-01-01
Fragile X syndrome (FXS), caused by loss of fragile X mental retardation 1 (FMR1) gene function, is the most common heritable cause of intellectual disability and autism spectrum disorders. The FMR1 product (FMRP) is an RNA-binding protein best established to function in activity-dependent modulation of synaptic connections. In the Drosophila FXS disease model, loss of functionally-conserved dFMRP causes synaptic overgrowth and overelaboration in pigment dispersing factor (PDF) peptidergic neurons in the adult brain. Here, we identify a very different component of PDF neuron misregulation in dfmr1 mutants: the aberrant retention of normally developmentally-transient PDF tritocerebral (PDF-TRI) neurons. In wild-type animals, PDF-TRI neurons in the central brain undergo programmed cell death and complete, processive clearance within days of eclosion. In the absence of dFMRP, a defective apoptotic program leads to constitutive maintenance of these peptidergic neurons. We tested whether this apoptotic defect is circuit-specific by examining crustacean cardioactive peptide (CCAP) and bursicon circuits, which are similarly developmentally-transient and normally eliminated immediately post-eclosion. In dfmr1 null mutants, CCAP/bursicon neurons also exhibit significantly delayed clearance dynamics, but are subsequently eliminated from the nervous system, in contrast to the fully persistent PDF-TRI neurons. Thus, the requirement of dFMRP for the retention of transitory peptidergic neurons shows evident circuit specificity. The novel defect of impaired apoptosis and aberrant neuron persistence in the Drosophila FXS model suggests an entirely new level of “pruning” dysfunction may contribute to the FXS disease state. PMID:21596027
Heyne, David; Sauter, Floor M; Ollendick, Thomas H; Van Widenfelt, Brigit M; Westenberg, P Michiel
2014-06-01
School refusal can be difficult to treat and the poorest treatment response is observed among older school refusers. This poor response may be explained, in part, by the impact of developmental transitions and tasks upon the young person, their family, and the treatment process. This paper describes and illustrates the @school program, a cognitive behavioral therapy (CBT) designed to promote developmental sensitivity when planning and delivering treatment for adolescent school refusal. Treatment is modularized and it incorporates progress reviews, fostering a planned yet flexible approach to CBT. The treatment is illustrated in the case of Allison, a 16-year-old female presenting with major depressive disorder and generalized anxiety disorder. A case formulation guided the selection, sequencing, and pacing of modules targeting predisposing, precipitating, perpetuating, and protective factors. Treatment comprised 16 sessions with Allison (interventions addressing depression, anxiety, and school attendance) and 15 concurrent sessions with her mother (strategies to facilitate an adolescent's school attendance), including two sessions with Allison and mother together (family communication and problem solving to reduce parent-adolescent conflict). Two treatment-related consultations were also conducted with Allison's homeroom teacher. Allison's school attendance improved during the course of treatment. By post-treatment, there was a decrease in internalizing behavior, an increase in self-efficacy, and remission of depressive disorder and anxiety disorder. Clinically significant treatment gains were maintained at 2-month follow-up. Factors influencing outcome may include those inherent to the @school program together with less specific factors. Special consideration is given to parents' use of both authoritative and autonomy-granting approaches when helping an adolescent to attend school.
Asad, Areej Nimer; Purdy, Suzanne C; Ballard, Elaine; Fairgray, Liz; Bowen, Caroline
2018-04-27
In this descriptive study, phonological processes were examined in the speech of children aged 5;0-7;6 (years; months) with mild to profound hearing loss using hearing aids (HAs) and cochlear implants (CIs), in comparison to their peers. A second aim was to compare phonological processes of HA and CI users. Children with hearing loss (CWHL, N = 25) were compared to children with normal hearing (CWNH, N = 30) with similar age, gender, linguistic, and socioeconomic backgrounds. Speech samples obtained from a list of 88 words, derived from three standardized speech tests, were analyzed using the CASALA (Computer Aided Speech and Language Analysis) program to evaluate participants' phonological systems, based on lax (a process appeared at least twice in the speech of at least two children) and strict (a process appeared at least five times in the speech of at least two children) counting criteria. Developmental phonological processes were eliminated in the speech of younger and older CWNH while eleven developmental phonological processes persisted in the speech of both age groups of CWHL. CWHL showed a similar trend of age of elimination to CWNH, but at a slower rate. Children with HAs and CIs produced similar phonological processes. Final consonant deletion, weak syllable deletion, backing, and glottal replacement were present in the speech of HA users, affecting their overall speech intelligibility. Developmental and non-developmental phonological processes persist in the speech of children with mild to profound hearing loss compared to their peers with typical hearing. The findings indicate that it is important for clinicians to consider phonological assessment in pre-school CWHL and the use of evidence-based speech therapy in order to reduce non-developmental and non-age-appropriate developmental processes, thereby enhancing their speech intelligibility. Copyright © 2018 Elsevier Inc. All rights reserved.
Developmental reversals in false memory: Effects of emotional valence and arousal.
Brainerd, C J; Holliday, R E; Reyna, V F; Yang, Y; Toglia, M P
2010-10-01
Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can be manipulated factorially. False memories increased with age for unpresented semantic associates of word lists, and net accuracy (the ratio of true memory to total memory) decreased with age. These surprising developmental trends were more pronounced for negatively valenced materials than for positively valenced materials, they were more pronounced for high-arousal materials than for low-arousal materials, and developmental increases in the effects of arousal were small in comparison with developmental increases in the effects of valence. These findings have ramifications for legal applications of false memory research; materials that share the emotional hallmark of crimes (events that are negatively valenced and arousing) produced the largest age increases in false memory and the largest age declines in net accuracy. Copyright 2010 Elsevier Inc. All rights reserved.
Brütting, Christoph; Schäfer, Martin; Vanková, Radomira; Gase, Klaus; Baldwin, Ian T.; Meldau, Stefan
2016-01-01
Plant defense metabolites are well-known to be regulated developmentally. The OD theory posits that a tissue’s fitness values and probability of attack should determine defense metabolite allocations. Young leaves are expected to provide a larger fitness-value to the plant and therefore their defense allocations should be higher when compared to older leaves. The mechanisms which coordinate development with defense remain unknown and frequently confound tests of the OD theory predictions. Here we demonstrate that cytokinins modulate ontogeny-dependent defenses in Nicotiana attenuata. We found that leaf cytokinin levels highly correlate with inducible defense expressions with high levels in young and low levels in older leaves. We genetically manipulated the developmental patterns of two different cytokinin classes by using senescence- and chemically-inducible expression of cytokinin biosynthesis genes. Genetically modifying the levels of different cytokinins in leaves was sufficient to alter ontogenic patterns of defense metabolites. We conclude that the developmental regulation of growth hormones that include cytokinins plays central roles in connecting development with defense and therefore in establishing optimal patterns of defense allocation in plants. PMID:27557345
Bråte, Jon; Adamski, Marcin; Neumann, Ralf S; Shalchian-Tabrizi, Kamran; Adamska, Maja
2015-12-22
Long non-coding RNAs (lncRNAs) play important regulatory roles during animal development, and it has been hypothesized that an RNA-based gene regulation was important for the evolution of developmental complexity in animals. However, most studies of lncRNA gene regulation have been performed using model animal species, and very little is known about this type of gene regulation in non-bilaterians. We have therefore analysed RNA-Seq data derived from a comprehensive set of embryogenesis stages in the calcareous sponge Sycon ciliatum and identified hundreds of developmentally expressed intergenic lncRNAs (lincRNAs) in this species. In situ hybridization of selected lincRNAs revealed dynamic spatial and temporal expression during embryonic development. More than 600 lincRNAs constitute integral parts of differentially expressed gene modules, which also contain known developmental regulatory genes, e.g. transcription factors and signalling molecules. This study provides insights into the non-coding gene repertoire of one of the earliest evolved animal lineages, and suggests that RNA-based gene regulation was probably present in the last common ancestor of animals. © 2015 The Authors.
Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia
Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee
2014-01-01
Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180
Peptide Signaling in Plant Development
Katsir, Leron; Davies, Kelli A.; Bergmann, Dominique C.; Laux, Thomas
2011-01-01
Cell-to-cell communication is integral to the evolution of multicellularity. In plant development, peptide signals relay information coordinating cell proliferation and differentiation. These peptides are often encoded by gene families and bind to corresponding families of receptors. The precise spatiotemporal expression of signals and their cognate receptors underlies developmental patterning, and expressional and biochemical changes over evolutionary time have likely contributed to the refinement and complexity of developmental programs. Here, we discuss two major plant peptide families which have central roles in plant development: the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide family and the EPIDERMAL PATTERNING FACTOR (EPF) family. We discuss how specialization has enabled the CLE peptides to modulate stem cell differentiation in various tissue types, and how differing activities of EPF peptides precisely regulate the stomatal developmental program, and we examine the contributions of these peptide families to plant development from an evolutionary perspective. PMID:21549958
Shimizu, Noriko; Ishida, Takashi; Yamada, Masashi; Shigenobu, Shuji; Tabata, Ryo; Kinoshita, Atsuko; Yamaguchi, Katsushi; Hasebe, Mitsuyasu; Mitsumasu, Kanako; Sawa, Shinichiro
2015-12-01
Ligand receptor-based signaling is a means of cell-to-cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell-producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV3/EMBRYO SURROUNDING REGION (CLE) peptide shrinks the root meristem through the actions of CLAVATA2 (CLV2) and the RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) pathway in Arabidopsis thaliana. Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM1, which is a member of the leucine-rich repeat receptor-like kinase (LRR-RLK) family, is also involved in this pathway. BAM1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM1 functions together with RPK2. Using coimmunoprecipitation assay, we showed that BAM1 is capable of forming heteromeric complexes with RPK2. These findings suggest that the BAM1 and RPK2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa
2008-01-01
We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105
Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa
2008-05-01
We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.
Process-based quality management for clinical implementation of adaptive radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.
Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of twomore » clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.« less
Process-based quality management for clinical implementation of adaptive radiotherapy
Noel, Camille E.; Santanam, Lakshmi; Parikh, Parag J.; Mutic, Sasa
2014-01-01
Purpose: Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. Methods: An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. Results: FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Conclusions: Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations. PMID:25086527
Process-based quality management for clinical implementation of adaptive radiotherapy.
Noel, Camille E; Santanam, Lakshmi; Parikh, Parag J; Mutic, Sasa
2014-08-01
Intensity-modulated adaptive radiotherapy (ART) has been the focus of considerable research and developmental work due to its potential therapeutic benefits. However, in light of its unique quality assurance (QA) challenges, no one has described a robust framework for its clinical implementation. In fact, recent position papers by ASTRO and AAPM have firmly endorsed pretreatment patient-specific IMRT QA, which limits the feasibility of online ART. The authors aim to address these obstacles by applying failure mode and effects analysis (FMEA) to identify high-priority errors and appropriate risk-mitigation strategies for clinical implementation of intensity-modulated ART. An experienced team of two clinical medical physicists, one clinical engineer, and one radiation oncologist was assembled to perform a standard FMEA for intensity-modulated ART. A set of 216 potential radiotherapy failures composed by the forthcoming AAPM task group 100 (TG-100) was used as the basis. Of the 216 failures, 127 were identified as most relevant to an ART scheme. Using the associated TG-100 FMEA values as a baseline, the team considered how the likeliness of occurrence (O), outcome severity (S), and likeliness of failure being undetected (D) would change for ART. New risk priority numbers (RPN) were calculated. Failures characterized by RPN ≥ 200 were identified as potentially critical. FMEA revealed that ART RPN increased for 38% (n = 48/127) of potential failures, with 75% (n = 36/48) attributed to failures in the segmentation and treatment planning processes. Forty-three of 127 failures were identified as potentially critical. Risk-mitigation strategies include implementing a suite of quality control and decision support software, specialty QA software/hardware tools, and an increase in specially trained personnel. Results of the FMEA-based risk assessment demonstrate that intensity-modulated ART introduces different (but not necessarily more) risks than standard IMRT and may be safely implemented with the proper mitigations.
González, Beatriz; Vázquez, Jennifer; Cullen, Paul J.; Mas, Albert; Beltran, Gemma; Torija, María-Jesús
2018-01-01
Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes. PMID:29696002
Perceived live interaction modulates the developing social brain.
Rice, Katherine; Moraczewski, Dustin; Redcay, Elizabeth
2016-09-01
Although children's social development is embedded in social interaction, most developmental neuroscience studies have examined responses to non-interactive social stimuli (e.g. photographs of faces). The neural mechanisms of real-world social behavior are of special interest during middle childhood (roughly ages 7-13), a time of increased social complexity and competence coinciding with structural and functional social brain development. Evidence from adult neuroscience studies suggests that social interaction may alter neural processing, but no neuroimaging studies in children have directly examined the effects of live social-interactive context on social cognition. In the current study of middle childhood, we compare the processing of two types of speech: speech that children believed was presented over a real-time audio-feed by a social partner and speech that they believed was recorded. Although in reality all speech was prerecorded, perceived live speech resulted in significantly greater neural activation in regions associated with social cognitive processing. These findings underscore the importance of using ecologically-valid and interactive methods to understand the developing social brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann
2012-01-01
The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748
ERIC Educational Resources Information Center
Ricco, Robert B.; Overton, Willis F.
2011-01-01
Many current psychological models of reasoning minimize the role of deductive processes in human thought. In the present paper, we argue that deduction is an important part of ordinary cognition and we propose that a dual systems Competence [image omitted] Procedural processing model conceptualized within relational developmental systems theory…
ERIC Educational Resources Information Center
McDougall, Patricia; Borowsky, Ron; MacKinnon, G. E.; Hymel, Shelley
2005-01-01
Recent research on developmental dyslexia has suggested a phonological core deficit hypothesis (e.g., Manis, Seidenberg, Doi, McBride-Chang, & Peterson, 1996; Stanovich, Siegel, & Gottardo, 1997) whereby pure cases of developmental phonological dyslexia (dysfunctional phonetic decoding processing but normal sight vocabulary processing) can exist,…
ERIC Educational Resources Information Center
Keogh, Barbara K., Ed.
Intended for graduate students in special education, the text presents seven author contributed papers dealing with theoretical issues in the field. M. Faust and W. Faust ("Cognitive Constructing: Levels of Processing and Developmental Change") consider cognitive processing from a developmental perspective. In "Memory Processes in Exceptional…
Mapping the developmental constraints on working memory span performance.
Bayliss, Donna M; Jarrold, Christopher; Baddeley, Alan D; Gunn, Deborah M; Leigh, Eleanor
2005-07-01
This study investigated the constraints underlying developmental improvements in complex working memory span performance among 120 children of between 6 and 10 years of age. Independent measures of processing efficiency, storage capacity, rehearsal speed, and basic speed of processing were assessed to determine their contribution to age-related variance in complex span. Results showed that developmental improvements in complex span were driven by 2 age-related but separable factors: 1 associated with general speed of processing and 1 associated with storage ability. In addition, there was an age-related contribution shared between working memory, processing speed, and storage ability that was important for higher level cognition. These results pose a challenge for models of complex span performance that emphasize the importance of processing speed alone.
How to Make a Neurocrystal: Modeling the developmental patterning of the fly's retina
NASA Astrophysics Data System (ADS)
Lubensky, David
2005-03-01
Animals' ability to create the complex patterns found in many organisms is an enduring source of wonder and a topic that has long drawn the interest of scientists of all stripes. Famously, it was an attempt to model developmental patterning that led to the discovery of the Turing instability. Here, we study one of the most remarkable and best-characterized examples of such pattern formation, the development of the fruit fly's compound eye. In the fly larva, a front of differentiation moves across the sheet of tissue that will become the adult retina. It leaves behind it a striking hexagonal array of cells marked by high levels of the protein Atonal. It has previously been noted that a standard activator-inhibitor model might explain this process [Meinhardt, 1992], but only recently has the basic genetic logic governing photoreceptor specification been deciphered [e.g. Frankfort and Mardon, 2002]. We build on these advances with the first model of retinal patterning based on experimentally verified interactions. Surprisingly, we conclude that a Turing-instability-based mechanism alone cannot reproduce the observed behavior. Instead, we propose that the pattern is generated primarily by a novel ``epitaxial'' process in which, as the front progresses, each newly-created row of unit cells acts as a template for the next one. A clear prediction of this model is that if the communication between successive rows is broken, even transiently, a striped pattern will appear. Preliminary experimental tests suggest that just such a phenomenon occurs in some mutants. Related patterning processes have been observed in systems as diverse as chick feather buds and vertebrate retinal ganglion cells [Pichaud, Treisman, and Desplan, 2001]; our model may thus describe an evolutionarily conserved module.
Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T; Leist, Marcel; Li, Abby; Mundi, William R; Padilla, Stephanie; Piersma, Aldert H; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H; Zimmer, Bastian; Lein, Pamela J
2017-01-01
There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e., alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of > 50 endpoint-specific control compounds was identified. For further test development, an additional "test" set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the > 100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems.
Aschner, Michael; Ceccatelli, Sandra; Daneshian, Mardas; Fritsche, Ellen; Hasiwa, Nina; Hartung, Thomas; Hogberg, Helena T.; Leist, Marcel; Li, Abby; Mundy, William R.; Padilla, Stephanie; Piersma, Aldert H.; Bal-Price, Anna; Seiler, Andrea; Westerink, Remco H.; Zimmer, Bastian; Lein, Pamela J.
2016-01-01
Summary There is a paucity of information concerning the developmental neurotoxicity (DNT) hazard posed by industrial and environmental chemicals. New testing approaches will most likely be based on batteries of alternative and complementary (non-animal) tests. As DNT is assumed to result from the modulation of fundamental neurodevelopmental processes (such as neuronal differentiation, precursor cell migration or neuronal network formation) by chemicals, the first generation of alternative DNT tests target these processes. The advantage of such types of assays is that they capture toxicants with multiple targets and modes-of-action. Moreover, the processes modelled by the assays can be linked to toxicity endophenotypes, i.e. alterations in neural connectivity that form the basis for neurofunctional deficits in man. The authors of this review convened in a workshop to define criteria for the selection of positive/negative controls, to prepare recommendations on their use, and to initiate the setup of a directory of reference chemicals. For initial technical optimization of tests, a set of >50 endpoint-specific control compounds was identified. For further test development, an additional “test” set of 33 chemicals considered to act directly as bona fide DNT toxicants is proposed, and each chemical is annotated to the extent it fulfills these criteria. A tabular compilation of the original literature used to select the test set chemicals provides information on statistical procedures, and toxic/non-toxic doses (both for pups and dams). Suggestions are provided on how to use the >100 compounds (including negative controls) compiled here to address specificity, adversity and use of alternative test systems. PMID:27452664
Forging T-Lymphocyte Identity: Intersecting Networks of Transcriptional Control.
Rothenberg, Ellen V; Ungerbäck, Jonas; Champhekar, Ameya
2016-01-01
T-lymphocyte development branches off from other lymphoid developmental programs through its requirement for sustained environmental signals through the Notch pathway. In the thymus, Notch signaling induces a succession of T-lineage regulatory factors that collectively create the T-cell identity through distinct steps. This process involves both the staged activation of T-cell identity genes and the staged repression of progenitor-cell-inherited regulatory genes once their roles in self-renewal and population expansion are no longer needed. With the recent characterization of innate lymphoid cells (ILCs) that share transcriptional regulation programs extensively with T-cell subsets, T-cell identity can increasingly be seen as defined in modular terms, as the processes selecting and actuating effector function are potentially detachable from the processes generating and selecting clonally unique T-cell receptor structures. The developmental pathways of different classes of T cells and ILCs are distinguished by the numbers of prerequisites of gene rearrangement, selection, and antigen contact before the cells gain access to nearly common regulatory mechanisms for choosing effector function. Here, the major classes of transcription factors that interact with Notch signals during T-lineage specification are discussed in terms of their roles in these programs, the evidence for their spectra of target genes at different stages, and their cross-regulatory and cooperative actions with each other. Specific topics include Notch modulation of PU.1 and GATA-3, PU.1-Notch competition, the relationship between PU.1 and GATA-3, and the roles of E proteins, Bcl11b, and GATA-3 in guiding acquisition of T-cell identity while avoiding redirection to an ILC fate. © 2016 Elsevier Inc. All rights reserved.
[The principle of the energy minimum in ontogeny and the channeling of developmental processes].
Ozerniuk, N D
1989-01-01
The principle of minimum of energy in ontogenesis has been formulated on the basis of data concerning age changes in energetic metabolism, as well as the influence of ecological factors on this process. According to this principle the smallest expenditures of energy are observed in the zone of the most favorable developmental conditions. The minimal level of energetic metabolism at every developmental stage that corresponds to the most stable state of organism is treated as homeostasis and the developmental stability is treated as homeorrhesis. Regulation mechanisms of energetic metabolism during ontogenesis and under the influence of environmental factors are analyzed.
Paracrine control of tissue regeneration and cell proliferation by Caspase-3
Boland, K; Flanagan, L; Prehn, J HM
2013-01-01
Executioner caspases such as Caspase-3 and Caspase-7 have long been recognised as the key proteases involved in cell demolition during apoptosis. Caspase activation also modulates signal transduction inside cells, through activation or inactivation of kinases, phosphatases and other signalling molecules. Interestingly, a series of recent studies have demonstrated that caspase activation may also influence signal transduction and gene expression changes in neighbouring cells that themselves did not activate caspases. This review describes the physiological relevance of paracrine Caspase-3 signalling for developmental processes, tissue homeostasis and tissue regeneration, and discusses the role of soluble factors and microparticles in mediating these paracrine activities. While non-cell autonomous control of tissue regeneration by Caspase-3 may represent an important process for maintaining tissue homeostasis, it may limit the efficiency of current cancer therapy by promoting cell proliferation in those cancer cells resistant to radio- or chemotherapy. We discuss recent evidence in support of such a role for Caspase-3, and discuss its therapeutic implication. PMID:23846227
Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation
De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan
2017-01-01
Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006
How children use emotional prosody: Crossmodal emotional integration?
Gil, Sandrine; Hattouti, Jamila; Laval, Virginie
2016-07-01
A crossmodal effect has been observed in the processing of facial and vocal emotion in adults and infants. For the first time, we assessed whether this effect is present in childhood by administering a crossmodal task similar to those used in seminal studies featuring emotional faces (i.e., a continuum of emotional expressions running from happiness to sadness: 90% happy, 60% happy, 30% happy, neutral, 30% sad, 60% sad, 90% sad) and emotional prosody (i.e., sad vs. happy). Participants were 5-, 7-, and 9-year-old children and a control group of adult students. The children had a different pattern of results from the adults, with only the 9-year-olds exhibiting the crossmodal effect whatever the emotional condition. These results advance our understanding of emotional prosody processing and the efficiency of crossmodal integration in children and are discussed in terms of a developmental trajectory and factors that may modulate the efficiency of this effect in children. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.
Romancino, Daniele P; Anello, Letizia; Lavanco, Antonella; Buffa, Valentina; Di Bernardo, Maria; Bongiovanni, Antonella
2017-04-01
Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved cellular program, which is a prerequisite for the metastatic cascade in carcinoma progression. Here, we evaluate the EMT process using the sea urchin Paracentrotus lividus embryo. In sea urchin embryos, the earliest EMT event is related to the acquisition of a mesenchymal phenotype by the spiculogenetic primary mesenchyme cells (PMCs) and their migration into the blastocoel. We investigated the effect of inhibiting the epidermal growth factor (EGF) signaling pathway on this process, and we observed that mesenchyme cell differentiation was blocked. In order to extend and validate our studies, we investigated the migratory capability and the level of potential epidermal growth factor receptor (EGFr) targets in a breast cancer cell line after EGF modulation. Altogether, our data highlight the sensitivity of the sea urchin embryo to anti-EMT drugs and pinpoint the sea urchin embryo as a valuable in vivo model system for studying EMT and the screening of anti-EMT candidates. © 2017 Japanese Society of Developmental Biologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gompers, Andrea L.; Su-Feher, Linda; Ellegood, Jacob
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. In this paper, we examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8 +/ del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8 +/ del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8 +/ del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes andmore » neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8 +/ del5 mice. Finally, this integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.« less
Environmental-stress-induced Chromatin Regulation and its Heritability
Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K
2014-01-01
Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581
Bouchon, Camillia; Floccia, Caroline; Fux, Thibaut; Adda-Decker, Martine; Nazzi, Thierry
2015-07-01
Consonants and vowels differ acoustically and articulatorily, but also functionally: Consonants are more relevant for lexical processing, and vowels for prosodic/syntactic processing. These functional biases could be powerful bootstrapping mechanisms for learning language, but their developmental origin remains unclear. The relative importance of consonants and vowels at the onset of lexical acquisition was assessed in French-learning 5-month-olds by testing sensitivity to minimal phonetic changes in their own name. Infants' reactions to mispronunciations revealed sensitivity to vowel but not consonant changes. Vowels were also more salient (on duration and intensity) but less distinct (on spectrally based measures) than consonants. Lastly, vowel (but not consonant) mispronunciation detection was modulated by acoustic factors, in particular spectrally based distance. These results establish that consonant changes do not affect lexical recognition at 5 months, while vowel changes do; the consonant bias observed later in development does not emerge until after 5 months through additional language exposure. © 2014 John Wiley & Sons Ltd.
Systems theory and cascades in developmental psychopathology.
Cox, Martha J; Mills-Koonce, Roger; Propper, Cathi; Gariépy, Jean-Louis
2010-08-01
In the wake of prominent theoreticians in developmental science, whose contributions we review in this article, many developmental psychologists came to endorse a systems approach to understanding how the individual, as it develops, establishes functional relationships to social ecological contexts that from birth to school entry rapidly increase in complexity. The concept of developmental cascade has been introduced in this context to describe lawful processes by which antecedent conditions may be related with varying probabilities to specified outcomes. These are understood as processes by which function at one level or in one domain of behavior affect the organization of competency in later developing domains of general adaptation. Here we propose a developmental sequence by which the developing child acquires regulative capacities that are key to adjustment to a society that demands considerable control of emotional and cognitive functions early in life. We report empirical evidence showing that the acquisition of regulative capacities may be understood as a cascade of shifts in control parameters induced by the progressive integration of biological, transactional, and socioaffective systems over development. We conclude by suggesting how the developmental process may be accessed for effective intervention in populations deemed "at risk" for later problems of psychosocial adjustment.
van der Krol, Alexander R.; van Poecke, Remco M.P.; Vorst, Oscar F.J.; Voogt, Charlotte; van Leeuwen, Wessel; Borst-Vrensen, Tanja W.M.; Takatsuji, Hiroshi; van der Plas, Linus H.W.
1999-01-01
The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia. PMID:10594102
On the role of sparseness in the evolution of modularity in gene regulatory networks
2018-01-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459
On the role of sparseness in the evolution of modularity in gene regulatory networks.
Espinosa-Soto, Carlos
2018-05-01
Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.
Opiela, J; Samiec, M; Romanek, J
2017-07-15
Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed. Copyright © 2017 Elsevier Inc. All rights reserved.
Camden, Chantal; Foley, Véronique; Anaby, Dana; Shikako-Thomas, Keiko; Gauthier-Boudreault, Camille; Berbari, Jade; Missiuna, Cheryl
2016-07-01
Developmental Coordination Disorder (DCD) is a prevalent neurodevelopmental disorder. Best practices include raising parents' awareness and building capacity but few interventions incorporating these best practices are documented. To examine whether an evidence-based online module can increase the perceived knowledge and skills of parents of children with DCD, and lead to behavioral changes when managing their child's health condition. A mixed-methods, before-after design guided by the Theory of Planned Behavior was employed. Data about the knowledge, skills and behaviors of parents of children with DCD were collected using questionnaires prior to completing the module, immediately after, and three months later. Paired T-tests, sensitivity analyses and thematic analyses were performed on data as appropriate. One hundred-sixteen, 81 and 58 participants respectively completed the three questionnaires. For knowledge and skills, post- and follow-up scores were significantly higher than baseline scores (p < 0.01). Fifty-two (64%) participants reported an intention to change behavior post-intervention and 29 (50%) participants had tried recommended strategies at follow-up. Three themes emerged to describe parents' behavioral change: sharing information, trialing strategies and changing attitudes. Factors influencing parents' ability to implement these behavioral changes included clear recommendations, time, and 'right' attitude. Perceived outcomes associated with the parental behavioral changes involved improvement in well-being for the children at school, at home, and for the family as a whole. The online module increased parents' self-reported knowledge and skills in DCD management. Future research should explore its impacts on children's long-term outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Zuidema, Rixt M; van Gaal, Betsie Gi; van Dulmen, Sandra; Repping-Wuts, Han; Schoonhoven, Lisette
2015-12-25
Every day rheumatoid arthritis (RA) patients make many decisions about managing their disease. An online, computer-tailored, self-management program can support this decision making, but development of such a program requires the active participation of patients. To develop an online, computer-tailored, self-management program integrated with the nursing care, as nurses have an important role in supporting self-management behavior. The intervention mapping framework was used to develop the program. Development was a multistep process: (1) needs assessment; (2) developing program and change objectives in a matrix; (3) selecting theory-based intervention methods and practical application strategies; (4) producing program components; (5) planning and adoption, implementation, and sustainability; and (6) planning for evaluation. After conducting the needs assessment (step 1), nine health-related problems were identified: (1) balancing rest and activity, (2) setting boundaries, (3) asking for help and support, (4) use of medicines, (5) communicating with health professionals, (6) use of assistive devices, (7) performing physical exercises, (8) coping with worries, and (9) coping with RA. After defining performance and change objectives (step 2), we identified a number of methods which could be used to achieve them (step 3), such as provision of general information about health-related behavior, self-monitoring of behavior, persuasive communication, modeling, and self-persuasion and tailoring. We described and operationalized these methods in texts, videos, exercises, and a medication intake schedule. The resulting program (step 4) consisted of an introduction module and nine modules dealing with health-related problems. The content of these modules is tailored to the user's self-efficacy, and patients can use the online program as often as they want, working through a module or modules at their own speed. After implementation (step 5), the program will be evaluated in a two-center pilot trial involving 200 RA patients. Log-in data and qualitative interviews will used for a process evaluation. The intervention mapping framework was used to guide development of an online computer-tailored self-management program via a process which could serve as a model for the development of other interventions. A pilot randomized controlled trial (RCT) will provide insight into the important outcome measures in preparation for a larger RCT. The process evaluation will provide insight into how RA patients use the program and the attrition rate. Netherlands Trial Register (NTR): NTR4871; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4871 [accessed 13-NOV-15] http://www.webcitation.org/6d1ZyIoEy.
Impairment in face processing in autism spectrum disorder: a developmental perspective.
Greimel, Ellen; Schulte-Rüther, Martin; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin
2014-09-01
Findings on face identity and facial emotion recognition in autism spectrum disorder (ASD) are inconclusive. Moreover, little is known about the developmental trajectory of face processing skills in ASD. Taking a developmental perspective, the aim of this study was to extend previous findings on face processing skills in a sample of adolescents and adults with ASD. N = 38 adolescents and adults (13-49 years) with high-functioning ASD and n = 37 typically developing (TD) control subjects matched for age and IQ participated in the study. Moreover, n = 18 TD children between the ages of 8 and 12 were included to address the question whether face processing skills in ASD follow a delayed developmental pattern. Face processing skills were assessed using computerized tasks of face identity recognition (FR) and identification of facial emotions (IFE). ASD subjects showed impaired performance on several parameters of the FR and IFE task compared to TD control adolescents and adults. Whereas TD adolescents and adults outperformed TD children in both tasks, performance in ASD adolescents and adults was similar to the group of TD children. Within the groups of ASD and control adolescents and adults, no age-related changes in performance were found. Our findings corroborate and extend previous studies showing that ASD is characterised by broad impairments in the ability to process faces. These impairments seem to reflect a developmentally delayed pattern that remains stable throughout adolescence and adulthood.
The role of cue detection for prospective memory development across the lifespan.
Hering, Alexandra; Wild-Wall, Nele; Gajewski, Patrick D; Falkenstein, Michael; Kliegel, Matthias; Zinke, Katharina
2016-12-01
Behavioral findings suggest an inverted U-shaped pattern of prospective memory development across the lifespan. A key mechanism underlying this development is the ability to detect cues. We examined the influence of cue detection on prospective memory, combining behavioral and electrophysiological measures, in three age groups: adolescents (12-14 years), young (19-28 years), and old adults (66-77 years). Cue detection was manipulated by varying the distinctiveness (i.e., how easy it was to detect the cue based on color) of the prospective memory cue in a semantic judgment ongoing task. Behavioral results supported the pattern of an inverted U-shape with a pronounced prospective memory decrease in old adults. Adolescents and young adults showed a prospective memory specific modulation (larger amplitudes for the cues compared to other trials) already for the N1 component. No such specific modulation was evident in old adults for the early N1 component but only at the later P3b component. Adolescents showed differential modulations of the amplitude also for irrelevant information at the P3b, suggesting less efficient processing. In terms of conceptual implications, present findings underline the importance of cue detection for prospective remembering and reveal different developmental trajectories for cue detection. Our findings suggest that cue detection is not a unitary process but consists of multiple stages corresponding to several ERP components that differentially contribute to prospective memory performance across the lifespan. In adolescents resource allocation for detecting cues seemed successful initially but less efficient at later stages; whereas we found the opposite pattern for old adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.
1973-01-01
The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.
Developmental Reversals in False Memory: Effects of Emotional Valence and Arousal
ERIC Educational Resources Information Center
Brainerd, C. J.; Holliday, R. E.; Reyna, V. F.; Yang, Y.; Toglia, M. P.
2010-01-01
Do the emotional valence and arousal of events distort children's memories? Do valence and arousal modulate counterintuitive age increases in false memory? We investigated those questions in children, adolescents, and adults using the Cornell/Cortland Emotion Lists, a word list pool that induces false memories and in which valence and arousal can…
The Perception of "Sine-Wave Speech" by Adults with Developmental Dyslexia.
ERIC Educational Resources Information Center
Rosner, Burton S.; Talcott, Joel B.; Witton, Caroline; Hogg, James D.; Richardson, Alexandra J.; Hansen, Peter C.; Stein, John F.
2003-01-01
"Sine-wave speech" sentences contain only four frequency-modulated sine waves, lacking many acoustic cues present in natural speech. Adults with (n=19) and without (n=14) dyslexia were asked to reproduce orally sine-wave utterances in successive trials. Results suggest comprehension of sine-wave sentences is impaired in some adults with…
ERIC Educational Resources Information Center
Bonifacci, Paola; Storti, Michele; Tobia, Valentina; Suardi, Alessandro
2016-01-01
Despite their ascertained neurobiological origin, specific learning disorders (SLD) often have been found to be associated with some emotional disturbances in children, and there is growing interest in the environmental and contextual variables that may modulate children's developmental trajectories. The present study was aimed at evaluating the…
ERIC Educational Resources Information Center
Furlong, Michael J.; Ritchey, Kristin M.; O'Brennan, Lindsey M.
2009-01-01
Resilience and other positive psychological constructs are gaining attention among school psychologists. Theoretically, external assets (e.g., support from caring adults, participation in meaningful activities) help to meet youths' basic developmental needs, which, in turn, promote the growth of internal assets (e.g., ability to problem solve,…
ERIC Educational Resources Information Center
Drury, Stacy S.
2009-01-01
Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.
Development of Civic Engagement: Theoretical and Methodological Issues
ERIC Educational Resources Information Center
Lerner, Richard M.; Wang, Jun; Champine, Robey B.; Warren, Daniel J. A.; Erickson, Karl
2014-01-01
Within contemporary developmental science, models derived from relational developmental systems (RDS) metatheory emphasize that the basic process of human development involves mutually-influential relations, termed developmental regulations, between the developing individual and his or her complex and changing physical, social, and cultural…
Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)
Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...
Bashir Surfraz, M; Fowkes, Adrian; Plante, Jeffrey P
2017-08-01
The need to find an alternative to costly animal studies for developmental and reproductive toxicity testing has shifted the focus considerably to the assessment of in vitro developmental toxicology models and the exploitation of pharmacological data for relevant molecular initiating events. We hereby demonstrate how automation can be applied successfully to handle heterogeneous oestrogen receptor data from ChEMBL. Applying expert-derived thresholds to specific bioactivities allowed an activity call to be attributed to each data entry. Human intervention further improved this mechanistic dataset which was mined to develop structure-activity relationship alerts and an expert model covering 45 chemical classes for the prediction of oestrogen receptor modulation. The evaluation of the model using FDA EDKB and Tox21 data was quite encouraging. This model can also provide a teratogenicity prediction along with the additional information it provides relevant to the query compound, all of which will require careful assessment of potential risk by experts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation
Kee, Kehkooi; Angeles, Vanessa T; Flores, Martha; Nguyen, Ha Nam; Pera, Renee A Reijo
2009-01-01
The leading cause of infertility in men and women is quantitative and qualitative defects in human germ cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ cell formation and differentiation due to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages1-8. Here we used a germ cell reporter to quantitate and isolate primordial germ cells derived from both male and female hESCs. Then, by silencing and overexpressing genes that encode germ cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ cell formation and developmental progression. We observed that human DAZL (Deleted in AZoospermia-Like) functions in primordial germ cell formation, whereas closely-related genes, DAZ and BOULE, promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications. PMID:19865085
Walker, Emily; Chang, Wing Y.; Hunkapiller, Julie; Cagney, Gerard; Garcha, Kamal; Torchia, Joseph; Krogan, Nevan J.; Reiter, Jeremy F.; Stanford, William L.
2010-01-01
Summary Polycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation and altered patterns of histone methylation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation. PMID:20144788
The lateral mesodermal divide: an epigenetic model of the origin of paired fins.
Nuño de la Rosa, Laura; Müller, Gerd B; Metscher, Brian D
2014-01-01
By examining development at the level of tissues and processes, rather than focusing on gene expression, we have formulated a general hypothesis to explain the dorso-ventral and anterior-posterior placement of paired appendage initiation sites in vertebrates. According to our model, the number and position of paired appendages are due to a commonality of embryonic tissue environments determined by the global interactions involving the two separated layers (somatic and visceral) of lateral plate mesoderm along the dorso-ventral and anterior-posterior axes of the embryo. We identify this distribution of developmental conditions, as modulated by the separation/contact of the two LPM layers and their interactions with somitic mesoderm, ectoderm, and endoderm as a dynamic developmental entity which we have termed the lateral mesodermal divide (LMD). Where the divide results in a certain tissue environment, fin bud initiation can occur. According to our hypothesis, the influence of the developing gut suppresses limb initiation along the midgut region and the ventral body wall owing to an "endodermal predominance." From an evolutionary perspective, the lack of gut regionalization in agnathans reflects the ancestral absence of these conditions, and the elaboration of the gut together with the concomitant changes to the LMD in the gnathostomes could have led to the origin of paired fins. © 2013 Wiley Periodicals, Inc.
Cellular manganese content is developmentally regulated in human dopaminergic neurons
NASA Astrophysics Data System (ADS)
Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.
2014-10-01
Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.
Lee, Ho-Sun
2015-01-01
Exposure to environmental factors in early life can influence developmental processes and long-term health in humans. Early life nutrition and maternal diet are well-known examples of conditions shown to influence the risk of developing metabolic diseases, including type 2 diabetes mellitus and cardiovascular diseases, in adulthood. It is increasingly accepted that environmental compounds, including nutrients, can produce changes in the genome activity that, in spite of not altering the DNA sequence, can produce important, stable and, in some instances, transgenerational alterations in the phenotype. Epigenetics refers to changes in gene function that cannot be explained by changes in the DNA sequence, with DNA methylation patterns/histone modifications that can make important contributions to epigenetic memory. The epigenome can be considered as an interface between the genome and the environment that is central to the generation of phenotypes and their stability throughout the life course. To better understand the role of maternal health and nutrition in the initiation and progression of diseases in childhood and adulthood, it is necessary to identify the physiological and/or pathological roles of specific nutrients on the epigenome and how dietary interventions in utero and early life could modulate disease risk through epigenomic alteration. PMID:26593940
Pectin: cell biology and prospects for functional analysis.
Willats, W G; McCartney, L; Mackie, W; Knox, J P
2001-09-01
Pectin is a major component of primary cell walls of all land plants and encompasses a range of galacturonic acid-rich polysaccharides. Three major pectic polysaccharides (homogalacturonan, rhamnogalacturonan-I and rhamnogalacturonan-II) are thought to occur in all primary cell walls. This review surveys what is known about the structure and function of these pectin domains. The high degree of structural complexity and heterogeneity of the pectic matrix is produced both during biosynthesis in the endomembrane system and as a result of the action of an array of wall-based pectin-modifying enzymes. Recent developments in analytical techniques and in the generation of anti-pectin probes have begun to place the structural complexity of pectin in cell biological and developmental contexts. The in muro de-methyl-esterification of homogalacturonan by pectin methyl esterases is emerging as a key process for the local modulation of matrix properties. Rhamnogalacturonan-I comprises a highly diverse population of spatially and developmentally regulated polymers, whereas rhamnogalacturonan-II appears to be a highly conserved and stable pectic domain. Current knowledge of biosynthetic enzymes, plant and microbial pectinases and the interactions of pectin with other cell wall components and the impact of molecular genetic approaches are reviewed in terms of the functional analysis of pectic polysaccharides in plant growth and development.
Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense.
Hu, Guanjing; Koh, Jin; Yoo, Mi-Jeong; Grupp, Kara; Chen, Sixue; Wendel, Jonathan F
2013-10-01
Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Tomàs, Josep; Garcia, Neus; Lanuza, Maria A.; Santafé, Manel M.; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó-Ollé, Anna; Cilleros-Mañé, Víctor; Just-Borràs, Laia
2018-01-01
In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function. PMID:29740322
Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó-Ollé, Anna; Cilleros-Mañé, Víctor; Just-Borràs, Laia
2018-01-01
In the last few years, we have studied the presence and involvement in synaptogenesis and mature transmitter release of the adenosine autoreceptors (AR) in the mammalian neuromuscular junction (NMJ). Here, we review and bring together the previously published data to emphasize the relevance of these receptors for developmental axonal competition, synaptic loss and mature NMJ functional modulation. However, in addition to AR, activity-dependent mediators originating from any of the three cells that make the synapse (nerve, muscle, and glial cells) cross the extracellular cleft to generate signals in target metabotropic receptors. Thus, the integrated interpretation of the complementary function of all these receptors is needed. We previously studied, in the NMJ, the links of AR with mAChR and the neurotrophin receptor TrkB in the control of synapse elimination and transmitter release. We conclude that AR cooperate with these receptors through synergistic and antagonistic effects in the developmental synapse elimination process. In the adult NMJ, this cooperation is manifested so as that the functional integrity of a given receptor group depends on the other receptors operating normally (i.e., the functional integrity of mAChR depends on AR operating normally). These observations underlie the relevance of AR in the NMJ function.
Photo-biotechnology as a tool to improve agronomic traits in crops.
Gururani, Mayank Anand; Ganesan, Markkandan; Song, Pill-Soon
2015-01-01
Phytochromes are photosensory phosphoproteins with crucial roles in plant developmental responses to light. Functional studies of individual phytochromes have revealed their distinct roles in the plant's life cycle. Given the importance of phytochromes in key plant developmental processes, genetically manipulating phytochrome expression offers a promising approach to crop improvement. Photo-biotechnology refers to the transgenic expression of phytochrome transgenes or variants of such transgenes. Several studies have indicated that crop cultivars can be improved by modulating the expression of phytochrome genes. The improved traits include enhanced yield, improved grass quality, shade-tolerance, and stress resistance. In this review, we discuss the transgenic expression of phytochrome A and its hyperactive mutant (Ser599Ala-PhyA) in selected crops, such as Zoysia japonica (Japanese lawn grass), Agrostis stolonifera (creeping bentgrass), Oryza sativa (rice), Solanum tuberosum (potato), and Ipomea batatas (sweet potato). The transgenic expression of PhyA and its mutant in various plant species imparts biotechnologically useful traits. Here, we highlight recent advances in the field of photo-biotechnology and review the results of studies in which phytochromes or variants of phytochromes were transgenically expressed in various plant species. We conclude that photo-biotechnology offers an excellent platform for developing crops with improved properties. Copyright © 2014 Elsevier Inc. All rights reserved.
Gulati, Karan; Ivanovski, Sašo
2017-08-01
The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO 2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.
Computer Simulation of Developmental Processes and Toxicities (SOT)
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic ...
Development of the vertebrate nervous system proceeds through a number of critical processes, ultimately concluding with the extension of neurites and establishment of synaptic networks. Early-life exposure to toxicants that perturb these critical developmental processes can po...
ERIC Educational Resources Information Center
Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel
2012-01-01
Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In…
ERIC Educational Resources Information Center
Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha
2013-01-01
The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…
ERIC Educational Resources Information Center
Kemner, C.; Schuller, A-M.; Van Engeland, H.
2006-01-01
Background: Children with pervasive developmental disorder (PDD) show behavioral abnormalities in gaze and face processing, but recent studies have indicated that normal activation of face-specific brain areas in response to faces is possible in this group. It is not clear whether the brain activity related to gaze processing is also normal in…
The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling.
Piven, Oksana O; Winata, Cecilia L
2017-12-01
The main mediator of the canonical Wnt pathway, β-catenin, is a major effector of embryonic development, postnatal tissue homeostasis, and adult tissue regeneration. The requirement for β-catenin in cardiogenesis and embryogenesis has been well established. However, many questions regarding the molecular mechanisms by which β-catenin and canonical Wnt signaling regulate these developmental processes remain unanswered. An interesting question that emerged from our studies concerns how β-catenin signaling is modulated through interaction with other factors. Recent experimental data implicate new players in canonical Wnt signaling, particularly those which modulate β-catenin function in many its biological processes, including cardiogenesis. One of the interesting candidates is plakoglobin, a little-studied member of the catenin family which shares several mechanistic and functional features with its close relative, β-catenin. Here we have focused on the function of β-catenin in cardiogenesis. We also summarize findings on plakoglobin signaling function and discuss possible interplays between β-catenin and plakoglobin in the regulation of embryonic heart development. Impact statement Heart development, function, and remodeling are complex processes orchestrated by multiple signaling networks. This review examines our current knowledge of the role of canonical Wnt signaling in cardiogenesis and heart remodeling, focusing primarily on the mechanistic action of its effector β-catenin. We summarize the generally accepted understanding of the field based on experimental in vitro and in vivo data, and address unresolved questions in the field, specifically relating to the role of canonical Wnt signaling in heart maturation and regeneration. What are the modulators of canonical Wnt, and particularly what are the potential roles of plakoglobin, a close relative of β-catenin, in regulating Wnt signaling?Answers to these questions will enhance our understanding of the mechanism by which the canonical Wnt signaling regulates development of the heart and its regeneration after damage.
Perego, M
1997-08-05
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export-import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase-prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.
Perego, Marta
1997-01-01
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction. PMID:9238025
Han, Jeonghoon; Won, Eun-Ji; Lee, Min-Chul; Seo, Jung Soo; Lee, Su-Jae; Lee, Jae-Seong
2015-08-01
2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctane sulfonate (PFOS) are widely dispersed persistent organic pollutants (POPs) in the marine ecosystem. However, their toxic effects on marine organisms are still poorly understood. In this study, we investigated the effects of BDE-47 and PFOS on development and reproduction at the organismal level and reactive oxygen species (ROS) production and gene expression patterns of the defensome at the cellular level in the intertidal copepod Tigriopus japonicus. In copepods exposed to BDE-47 and PFOS, we observed developmental retardation and reduced fecundity, suggesting repercussions on in vivo endpoints through alterations to the normal molting and reproduction system of T. japonicus. BDE-47 and PFOS increased levels of ROS in T. japonicus in a concentration-dependent manner, indicating that POPs can induce oxidative stress through the generation of ROS. Additionally, transcript profiles of genes related to detoxification (e.g., CYPs), antioxidant functions (e.g., GST- sigma, catalase, MnSOD), apoptosis (e.g., p53, Rb), and cellular proliferation (e.g., PCNA) were modulated over 72h in response to BDE-47 (120μg/L) and PFOS (1000μg/L). These findings indicate that BDE-47 and PFOS can induce oxidative stress-mediated DNA damage repair systems with transcriptional regulation of detoxification, antioxidant, and apoptosis-related genes, resulting in developmental retardation and reduced fecundity in the copepod T. japonicus. Copyright © 2015 Elsevier B.V. All rights reserved.
Communication Deficits in Infants and Toddlers with Developmental Disabilities
ERIC Educational Resources Information Center
Hattier, Megan A.; Matson, Johnny L.; Sipes, Megan; Turygin, Nicole
2011-01-01
Research that focuses on detecting and assessing the presence of communication impairments in children with developmental disabilities exists. However, more research is needed which compares these deficits across individuals with various developmental disabilities. This information could inform the assessment process and treatment programs.…
Isolating N400 as neural marker of vocal anger processing in 6-11-year old children.
Chronaki, Georgia; Broyd, Samantha; Garner, Matthew; Hadwin, Julie A; Thompson, Margaret J J; Sonuga-Barke, Edmund J S
2012-04-01
Vocal anger is a salient social signal serving adaptive functions in typical child development. Despite recent advances in the developmental neuroscience of emotion processing with regard to visual stimuli, little remains known about the neural correlates of vocal anger processing in childhood. This study represents the first attempt to isolate a neural marker of vocal anger processing in children using electrophysiological methods. We compared ERP wave forms during the processing of non-word emotional vocal stimuli in a population sample of 55 6-11-year-old typically developing children. Children listened to three types of stimuli expressing angry, happy, and neutral prosody and completed an emotion identification task with three response options (angry, happy and neutral/'ok'). A distinctive N400 component which was modulated by emotional content of vocal stimulus was observed in children over parietal and occipital scalp regions-amplitudes were significantly attenuated to angry compared to happy and neutral voices. Findings of the present study regarding the N400 are compatible with adult studies showing reduced N400 amplitudes to negative compared to neutral emotional stimuli. Implications for studies of the neural basis of vocal anger processing in children are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Dynamic Lift of Developmental Process
ERIC Educational Resources Information Center
Smith, Linda B.; Breazeal, Cynthia
2007-01-01
What are the essential properties of human intelligence, currently unparalleled in its power relative to other biological forms and relative to artificial forms of intelligence? We suggest that answering this question depends critically on understanding developmental process. This paper considers three principles potentially essential to building…
Parenting Practices in Cultural Context: An Ecological Perspective
ERIC Educational Resources Information Center
Zarnegar, Zohreh
2015-01-01
Despite general consensus that parenting practices influence the developmental processes of children, many questions about the impacts of parenting practices on child development within the cultural context remain unanswered. This article presents how cultural templates influence parenting practices and developmental processes of young children.…
The Growth of Developmental Thought: Implications for a New Evolutionary Psychology
Lickliter, Robert
2009-01-01
Evolution has come to be increasingly discussed in terms of changes in developmental processes rather than simply in terms of changes in gene frequencies. This shift is based in large part on the recognition that since all phenotypic traits arise during ontogeny as products of individual development, a primary basis for evolutionary change must be variations in the patterns and processes of development. Further, the products of development are epigenetic, not just genetic, and this is the case even when considering the evolutionary process. These insights have led investigators to reconsider the established notion of genes as the primary cause of development, opening the door to research programs focused on identifying how genetic and non-genetic factors coact to guide and constrain the process of development and its outcomes. I explore this growth of developmental thought and its implications for the achievement of a unified theory of heredity, development, and evolution and consider its implications for the realization of a new, developmentally-based evolutionary psychology. PMID:19956346
Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.
Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian
2015-12-16
Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.
Functional metabolomics as a tool to analyze Mediator function and structure in plants.
Davoine, Celine; Abreu, Ilka N; Khajeh, Khalil; Blomberg, Jeanette; Kidd, Brendan N; Kazan, Kemal; Schenk, Peer M; Gerber, Lorenz; Nilsson, Ove; Moritz, Thomas; Björklund, Stefan
2017-01-01
Mediator is a multiprotein transcriptional co-regulator complex composed of four modules; Head, Middle, Tail, and Kinase. It conveys signals from promoter-bound transcriptional regulators to RNA polymerase II and thus plays an essential role in eukaryotic gene regulation. We describe subunit localization and activities of Mediator in Arabidopsis through metabolome and transcriptome analyses from a set of Mediator mutants. Functional metabolomic analysis based on the metabolite profiles of Mediator mutants using multivariate statistical analysis and heat-map visualization shows that different subunit mutants display distinct metabolite profiles, which cluster according to the reported localization of the corresponding subunits in yeast. Based on these results, we suggest localization of previously unassigned plant Mediator subunits to specific modules. We also describe novel roles for individual subunits in development, and demonstrate changes in gene expression patterns and specific metabolite levels in med18 and med25, which can explain their phenotypes. We find that med18 displays levels of phytoalexins normally found in wild type plants only after exposure to pathogens. Our results indicate that different Mediator subunits are involved in specific signaling pathways that control developmental processes and tolerance to pathogen infections.
Rouger, Vincent; Bordet, Guillaume; Couillault, Carole; Monneret, Serge; Mailfert, Sébastien; Ewbank, Jonathan J; Pujol, Nathalie; Marguet, Didier
2014-05-20
To investigate the early stages of cell-cell interactions occurring between living biological samples, imaging methods with appropriate spatiotemporal resolution are required. Among the techniques currently available, those based on optical trapping are promising. Methods to image trapped objects, however, in general suffer from a lack of three-dimensional resolution, due to technical constraints. Here, we have developed an original setup comprising two independent modules: holographic optical tweezers, which offer a versatile and precise way to move multiple objects simultaneously but independently, and a confocal microscope that provides fast three-dimensional image acquisition. The optical decoupling of these two modules through the same objective gives users the possibility to easily investigate very early steps in biological interactions. We illustrate the potential of this setup with an analysis of infection by the fungus Drechmeria coniospora of different developmental stages of Caenorhabditis elegans. This has allowed us to identify specific areas on the nematode's surface where fungal spores adhere preferentially. We also quantified this adhesion process for different mutant nematode strains, and thereby derive insights into the host factors that mediate fungal spore adhesion. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A unified anatomy ontology of the vertebrate skeletal system.
Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M
2012-01-01
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.
Lin, Qibing; Wu, Fuqing; Sheng, Peike; Zhang, Zhe; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Cheng, Zhijun; Wang, Jie; Wang, Haiyang; Wan, Jianmin
2015-01-01
Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many developmental processes and responses to biotic or abiotic stresses in higher plants. However, the molecular mechanism underlying this antagonism is still poorly understood. Here, we show that loss-of-function mutation in rice Tiller Enhancer (TE), an activator of the APC/CTE complex, causes hypersensitivity and hyposensitivity to ABA and GA, respectively. We find that TE physically interacts with ABA receptor OsPYL/RCARs and promotes their degradation by the proteasome. Genetic analysis also shows OsPYL/RCARs act downstream of TE in mediating ABA responses. Conversely, ABA inhibits APC/CTE activity by phosphorylating TE through activating the SNF1-related protein kinases (SnRK2s), which may interrupt the interaction between TE and OsPYL/RCARs and subsequently stabilize OsPYL/RCARs. In contrast, GA can reduce the level of SnRK2s and may promote APC/CTE-mediated degradation of OsPYL/RCARs. Thus, we propose that the SnRK2-APC/CTE regulatory module represents a regulatory hub underlying the antagonistic action of GA and ABA in plants. PMID:26272249
A Unified Anatomy Ontology of the Vertebrate Skeletal System
Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.
2012-01-01
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424
Morrier, Michael J; Ousley, Opal Y; Caceres-Gamundi, Gabriella A; Segall, Matthew J; Cubells, Joseph F; Young, Larry J; Andari, Elissar
2017-12-01
The ADOS-2 Modules 1-3 now include a standardized calibrated severity score (CSS) from 1 to 10 based on the overall total raw score. Subsequent research published CSS for Module 4 (Hus, Lord, Journal of Autism and Developmental Disorders 44(8):1996-2012, 2014); however more research is needed to examine the psychometric properties of this CSS. Forty males with ASD completed an assessment battery consisting of ADOS-2 Module 4 and other clinical measures assessing core ASD symptomology and comorbidity. Pearson correlation analyses found that CSS did not correlate with measures that assessed core social deficits of ASD or general psychiatric co-morbidity, but CSS did correlate negatively with intellectual quotient. These findings provide information on the limitations and relevance of CSS to be taken into account in future clinical evaluations of ASD.
Handling or being the concept: An fMRI study on metonymy representations in coverbal gestures.
Joue, Gina; Boven, Linda; Willmes, Klaus; Evola, Vito; Demenescu, Liliana R; Hassemer, Julius; Mittelberg, Irene; Mathiak, Klaus; Schneider, Frank; Habel, Ute
2018-01-31
In "Two heads are better than one," "head" stands for people and focuses the message on the intelligence of people. This is an example of figurative language through metonymy, where substituting a whole entity by one of its parts focuses attention on a specific aspect of the entity. Whereas metaphors, another figurative language device, are substitutions based on similarity, metonymy involves substitutions based on associations. Both are figures of speech but are also expressed in coverbal gestures during multimodal communication. The closest neuropsychological studies of metonymy in gestures have been nonlinguistic tool-use, illustrated by the classic apraxic problem of body-part-as-object (BPO, equivalent to an internal metonymy representation of the tool) vs. pantomimed action (external metonymy representation of the absent object/tool). Combining these research domains with concepts in cognitive linguistic research on gestures, we conducted an fMRI study to investigate metonymy resolution in coverbal gestures. Given the greater difficulty in developmental and apraxia studies, perhaps explained by the more complex semantic inferencing involved for external metonymy than for internal metonymy representations, we hypothesized that external metonymy resolution requires greater processing demands and that the neural resources supporting metonymy resolution would modulate regions involved in semantic processing. We found that there are indeed greater activations for external than for internal metonymy resolution in the temporoparietal junction (TPJ). This area is posterior to the lateral temporal regions recruited by metaphor processing. Effective connectivity analysis confirmed our hypothesis that metonymy resolution modulates areas implicated in semantic processing. We interpret our results in an interdisciplinary view of what metonymy in action can reveal about abstract cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J; Makabe, Kazuhiro W; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick
2010-10-01
Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.
Denver, R J
1997-04-01
Environmentally induced phenotypic plasticity allows developing organisms to respond adaptively to changes in their habitat. Desert amphibians have evolved traits which allow successful development in unpredictable environments. Tadpoles of these species can accelerate metamorphosis as their pond dries, thus escaping mortality in the larval habitat. This developmental response can be replicated in the laboratory, which allows elucidation of the underlying physiological mechanisms. Here I demonstrate a link between a classical neurohormonal stress pathway (involving corticotropin-releasing hormone, CRH) and the developmental response to habitat desiccation. Injections of CRH-like peptides accelerated metamorphosis in western spadefoot toad tadpoles. Conversely, treatment with two CRH antagonists, the CRH receptor antagonist alpha-helical CRH(9-41) and anti-CRH serum, attenuated the developmental acceleration induced by habitat desiccation. Tadpoles subjected to habitat desiccation exhibited elevated hypothalamic CRH content at the time when they responded developmentally to the declining water level. CRH injections elevated whole-body thyroxine, triiodothyronine, and corticosterone content, the primary hormonal regulators of metamorphosis. In contrast, alpha-helical CRH(9-41) reduced thyroid activity. These results support a central role for CRH as a neurohormonal transducer of environmental stimuli into the endocrine response which modulates the rate of metamorphosis. Because in mammals, increased fetal/placental CRH production may initiate parturition, and CRH has been implicated in precipitating preterm birth arising from fetal stress, this neurohormonal pathway may represent a phylogenetically ancient developmental regulatory system that allows the organism to escape an unfavorable larval/fetal habitat.
Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J.; Makabe, Kazuhiro W.; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick
2010-01-01
Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions. PMID:20647237
Functions of MicroRNAs in Cardiovascular Biology and Disease
Hata, Akiko
2015-01-01
In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557
Darwin in Mind: New Opportunities for Evolutionary Psychology
Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.
2011-01-01
Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401
Self-organizing human cardiac microchambers mediated by geometric confinement
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.
2015-07-01
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.
Childhood Depression: A Developmental Perspective on Disruption of Functioning.
ERIC Educational Resources Information Center
Snyder, Rebecca Lynne
This paper reviews research on childhood depression and its relation to developmental processes, family functioning, academic performance, and peer relationships. The methodological strengths and weaknesses of the research are examined. A section on developmental perspectives looks at early childhood, school age children, and adolescence. Support…
Constructivist developmental theory is needed in developmental neuroscience
NASA Astrophysics Data System (ADS)
Arsalidou, Marie; Pascual-Leone, Juan
2016-12-01
Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.
Where Do Epigenetics and Developmental Origins Take the Field of Developmental Psychopathology?
Nigg, Joel T
2016-04-01
The time is ripe for upgrading or rethinking the assumed paradigms for how we study developmental psychopathology. The classic transactional models appear robust but need specification in terms of biological and psychosocial processes. That specification is increasingly tractable due to developments in genetics, epigenetics, the measurement of psychosocial processes, and theory and data on developmental origins of health and disease. This essay offers a high-level view of where the field has been and where it may be going in regard to nosology and conceptions of etiology. Remarks seek to consider rapidly evolving contexts not only for children, but also for the science itself due to progress in our field and in neighboring fields. Illustrations are provided as to how syndromal nosology can be enriched and advanced by careful integration with biologically relevant behavioral dimensions and application of quantitative methods. It is concluded that a revised, forward-looking, transactional model of abnormal child psychology will incorporate prenatal and postnatal developmental programming, epigenetic mechanisms and their associated genotype x environment interactions, and inflammatory processes as a potential common mediator influencing numerous health and mental health conditions.
Jumping the energetics queue: Modulation of pulsar signals by extraterrestrial civilizations
NASA Astrophysics Data System (ADS)
Chennamangalam, Jayanth; Siemion, Andrew P. V.; Lorimer, D. R.; Werthimer, Dan
2015-01-01
It has been speculated that technological civilizations evolve along an energy consumption scale first formulated by Kardashev, ranging from human-like civilizations that consume energy at a rate of ∼1019 erg s-1 to hypothetical highly advanced civilizations that can consume ∼1044 erg s-1. Since the transmission power of a beacon a civilization can build depends on the energy it possesses, to make it bright enough to be seen across the Galaxy would require high technological advancement. In this paper, we discuss the possibility of a civilization using naturally-occurring radio transmitters - specifically, radio pulsars - to overcome the Kardashev limit of their developmental stage and transmit super-Kardashev power. This is achieved by the use of a modulator situated around a pulsar, that modulates the pulsar signal, encoding information onto its natural emission. We discuss a simple modulation model using pulse nulling and considerations for detecting such a signal. We find that a pulsar with a nulling modulator will exhibit an excess of thermal emission peaking in the ultraviolet during its null phases, revealing the existence of a modulator.
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆
Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2013-01-01
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692
Componential Differences and Varying Developmental Patterns Exhibited in Immersion Programmes
ERIC Educational Resources Information Center
Asano, Sachiko
2015-01-01
In bilingual literature, few studies have examined the processes of concept formation (CF); even fewer studies have discussed their developmental changes. This study explores language-cognition links and CF fractionation processes by comparing total and partial immersion programmes (TIPs and PIPs). Descriptive statistics (DS), correlational…
Complex Dynamics in Academics' Developmental Processes in Teaching
ERIC Educational Resources Information Center
Trautwein, Caroline; Nückles, Matthias; Merkt, Marianne
2015-01-01
Improving teaching in higher education is a concern for universities worldwide. This study explored academics' developmental processes in teaching using episodic interviews and teaching portfolios. Eight academics in the context of teaching development reported changes in their teaching and change triggers. Thematic analyses revealed seven areas…
Ecological Factors in Human Development.
Cross, William E
2017-05-01
Urie Bronfenbrenner (1992) helped developmental psychologists comprehend and define "context" as a rich, thick multidimensional construct. His ecological systems theory consists of five layers, and within each layer are developmental processes unique to each layer. The four articles in this section limit the exploration of context to the three innermost systems: the individual plus micro- and macrolayers. Rather than examine both the physical features and processes, the articles tend to focus solely on processes associated with a niche. Processes explored include social identity development, social network dynamics, peer influences, and school-based friendship patterns. The works tend to extend the generalization of extant theory to the developmental experience of various minority group experiences. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.
Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?
Hanson, M. A.; Gluckman, P. D.
2014-01-01
Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention. PMID:25287859
New insights into the phenotypic covariance structure of the anthropoid cranium
Makedonska, Jana
2014-01-01
In complex organisms, suites of non-random, highly intercorrelated phenotypic traits, organized according to their developmental history and forming semi-autonomous units (i.e. modules), have the potential to impose constraints on morphological diversification or to improve evolvability. Because of its structural, developmental and functional complexity, the cranium is arguably one of the best models for studying the interplay between developmental history and the need for various parts of a structure to specialize in different functions. This study evaluated the significance of two specific types of developmental imprints in the adult anthropoid cranium, those imposed by ossification pattern (i.e. ossification with and without a pre-existing cartilaginous phase) and those imposed by tissue origin (i.e. tissues derived principally from neural-crest vs. those derived from paraxial mesoderm). Specifically, this study tests the hypothesis that the face and the basicranium form two distinct modules with higher within-unit trait integration magnitudes compared with the cranium as a whole. Data on 12 anthropoid primate species were collected in the form of 23-dimensional landmarks digitized on cranial surface models that sample the basicranium as well as regions of functional importance during feeding. The presence of a significant modularity imprint in the adult cranium was assessed using a between-region within-species comparison of multivariate correlations (RV coefficients) obtained with partial least-squares, using within-module within-species eigenvalue variance (EV), and using cluster analyses and non-metric multidimensional scaling. In addition to addressing the validity of the cranial modularity hypothesis in anthropoids, this study addressed methodological aspects of the interspecific comparison of morphological integration, namely the effect of sample size and the effect of landmark number on integration magnitudes. Two methodological findings that are of significance to research in morphological integration are that: (i) a smaller sample size increases integration magnitude, but preserves the pattern of variation of integration magnitudes from block to block within species; and that (ii) the number of landmarks per cranial block does not significantly impact block integration magnitude measured as EV. Results from the analyses testing for cranial modularity imprints in the adult anthropoid cranium show that some facial landmarks covary more strongly with basicranial landmarks than with other facial landmarks. Cluster methods, non-metric multidimensional scaling and, to an extent, RV results show that the rostral and the zygomatic landmarks covary more strongly with the basicranial landmarks than they do with the molar landmarks. However, the rostral–zygomatic–basicranial block, the molar block, the facial block, the basicranial block and the other analyzed cranial and facial blocks are not more integrated than the cranium. Thus, the morphological variation in the adult anthropoid cranium is not significantly constrained by at least two of the potential developmental sources of its covariance structure. PMID:25406861
Campbell, Julia; Sharma, Anu
2016-01-01
Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5-7, 8-10, and 11-15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance.
Sharma, Sunil; Pareek, Sunil; Sagar, Narashans Alok; Valero, Daniel; Serrano, Maria
2017-08-17
Polyamines (PAs) are natural compounds involved in many growth and developmental processes in plants, and, specifically in fruits, play a vital role regulating its development, ripening and senescence processes. Putrescine (PUT), spermine (SPE), and spermidine (SPD) are prominent PAs applied exogenously to extend shelf life of fruits. They also originate endogenously during developmental phases of horticultural crops and simultaneously affect the quality attributes and shelf life. Their anti-ethylene nature is being exploited to enhance the shelf life when exogenously applied on fruits. In growth and development of fruits, PA levels generally fall, which marks the beginning of senescence at postharvest phase. PUT, SPE and SPD treatments are being applied during postharvest phase to prolong the shelf life. They enhance the shelf life of fruits by reducing respiration rate, ethylene release and enhance firmness and quality attributes in fruits. PAs have a mitigating impact on biotic and abiotic stresses including chilling injury (CI) in tropical and sub-tropical fruits. PAs are environment friendly in nature and are biodegradable without showing any negative effect on environment. Biotechnological interventions by using chimeric gene constructs of PA encoding genes has boosted the research to develop transgenic fruits and vegetables which would possess inherent or in situ mechanism of enhanced biosynthesis of PAs at different stages of development and thereby will enhance the shelf life and quality in fruits. Internal and external quality attributes of fruits are improved by modulation of antioxidant system and by strengthening biophysical morphology of fruits by electrostatic interaction between PAs and phospholipids in the cell wall.
Reilhac, Caroline; Jucla, Mélanie; Iannuzzi, Stéphanie; Valdois, Sylviane; Démonet, Jean-François
2012-01-01
The ability to identify letters and encode their position is a crucial step of the word recognition process. However and despite their word identification problem, the ability of dyslexic children to encode letter identity and letter-position within strings was not systematically investigated. This study aimed at filling this gap and further explored how letter identity and letter-position encoding is modulated by letter context in developmental dyslexia. For this purpose, a letter-string comparison task was administered to French dyslexic children and two chronological age (CA) and reading age (RA)-matched control groups. Children had to judge whether two successively and briefly presented four-letter strings were identical or different. Letter-position and letter identity were manipulated through the transposition (e.g., RTGM vs. RMGT) or substitution of two letters (e.g., TSHF vs. TGHD). Non-words, pseudo-words, and words were used as stimuli to investigate sub-lexical and lexical effects on letter encoding. Dyslexic children showed both substitution and transposition detection problems relative to CA-controls. A substitution advantage over transpositions was only found for words in dyslexic children whereas it extended to pseudo-words in RA-controls and to all type of items in CA-controls. Letters were better identified in the dyslexic group when belonging to orthographically familiar strings. Letter-position encoding was very impaired in dyslexic children who did not show any word context effect in contrast to CA-controls. Overall, the current findings point to a strong letter identity and letter-position encoding disorder in developmental dyslexia. PMID:22661961
Sharma, Sunil; Sagar, Narashans Alok; Valero, Daniel; Serrano, Maria
2017-01-01
Polyamines (PAs) are natural compounds involved in many growth and developmental processes in plants, and, specifically in fruits, play a vital role regulating its development, ripening and senescence processes. Putrescine (PUT), spermine (SPE), and spermidine (SPD) are prominent PAs applied exogenously to extend shelf life of fruits. They also originate endogenously during developmental phases of horticultural crops and simultaneously affect the quality attributes and shelf life. Their anti-ethylene nature is being exploited to enhance the shelf life when exogenously applied on fruits. In growth and development of fruits, PA levels generally fall, which marks the beginning of senescence at postharvest phase. PUT, SPE and SPD treatments are being applied during postharvest phase to prolong the shelf life. They enhance the shelf life of fruits by reducing respiration rate, ethylene release and enhance firmness and quality attributes in fruits. PAs have a mitigating impact on biotic and abiotic stresses including chilling injury (CI) in tropical and sub-tropical fruits. PAs are environment friendly in nature and are biodegradable without showing any negative effect on environment. Biotechnological interventions by using chimeric gene constructs of PA encoding genes has boosted the research to develop transgenic fruits and vegetables which would possess inherent or in situ mechanism of enhanced biosynthesis of PAs at different stages of development and thereby will enhance the shelf life and quality in fruits. Internal and external quality attributes of fruits are improved by modulation of antioxidant system and by strengthening biophysical morphology of fruits by electrostatic interaction between PAs and phospholipids in the cell wall. PMID:28817100
Campbell, Julia; Sharma, Anu
2016-01-01
Measures of visual cortical development in children demonstrate high variability and inconsistency throughout the literature. This is partly due to the specificity of the visual system in processing certain features. It may then be advantageous to activate multiple cortical pathways in order to observe maturation of coinciding networks. Visual stimuli eliciting the percept of apparent motion and shape change is designed to simultaneously activate both dorsal and ventral visual streams. However, research has shown that such stimuli also elicit variable visual evoked potential (VEP) morphology in children. The aim of this study was to describe developmental changes in VEPs, including morphological patterns, and underlying visual cortical generators, elicited by apparent motion and shape change in school-aged children. Forty-one typically developing children underwent high-density EEG recordings in response to a continuously morphing, radially modulated, circle-star grating. VEPs were then compared across the age groups of 5–7, 8–10, and 11–15 years according to latency and amplitude. Current density reconstructions (CDR) were performed on VEP data in order to observe activated cortical regions. It was found that two distinct VEP morphological patterns occurred in each age group. However, there were no major developmental differences between the age groups according to each pattern. CDR further demonstrated consistent visual generators across age and pattern. These results describe two novel VEP morphological patterns in typically developing children, but with similar underlying cortical sources. The importance of these morphological patterns is discussed in terms of future studies and the investigation of a relationship to visual cognitive performance. PMID:27445738
Project Developmental Continuity Evaluation: Site Visitors' Manual.
ERIC Educational Resources Information Center
Morris, Mary; Smith, Allen
This site visitors' manual is part of a series of documents on the evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. The PDC evaluation documents and analyzes the process of program…
Focus on Methodology: Salivary Bioscience and Research on Adolescence: An Integrated Perspective
ERIC Educational Resources Information Center
Granger, Douglas A.; Fortunato, Christine K.; Beltzer, Emilie K.; Virag, Marta; Bright, Melissa A.; Out, Dorothee
2012-01-01
The characterization of the salivary proteome and advances in biotechnology create an opportunity for developmental scientists to measure multi-level components of biological systems in oral fluids and identify relationships with developmental processes and behavioral and social forces. The implications for developmental science are profound…
Parent Recognition and Responses to Developmental Concerns in Young Children
ERIC Educational Resources Information Center
Marshall, Jennifer; Coulter, Martha L.; Gorski, Peter A.; Ewing, Aldenise
2016-01-01
This mixed-methods study examined influences, factors, and processes associated with parental recognition and appraisal of developmental concerns among 23 English- and Spanish-speaking parents of young children with signs of developmental or behavioral problems. Participants shared their experiences through in-depth interviews or focus groups and…
Developmental Planning: An Introduction for Parents
ERIC Educational Resources Information Center
Noland, Jim
2009-01-01
"Developmental Planning" is the thinking process of using developmental milestones as a general basis for planning and predicting needs for the child within the early years. It considers the time frames associated with normal development across all facets of the child's development. The areas include bone and joint development, movement, sensory…
Games and Simulations in Developmental Education.
ERIC Educational Resources Information Center
Clavner, Jerry B.
Developmental education activities should attempt to provide experiences which do not hold the student back from the normal flow of learning and which utilize processes already in the student's repertoire. Virtually all areas of developmental instruction can be supplemented with games and simulations, that is, activities designed to show the…
ERIC Educational Resources Information Center
Shaffer, Anne; Yates, Tuppett M.; Egeland, Byron R.
2009-01-01
Objectives: This investigation examined developmental pathways between childhood emotional maltreatment and adaptational outcomes in early adolescence. This study utilized a developmental psychopathology perspective in adopting a multidimensional approach to the assessment of different forms of emotional maltreatment and later adjustment outcomes.…
Current and future needs for developmental toxicity testing.
Makris, Susan L; Kim, James H; Ellis, Amy; Faber, Willem; Harrouk, Wafa; Lewis, Joseph M; Paule, Merle G; Seed, Jennifer; Tassinari, Melissa; Tyl, Rochelle
2011-10-01
A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained. © 2011 Wiley Periodicals, Inc.
The Visual Magnocellular Pathway in Chinese-Speaking Children with Developmental Dyslexia
ERIC Educational Resources Information Center
Wang, Jiu-Ju; Bi, Hong-Yan; Gao, Li-Qun; Wydell, Taeko N.
2010-01-01
Previous research into the cognitive processes involved in reading Chinese and developmental dyslexia in Chinese, revealed that the single most important factor appears to be orthographic processing skills rather than phonological skills. Also some studies have indicated that even in alphabetic languages some dyslexic individuals reveal deficits…
New Developments in Developmental Research on Social Information Processing and Antisocial Behavior
ERIC Educational Resources Information Center
Fontaine, Reid Griffith
2010-01-01
The Special Section on developmental research on social information processing (SIP) and antisocial behavior is here introduced. Following a brief history of SIP theory, comments on several themes--measurement and assessment, attributional and interpretational style, response evaluation and decision, and the relation between emotion and SIP--that…
Event-Related Potentials Reveal Anomalous Morphosyntactic Processing in Developmental Dyslexia
ERIC Educational Resources Information Center
Cantiani, Chiara; Lorusso, Maria Luisa; Perego, Paolo; Molteni, Massimo; Guasti, Maria Teresa
2013-01-01
In the light of the literature describing oral language difficulties in developmental dyslexia (DD), event-related potentials were used in order to compare morphosyntactic processing in 16 adults with DD (aged 20-28 years) and unimpaired controls. Sentences including subject-verb agreement violations were presented auditorily, with grammaticality…
Dual-Process Theories of Reasoning: The Test of Development
ERIC Educational Resources Information Center
Barrouillet, Pierre
2011-01-01
Dual-process theories have become increasingly influential in the psychology of reasoning. Though the distinction they introduced between intuitive and reflective thinking should have strong developmental implications, the developmental approach has rarely been used to refine or test these theories. In this article, I review several contemporary…
ERIC Educational Resources Information Center
Furlan, Sarah; Agnoli, Franca; Reyna, Valerie F.
2013-01-01
Dual-process theories have been proposed to explain normative and heuristic responses to reasoning and decision-making problems. Standard unitary and dual-process theories predict that normative responses should increase with age. However, research has focused recently on exceptions to this standard pattern, including developmental increases in…
ERPs and Eye Movements Reflect Atypical Visual Perception in Pervasive Developmental Disorder
ERIC Educational Resources Information Center
Kemner, Chantal; van Engeland, Herman
2006-01-01
Many studies of eye tracking or event-related brain potentials (ERPs) in subjects with Pervasive Developmental Disorder (PDD) have yielded inconsistent results on attentional processing. However, recent studies have indicated that there are specific abnormalities in early processing that are probably related to perception. ERP amplitudes in…
ERIC Educational Resources Information Center
McKeel, Autumn Nicole; Dixon, Mark R.; Daar, Jacob H.; Rowsey, Kyle E.; Szekely, Susan
2015-01-01
The present investigation sought to examine the efficacy of the instructional curriculum described in the Direct Training Module of the PEAK Relational Training System on the language repertoires, as measured by the PEAK direct assessment, of children diagnosed with autism or related developmental disabilities. Twenty-seven children diagnosed with…
Network Approach to Autistic Traits: Group and Subgroup Analyses of ADOS Item Scores
ERIC Educational Resources Information Center
Anderson, George M.; Montazeri, Farhad; de Bildt, Annelies
2015-01-01
A network conceptualization might contribute to understanding the occurrence and interacting nature of behavioral traits in the autism realm. Networks were constructed based on correlations of item scores of the Autism Diagnostic Observation Schedule for Modules 1, 2 and 3 obtained for a group of 477 Dutch individuals with developmental disorders.…
Review Question Formats and Web Design Usability in Computer-Assisted Instruction
ERIC Educational Resources Information Center
Green, Rebecca S.; Eppler, Marion A.; Ironsmith, Marsha; Wuensch, Karl L.
2007-01-01
We tested the effects of two embedded review question formats and the application of web design guidelines in a computer-assisted mastery learning course in developmental psychology. Students used either a branching review question format that redirected them to relevant portions of the study module after incorrect answers or a linear format that…
Neurofibromin and Neuronal Apoptosis
2006-07-01
role of familial pheochromocytoma genes, including succinate dehydrogenase (SDH) and Nf1, in modulating neuronal apoptosis following neurotrophin...gene products, in Nf1-/- sensory and sympathetic neurons; this work will also have relevance to the biology of familial pheochromocytoma . "So what...Schlisio, S. (2005). Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: Developmental culling and cancer. Cancer
ERIC Educational Resources Information Center
Luciana, Monica; Wahlstrom, Dustin; Porter, James N.; Collins, Paul F.
2012-01-01
Behavioral activation that is associated with incentive-reward motivation increases in adolescence relative to childhood and adulthood. This quadratic developmental pattern is generally supported by behavioral and experimental neuroscience findings. It is suggested that a focus on changes in dopamine neurotransmission is informative in…
Academic Progress in Developmental Math Courses: A Comparative Study of Student Retention
ERIC Educational Resources Information Center
Silverman, Loretta H.
2010-01-01
The majority of college students are not ready for college-level math courses, which, when completed, have been shown to increase graduation and transfer rates among college students. To address this problem, the Math My Way (MMW) program was developed to integrate module-based curriculum and mastery learning approaches. The purpose of this study…
ERIC Educational Resources Information Center
Burnett Heyes, Stephanie; Jih, Yeou-Rong; Block, Per; Hiu, Chii-Fen; Holmes, Emily A.; Lau, Jennifer Y. F.
2015-01-01
Adolescence is characterized as a period of social reorientation toward peer relationships, entailing the emergence of sophisticated social abilities. Two studies (Study 1: N = 42, ages 13-17; Study 2: N = 81, ages 13-16) investigated age group differences in the impact of relationship reciprocation within school-based social networks on an…
USDA-ARS?s Scientific Manuscript database
We aimed to investigate the impact of the epigenome in inducting fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish embryogenesis. One of the significant events in epigenome is DNA methylation which is catalyzed by DNA methyl transferase (DNMT) enzymes. We analyzed DNMT enzyme m...
Developmental trends in the process of constructing own- and other-race facial composites.
Kehn, Andre; Renken, Maggie D; Gray, Jennifer M; Nunez, Narina L
2014-01-01
The current study examined developmental differences from the age of 5 to 18 in the creation process of own- and other-race facial composites. In addition, it considered how differences in the creation process affect similarity ratings. Participants created two composites (one own- and one other-race) from memory. The complexity of the composite creation process was recorded during Phase One. In Phase Two, a separate group of participants rated the composites for similarity to the corresponding target face. Results support the cross-race effect, developmental differences (based on composite creators) in similarity ratings, and the importance of the creation process for own- and other-race facial composites. Together, these findings suggest that as children get older the process through which they create facial composites becomes more complex and their ability to create facial composites improves. Increased complexity resulted in higher rated composites. Results are discussed from a psycho-legal perspective.
Li, Yongsheng; Zhang, Jinwen; Huo, Caiqin; Ding, Na; Li, Junyi; Xiao, Jun; Lin, Xiaoyu; Cai, Benzhi; Zhang, Yunpeng; Xu, Juan
2017-10-01
Advances in developmental cardiology have increased our understanding of the early aspects of heart differentiation. However, understanding noncoding RNA (ncRNA) transcription and regulation during this process remains elusive. Here, we constructed transcriptomes for both long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in four important developmental stages ranging from early embryonic to cardiomyocyte based on high-throughput sequencing datasets, which indicate the high stage-specific expression patterns of two ncRNA types. Additionally, higher similarities of samples within each stage were found, highlighting the divergence of samples collected from distinct cardiac developmental stages. Next, we developed a method to identify numerous lncRNA and circRNA regulators whose expression was significantly stage-specific and shifted gradually and continuously during heart differentiation. We inferred that these ncRNAs are important for the stages of cardiac differentiation. Moreover, transcriptional regulation analysis revealed that the expression of stage-specific lncRNAs is controlled by known key stage-specific transcription factors (TFs). In addition, circRNAs exhibited dynamic expression patterns independent from their host genes. Functional enrichment analysis revealed that lncRNAs and circRNAs play critical roles in pathways that are activated specifically during heart differentiation. We further identified candidate TF-ncRNA-gene network modules for each differentiation stage, suggesting the dynamic organization of lncRNAs and circRNAs collectively controlled cardiac differentiation, which may cause heart-related diseases when defective. Our study provides a foundation for understanding the dynamic regulation of ncRNA transcriptomes during heart differentiation and identifies the dynamic organization of novel key lncRNAs and circRNAs to collectively control cardiac differentiation. Copyright © 2017. Published by Elsevier B.V.
Exposure to light enhances pre-adult fitness in two dark-dwelling sympatric species of ants
Lone, Shahnaz Rahman; Sharma, Vijay Kumar
2008-01-01
Background In insects, circadian clocks play a key role in enhancing fitness by regulating life history traits such as developmental time and adult lifespan. These clocks use environmental light/dark (LD) cycles to fine-tune a wide range of behavioral and physiological processes. To study the effect of environmental LD conditions on pre-adult fitness components, we used two dark-dwelling sympatric species of ants (the night active Camponotus compressus and the day active Camponotus paria), which normally develop underground and have fairly long pre-adult developmental time. Results Our results suggest that ants develop fastest as pre-adults when maintained under constant light (LL), followed closely by 12:12 hr light/dark (LD), and then constant darkness (DD). While light exposure alters developmental rates of almost all stages of development, the overall pre-adult development in LL is speeded-up (relative to DD) by ~37% (34 days) in C. compressus and by ~35% (31 days) in C. paria. In LD too, development is faster (relative to DD) by ~29% (26 days) in C. compressus and by ~28% (25 days) in C. paria. Pre-adult viability of both species is also higher under LL and LD compared to DD. While pre-adult development time and viability is enhanced in LL and LD, clutch-size undergoes reduction, at least in C. compressus. Conclusion Exposure to light enhances pre-adult fitness in two dark-dwelling species of Camponotus by speeding-up development and by enhancing viability. This suggests that social ants use environmental light/dark cycles to modulate key life history traits such as pre-adult development time and viability. PMID:19046462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.
The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to completemore » lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.« less
Schindler, Adam J.; Baugh, L. Ryan; Sherwood, David R.
2014-01-01
Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint. PMID:24945623
Square, Tyler; Jandzik, David; Romášek, Marek; Cerny, Robert; Medeiros, Daniel Meulemans
2017-07-15
The apparent evolvability of the vertebrate head skeleton has allowed a diverse array of shapes, sizes, and compositions of the head in order to better adapt species to their environments. This encompasses feeding, breathing, sensing, and communicating: the head skeleton somehow participated in the evolution of all these critical processes for the last 500 million years. Through evolution, present head diversity was made possible via developmental modifications to the first head skeletal genetic program. Understanding the development of the vertebrate common ancestor's head skeleton is thus an important step in identifying how different lineages have respectively achieved their many innovations in the head. To this end, cyclostomes (jawless vertebrates) are extremely useful, having diverged from jawed vertebrates approximately 400 million years ago, at the deepest node within living vertebrates. From this ancestral vantage point (that is, the node connecting cyclostomes and gnathostomes) we can best identify the earliest major differences in development between vertebrate classes, and start to address how these might translate onto morphology. In this review we survey what is currently known about the cell biology and gene expression during head development in modern vertebrates, allowing us to better characterize the developmental genetics driving head skeleton formation in the most recent common ancestor of all living vertebrates. By pairing this vertebrate composite with information from fossil chordates, we can also deduce how gene regulatory modules might have been arranged in the ancestral vertebrate head. Together, we can immediately begin to understand which aspects of head skeletal development are the most conserved, and which are divergent, informing us as to when the first differences appear during development, and thus which pathways or cell types might be involved in generating lineage specific shape and structure. Copyright © 2017 Elsevier Inc. All rights reserved.