Science.gov

Sample records for modulate helical organ

  1. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yuen, Christen Y L.; Pearlman, Rebecca S.; Silo-Suh, Laura; Hilson, Pierre; Carroll, Kathleen L.; Masson, Patrick H.

    2003-01-01

    Wild-type Arabidopsis roots develop a wavy pattern of growth on tilted agar surfaces. For many Arabidopsis ecotypes, roots also grow askew on such surfaces, typically slanting to the right of the gravity vector. We identified a mutant, wvd2-1, that displays suppressed root waving and leftward root slanting under these conditions. These phenotypes arise from transcriptional activation of the novel WAVE-DAMPENED2 (WVD2) gene by the cauliflower mosaic virus 35S promoter in mutant plants. Seedlings overexpressing WVD2 exhibit constitutive right-handed helical growth in both roots and etiolated hypocotyls, whereas the petioles of WVD2-overexpressing rosette leaves exhibit left-handed twisting. Moreover, the anisotropic expansion of cells is impaired, resulting in the formation of shorter and stockier organs. In roots, the phenotype is accompanied by a change in the arrangement of cortical microtubules within peripheral cap cells and cells at the basal end of the elongation zone. WVD2 transcripts are detectable by reverse transcriptase-polymerase chain reaction in multiple organs of wild-type plants. Its predicted gene product contains a conserved region named "KLEEK," which is found only in plant proteins. The Arabidopsis genome possesses seven other genes predicted to encode KLEEK-containing products. Overexpression of one of these genes, WVD2-LIKE 1, which encodes a protein with regions of similarity to WVD2 extending beyond the KLEEK domain, results in phenotypes that are highly similar to wvd2-1. Silencing of WVD2 and its paralogs results in enhanced root skewing in the wild-type direction. Our observations suggest that at least two members of this gene family may modulate both rotational polarity and anisotropic cell expansion during organ growth.

  2. WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Yuen, Christen Y L.; Pearlman, Rebecca S.; Silo-Suh, Laura; Hilson, Pierre; Carroll, Kathleen L.; Masson, Patrick H.

    2003-01-01

    Wild-type Arabidopsis roots develop a wavy pattern of growth on tilted agar surfaces. For many Arabidopsis ecotypes, roots also grow askew on such surfaces, typically slanting to the right of the gravity vector. We identified a mutant, wvd2-1, that displays suppressed root waving and leftward root slanting under these conditions. These phenotypes arise from transcriptional activation of the novel WAVE-DAMPENED2 (WVD2) gene by the cauliflower mosaic virus 35S promoter in mutant plants. Seedlings overexpressing WVD2 exhibit constitutive right-handed helical growth in both roots and etiolated hypocotyls, whereas the petioles of WVD2-overexpressing rosette leaves exhibit left-handed twisting. Moreover, the anisotropic expansion of cells is impaired, resulting in the formation of shorter and stockier organs. In roots, the phenotype is accompanied by a change in the arrangement of cortical microtubules within peripheral cap cells and cells at the basal end of the elongation zone. WVD2 transcripts are detectable by reverse transcriptase-polymerase chain reaction in multiple organs of wild-type plants. Its predicted gene product contains a conserved region named "KLEEK," which is found only in plant proteins. The Arabidopsis genome possesses seven other genes predicted to encode KLEEK-containing products. Overexpression of one of these genes, WVD2-LIKE 1, which encodes a protein with regions of similarity to WVD2 extending beyond the KLEEK domain, results in phenotypes that are highly similar to wvd2-1. Silencing of WVD2 and its paralogs results in enhanced root skewing in the wild-type direction. Our observations suggest that at least two members of this gene family may modulate both rotational polarity and anisotropic cell expansion during organ growth.

  3. Helical electric potential modulation via zonal-flow coupling to resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Leconte, M.; Kim, J.-H.

    2017-08-01

    Helical modulations of the electric potential were observed in several devices during application of resonant magnetic perturbations (RMPs). To address the implication of the helical modulation on RMP-induced transport, we derive a system of 1D equations for zonal flows (ZFs) and helical potential in the presence of RMPs. As ZFs are turbulence-driven, turbulence plays a major role in this plasma self-organization towards a quasi-equilibrium with 3D helical potential. The model reveals how RMPs modify an initially given a saturated-state of coexisting turbulence and ZFs. It is shown that RMPs trigger a transport bifurcation by allowing energy-transfer out of turbulence-driven ZFs into ZF-driven helical potential.

  4. Topological states and quantized current in helical organic molecules

    NASA Astrophysics Data System (ADS)

    Guo, Ai-Min; Sun, Qing-Feng

    2017-04-01

    We report a theoretical study of electron transport along helical organic molecules subject to an external electric field which is perpendicular to molecular helix axis. Our results reveal that topological states can appear in single-helical molecules as well as double-stranded DNA under the perpendicular electric field. In particular, a topological charge pumping can be realized by rotating the electric field in the transverse plane, where during each pumping cycle, an integer number of electrons can transport across the helical molecules at zero bias voltage, with pumped current being quantized. The quantized current constitutes multiple plateaus by scanning the Fermi energy as well as the bias voltage, and holds for various model parameters, since the edge states are topologically protected. These results could pave the way to explore topological states and quantized current in the biological systems and the helical molecules, and help in designing stable molecular devices.

  5. Integral dose in three-dimensional conformal radiotherapy, intensity-modulated radiotherapy and helical tomotherapy.

    PubMed

    Yang, R; Xu, S; Jiang, W; Xie, C; Wang, J

    2009-11-01

    To evaluate the integral dose to organs at risk (OARs), normal tissue and the whole body in three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and helical tomotherapy for whole pelvic radiotherapy (WPRT) in postoperative endometrial cancer patients. We selected 10 patients with endometrial cancer undergoing postoperative WPRT. Plans of 6MV-3DCRT, 18MV-3DCRT, 6MV-IMRT, 18MV-IMRT and helical tomotherapy were developed for each patient. The integral doses to OARs, normal tissue and the whole body were compared. Compared with 3DCRT, both IMRT and helical tomotherapy significantly improved dose conformity and the integral doses to OARs (8.8-29.9%, P<0.05). Compared with 6MV-3DCRT, IMRT resulted in 13.2 and 11.0% lower integral doses to normal tissue and the whole body, respectively (P=0.00), whereas no significant difference was found with helical tomotherapy. Compared directly with IMRT, helical tomotherapy reduced the integral doses to the rectum and bladder. However, the integral doses to normal tissue were 13.9 and 17.1% higher than 6MV-IMRT and 18MV-IMRT plans, respectively (P=0.00); the integral doses to pelvic bones also slightly increased with helical tomotherapy. The use of 18MV resulted in 5.8 and 2.7% lower integral doses to normal tissue and 4.8 and 2.1% lower integral doses to the whole body in the 3DCRT and IMRT plans, respectively (P=0.00). Results show that IMRT and helical tomotherapy offer better conformity and lower integral doses to OARs for postoperative WPRT of endometrial cancers compared with 3DCRT. The integral doses to normal tissue and the whole body were significantly lower with IMRT, whereas no significant difference was found with helical tomotherapy compared with 6MV-3DCRT. Compared directly with IMRT, helical tomotherapy further reduced the integral doses to the rectum and bladder, at the expense of a slightly higher integral dose to pelvic bones and normal tissue. The use of 18MV improved the

  6. Pediatric organ dose measurements in axial and helical multislice CT

    SciTech Connect

    McDermott, Alanna; White, R. Allen; Mc-Nitt-Gray, Mike; Angel, Erin; Cody, Dianna

    2009-05-15

    An anthropomorphic pediatric phantom (5-yr-old equivalent) was used to determine organ doses at specific surface and internal locations resulting from computed tomography (CT) scans. This phantom contains four different tissue-equivalent materials: Soft tissue, bone, brain, and lung. It was imaged on a 64-channel CT scanner with three head protocols (one contiguous axial scan and two helical scans [pitch=0.516 and 0.984]) and four chest protocols (one contiguous axial scan and three helical scans [pitch=0.516, 0.984, and 1.375]). Effective mA s [=(tube currentxrotation time)/pitch] was kept nearly constant at 200 effective mA s for head and 290 effective mA s for chest protocols. Dose measurements were acquired using thermoluminescent dosimeter powder in capsules placed at locations internal to the phantom and on the phantom surface. The organs of interest were the brain, both eyes, thyroid, sternum, both breasts, and both lungs. The organ dose measurements from helical scans were lower than for contiguous axial scans by 0% to 25% even after adjusting for equivalent effective mA s. There was no significant difference (p>0.05) in organ dose values between the 0.516 and 0.984 pitch values for both head and chest scans. The chest organ dose measurements obtained at a pitch of 1.375 were significantly higher than the dose values obtained at the other helical pitches used for chest scans (p<0.05). This difference was attributed to the automatic selection of the large focal spot due to a higher tube current value. These findings suggest that there may be a previously unsuspected radiation dose benefit associated with the use of helical scan mode during computed tomography scanning.

  7. Helical tomotherapy provides efficacy similar to that of intensity-modulated radiation therapy with dosimetric benefits for endometrial carcinoma

    PubMed Central

    Hsieh, Chen-Hsi; Shueng, Pei-Wei; Hsiao, Sheng-Mou; Wei, Ming-Chow; Wu, Wen-Yih; Sun, Hsu-Dong; Tien, Hui-Ju; Wang, Li-Ying; Hsieh, Yen-Ping

    2012-01-01

    Background The purpose of this study was to compare the efficacy of intensity-modulated radiotherapy (IMRT) and helical tomotherapy for endometrial cancer. Methods Between November 1, 2006 and November 31, 2010, 31 patients with histologically confirmed endometrial cancer were enrolled. All enrolled patients received total abdominal hysterectomy and bilateral salpingo-oophorectomy with adjuvant whole pelvic IMRT or helical tomotherapy. Results The actuarial 3-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates for the IMRT and helical tomotherapy groups were 87.5% versus 100%, 91.7% versus 51.7%, 91.7% versus 83.3%, and 91.7% versus 51.7%, respectively. The conformal index and uniformity index for IMRT versus helical tomotherapy was 1.25 versus 1.17 (P = 0.04) and 1.08 versus 1.05 (P < 0.01), respectively. Two of 31 patients with cervical stump failure were noted, one in the IMRT group and the other in the helical tomotherapy group. No acute or late grade 3 or 4 toxicities were noted, including proctitis, or genitourinary or gastrointestinal disturbances. Conclusion Helical tomotherapy is as effective as IMRT and has better uniformity and conformal indices, and critical organ-sparing properties. Prospective clinical trials are needed to evaluate the comparative efficacy of IMRT versus helical tomotherapy. PMID:23055750

  8. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation.

    PubMed

    Mechaly, Ariel E; Sassoon, Nathalie; Betton, Jean-Michel; Alzari, Pedro M

    2014-01-01

    Histidine kinases (HKs) are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.

  9. [Clinical implementation of dose reconstruction and dose-guided intensity modulated radiotherapy for helical tomotherapy].

    PubMed

    Yao, Weirong; Xu, Shouping; Du Lei; Xie, Chuanbin; Ma, Lin

    2012-09-01

    To implement dose reconstruction and dose-guided intensity modulated radiotherapy for helical tomotherapy. Dose reconstruction was implemented on adaptive helical tomotherapy with the online megavoltage CT (MVCT) imaging from a patient with nasopharyngeal cancer. The differences of isodose line between actual and planned deposition were analysis in 3D distribution, on which the hot spot and cold spot were lined. The dose delivered to these areas was modulated in later fractions to keep the planned requirement. The differences between actual and planned isodose line were shown on the image visually. The modulation to the hot spot and cold spot in later fraction corrected the incorrectly delivered dose to achieve the requirement of primary plan. The dose reconstruction and dose-guided intensity modulated radiotherapy can be implemented in adaptive helical tomotherapy.

  10. Comparison of arc-modulated cone beam therapy and helical tomotherapy for three different types of cancer

    SciTech Connect

    Ulrich, Silke; Sterzing, Florian; Nill, Simeon; Schubert, Kai; Herfarth, Klaus K.; Debus, Juergen; Oelfke, Uwe

    2009-10-15

    Purpose: Arc-modulated cone beam therapy (AMCBT) is a fast treatment technique deliverable in a single rotation with a conventional C-arm shaped linac. In this planning study, the authors assess the dosimetric properties of single-arc therapy in comparison to helical tomotherapy for three different tumor types. Methods: Treatment plans for three patients with prostate carcinoma, three patients with anal cancer, and three patients with head and neck cancer were optimized for helical tomotherapy and AMCBT. The dosimetric comparison of the two techniques is based on physical quantities derived from dose-volume histograms. Results: For prostate cancer, the quality of dose distributions calculated for AMCBT was of equal quality as that generated for tomotherapy with the additional benefits of a faster delivery and a lower integral dose. For highly complex geometries, the plan quality achievable with helical tomotherapy could not be achieved with arc-modulated cone beam therapy. Conclusions: Rotation therapy with a conventional linac in a single arc is capable to deliver a high and homogeneous dose to the target and spare organs at risk. Advantages of this technique are a fast treatment time and a lower integral dose in comparison to helical tomotherapy. For highly complex cases, e.g., with several target regions, the dose shaping capabilities of AMCBT are inferior to those of tomotherapy. However, treatment plans for AMCBT were also clinically acceptable.

  11. Homochiral helical metal-organic frameworks of group 1 metals.

    PubMed

    Reger, Daniel L; Leitner, Andrew; Smith, Mark D; Tran, T Thao; Halasyamani, P Shiv

    2013-09-03

    The reactions of (S)-2-(1,8-naphthalimido)propanoic acid (HL(ala)) and (S)-2-(1,8-naphthalimido)-3-hydroxypropanoic acid (HL(ser)), protonated forms of ligands that contain a carboxylate donor group, an enantiopure chiral center, and a 1,8-naphthalimide π···π stacking supramolecular tecton and in the case of HL(ser) an alcohol functional group, with the appropriate alkali metal hydroxide followed by a variety of crystallization methods leads to the formation of crystalline K(L(ala))(MeOH) (1), K(L(ala))(H2O) (2), Na(L(ala))(H2O) (3), KL(ser) (4), CsL(ser) (5), and CsL(ala) (6). Each of these new complexes has a solid state structure based on six-coordinate metals linked into homochiral helical rod secondary building unit (SBU) central cores. In addition to the bonding of the carboxylate and solvent (in the case of L(ser) the ligand alcohol) to the metals, both oxygens on the 1,8-naphthalimide act as donor groups. One naphthalimide oxygen bonds to the same helical rod SBU as the carboxylate group of that ligand forming a chelate ring. The other naphthalimide oxygen bonds to adjacent SBUs. In complexes 1-3, this inter-rod link has a square arrangement bonding four other rods forming a three-dimensional enantiopure metal-organic framework (MOF) structure, whereas in 4-6 this link has a linear arrangement bonding two other rods forming a two-dimensional, sheet structure. In the latter case, the third dimension is supported exclusively by interdigitated π···π stacking interactions of the naphthalimide supramolecular tecton, forming enantiopure supramolecular MOF solids. Compounds 1-3 lose the coordinated solvent when heating above 100 °C. For 1, the polycrystalline powder reverts to 1 only by recrystallization from methanol, whereas compounds 2 and 3 undergo gas/solid, single-crystal to single-crystal transformations to form dehydrated compounds 2* and 3*, and rehydration occurs when crystals of these new complexes are left out in air. The reversible single

  12. Integrated organic photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Potscavage, William J.; Yoo, Seunghyup; Domercq, Benoit; Kim, Jungbae; Holt, Joe; Kippelen, Bernard

    2007-09-01

    Methods for scalable output voltage and encapsulation of organic photovoltaic cells are addressed in this paper. To obtain scalable output voltages, integrated photovoltaic modules comprised of a bulk heterojunction of poly(3- hexylthiophene) (P3HT) and a soluble C 70 derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PCBM-70), were fabricated. Power conversion efficiency of individual P3HT/PCBM-70 cells was estimated to be 4.1 % for AM1.5 G illumination. Modules of one to four cells connected in series produced open-circuit voltages V OC that linearly depend on the number of cells N as V OC = N × 0.621 V with a nearly constant short-circuit current of 1.4 +/- 0.1 mA. Separately, shelf lifetimes of more than one year were achieved for pentacene/C 60 solar cells by encapsulation with a 200-nm-thick layer of Al IIO 3 deposited by atomic layer deposition (ALD). In addition, the ALD process improved the open-circuit voltage and power conversion efficiency of the solar cells by thermal annealing that occurs during the process.

  13. Helical organic nanotubes from simple chiral building blocks.

    PubMed

    Wei, Wei; Huang, Kun; Pao, Chih-Ning; Hu, Zuming; Lu, Yunfeng

    2013-10-01

    Utilizing simple organic chiral (S)-(-)- and (R)-(+)- 1,1'-binaphthyl-2,2'-diamino as building blocks, one-dimensional chiral nanofibers/tubes were assembled via a simple process. Morphology and structure of the building blocks and the assemblies were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), while formation and properties of the assemblies were studied by ultraviolet-visible (UV-Vis) spectrophotometer, Fourier transform infrared (FTIR) spectrometer, X-ray diffractometer (XRD) and Circular dichroism (CD) spectropolarimeter. Results show that left-handed and right-handed nanofibers were successfully assembled via this method, and the structure and morphology of the assembled nanofibers are heavily dependent on assembling conditions and intrinsic molecular information of the building blocks. Additionally, water contact angle measurements were conducted to investigate surface wetting properties of the nanotubes, indicating a superhydrophobic surface and the possibility of achieving novel and additional properties by assembling building blocks into an ordered supermolecular structure. This work provides a simple method to prepare helical organic nanomaterials of interest for various applications.

  14. Hierarchical Helical Order in the Twisted Growth of Plant Organs

    NASA Astrophysics Data System (ADS)

    Wada, Hirofumi

    2012-09-01

    The molecular and cellular basis of left-right asymmetry in plant morphogenesis is a fundamental issue in biology. A rapidly elongating root or hypocotyl of twisting mutants of Arabidopsis thaliana exhibits a helical growth with a handedness opposite to that of the underlying cortical microtubule arrays in epidermal cells. However, how such a hierarchical helical order emerges is currently unknown. We propose a model for investigating macroscopic chiral asymmetry in Arabidopsis mutants. Our elastic model suggests that the helical pattern observed is a direct consequence of the simultaneous presence of anisotropic growth and tilting of cortical microtubule arrays. We predict that the root helical pitch angle is a function of the microtubule helical angle and elastic moduli of the tissues. The proposed model is versatile and is potentially important for other biological systems ranging from protein fibrous structures to tree trunks.

  15. Alpha-turn mimetics: short peptide alpha-helices composed of cyclic metallopentapeptide modules.

    PubMed

    Kelso, Michael J; Beyer, Renée L; Hoang, Huy N; Lakdawala, Ami S; Snyder, James P; Oliver, Warren V; Robertson, Tom A; Appleton, Trevor G; Fairlie, David P

    2004-04-21

    Alpha-Helices are key structural components of proteins and important recognition motifs in biology. Short peptides (helical sequences are rarely helical away from their stabilizing protein environments. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function. This study reports the facile incorporation of 3- and 4-alpha turns in 10-15 residue peptides through formation in situ of multiple cyclic metallopeptide modules [Pd(en)(H*XXXH*)](2+). The nonhelical peptides Ac-H*ELTH*H*VTDH*-NH(2) (1), Ac-H*ELTH*AVTDYH*ELTH*-NH(2) (2), and Ac-H*AAAH*HELTH*H*VTDH*-NH(2) (3) (H is histidine-methylated at imidazole-N3) react in N,N-dimethylformamide (DMF) or water with 2, 2, and 3 molar equivalents, respectively, of [Pd(en)(NO(3))(2)] to form exclusively [Pd(2)(en)(2)(Ac-H*ELTH*H*VTDH*-NH(2))](4+) (4), [Pd(2)(en)(2)(Ac-H*ELTH*AVTDYH*ELTH*-NH(2))](4+) (5), and [Pd(3)(en)(3)(Ac-H*AAAH*HELTH*H*VTDH*-NH(2))](6+) (6), characterized by mass spectrometry, 1D and 2D (1)H- and 1D (15)N-NMR spectroscopy. Despite the presence of multiple histidines and other possible metal-binding residues in these peptides, 2D (1)H NMR spectra reveal that Pd(en)(2+) is remarkably specific in coordinating to imidazole-N1 of only (i, i + 4) pairs of histidines (i.e., only those separated by three amino acids), resulting in 4-6 made up of cyclic metallopentapeptide modules ([Pd(en)(H*XXXH*)](2+))(n), n = 2, 2, 3, respectively, each cycle being a 22-membered ring. We have previously shown that a single metallopentapeptide can nucleate alpha-helicity (Kelso et al., Angew. Chem., Int. Ed. 2003, 42, 421-424.). We now demonstrate its use as an alpha-turn-mimicking module for the facile conversion of unstructured short peptides into helices of macrocycles and provide 1D and 2D NMR spectroscopic data, structure

  16. Glycine and beta-branched residues support and modulate peptide helicity in membrane environments.

    PubMed

    Li, S C; Deber, C M

    1992-10-26

    Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation once inserted into the membrane, yet consist of primary sequences rich in residues known in soluble proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have designed and synthesized a series of 20-residue peptides with 'guest' hydrophobic segments--expected to provide three turns of incipient alpha-helix content--embedded in 'host' hydrophilic (Lys-Ser) matrices. Circular dichroism (CD) spectra of the model peptides in water showed that significant helical content was observed only for peptides with high Ala content; others behaved as 'random coils'. However, in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, it was found that Gly can be accommodated as readily as Ala, and Ile or Val as readily as Leu, in hydrophobic alpha-helices. Further subtleties of structural preferences could be observed in electrically-neutral lyso-phosphatidylcholine (LPC) micelles, where helical propensity decreased in the order Ala-Leu-rich > Gly-Leu-rich > Gly-Ile(Val)-rich hydrophobic segments. The results conjure a role of environment-dependent helix-modulation for Gly, Ile, and Val residues--and suggest that these residues may provide, in part, the structural basis for conformational transitions within or adjacent to membrane domains, such as those accompanying membrane insertion and/or required for transport or signalling functions.

  17. Aichi Cancer Center Initial Experience of Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer Using Helical Tomotherapy

    SciTech Connect

    Kodaira, Takeshi Tomita, Natsuo; Tachibana, Hiroyuki; Nakamura, Tatsuya; Nakahara, Rie; Inokuchi, Haruo; Fuwa, Nobukazu

    2009-03-15

    Purpose: To assess the feasibility of helical tomotherapy (HT) for patients with nasopharyngeal carcinoma. Methods and Materials: From June 2006 to June 2007, 20 patients with nasopharyngeal carcinoma were treated with HT with (n = 18) or without (n = 2) systemic chemotherapy. The primary tumor and involved lymph node (PTV1) were prescribed 70 Gy and the prophylactic region 54 Gy at D95, respectively. The majority of patients received 2 Gy per fraction for PTV1 in 35 fractions. Parotid function was evaluated using quantitative scintigraphy at pretreatment, and posttreatment at 3 months and 1 year later. Results: The median patient age was 53 years, ranging from 15 to 83. Our cohort included 5, 8, 4, 2, and 1 patients with disease Stages IIB, III, IVA, IVB, and IVC, respectively. Histopathological record revealed two for World Health Organization Type I and 18 for Type 2 or 3. The median duration time for treatment preparation was 9.5 days, and all plans were thought to be acceptable regarding dose constraints of both the planning target volume and organ at risk. All patients completed their treatment procedure of intensity-modulated radiation therapy (IMRT). All patients achieved clinical remission after IMRT. The majority of patients had Grade 3 or higher toxicity of skin, mucosa, and neutropenia. At the median follow-up of 10.9 months, two patients recurred, and one patient died from cardiac disease. Parotid gland function at 1 year after completion of IMRT was significantly improved compared with that at 3 months. Conclusion: HT was clinically effective in terms of IMRT planning and utility for patients with nasopharyngeal cancer.

  18. Intensity-Modulated Proton Therapy Versus Helical Tomotherapy in Nasopharynx Cancer: Planning Comparison and NTCP Evaluation

    SciTech Connect

    Widesott, Lamberto Pierelli, Alessio; Fiorino, Claudio; Dell'Oca, Italo; Broggi, Sara; Cattaneo, Giovanni Mauro; Di Muzio, Nadia; Fazio, Ferruccio; Calandrino, Riccardo; Schwarz, Marco

    2008-10-01

    Purpose: To compare intensity-modulated proton therapy (IMPT) and helical tomotherapy (HT) treatment plans for nasopharynx cancer using a simultaneous integrated boost approach. Methods and Materials: The data from 6 patients who had previously been treated with HT were used. A three-beam IMPT technique was optimized in the Hyperion treatment planning system, simulating a 'beam scanning' technique. HT was planned using the tomotherapy treatment planning system. Both techniques were optimized to simultaneously deliver 66 Gy in 30 fractions to planning target volume (PTV1; GTV and enlarged nodes) and 54 Gy to PTV2 subclinical, electively treated nodes. Normal tissue complication probability calculation was performed for the parotids and larynx. Results: Very similar PTVs coverage and homogeneity of the target dose distribution for IMPT and HT were found. The conformity index was significantly lower for protons than for photons (1.19 vs. 1.42, respectively). The mean dose to the ipsilateral and contralateral parotid glands decreased by 6.4 Gy and 5.6 Gy, respectively, with IMPT. The volume of mucosa and esophagus receiving {>=}20 Gy and {>=}30 Gy with IMPT was significantly lower than with HT. The average volume of larynx receiving {>=}50 Gy was significantly lower with HT, while for thyroid, it was comparable. The volume receiving {>=}30, {>=}20, and {>=}10 Gy in total body volume decreased with IMPT by 14.5%, 19.4%, and 23.1%, respectively. The normal tissue complication probability for the parotid glands was significantly lower with IMPT for all sets of parameters; however, we also estimated an almost full recovery of the contralateral parotid with HT. The normal tissue complication probability for the larynx was not significantly different between the two irradiation techniques. Conclusion: Excellent target coverage, homogeneity within the PTVs, and sparing of the organs at risk were reached with both modalities. IMPT allows for better sparing of most organs at

  19. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part II: Transient and Modulated Flow Behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Fautrelle, Yves; Etay, Jacqueline; Na, Xianzhao; Baltaretu, Florin

    2016-12-01

    The present study considers the transient and modulated flow behaviors of liquid metal driven by a helical permanent magnetic field. The transient process, in which the fluid at rest experiences an increase in the angular velocity, is observed both in secondary and global axial flow with duration time less than 1 second. The flow fields are measured quantitatively to reveal the evolution of the transient flow, and the transient process is due to the variation of the electromagnetic force. Besides, the modulated flow behaviors of global axial flow, which is significantly different from that of secondary flow, is expected to avoid flow-induced macrosegregation in solidification process if the modulated time is suitable because its direction reversed periodically with the modulated helical stirrer. In addition, an optimal modulation frequency, under which the magnetic field could efficiently stir the solute at the solidification front, exists both in secondary and global axial flow (0.1 Hz and 0.625 Hz, respectively). Future investigations will focus on additional metallic alloy solidification experiments.

  20. Stereotactic Image-Guided Intensity Modulated Radiotherapy Using the HI-ART II Helical Tomotherapy System

    SciTech Connect

    Holmes, Timothy W. Hudes, Richard; Dziuba, Sylwester; Kazi, Abdul; Hall, Mark; Dawson, Dana

    2008-07-01

    The highly integrated adaptive radiation therapy (HI-ART II) helical tomotherapy unit is a new radiotherapy machine designed to achieve highly precise and accurate treatments at all body sites. The precision and accuracy of the HI-ART II is similar to that provided by stereotactic radiosurgery systems, hence the historical distinction between external beam radiotherapy and stereotactic procedures based on differing precision requirements is removed for this device. The objectives of this work are: (1) to describe stereotactic helical tomotherapy processes (SRS, SBRT); (2) to show that the precision and accuracy of the HI-ART meet the requirements defined for SRS and SBRT; and (3) to describe the clinical implementation of a stereotactic image-guided intensity modulated radiation therapy (IG-IMRT) system that incorporates optical motion management.

  1. Modulated spin helicity stabilized by incommensurate orbital density waves in a quadruple perovskite manganite

    NASA Astrophysics Data System (ADS)

    Johnson, R. D.; Khalyavin, D. D.; Manuel, P.; Bombardi, A.; Martin, C.; Chapon, L. C.; Radaelli, P. G.

    2016-05-01

    Through a combination of neutron diffraction and Landau theory we describe the spin ordering in the ground state of the quadruple perovskite manganite CaMn7O12 —a magnetic multiferroic supporting an incommensurate orbital density wave that onsets above the magnetic ordering temperature, TN 1=90 K. The multi-k magnetic structure in the ground state was found to be a nearly-constant-moment helix with modulated spin helicity, which oscillates in phase with the orbital occupancies on the Mn3 + sites via trilinear magneto-orbital coupling. Our phenomenological model also shows that, above TN 2=48 K, the primary magnetic order parameter is locked into the orbital wave by an admixture of helical and collinear spin density wave structures. Furthermore, our model naturally explains the lack of a sharp dielectric anomaly at TN 1 and the unusual temperature dependence of the electrical polarization.

  2. Comparison of coplanar and noncoplanar intensity-modulated radiation therapy and helical tomotherapy for hepatocellular carcinoma

    PubMed Central

    2010-01-01

    Background To compare the differences in dose-volume data among coplanar intensity modulated radiotherapy (IMRT), noncoplanar IMRT, and helical tomotherapy (HT) among patients with hepatocellular carcinoma (HCC) and portal vein thrombosis (PVT). Methods Nine patients with unresectable HCC and PVT underwent step and shoot coplanar IMRT with intent to deliver 46 - 54 Gy to the tumor and portal vein. The volume of liver received 30Gy was set to keep less than 30% of whole normal liver (V30 < 30%). The mean dose to at least one side of kidney was kept below 23 Gy, and 50 Gy as for stomach. The maximum dose was kept below 47 Gy for spinal cord. Several parameters including mean hepatic dose, percent volume of normal liver with radiation dose at X Gy (Vx), uniformity index, conformal index, and doses to organs at risk were evaluated from the dose-volume histogram. Results HT provided better uniformity for the planning-target volume dose coverage than both IMRT techniques. The noncoplanar IMRT technique reduces the V10 to normal liver with a statistically significant level as compared to HT. The constraints for the liver in the V30 for coplanar IMRT vs. noncoplanar IMRT vs. HT could be reconsidered as 21% vs. 17% vs. 17%, respectively. When delivering 50 Gy and 60-66 Gy to the tumor bed, the constraints of mean dose to the normal liver could be less than 20 Gy and 25 Gy, respectively. Conclusion Noncoplanar IMRT and HT are potential techniques of radiation therapy for HCC patients with PVT. Constraints for the liver in IMRT and HT could be stricter than for 3DCRT. PMID:20492727

  3. Efficient organic solar cells with helical perylene diimide electron acceptors.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Wang, Wei; Khlyabich, Petr P; Kumar, Bharat; Xu, Qizhi; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles; Steigerwald, Michael L; Loo, Yueh-Lin; Xiao, Shengxiong; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2014-10-29

    We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current-voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.

  4. Peptide environment specifies conformation. Helicity of hydrophobic segments compared in aqueous, organic, and membrane environments.

    PubMed

    Li, S C; Deber, C M

    1993-11-05

    Transmembrane segments in integral membrane proteins exist characteristically as helices in lipid bilayers, yet are often rich in residues considered helix-destabilizing (Val, Ile, Gly) in soluble proteins. We propose that helicity of a transmembrane segment is likely to be affected by factors other than the "intrinsic" helical propensities of its component amino acids. This hypothesis is tested by comparing the conformation(s) in aqueous, organic, membrane-mimetic (micellar), and membrane (bilayer) environments of designed model peptides with systematically altered helical propensity and/or segmental hydrophobicity. Peptides of prototypic sequence NH2-(Ser-Lys)2-Ala5-Leu6-Ala7-Ala8-Leu9-Ala10-++ +Trp11-Ala12-Leu13-Ala14- (Lys-Ser)3-OH were synthesized, which incorporate a hydrophobic core "guest" segment (residues 5-14) into a water-soluble hydrophilic host matrix. Related peptides featured substitution of Leu6,9,13-->Gly, Leu6,9,13-->Ala, and Ala7,10,14-->Gly. Circular dichroism spectra revealed that algorithms for soluble proteins correctly predicted peptide helical proclivities in aqueous solutions, but peptide helicity in organic (trifluoroethanol) solvents, membrane-mimetic SDS micelles, and negatively charged lipid bilayer vesicles, was found to be governed almost exclusively by the segmental hydrophobicity of the peptide mid-hydrophobic core segment. In related Trp fluorescence studies, peptide-membrane association was similarly correlated with extent of hydrophobic interaction.

  5. Effective and organ doses using helical 4DCT for thoracic and abdominal therapies

    PubMed Central

    Matsuzaki, Yuka; Fujii, Keisuke; Kumagai, Motoki; Tsuruoka, Ichiro; Mori, Shinichiro

    2013-01-01

    The capacity of 4DCT to quantify organ motion is beyond conventional 3DCT capability. Local control could be improved. However we are unaware of any reports of organ dose measurements for helical 4DCT imaging. We therefore quantified the radiation doses for helical 4DCT imaging. Organ and tissue dose was measured for thoracic and abdominal 4DCT in helical mode using an adult anthropomorphic phantom. Radiation doses were measured with thermoluminescence dosimeter chips inserted at various anatomical sites on the phantom. For the helical thoracic 4DCT, organ doses were 57.2 mGy for the lung, 76.7 mGy for the thyroids, 48.1 mGy for the breasts, and 10.86 mGy for the colon. The effective doses for male and female phantoms were very similar, with a mean value of 33.1 mSv. For abdominal 4DCT imaging, organ doses were 14.4 mGy for the lung, 0.78 mGy for the thyroids, 9.83 mGy for breasts, and 58.2 mGy for the colon (all obtained by using ICRP 103). We quantified the radiation exposure for thoracic and abdominal helical 4DCT. The doses for helical 4DCT were approximately 1.5 times higher than those for cine 4DCT, however the stepwise image artifact was reduced. 4DCT imaging should be performed with care in order to minimize radiation exposure, but the advantages of 4DCT imaging mandates its incorporation into routine treatment protocols. PMID:23603303

  6. Light-Directed Dynamic Chirality Inversion in Functional Self-Organized Helical Superstructures.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2016-02-24

    Helical superstructures are widely observed in nature, in synthetic polymers, and in supramolecular assemblies. Controlling the chirality (the handedness) of dynamic helical superstructures of molecular and macromolecular systems by external stimuli is a challenging task, but is of great fundamental significance with appealing morphology-dependent applications. Light-driven chirality inversion in self-organized helical superstructures (i.e. cholesteric, chiral nematic liquid crystals) is currently in the limelight because inversion of the handedness alters the chirality of the circularly polarized light that they selectively reflect, which has wide potential for application. Here we discuss the recent developments toward inversion of the handedness of cholesteric liquid crystals enabled by photoisomerizable chiral molecular switches or motors. Different classes of chiral photoresponsive dopants (guests) capable of conferring light-driven reversible chirality inversion of helical superstructures fabricated from different nematic hosts are discussed. Rational molecular designs of chiral molecular switches toward endowing handedness inversion to the induced helical superstructures of cholesteric liquid crystals are highlighted. This Review is concluded by throwing light on the challenges and opportunities in this emerging frontier, and it is expected to provide useful guidelines toward the development of self-organized soft materials with stimuli-directed chirality inversion capability and multifunctional host-guest systems.

  7. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation.

    PubMed

    Budhathoki-Uprety, Januka; Jena, Prakrit V; Roxbury, Daniel; Heller, Daniel A

    2014-11-05

    The use of single-walled carbon nanotubes (SWCNTs) as near-infrared optical probes and sensors require the ability to simultaneously modulate nanotube fluorescence and functionally derivatize the nanotube surface using noncovalent methods. We synthesized a small library of polycarbodiimides to noncovalently encapsulate SWCNTs with a diverse set of functional coatings, enabling their suspension in aqueous solution. These polymers, known to adopt helical conformations, exhibited ordered surface coverage on the nanotubes and allowed systematic modulation of nanotube optical properties, producing up to 12-fold differences in photoluminescence efficiency. Polymer cloaking of the fluorescent nanotubes facilitated the first instance of controllable and reversible internanotube exciton energy transfer, allowing kinetic measurements of dynamic self-assembly and disassembly.

  8. Dynamic and Progressive Control of DNA Origami Conformation by Modulating DNA Helicity with Chemical Adducts.

    PubMed

    Chen, Haorong; Zhang, Hanyu; Pan, Jing; Cha, Tae-Gon; Li, Shiming; Andréasson, Joakim; Choi, Jong Hyun

    2016-05-24

    DNA origami has received enormous attention for its ability to program complex nanostructures with a few nanometer precision. Dynamic origami structures that change conformation in response to environmental cues or external signals hold great promises in sensing and actuation at the nanoscale. The reconfiguration mechanism of existing dynamic origami structures is mostly limited to single-stranded hinges and relies almost exclusively on DNA hybridization or strand displacement. Here, we show an alternative approach by demonstrating on-demand conformation changes with DNA-binding molecules, which intercalate between base pairs and unwind DNA double helices. The unwinding effect modulates the helicity mismatch in DNA origami, which significantly influences the internal stress and the global conformation of the origami structure. We demonstrate the switching of a polymerized origami nanoribbon between different twisting states and a well-constrained torsional deformation in a monomeric origami shaft. The structural transformation is shown to be reversible, and binding isotherms confirm the reconfiguration mechanism. This approach provides a rapid and reversible means to change DNA origami conformation, which can be used for dynamic and progressive control at the nanoscale.

  9. Construction of polyoxometalate-based inorganic-organic compounds using silver(I) double helicates as secondary building blocks.

    PubMed

    Dang, Dongbin; Zheng, Guangshui; Bai, Yan; Yang, Fan; Gao, Hui; Ma, Pengtao; Niu, Jingyang

    2011-09-05

    Two polyoxometalate-based silver(I) compounds including a three-dimensional porous crystalline array and a double-helicate bisupporting cluster were achieved using metal-organic helicates and Keggin [PMo(12)O(40)](3-) as secondary building blocks.

  10. A Porous Metal-Organic Framework with Helical Chain Building Units Exhibiting Facile Transition from Micro- to Meso-porosity

    SciTech Connect

    Park, Jinhee; Li, Jian-Rong; Carolina Sañudo, E.; Yuan, Daqiang; Zhou, Hong-Cai

    2012-01-01

    A metal–organic framework (MOF) with helical channels has been constructed by bridging helical chain secondary building units with 2,6-di-p-carboxyphenyl-4,4'-bipyridine ligands. The activated MOF shows permanent porosity and gas adsorption selectivity. Remarkably, the MOF exhibits a facile transition from micro- to meso-porosity.

  11. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles.

    PubMed

    Wang, Ling; Dong, Hao; Li, Yannian; Xue, Chenming; Sun, Ling-Dong; Yan, Chun-Hua; Li, Quan

    2014-03-26

    Adding external, dynamic control to self-organized superstructures with desired functionalities is an important leap necessary in leveraging the fascinating molecular systems for applications. Here, the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were able to self-organize into an optically tunable helical superstructure. The resulting nanoparticle impregnated helical superstructure was found to exhibit unprecedented reversible near-infrared (NIR) light-guided tunable behavior only by modulating the excitation power density of a continuous-wave NIR laser (980 nm). Upon irradiation by the NIR laser at the high power density, the reflection wavelength of the photonic superstructure red-shifted, whereas its reverse process occurred upon irradiation by the same laser but with the lower power density. Furthermore, reversible dynamic NIR-light-driven red, green, and blue reflections in a single thin film, achieved only by varying the power density of the NIR light, were for the first time demonstrated.

  12. Dynamic Orthogonal Switching of a Thermoresponsive Self-Organized Helical Superstructure.

    PubMed

    Zhang, Lingli; Wang, Ling; Hiremath, Uma S; Bisoyi, Hari Krishna; Nair, Geetha G; Yelamaggad, Channabasaveshwar V; Urbas, Augustine M; Bunning, Timothy J; Li, Quan

    2017-04-12

    Controllable manipulation of self-organized dynamic superstructures of functional molecular materials by external stimuli is an enabling enterprise. Herein, we have developed a thermally driven, self-organized helical superstructure, i.e., thermoresponsive cholesteric liquid crystal (CLC), by integrating a judiciously chosen thermoresponsive chiral molecular switch into an achiral liquid crystalline medium. The CLC in lying state, in both planar and twisted nematic cells, exhibits reversible in-plane orthogonal switching of its helical axis in response to the combined effect of temperature and electric field. Consequently, the direction of the cholesteric grating has been observed to undergo 90° switching in a single cell, enabling non-mechanical beam steering along two orthogonal directions. The ability to reversibly switch the cholesteric gartings along perpendicular directions by appropriately adjusting temperature and electric field strength could facilitate their applications in 2D beam steering, spectrum scanning, optoelectronics and beyond.

  13. An unusual helical micro-organism found in the gut lumen of human subjects.

    PubMed

    Collins, A J; Notarianni, L J; Potter, U J

    1999-04-01

    An earlier report described the discovery of a micro-organism in the form of a double helix in human small bowel biopsies. Mucosal biopsies of the stomach and small bowel obtained from patients with rheumatic diseases and dyspepsia by enteroscopy and gastroscopy were fixed for scanning electron microscopy to investigate the organism further. In 62% of biopsies, an organism in the form of a double helix with bifid ends, 5-30 microm long, was found lying free on the surface of the mucosa. The organism has been demonstrated in the stomach, duodenum and small bowel. Flagella were never seen to be associated with the organism. In spite of its helical form, the organism lacks many of the factors associated with spirochaete morphology. It is suggested that this, as yet unnamed organism, may be found throughout the length of the digestive tract. Its pathological significance is not known.

  14. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone

    PubMed Central

    Doucet, Christine M.; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  15. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone.

    PubMed

    Doucet, Christine M; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  16. "Ovarian vascular pedicle" sign revealing organ of origin of a pelvic mass lesion on helical CT.

    PubMed

    Lee, Jong Hwa; Jeong, Yoong Ki; Park, Ji Kang; Hwang, Jae Choel

    2003-07-01

    We evaluated the "ovarian vascular pedicle" sign as a way of differentiating ovarian from subserosal uterine lesions on single-detector helical CT. We prospectively evaluated 131 patients who had a pelvic mass suspected of originating in the ovary or subserosal zone of the uterus and had undergone helical CT before surgery. A total of 108 ovarian lesions and 23 subserosal uterine myomas were confirmed. CT images were analyzed prospectively by consensus of two radiologists who thoroughly evaluated the retrograde tracing of the gonadal veins to the ovary or pelvic mass. To assess the value of analyzing the ovarian vascular pedicle sign in identifying the organ of origin of a pelvic mass, we compared statistical proportions for the frequencies of the sign in ovarian tumors and subserosal uterine myomas by performing the chi-square test. The probabilities for the presence of the ovarian vascular pedicle sign as a positive finding for a pelvic mass of ovarian origin were calculated. The presence of the ovarian vascular pedicle sign was identified in 92% (99/108) of ovarian masses and in 13% (3/23) of subserosal uterine myomas. The sign was statistically significant (p < 0.01) for differentiating a mass of ovarian origin from a mass of subserosal uterine origin. When the ovarian vascular pedicle sign on helical CT confirmed the ovarian origin, the sensitivity, specificity, positive predictive value and negative predictive value, and diagnostic accuracy were 92% (99/108), 87% (20/23), 97% (99/102), 69% (20/29), and 91% (119/131), respectively. The presence of the ovarian vascular pedicle sign on helical CT is valuable for confirming the ovarian origin of a pelvic tumor and for differentiating an ovarian tumor from subserosal uterine myoma.

  17. Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure.

    PubMed

    Li, Yannian; Urbas, Augustine; Li, Quan

    2012-06-13

    Adding external, remote, and dynamic control to self-organized superstructures with desired properties is an important leap necessary in leveraging the fascinating molecular subsystems for employment in applications. Here two novel light-driven dithienylethene chiral molecular switches possessing remarkable changes in helical twisting power during photoisomerization as well as very high helical twisting powers were found to experience photochemically reversible isomerization with thermal stability in both isotropic organic solvents and anisotropic liquid crystal media. When doped into a commercially available achiral liquid crystal host, the chiral switch was able to either immediately induce an optically tunable helical superstructure or retain an achiral photoresponsive liquid crystal phase whose helical superstructure was induced and tuned reversibly upon light irradiation. Moreover, reversible light-directed red, green, and blue reflection colors with thermal stability in a single thin film were demonstrated.

  18. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  19. Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices.

    PubMed

    Mortazavi, Armin; Rajagopalan, Venkatesan; Sparks, Kelsey A; Greathouse, Denise V; Koeppe, Roger E

    2016-03-15

    Transmembrane helices of integral membrane proteins often are flanked by interfacial aromatic residues that can serve as anchors to aid the stabilization of a tilted transmembrane orientation. Yet, physical factors that govern the orientation or dynamic averaging of individual transmembrane helices are not well understood and have not been adequately explained. Using solid-state (2) H NMR spectroscopy to examine lipid bilayer-incorporated model peptides of the GWALP23 (acetyl-GGALW(LA)6 LWLAGA-amide) family, we observed substantial unwinding at the terminals of several tilted helices spanning the membranes of DLPC, DMPC, or DOPC lipid bilayers. The fraying of helix ends might be vital for defining the dynamics and orientations of transmembrane helices in lipid bilayer membranes.

  20. SmartArc-based volumetric modulated arc therapy for endometrial cancer: a dosimetric comparison with helical tomotherapy and intensity-modulated radiation therapy

    PubMed Central

    2013-01-01

    Background The purpose of the present study was to investigate the feasibility of using volumetric modulated arc therapy with SmartArc (VMAT-S) to achieve radiation delivery efficiency higher than that of intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT) when treating endometrial cancer, while maintaining plan quality. Methods Nine patients with endometrial cancer were retrospectively studied. Three plans per patient were generated for VMAT-S, IMRT and HT. The dose distributions for the planning target volume (PTV), organs at risk (OARs) and normal tissue were compared. The monitor units (MUs) and treatment delivery time were also evaluated. Results The average homogeneity index was 1.06, 1.10 and 1.07 for the VMAT-S, IMRT and HT plans, respectively. The V40 for the rectum, bladder and pelvis bone decreased by 9.0%, 3.0% and 3.0%, respectively, in the VMAT-S plan relative to the IMRT plan. The target coverage and sparing of OARs were comparable between the VMAT-S and HT plans. The average MU was 823, 1105 and 8403 for VMAT-S, IMRT and HT, respectively; the average delivery time was 2.6, 8.6 and 9.5 minutes, respectively. Conclusions For endometrial cancer, the VMAT-S plan provided comparable quality with significantly shorter delivery time and fewer MUs than with the IMRT and HT plans. In addition, more homogeneous PTV coverage and superior sparing of OARs in the medium to high dose region were observed in the VMAT-S relative to the IMRT plan. PMID:24175929

  1. Helical Tomotherapy Versus Single-Arc Intensity-Modulated Arc Therapy: A Collaborative Dosimetric Comparison Between Two Institutions

    SciTech Connect

    Rong Yi; Tang, Grace; Welsh, James S.; Mohiuddin, Majid M.; Paliwal, Bhudatt; Yu, Cedric X.

    2011-09-01

    Purpose: Both helical tomotherapy (HT) and single-arc intensity-modulated arc therapy (IMAT) deliver radiation using rotational beams with multileaf collimators. We report a dual-institution study comparing dosimetric aspects of these two modalities. Methods and Materials: Eight patients each were selected from the University of Maryland (UMM) and the University of Wisconsin Cancer Center Riverview (UWR), for a total of 16 cases. Four cancer sites including brain, head and neck (HN), lung, and prostate were selected. Single-arc IMAT plans were generated at UMM using Varian RapidArc (RA), and HT plans were generated at UWR using Hi-Art II TomoTherapy. All 16 cases were planned based on the identical anatomic contours, prescriptions, and planning objectives. All plans were swapped for analysis at the same time after final approval. Dose indices for targets and critical organs were compared based on dose-volume histograms, the beam-on time, monitor units, and estimated leakage dose. After the disclosure of comparison results, replanning was done for both techniques to minimize diversity in optimization focus from different operators. Results: For the 16 cases compared, the average beam-on time was 1.4 minutes for RA and 4.8 minutes for HT plans. HT provided better target dose homogeneity (7.6% for RA and 4.2% for HT) with a lower maximum dose (110% for RA and 105% for HT). Dose conformation numbers were comparable, with RA being superior to HT (0.67 vs. 0.60). The doses to normal tissues using these two techniques were comparable, with HT showing lower doses for more critical structures. After planning comparison results were exchanged, both techniques demonstrated improvements in dose distributions or treatment delivery times. Conclusions: Both techniques created highly conformal plans that met or exceeded the planning goals. The delivery time and total monitor units were lower in RA than in HT plans, whereas HT provided higher target dose uniformity.

  2. Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels.

    PubMed

    Acemoglu, Alperen; Yesilyurt, Serhat

    2014-04-01

    We present a computational fluid dynamics (CFD) model for the swimming of micro organisms with a single helical flagellum in circular channels. The CFD model is developed to obtain numerical solutions of Stokes equations in three dimensions, validated with experiments reported in literature, and used to analyze the effects of geometric parameters, such as the helical radius, wavelength, radii of the channel and the tail and the tail length on forward and lateral swimming velocities, rotation rates, and the efficiency of the swimmer. Optimal shapes for the speed and the power efficiency are reported. Effects of Brownian motion and electrostatic interactions are excluded to emphasize the role of hydrodynamic forces on lateral velocities and rotations on the trajectory of swimmers. For thin flagella, as the channel radius decreases, forward velocity and the power efficiency of the swimmer decreases as well; however, for thick flagella, there is an optimal radius of the channel that maximizes the velocity and the efficiency depending on other geometric parameters. Lateral motion of the swimmer is suppressed as the channel is constricted below a critical radius, for which the magnitude of the lateral velocity reaches a maximum. Results contribute significantly to the understanding of the swimming of bacteria in micro channels and capillary tubes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Conformation study of helical main-group polymers: Organic and inorganic, trans and gauche

    SciTech Connect

    Cui, C.X.; Kertesz, M. )

    1989-06-07

    In this paper electronic structures of some helical polymers, which range from typical organic polymers such as polyethylene and poly(oxymethylene) to standard inorganic polymers such as polymeric sulfur to main-group (P, B, etc.) atomic chains in crystals (such as NaP, CrB, etc.), have been investigated by means of our helical modifications of solid-state band theory programs based on modified neglect of diatomic overlap (MNDO) and extended Hueckel theory (EHT). The analysis of orbital interactions shows that the all-trans conformation for the polymer with either less or more than six valence electrons in the repeat unit is energetically favorable as compared with the gauche conformation while the polymers having valence electrons close to six in the repeat unit are more likely to be found in a gauche conformation, except for polyethylene and polysilane, for which both conformations are stable. The stability of all-trans-polyethylene and -polysilane is attributed to the weak repulsions between C-H and Si-H bonding electron pairs. A quadratic relationship between band width and the corresponding closed-shell repulsion for an energy band is established.

  4. Effects of Geometric Parameters on Swimming of Micro Organisms with Single Helical Flagellum in Circular Channels

    PubMed Central

    Acemoglu, Alperen; Yesilyurt, Serhat

    2014-01-01

    We present a computational fluid dynamics (CFD) model for the swimming of micro organisms with a single helical flagellum in circular channels. The CFD model is developed to obtain numerical solutions of Stokes equations in three dimensions, validated with experiments reported in literature, and used to analyze the effects of geometric parameters, such as the helical radius, wavelength, radii of the channel and the tail and the tail length on forward and lateral swimming velocities, rotation rates, and the efficiency of the swimmer. Optimal shapes for the speed and the power efficiency are reported. Effects of Brownian motion and electrostatic interactions are excluded to emphasize the role of hydrodynamic forces on lateral velocities and rotations on the trajectory of swimmers. For thin flagella, as the channel radius decreases, forward velocity and the power efficiency of the swimmer decreases as well; however, for thick flagella, there is an optimal radius of the channel that maximizes the velocity and the efficiency depending on other geometric parameters. Lateral motion of the swimmer is suppressed as the channel is constricted below a critical radius, for which the magnitude of the lateral velocity reaches a maximum. Results contribute significantly to the understanding of the swimming of bacteria in micro channels and capillary tubes. PMID:24703315

  5. Helical tomotherapy and volumetric modulated arc therapy: New therapeutic arms in the breast cancer radiotherapy

    PubMed Central

    Lauche, Olivier; Kirova, Youlia M; Fenoglietto, Pascal; Costa, Emilie; Lemanski, Claire; Bourgier, Celine; Riou, Olivier; Tiberi, David; Campana, Francois; Fourquet, Alain; Azria, David

    2016-01-01

    AIM To analyse clinical and dosimetric results of helical tomotherapy (HT) and volumetric modulated arc therapy (VMAT) in complex adjuvant breast and nodes irradiation. METHODS Seventy-three patients were included (31 HT and 42 VMAT). Dose were 63.8 Gy (HT) and 63.2 Gy (VMAT) in the tumour bed, 52.2 Gy in the breast, 50.4 Gy in supraclavicular nodes (SCN) and internal mammary chain (IMC) with HT and 52.2 Gy and 49.3 Gy in IMC and SCN with VMAT in 29 fractions. Margins to particle tracking velocimetry were greater in the VMAT cohort (7 mm vs 5 mm). RESULTS For the HT cohort, the coverage of clinical target volumes was as follows: Tumour bed: 99.4% ± 2.4%; breast: 98.4% ± 4.3%; SCN: 99.5% ± 1.2%; IMC: 96.5% ± 13.9%. For the VMAT cohort, the coverage was as follows: Tumour bed: 99.7% ± 0.5%, breast: 99.3% ± 0.7%; SCN: 99.6% ± 1.4%; IMC: 99.3% ± 3%. For ipsilateral lung, Dmean and V20 were 13.6 ± 1.2 Gy, 21.1% ± 5% (HT) and 13.6 ± 1.4 Gy, 20.1% ± 3.2% (VMAT). Dmean and V30 of the heart were 7.4 ± 1.4 Gy, 1% ± 1% (HT) and 10.3 ± 4.2 Gy, 2.5% ± 3.9% (VMAT). For controlateral breast Dmean was 3.6 ± 0.2 Gy (HT) and 4.6 ± 0.9 Gy (VMAT). Acute skin toxicity grade 3 was 5% in the two cohorts. CONCLUSION HT and VMAT in complex adjuvant breast irradiation allow a good coverage of target volumes with an acceptable acute tolerance. A longer follow-up is needed to assess the impact of low doses to healthy tissues. PMID:27648167

  6. Analysis of modulation factor to shorten the delivery time in helical tomotherapy.

    PubMed

    Shimizu, Hidetoshi; Sasaki, Koji; Tachibana, Hiroyuki; Tomita, Natsuo; Makita, Chiyoko; Nakashima, Kuniyasu; Yokoi, Kazushi; Kubota, Takashi; Yoshimoto, Manabu; Iwata, Tohru; Kodaira, Takeshi

    2017-05-01

    A low modulation factor (MF) maintaining a good dose distribution contributes to the shortening of the delivery time and efficiency of the treatment plan in helical tomotherapy. The purpose of this study was to reduce the delivery time using initial values and the upper limit values of MF. First, patients with head and neck cancer (293 cases) or prostate cancer (181 cases) treated between June 2011 and July 2015 were included in the analysis of MF values. The initial MF value (MFinitial ) was defined as the average MFactual value, and the upper limit of the MF value (MFUL ) was defined according the following equation: MFUL = 2 × standard deviation of MFactual value + the average MFactual Next, a treatment plan was designed for patients with head and neck cancer (62 cases) and prostate cancer (13 cases) treated between December 2015 and June 2016. The average MFactual value for the nasopharynx, oropharynx, hypopharynx, and prostate cases decreased from 2.1 to 1.9 (p = 0.0006), 1.9 to 1.6 (p < 0.0001), 2.0 to 1.7 (p < 0.0001), and 1.8 to 1.6 (p = 0.0004) by adapting the MFinitial and the MFUL values, respectively. The average delivery time for the nasopharynx, oropharynx, hypopharynx, and prostate cases also decreased from 19.9 s cm(-1) to 16.7 s cm(-1) (p < 0.0001), 15.0 s cm(-1) to 13.9 s cm(-1) (p = 0.025), 15.1 s cm(-1) to 13.8 s cm(-1) (p = 0.015), and 23.6 s cm(-1) to 16.9 s cm(-1) (p = 0.008) respectively. The delivery time was shortened by the adaptation of MFinitial and MFUL values with a reduction in the average MFactual for head and neck cancer and prostate cancer cases. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Single waveguide silicon-organic hybrid modulator

    NASA Astrophysics Data System (ADS)

    Hoppe, Niklas; Rothe, Christian; Celik, Arda; Félix Rosa, María; Vogel, Wolfgang; Widmann, Daniel; Rathgeber, Lotte; Ruiz Delgado, M. Carmen; Villacampa, Belén; Ludwigs, Sabine; Berroth, Manfred

    2017-09-01

    We present a novel silicon-organic hybrid modulator based on an integrated dual-mode interferometer. The modulator offers a compact, simplified design and enhanced robustness to on-chip fluctuations of temperature compared to conventional Mach-Zehnder based systems. A prototype modulator showing a voltage dependent transmission spectrum is obtained by cladding a dual-mode waveguide in a 250 nm silicon-on-insulator technology with a customized organic electro-optic layer. Estimated phase shifts and corresponding figures of merit are discussed in this contribution. The used organic layer is based on the guest-host approach with customized donor-π-acceptor chromophore embedded and poled in a poly(methylmethacrylate) matrix. The presented prototype is to the best of the authors' knowledge the first integrated single waveguide silicon-organic hybrid modulator.

  8. Overview of the Structure of All-AT Oligonucleotides: Organization in Helices and Packing Interactions

    PubMed Central

    Campos, Lourdes; Valls, Núria; Urpí, Lourdes; Gouyette, Catherine; Sanmartín, Trinidad; Richter, Michael; Alechaga, Elida; Santaolalla, Alicia; Baldini, Roberto; Creixell, Marc; Ciurans, Ruth; Skokan, Petr; Pous, Joan; Subirana, Juan A.

    2006-01-01

    We present the crystalline organization of 33 all-AT deoxyoligonucleotide duplexes, studied by x-ray diffraction. Most of them have very similar structures, with Watson-Crick basepairs and a standard average twist close to 36°. The molecules are organized as parallel columns of stacked duplexes in a helical arrangement. Such organization of duplexes is very regular and repetitive: all sequences show the same pattern. It is mainly determined by the stacking of the terminal basepairs, so that the twist in the virtual TA base step between neighbor duplexes is always negative, ∼−22°. The distance between the axes of parallel columns is practically identical in all cases, ∼26 Å. Interestingly, it coincides with that found in DNA viruses and fibers in their hexagonal phase. It appears to be a characteristic distance for ordered parallel DNA molecules. This feature is due to the absence of short range intermolecular forces, which are usually due to the presence of CG basepairs at the end of the oligonucleotide sequence. The duplexes apparently interact only through their diffuse ionic atmospheres. The results obtained can thus be considered as intermediate between liquid crystals, fibers, and standard crystal structures. They provide new information on medium range DNA-DNA interactions. PMID:16698788

  9. Flux-free conductance modulation in a helical Aharonov--Bohm interferometer.

    PubMed

    Taira, Hisao; Shima, Hiroyuki

    2010-06-23

    A novel conductance oscillation in a twisted quantum ring composed of a helical atomic configuration is theoretically predicted. The internal torsion of the ring is found to cause a quantum phase shift in the wavefunction that describes the electron's motion along the ring. The resulting conductance oscillation is free from magnetic flux penetrating inside the ring, which is in complete contrast with the case for the ordinary Aharonov-Bohm effect observed in untwisted quantum rings.

  10. Assessing the Role of Volumetric Modulated Arc Therapy (VMAT) Relative to IMRT and Helical Tomotherapy in the Management of Localized, Locally Advanced, and Post-Operative Prostate Cancer

    SciTech Connect

    Davidson, Melanie T.M.; Blake, Samuel J.; Batchelar, Deidre L.; Cheung, Patrick; Mah, Katherine

    2011-08-01

    Purpose: To quantify differences in treatment delivery efficiency and dosimetry between step-and-shoot intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), and helical tomotherapy (HT) for prostate treatment. Methods and Materials: Twenty-five prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated for: prostate alone (n = 5), prostate + seminal vesicles (n = 5), prostate + seminal vesicles + pelvic lymph nodes (n = 5), prostate bed (n = 5), and prostate bed + pelvic lymph nodes (n = 5). Target coverage, dose homogeneity, integral dose, monitor units (MU), and sparing of organs at risk (OAR) were compared across techniques. Time required to deliver each plan was measured. Results: The dosimetric quality of IMRT, VMAT, and HT plans were comparable for target coverage (planning target volume V95%, clinical target volume V100% all >98.7%) and sparing of organs at risk (OAR) for all treatment groups. Although HT resulted in a slightly higher integral dose and mean doses to the OAR, it yielded a lower maximum dose to all OAR examined. VMAT resulted in reductions in treatment times over IMRT (mean = 75%) and HT (mean = 70%). VMAT required 15-38% fewer monitor units than IMRT over all treatment volumes, with the reduction per fraction ranging from 100-423 MU from the smallest to largest volumes. Conclusions: VMAT improves efficiency of delivery for equivalent dosimetric quality as IMRT and HT across various prostate cancer treatment volumes in the intact and postoperative settings.

  11. Treatment of nasopharyngeal carcinoma using simultaneous modulated accelerated radiation therapy via helical tomotherapy: a phase II study

    PubMed Central

    Du, Lei; Zhang, Xin Xin; Feng, Lin Chun; Chen, Jing; Yang, Jun; Liu, Hai Xia; Xu, Shou Ping; Xie, Chuan Bin

    2016-01-01

    Abstract Background The aim of the study was to evaluate short-term safety and efficacy of simultaneous modulated accelerated radiation therapy (SMART) delivered via helical tomotherapy in patients with nasopharyngeal carcinoma (NPC). Methods Between August 2011 and September 2013, 132 newly diagnosed NPC patients were enrolled for a prospective phase II study. The prescription doses delivered to the gross tumor volume (pGTVnx) and positive lymph nodes (pGTVnd), the high risk planning target volume (PTV1), and the low risk planning target volume (PTV2), were 67.5 Gy (2.25 Gy/F), 60 Gy (2.0 Gy/F), and 54 Gy (1.8 Gy/F), in 30 fractions, respectively. Acute toxicities were evaluated according to the established RTOG/EORTC criteria. This group of patients was compared with the 190 patients in the retrospective P70 study, who were treated between September 2004 and August 2009 with helical tomotherapy, with a dose of 70-74 Gy/33F/6.5W delivered to pGTVnx and pGTVnd. Results The median follow-up was 23.7 (12–38) months. Acute radiation related side-effects were mainly problems graded as 1 or 2. Only a small number of patients suffered from grade 4 leucopenia (4.5%) or thrombocytopenia (2.3%). The local relapse-free survival (LRFS), nodal relapse-free survival (NRFS), local-nodal relapse-free survival (LNRFS), distant metastasis-free survival (DMFS) and overall survival (OS) were 96.7%, 95.5%, 92.2%, 92.7% and 93.2%, at 2 years, respectively, with no significant difference compared with the P70 study. Conclusions Smart delivered via the helical tomotherapy technique appears to be associated with an acceptable acute toxicity profile and favorable short-term outcomes for patients with NPC. Long-term toxicities and patient outcomes are under investigation. PMID:27247555

  12. Recognition of the Helical Structure of β-1,4-Galactan by a New Family of Carbohydrate-binding Modules*

    PubMed Central

    Cid, Melissa; Pedersen, Henriette Lodberg; Kaneko, Satoshi; Coutinho, Pedro M.; Henrissat, Bernard; Willats, William G. T.; Boraston, Alisdair B.

    2010-01-01

    The microbial enzymes that depolymerize plant cell wall polysaccharides, ultimately promoting energy liberation and carbon recycling, are typically complex in their modularity and often contain carbohydrate-binding modules (CBMs). Here, through analysis of an unknown module from a Thermotoga maritima endo-β-1,4-galactanase, we identify a new family of CBMs that are most frequently found appended to proteins with β-1,4-galactanase activity. Polysaccharide microarray screening, immunofluorescence microscopy, and biochemical analysis of the isolated module demonstrate the specificity of the module, here called TmCBM61, for β-1,4-linked galactose-containing ligands, making it the founding member of family CBM61. The ultra-high resolution x-ray crystal structures of TmCBM61 (0.95 and 1.4 Å resolution) in complex with β-1,4-galactotriose reveal the molecular basis of the specificity of the CBM for β-1,4-galactan. Analysis of these structures provides insight into the recognition of an unexpected helical galactan conformation through a mode of binding that resembles the recognition of starch. PMID:20826814

  13. Phase I dose-escalation study of helical intensity-modulated radiotherapy-based stereotactic body radiotherapy for hepatocellular carcinoma

    PubMed Central

    Kim, Jun Won; Seong, Jinsil; Lee, Ik Jae; Woo, Joong Yeol; Han, Kwang-Hyub

    2016-01-01

    Background Phase I trial was conducted to determine feasibility and toxicity of helical intensity-modulated radiotherapy (IMRT)-based stereotactic body radiotherapy (SBRT) for hepatocellular carcinoma (HCC). Results Eighteen patients (22 lesions) were enrolled. With no DLT at 52 Gy (13 Gy/fraction), protocol was amended for further escalation to 60 Gy (15 Gy/fraction). Radiologic complete response rate was 88.9%. Two outfield intrahepatic, 2 distant, 4 concurrent local and outfield, and 1 concurrent local, outfield and distant failures (no local failure at dose levels 3–4) occurred. The worst toxicity was grade 3 hematologic in five patients, with no gastrointestinal toxicity > grade 1. At median follow-up of 28 months for living patients, 2-year local control, progression-free (PFS), and overall survival rates were 71.3%, 49.4% and 69.3%, respectively. Multi-segmental recurrences prior to SBRT was independent prognostic factor for PFS (p = 0.033). Materials and Methods Eligible patients had Child-Pugh's class A or B, unresectable HCC, ≤ 3 lesions, and cumulative tumor diameter ≤ 6 cm. Starting at 36 Gy in four fractions, dose was escalated with 2 Gy/fraction per dose-level. CTCAE v 3.0 ≥ grade 3 gastrointestinal toxicity and radiation induced liver disease defined dose-limiting toxicity (DLT). Conclusions Helical IMRT-based SBRT was tolerable and showed encouraging results. Confirmatory phase II trial is underway. PMID:27213593

  14. Organ and effective doses in newborn patients during helical multislice computed tomography examination

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.; Lee, Choonik; Lee, Choonsik; Williams, Matt D.; Hintenlang, David E.; Arreola, Manuel M.; Williams, Jonathon L.; Bolch, Wesley E.

    2006-10-01

    In this study, two computational phantoms of the newborn patient were used to assess individual organ doses and effective doses delivered during head, chest, abdomen, pelvis, and torso examinations using the Siemens SOMATOM Sensation 16 helical multi-slice computed tomography (MSCT) scanner. The stylized phantom used to model the patient anatomy was the revised ORNL newborn phantom by Han et al (2006 Health Phys.90 337). The tomographic phantom used in the study was that developed by Nipper et al (2002 Phys. Med. Biol. 47 3143) as recently revised by Staton et al (2006 Med. Phys. 33 3283). The stylized model was implemented within the MCNP5 radiation transport code, while the tomographic phantom was incorporated within the EGSnrc code. In both codes, the x-ray source was modelled as a fan beam originating from the focal spot at a fan angle of 52° and a focal-spot-to-axis distance of 57 cm. The helical path of the source was explicitly modelled based on variations in collimator setting (12 mm or 24 mm), detector pitch and scan length. Tube potentials of 80, 100 and 120 kVp were considered in this study. Beam profile data were acquired using radiological film measurements on a 16 cm PMMA phantom, which yielded effective beam widths of 14.7 mm and 26.8 mm for collimator settings of 12 mm and 24 mm, respectively. Values of absolute organ absorbed dose were determined via the use of normalization factors defined as the ratio of the CTDI100 measured in-phantom and that determined by Monte Carlo simulation of the PMMA phantom and ion chamber. Across various technique factors, effective dose differences between the stylized and tomographic phantoms ranged from +2% to +9% for head exams, -4% to -2% for chest exams, +8% to +24% for abdominal exams, -16% to -12% for pelvic exams and -7% to 0% for chest-abdomen-pelvis (CAP) exams. In many cases, however, relatively close agreement in effective dose was accomplished at the expense of compensating errors in individual organ

  15. Organization of transmembrane helices in photosystem II: comparison of plants and cyanobacteria.

    PubMed Central

    Barber, J; Nield, J

    2002-01-01

    Electron microscopy and X-ray crystallography are revealing the structure of photosystem II. Electron crystallography has yielded a 3D structure at sufficient resolution to identify subunit positioning and transmembrane organization of the reaction-centre core complex of spinach. Single-particle analyses are providing 3D structures of photosystem II-light-harvesting complex II supercomplexes that can be used to incorporate high-resolution structural data emerging from electron and X-ray crystallography. The positions of the chlorins and metal centres within photosystem II are now available. It can be concluded that photosystem II is a dimeric complex with the transmembrane helices of CP47/D2 proteins related to those of the CP43/D1 proteins by a twofold axis within each monomer. Further, both electron microscopy and X-ray analyses show that P(680) is not a 'special pair' and that cytochrome b559 is located on the D2 side of the reaction centres some distance from P(680). However, although comparison of the electron microscopy and X-ray models for spinach and Synechococcus elongatus show considerable similarities, there seem to be differences in the number and positioning of some small subunits. PMID:12437871

  16. Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination

    SciTech Connect

    Lee, Choonik; Lee, Choonsik; Staton, Robert J.; Hintenlang, David E.; Arreola, Manuel M.; Williams, Jonathon L.; Bolch, Wesley E.

    2007-05-15

    As multidetector computed tomography (CT) serves as an increasingly frequent diagnostic modality, radiation risks to patients became a greater concern, especially for children due to their inherently higher radiosensitivity to stochastic radiation damage. Current dose evaluation protocols include the computed tomography dose index (CTDI) or point detector measurements using anthropomorphic phantoms that do not sufficiently provide accurate information of the organ-averaged absorbed dose and corresponding effective dose to pediatric patients. In this study, organ and effective doses to pediatric patients under helical multislice computed tomography (MSCT) examinations were evaluated using an extensive series of anthropomorphic computational phantoms and Monte Carlo radiation transport simulations. Ten pediatric phantoms, five stylized (equation-based) ORNL phantoms (newborn, 1-year, 5-year, 10-year, and 15-year) and five tomographic (voxel-based) UF phantoms (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) were implemented into MCNPX for simulation, where a source subroutine was written to explicitly simulate the helical motion of the CT x-ray source and the fan beam angle and collimator width. Ionization chamber measurements were performed and used to normalize the Monte Carlo simulation results. On average, for the same tube current setting, a tube potential of 100 kVp resulted in effective doses that were 105% higher than seen at 80 kVp, and 210% higher at 120 kVp regardless of phantom type. Overall, the ORNL phantom series was shown to yield values of effective dose that were reasonably consistent with those of the gender-specific UF phantom series for CT examinations of the head, pelvis, and torso. However, the ORNL phantoms consistently overestimated values of the effective dose as seen in the UF phantom for MSCT scans of the chest, and underestimated values of the effective dose for abdominal CT scans. These discrepancies increased

  17. SU-E-T-371: Validation of Organ Doses Delivered During Craniospinal Irradiation with Helical Tomotherapy

    SciTech Connect

    Perez-Andujar, A; Chen, J; Garcia, A; Haas-Kogan, D

    2014-06-01

    Purpose: New techniques have been developed to deliver more conformal treatments to the craniospinal axis. One concern, however, is the widespread low dose delivered and implications for possible late effects. The purpose of this work is for the first time to validate the organ doses calculated by the treatment planning system (TPS), including out-of-field doses for a pediatric craniospinal treatment (CSI). Methods: A CSI plan prescribed to 23.4 Gy and a posterior fossa boost plan to 30.6 Gy (total dose 54.0 Gy) was developed for a pediatric anthropomorphic phantom representing a 13 yearold- child. For the CSI plan, the planning target volumes (PTV) consisted of the brain and spinal cord with 2 mm and 5 mm expansions, respectively. Organs at risk (OAR) were contoured and included in the plan optimization. The plans were delivered on a helical tomotherapy unit. Thermoluminescent dosimeters (TLDs) were used to measure the dose at 54 positions within the PTV and OARs. Results: For the CSI treatment, the mean percent difference between TPS dose calculations and measurements was 5% for the PTV and 10% for the OARs. For the boost, the average was 3% for the PTV. The percent difference for the OARs, which lie outside the field and received a small fraction of the prescription dose, varied from 15% to 200%. However in terms of absolute dose, the average difference between measurement and TPS per treatment Gy was 2 cGy/Gy and 3 mGy/Gy for the CSI and boost plans, respectively. Conclusion: There was good agreement between doses calculated by the TPS and measurements for the CSI treatment. Higher percent differences were observed for out-of-field doses in the boost plan, but absolute dose differences were very small compared to the prescription dose. These findings can help in the estimation of late effects after radiotherapy for pediatric patients.

  18. Guest-, Light- and Thermally-Modulated Spin Crossover in [Fe(II) 2 ] Supramolecular Helicates.

    PubMed

    Darawsheh, Mohanad; Barrios, Leoni A; Roubeau, Olivier; Teat, Simon J; Aromí, Guillem

    2016-06-13

    A new bis(pyrazolylpyridine) ligand (H2 L) has been prepared to form functional [Fe2 (H2 L)3 ](4+) metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2 (H2 L)3 ]X(PF6 )2 ⋅xCH3 OH (1, x=5.7 and X=Cl; 2, x=4 and X=Br), X@[Fe2 (H2 L)3 ]X(PF6 )2 ⋅yCH3 OH⋅H2 O (1 a, y=3 and X=Cl; 2 a, y=1 and X=Br) and X@[Fe2 (H2 L)3 ](I3 )2 ⋅3 Et2 O (1 b, X=Cl; 2 b, X=Br). Their structure and functional properties are described in detail by single-crystal X-ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2, respectively, by a single-crystal-to-single-crystal mechanism. The three possible magnetic states, [LS-LS], [LS-HS], and [HS-HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the Fe(II) centers. The nature of the guest (Cl(-) vs. Br(-) ) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS-HS] or [HS-HS] states are generated through irradiation. All helicates (X@[Fe2 (H2 L)3 ])(3+) persist in solution.

  19. Re-irradiation of recurrent head and neck carcinomas: comparison of robust intensity modulated proton therapy treatment plans with helical tomotherapy

    PubMed Central

    2013-01-01

    Background To test the hypothesis that the therapeutic ratio of intensity-modulated photon therapy using helical tomotherapy (HT) for retreatment of head and neck carcinomas can be improved by robust intensity-modulated proton therapy (IMPT). Methods Comparative dose planning with robust IMPT was performed for 7 patients retreated with HT. Results On average, HT yielded dose gradients steeper in a distance ≤ 7.5 mm outside the target (p<0.0001, F-test) and more conformal high dose regions down to the 50% isodose than IMPT. Both methods proved comparably robust against set-up errors of up to 2 mm, and normal tissue exposure was satisfactory. The mean body dose was smaller with IMPT. Conclusions IMPT was found not to be uniformly superior to HT and the steeper average dose fall-off around the target volume is an argument pro HT under the methodological implementations used. However, looking at single organs at risk, the normal tissue sparing of IMPT can surpass tomotherapy for an individual patient. Therefore, comparative dose planning is recommended, if both methods are available. PMID:23601204

  20. Optically active microspheres constructed by helical substituted polyacetylene and used for adsorption of organic compounds in aqueous systems.

    PubMed

    Liang, Junya; Song, Ci; Deng, Jianping

    2014-11-12

    This article reports optically active microspheres consisting of chiral helical substituted polyacetylene and β-cyclodextrin-derivative (β-CD-A). The microspheres showed remarkable adsorption toward various organic compounds in water. To prepare the microspheres, an acetylenic-derived helical macro-monomer was synthesized and then underwent aqueous suspension copolymerization with octadecyl acrylate and butyl acrylate by using azobis(isobutyronitrile) as initiator and β-CD-A simultaneously as comonomer and cross-linking agent. The helical macro-monomer chains enabled the microspheres to exhibit desirable enantio-differentiating adsorption capacity toward chiral compounds respectively dissolved in organic solvent, dispersed in water, and dissolved in water. The saturated absorbency toward (R)-(+)- and (S)-(-)-1-phenylethylamine was 29 and 12 mg · g(-1), respectively. The microspheres also showed large oil absorbency (e.g., 22 g · g(-1) CCl4) and a large adsorption toward methyl red (as a model for organic dyes) dispersed in water. The presence of β-CD-A moieties improved the adsorption performance of the microspheres. The present optically active microspheres open a new approach for preparing adsorbents particularly chiral adsorbents with potentials for wastewater treatment.

  1. Membrane environment modulates the pKa values of transmembrane helices.

    PubMed

    Panahi, Afra; Brooks, Charles L

    2015-04-02

    In this work, we apply the recently developed constant pH molecular dynamics technique to study protonation equilibria of titratable side chains in the context of simple transmembrane (TM) helices and explore the effect of pH on their configurations in membrane bilayers. We observe that, despite a significant shift toward neutral states, considerable population of different side chains stay in the charged state that give rise to pKa values around 9.6 for Asp and Glu and 4.5 to 6 for His and Lys side chains, respectively. These charged states are highly stabilized by favorable interactions between head groups, water molecules, and the charged side chains that are facilitated by substantial changes in the configuration of the peptides. The pH dependent configurations and the measured pKa values are in good agreement with relatively recent solid state NMR measurements. Our results presented here demonstrate that all-atom constant pH molecular dynamics can be applied to membrane proteins and peptides to obtain reliable pKa values and pH dependent behavior for these systems.

  2. Membrane Environment Modulates the pKa Values of Transmembrane Helices

    PubMed Central

    2015-01-01

    In this work, we apply the recently developed constant pH molecular dynamics technique to study protonation equilibria of titratable side chains in the context of simple transmembrane (TM) helices and explore the effect of pH on their configurations in membrane bilayers. We observe that, despite a significant shift toward neutral states, considerable population of different side chains stay in the charged state that give rise to pKa values around 9.6 for Asp and Glu and 4.5 to 6 for His and Lys side chains, respectively. These charged states are highly stabilized by favorable interactions between head groups, water molecules, and the charged side chains that are facilitated by substantial changes in the configuration of the peptides. The pH dependent configurations and the measured pKa values are in good agreement with relatively recent solid state NMR measurements. Our results presented here demonstrate that all-atom constant pH molecular dynamics can be applied to membrane proteins and peptides to obtain reliable pKa values and pH dependent behavior for these systems. PMID:25734901

  3. Radiobiologic comparison of helical tomotherapy, intensity modulated radiotherapy, and conformal radiotherapy in treating lung cancer accounting for secondary malignancy risks

    SciTech Connect

    Komisopoulos, Georgios; Mavroidis, Panayiotis; Rodriguez, Salvador; Stathakis, Sotirios; Papanikolaou, Nikos; Nikiforidis, Georgios C.; Sakellaropoulos, Georgios C.

    2014-01-01

    The aim of the present study is to examine the importance of using measures to predict the risk of inducing secondary malignancies in association with the clinical effectiveness of treatment plans in terms of tumor control and normal tissue complication probabilities. This is achieved by using radiobiologic parameters and measures, which may provide a closer association between clinical outcome and treatment delivery. Overall, 4 patients having been treated for lung cancer were examined. For each of them, 3 treatment plans were developed based on the helical tomotherapy (HT), multileaf collimator-based intensity modulated radiation therapy (IMRT), and 3-dimensional conformal radiation therapy (CRT) modalities. The different plans were evaluated using the complication-free tumor control probability (p{sub +}), the overall probability of injury (p{sub I}), the overall probability of control/benefit (p{sub B}), and the biologically effective uniform dose (D{sup ¯¯}). These radiobiologic measures were used to develop dose-response curves (p-D{sup ¯¯} diagram), which can help to evaluate different treatment plans when used in conjunction with standard dosimetric criteria. The risks for secondary malignancies in the heart and the contralateral lung were calculated for the 3 radiation modalities based on the corresponding dose-volume histograms (DVHs) of each patient. Regarding the overall evaluation of the different radiation modalities based on the p{sub +} index, the average values of the HT, IMRT, and CRT are 67.3%, 61.2%, and 68.2%, respectively. The corresponding average values of p{sub B} are 75.6%, 70.5%, and 71.0%, respectively, whereas the average values of p{sub I} are 8.3%, 9.3%, and 2.8%, respectively. Among the organs at risk (OARs), lungs show the highest probabilities for complications, which are 7.1%, 8.0%, and 1.3% for the HT, IMRT, and CRT modalities, respectively. Similarly, the biologically effective prescription doses (D{sub B}{sup ¯¯}) for the

  4. Radiobiologic comparison of helical tomotherapy, intensity modulated radiotherapy, and conformal radiotherapy in treating lung cancer accounting for secondary malignancy risks.

    PubMed

    Komisopoulos, Georgios; Mavroidis, Panayiotis; Rodriguez, Salvador; Stathakis, Sotirios; Papanikolaou, Nikos; Nikiforidis, Georgios C; Sakellaropoulos, Georgios C

    2014-01-01

    The aim of the present study is to examine the importance of using measures to predict the risk of inducing secondary malignancies in association with the clinical effectiveness of treatment plans in terms of tumor control and normal tissue complication probabilities. This is achieved by using radiobiologic parameters and measures, which may provide a closer association between clinical outcome and treatment delivery. Overall, 4 patients having been treated for lung cancer were examined. For each of them, 3 treatment plans were developed based on the helical tomotherapy (HT), multileaf collimator-based intensity modulated radiation therapy (IMRT), and 3-dimensional conformal radiation therapy (CRT) modalities. The different plans were evaluated using the complication-free tumor control probability (p+), the overall probability of injury (pI), the overall probability of control/benefit (pB), and the biologically effective uniform dose (D¯¯). These radiobiologic measures were used to develop dose-response curves (p-D¯¯ diagram), which can help to evaluate different treatment plans when used in conjunction with standard dosimetric criteria. The risks for secondary malignancies in the heart and the contralateral lung were calculated for the 3 radiation modalities based on the corresponding dose-volume histograms (DVHs) of each patient. Regarding the overall evaluation of the different radiation modalities based on the p+ index, the average values of the HT, IMRT, and CRT are 67.3%, 61.2%, and 68.2%, respectively. The corresponding average values of pB are 75.6%, 70.5%, and 71.0%, respectively, whereas the average values of pI are 8.3%, 9.3%, and 2.8%, respectively. Among the organs at risk (OARs), lungs show the highest probabilities for complications, which are 7.1%, 8.0%, and 1.3% for the HT, IMRT, and CRT modalities, respectively. Similarly, the biologically effective prescription doses (DB¯¯) for the HT, IMRT, and CRT modalities are 64.0, 60.9, and 60.8Gy

  5. De novo designed library of linear helical peptides: an exploratory tool in the discovery of protein-protein interaction modulators.

    PubMed

    Bonache, M Ángeles; Balsera, Beatriz; López-Méndez, Blanca; Millet, Oscar; Brancaccio, Diego; Gómez-Monterrey, Isabel; Carotenuto, Alfonso; Pavone, Luigi M; Reille-Seroussi, Marie; Gagey-Eilstein, Nathalie; Vidal, Michel; de la Torre-Martinez, Roberto; Fernández-Carvajal, Asia; Ferrer-Montiel, Antonio; García-López, M Teresa; Martín-Martínez, Mercedes; de Vega, M Jesús Pérez; González-Muñiz, Rosario

    2014-05-12

    Protein-protein interactions (PPIs) have emerged as important targets for pharmaceutical intervention because of their essential role in numerous physiological and pathological processes, but screening efforts using small-molecules have led to very low hit rates. Linear peptides could represent a quick and effective approach to discover initial PPI hits, particularly if they have inherent ability to adopt specific peptide secondary structures. Here, we address this hypothesis through a linear helical peptide library, composed of four sublibraries, which was designed by theoretical predictions of helicity (Agadir software). The 13-mer peptides of this collection fixes either a combination of three aromatic or two aromatic and one aliphatic residues on one face of the helix (Ac-SSEEX(5)ARNX(9)AAX(12)N-NH2), since these are structural features quite common at PPIs interfaces. The 81 designed peptides were conveniently synthesized by parallel solid-phase methodologies, and the tendency of some representative library components to adopt the intended secondary structure was corroborated through CD and NMR experiments. As proof of concept in the search for PPI modulators, the usefulness of this library was verified on the widely studied p53-MDM2 interaction and on the communication between VEGF and its receptor Flt-1, two PPIs for which a hydrophobic α-helix is essential for the interaction. We have demonstrated here that, in both cases, selected peptides from the library, containing the right hydrophobic sequence of the hot-spot in one of the protein partners, are able to interact with the complementary protein. Moreover, we have discover some new, quite potent inhibitors of the VEGF-Flt-1 interaction, just by replacing one of the aromatic residues of the initial F(5)Y(9)Y(12) peptide by W, in agreement with previous results on related antiangiogenic peptides. Finally, the HTS evaluation of the full collection on thermoTRPs has led to a few antagonists of TRPV1 and TRPA

  6. Utilizing Electron Spin Echo Envelope Modulation To Distinguish between the Local Secondary Structures of an α-Helix and an Amphipathic 310-Helical Peptide.

    PubMed

    Bottorf, Lauren; Rafferty, Sophia; Sahu, Indra D; McCarrick, Robert M; Lorigan, Gary A

    2017-04-13

    Electron spin echo envelope modulation (ESEEM) spectroscopy was used to distinguish between the local secondary structures of an α-helix and a 310-helix. Previously, we have shown that ESEEM spectroscopy in combination with site-directed spin labeling (SDSL) and (2)H-labeled amino acids (i) can probe the local secondary structure of α-helices, resulting in an obvious deuterium modulation pattern, where i+4 positions generally show larger (2)H ESEEM peak intensities than i+3 positions. Here, we have hypothesized that due to the unique turn periodicities of an α-helix (3.6 residues per turn with a pitch of 5.4 Å) and a 310-helix (3.1 residues per turn with a pitch of 5.8-6.0 Å), the opposite deuterium modulation pattern would be observed for a 310-helix. In this study, (2)H-labeled d10-leucine (Leu) was substituted at a specific Leu residue (i) and a nitroxide spin label was positioned 2, 3, and 4 residues away (denoted i+2 to i+4) on an amphipathic model peptide, LRL8. When LRL8 is solubilized in trifluoroethanol (TFE), the peptide adopts an α-helical structure, and alternatively, forms a 310-helical secondary structure when incorporated into liposomes. Larger (2)H ESEEM peaks in the FT frequency domain data were observed for the i+4 samples when compared to the i+3 samples for the α-helix whereas the opposite pattern was revealed for the 310-helix. These unique patterns provide pertinent local secondary structural information to distinguish between the α-helical and 310-helical structural motifs for the first time using this ESEEM spectroscopic approach with short data acquisition times (∼30 min) and small sample concentrations (∼100 μM) as well as providing more site-specific secondary structural information compared to other common biophysical approaches, such as CD.

  7. Long-range interactions in α-helical proteins with interspine coupling: Modulational instability and exact soliton solutions

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Ben-Bolie, Germain Hubert; Crépin Kofané, Timoléon

    2013-10-01

    The dynamics of α-helical proteins with interspine coupling by taking into account long-range dipole-dipole interactions and some additional higher order molecular excitations is studied. The model Hamiltonian is transformed into a set of three classical lattice equations, which are further reduced in the multiple scales analysis to a set of three coupled nonlinear Schrödinger (3-CNLS) equations. The linear stability analysis of continuous wave solutions of these 3-CNLS equations is performed and it reveals that the modulational instability (MI) gain is deeply influenced by the long-range interactions (LRI) parameter. Some classes of exact traveling wave solutions are constructed via the solutions of a φ 4 model through the F-expansion method and representative wave structures are graphically displayed including localized and periodic solutions. In order to confirm the analytical approach, the numerical experiments show that the solitons are stable at 70 ps. These solitons, exhibited in the model, are a possible carrier of bio-energy transport in the protein molecules.

  8. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression.

    PubMed

    Scott, M G; Rosenberger, C M; Gold, M R; Finlay, B B; Hancock, R E

    2000-09-15

    Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic alpha-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.

  9. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices.

    PubMed

    Zanuy, David; Gunasekaran, Kannan; Lesk, Arthur M; Nussinov, Ruth

    2006-04-21

    The formation of fibril aggregates by long polyglutamine sequences is assumed to play a major role in neurodegenerative diseases such as Huntington. Here, we model peptides rich in glutamine, through a series of molecular dynamics simulations. Starting from a rigid nanotube-like conformation, we have obtained a new conformational template that shares structural features of a tubular helix and of a beta-helix conformational organization. Our new model can be described as a super-helical arrangement of flat beta-sheet segments linked by planar turns or bends. Interestingly, our comprehensive analysis of the Protein Data Bank reveals that this is a common motif in beta-helices (termed beta-bend), although it has not been identified so far. The motif is based on the alternation of beta-sheet and helical conformation as the protein sequence is followed from the N to the C termini (beta-alpha(R)-beta-polyPro-beta). We further identify this motif in the ssNMR structure of the protofibril of the amyloidogenic peptide Abeta(1-40). The recurrence of the beta-bend suggests a general mode of connecting long parallel beta-sheet segments that would allow the growth of partially ordered fibril structures. The design allows the peptide backbone to change direction with a minimal loss of main chain hydrogen bonds. The identification of a coherent organization beyond that of the beta-sheet segments in different folds rich in parallel beta-sheets suggests a higher degree of ordered structure in protein fibrils, in agreement with their low solubility and dense molecular packing.

  10. Helicity scalings

    NASA Astrophysics Data System (ADS)

    Plunian, F.; Lessinnes, T.; Carati, D.; Stepanov, R.

    2011-12-01

    Using a helical shell model of turbulence, Chen et al. (2003) showed that both helicity and energy dissipate at the Kolmogorov scale, independently from any helicity input. This is in contradiction with a previous paper by Ditlevsen & Giuliani (2001) in which, using a GOY shell model of turbulence, they found that helicity dissipates at a scale larger than the Kolmogorov scale, and does depend on the helicity input. In a recent paper by Lessinnes et al. (2011), we showed that this discrepancy is due to the fact that in the GOY shell model only one helical mode (+ or -) is present at each scale instead of both modes in the helical shell model. Then, using the GOY model, the near cancellation of the helicity flux between the + and - modes cannot occur at small scales, as it should be in true turbulence. We review the main results with a focus on the numerical procedure needed to obtain accurate statistics.

  11. Emerging double helical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-07-01

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on `bottom-up' and `top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  12. Emerging double helical nanostructures.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-08-21

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on 'bottom-up' and 'top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  13. Superiority of helical tomotherapy on liver sparing and dose escalation in hepatocellular carcinoma: a comparison study of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy

    PubMed Central

    Zhao, Qianqian; Wang, Renben; Zhu, Jian; Jin, Linzhi; Zhu, Kunli; Xu, Xiaoqing; Feng, Rui; Jiang, Shumei; Qi, Zhonghua; Yin, Yong

    2016-01-01

    Background and purpose To compare the difference of liver sparing and dose escalation between three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), and helical tomotherapy (HT) for hepatocellular carcinoma. Patients and methods Sixteen unresectable HCC patients were enrolled in this study. First, some evaluation factors of 3DCRT, IMRT, and HT plans were calculated with prescription dose at 50 Gy/25 fractions. Then, the doses were increased using HT or IMRT independently until either the plans reached 70 Gy or any normal tissue reached the dose limit according to quantitative analysis of normal tissue effects in the clinic criteria. Results The conformal index of 3DCRT was lower than that of IMRT (P<0.001) or HT (P<0.001), and the homogeneity index of 3DCRT was higher than that of IMRT (P<0.001) or HT (P<0.001). HT took the longest treatment time (P<0.001). For V50% (fraction of normal liver treated to at least 50% of the isocenter dose) of the normal liver, there was a significant difference: 3DCRT > IMRT > HT (P<0.001). HT had a lower Dmean (mean dose) and V20 (Vn, the percentage of organ volume receiving ≥n Gy) of liver compared with 3DCRT (P=0.005 and P=0.005, respectively) or IMRT (P=0.508 and P=0.007, respectively). Dmean of nontarget normal liver and V30 of liver were higher for 3DCRT than IMRT (P=0.005 and P=0.005, respectively) or HT (P=0.005 and P=0.005, respectively). Seven patients in IMRT (43.75%) and nine patients in HT (56.25%) reached the isodose 70 Gy, meeting the dose limit of the organs at risk. Conclusion HT may provide significantly better liver sparing and allow more patients to achieve higher prescription dose in HCC radiotherapy. PMID:27445485

  14. Helical Tomotherapy Versus Conventional Intensity-Modulated Radiation Therapy for Primary Chemoradiation in Cervical Cancer Patients: An Intraindividual Comparison

    SciTech Connect

    Marnitz, Simone; Lukarski, Dusko; Koehler, Christhardt; Wlodarczyk, Waldemar; Ebert, Andreas; Budach, Volker; Schneider, Achim; Stromberger, Carmen

    2011-10-01

    Purpose: To compare intensity-modulated radiotherapy (IMRT) delivered by helical tomotherapy (HT) with conventional IMRT for primary chemoradiation in cervical cancer patients. Methods and Materials: Twenty cervical cancer patients undergoing primary chemoradiation received radiation with HT; 10 patients underwent pelvic irradiation (PEL) and 10 extended-field irradiation (EXT). For treatment planning, the simultaneously integrated boost (SIB) concept was applied. Tumor, pelvic, with or without para-aortic lymph nodes were defined as planning target volume A (PTV-A) with a prescribed dose of 1.8/50.4 Gy (28 fractions). The SIB dose for the parametrium (PTV-B), was 2.12/59.36 Gy. The lower target constraints were 95% of the prescribed dose in 95% of the target volume, and the upper dose constraint was 107%. The irradiated small-bowel volumes were kept as low as possible. For every HT plan, a conventional IMRT plan was calculated and compared with regard to dose-volume histogram, conformity index and conformity number, and homogeneity index. Results: Both techniques allowed excellent target volume coverage and sufficient SB sparing. Conformity index and conformity number results for both PTV-A and PTV-B, homogeneity index for PTV-B, and SB sparing for V45, V50, Dmax, and D1% were significantly better with HT. SB sparing was significantly better for conventional IMRT at low doses (V10). Conclusions: Both HT and conventional IMRT provide optimal treatment of cervical cancer patients. The HT technique was significantly favored with regard to target conformity, homogeneity, and SB sparing. Randomized trials are needed to assess the oncological outcome, toxicity, and clinical relevance of these differences.

  15. Helical tomotherapy versus conventional intensity-modulated radiation therapy for primary chemoradiation in cervical cancer patients: an intraindividual comparison.

    PubMed

    Marnitz, Simone; Lukarski, Dusko; Köhler, Christhardt; Wlodarczyk, Waldemar; Ebert, Andreas; Budach, Volker; Schneider, Achim; Stromberger, Carmen

    2011-10-01

    To compare intensity-modulated radiotherapy (IMRT) delivered by helical tomotherapy (HT) with conventional IMRT for primary chemoradiation in cervical cancer patients. Twenty cervical cancer patients undergoing primary chemoradiation received radiation with HT; 10 patients underwent pelvic irradiation (PEL) and 10 extended-field irradiation (EXT). For treatment planning, the simultaneously integrated boost (SIB) concept was applied. Tumor, pelvic, with or without para-aortic lymph nodes were defined as planning target volume A (PTV-A) with a prescribed dose of 1.8/50.4 Gy (28 fractions). The SIB dose for the parametrium (PTV-B), was 2.12/59.36 Gy. The lower target constraints were 95% of the prescribed dose in 95% of the target volume, and the upper dose constraint was 107%. The irradiated small-bowel volumes were kept as low as possible. For every HT plan, a conventional IMRT plan was calculated and compared with regard to dose-volume histogram, conformity index and conformity number, and homogeneity index. Both techniques allowed excellent target volume coverage and sufficient SB sparing. Conformity index and conformity number results for both PTV-A and PTV-B, homogeneity index for PTV-B, and SB sparing for V45, V50, Dmax, and D1% were significantly better with HT. SB sparing was significantly better for conventional IMRT at low doses (V10). Both HT and conventional IMRT provide optimal treatment of cervical cancer patients. The HT technique was significantly favored with regard to target conformity, homogeneity, and SB sparing. Randomized trials are needed to assess the oncological outcome, toxicity, and clinical relevance of these differences. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Dosimetric Evaluation of Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, and Helical Tomotherapy for Hippocampal-Avoidance Whole Brain Radiotherapy

    PubMed Central

    Rong, Yi; Evans, Josh; Xu-Welliver, Meng; Pickett, Cadron; Jia, Guang; Chen, Quan; Zuo, Li

    2015-01-01

    Background Whole brain radiotherapy (WBRT) is a vital tool in radiation oncology and beyond, but it can result in adverse health effects such as neurocognitive decline. Hippocampal Avoidance WBRT (HA-WBRT) is a strategy that aims to mitigate the neuro-cognitive side effects of whole brain radiotherapy treatment by sparing the hippocampi while delivering the prescribed dose to the rest of the brain. Several competing modalities capable of delivering HA-WBRT, include: Philips Pinnacle step-and-shoot intensity modulated radiotherapy (IMRT), Varian RapidArc volumetric modulated arc therapy (RapidArc), and helical TomoTherapy (TomoTherapy). Methods In this study we compared these methods using 10 patient datasets. Anonymized planning CT (computerized tomography) scans and contour data based on fused MRI images were collected. Three independent planners generated treatment plans for the patients using three modalities, respectively. All treatment plans met the RTOG 0933 criteria for HA-WBRT treatment. Results In dosimetric comparisons between the three modalities, TomoTherapy has a significantly superior homogeneity index of 0.15 ± 0.03 compared to the other two modalities (0.28 ± .04, p < .005 for IMRT and 0.22 ± 0.03, p < .005 for RapidArc). RapidArc has the fastest average delivery time of 2.5 min compared to the other modalities (15 min for IMRT and 18 min for TomoTherapy). Conclusion TomoTherapy is considered to be the preferred modality for HA-WBRT due to its superior dose distribution. When TomoTherapy is not available or treatment time is a concern, RapidArc can provide sufficient dose distribution meeting RTOG criteria and efficient treatment delivery. PMID:25894615

  17. Co-assembly of Zn(SPh){sub 2} and organic linkers into helical and zig-zag polymer chains

    SciTech Connect

    Liu Yi; Yu Lingmin; Loo, Say Chye Joachim; Blair, Richard G.; Zhang Qichun

    2012-07-15

    Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (EG=ethylene glycol) (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized under solvothermal conditions at 150 Degree-Sign C or room temperature by the co-assembly of Zn(SPh){sub 2} and organic linkers such as 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPyTA) and 1,3-bis(trans-4-pyridylvinyl)benzene (BPyVB). X-ray crystallography study reveals that both polymers 1 and 2 crystallize in space group P2{sub 1}/c of the monoclinic system. The solid-state UV-vis absorption spectra show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up to 110 Degree-Sign C and 210 Degree-Sign C. - Graphical abstract: Two novel one-dimensional coordination polymers, single helicate [Zn(SPh){sub 2}(TPyTA)(EG)]{sub n} (1) and zig-zag structure [Zn(SPh){sub 2}(BPyVB)]{sub n} (2), were synthesized. Solid-state UV-vis absorptions show that 1 and 2 have maxium absorption onsets at 400 nm and 420 nm, respectively. TGA analysis indicates that 1 and 2 are stable up to 110 Degree-Sign C and 210 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Two novel one-dimensional coordination polymers have been synthesized. Black-Right-Pointing-Pointer TPyTA results in helical structures in 1 while BPyVB leads to zig-zag chains in 2. Black-Right-Pointing-Pointer Solid-state UV-vis absorption spectra and TGA analysis of the title polymers were studied.

  18. Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas

    NASA Astrophysics Data System (ADS)

    Lorenzini, R.; Martines, E.; Piovesan, P.; Terranova, D.; Zanca, P.; Zuin, M.; Alfier, A.; Bonfiglio, D.; Bonomo, F.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Escande, D. F.; Fassina, A.; Franz, P.; Gobbin, M.; Innocente, P.; Marrelli, L.; Pasqualotto, R.; Puiatti, M. E.; Spolaore, M.; Valisa, M.; Vianello, N.; Martin, P.; Martin, P.; Apolloni, L.; Puiatti, M. E.; Adamek, J.; Agostini, M.; Alfier, A.; Annibaldi, S. V.; Antoni, V.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Brotankova, J.; Buffa, A.; Buratti, P.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chapman, B. E.; Chitarin, G.; Dal Bello, S.; de Lorenzi, A.; de Masi, G.; Escande, D. F.; Fassina, A.; Ferro, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guazzotto, L.; Guo, S. C.; Igochine, V.; Innocente, P.; Liu, Y. Q.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; McCollam, K.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Reusch, J. A.; Rostagni, G.; Rubinacci, G.; Sarff, J. S.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Vianello, N.; Villone, F.; White, R. B.; Yadikin, D.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zohm, H.; Zuin, M.

    2009-08-01

    In the quest for new energy sources, the research on controlled thermonuclear fusion has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.

  19. Dosimetric comparison of three different treatment modalities for total scalp irradiation: the conventional lateral photon-electron technique, helical tomotherapy, and volumetric-modulated arc therapy.

    PubMed

    Song, Jin Ho; Jung, Ji-Young; Park, Hyung-Wook; Lee, Gi Woong; Chae, Soo-Min; Kay, Chul Seung; Son, Seok Hyun

    2015-07-01

    The aim of this study was to compare lateral photon-electron (LPE), helical tomotherapy (HT), and volumetric-modulated arc therapy (VMAT) plans for total scalp irradiation. We selected a single adult model case and compared the dosimetric results for the three plans. All plans mainly used 6-MV photon beams, and the prescription dose was 60 Gy in 30 fractions. First, we compared the LPE, HT and VMAT plans, with all plans including a 1-cm bolus. We also compared HT plans with and without the bolus. The conformity indices for LPE, HT and VMAT were 1.73, 1.35 and 1.49, respectively. The HT plan showed the best conformity and the LPE plan showed the worst. However, the plans had similar homogeneity indexes. The dose to the hippocampus was the highest in the VMAT plan, with a mean of 6.7 Gy, compared with 3.5 Gy in the LPE plan and 4.8 Gy in the HT plan. The doses to the optical structures were all within the clinically acceptable range. The beam-on time and monitor units were highest in the HT plan. The HT plans with and without a bolus showed similar target coverage and organ-at-risk (OAR) sparing. The HT plan showed the best target coverage and conformity, with low doses to the brain and hippocampus. This plan also had the advantage of not necessarily requiring a bolus. Although the VMAT plan showed better conformity than the LPE plan and acceptable OAR sparing, the dose to the hippocampus should be considered when high doses are prescribed.

  20. Dosimetric comparison of postoperative whole pelvic radiotherapy for endometrial cancer using three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and helical tomotherapy.

    PubMed

    Yang, Ruijie; Xu, Shouping; Jiang, Weijuan; Wang, Junjie; Xie, Chuanbin

    2010-01-01

    The use of Intensity-modulated radiotherapy (IMRT) and Helical tomotherapy (HT) is increasing in gynecological cancer patients. No published studies have performed a dosimetric evaluation of whole pelvic radiotherapy (WPRT) using HT for postoperative endometrial cancer. The purpose of this study was to perform a direct dosimetric comparison of three-dimensional conformal radiotherapy (3D-CRT), IMRT and HT plans for WPRT in postoperative endometrial cancer patients, and to evaluate the integral dose to organs at risk (OARs) and normal tissue. We selected ten patients with endometrial cancer undergoing postoperative WPRT. Plans for 3D-CRT, IMRT and HT were developed for each patient. All plans were normalized to deliver 50 Gy to 95% of the PTV. The dosimetry and integral dose to OARs and normal tissue were compared. The significance of differences was tested using a paired two-tailed Student t-test. IMRT were superior to 3D-CRT in dose conformity (conformity index: 0.87 vs. 0.61, p = 0.00) and integral dose to OARs and normal tissue, although a greater volume of normal tissue receiving dose below 10 Gy was observed. The results were similar in HT except that the integral dose to normal tissue increased slightly. Compared directly with IMRT, HT showed better dose homogeneity and lower integral dose to rectum and bladder, but the integral dose to pelvic bones and normal tissue slightly increased. In postoperative WPRT of endometrial cancer, IMRT and HT result in better conformity and lower integral dose to OARs compared with 3D-CRT. The integral dose to normal tissue did not increase significantly in IMRT, although a greater volume of normal tissue is irradiated to the dose below 10 Gy. HT further improves the dose homogeneity and integral dose to rectum and bladder, at the expense of a slightly higher integral dose to pelvic bones and normal tissue.

  1. Form and Function: An Organic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…

  2. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    SciTech Connect

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  3. Helical water chain mediated proton conductivity in homochiral metal-organic frameworks with unprecedented zeolitic unh-topology.

    PubMed

    Sahoo, Subash Chandra; Kundu, Tanay; Banerjee, Rahul

    2011-11-09

    Four new homochiral metal-organic framework (MOF) isomers, [Zn(l-L(Cl))(Cl)](H(2)O)(2) (1), [Zn(l-L(Br))(Br)](H(2)O)(2) (2), [Zn(d-L(Cl))(Cl)](H(2)O)(2) (3), and [Zn(d-L(Br))(Br)](H(2)O)(2) (4) [L = 3-methyl-2-(pyridin-4-ylmethylamino)butanoic acid], have been synthesized by using a derivative of L-/D-valine and Zn(CH(3)COO)(2)·2H(2)O. A three-periodic lattice with a parallel 1D helical channel was formed along the crystallographic c-axis. Molecular rearrangement results in an unprecedented zeolitic unh-topology in 1-4. In each case, two lattice water molecules (one H-bonded to halogen atoms) form a secondary helical continuous water chain inside the molecular helix. MOFs 1 and 2 shows different water adsorption properties and hence different water affinity. The arrangement of water molecules inside the channel was monitored by variable-temperature single-crystal X-ray diffraction, which indicated that MOF 1 has a higher water holding capacity than MOF 2. In MOF 1, water escapes at 80 °C, while in 2 the same happens at a much lower temperature (∼40 °C). All the MOFs reported here shows reversible crystallization by readily reabsorbing moisture. In MOFs 1 and 2, the frameworks are stable after solvent removal, which is confirmed by a single-crystal to single-crystal transformation. MOFs 1 and 3 show high proton conductivity of 4.45 × 10(-5) and 4.42 × 10(-5) S cm(-1), respectively, while 2 and 4 shows zero proton conductivity. The above result is attributed to the fact that MOF 1 has a higher water holding capacity than MOF 2.

  4. Solvent-induced assembly of two helical Eu(III) metal-organic frameworks and fluorescence sensing activities towards nitrobenzene and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Ma, Ranran; Chen, Zhiwei; Wang, Suna; Yao, Qingxia; Li, Yunwu; Lu, Jing; Li, Dacheng; Dou, Jianmin

    2017-08-01

    Two helical Eu(III) metal-organic frameworks, namely, {[Eu(L)(DMF)(H2O)]·0.5DMF}n (1) and [Eu(L)(DEF)(H2O)]n (2) (H3L=3,5-bis(2-carboxylphenoxy)benzoic acid, DMF=N,N-dimethylformamide, DEF=N,N-diethylformamide), have been solvothermally synthesized in different solvents, respectively. Both complexes possess helical structures through the connectivity of Eu atoms and phenolic-oxygen containing branches of the flexible multicarboxylate ligand. Based on different helices, these two complexes exhibited hexagonal and tetragonal channels, respectively. Both complexes possess (3,6)-connected (4.62)2(42.610.83) topology but with different long Schlafli symbol. The solvent plays an important role in the formation of the final frameworks. Both complexes can sensitively and selectively detect nitrobenzene and Cu2+ ions.

  5. Technology for the Organic Chemist: Three Exploratory Modules

    ERIC Educational Resources Information Center

    Esteb, John J.; McNulty, LuAnne M.; Magers, John; Morgan, Paul; Wilson, Anne M.

    2010-01-01

    The ability to use computer-based technology is an essential skill set for students majoring in chemistry. This exercise details the introduction of appropriate uses for this technology in the organic chemistry series. The incorporation of chemically appropriate online resources (module 1), scientific databases (module 2), and the use of a…

  6. Module organization and variance in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Yu; Lee, Tsai-Ling; Chiu, Yi-Yuan; Lin, Yi-Wei; Lo, Yu-Shu; Lin, Chih-Ta; Yang, Jinn-Moon

    2015-03-01

    A module is a group of closely related proteins that act in concert to perform specific biological functions through protein-protein interactions (PPIs) that occur in time and space. However, the underlying module organization and variance remain unclear. In this study, we collected module templates to infer respective module families, including 58,041 homologous modules in 1,678 species, and PPI families using searches of complete genomic database. We then derived PPI evolution scores and interface evolution scores to describe the module elements, including core and ring components. Functions of core components were highly correlated with those of essential genes. In comparison with ring components, core proteins/PPIs were conserved across multiple species. Subsequently, protein/module variance of PPI networks confirmed that core components form dynamic network hubs and play key roles in various biological functions. Based on the analyses of gene essentiality, module variance, and gene co-expression, we summarize the observations of module organization and variance as follows: 1) a module consists of core and ring components; 2) core components perform major biological functions and collaborate with ring components to execute certain functions in some cases; 3) core components are more conserved and essential during organizational changes in different biological states or conditions.

  7. Morphology, Ultrastructure, and Bacteriophage Infection of the Helical Mycoplasma-Like Organism (Spiroplasma citri gen. nov., sp. nov.) Cultured from “Stubborn” Disease of Citrus

    PubMed Central

    Cole, Roger M.; Tully, Joseph G.; Popkin, Terry J.; Bové, Joseph M.

    1973-01-01

    The mycoplasma-like organism Spiroplasma citri gen. nov., sp. nov., isolated from citrus infected with “Stubborn” disease and carried in serial cultures in several media, was examined by dark-field microscopy and electron microscopy of negatively-stained and shadowed preparations and of sections. It grows as motile, helical filaments in liquid, but as nonmotile, nonhelical filaments and round bodies in agar cultures. Helicity and motility are lost in old broth cultures and upon addition of a variety of negative stains, fixatives, and other solutions. No organelles accounting for motility are present, but a layer of surface projections is present on the surface of the single, bounding membrane. The mycoplasma produces a tailed, type B bacteriophage which appear to attach to the outer layer. Helical filaments are preserved in ammonium molybdate, but not in sodium phosphotungstate, and by fixation in Formalin or glutaraldehyde made up in medium, but not by osmium nor by glutaraldehyde in cacodylate buffer. This mycoplasma appears similar to the noncultured helical microorganism in corn stunt-diseased tissues and is probably a representative of a new group of mycoplasmas which are in possession of surface projections, rotary motility, and bacteriophage infection. Images PMID:4123916

  8. A Series of Lanthanide Metal-Organic Frameworks with Interesting Adjustable Photoluminescence Constructed by Helical Chains.

    PubMed

    Liu, Ying; Zhang, Yu; Hu, Gong Hao; Zhou, Shuai; Fan, Ruiqing; Yang, Yulin; Xu, Yan

    2015-07-13

    Based on the isonicotinic acid (HIN=pyridine-4-carboxylic acid), seven lanthanide metal-organic frameworks (MOFs) with the formula [Ln(IN)2 L] (Ln=Eu (1), Tb (2), Er (3), Dy (4), Ho (5), Gd (6), La (7), L=OCH2 CH2 OH) have been synthesized by mixing Ln2 O3 with HIN under solvothermal conditions, and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy, and fluorescence spectroscopy. Crystal structural analysis shows that compounds 1-6 are isostructural, crystallize in a chiral space group P21 21 21 , whereas compound 7 crystallizes in space group C2/c. Nevertheless, they all consist of new intertwined chains. Simultaneously, on the basis of the above-mentioned compounds, we have realized a rational design strategy to form the doped Ln MOFs [(Eux Tb1-x )(IN)2 L] (x=0.35 (8), x=0.19 (9), x=0.06 (10)) by utilizing Tb(III) as the second "rare-earth metal". Interestingly, the photoluminescence of [(Eux Tb1-x )(IN)2 L] are not only adjustable by the ratios of Eu/Tb, but also temperature or excitation wavelength.

  9. First examples of a modulated bridging mu(2)-1:2kappan-triazine in double helical silver compounds. experimental and theoretical evidence.

    PubMed

    Carranza, M Pilar; Manzano, Blanca R; Jalón, Félix A; Rodríguez, Ana M; Santos, Lucía; Moreno, Miquel

    2010-04-19

    The synthesis of several silver double helices containing bis(3,5dimethylpyrazolyl)-6-(R)-s-triazine ligands is described. The structure of two of them has been determined by X-ray difraction. Both derivatives represent the first reported examples of a new interaction mode for a triazine ring that involves a triazine N atom bridging two metal centers. Argentophilic contacts are also present. The Ag-N and Ag-Ag interactions have been demonstrated by theoretical studies, which also showed the clear influence of weak interactions with the counteranion and the effect of the symmetry of the triazine substituent. The different donor characters of these substituents allows a modulation of the strength of the bridging Ag-N(triazine) interaction. Double pi-pi stacking, anion-pi interactions, hydrogen bonds, and hydrophobic effects are observed in an unusual highly symmetrical interpenetrated three-dimensional superstructure.

  10. Working in Organizations. Apprentice Related Training Module.

    ERIC Educational Resources Information Center

    Rice, Eric; Spetz, Sally H.

    One in a series of core instructional materials for apprentices to use during the first or second years of apprenticeship-related subjects training, this booklet deals with working in organizations. The first section consists of an outline of the content and scope of the core materials as well as a self-assessment pretest. Covered in the three…

  11. A Dual Modulated Homochiral Helical Nanofilament Phase with Local Columnar Ordering Formed by Bent Core Liquid Crystals: Effects of Molecular Chirality.

    PubMed

    Li, Lin; Salamonczyk, Miroslaw; Jákli, Antal; Hegmann, Torsten

    2016-08-01

    Helical nanofilament (HNF) phases form as a result of an intralayer mismatch between top and bottom molecular halves in bent-core liquid crystals (BC-LCs) that is relieved by local saddle-splay geometry. HNFs are immensely attractive for photovoltaic and chiral separation applications and as templates for the chiral spatial assembly of guest molecules. Here, the synthesis and characterization of two unichiral BC-LCs and one racemic mixture with tris-biphenyl-diester cores featuring chiral (R,R) and (S,S) or racemic 2-octyloxy aliphatic side chains are presented. In comparison to the achiral compound with linear side chains forming an intralayer modulated HNF phase (HNFmod ), synchrotron small angle X-ray diffraction indicates that the unichiral derivatives form a dual modulated HNF phase with intra- as well as interlayer modulations (HNFmod2 ) suggesting a columnar local structure of the nanofilaments. Transmission electron microscopy and circular dichroism spectropolarimetry confirm that the unichiral materials exclusively form homochiral HNFs with a twist sense-matching secondary twist. A contact preparation provides the first example of two identical chiral liquid crystal phases only differing in their handedness that do not mix and form an achiral liquid crystal phase with an entirely different structure in the contact zone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen*

    PubMed Central

    Terajima, Masahiko; Taga, Yuki; Chen, Yulong; Cabral, Wayne A.; Hou-Fu, Guo; Srisawasdi, Sirivimol; Nagasawa, Masako; Sumida, Noriko; Hattori, Shunji; Kurie, Jonathan M.; Marini, Joan C.; Yamauchi, Mitsuo

    2016-01-01

    Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet. 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1–3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation. PMID:26934917

  13. Dosimetric comparisons of helical tomotherapy treatment plans and step-and-shoot intensity-modulated radiosurgery treatment plans in intracranial stereotactic radiosurgery

    SciTech Connect

    Han Chunhui . E-mail: chan@coh.org; Liu An; Schultheiss, Timothy E.; Pezner, Richard D.; Chen Yijen; Wong, Jeffrey Y.C.

    2006-06-01

    Purpose: To evaluate dose conformity, dose homogeneity, and dose gradient in helical tomotherapy treatment plans for stereotactic radiosurgery, and compare results with step-and-shoot intensity-modulated radiosurgery (IMRS) treatment plans. Methods and Materials: Sixteen patients were selected with a mean tumor size of 14.65 {+-} 11.2 cm{sup 3}. Original step-and-shoot IMRS treatment plans used coplanar fields because of the constraint of the beam stopper. Retrospective step-and-shoot IMRS plans were generated using noncoplanar fields. Helical tomotherapy treatment plans were generated using the tomotherapy planning station. Dose conformity index, dose gradient score index, and homogeneity index were used in plan intercomparisons. Results: Noncoplanar IMRS plans increased dose conformity and dose gradient, but not dose homogeneity, compared with coplanar IMRS plans. Tomotherapy plans increased dose conformity and dose gradient, yet increased dose heterogeneity compared with noncoplanar IMRS plans. The average dose conformity index values were 1.53 {+-} 0.38, 1.35 {+-} 0.15, and 1.26 {+-} 0.10 in coplanar IMRS, noncoplanar IMRS, and tomotherapy plans, respectively. The average dose homogeneity index values were 1.15 {+-} 0.05, 1.13 {+-} 0.04, and 1.18 {+-} 0.09 in coplanar IMRS, noncoplanar IMRS, and tomotherapy plans, respectively. The mean dose gradient score index values were 1.37 {+-} 19.08, 22.32 {+-} 19.20, and 43.28 {+-} 13.78 in coplanar IMRS, noncoplanar IMRS, and tomotherapy plans, respectively. The mean treatment time in tomotherapy was 42 {+-} 16 min. Conclusions: We were able to achieve better dose conformity and dose gradient in tomotherapy plans compared with step-and-shoot IMRS plans for intracranial stereotactic radiosurgery. However, tomotherapy treatment time was significantly larger than that in step-and-shoot IMRS.

  14. Which technique for radiation is most beneficial for patients with locally advanced cervical cancer? Intensity modulated proton therapy versus intensity modulated photon treatment, helical tomotherapy and volumetric arc therapy for primary radiation - an intraindividual comparison.

    PubMed

    Marnitz, Simone; Wlodarczyk, Waldemar; Neumann, Oliver; Koehler, Christhardt; Weihrauch, Mirko; Budach, Volker; Cozzi, Luca

    2015-04-17

    To compare highly sophisticated intensity-modulated radiotherapy (IMRT) delivered by either helical tomotherapy (HT), RapidArc (RA), IMRT with protons (IMPT) in patients with locally advanced cervical cancer. Twenty cervical cancer patients were irradiated using either conventional IMRT, VMAT or HT; ten received pelvic (PEL) and ten extended field irradiation (EFRT). The dose to the planning-target volume A (PTV_A: cervix, uterus, pelvic ± para-aortic lymph nodes) was 1.8/50.4 Gy. The SIB dose for the parametrium (PTV_B), was 2.12/59.36 Gy. MRI-guided brachytherapy was administered with 5 fractions up to 25 Gy. For EBRT, the lower target constraints were 95% of the prescribed dose in 95% of the target volume. The irradiated small bowel (SB) volumes were kept as low as possible. For every patient, target parameters as well as doses to the organs at risk (SB, bladder, rectum) were evaluated intra-individually for IMRT, HT, VMAT and IMPT. All techniques provided excellent target volume coverage, homogeneity, conformity. With IMPT, there was a significant reduction of the mean dose (Dmean) of the SB from 30.2 ± 4.0 Gy (IMRT); 27.6 ± 5.6 Gy (HT); 34.1 ± 7.0 (RA) to 18.6 ± 5.9 Gy (IMPT) for pelvic radiation and 26.3 ± 3.2 Gy (IMRT); 24.0 ± 4.1 (HT); 25.3 ± 3.7 (RA) to 13.8 ± 2.8 Gy (IMPT) for patients with EFRT, which corresponds to a reduction of 38-52% for the Dmean (SB). Futhermore, the low dose bath (V10Gy) to the small bowel was reduced by 50% with IMPT in comparison to all photon techniques. Furthermore, Dmean to the bladder and rectum was decresed by 7-9 Gy with IMPT in patents with pelvic radiation and EFRT. All modern techniques (were proved to be dosimetrically adequate regarding coverage, conformity and homogeneity of the target. Protons offered the best sparing of small bowel and rectum and therefore could contribute to a significant reduction of acute and late toxicity in cervical cancer treatment.

  15. Synergistic modulation of cyclobutane pyrimidine dimer photoproduct formation and deamination at a TmCG site over a full helical DNA turn in a nucleosome core particle.

    PubMed

    Song, Qian; Cannistraro, Vincent J; Taylor, John-Stephen

    2014-12-01

    Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=(m)CG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=(m)CG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The Structure and Organization within the Membrane of the Helices Composing the Pore-Forming Domain of Bacillus thuringiensis δ -Endotoxin are Consistent with an ``Umbrella-Like'' Structure of the Pore

    NASA Astrophysics Data System (ADS)

    Gazit, Ehud; La Rocca, Paolo; Sansom, Mark S. P.; Shai, Yechiel

    1998-10-01

    The aim of this study was to elucidate the mechanism of membrane insertion and the structural organization of pores formed by Bacillus thuringiensis δ -endotoxin. We determined the relative affinities for membranes of peptides corresponding to the seven helices that compose the toxin pore-forming domain, their modes of membrane interaction, their structures within membranes, and their orientations relative to the membrane normal. In addition, we used resonance energy transfer measurements of all possible combinatorial pairs of membrane-bound helices to map the network of interactions between helices in their membrane-bound state. The interaction of the helices with the bilayer membrane was also probed by a Monte Carlo simulation protocol to determine lowest-energy orientations. Our results are consistent with a situation in which helices α 4 and α 5 insert into the membrane as a helical hairpin in an antiparallel manner, while the other helices lie on the membrane surface like the ribs of an umbrella (the ``umbrella model''). Our results also support the suggestion that α 7 may serve as a binding sensor to initiate the structural rearrangement of the pore-forming domain.

  17. A 3D chiral metal-organic framework based on left-handed helices containing 3-amino-1 H-1,2,4-triazole ligand

    SciTech Connect

    Liu, Bing; Yang, Tian-Yi; Feng, Hui-Jun; Zhang, Zong-Hui; Xu, Ling

    2015-10-15

    A chiral metal-organic framework, [Cu(atr)(OH)]·0.5H{sub 2}O·0.5en (1) (Hatr=3-amino-1 H-1,2,4-triazole, en=ethylenediamine), was constructed via diffusion reaction of the achiral Hatr ligand and CuSO{sub 4} as starting materials. Compound 1 crystallizes in the chiral space group P3{sub 2}21 and features a porous metal-organic framework with 44.1% solvent-accessible volume fabricated by left-handed helices with a pitch height of l{sub p}=10.442 Å. Six helices gather around in a cycle forming a large honeycomb channel with a 6.58 Å inner diameter. Cu(II) center and atr{sup ‒} ligand regarded as 3-connected nodes, compound 1 can be simplified to a 3-c uninodal (4.12{sup 2}) (qtz-h) topological network. A gradual decreasing in the magnetic moment depending on temperature decreasing indicates an antiferromagnetic interaction in 1. The powder XRD confirms the bulk sample is a single crystal pure phase, and the thermogravimetric analysis shows the thermal stability of 1 is up to ca. 240 °C. - Highlights: • The present 3D chiral MOF is built from achiral Hatr ligand. • Six left-handed helices gather into a honeycomb channel in chiral sp P3{sub 2}21. • Compound 1 shows a 3-c uninodal (4.12{sup 2}) or qtz-h topological network. • Compound 1 indicates an antiferromagnetic interaction.

  18. Dosimetric study and in-vivo dose verification for conformal avoidance treatment of anal adenocarcinoma using helical tomotherapy

    SciTech Connect

    Han Chunhui . E-mail: chan@coh.org; Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2007-04-01

    This study evaluated the efficacy of using helical tomotherapy for conformal avoidance treatment of anal adenocarcinoma. We retrospectively generated step-and-shoot intensity-modulated radiotherapy (sIMRT) plans and helical tomotherapy plans for two anal cancer patients, one male and one female, who were treated by the sIMRT technique. Dose parameters for the planning target volume (PTV) and the organs-at-risk (OARs) were compared between the sIMRT and the helical tomotherapy plans. The helical tomotherapy plans showed better dose homogeneity in the PTV, better dose conformity around the PTV, and, therefore, better sparing of nearby OARs compared with the sIMRT plans. In-vivo skin dose measurements were performed during conformal avoidance helical tomotherapy treatment of an anal cancer patient to verify adequate delivery of skin dose and sparing of OARs.

  19. A two-fold interpenetrating 3D metal-organic framework material constructed from helical chains linked via 4,4'-H{sub 2}bpz fragments

    SciTech Connect

    Xie Yiming; Zhao Zhenguo; Wu Xiaoyuan; Zhang Qisheng; Chen Lijuan; Wang Fei; Chen Shanci; Lu Canzhong

    2008-12-15

    A 3-connected dia-f-type metal-organic framework compound {l_brace}[Ag(L){sub 3/2}H{sub 2}PO{sub 4}]{r_brace}{sub n} (1) has been synthesized by self-assembly of 4,4'-H{sub 2}bpz (L=4,4'-H{sub 2}bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole) and Ag{sub 4}P{sub 2}O{sub 7} under hydrothermal conditions. It crystallizes in the tetragonal space group I4{sub 1}/acd with a=21.406(4) A, b=21.406(4) A, c=36.298(8) A, Z=32. X-ray single-crystal diffraction reveals that 1 has a three-dimensional framework with an unprecedented alternate left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net. Photoluminescent investigation reveals that the title compound displays interesting emissions in a wide region, which shows that the title compound may be a good potential candidate as a photoelectric material. - Graphical abstract: A 3-connected dia-f-type metal-organic framework compound [Ag(4,4'-bpz){sub 3/2}H{sub 2}PO{sub 4}] shows unprecedented alternating left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net.

  20. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    SciTech Connect

    Ciaccio, G. Spizzo, G.; Schmitz, O. Frerichs, H.; Abdullaev, S. S.; Evans, T. E.; White, R. B.

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  1. Osmotically induced membrane tension modulates membrane permeabilization by class L amphipathic helical peptides: nucleation model of defect formation.

    PubMed Central

    Polozov, I V; Anantharamaiah, G M; Segrest, J P; Epand, R M

    2001-01-01

    The mechanism of action of lytic peptides on membranes is widely studied and is important in view of potential medical applications. Previously (I. V. Polozov, A. I. Polozova, E. M. Tytler, G. M. Anantharamaiah, J. P. Segrest, G. A. Woolley, and R. M., Biochemistry, 36:9237--9245) we analyzed the mechanism of membrane permeabilization by 18L, the archetype lytic peptide featuring the class L amphipathic alpha-helix, according to the classification of Segrest et al. (J. P. Segrest, G. de Loof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah, 1990, Proteins, 8:103--117). We concluded that the 18L peptide destabilizes membranes, leading to a transient formation of large defects that result in contents leakage and, in the presence of bilayer-bilayer contact, could lead to vesicle fusion. Here we report that this defect formation is strongly enhanced by the membrane tension induced by osmotic swelling of vesicles. Even below standard leakage-inducing peptide/lipid ratios, membrane resistance to osmotic tension drops from hundreds to tens of milliosmoles. The actual decrease is dependent on the peptide/lipid ratio and on the type of lipid. We propose that under membrane tension a peptidic pore serves as a nucleation site for the transient formation of a lipidic pore. The tension is released upon pore expansion with inclusion of more peptides and lipids into the pore lining. This tension modulation of leakage was observed for other class L peptides (mastoparan, K18L) and thus may be of general applicability for the action of membrane active lytic peptides. PMID:11463637

  2. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats.

    PubMed

    Lauermann, M; Palmer, R; Koeber, S; Schindler, P C; Korn, D; Wahlbrink, T; Bolten, J; Waldow, M; Elder, D L; Dalton, L R; Leuthold, J; Freude, W; Koos, C

    2014-12-01

    We demonstrate silicon-organic hybrid (SOH) electro-optic modulators that enable quadrature phase-shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM) with high signal quality and record-low energy consumption. SOH integration combines highly efficient electro-optic organic materials with conventional silicon-on-insulator (SOI) slot waveguides, and allows to overcome the intrinsic limitations of silicon as an optical integration platform. We demonstrate QPSK and 16QAM signaling at symbol rates of 28 GBd with peak-to-peak drive voltages of 0.6 V(pp). For the 16QAM experiment at 112 Gbit/s, we measure a bit-error ratio of 5.1 × 10⁻⁵ and a record-low energy consumption of only 19 fJ/bit.

  3. Determination of W boson helicity fractions in top quark decays in p$\\bar{p}$ collisions at CDF Run II and production of endcap modules for the ATLAS Silicon Tracker

    SciTech Connect

    Moed, Shulamit

    2007-01-01

    The thesis presented here includes two parts. The first part discusses the production of endcap modules for the ATLAS SemiConductor Tracker at the University of Geneva. The ATLAS experiment is one of the two multi-purpose experiments being built at the LHC at CERN. The University of Geneva invested extensive efforts to create an excellent and efficient module production site, in which 655 endcap outer modules were constructed. The complexity and extreme requirements for 10 years of LHC operation with a high resolution, high efficiency, low noise tracking system resulted in an extremely careful, time consuming production and quality assurance of every single module. At design luminosity about 1000 particles will pass through the tracking system each 25 ns. In addition to requiring fast tracking techniques, the high particle flux causes significant radiation damage. Therefore, modules have to be constructed within tight and accurate mechanical and electrical specification. A description of the ATLAS experiment and the ATLAS Semiconductor tracker is presented, followed by a detailed overview of the module production at the University of Geneva. My personal contribution to the endcap module production at the University of Geneva was taking part, together with other physicists, in selecting components to be assembled to a module, including hybrid reception tests, measuring the I-V curve of the sensors and the modules at different stages of the production, thermal cycling the modules and performing electrical readout tests as an initial quality assurance of the modules before they were shipped to CERN. An elaborated description of all of these activities is given in this thesis. At the beginning of the production period the author developed a statistics package which enabled us to monitor the rate and quality of the module production. This package was then used widely by the ATLAS SCT institutes that built endcap modules of any type, and kept being improved and updated

  4. Self-organized Collaboration Network Model Based on Module Emerging

    NASA Astrophysics Data System (ADS)

    Yang, Hongyong; Lu, Lan; Liu, Qiming

    Recently, the studies of the complex network have gone deep into many scientific fields, such as computer science, physics, mathematics, sociology, etc. These researches enrich the realization for complex network, and increase understands for the new characteristic of complex network. Based on the evolvement characteristic of the author collaboration in the scientific thesis, a self-organized network model of the scientific cooperation network is presented by module emerging. By applying the theoretical analysis, it is shown that this network model is a scale-free network, and the strength degree distribution and the module degree distribution of the network nodes have the same power law. In order to make sure the validity of the theoretical analysis for the network model, we create the computer simulation and demonstration collaboration network. By analyzing the data of the network, the results of the demonstration network and the computer simulation are consistent with that of the theoretical analysis of the model.

  5. Formation of functional super-helical assemblies by constrained single heptad repeat.

    PubMed

    Mondal, Sudipta; Adler-Abramovich, Lihi; Lampel, Ayala; Bram, Yaron; Lipstman, Sophia; Gazit, Ehud

    2015-10-15

    Inspired by the key role of super-helical motifs in molecular self-organization, several tandem heptad repeat peptides were used as building blocks to form well-ordered supramolecular nano-assemblies. However, the need for stable helical structures limits the length of the smallest described units to three heptad repeats. Here we describe the first-ever self-assembling single heptad repeat module, based on the ability of the non-coded α-aminoisobutyric acid to stabilize very short peptides in helical conformation. A conformationally constrained peptide comprised of aromatic, but not aliphatic, residues, at the first and fourth positions formed helical fibrillar assemblies. Single crystal X-ray analysis of the peptide demonstrates super-helical packing in which phenylalanine residues formed an 'aromatic zipper' arrangement at the molecular interface. The modification of the minimal building block with positively charged residues results in tight DNA binding ascribed to the combined factors of helicity, hydrophobicity and charge. The design of these peptides defines a new direction for assembly of super-helical nanostructures by minimal molecular elements.

  6. Formation of functional super-helical assemblies by constrained single heptad repeat

    PubMed Central

    Mondal, Sudipta; Adler-Abramovich, Lihi; Lampel, Ayala; Bram, Yaron; Lipstman, Sophia; Gazit, Ehud

    2015-01-01

    Inspired by the key role of super-helical motifs in molecular self-organization, several tandem heptad repeat peptides were used as building blocks to form well-ordered supramolecular nano-assemblies. However, the need for stable helical structures limits the length of the smallest described units to three heptad repeats. Here we describe the first-ever self-assembling single heptad repeat module, based on the ability of the non-coded α-aminoisobutyric acid to stabilize very short peptides in helical conformation. A conformationally constrained peptide comprised of aromatic, but not aliphatic, residues, at the first and fourth positions formed helical fibrillar assemblies. Single crystal X-ray analysis of the peptide demonstrates super-helical packing in which phenylalanine residues formed an ‘aromatic zipper' arrangement at the molecular interface. The modification of the minimal building block with positively charged residues results in tight DNA binding ascribed to the combined factors of helicity, hydrophobicity and charge. The design of these peptides defines a new direction for assembly of super-helical nanostructures by minimal molecular elements. PMID:26468599

  7. Reducing the probability of radiation-induced hepatic toxicity by changing the treatment modality from helical tomotherapy to fixed-beam intensity-modulated radiotherapy

    PubMed Central

    Song, Jin Ho; Son, Seok Hyun; Kay, Chul Seung; Jang, Hong Seok

    2015-01-01

    Purpose To estimate and compare the risk of radiation-induced hepatic toxicity (RIHT) in helical tomotherapy and fixed-beam intensity-modulated radiotherapy (IMRT) for the treatment of hepatocellular carcinoma (HCC). Materials and Methods Twenty patients with unresectable HCC treated with tomotherapy were selected. We performed tomotherapy re-planning to reduce the non-target normal liver volume receiving a dose of more than 15 Gy (NTNL-V15Gy), and we created a fixed-beam IMRT plan (FB-P). We compared the dosimetric results as well as the estimated probability of RIHT among the tomotherapy initial plan (T-IP), the tomotherapy re-plan (T-RP), and the FB-P. Results Comparing the T-RP and FB-P, the homogeneity index was 0.11 better with the T-RP. However, the mean NTNL-V15Gy was 6.3% lower with the FB-P. These differences result in a decline in the probability of RIHT from 0.216 in the T-RP to 0.115 in the FB-P. In patients whose NTNL-V15Gy was higher than 43.2% with the T-RP, the probability of RIHT markedly reduced from 0.533 to 0.274. Conclusions By changing the treatment modality from tomotherapy to fixed-beam IMRT, we could reduce the liver dose and the probability of RIHT without scarifying the target coverage, especially in patients whose liver dose is high. PMID:26376679

  8. Ligand Symmetry Modulation for Designing Mixed-Ligand Metal-Organic Frameworks: Gas Sorption and Luminescence Sensing Properties.

    PubMed

    Chen, Di-Ming; Tian, Jia-Yue; Liu, Chun-Sen

    2016-09-06

    Herein, we report the synthesis of a new mixed-linker Zn(II)-based metal-organic framework (MOF), {[Zn2(atz)2(bpydb)](DMA)8}n (1) (atz = deprotonated 3-amino-1,2,4-triazole, bpydb = deprotonated 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid, DMA = N,N-dimethylacetamide), through symmetry modulation of a triazole ligand. The desymmetrized triazole linkers not only bond to the Zn(II) ions to result in a new helical Zn-triazolate chain building unit but also lead to the formation of a highly porous framework (N2 uptake: 617 cm(3)/g; BET surface area: 2393 m(2)/g) with 1D helical channels. The adsorption properties of desolved 1 were investigated by H2, C2H2, CO2, and CH4 sorption experiments, which showed that 1 exhibited high uptake capacity for H2 at 77 K and C2H2 around room temperature. More importantly, the high C2H2 uptake capacity but low binding energy makes this MOF a promising candidate for effective C2H2 capture from C2H2/CO2 and C2H2/CH4 mixed gases with low regenerative energy cost. In addition, 1 shows potential application for the luminescence sensing of small aromatic molecules picric acid (PA) and p-xylene (PX).

  9. Laminar circuit organization and response modulation in mouse visual cortex

    PubMed Central

    Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin

    2012-01-01

    The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751

  10. Field-effect-modulated Seebeck coefficient in organic semiconductors.

    PubMed

    Pernstich, K P; Rössner, B; Batlogg, B

    2008-04-01

    Central to the operation of organic electronic and optoelectronic devices is the transport of charge and energy in the organic semiconductor, and to understand the nature and dynamics of charge carriers is at the focus of intense research efforts. As a basic transport property of solids, the Seebeck coefficient S provides deep insight as it is given by the entropy transported by thermally excited charge carriers and involves in the simplest case only electronic contributions where the transported entropy is determined by details of the band structure and scattering events. We have succeeded for the first time to measure the temperature- and carrier-density-dependent thermopower in single crystals and thin films of two prototypical organic semiconductors by a controlled modulation of the chemical potential in a field-effect geometry. Surprisingly, we find the Seebeck coefficient to be well within the range of the electronic contribution in conventional inorganic semiconductors, highlighting the similarity of transport mechanisms in organic and inorganic semiconductors. Charge and entropy transport is best described as band-like transport of quasiparticles that are subjected to scattering, with exponentially distributed in-gap trap states, and without further contributions to S.

  11. Helical CT of abdominal trauma.

    PubMed

    Novelline, R A; Rhea, J T; Bell, T

    1999-05-01

    CT has revolutionized the diagnostic work-up of trauma patients with suspected abdominal injuries. A wide range of intraperitoneal and retroperitoneal organ injuries can be quickly and accurately diagnosed with CT. Today, helical CT technology permits even faster examinations, with improved intravenous contrast opacification of parenchymal organs and vascular structures and reduced CT artifacts caused by patient motion, respiration, and arterial pulsation. Severely injured and potentially unstable patients, who might not have been able to tolerate the long CT examinations of the past, may be quickly evaluated today with helical CT. Accurate diagnosis requires high quality CT examinations that are performed with optimum CT protocols. This article reviews the currently recommended helical CT protocols for evaluating patients with suspected abdominal injuries, and the CT findings when injuries are present.

  12. Dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy, and helical tomotherapy plans for rectal cancer.

    PubMed

    Joseph, Kurian; Liu, Derek; Severin, Diane; Dickey, Mike; Polkosnik, Lee-Anne; Warkentin, Heather; Mihai, Alina; Ghosh, Sunita; Field, Colin

    2015-01-01

    This study evaluated the dosimetric effect of small bowel oral contrast on conventional radiation therapy, linear accelerator-based intensity modulated radiation therapy (IMRT), and helical tomotherapy (HT) treatment plans. Thirteen patients with rectal cancer underwent computed tomography (CT) simulation with oral contrast (CCT) in preparation for chemoradiation therapy. The contrast in the small bowel was contoured, and a noncontrast CT scan (NCCT) was simulated by reassigning a CT number of 0 Hounsfield units to the contrast volume. Conventional, IMRT, and HT plans were generated with the CCT. The plan generated on the CCT was then recalculated on the NCCT, maintaining the same number of monitor units for each field, and the plans were not renormalized. Dosimetric parameters representing coverage of the planning target volume with 45 Gy (D98%, D95%, D50%, and D2%) and sparing of the bladder and peritoneal cavity (D50%, D30%, and D10%) were recorded. The ratio of dose calculated in the presence of contrast to dose with contrast edited out was recorded for each parameter. A paired Student t test was used for comparison of plans. For conventional plans, there was <0.1% variance in the dose ratio for all volumes of interest. For IMRT plans, there was a 1% decrease in the mean dose ratio, and the range of dose ratios for all volumes was greater than that for HT or conventional plans. For HT plans, for all volumes of interest, the mean dose ratio was <0.2%, and the range for all patients was <1%. For all IMRT dosimetric parameters, the difference was in the order of 1% of the mean dose (P < .05). The dose difference was not statistically significant for the conventional or HT plans. The use of CCT during CT simulation has no clinically significant effect on dose calculations for conventional, IMRT, and HT treatment plans and may not require replacement of the contrast with a CT number of 0 Hounsfield units. Copyright © 2015 American Society for Radiation Oncology

  13. Self-organized translational wheeling motion in stochastic self-assembling modules.

    PubMed

    Miyashita, Shuhei; Nakajima, Kohei; Nagy, Zoltán; Pfeifer, Rolf

    2013-01-01

    Self-organization is a phenomenon found in biomolecular self-assembly by which proteins are spontaneously driven to assemble and attain various functionalities. This study reports on self-organized behavior in which distributed centimeter-sized modules stochastically aggregate and exhibit a translational wheeling motion. The system consists of two types of centimeter-sized water-floating modules: a triangular-shaped module that is equipped with a vibration motor and a permanent magnet (termed the active module), which can quasi-randomly rove around; and circular modules that are equipped with permanent magnets (termed passive modules). In its quasi-random movement in water, the active module picks up passive modules through magnetic attraction. The contacts between the modules induce a torque transfer from the active module to the passive modules. This results in rotational motion of the passive modules. As a consequence of the shape difference between the triangular module and the circular module, the passive modules rotate like wheels, being kept on the same edges as the active module. The motion of the active module is examined, as well as the characteristics and behavior of the self-organization process.

  14. Reducing radiation dose to selected organs by selecting the tube start angle in MDCT helical scans: A Monte Carlo based study

    SciTech Connect

    Zhang Di; Zankl, Maria; DeMarco, John J.; Cagnon, Chris H.; Angel, Erin; Turner, Adam C.; McNitt-Gray, Michael F.

    2009-12-15

    Purpose: Previous work has demonstrated that there are significant dose variations with a sinusoidal pattern on the peripheral of a CTDI 32 cm phantom or on the surface of an anthropomorphic phantom when helical CT scanning is performed, resulting in the creation of ''hot'' spots or ''cold'' spots. The purpose of this work was to perform preliminary investigations into the feasibility of exploiting these variations to reduce dose to selected radiosensitive organs solely by varying the tube start angle in CT scans. Methods: Radiation dose to several radiosensitive organs (including breasts, thyroid, uterus, gonads, and eye lenses) resulting from MDCT scans were estimated using Monte Carlo simulation methods on voxelized patient models, including GSF's Baby, Child, and Irene. Dose to fetus was also estimated using four pregnant female models based on CT images of the pregnant patients. Whole-body scans were simulated using 120 kVp, 300 mAs, both 28.8 and 40 mm nominal collimations, and pitch values of 1.5, 1.0, and 0.75 under a wide range of start angles (0 deg. - 340 deg. in 20 deg. increments). The relationship between tube start angle and organ dose was examined for each organ, and the potential dose reduction was calculated. Results: Some organs exhibit a strong dose variation, depending on the tube start angle. For small peripheral organs (e.g., the eye lenses of the Baby phantom at pitch 1.5 with 40 mm collimation), the minimum dose can be 41% lower than the maximum dose, depending on the tube start angle. In general, larger dose reductions occur for smaller peripheral organs in smaller patients when wider collimation is used. Pitch 1.5 and pitch 0.75 have different mechanisms of dose reduction. For pitch 1.5 scans, the dose is usually lowest when the tube start angle is such that the x-ray tube is posterior to the patient when it passes the longitudinal location of the organ. For pitch 0.75 scans, the dose is lowest when the tube start angle is such that the x

  15. Self-organized plasmonic metasurfaces for all-optical modulation

    NASA Astrophysics Data System (ADS)

    Della Valle, G.; Polli, D.; Biagioni, P.; Martella, C.; Giordano, M. C.; Finazzi, M.; Longhi, S.; Duò, L.; Cerullo, G.; Buatier de Mongeot, F.

    2015-06-01

    We experimentally demonstrate a self-organized metasurface with a polarization dependent transmittance that can be dynamically controlled by optical means. The configuration consists of tightly packed plasmonic nanowires with a large dispersion of width and height produced by the defocused ion-beam sputtering of a thin gold film supported on a silica glass. Our results are quantitatively interpreted according to a theoretical model based on the thermomodulational nonlinearity of gold and a finite-element numerical analysis of the absorption and scattering cross-sections of the nanowires. We found that the polarization sensitivity of the metasurface can be strongly enhanced by pumping with ultrashort laser pulses, leading to potential applications in ultrafast all-optical modulation and switching of light.

  16. SU-E-T-197: Helical Cranial-Spinal Treatments with a Linear Accelerator

    SciTech Connect

    Anderson, J; Bernard, D; Liao, Y; Templeton, A; Turian, J; Chu, J

    2014-06-01

    Purpose: Craniospinal irradiation (CSI) of systemic disease requires a high level of beam intensity modulation to reduce dose to bone marrow and other critical structures. Current helical delivery machines can take 30 minutes or more of beam-on time to complete these treatments. This pilot study aims to test the feasibility of performing helical treatments with a conventional linear accelerator using longitudinal couch travel during multiple gantry revolutions. Methods: The VMAT optimization package of the Eclipse 10.0 treatment planning system was used to optimize pseudo-helical CSI plans of 5 clinical patient scans. Each gantry revolution was divided into three 120° arcs with each isocenter shifted longitudinally. Treatments requiring more than the maximum 10 arcs used multiple plans with each plan after the first being optimized including the dose of the others (Figure 1). The beam pitch was varied between 0.2 and 0.9 (couch speed 5- 20cm/revolution and field width of 22cm) and dose-volume histograms of critical organs were compared to tomotherapy plans. Results: Viable pseudo-helical plans were achieved using Eclipse. Decreasing the pitch from 0.9 to 0.2 lowered the maximum lens dose by 40%, the mean bone marrow dose by 2.1% and the maximum esophagus dose by 17.5%. (Figure 2). Linac-based helical plans showed dose results comparable to tomotherapy delivery for both target coverage and critical organ sparing, with the D50 of bone marrow and esophagus respectively 12% and 31% lower in the helical linear accelerator plan (Figure 3). Total mean beam-on time for the linear accelerator plan was 8.3 minutes, 54% faster than the tomotherapy average for the same plans. Conclusions: This pilot study has demonstrated the feasibility of planning pseudo-helical treatments for CSI targets using a conventional linac and dynamic couch movement, and supports the ongoing development of true helical optimization and delivery.

  17. Helical CT in emergency radiology.

    PubMed

    Novelline, R A; Rhea, J T; Rao, P M; Stuk, J L

    1999-11-01

    Today, a wide range of traumatic and nontraumatic emergency conditions are quickly and accurately diagnosed with helical computed tomography (CT). Many traditional emergency imaging procedures have been replaced with newer helical CT techniques that can be performed in less time and with greater accuracy, less patient discomfort, and decreased cost. The speed of helical technology permits CT examination of seriously ill patients in the emergency department, as well as patients who might not have been taken to CT previously because of the length of the examinations of the past. Also, helical technology permits multiple, sequential CT scans to be quickly obtained in the same patient, a great advance for the multiple-trauma patient. Higher quality CT examinations result from decreased respiratory misregistration, enhanced intravenous contrast material opacification of vascular structures and parenchymal organs, greater flexibility in image reconstruction, and improved multiplanar and three-dimensional reformations. This report summarizes the role and recommended protocols for the helical CT diagnosis of thoracic aortic trauma; aortic dissection; pulmonary embolism; acute conditions of the neck soft tissues; abdominal trauma; urinary tract stones; appendicitis; diverticulitis; abdominal aortic aneurysm; fractures of the face, spine, and extremities; and acute stroke.

  18. Helicity content and tokamak applications of helicity

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities.

  19. Liquid crystal helical ribbons as isometric textures

    NASA Astrophysics Data System (ADS)

    Achard, M.-F.; Kleman, M.; Nastishin, Yu. A.; Nguyen, H.-T.

    2005-01-01

    Deformations that conserve the parallelism and the distances between layers, in smectic phases; between columns, in columnar phases are commonplace in liquid crystals. The resulting isometric deformed textures display specific geometric features. The corresponding order parameter singularities extend over rather large, macroscopic, distances, e.g., cofocal conics in smectics. This well-known picture is modified when, superimposed to the 1D or 2D periodicities, the structure is helical. However isometry can be preserved. This paper discusses the case of a medium whose structure is made of 1D modulated layers (a lamello-columnar phase), assuming that the modulations rotate helically from one layer to the next. The price to pay is that any isometric texture is necessarily frustrated; it consists of layers folded into a set of parallel helicoids, in the manner of a screw dislocation (of macroscopic Burgers vector), the modulations being along the helices, i.e. double-twisted. The singularity set is made of two helical disclination lines. We complete this geometric analysis by a crude calculation of the energy of a helical ribbon. It is suggested that the helical ribbons observed in the B7 phase of banana-like molecules are such isometric textures. As a side result, let us mention that the description of double-twist, traditionally made in terms of a partition of the director field into nested cylinders, could more than often be profitably tested against a partition into nested helicoids.

  20. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency.

    PubMed

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-05

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm(2).

  1. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency

    NASA Astrophysics Data System (ADS)

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-01

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm2.

  2. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency

    PubMed Central

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-01

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm2. PMID:26728507

  3. Hippocampal-Sparing Whole Brain Radiotherapy: A “How-To” Technique, Utilizing Helical Tomotherapy and LINAC-based Intensity Modulated Radiotherapy

    PubMed Central

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tomé, Wolfgang A.

    2010-01-01

    Purpose Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein, we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Materials/Methods 5 anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5mm volumetric expansion around the hippocampus. Helical tomotherapy and LINAC-based IMRT treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results On average, the hippocampal avoidance volume was 3.3 cm3, occupying 2.1% of the whole brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy2 using helical tomotherapy and by 81% to 0.73 Gy2 using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a phase II cooperative group trial has been developed to test the postulated neurocognitive benefit. PMID:20598457

  4. Fluoride and organic weak acids as modulators of microbial physiology.

    PubMed

    Marquis, Robert E; Clock, Sarah A; Mota-Meira, Marilaine

    2003-01-01

    Fluoride is widely used as an anticaries agent in drinking water and a variety of other vehicles. This use has resulted in major health benefits. However, there are still open questions regarding the mechanisms of anticaries action and the importance of antimicrobial effects in caries reduction. Fluoride acts in multiple ways to affect the metabolism of cariogenic and other bacteria in the mouth. F(-)/HF can bind directly to many enzymes, for example, heme-containing enzymes or other metalloenzymes, to modulate metabolism. Fluoride is able also to form complexes with metals such as aluminum or beryllium, and the complexes, notably AlF(4)(-) and BeF(3)(-).H(2)O, can mimic phosphate with either positive or negative effects on a variety of enzymes and regulatory phosphatases. The fluoride action that appears to be most important for glycolytic inhibition at low pH in dental plaque bacteria derives from its weak-acid properties (pK(a)=3.15) and the capacity of HF to act as a transmembrane proton conductor. Since many of the actions of fluoride are related to its weak-acid character, it is reasonable to compare fluoride action to those of organic weak acids, including metabolic acids, food preservatives, non-steroidal anti-inflammatory agents and fatty acids, all of which act to de-energize the cell membrane by discharging DeltapH. Moreover, with the realization that the biofilm state is the common lifestyle for most microorganisms in nature, there is need to consider interactions of fluoride and organic weak acids with biofilm communities. Hopefully, this review will stimulate interest in the antimicrobial effects of fluoride or other weak acids and lead to more effective use of the agents for disease control and other applications.

  5. Carrier modulation layer-enhanced organic light-emitting diodes.

    PubMed

    Jou, Jwo-Huei; Kumar, Sudhir; Singh, Meenu; Chen, Yi-Hong; Chen, Chung-Chia; Lee, Meng-Ting

    2015-07-17

    Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.

  6. Structure and interactions of biological helices

    NASA Astrophysics Data System (ADS)

    Kornyshev, Alexei A.; Lee, Dominic J.; Leikin, Sergey; Wynveen, Aaron

    2007-07-01

    Helices are essential building blocks of living organisms, be they molecular fragments of proteins ( α -helices), macromolecules (DNA and collagen), or multimolecular assemblies (microtubules and viruses). Their interactions are involved in packing of meters of genetic material within cells and phage heads, recognition of homologous genes in recombination and DNA repair, stability of tissues, and many other processes. Helical molecules form a variety of mesophases in vivo and in vitro. Recent structural studies, direct measurements of intermolecular forces, single-molecule manipulations, and other experiments have accumulated a wealth of information and revealed many puzzling physical phenomena. It is becoming increasingly clear that in many cases the physics of biological helices cannot be described by theories that treat them as simple, unstructured polyelectrolytes. The present article focuses on the most important and interesting aspects of the physics of structured macromolecules, highlighting various manifestations of the helical motif in their structure, elasticity, interactions with counterions, aggregation, and poly- and mesomorphic transitions.

  7. Compression of Flow Can Reveal Overlapping-Module Organization in Networks

    NASA Astrophysics Data System (ADS)

    Viamontes Esquivel, Alcides; Rosvall, Martin

    2011-10-01

    To better understand the organization of overlapping modules in large networks with respect to flow, we introduce the map equation for overlapping modules. In this information-theoretic framework, we use the correspondence between compression and regularity detection. The generalized map equation measures how well we can compress a description of flow in the network when we partition it into modules with possible overlaps. When we minimize the generalized map equation over overlapping network partitions, we detect modules that capture flow and determine which nodes at the boundaries between modules should be classified in multiple modules and to what degree. With a novel greedy-search algorithm, we find that some networks, for example, the neural network of the nematode Caenorhabditis elegans, are best described by modules dominated by hard boundaries, but that others, for example, the sparse European-roads network, have an organization of highly overlapping modules.

  8. Scalability of multi-junction organic solar cells for large area organic solar modules

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Lee, Kyusang; Forrest, Stephen R.

    2015-05-01

    We investigate the scalability of multi-junction organic photovoltaic cells (OPV) with device areas ranging from 1 mm2 to 1 cm2, as well as 25 cm2 active area solar modules. We find that the series resistance losses in 1 cm2 vs. 1 mm2 OPV cell efficiencies are significantly higher in single junction cells than tandem, triple, and four junction cells due to the lower operating voltage and higher current of the former. Using sub-electrodes to reduce series resistance, the power conversion efficiency (PCE) of multi-junction cells is almost independent of area from 1 mm2 to 1 cm2. Twenty-five, 1 cm2 multi-junction cell arrays are integrated in a module and connected in a series-parallel circuit configuration. A yield of 100% with a deviation of PCE from cell to cell of <10% is achieved. The module generates an output power of 162 ± 9 mW under simulated AM1.5G illumination at one sun intensity, corresponding to PCE = 6.5 ± 0.1%, slightly lower than PCE of discrete cells ranging from 6.7% to 7.2%.

  9. Dosimetric and radiobiological comparison of helical tomotherapy, forward-planned intensity-modulated radiotherapy and two-phase conformal plans for radical radiotherapy treatment of head and neck squamous cell carcinomas.

    PubMed

    Chatterjee, S; Willis, N; Locks, S M; Mott, J H; Kelly, C G

    2011-12-01

    The usual radical radiotherapy treatment prescribed for head and neck squamous cell carcinoma (HNSCC) is 70 Gy (in 2 Gy per fraction equivalent) administered to the high-risk target volume (TV). This can be planned using either a forward-planned photon-electron junction technique (2P) or a single-phase (1P) forward-planned technique developed in-house. Alternatively, intensity-modulated radiotherapy (IMRT) techniques, including helical tomotherapy (HT), allow image-guided inversely planned treatments. This study was designed to compare these three planning techniques with regards to TV coverage and the dose received by organs at risk. We compared the dose-volume histograms and conformity indices (CI) of the three planning processes in five patients with HNSCC. The tumour control probability (TCP), normal tissue complication probability (NTCP) and uncomplicated tumour control probability (UCP) were calculated for each of the 15 plans. In addition, we explored the radiobiological rationality of a dose-escalation strategy. The CI for the high-risk clinical TV (CTV1) in the 5 patients were 0.78, 0.76, 0.82, 0.72 and 0.81 when HT was used; 0.58, 0.56, 0.47, 0.35 and 0.60 for the single-phase forward-planned technique and 0.46, 0.36, 0.29, 0.22 and 0.49 for the two-phase technique. The TCP for CTV1 with HT were 79.2%, 85.2%, 81.1%, 83.0% and 53.0%; for single-phase forward-planned technique, 76.5%, 86.9%, 73.4%, 81.8% and 31.8% and for the two-phase technique, 38.2%, 86.2%, 42.7%, 0.0% and 3.4%. Dose escalation using HT confirmed the radiobiological advantage in terms of TCP. TCP for the single-phase plans was comparable to that of HT plans, whereas that for the two-phase technique was lower. Centres that cannot provide IMRT for the radical treatment of all patients could implement the single-phase technique as standard to attain comparable TCP. However, IMRT produced better UCP, thereby enabling the exploration of dose escalation.

  10. Helical Nanofilament Phases

    SciTech Connect

    L Hough; H Jung; D Kruerke; M Heberling; M Nakata; C Jones; D Chen; D Link; N Clark; et al.

    2011-12-31

    In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral - a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry - the appearance of macroscopic coherence of the filament twist-produces a liquid crystal phase of helically precessing layers.

  11. Shearing wind helicity and thermal wind helicity

    NASA Astrophysics Data System (ADS)

    Han, Y.; Wu, R. S.; Fang, J.

    2006-07-01

    Helicity is defined as H = V . omega, where V and omega are the velocity and vorticity vectors, respectively. Many works have pointed out that the larger the helicity is, the longer the life cycle of the weather system is. However, the direct relationship of the helicity to the evolution of the weather system is not quite clear. In this paper, the concept of helicity is generalized as shearing wind helicity (SWH). Dynamically, it is found that the average SWH is directly related to the increase of the average cyclonic rotation of the weather system. Physically, it is also pointed out that the SWH, as a matter of fact, is the sum of the torsion terms and the divergence term in the vorticity equation. Thermal wind helicity (TWH), as a derivative of SWH, is also discussed here because it links the temperature field and the vertical wind field. These two quantities may be effective for diagnosing a weather system. This paper applies these two quantities in cylindrical coordinates to study the development of Hurricane Andrew to validate their practical use. Through analyzing the hurricane, it is found that TWH can well describe the characteristics of the hurricane such as the strong convection and release of latent heat. SWH is not only a good quantity for diagnosing the weather system, but also an effective one for diagnosing the development of the hurricane.

  12. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  13. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  14. Magnetic Helicity in a Cyclic Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.; Zhang, Mei; Augustson, Kyle C.

    2016-05-01

    Magnetic helicity is a fundamental agent for magnetic self-organization in magnetohydrodynamic (MHD) dynamos. As a conserved quantity in ideal MHD, it establishes a strict topological coupling between large and small-scale magnetic fields. The generation of magnetic fields on scales larger than the velocity field is linked to an upscale transfer of magnetic helicity, either locally in spectral space as in the inverse cascade of magnetic helicity in MHD turbulence or non-locally, as in the turbulent alpha-effect of mean-field dynamo theory. Thus, understanding the generation, transport, and dissipation of magnetic helicity is an essential prerequisite to understanding manifestations of magnetic self-organization in the solar dynamo, including sunspots, the prominent dipole and quadrupole moments, and the 22-year magnetic activity cycle. We investigate the role of magnetic helicity in a convective dynamo model that exhibits regular magnetic cycles. The cycle is marked by coherent bands of toroidal field that persist within the convection zone and that are antisymmetric about the equator. When these toriodal bands interact across the equator, it initiates a global restructuring of the magnetic topology that contributes to the reversal of the dipole moment. Thus, the polar field reversals are preceeded by a brief reversal of the subsurface magnetic helicity. There is some evidence that the Sun may exhibit a similar magnetic helicity reversal prior to its polar field reversals.

  15. Modulating F-actin organization induces organ growth by affecting the Hippo pathway

    PubMed Central

    Sansores-Garcia, Leticia; Bossuyt, Wouter; Wada, Ken-Ichi; Yonemura, Shigenobu; Tao, Chunyao; Sasaki, Hiroshi; Halder, Georg

    2011-01-01

    The Hippo tumour suppressor pathway is a conserved signalling pathway that controls organ size. The core of the Hpo pathway is a kinase cascade, which in Drosophila involves the Hpo and Warts kinases that negatively regulate the activity of the transcriptional coactivator Yorkie. Although several additional components of the Hippo pathway have been discovered, the inputs that regulate Hippo signalling are not fully understood. Here, we report that induction of extra F-actin formation, by loss of Capping proteins A or B, or caused by overexpression of an activated version of the formin Diaphanous, induced strong overgrowth in Drosophila imaginal discs through modulating the activity of the Hippo pathway. Importantly, loss of Capping proteins and Diaphanous overexpression did not significantly affect cell polarity and other signalling pathways, including Hedgehog and Decapentaplegic signalling. The interaction between F-actin and Hpo signalling is evolutionarily conserved, as the activity of the mammalian Yorkie-orthologue Yap is modulated by changes in F-actin. Thus, regulators of F-actin, and in particular Capping proteins, are essential for proper growth control by affecting Hippo signalling. PMID:21556047

  16. Can We Spare the Pancreas and Other Abdominal Organs at Risk? A Comparison of Conformal Radiotherapy, Helical Tomotherapy and Proton Beam Therapy in Pediatric Irradiation

    PubMed Central

    Jouglar, Emmanuel; Wagner, Antoine; Delpon, Grégory; Campion, Loïc; Meingan, Philippe; Bernier, Valérie; Demoor-Goldschmidt, Charlotte; Mahé, Marc-André; Lacornerie, Thomas; Supiot, Stéphane

    2016-01-01

    Objectives Late abdominal irradiation toxicity during childhood included renal damage, hepatic toxicity and secondary diabetes mellitus. We compared the potential of conformal radiotherapy (CRT), helical tomotherapy (HT) and proton beam therapy (PBT) to spare the abdominal organs at risk (pancreas, kidneys and liver- OAR) in children undergoing abdominal irradiation. Methods We selected children with abdominal tumors who received more than 10 Gy to the abdomen. Treatment plans were calculated in order to keep the dose to abdominal OAR as low as possible while maintaining the same planned target volume (PTV) coverage. Dosimetric values were compared using the Wilcoxon signed-rank test. Results The dose distribution of 20 clinical cases with a median age of 8 years (range 1–14) were calculated with different doses to the PTV: 5 medulloblastomas (36 Gy), 3 left-sided and 2 right-sided nephroblastomas (14.4 Gy to the tumor + 10.8 Gy boost to para-aortic lymphnodes), 1 left-sided and 4 right-sided or midline neuroblastomas (21 Gy) and 5 Hodgkin lymphomas (19.8 Gy to the para-aortic lymphnodes and spleen). HT significantly reduced the mean dose to the whole pancreas (WP), the pancreatic tail (PT) and to the ipsilateral kidney compared to CRT. PBT reduced the mean dose to the WP and PT compared to both CRT and HT especially in midline and right-sided tumors. PBT decreased the mean dose to the ispilateral kidney but also to the contralateral kidney and the liver compared to CRT. Low dose to normal tissue was similar or increased with HT whereas integral dose and the volume of normal tissue receiving at least 5 and 10 Gy were reduced with PBT compared to CRT and HT. Conclusion In children undergoing abdominal irradiation therapy, proton beam therapy reduces the dose to abdominal OAR while sparing normal tissue by limiting low dose irradiation. PMID:27764132

  17. Organization of tn2610 containing two transposition modules.

    PubMed

    Takaya, Akiko; Watanabe, Masato; Yamamoto, Tomoko

    2006-04-01

    Transposon Tn2610, found in a conjugative plasmid from an Escherichia coli isolate recovered at a hospital in Chiba, Japan, in 1975, was completely sequenced. Tn2610 is 23,883 bp long and is bracketed by two transposition modules, a Tn1721-like module and a Tn21-derived module, which correspond, respectively, to the long inverted repeats IRa and IRb previously described for this transposon. Although both tnpA genes are intact, only that in the Tn21-derived module (IRb) functions in the transposition, while that in the Tn1721-derived module (IRa) cannot recognize the 38-bp imperfect repeat at the end of the IRb element. Both tnpR and res are present in IRa, while the tnpR gene of IRb is interrupted by the insertion of an IS26 insertion element. The intervening region, between the res site of the Tn1721 module and IS26, carries multiple integron-associated resistance genes within a Tn21 backbone, including a region identical to that found in the genome of Salmonella enterica serovar Typhimurium DT104. These findings suggest that Tn2610 originated from Tn1721 and Tn21, with extensive recombination events with other elements which have resulted in a complex mosaic structure.

  18. The influence of active cell design on a monolithic organic photovoltaic module: fabrication and simulation

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Sim, Jun Hyoung; Jeong, Seonju; Woo, Sung-Ho; Shin, Jang-Kyoo; Han, Yoon Soo

    2011-09-01

    In this study, the influence of an active cell design on the power conversion efficiency (PCE) of a monolithic organic photovoltaic (OPV) module was investigated using experimental methods and circuit simulation. For circuit simulation using computer simulation-based study, the organic PV cell was described by a circuit-based two-diode model and the modules were simulated under several conditions including shading effect, diode model parameters, series resistance and shunt resistance, etc. A unit organic PV cell as a reference device and four types of monolithic organic PV modules with different active cell length were fabricated together on the same glass substrate. The characteristics of the fabricated unit OPV cell were measured and the electrical parameters were extracted to use them for the simulation of four types of monolithic organic PV modules. To analyze the influence of OPV cell design on the PCE of monolithic organic PV modules, the current-voltage (I-V) characteristic curves and the PCEs of the four type monolithic OPV modules with different active cell length were obtained and compared with the simulated results. The simulated I-V curves were matched well with the measured I-V curves for the four types of monolithic organic PV modules with different active cell length. The highest PCE of the monolithic OPV module was 2.86 % with the active cell length of 11.6 mm. We expect that this work is meaningful to enhance the performance of a monolithic OPV module to a certain extent and it offers a method to design a high-efficiency large-area monolithic OPV module.

  19. A Helical Stairway Project

    ERIC Educational Resources Information Center

    Farmer, Tom

    2008-01-01

    We answer a geometric question that was raised by the carpenter in charge of erecting helical stairs in a 10-story hospital. The explanation involves the equations of lines, planes, and helices in three-dimensional space. A brief version of the question is this: If A and B are points on a cylinder and the line segment AB is projected radially onto…

  20. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers

    SciTech Connect

    Yoo, Hyung Keun; Kang, Chul; Hwang, In-Wook; Yoon, Youngwoon; Lee, Kiejin; Kee, Chul-Sik; Lee, Joong Wook

    2014-07-07

    Using hybrid bilayer systems comprising a molecular organic semiconductor and silicon, we achieve optically controllable active terahertz (THz) modulators that exhibit extremely high modulation efficiencies. A modulation efficiency of 98% is achieved from thermally annealed C{sub 60}/silicon bilayers, due to the rapid photo-induced electron transfer from the excited states of the silicon onto the C{sub 60} layer. Furthermore, we demonstrate the broadband modulation of THz waves. The cut-off condition of the system that is determined by the formation of efficient charge separation by the photo-excitation is highly variable, changing the system from insulating to metallic. The phenomenon enables an extremely high modulation bandwidth and rates of electromagnetic waves of interest. The realization of near-perfect modulation efficiency in THz frequencies opens up the possibilities of utilizing active modulators for THz spectroscopy and communications.

  1. Polaron spin echo envelope modulations in an organic semiconducting polymer

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less

  2. Swimming and pumping of helical structures in viscous fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio

    2014-11-01

    Many flagellated microorganisms including E. coli swim by rotating slender helical flagella, while ciliated organisms like Paramecia swim by passing helical waves along their surfaces. We will discuss a framework for studying such problems where the Stokes equations describing viscous flow are written in helical coordinates. Analytical predictions match well with full numerical simulations, and suggest optimal geometries. This work may also aid designs in microfluidic manipulation, microswimmer engineering, and the mixing of viscous fluids.

  3. Squeezed helical elastica.

    PubMed

    Bouzar, Lila; Müller, Martin Michael; Gosselin, Pierre; Kulić, Igor M; Mohrbach, Hervé

    2016-11-01

    We theoretically study the conformations of a helical semi-flexible filament confined to a flat surface. This squeezed helix exhibits a variety of unexpected shapes resembling circles, waves or spirals depending on the material parameters. We explore the conformation space in detail and show that the shapes can be understood as the mutual elastic interaction of conformational quasi-particles. Our theoretical results are potentially useful to determine the material parameters of such helical filaments in an experimental setting.

  4. [Hormone modulation of organ donor. Utility of the steroids].

    PubMed

    Michelena, Juna C; Chamorro, Carlos; Falcón, Juan A; Garcés, Sandra

    2009-01-01

    Recently, the work group made up of the National Transplant Organization (Organización Nacional de Trasplantes, ONT), Spanish Society of Intensive, Critical Medicine and Coronary Units (Sociedad Española de Medicina Intensiva, Crítica y de Unidades Coronarias, SEMICYUC) and other Scientific Societies have recommended using 15 mg/kg of methyl prednisolone during the management of lung donors after brain death. This recommendation is based on descriptive and retrospective studies. However, the review of different experimental and clinical studies also suggests a potential benefit of using steroids in either thoracic or abdominal organ donors during management strategies. In brain death management, early steroid administration may decrease cytokine production and also may prevent alterations induced by proinflammatoy mediators, stabilize cell membranes, reduce expression of cell surface adhesion molecules and avoid lipid peroxidation after the ischemic period. This could be beneficial in increasing number and quality of organs harvested and in decreasing rejection episodes after transplant. It would be very recommendable to carry out prospective and comparative studies to demonstrate these potential utilities. Meanwhile and knowing the deleterious effects of inflammatory activity arising during and after brain death, we recommend using 15 mg/kg of methyl prednisolone in the organ donor management, as soon as possible. The potential benefit of its immunomodulation effects, its low cost and the absence of major side effects can justify this recommendation.

  5. Evolution of field line helicity during magnetic reconnection

    SciTech Connect

    Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.

    2015-03-15

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  6. Evolution of field line helicity during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Yeates, A. R.; Hornig, G.; Wilmot-Smith, A. L.

    2015-03-01

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  7. The N-terminus and alpha-5, alpha-6 helices of the pro-apoptotic protein Bax, modulate functional interactions with the anti-apoptotic protein Bcl-xL

    PubMed Central

    Parikh, Neha; Koshy, Caroline; Dhayabaran, Vaigundan; Perumalsamy, Lakshmi R; Sowdhamini, R; Sarin, Apurva

    2007-01-01

    Background Bcl-2 family proteins are key regulators of mitochondrial integrity and comprise both pro- and anti-apoptotic proteins. Bax a pro-apoptotic member localizes as monomers in the cytosol of healthy cells and accumulates as oligomers in mitochondria of apoptotic cells. The Bcl-2 homology-3 (BH3) domain regulates interactions within the family, but regions other than BH3 are also critical for Bax function. Thus, the N-terminus has been variously implicated in targeting to mitochondria, interactions with BH3-only proteins as well as conformational changes linked to Bax activation. The transmembrane (TM) domains (α5-α6 helices in the core and α9 helix in the C-terminus) in Bax are implicated in localization to mitochondria and triggering cytotoxicity. Here we have investigated N-terminus modulation of TM function in the context of regulation by the anti-apoptotic protein Bcl-xL. Results Deletion of 29 amino acids in the Bax N-terminus (Bax 30–192) caused constitutive accumulation at mitochondria and triggered high levels of cytotoxicity, not inhibited by Bcl-xL. Removal of the TM domains (Bax 30–105) abrogated mitochondrial localization but resulted in Bcl-xL regulated activation of endogenous Bax and Bax-Bak dependent apoptosis. Inclusion of the α5-α6 helices/TMI domain (Bax 30–146) phenocopied Bax 30–192 as it restored mitochondrial localization, Bcl-xL independent cytotoxicity and was not dependent on endogenous Bax-Bak. Inhibition of function and localization by Bcl-xL was restored in Bax 1–146, which included the TM1 domain. Regardless of regulation by Bcl-xL, all N-terminal deleted constructs immunoprecipitated Bcl-xLand converged on caspase-9 dependent apoptosis consistent with mitochondrial involvement in the apoptotic cascade. Sub-optimal sequence alignments of Bax and Bcl-xL indicated a sequence similarity between the α5–α6 helices of Bax and Bcl-xL. Alanine substitutions of three residues (T14A-S15A-S16A) in the N-terminus (Bax

  8. Feasibility and efficacy of helical intensity-modulated radiotherapy for stage III non-small cell lung cancer in comparison with conventionally fractionated 3D-CRT

    PubMed Central

    He, Jian; Huang, Yan; Chen, Yixing; Shi, Shiming; Ye, Luxi; Hu, Yong; Zhang, Jianying

    2016-01-01

    Background The standard treatment for stage III non-small-cell lung cancer (NSCLC) is still 60 Gy in conventional fractions combined with concurrent chemotherapy; however, the resulting local controls are disappointing. The aim of this study was to compare and assess the feasibility and efficacy of hypofractionated chemoradiotherapy using helical tomotherapy (HT) with conventional fractionation as opposed to using three-dimensional conformal radiotherapy (3D-CRT) for stage III NSCLC. Methods Sixty-nine patients with stage III (AJCC 7th edition) NSCLC who underwent definitive radiation treatment at our institution between July 2011 and November 2013 were reviewed and analyzed retrospectively. A dose of 60 Gy in 20 fractions was delivered in the HT group (n=34), whereas 60 Gy in 30 fractions in the 3D-CRT group (n=35). Primary endpoints were toxicity, overall response rate, overall survival (OS) and progression-free survival (PFS). Results The median follow-up period was 26.4 months. V20 (P=0.005), V30 (P=0.001), V40 (P=0.004), mean lung dose (P=0.000) and max dose of spinal cord (P=0.005) were significantly lower in the HT group than in the 3D-CRT group. There was no significant difference in the incidences of acute radiation pneumonitis (RP) ≥ grade 2 between the two groups, whereas the incidences of acute radiation esophagitis ≥ grade 2 were significantly lower in the HT group than in the 3D-CRT group (P=0.027). Two-year overall response rate was significantly higher in the HT group than in the 3D-CRT group (P=0.015). One- and 2-year OS rates were significantly higher in the HT group (95.0% and 68.7%, respectively) than in the 3D-CRT group (85.5% and 47.6%, respectively; P=0.0236). One- and 2-year PFS rates were significantly higher in the HT group (57.8% and 26.3%, respectively) than in the 3D-CRT group (32.7% and 11.4%, respectively; P=0.0351). Univariate analysis indicated that performance status (PS), T stage and radiotherapy technique were significant

  9. Toward engineering functional organ modules by additive manufacturing.

    PubMed

    Marga, Francoise; Jakab, Karoly; Khatiwala, Chirag; Shepherd, Benjamin; Dorfman, Scott; Hubbard, Bradley; Colbert, Stephen; Gabor, Forgacs

    2012-06-01

    Tissue engineering is emerging as a possible alternative to methods aimed at alleviating the growing demand for replacement tissues and organs. A major pillar of most tissue engineering approaches is the scaffold, a biocompatible network of synthetic or natural polymers, which serves as an extracellular matrix mimic for cells. When the scaffold is seeded with cells it is supposed to provide the appropriate biomechanical and biochemical conditions for cell proliferation and eventual tissue formation. Numerous approaches have been used to fabricate scaffolds with ever-growing complexity. Recently, novel approaches have been pursued that do not rely on artificial scaffolds. The most promising ones utilize matrices of decellularized organs or methods based on multicellular self-assembly, such as sheet-based and bioprinting-based technologies. We briefly overview some of the scaffold-free approaches and detail one that employs biological self-assembly and bioprinting. We describe the technology and its specific applications to engineer vascular and nerve grafts.

  10. Modulation of organic interfacial spin polarization by interfacial angle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Li, Ying; Zhang, Guang-ping; Ren, Jun-feng; Wang, Chuan-kui; Hu, Gui-chao

    2017-01-01

    Based on ab initio theory, we theoretically investigated the interfacial spin polarization by adsorbing a benzene-dithiolate molecule onto a nickel surface with different interfacial angles. A variable magnitude and even an inversion of the interfacial spin polarization are observed with the increase of the interfacial angle. The orbital analysis shows that the interfacial spin polarization is codetermined by two kinds of orbital hybridization between the molecule and the ferromagnet, the pz-d hybridization and the sp3-d hybridization, which show different dependence on the angle. These results indicate a new way to manipulate the spin polarization at organic spinterface.

  11. Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s.

    PubMed

    Melikyan, A; Koehnle, K; Lauermann, M; Palmer, R; Koeber, S; Muehlbrandt, S; Schindler, P C; Elder, D L; Wolf, S; Heni, W; Haffner, C; Fedoryshyn, Y; Hillerkuss, D; Sommer, M; Dalton, L R; Van Thourhout, D; Freude, W; Kohl, M; Leuthold, J; Koos, C

    2015-04-20

    We report on high-speed plasmonic-organic hybrid Mach-Zehnder modulators comprising ultra-compact phase shifters with lengths as small as 19 µm. Choosing an optimum phase shifter length of 29 µm, we demonstrate 40 Gbit/s on-off keying (OOK) modulation with direct detection and a BER < 6 × 10(-4). Furthermore, we report on a 29 µm long binary-phase shift keying (BPSK) modulator and show that it operates error-free (BER < 1 × 10(-10)) at data rates up to 40 Gbit/s and with an energy consumption of 70 fJ/bit.

  12. Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2002-01-01

    The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.

  13. Significance of bending restraints for the stability of helical polymer conformations

    NASA Astrophysics Data System (ADS)

    Williams, Matthew J.; Bachmann, Michael

    2016-06-01

    We performed parallel-tempering Monte Carlo simulations to investigate the formation and stability of helical tertiary structures for flexible and semiflexible polymers, employing a generic coarse-grained model. Structural conformations exhibit helical order with tertiary ordering into single helices, multiple helical segments organized into bundles, and disorganized helical arrangements. For both bending-restrained semiflexible and bending-unrestrained flexible helical polymers, the stability of the structural phases is discussed systematically by means of hyperphase diagrams parametrized by suitable order parameters, temperature, and torsion strength. This exploration lends insight into the restricted flexibility of biological polymers such as double-stranded DNA and proteins.

  14. Helical plasma thruster

    SciTech Connect

    Beklemishev, A. D.

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  15. Helical screw viscometer

    NASA Astrophysics Data System (ADS)

    Aubert, J. H.; Chapman, R. N.; Kraynik, A. M.

    1983-06-01

    A helical screw viscometer for the measurement of the viscosity of Newtonian and nonNewtonian fluids is comprised of an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the other periphery thereof rotatably carried within the cavity. The fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  16. Helical plasma thruster

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR® rocket engine.

  17. Mathisson's helical motions demystified

    NASA Astrophysics Data System (ADS)

    Costa, L. Filipe; Natário, José; Zilhão, Miguel

    2012-07-01

    The motion of spinning test particles in general relativity is described by Mathisson-Papapetrou-Dixon equations, which are undetermined up to a spin supplementary condition, the latter being today still an open question. The Mathisson-Pirani (MP) condition is known to lead to rather mysterious helical motions which have been deemed unphysical, and for this reason discarded. We show that these assessments are unfounded and originate from a subtle (but crucial) misconception. We discuss the kinematical explanation of the helical motions, and dynamically interpret them through the concept of hidden momentum, which has an electromagnetic analogue. We also show that, contrary to previous claims, the frequency of the helical motions coincides exactly with the zitterbewegung frequency of the Dirac equation for the electron.

  18. Helical screw viscometer

    DOEpatents

    Aubert, J.H.; Chapman, R.N.; Kraynik, A.M.

    1983-06-30

    A helical screw viscometer for the measurement of the viscosity of Newtonian and non-Newtonian fluids comprising an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the outer periphery thereof rotatably carried within the cavity whereby the fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  19. Prospective optimization of CT under tube current modulation: I. organ dose

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald; Samei, Ehsan

    2014-03-01

    In an environment in which computed tomography (CT) has become an indispensable diagnostic tool employed with great frequency, dose concerns at the population level have become a subject of public attention. In that regard, optimizing radiation dose has become a core problem to the CT community. As a fundamental step to optimize radiation dose, it is crucial to effectively quantify radiation dose for a given CT exam. Such dose estimates need to be patient-specific to reflect individual radiation burden. It further needs to be prospective so that the scanning parameters can be dynamically adjusted before the scan is performed. The purpose of this study was to prospectively estimate organ dose in abdominopelvic CT exams under tube current modulation (TCM). CTDIvol-normalized-organ dose coefficients ( hfixed ) for fixed tube current were first estimated using a validated Monte Carlo simulation program and 58 computational phantoms. To account for the effect of TCM scheme, a weighted CTDIvol was computed for each organ based on the tube current modulation profile. The organ dose was predicted by multiplying the weighted CTDIvol with the organ dose coefficients ( hfixed ). To quantify prediction accuracy, each predicted organ dose was compared with organ dose simulated from Monte Carlo program with TCM profile explicitly modeled. The predicted organ dose showed good agreement with simulated organ dose across all organs and modulation strengths. For an average CTDIvol of a CT exam of 10 mGy, the absolute median error across all organs were 0.64 mGy (-0.21 and 0.97 for 25th and 75th percentiles, respectively). The percentage differences (normalized by CTDIvol of the exam) were within 15%. This study developed a quantitative model to predict organ dose under clinical abdominopelvic scans. Such information may aid in the optimization of CT protocols.

  20. Modulation of Acetone-Butanol-Ethanol Fermentation by Carbon Monoxide and Organic Acids

    PubMed Central

    Datta, Rathin; Zeikus, J. G.

    1985-01-01

    Metabolic modulation of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum with carbon monoxide (CO) and organic acids is described. CO, which is a known inhibitor of hydrogenase, was found to be effective in the concentration range of dissolved CO corresponding to a CO partial pressure of 0.1 to 0.2 atm. Metabolic modulation by CO was particularly effective when organic acids such as acetic and butyric acids were added to the fermentation as electron sinks. The uptake of organic acids was enhanced, and increases in butyric acid uptake by 50 to 200% over control were observed. Hydrogen production could be reduced by 50% and the ratio of solvents could be controlled by CO modulation and organic acid addition. Acetone production could be eliminated if desired. Butanol yield could be increased by 10 to 15%. Total solvent yield could be increased 1 to 3% and the electron efficiency to acetone-butanol-ethanol solvents could be increased from 73 to 78% for controls to 80 to 85% for CO- and organic acid-modulated fermentations. Based on these results, the dynamic nature of electron flow in this fermentation has been elucidated and mechanisms for metabolic control have been hypothesized. PMID:16346746

  1. Organ dose conversion coefficients for tube current modulated CT protocols for an adult population

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan

    2016-03-01

    In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.

  2. Cell Type-Specific Modulation of Respiratory Chain Supercomplex Organization

    PubMed Central

    Sun, Dayan; Li, Bin; Qiu, Ruyi; Fang, Hezhi; Lyu, Jianxin

    2016-01-01

    Respiratory chain complexes are organized into large supercomplexes among which supercomplex In + IIIn + IVn is the only one that can directly transfer electrons from NADH to oxygen. Recently, it was reported that the formation of supercomplex In + IIIn + IVn in mice largely depends on their genetic background. However, in this study, we showed that the composition of supercomplex In + IIIn + IVn is well conserved in various mouse and human cell lines. Strikingly, we found that a minimal supercomplex In + IIIn, termed “lowest supercomplex” (LSC) in this study because of its migration at the lowest position close to complex V dimers in blue native polyacrylamide gel electrophoresis, was associated with complex IV to form a supercomplex In + IIIn + IVn in some, but not all of the human and mouse cells. In addition, we observed that the 3697G>A mutation in mitochondrial-encoded NADH dehydrogenase 1 (ND1) in one patient with Leigh’s disease specifically affected the assembly of supercomplex In + IIIn + IVn containing LSC, leading to decreased cellular respiration and ATP generation. In conclusion, we showed the existence of LSC In + IIIn + IVn and impairment of this supercomplex causes disease. PMID:27338358

  3. Reelin modulates cytoskeletal organization by regulating Rho GTPases

    PubMed Central

    2011-01-01

    The correct positioning of postmitotic neurons in the developing neocortex and other laminated brain structures requires the activation of a Reelin-lipoprotein receptor-Dab1 signaling cascade. The large glycoprotein Reelin is secreted by Cajal-Retzius pioneer neurons and bound by the apolipoprotein E receptor family members Apoer2 and Vldl receptor on responsive neurons and radial glia. This leads to the tyrosine phosphorylation of the cytoplasmic protein Disabled-1 (Dab1) by non-receptor tyrosine kinases of the Src family. Various signaling pathways downstream of Dab1 connect Reelin to the actin and microtubule cytoskeleton. Despite this knowledge, a comprehensive view linking the different cell-biological and biochemical actions of Reelin to its diverse physiological roles not only during neurodevelopment but also in the maintenance and functioning of the adult brain is still lacking. In this review, we discuss our finding that Reelin activates Rho GTPases in neurons in the light of other recent studies, which demonstrate a role of Reelin in Golgi organization, and suggest additional roles of Cdc42 activation by Reelin in radial glial cells of the developing cortex. PMID:21980553

  4. Helical-D pinch

    SciTech Connect

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The {open_quotes}helical-D{close_quotes} geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a {open_quotes}dynamo{close_quotes} process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1.

  5. Helical spring holder assembly

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S. (Inventor)

    1987-01-01

    A helically-threaded spring holder on which a helically wound spring is mounted has a groove formed in one side of the thread at the end where the spring engages the spring holder. The groove relieves the portion of the side in which it is formed from restricting the spring against axial movement during deflection of the spring. The circumferential length of this groove is chosen to establish the number of spring coils which can be deflected without contacting the side of the thread. The end of the thread is also made rigid to prevent flexing thereof during maximal elongation of the spring.

  6. Helical Lattice Vibrational Modes in DNA.

    DTIC Science & Technology

    1988-03-10

    VIBRATIONAL MODES IN DNA(U) PURDUE UNIV l’ LAFAYETTE IND DEPT OF PHYSICS V V PRRGHU ET AL. UNCLR~~lll’ 16I MAR *6 N99914...Initiative Organization 1400014-86-K-0252 Washinton, D.C. 20301-7100 %0 %0 .0 Helical Lattixce Vibrational ’ Modes in DNA V.V. Prabhu, ’.,.K. Sclhrol!, L.L...8217+"+ " ’. % " " % ") . " ". ".",°. " . % % . . ,.-. -.-. -. ,, . . - . -]. o % % % o. -.-. , .%** %-N% Revised version Helical Lattice Vibrational Modes in DNA 1 A recent

  7. Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.

    PubMed

    Kahnt, Thorsten; Tobler, Philippe N

    2017-02-08

    Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks.SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D2 receptors has profound effects on the functional connectivity patterns of

  8. Breast dose reduction with organ-based, wide-angle tube current modulated CT.

    PubMed

    Fu, Wanyi; Sturgeon, Gregory M; Agasthya, Greeshma; Segars, William Paul; Kapadia, Anuj J; Samei, Ehsan

    2017-07-01

    This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic computed tomography (CT) with a wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT) were used to create a virtual patient population with clinical anatomic variations. The phantoms were created based on patient images with normal anatomy (age range: 27 to 66 years, weight range: 52.0 to 105.8 kg). For each phantom, two breast tissue compositions were simulated: [Formula: see text] and [Formula: see text] (glandular-to-adipose ratio). A validated Monte Carlo program (PENELOPE, Universitat de Barcelona, Spain) was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) using a typical clinical thoracic CT protocol. Both organ dose and [Formula: see text]-to-organ dose conversion coefficients ([Formula: see text] factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses ([Formula: see text]). The breast dose was reduced by [Formula: see text]. For [Formula: see text] factors, organs in the anterior region (e.g., thyroid and stomach) exhibited substantial decreases, and the medial, distributed, and posterior region saw either an increase of less than 5% or no significant change. ODM significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.

  9. Solar cycle-dependent helicity transport by magnetic clouds

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Gruesbeck, J. R.; Zurbuchen, T. H.; Antiochos, S. K.

    2005-08-01

    Magnetic clouds observed with the Wind and ACE spacecraft are fit with the static, linear force-free cylinder model to obtain estimates of the chirality, fluxes, and magnetic helicity of each event. The fastest magnetic clouds (MCs) are shown to carry the most flux and helicity. We calculate the net cumulative helicity which measures the difference in right- and left-handed helicity contained in MCs over time. The net cumulative helicity does not average to zero; rather, a strong left-handed helicity bias develops over the solar cycle, dominated by the largest events of cycle 23: Bastille Day 2000 and 28 October 2003. The majority of MCs ("slow" events, < 500 km/s) have a net cumulative helicity profile that appears to be modulated by the solar activity cycle. This is far less evident for "fast" MC events ( ≥ 500 km/s), which were disproportionately left-handed over our data set. A brief discussion about the various solar sources of CME helicity and their implication for dynamo processes is included.

  10. Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks.

    PubMed

    Gutov, Oleksii V; Molina, Sonia; Escudero-Adán, Eduardo C; Shafir, Alexandr

    2016-09-12

    The synthesis of zirconium metal-organic frameworks (Zr MOFs) modulated by various amino acids, including l-proline, glycine, and l-phenylalanine, is shown to be a straightforward approach toward functional-group incorporation and particle-size control. High yields in Zr-MOF synthesis are achieved by employing 5 equivalents of the modulator at 120 °C. At lower temperatures, the method provides a series of Zr MOFs with increased particle size, including many suitable for single-crystal X-ray diffraction studies. Furthermore, amino acid modulators can be incorporated at defect sites in Zr MOFs with an amino acid/ligand ratio of up to 1:1, depending on the ligand structure and reaction conditions. The MOFs obtained through amino acid modulation exhibit an improved CO2 -capture capacity relative to nonfunctionalized materials.

  11. Prospective estimation of organ dose in CT under tube current modulation

    SciTech Connect

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2015-04-15

    Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT exams under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDI{sub vol}-normalized-organ dose coefficients (h{sub organ}) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the library; (3

  12. Supramolecular assembly of C3 peptidic molecules into helical polymers.

    PubMed

    Dai, Yutang; Zhao, Xin; Su, Xinyan; Li, Guangyu; Zhang, Afang

    2014-08-01

    Self-assembly of C3 discotic molecules bearing dipeptide pendants into helical supramolecular polymers is investigated. The dipeptides are constituted from glycine and alanine with altered sequence, aiming at modulating the steric hindrance and examining the steric effects on the assembly. This steric hindrance effect is further illustrated with a dipeptide formed from glycine and valine, which carries a much larger isopropyl side unit. Their supramolecular polymerization is examined in various organic solvents and at different temperatures. The assembly morphology is directly visualized with atomic force microscopy. It is found that small changes in the dipeptide motifs in combination with solvent structure and the solution concentrations lead to different expression of the supramolecular assembly.

  13. Helicity and celestial magnetism

    NASA Astrophysics Data System (ADS)

    Moffatt, H. K.

    2016-06-01

    This informal article discusses the central role of magnetic and kinetic helicity in relation to the evolution of magnetic fields in geophysical and astrophysical contexts. It is argued that the very existence of magnetic fields of the intensity and scale observed is attributable in large part to the chirality of the background turbulence or random-wave field of flow, the simplest measure of this chirality being non-vanishing helicity. Such flows are responsible for the generation of large-scale magnetic fields which themselves exhibit magnetic helicity. In the geophysical context, the turbulence has a `magnetostrophic' character in which the force balance is primarily that between buoyancy forces, Coriolis forces and Lorentz forces associated with the dynamo-generated magnetic field; the dominant nonlinearity here arises from the convective transport of buoyant elements erupting from the `mushy zone' at the inner core boundary. At the opposite extreme, in a highly conducting low-density plasma, the near-invariance of magnetic field topology (and of associated helicity) presents the challenging problem of `magnetic relaxation under topological constraints', of central importance both in astrophysical contexts and in controlled-fusion plasma dynamics. These problems are reviewed and open issues, particularly concerning saturation mechanisms, are reconsidered.

  14. The Helicity of Vortex Filaments.

    NASA Astrophysics Data System (ADS)

    Petrich, Dean; Tao, Louis

    1996-03-01

    The helicity, defined by H = int dV v \\cdot nabla × v, is a conserved quantity of the three-dimensional Euler equations. Traditionally the helicity has been viewed as a measure of the topology of vortex lines, but it is shown that the helicity measures their geometry as well as their topology (J.D. Bekenstein, Physics Letters B), 282 (1992) 44-49.. The existence of helicity-preserving reconnection events is discussed.

  15. Transformation from kinetically into thermodynamically controlled self-organization of complex helical columns with 3D periodicity assembled from dendronized perylene bisimides.

    PubMed

    Percec, Virgil; Sun, Hao-Jan; Leowanawat, Pawaret; Peterca, Mihai; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Heiney, Paul A

    2013-03-13

    The dendronized perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI), (3,4,5)12G1-1-PBI, was reported by our laboratory to self-assemble into complex helical columns containing dimers of dendronized PBI with one molecule in each stratum, with different intra- and interdimer rotation angles but identical intra- and interdimer distance of 3.5 Å, exhibiting a four-strata 2(1) helical repeat. A thermodynamically controlled 2D columnar hexagonal phase with short-range intracolumnar order represents the thermodynamic product at high temperature, while a kinetically controlled monoclinic columnar array with 3D periodicity is the thermodynamic product at low temperature. With heating and cooling rates higher than 10 °C/min to 1 °C/min, at low temperature the 2D columnar periodic array is the kinetic product for this dendronized PBI. Here the synthesis and structural analysis of a library of (3,4,5)nG1-m-PBI with n = 12 to 6 and m = 1 are reported. A combination of differential scanning calorimetry, X-ray diffraction on powder and orientated fibers, including pattern simulation and electron density map reconstruction, and solid-state NMR, all as a function of temperature and heating and cooling rate, was employed for their structural analysis. It was discovered that at low temperature the as-prepared n = 12 to 10 exhibit a 3D layered array that transforms irreversibly into columnar periodicities during heating and cooling. Also the kinetically controlled 3D columnar phase of n = 12 becomes thermodynamically controlled for n = 10, 9, 8, 7, and 6. This unprecedented transformation is expected to facilitate the design of functions from dendronized PBI and other self-assembling building blocks.

  16. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  17. Convolution-based estimation of organ dose in tube current modulated CT

    PubMed Central

    Tian, Xiaoyu; Segars, W Paul; Dixon, Robert L; Samei, Ehsan

    2016-01-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460–7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18–70 years, weight range: 60–180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients (hOrgan) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate (CTDIvol)organ, convolution values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying (CTDIvol)organ, convolution with the organ dose coefficients (hOrgan). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the

  18. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    SciTech Connect

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a

  19. Analysis of peripheral doses for base of tongue treatment by linear accelerator and helical TomoTherapy IMRT.

    PubMed

    Bennett, Brian Richard; Lamba, Michael A S; Elson, Howard R

    2010-06-21

    The purpose of this study was to compare the peripheral doses to various organs from a typical head and neck intensity-modulated radiation therapy (IMRT) treatment delivered by linear accelerator (linac) and helical TomoTherapy. Multiple human CT data sets were used to segment critical structures and organs at risk, fused and adjusted to an anthropomorphic phantom. Eighteen contours were designated for thermoluminescent dosimeter (TLD) placement. Following the RTOG IMRT Protocol 0522, treatment of the primary tumor and involved nodes (PTV70) and subclinical disease sites (PTV56) was planned utilizing IMRT to 70Gy and 56 Gy. Clinically acceptable treatment plans were produced for linac and TomoTherapy treatments. TLDs were placed and each treatment plan was delivered to the anthropomorphic phantom four times. Within 2.5 cm (one helical TomoTherapy field width) superior and inferior to the field edges, normal tissue doses were on average 45% lower using linear accelerator. Beyond 2.5 cm, the helical TomoTherapy normal tissue dose was an average of 52% lower. The majority of points proved to be statistically different using the Student's t-test with p > 0.05. Using one method of calculation, probability of a secondary malignancy was 5.88% for the linear accelerator and 4.08% for helical TomoTherapy. Helical TomoTherapy delivers more dose than a linac immediately above and below the treatment field, contributing to the higher peripheral doses adjacent to the field. At distances beyond one field width (where leakage is dominant), helical TomoTherapy doses are lower than linear accelerator doses.

  20. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  1. Prospective estimation of organ dose in CT under tube current modulation

    PubMed Central

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.

    2015-01-01

    Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT exams under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDIvol-normalized-organ dose coefficients (horgan) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the library; (3) to account

  2. Encouraging Early Clinical Outcomes With Helical Tomotherapy-Based Image-Guided Intensity-Modulated Radiation Therapy for Residual, Recurrent, and/or Progressive Benign/Low-Grade Intracranial Tumors: A Comprehensive Evaluation

    SciTech Connect

    Gupta, Tejpal

    2012-02-01

    Purpose: To report early clinical outcomes of helical tomotherapy (HT)-based image-guided intensity-modulated radiation therapy (IMRT) in brain tumors of varying shape, size, and location. Materials and Methods: Patients with residual, recurrent, and/or progressive low-grade intracranial and skull-base tumors were treated on a prospective protocol of HT-based IMRT and followed clinicoradiologically. Standardized metrics were used for plan evaluation and outcome analysis. Results: Twenty-seven patients with 30 lesions were treated to a median radiotherapy dose of 54 Gy in 30 fractions. All HT plans resulted in excellent target volume coverage with steep dose-gradients. The mean (standard deviation) dose homogeneity index and conformity index was 0.07 (0.05) and 0.71 (0.08) respectively. At first response assessment, 20 of 30 lesions were stable, whereas 9 showed partial regression. One patient with a recurrent clival chordoma though neurologically stable showed imaging-defined progression, whereas another patient with stable disease on serial imaging had sustained neurologic worsening. With a median follow-up of 19 months (interquartile range, 11-26 months), the 2-year clinicoradiological progression-free survival and overall survival was 93.3% and 100% respectively. Conclusions: Careful selection of radiotherapy technique is warranted for benign/low-grade brain tumors to achieve durable local control with minimum long-term morbidity. Large or complex-shaped tumors benefit most from IMRT. Our early clinical experience of HT-based IMRT for brain tumors has been encouraging.

  3. Helical Tomotherapy vs. Intensity-Modulated Proton Therapy for Whole Pelvis Irradiation in High-Risk Prostate Cancer Patients: Dosimetric, Normal Tissue Complication Probability, and Generalized Equivalent Uniform Dose Analysis

    SciTech Connect

    Widesott, Lamberto; Pierelli, Alessio; Fiorino, Claudio; Lomax, Antony J.; Amichetti, Maurizio; Cozzarini, Cesare; Soukup, Martin; Schneider, Ralf; Hug, Eugen; Di Muzio, Nadia; Calandrino, Riccardo; Schwarz, Marco

    2011-08-01

    Purpose: To compare intensity-modulated proton therapy (IMPT) and helical tomotherapy (HT) treatment plans for high-risk prostate cancer (HRPCa) patients. Methods and Materials: The plans of 8 patients with HRPCa treated with HT were compared with IMPT plans with two quasilateral fields set up (-100{sup o}; 100{sup o}) and optimized with the Hyperion treatment planning system. Both techniques were optimized to simultaneously deliver 74.2 Gy/Gy relative biologic effectiveness (RBE) in 28 fractions on planning target volumes (PTVs)3-4 (P + proximal seminal vesicles), 65.5 Gy/Gy(RBE) on PTV2 (distal seminal vesicles and rectum/prostate overlapping), and 51.8 Gy/Gy(RBE) to PTV1 (pelvic lymph nodes). Normal tissue calculation probability (NTCP) calculations were performed for the rectum, and generalized equivalent uniform dose (gEUD) was estimated for the bowel cavity, penile bulb and bladder. Results: A slightly better PTV coverage and homogeneity of target dose distribution with IMPT was found: the percentage of PTV volume receiving {>=}95% of the prescribed dose (V{sub 95%}) was on average >97% in HT and >99% in IMPT. The conformity indexes were significantly lower for protons than for photons, and there was a statistically significant reduction of the IMPT dosimetric parameters, up to 50 Gy/Gy(RBE) for the rectum and bowel and 60 Gy/Gy(RBE) for the bladder. The NTCP values for the rectum were higher in HT for all the sets of parameters, but the gain was small and in only a few cases statistically significant. Conclusions: Comparable PTV coverage was observed. Based on NTCP calculation, IMPT is expected to allow a small reduction in rectal toxicity, and a significant dosimetric gain with IMPT, both in medium-dose and in low-dose range in all OARs, was observed.

  4. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators.

    PubMed

    Yan, Hai; Xu, Xiaochuan; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chakravarty, Swapnajit; Chen, Ray T

    2016-12-01

    In an on-chip silicon-organic hybrid electro-optic (EO) modulator, the mode overlap with EO materials, in-device effective r33, and propagation loss are among the most critical factors that determine the performance of the modulator. Various waveguide structures have been proposed to optimize these factors, yet there is a lack of comprehensive consideration on all of them. In this Letter, a one-dimensional (1D) photonic crystal (PC) slot waveguide structure is proposed that takes all these factors into consideration. The proposed structure takes advantage of the strong mode confinement within a low-index region in a conventional slot waveguide and the slow-light enhancement from the 1D PC structure. Its simple geometry makes it robust to resist fabrication imperfections and helps reduce the propagation loss. Using it as a phase shifter in a Mach-Zehnder interferometer structure, an integrated silicon-organic hybrid EO modulator was experimentally demonstrated. The observed effective EO coefficient is as high as 490 pm/V. The measured half-wave voltage and length product is less than 1  V·cm and can be further improved. A potential bandwidth of 61 GHz can be achieved and further improved by tailoring the doping profile. The proposed structure offers a competitive novel phase-shifter design, which is simple, highly efficient, and with low optical loss, for on-chip silicon-organic hybrid EO modulators.

  5. From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach

    PubMed Central

    2015-01-01

    Crystallinity and porosity are of central importance for many properties of covalent organic frameworks (COFs), including adsorption, diffusion, and electronic transport. We have developed a new method for strongly enhancing both aspects through the introduction of a modulating agent in the synthesis. This modulator competes with one of the building blocks during the solvothermal COF growth, resulting in highly crystalline frameworks with greatly increased domain sizes reaching several hundreds of nanometers. The obtained materials feature fully accessible pores with an internal surface area of over 2000 m2 g–1. Compositional analysis via NMR spectroscopy revealed that the COF-5 structure can form over a wide range of boronic acid-to-catechol ratios, thus producing frameworks with compositions ranging from highly boronic acid-deficient to networks with catechol voids. Visualization of an −SH-functionalized modulating agent via iridium staining revealed that the COF domains are terminated by the modulator. Using functionalized modulators, this synthetic approach thus also provides a new and facile method for the external surface functionalization of COF domains, providing accessible sites for post-synthetic modification reactions. We demonstrate the feasibility of this concept by covalently attaching fluorescent dyes and hydrophilic polymers to the COF surface. We anticipate that the realization of highly crystalline COFs with the option of additional surface functionality will render the modulation concept beneficial for a range of applications, including gas separations, catalysis, and optoelectronics. PMID:26694214

  6. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators

    NASA Astrophysics Data System (ADS)

    Yan, Hai; Xu, Xiaochuan; Chung, Chi-Jui; Subbaraman, Harish; Pan, Zeyu; Chakravarty, Swapnajit; Chen, Ray T.

    2017-02-01

    A one-dimensional (1D) photonic crystal (PC) slot waveguide was proposed and experimentally demonstrated for integrated silicon-organic hybrid modulators. The 1D PC slot waveguide consists of a conventional silicon slot waveguide with periodic rectangular teeth on its two rails. This structure takes advantage of large mode overlap in a conventional slot waveguide and the slow light enhancement from the PC structure. Its simple geometry makes it resistant to fabrication imperfections and helps reduce the propagation loss. The observed effective EO coefficient in an actual Mach-Zehnder interferometer modulator is as high as 490 pm/V owing to slow light effect.

  7. Helically structured metal–organic frameworks fabricated by using supramolecular assemblies as templates† †Electronic supplementary information (ESI) available: Detailed TEM images and other extensive figures. See DOI: 10.1039/c4sc03278k Click here for additional data file.

    PubMed Central

    Wang, Hui; Zhu, Wei; Li, Jian; Tian, Tian; Lan, Yue; Gao, Ning; Wang, Chen; Zhang, Meng; Faul, Charl F. J.

    2015-01-01

    The controlled formation of MOF-based superstructures with well-defined nanoscale sizes and exquisite morphologies represents a big challenge, but can trigger a new set of properties distinct from their bulk counterparts. Here we report on the use of a self-assembled organic object to template the first example of a nanoscale metal–organic framework (MOF) with a helical morphology. Two prototypical MOFs (HKUST-1 and MIL-100) were used to exemplify the growth of such materials on supramolecular assemblies. Interestingly, it was found that, dependent on the nature of the precursors, not only could well-defined helical MOF nanotubes be facilely fabricated, but novel helical bundle nanostructures could also be formed. These resultant MOF superstructures show additional optical properties and could be used as precursors for the preparation of chiral nanocarbons. PMID:28757993

  8. Hierarchically arranged helical fibre actuators driven by solvents and vapours.

    PubMed

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  9. Hierarchically arranged helical fibre actuators driven by solvents and vapours

    NASA Astrophysics Data System (ADS)

    Chen, Peining; Xu, Yifan; He, Sisi; Sun, Xuemei; Pan, Shaowu; Deng, Jue; Chen, Daoyong; Peng, Huisheng

    2015-12-01

    Mechanical responsiveness in many plants is produced by helical organizations of cellulose microfibrils. However, simple mimicry of these naturally occurring helical structures does not produce artificial materials with the desired tunable actuations. Here, we show that actuating fibres that respond to solvent and vapour stimuli can be created through the hierarchical and helical assembly of aligned carbon nanotubes. Primary fibres consisting of helical assemblies of multiwalled carbon nanotubes are twisted together to form the helical actuating fibres. The nanoscale gaps between the nanotubes and micrometre-scale gaps among the primary fibres contribute to the rapid response and large actuation stroke of the actuating fibres. The compact coils allow the actuating fibre to rotate reversibly. We show that these fibres, which are lightweight, flexible and strong, are suitable for a variety of applications such as energy-harvesting generators, deformable sensing springs and smart textiles.

  10. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    SciTech Connect

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign.

  11. Au nanorod helical superstructures with designed chirality.

    PubMed

    Lan, Xiang; Lu, Xuxing; Shen, Chenqi; Ke, Yonggang; Ni, Weihai; Wang, Qiangbin

    2015-01-14

    A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs. Left-handed (LH) and right-handed (RH) AuNR helices were conveniently accomplished by solely tuning the mirrored-symmetric 'X' patterns of capturing strands on the origami. The inter-rod distance was precisely defined as 14 nm and inter-rod angle as 45°, thus a full helix contains 9 AuNRs with its length up to about 220 nm. By changing the AuNR/origami molar ratio in the assembly system, the average number of AuNR in the helices was tuned from 2 to 4 and 9. Intense chiroptical activities arose from the longest AuNR helices with a maximum anisotropy factor of ∼0.02, which is highly comparable to the reported macroscopic AuNR assemblies. We expect that our strategy of origami templated assembly of anisotropic chiral superstructures would inspire the bottom-up fabrication of optically active nanostructures and shed light on a variety of applications, such as chiral fluids, chiral signal amplification, and fluorescence combined chiral spectroscopy.

  12. Helically Coiled Graphene Nanoribbons.

    PubMed

    Daigle, Maxime; Miao, Dandan; Lucotti, Andrea; Tommasini, Matteo; Morin, Jean-François

    2017-03-07

    Graphene is a zero-gap, semiconducting 2D material that exhibits outstanding charge-transport properties. One way to open a band gap and make graphene useful as a semiconducting material is to confine the electron delocalization in one dimension through the preparation of graphene nanoribbons (GNR). Although several methods have been reported so far, solution-phase, bottom-up synthesis is the most promising in terms of structural precision and large-scale production. Herein, we report the synthesis of a well-defined, helically coiled GNR from a polychlorinated poly(m-phenylene) through a regioselective photochemical cyclodehydrochlorination (CDHC) reaction. The structure of the helical GNR was confirmed by (1) H NMR, FT-IR, XPS, TEM, and Raman spectroscopy. This Riemann surface-like GNR has a band gap of 2.15 eV and is highly emissive in the visible region, both in solution and the solid state.

  13. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. P.; Dixon, R. L.; Samei, Ehsan

    2015-03-01

    Among the various metrics that quantify radiation dose in computed tomography (CT), organ dose is one of the most representative quantities reflecting patient-specific radiation burden.1 Accurate estimation of organ dose requires one to effectively model the patient anatomy and the irradiation field. As illustrated in previous studies, the patient anatomy factor can be modeled using a library of computational phantoms with representative body habitus.2 However, the modeling of irradiation field can be practically challenging, especially for CT exams performed with tube current modulation. The central challenge is to effectively quantify the scatter irradiation field created by the dynamic change of tube current. In this study, we present a convolution-based technique to effectively quantify the primary and scatter irradiation field for TCM examinations. The organ dose for a given clinical patient can then be rapidly determined using the convolution-based method, a patient-matching technique, and a library of computational phantoms. 58 adult patients were included in this study (age range: 18-70 y.o., weight range: 60-180 kg). One computational phantom was created based on the clinical images of each patient. Each patient was optimally matched against one of the remaining 57 computational phantoms using a leave-one-out strategy. For each computational phantom, the organ dose coefficients (CTDIvol-normalized organ dose) under fixed tube current were simulated using a validated Monte Carlo simulation program. Such organ dose coefficients were multiplied by a scaling factor, (CTDIvol )organ, convolution that quantifies the regional irradiation field. The convolution-based organ dose was compared with the organ dose simulated from Monte Carlo program with TCM profiles explicitly modeled on the original phantom created based on patient images. The estimation error was within 10% across all organs and modulation profiles for abdominopelvic examination. This strategy

  14. Mechanical Properties of Microcrystalline Metal-Organic Frameworks (MOFs) Measured by Bimodal Amplitude Modulated-Frequency Modulated Atomic Force Microscopy.

    PubMed

    Sun, Yao; Hu, Zhigang; Zhao, Dan; Zeng, Kaiyang

    2017-09-08

    Direct measurement of the mechanical properties of microcrystalline metal-organic framework (MOF) nanoparticles is challenging and rarely explored. In this work, we apply an effective method to realize elastic modulus mapping of a series of isostructural single MOF nanoparticles (100-500 nm) via bimodal amplitude modulated-frequency modulated atomic force microscopy. By probing five types of zirconium (Zr) and hafnium (Hf) isostructural UiO-66-type MOFs, we experimentally found that UiO-66(Hf)-type MOFs possess the higher elastic modulus (46-104 GPa) than that of UiO-66(Zr)-type MOFs (34-100 GPa), both of which are higher than that of reported zinc/copper based MOFs (3-10 GPa). We also experimentally demonstrate that the mechanical properties of MOFs can be tuned by adjusting the chemical functionalities of the ligands or using different metal nodes. In detail, the sterically bulky functional groups increase the mechanical properties of the resultant UiO-66-type MOFs, possibly due to the increased atomic density. These results pave a way to the direct measurement of mechanical properties of MOFs crystalline particles and provide an incisive perspective to the design of MOFs with high mechanical properties.

  15. Analysis of Helical Waveguide.

    DTIC Science & Technology

    1985-12-23

    tube Efficiency Helix structure Backward wave oscillation Gain 19. ABSTRACT (Continue on reverse if necessary and identofy by block number) The...4,vailabilitY CCdes -vai aidIorDist spec a ." iii "- -. .5- S.. . ANALYSIS OF HELICAL WAVEGUIDE I. INTRODUCTION High power (- 10 kW) and broadband ...sys- tems. The frequency range of interest is 60-100 GHz. In this frequency range, the conventional slow wave circuits such as klystrons and TWTs have

  16. Convolution-based estimation of organ dose in tube current modulated CT.

    PubMed

    Tian, Xiaoyu; Segars, W Paul; Dixon, Robert L; Samei, Ehsan

    2016-05-21

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ([Formula: see text]) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate [Formula: see text] values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying [Formula: see text] with the organ dose coefficients ([Formula: see text]). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the

  17. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  18. Image-guided total marrow and total lymphatic irradiation using helical tomotherapy

    SciTech Connect

    Schultheiss, Timothy E. . E-mail: Schultheiss@coh.org; Wong, Jeffrey; Liu, An; Olivera, Gustavo; Somlo, George

    2007-03-15

    Purpose: To develop a treatment technique to spare normal tissue and allow dose escalation in total body irradiation (TBI). We have developed intensity-modulated radiotherapy techniques for the total marrow irradiation (TMI), total lymphatic irradiation, or total bone marrow plus lymphatic irradiation using helical tomotherapy. Methods and Materials: For TBI, we typically use 12 Gy in 10 fractions delivered at an extended source-to-surface distance (SSD). Using helical tomotherapy, it is possible to deliver equally effective doses to the bone marrow and lymphatics while sparing normal organs to a significant degree. In the TMI patients, whole body skeletal bone, including the ribs and sternum, comprise the treatment target. In the total lymphatic irradiation, the target is expanded to include the spleen and major lymph node areas. Sanctuary sites for disease (brain and testes) are included when clinically indicated. Spared organs include the lungs, esophagus, parotid glands, eyes, oral cavity, liver, kidneys, stomach, small and large intestine, bladder, and ovaries. Results: With TBI, all normal organs received the TBI dose; with TMI, total lymphatic irradiation, and total bone marrow plus lymphatic irradiation, the visceral organs are spared. For the first 6 patients treated with TMI, the median dose to organs at risk averaged 51% lower than would be achieved with TBI. By putting greater weight on the avoidance of specific organs, greater sparing was possible. Conclusion: Sparing of normal tissues and dose escalation is possible using helical tomotherapy. Late effects such as radiation pneumonitis, veno-occlusive disease, cataracts, neurocognitive effects, and the development of second tumors should be diminished in severity and frequency according to the dose reduction realized for the organs at risk.

  19. Flexible organic tandem solar modules: a story of up-scaling

    NASA Astrophysics Data System (ADS)

    Spyropoulos, George D.; Kubis, Peter; Li, Ning; Lucera, Luca; Salvador, Michael; Baran, Derya; Machui, Florian; Ameri, Tayebeh; Voigt, Monika M.; Brabec, Christoph J.

    2014-10-01

    The competition in the field of solar energy between Organic Photovoltaics (OPVs) and several Inorganic Photovoltaic technologies is continuously increasing to reach the ultimate purpose of energy supply from inexpensive and easily manufactured solar cell units. Solution-processed printing techniques on flexible substrates attach a tremendous opportunity to the OPVs for the accomplishment of low-cost and large area applications. Furthermore, tandem architectures came to boost up even more OPVs by increasing the photon-harvesting properties of the device. In this work, we demonstrate the road of realizing flexible organic tandem solar modules constructed by a fully roll-to-roll compatible processing. The modules exhibit an efficiency of 5.4% with geometrical fill factors beyond 80% and minimized interconnection-resistance losses. The processing involves low temperature (<70 °C), coating methods compatible with slot die coating and high speed and precision laser patterning.

  20. Human Superior Temporal Gyrus Organization of Spectrotemporal Modulation Tuning Derived from Speech Stimuli

    PubMed Central

    Hullett, Patrick W.; Hamilton, Liberty S.; Mesgarani, Nima; Schreiner, Christoph E.

    2016-01-01

    The human superior temporal gyrus (STG) is critical for speech perception, yet the organization of spectrotemporal processing of speech within the STG is not well understood. Here, to characterize the spatial organization of spectrotemporal processing of speech across human STG, we use high-density cortical surface field potential recordings while participants listened to natural continuous speech. While synthetic broad-band stimuli did not yield sustained activation of the STG, spectrotemporal receptive fields could be reconstructed from vigorous responses to speech stimuli. We find that the human STG displays a robust anterior–posterior spatial distribution of spectrotemporal tuning in which the posterior STG is tuned for temporally fast varying speech sounds that have relatively constant energy across the frequency axis (low spectral modulation) while the anterior STG is tuned for temporally slow varying speech sounds that have a high degree of spectral variation across the frequency axis (high spectral modulation). This work illustrates organization of spectrotemporal processing in the human STG, and illuminates processing of ethologically relevant speech signals in a region of the brain specialized for speech perception. SIGNIFICANCE STATEMENT Considerable evidence has implicated the human superior temporal gyrus (STG) in speech processing. However, the gross organization of spectrotemporal processing of speech within the STG is not well characterized. Here we use natural speech stimuli and advanced receptive field characterization methods to show that spectrotemporal features within speech are well organized along the posterior-to-anterior axis of the human STG. These findings demonstrate robust functional organization based on spectrotemporal modulation content, and illustrate that much of the encoded information in the STG represents the physical acoustic properties of speech stimuli. PMID:26865624

  1. Helical apodizers for tunable hyper Gaussian masks

    NASA Astrophysics Data System (ADS)

    Ojeda-Castañeda, J.; Ledesma, Sergio; Gómez-Sarabia, Cristina M.

    2013-09-01

    We discuss an optical method for controlling the half-width of Gaussian like transmittance windows, by using a pair of absorption masks that have both radial and helical amplitude variations. For describing the radial part of the proposed masks, we employ amplitude transmittance profiles of the form T(ρ) = exp(- ρ s ). For s = 2, one has an amplitude transmittance that is proportional to a Gaussian function. A sub Gaussian mask is defined by a value of s < 2. And if s > 2, one has super Gaussian masks. Our discussion considers that any of these radially varying masks has also helical modulations. We show that by using a suitable pair of this type of masks, one can control the halfwidth of Gaussian like windows.

  2. Magnetic helicity in astrophysical dynamos

    NASA Astrophysics Data System (ADS)

    Candelaresi, Simon

    2012-09-01

    The broad variety of ways in which magnetic helicity affects astrophysical systems, in particular dynamos, is discussed. The so-called alpha effect is responsible for the growth of large-scale magnetic fields. The conservation of magnetic helicity, however, quenches the alpha effect, in particular for high magnetic Reynolds numbers. Predictions from mean-field theories state particular power law behavior of the saturation strength of the mean fields, which we confirm in direct numerical simulations. The loss of magnetic helicity in the form of fluxes can alleviate the quenching effect, which means that large-scale dynamo action is regained. Physically speaking, galactic winds or coronal mass ejections can have fundamental effects on the amplification of galactic and solar magnetic fields. The gauge dependence of magnetic helicity is shown to play no effect in the steady state where the fluxes are represented in form of gauge-independent quantities. This we demonstrate in the Weyl-, resistive- and pseudo Lorentz-gauge. Magnetic helicity transport, however, is strongly affected by the gauge choice. For instance the advecto-resistive gauge is more efficient in transporting magnetic helicity into small scales, which results in a distinct spectrum compared to the resistive gauge. The topological interpretation of helicity as linking of field lines is tested with respect to the realizability condition, which imposes a lower bound for the spectral magnetic energy in presence of magnetic helicity. It turns out that the actual linking does not affect the relaxation process, unlike the magnetic helicity content. Since magnetic helicity is not the only topological variable, I conduct a search for possible others, in particular for non-helical structures. From this search I conclude that helicity is most of the time the dominant restriction in field line relaxation. Nevertheless, not all numerical relaxation experiments can be described by the conservation of magnetic helicity

  3. Generating polarization vortices by using helical beams and a Twyman Green interferometer.

    PubMed

    Fu, Shiyao; Gao, Chunqing; Shi, Yang; Dai, Kunjian; Zhong, Lei; Zhang, Shikun

    2015-04-15

    A stable interferometric arrangement consisting of a polarizing beam splitter, a reflector, and a right-angle prism is designed to transform helical beams into polarization vortices. The computer-generated holograms are loaded on the liquid crystal spatial light modulator (LC-SLM) in order to generate different helical beams. Then the helical beams are transformed into polarization vortices with different kinds of intensity distribution successfully.

  4. Forging of helical gears: Upper bound analyses and experiments

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Choi, J. C.

    1998-08-01

    In this paper, forging of helical gears has been investigated. The forging process of helical gears has been classified into two types of operations: guiding and clamping. The two types of forging of helical gears have been analyzed by using the upper-bound method. Kinematically admissible velocity fields have been developed in which an involute curve has been introduced to represent the tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters such as module, number of teeth, helix angle and friction factors on the forging of helical gears. Some forging experiments were carried out with commercial aluminum alloy to show the validity of the analysis. Good agreements were found between the predicted values of the forging load and those obtained from the experimental results.

  5. Smooth muscle myosin light chain kinase, supramolecular organization, modulation of activity, and related conformational changes.

    PubMed Central

    Filenko, A M; Danilova, V M; Sobieszek, A

    1997-01-01

    It has recently been suggested that activation of smooth muscle myosin light chain kinase (MLCK) can be modulated by formation of supramolecular structures (Sobieszek, A. 1991. Regulation of smooth muscle myosin light chain kinase. Allosteric effects and co-operative activation by CaM. J. Mol. Biol. 220:947-957). The present light scattering data demonstrate that the inactive (calmodulin-free) MLCK apoenzyme exists in solution as a mixture of oligomeric (2% by weight), dimeric (53%), and monomeric (45%) species at physiological ionic strength (160 mM salt). These long-living assemblies, the lifetime of which was measured by minutes, were in equilibrium with each other. The most likely form of the oligomer was a spiral-like hexamer, the dimensions of which fit very well the helical structure of self-assembled myosin filaments (Sobieszek, A. 1972. Cross-bridges on self-assembled smooth muscle myosin filaments. J. Mol. Biol. 70:741-744). After activation of the kinase by calmodulin (CaM) we could not detect any appreciable changes in the distribution of the kinase species either when the kinase was saturated with CaM or when its molar concentration exceeded that of CaM. Our fluorescent measurements suggest that the earlier observed inhibition of kinase at substoichiometric amounts of CaM (Sobieszek, A., A. Strobl, B. Ortner, and E. Babiychuk. 1993. Ca2+-calmodulin-dependent modification of smooth-muscle myosin light chain kinase leading to its co-operative activation by calmodulin. Biochem. J. 295:405-411) is associated with slow conformational change(s) of the activated (CaM-bound) kinase molecules. Such conformational rearrangements also took place with equimolar kinase to CaM; however, in this case there was no decrease in MLCK activity. The nature of these conformational changes, which are accompanied by reduction of the kinase for CaM affinity, is discussed. PMID:9284326

  6. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors

    PubMed Central

    Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A.; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A.

    2017-01-01

    Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging. PMID:28275728

  7. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors.

    PubMed

    Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A

    2017-03-01

    Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging.

  8. Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies.

    PubMed Central

    Sánchez, Juan Armando; Lasker, Howard R

    2003-01-01

    Despite the relative simplicity of their modular growth, marine invertebrates such as arborescent gorgonian octocorals (Octocorallia: Cnidaria) generate complex colonial forms. Colony form in these taxa is a consequence of modular (polyp) replication, and if there is a tight integration among modular and supramodular traits (e.g. polyp aperture, inter-polyp spacing, branch thickness, internode and branch length), then changes at the module level may lead to changes in colony architecture. Alternatively, different groups of traits may evolve semi-independently (or conditionally independent). To examine the patterns of integration among morphological traits in Caribbean octocorals, we compared five morphological traits across 21 species, correcting for the effects of phylogenetic relationships among the taxa. Graphical modelling and phylogenetic independence contrasts among the five morphological characters indicate two groups of integrated traits based on whether they were polyp- or colony-level traits. Although all characters exhibited bivariate associations, multivariate analyses (partial correlation coefficients) showed the strongest integration among the colony-level characters (internode distance and branch length). It is a quantitative demonstration that branching characters within the octocorals studied are independent of characters of the polyps. Despite the universally recognized modularity of octocorals at the level of polyps, branching during colony development may represent an emergent level of integration and modularity. PMID:14561292

  9. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles.

    PubMed

    Zhou, Yunlong; Marson, Ryan L; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C; Kotov, Nicholas A

    2016-03-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. D-/L-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions.

  10. SU-F-BRB-13: Correlation of Improved Target and Organ-At-Risk Dosimetric Quantities and Clinical Outcomes for Helical Tomotherapy Treated Mesothelioma

    SciTech Connect

    Qi, S; Kishan, A; Alexander, S; Lee, P; Selch, M; Kupelian, P; Steiberg, M; Low, D

    2015-06-15

    Purpose: We have observed improved local control probability (LCP) for adjuvant mesothelioma radiotherapy following pleurectomy/decortication using Tomotherapy compared to the conventional 3D technique (p<0.05). This work assesses the correlation between the improved clinical outcomes against dosimetry quantities. Methods: Thirty-eight mesothelioma cases consecutively treated at our clinic were retrospectively analyzed. Sixteen patients were treated using 3D technique planned on the Eclipse for c-arm accelerators prior to 7/2012; the other 22 cases were treated on Tomotherapy using helical IMRT after 7/2012. Typical 3D plans consisting of 15 MV AP/PA photon fields prescribed to 10 cm depth followed by matching electron fields with energy ranging from 8–16 MeV. Tomotherapy plans were designed using 2.5cm jaw, 0.287 pitch with directional blocking of the contralateral lung. The same prescription of 45 Gy (1.8GyX25) was used for both techniques. The dosimetry metrics for the critical structures: ipsilateral-/contralateral-lung, heart, cord, esophagus, etc were compared between two techniques. Results: Superior LCP is closely associated with improved target coverage. Tomotherapy plans yielded dramatically better target coverage and less dose heterogeneity despite of more advanced/larger disease. The averaged PTV volumes were 2287.3±569.9 (Tomotherapy) vs. 1904.8±312.3cc (3D); V100s were: 91.1±4.0 (%) vs. 47.8±12.7 (%) with heterogeneity indices of 1.20±0.1 vs.1.37±0.38 and for the Tomotherapy and 3D plans, respectively. Compared to the 3D technique, we observed significant lower maximum cord doses (p<0.001), lower mean esophagus doses (p<0.002), and lower heart mean doses when tumor was left-sided (p=0.002). For ipsilateral-/contralateral-lungs, however, the mean doses and V20, V5 of Tomotherapy plans were significantly higher than the 3D plans (p<0.01) regardless which sides of lung were treated. However, rates of radiation pneumonitis were no different

  11. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  12. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  13. Design of Helical Solenoid Combined with RF Cavity

    SciTech Connect

    Kashikhin, Vladimir; Andreev, Nicolai; Kashikhin, Vadim; Lamm, Michael; Makarov, Alexander; Romanov, Gennady; Yonehara, Katsuya; Yu, Miao; Zlobin, Alexander; /Fermilab

    2010-05-01

    Helical Solenoids (HS) were proposed for a muon beam ionization cooling. There are substantial energy losses, up to 30 MeV/m, during the passing of the muon beam through the absorber. The main issue of such a system is the muon beam energy recovery. A conventional RF cavity is too large to be placed inside HS. In the paper the results of a dielectric-filled RF cavity design is presented. The proposed RF cavity has a helical configuration. Helical Cooling Channel (HCC) module design which includes high pressure vessel, RF cavity, and superconducting HS is presented. The parameters of these module sub-systems are discussed, and the results of muon beam tracking in combined magnetic and electric 3D fields are shown.

  14. Prediction of buried helices in multispan alpha helical membrane proteins.

    PubMed

    Adamian, Larisa; Liang, Jie

    2006-04-01

    Analysis of a database of structures of membrane proteins shows that membrane proteins composed of 10 or more transmembrane (TM) helices often contain buried helices that are inaccessible to phospholipids. We introduce a method for identifying TM helices that are least phospholipid accessible and for prediction of fully buried TM helices in membrane proteins from sequence information alone. Our method is based on the calculation of residue lipophilicity and evolutionary conservation. Given that the number of buried helices in a membrane protein is known, our method achieves an accuracy of 78% and a Matthew's correlation coefficient of 0.68. A server for this tool (RANTS) is available online at http://gila.bioengr.uic.edu/lab/.

  15. Helical phases in superconductors

    NASA Astrophysics Data System (ADS)

    Sandhu, Raminder P. Kaur

    In conventional superconductors, the Cooper pairs are formed from quasiparticles with opposite momentum and spins because of the degeneracy of the quasiparticles under time reversal and inversion. The absence of any of these symmetries will have pronounced effects on superconducting states. Time reversal symmetry can be broken in the presence of magnetic impurities or by the application of a magnetic field. Similarly, the dislocation of crystal ions from their higher symmetric positions can cause broken inversion symmetry. We studied the effects of broken time reversal and inversion symmetries on unconventional superconductors, such as high temperature cuprates, Sr2RuO 4, and CePt3Si. In the cuprates, the superconducting state exists near the antiferromagnetic order. Sr2RuO4 and CePt3Si do not have spatial inversion, and the superconducting states coexist with magnetic order. In cuprates, the broken time reversal symmetry has been reported in the pseudogap phase which will effect the d-wave superconducting state of underdoped regime. On the basis of symmetry analysis we found that a mixture of spin-singlet and -triplet state, d+ip, which is shown to give rise to a helical superconducting phase. Consequences of this d+ip state on Josephson experiments are also discussed. Sr2RuO 4 is known to be another broken time reversal superconductor with spin triplet superconductivity. The widely believed superconducting state, the chiral p wave state, has been extensively studied through Ginzburg Landau theory, but the predictions for this state contradict some experimental observations like anisotropy in the upper critical field, and the existence of a second vortex state. We have formalize quasiclassical theory to find the origin of these contradictions, and also extended the theory to study other possible super-conducting states. Surprisingly, we find that a superconducting state corresponding to freely rotating in-plane d-vector explains the existing experimental results

  16. Shielding requirements in helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Baechler, S.; Bochud, F. O.; Verellen, D.; Moeckli, R.

    2007-08-01

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  17. Shielding requirements in helical tomotherapy.

    PubMed

    Baechler, S; Bochud, F O; Verellen, D; Moeckli, R

    2007-08-21

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest.

  18. Quality assurance of a helical tomotherapy machine

    NASA Astrophysics Data System (ADS)

    Fenwick, J. D.; Tomé, W. A.; Jaradat, H. A.; Hui, S. K.; James, J. A.; Balog, J. P.; DeSouza, C. N.; Lucas, D. B.; Olivera, G. H.; Mackie, T. R.; Paliwal, B. R.

    2004-07-01

    Helical tomotherapy has been developed at the University of Wisconsin, and 'Hi-Art II' clinical machines are now commercially manufactured. At the core of each machine lies a ring-gantry-mounted short linear accelerator which generates x-rays that are collimated into a fan beam of intensity-modulated radiation by a binary multileaf, the modulation being variable with gantry angle. Patients are treated lying on a couch which is translated continuously through the bore of the machine as the gantry rotates. Highly conformal dose-distributions can be delivered using this technique, which is the therapy equivalent of spiral computed tomography. The approach requires synchrony of gantry rotation, couch translation, accelerator pulsing and the opening and closing of the leaves of the binary multileaf collimator used to modulate the radiation beam. In the course of clinically implementing helical tomotherapy, we have developed a quality assurance (QA) system for our machine. The system is analogous to that recommended for conventional clinical linear accelerator QA by AAPM Task Group 40 but contains some novel components, reflecting differences between the Hi-Art devices and conventional clinical accelerators. Here the design and dosimetric characteristics of Hi-Art machines are summarized and the QA system is set out along with experimental details of its implementation. Connections between this machine-based QA work, pre-treatment patient-specific delivery QA and fraction-by-fraction dose verification are discussed.

  19. Estimation of breast dose reduction potential for organ-based tube current modulated CT with wide dose reduction arc

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan

    2017-03-01

    This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.

  20. Development of an organic Rankine-cycle power module for a small community solar thermal power experiment

    SciTech Connect

    Kiceniuk, T.

    1985-01-15

    An organic Rankine-cycle (ORC) power module was designed and developed for use in a multi-module solar power plant to be built and operated in a small community. Although neither final design nor construction of the multi-module plant took place, many successful components and subsystems, including the receiver, power conversion subsystem, energy transport subsystem, and control subsystem, were developed and tested before the program was halted. In addition, tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator at the Jet Propulsion Laboratory's Parabolic Dish Test Site at Edwards Air Force Base, California. Test results with the complete module verified that all major single-module program functional objectives were met and that multi-module operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-h endurance run with no evidence of wear or operating problems.

  1. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  2. Mode-selective vibrational modulation of charge transport in organic electronic devices

    PubMed Central

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials. PMID:26246039

  3. Helicity in dynamic atmospheric processes

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2017-03-01

    An overview on the helicity of the velocity field and the role played by this concept in modern research in the field of geophysical fluid dynamics and dynamic meteorology is given. Different (both previously known in the literature and first presented) formulations of the equation of helicity balance in atmospheric motions (including those with allowance for effects of air compressibility and Earth's rotation) are brought together. Equations and relationships are given which are valid in different approximations accepted in dynamic meteorology: Boussinesq approximation, quasi-static approximation, and quasi-geostrophic approximation. Emphasis is placed on the analysis of helicity budget in large-scale quasi-geostrophic systems of motion; a formula for the helicity flux across the upper boundary of the nonlinear Ekman boundary layer is given, and this flux is shown to be exactly compensated for by the helicity destruction inside the Ekman boundary layer.

  4. Helicity patterns on the Sun

    NASA Astrophysics Data System (ADS)

    Pevtsov, A.

    Solar magnetic fields exhibit hemispheric preference for negative (pos- itive) helicity in northern (southern) hemisphere. The hemispheric he- licity rule, however, is not very strong, - the patterns of opposite sign helicity were observed on different spatial scales in each hemisphere. For instance, many individual sunspots exhibit patches of opposite he- licity inside the single polarity field. There are also helicity patterns on scales larger than the size of typical active region. Such patterns were observed in distribution of active regions with abnormal (for a give hemisphere) helicity, in large-scale photospheric magnetic fields and coronal flux systems. We will review the observations of large-scale pat- terns of helicity in solar atmosphere and their possible relationship with (sub-)photospheric processes. The emphasis will be on large-scale pho- tospheric magnetic field and solar corona.

  5. Magnetic design constraints of helical solenoids

    SciTech Connect

    Lopes, M. L.; Krave, S. T.; Tompkins, J. C.; Yonehara, K.; Flanagan, G.; Kahn, S. A.; Melconian, K.

    2015-01-30

    Helical solenoids have been proposed as an option for a Helical Cooling Channel for muons in a proposed Muon Collider. Helical solenoids can provide the required three main field components: solenoidal, helical dipole, and a helical gradient. In general terms, the last two are a function of many geometric parameters: coil aperture, coil radial and longitudinal dimensions, helix period and orbit radius. In this paper, we present design studies of a Helical Solenoid, addressing the geometric tunability limits and auxiliary correction system.

  6. Helical Tomotherapy for Parotid Gland Tumors

    SciTech Connect

    Lee, Tae Kyu; Rosen, Isaac I.; Gibbons, John P.; Fields, Robert S.; Hogstrom, Kenneth R.

    2008-03-01

    Purpose: To investigate helical tomotherapy (HT) intensity-modulated radiotherapy (IMRT) as a postoperative treatment for parotid gland tumors. Methods and Materials: Helical tomotherapy plans were developed for 4 patients previously treated with segmental multileaf collimator (SMLC) IMRT. A primary planning target volume (PTV64) and two secondary PTVs (PTV60, PTV54) were defined. The clinical goals from the SMLC plans were applied as closely as possible to the HT planning. The SMLC plans included bolus, whereas HT plans did not. Results: In general, the HT plans showed better target coverage and target dose homogeneity. The minimum doses to the desired coverage volume were greater, on average, in the HT plans for all the targets. Minimum PTV doses were larger, on average, in the HT plans by 4.6 Gy (p = 0.03), 4.8 Gy (p = 0.06), and 4.9 Gy (p = 0.06) for PTV64, PTV60, and PTV54, respectively. Maximum PTV doses were smaller, on average, by 2.9 Gy (p = 0.23), 3.2 Gy (p = 0.02), and 3.6 Gy (p = 0.03) for PTV64, PTV60, and PTV54, respectively. Average dose homogeneity index was statistically smaller in the HT plans, and conformity index was larger for PTV64 in 3 patients. Tumor control probabilities were higher for 3 of the 4 patients. Sparing of normal structures was comparable for the two techniques. There were no significant differences between the normal tissue complication probabilities for the HT and SMLC plans. Conclusions: Helical tomotherapy treatment plans were comparable to or slightly better than SMLC plans. Helical tomotherapy is an effective alternative to SMLC IMRT for treatment of parotid tumors.

  7. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation.

    PubMed

    Biswal, Bishnu P; Chaudhari, Harshal D; Banerjee, Rahul; Kharul, Ulhas K

    2016-03-24

    Highly flexible, TpPa-1@PBI-BuI and TpBD@PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced.

  8. Helical Tomotherapy-Based STAT RT: Dosimetric Evaluation for Clinical Implementation of a Rapid Radiation Palliation Program

    SciTech Connect

    McIntosh, Alyson; Dunlap, Neal; Sheng, Ke; Geezey, Constance; Turner, Benton; Blackhall, Leslie; Weiss, Geoffrey; Lappinen, Eric; Larner, James M.; Read, Paul W.

    2010-01-01

    Helical tomotherapy-based STAT radiation therapy (RT) uses an efficient software algorithm for rapid intensity-modulated treatment planning, enabling conformal radiation treatment plans to be generated on megavoltage computed tomography (MVCT) scans for CT simulation, treatment planning, and treatment delivery in one session. We compared helical tomotherapy-based STAT RT dosimetry with standard linac-based 3D conformal plans and standard helical tomotherapy-based intensity-modulated radiation therapy (IMRT) dosimetry for palliative treatments of whole brain, a central obstructive lung mass, multilevel spine disease, and a hip metastasis. Specifically, we compared the conformality, homogeneity, and dose with regional organs at risk (OARs) for each plan as an initial step in the clinical implementation of a STAT RT rapid radiation palliation program. Hypothetical planning target volumes (PTVs) were contoured on an anthropomorphic phantom in the lung, spine, brain, and hip. Treatment plans were created using three planning techniques: 3D conformal on Pinnacle{sup 3}, helical tomotherapy, and helical tomotherapy-based STAT RT. Plan homogeneity, conformality, and dose to OARs were analyzed and compared. STAT RT and tomotherapy improved conformality indices for spine and lung plans (CI spine = 1.21, 1.17; CI lung = 1.20, 1.07, respectively) in comparison with standard palliative anteroposterior/posteroanterior (AP/PA) treatment plans (CI spine = 7.01, CI lung = 7.30), with better sparing of heart, esophagus, and spinal cord. For palliative whole-brain radiotherapy, STAT RT and tomotherapy reduced maximum and mean doses to the orbits and lens (maximum/mean lens dose: STAT RT = 2.94/2.65 Gy, tomotherapy = 3.13/2.80 Gy, Lateral opposed fields = 7.02/3.65 Gy), with an increased dose to the scalp (mean scalp dose: STAT RT = 16.19 Gy, tomotherapy = 15.61 Gy, lateral opposed fields = 14.01 Gy). For bony metastatic hip lesions, conformality with both tomotherapy techniques (CI

  9. Helical Siberian snakes

    SciTech Connect

    Courant, E.D.

    1988-01-01

    To eliminate spin resonances in circular accelerators ''Siberian Snakes'' may be inserted at one or more azimuths in such a way that the overall spin precession tune ..nu../sub s/ equals 1/2. A snake is a sequence of horizontal and vertical deflection magnets whose overall effect is to rotate the spin by ..pi.. about an axis in the plane of the orbit, either longitudinal or transverse or any angle /var phi/ in between. At the same time the magnets of the snake should be arranged so as to produce zero net deflection and displacement of the particle orbit. We investigate here how the orbit deflections can be made small by using helical deflecting magnets rather than discrete horizontal and vertical deflectors.

  10. Mixing in Helical Pipes

    NASA Astrophysics Data System (ADS)

    Gratton, Michael B.; Bernoff, Andrew J.

    2001-11-01

    We consider advection and diffusion of a passive scalar in a helical pipe. By assuming that the curvature and torsion are small (equivalent to small Dean number) and the Reynolds number is moderate, we can use a closed form approximation, due to Dean (1927) and Germano (1982), for the induced recirculation. We investigate the problem numerically using a split-step particle method for a variety of localized initial conditions. The problem is governed by two parameters: a nondimensional diffusion constant D (typically small), and the scaled ratio of torsion to curvature λ. At small times, the longitudinal width of the particle distribution, σ, is governed by diffusive effects (σ ∝ √Dt). At large times, Taylor diffusion dominates (σ ∝ √t/D). However, at intermediate times, a ballistic region exists where the width spreads linearly, as postulated by Mezic & Wiggins (1994). We also discuss how these various behaviors scale with the parameters D and λ.

  11. The advanced helical generator

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Javedani, J. B.; Ellsworth, G. F.; Kuklo, R. M.; Goerz, D. A.; White, A. D.; Tallerico, L. J.; Gidding, D. A.; Murphy, M. J.; Chase, J. B.

    2010-03-01

    A high explosive pulsed power generator called the advanced helical generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 MA of current and 11 MJ of energy to a quasistatic 80 nH inductive load. A current gain of 160 times was obtained with a peak exponential rise time of 20 μs. We will describe in detail the design and testing of the AHG.

  12. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  13. Spiroplasma swim by a processive change in body helicity.

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua

    2006-03-01

    Microscopic organisms must rely on very different strategies than their macroscopic counterparts to swim through liquid. To date, the best understood method for prokaryotic swimming employs the rotation of flagella. I will present data that Spiroplasma, tiny helical bacteria that infect plants and insects, use a very different approach. By measuring cell kinematics during free swimming, we find that propulsion is generated by the propagation of kink pairs down the length of the cell body. A processive change in the helicity of the body creates these waves and enables directional movement. Unlike the motion of other helical swimmers such as Spirochetes, Spiroplasma swimming velocity increases with increasing viscosity. In addition, cell morphological parameters such as helical pitch and cell length influence swimming velocity.

  14. Supramolecular helices: chirality transfer from conjugated molecules to structures.

    PubMed

    Yang, Yang; Zhang, Yajie; Wei, Zhixiang

    2013-11-13

    Different scales of chirality endow a material with many excellent properties and potential applications. In this review, using π-conjugated molecules as functional building blocks, recent progress on supramolecular helices inspired by biological helicity is summarized. First, induced chirality on conjugated polymers and small molecules is introduced. Molecular chirality can be amplified to nanostructures, superstructures, and even macroscopic structures by a self-assembly process. Then, the principles for tuning the helicity of supramolecular chirality, as well as formation of helical heterojunctions, are summarized. Finally, the potential applications of chiral structures in chiral sensing and organic electronic devices are critically reviewed. Due to recent progress in chiral structures, an interdisciplinary area called "chiral electronics" is expected to gain wide popularity in the near future.

  15. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction.

    PubMed

    Hall, Spencer E; Roberts, Kyle; Vaidehi, Nagarajan

    2009-01-01

    The structural features of helical transmembrane (TM) proteins, such as helical kinks, tilts, and rotational orientations are important in modulation of their function and these structural features give rise to functional diversity in membrane proteins with similar topology. In particular, the helical kinks caused by breaking of the backbone hydrogen bonds lead to hinge bending flexibility in these helices. Therefore it is important to understand the nature of the helical kinks and to be able to reproduce these kinks in structural models of membrane proteins. We have analyzed the position and extent of helical kinks in the transmembrane helices of all the crystal structures of membrane proteins taken from the MPtopo database, which are about 405 individual helices of length between 19 and 35 residues. 44% of the crystal structures of TM helices showed a significant helical kink, and 35% of these kinks are caused by prolines. Many of the non-proline helical kinks are caused by other residues like Ser and Gly that are located at the center of helical kinks. The side chain of Ser makes a hydrogen bond with the main chain carbonyl of the i - 4th or i + 4th residue thus making a kink. We have also studied how well molecular dynamics (MD) simulations on isolated helices can reproduce the position of the helical kinks in TM helices. Such a method is useful for structure prediction of membrane proteins. We performed MD simulations, starting from a canonical helix for the 405 TM helices. 1 ns of MD simulation results show that we can reproduce about 79% of the proline kinks, only 59% of the vestigial proline kinks and 18% of the non-proline helical kinks. We found that similar results can be obtained from choosing the lowest potential energy structure from the MD simulation. 4-14% more of the vestigial prolines were reproduced by replacing them with prolines before performing MD simulations, and changing the amino acid back to proline after the MD simulations. From these

  16. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation

    PubMed Central

    Khatri, Purvesh; Roedder, Silke; Kimura, Naoyuki; De Vusser, Katrien; Morgan, Alexander A.; Gong, Yongquan; Fischbein, Michael P.; Robbins, Robert C.; Naesens, Maarten

    2013-01-01

    Using meta-analysis of eight independent transplant datasets (236 graft biopsy samples) from four organs, we identified a common rejection module (CRM) consisting of 11 genes that were significantly overexpressed in acute rejection (AR) across all transplanted organs. The CRM genes could diagnose AR with high specificity and sensitivity in three additional independent cohorts (794 samples). In another two independent cohorts (151 renal transplant biopsies), the CRM genes correlated with the extent of graft injury and predicted future injury to a graft using protocol biopsies. Inferred drug mechanisms from the literature suggested that two FDA-approved drugs (atorvastatin and dasatinib), approved for nontransplant indications, could regulate specific CRM genes and reduce the number of graft-infiltrating cells during AR. We treated mice with HLA-mismatched mouse cardiac transplant with atorvastatin and dasatinib and showed reduction of the CRM genes, significant reduction of graft-infiltrating cells, and extended graft survival. We further validated the beneficial effect of atorvastatin on graft survival by retrospective analysis of electronic medical records of a single-center cohort of 2,515 renal transplant patients followed for up to 22 yr. In conclusion, we identified a CRM in transplantation that provides new opportunities for diagnosis, drug repositioning, and rational drug design. PMID:24127489

  17. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation.

    PubMed

    Khatri, Purvesh; Roedder, Silke; Kimura, Naoyuki; De Vusser, Katrien; Morgan, Alexander A; Gong, Yongquan; Fischbein, Michael P; Robbins, Robert C; Naesens, Maarten; Butte, Atul J; Sarwal, Minnie M

    2013-10-21

    Using meta-analysis of eight independent transplant datasets (236 graft biopsy samples) from four organs, we identified a common rejection module (CRM) consisting of 11 genes that were significantly overexpressed in acute rejection (AR) across all transplanted organs. The CRM genes could diagnose AR with high specificity and sensitivity in three additional independent cohorts (794 samples). In another two independent cohorts (151 renal transplant biopsies), the CRM genes correlated with the extent of graft injury and predicted future injury to a graft using protocol biopsies. Inferred drug mechanisms from the literature suggested that two FDA-approved drugs (atorvastatin and dasatinib), approved for nontransplant indications, could regulate specific CRM genes and reduce the number of graft-infiltrating cells during AR. We treated mice with HLA-mismatched mouse cardiac transplant with atorvastatin and dasatinib and showed reduction of the CRM genes, significant reduction of graft-infiltrating cells, and extended graft survival. We further validated the beneficial effect of atorvastatin on graft survival by retrospective analysis of electronic medical records of a single-center cohort of 2,515 renal transplant patients followed for up to 22 yr. In conclusion, we identified a CRM in transplantation that provides new opportunities for diagnosis, drug repositioning, and rational drug design.

  18. Vocational Education Curriculum Specialist (VECS). Module 4: Organization of Vocational Education. Study Guide. (Teaching/Learning Module).

    ERIC Educational Resources Information Center

    American Institutes for Research in the Behavioral Sciences, Palo Alto, CA.

    One of six introductory modules in a 22-module series designed to train vocational education curriculum specialists (VECS), this guide is intended for use by both instructor and student in a variety of education environments, including independent study, team teaching, seminars, and workshops, as well as in more conventional classroom settings.…

  19. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    SciTech Connect

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. )

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  20. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity.

    PubMed

    Salomon, Julie; Gaston, Cécile; Magescas, Jérémy; Duvauchelle, Boris; Canioni, Danielle; Sengmanivong, Lucie; Mayeux, Adeline; Michaux, Grégoire; Campeotto, Florence; Lemale, Julie; Viala, Jérôme; Poirier, Françoise; Minc, Nicolas; Schmitz, Jacques; Brousse, Nicole; Ladoux, Benoit; Goulet, Olivier; Delacour, Delphine

    2017-01-13

    Monolayered epithelia are composed of tight cell assemblies that ensure polarized exchanges. EpCAM, an unconventional epithelial-specific cell adhesion molecule, is assumed to modulate epithelial morphogenesis in animal models, but little is known regarding its cellular functions. Inspired by the characterization of cellular defects in a rare EpCAM-related human intestinal disease, we find that the absence of EpCAM in enterocytes results in an aberrant apical domain. In the course of this pathological state, apical translocation towards tricellular contacts (TCs) occurs with striking tight junction belt displacement. These unusual cell organization and intestinal tissue defects are driven by the loss of actomyosin network homoeostasis and contractile activity clustering at TCs, yet is reversed by myosin-II inhibitor treatment. This study reveals that adequate distribution of cortical tension is crucial for individual cell organization, but also for epithelial monolayer maintenance. Our data suggest that EpCAM modulation protects against epithelial dysplasia and stabilizes human tissue architecture.

  1. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity

    PubMed Central

    Salomon, Julie; Gaston, Cécile; Magescas, Jérémy; Duvauchelle, Boris; Canioni, Danielle; Sengmanivong, Lucie; Mayeux, Adeline; Michaux, Grégoire; Campeotto, Florence; Lemale, Julie; Viala, Jérôme; Poirier, Françoise; Minc, Nicolas; Schmitz, Jacques; Brousse, Nicole; Ladoux, Benoit; Goulet, Olivier; Delacour, Delphine

    2017-01-01

    Monolayered epithelia are composed of tight cell assemblies that ensure polarized exchanges. EpCAM, an unconventional epithelial-specific cell adhesion molecule, is assumed to modulate epithelial morphogenesis in animal models, but little is known regarding its cellular functions. Inspired by the characterization of cellular defects in a rare EpCAM-related human intestinal disease, we find that the absence of EpCAM in enterocytes results in an aberrant apical domain. In the course of this pathological state, apical translocation towards tricellular contacts (TCs) occurs with striking tight junction belt displacement. These unusual cell organization and intestinal tissue defects are driven by the loss of actomyosin network homoeostasis and contractile activity clustering at TCs, yet is reversed by myosin-II inhibitor treatment. This study reveals that adequate distribution of cortical tension is crucial for individual cell organization, but also for epithelial monolayer maintenance. Our data suggest that EpCAM modulation protects against epithelial dysplasia and stabilizes human tissue architecture. PMID:28084299

  2. The modulator driven polymorphism of Zr(IV) based metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Drache, Franziska; Bon, Volodymyr; Senkovska, Irena; Getzschmann, Jürgen; Kaskel, Stefan

    2017-01-01

    The reaction of ZrCl4 and 2,5-thiophenedicarboxylic acid (H2tdc) in the presence of trifluoroacetic acid (Htfa) as modulator results in the formation of the new metal-organic framework (MOF) named DUT-126 (DUT = Dresden University of Technology). The nature and concentration of modulators are found to be decisive synthetic parameters affecting the topology of the formed product. DUT-126 (hbr) extends the series of polymorphs differing in topology, namely DUT-67 (reo), DUT-68 (bon) and DUT-69 (bct) to four, where DUT-67 and DUT-68 show the same eight-connected secondary building units as in DUT-126. In DUT-126, linker molecules have a peculiar orientation, resulting in hbr topology, which is described for the first time in this work for MOFs. DUT-126 contains three pore types, including two micropores surrounding mesoporous channels. DUT-126 is stable against hydrolysis and features permanent porosity with a specific surface area of 1297 m2 g-1 and a total pore volume of 0.48 cm3 g-1, calculated from the nitrogen physisorption isotherm measured at 77 K. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  3. An evaluation of organ dose modulation on a GE optima CT660-computed tomography scanner.

    PubMed

    Dixon, Matthew T; Loader, Robert J; Stevens, Gregory C; Rowles, Nick P

    2016-05-08

    Organ Dose Modulation or ODM (GE Healthcare, Milwaukee, WI) was evaluated to characterize changes in CTDIvol, image noise, effective dose, and organ dose saving to patients. Three separate investigations were completed: a tube current modulation phantom was scanned with and without ODM, a CTDIvol phantom was scanned with ODM, and Monte Carlo simulations were performed. ODM was found to reduce the CTDIvol by approximately 20% whilst increasing the noise by approximately 14%. This was reflected in the dose distribution, where the anterior peripheral dose was reduced by approximately 40% whilst the identical poste-rior dose remained largely unaffected. Enabling ODM for the entire scan would reduce the effective dose by approximately 24%; however, this saving reduces to 5% if the images are matched for CTDIvol. These savings mostly originated from reductions in dose to the stomach, breasts, colon, bladder, and liver. ODM has the effect of a global reduction in CTDIvol with an associated increase in image noise. The benefit of ODM was found to be reduced when the dose-saving contribution from the reduced CTDIvol was removed. Given that there is a higher contribution to effective dose throughout the body from the anterior projections, consideration should be given to applying ODM throughout.

  4. The modulator driven polymorphism of Zr(IV) based metal-organic frameworks.

    PubMed

    Drache, Franziska; Bon, Volodymyr; Senkovska, Irena; Getzschmann, Jürgen; Kaskel, Stefan

    2017-01-13

    The reaction of ZrCl4 and 2,5-thiophenedicarboxylic acid (H2tdc) in the presence of trifluoroacetic acid (Htfa) as modulator results in the formation of the new metal-organic framework (MOF) named DUT-126 (DUT = Dresden University of Technology). The nature and concentration of modulators are found to be decisive synthetic parameters affecting the topology of the formed product. DUT-126 ( HBR: ) extends the series of polymorphs differing in topology, namely DUT-67 ( REO: ), DUT-68 ( BON: ) and DUT-69 ( BCT: ) to four, where DUT-67 and DUT-68 show the same eight-connected secondary building units as in DUT-126. In DUT-126, linker molecules have a peculiar orientation, resulting in HBR: topology, which is described for the first time in this work for MOFs. DUT-126 contains three pore types, including two micropores surrounding mesoporous channels. DUT-126 is stable against hydrolysis and features permanent porosity with a specific surface area of 1297 m(2) g(-1) and a total pore volume of 0.48 cm(3) g(-1), calculated from the nitrogen physisorption isotherm measured at 77 K.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  5. Plasma driven by helical electrodes

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Finn, John; Nebel, Richard; Barnes, Daniel

    2016-10-01

    A novel plasma state, obtained by applying a helical voltage at the wall with a uniform axial magnetic field, is studied by means of zero-pressure resistive MHD simulations in a periodic cylinder. The radial magnetic field at the wall is taken to be zero. For a small helical electrode voltage, the helical perturbation in the plasma is small and localized to the edge. Beyond a critical electrode voltage, there is a bifurcation to the newly discovered state, which is a single-helicity Ohmic equilibrium with the same helicity as the electrodes, i.e., the fields depend only on radius and mθ - nφ , where θ and φ = z / R are the poloidal and toroidal angles. For electrostatic driving with m = 1 , the mean magnetic field (m = n = 0) has field line safety factor q(r) equal to the pitch of the electrodes m / n = 1 / n except near the edge, where it monotonically increases an amount of order unity. The plasma is force-free in the interior. Near the edge, however, the current crosses the field lines to enter and exit through the helical electrodes. A large helical plasma flow related Pfirsch-Schlüter-like currents exist in this edge vicinity. Applications to current drive in tokamaks, as well as to straight plasmas with endcap electrodes are discussed.

  6. Assessment of three-dimensional set-up errors using megavoltage computed tomography (MVCT) during image-guided intensity-modulated radiation therapy (IMRT) for craniospinal irradiation (CSI) on helical tomotherapy (HT).

    PubMed

    Gupta, Tejpal; Upasani, Maheshkumar; Master, Zubin; Patil, Anita; Phurailatpam, Reena; Nojin, Siji; Kannan, Sadhana; Godasastri, Jayant; Jalali, Rakesh

    2015-02-01

    The purpose of this study was to assess three-dimensional (3D) set-up errors using megavoltage computed tomography (MVCT) during image-guided intensity-modulated radiation therapy (IMRT) for supine craniospinal irradiation (CSI) on helical tomotherapy (HT). Patients were immobilized in a customized 4-clamp thermoplastic head mask with or without whole-body vacuum cradle. Set-up was based primarily on a set of cranial fiducial markers. MVCT scans were acquired and co-registered with planning scan separately at three different levels (brain, upper, and lower spine) at every fraction. Only translational displacements were analysed, wherein positive sign denotes deviation in anterior, left, and superior direction; while negative sign denotes deviation in posterior, right, and inferior direction. Mean displacements, systematic, and random errors of the study population were calculated at all three levels separately. Local residual uncertainty of the upper and lower spine was also derived assuming perfect co-registration of the skull. Set-up margins for clinical target volume (CTV) to planning target volume (PTV) were derived at these three levels separately using published margin recipes. Data from 1868 co-registrations in 674 fractions on 33 patients was included. The mean displacements in the lateral, longitudinal, and vertical directions were -1.21, -1.36, and 1.38 mm; -1.25, -0.34, and 0.65 mm; and -1.47, -2.78, and 0.22 mm for the brain; upper spine; and lumbar spine respectively. The corresponding 3D vector of displacement was 2.28; 1.45; and 3.15 mm respectively. There was a distinct systematic trend towards increasing inaccuracy from the brain towards the lower spine. Using Stroom's formula, the minimum recommended CTV to PTV margins in absence of daily image-guidance were 6.5; 7.0; and 9.5 mm for the brain; upper spine; and lower spine respectively. This increased to 7.5; 8.5; and 11.5 mm using van Herk's formula. Subset and sensitivity analyses

  7. Peroxidase activity of bacterial cytochrome P450 enzymes: modulation by fatty acids and organic solvents.

    PubMed

    Rabe, Kersten S; Erkelenz, Michael; Kiko, Kathrin; Niemeyer, Christof M

    2010-08-01

    The modulation of peroxidase activity by fatty acid additives and organic cosolvents was determined and compared for four bacterial cytochrome P450 enzymes, thermostable P450 CYP119A1, the P450 domain of CYP102A1 (BMP), CYP152A1 (P450(bsbeta)), and CYP101A1 (P450(cam)). Utilizing a high-throughput microplate assay, we were able to readily screen more than 100 combinations of enzymes, additives and cosolvents in a convenient and highly reproducible assay format. We found that, in general, CYP119A1 and BMP showed an increase in peroxidative activity in the presence of fatty acids, whereas CYP152A1 revealed a decrease in activity and CYP101A1 was only slightly affected. In particular, we observed that the conversion of the fluorogenic peroxidase substrate Amplex Red by CYP119A1 and BMP was increased by a factor of 38 or 11, respectively, when isopropanol and lauric acid were present in the reaction mixture. The activity of CYP119A1 could thus be modulated to reach more than 90% of the activity of CYP152A1 without effectors, which is the system with the highest peroxidative activity. For all P450s investigated we found distinctive reactivity patterns, which suggest similarities in the binding site of CYP119A1 and BMP in contrast with the other two proteins studied. Therefore, this study points towards a role of fatty acids as activators for CYP enzymes in addition to being mere substrates. In general, our detailed description of fatty acid- and organic solvent-effects is of practical interest because it illustrates that optimization of modulators and cosolvents can lead to significantly increased yields in biocatalysis.

  8. SPring-8 twin helical undulator.

    PubMed

    Hara, T; Tanaka, T; Tanabe, T; Maréchal, X M; Kumagai, K; Kitamura, H

    1998-05-01

    There are several ways of producing circularly polarized light, such as using asymmetric devices, crossed undulators etc. The SPring-8 helical undulator introduces a simple way of producing both horizontal and vertical fields in one undulator. All the magnet arrays are arranged above and below the plane of the electron orbit, so there is no limitation of access from the sides of the undulator. For the SPring-8 BL25SU, two helical undulators will be installed in tandem, and the helicity of the polarization can be switched at up to 10 Hz using five kicker magnets.

  9. Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008

    NASA Astrophysics Data System (ADS)

    Li, Y. P.; Elbern, H.; Lu, K. D.; Friese, E.; Kiendler-Scharr, A.; Mentel, Th. F.; Wang, X. S.; Wahner, A.; Zhang, Y. H.

    2013-07-01

    The formation of Secondary organic aerosol (SOA) was simulated with the Secondary ORGanic Aerosol Model (SORGAM) by a classical gas-particle partitioning concept, using the two-product model approach, which is widely used in chemical transport models. In this study, we extensively updated SORGAM including three major modifications: firstly, we derived temperature dependence functions of the SOA yields for aromatics and biogenic VOCs (volatile organic compounds), based on recent chamber studies within a sophisticated mathematic optimization framework; secondly, we implemented the SOA formation pathways from photo oxidation (OH initiated) of isoprene; thirdly, we implemented the SOA formation channel from NO3-initiated oxidation of reactive biogenic hydrocarbons (isoprene and monoterpenes). The temperature dependence functions of the SOA yields were validated against available chamber experiments, and the updated SORGAM with temperature dependence functions was evaluated with the chamber data. Good performance was found with the normalized mean error of less than 30%. Moreover, the whole updated SORGAM module was validated against ambient SOA observations represented by the summed oxygenated organic aerosol (OOA) concentrations abstracted from aerosol mass spectrometer (AMS) measurements at a rural site near Rotterdam, the Netherlands, performed during the IMPACT campaign in May 2008. In this case, we embedded both the original and the updated SORGAM module into the EURopean Air pollution and Dispersion-Inverse Model (EURAD-IM), which showed general good agreements with the observed meteorological parameters and several secondary products such as O3, sulfate and nitrate. With the updated SORGAM module, the EURAD-IM model also captured the observed SOA concentrations reasonably well especially those during nighttime. In contrast, the EURAD-IM model before update underestimated the observations by a factor of up to 5. The large improvements of the modeled SOA

  10. Updated aerosol module and its application to simulate secondary organic aerosols during IMPACT campaign May 2008

    NASA Astrophysics Data System (ADS)

    Li, Y. P.; Elbern, H.; Lu, K. D.; Friese, E.; Kiendler-Scharr, A.; Mentel, Th. F.; Wang, X. S.; Wahner, A.; Zhang, Y. H.

    2013-03-01

    The formation of Secondary organic aerosol (SOA) was simulated with the Secondary ORGanic Aerosol Model (SORGAM) by a classical gas-particle partitioning concept, using the two-product model approach, which is widely used in chemical transport models. In this study, we extensively updated SORGAM including three major modifications: firstly, we derived temperature dependence functions of the SOA yields for aromatics and biogenic VOCs, based on recent chamber studies within a sophisticated mathematic optimization framework; secondly, we implemented the SOA formation pathways from photo oxidation (OH initiated) of isoprene; thirdly, we implemented the SOA formation channel from NO3-initiated oxidation of reactive biogenic hydrocarbons (isoprene and monoterpenes). The temperature dependence functions of the SOA yields were validated against available chamber experiments. Moreover, the whole updated SORGAM module was validated against ambient SOA observations represented by the summed oxygenated organic aerosol (OOA) concentrations abstracted from Aerosol Mass Spectrometer (AMS) measurements at a rural site near Rotterdam, the Netherlands, performed during the IMPACT campaign in May 2008. In this case, we embedded both the original and the updated SORGAM module into the EURopean Air pollution and Dispersion-Inverse Model (EURAD-IM), which showed general good agreements with the observed meteorological parameters and several secondary products such as O3, sulfate and nitrate. With the updated SORGAM module, the EURAD-IM model also captured the observed SOA concentrations reasonably well especially those during nighttime. In contrast, the EURAD-IM model before update underestimated the observations by a factor of up to 5. The large improvements of the modeled SOA concentrations by updated SORGAM were attributed to the mentioned three modifications. Embedding the temperature dependence functions of the SOA yields, including the new pathways from isoprene photo oxidations

  11. Dosimetric comparison of helical tomothearpy and linac-based IMRT in whole abdomen radiotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kim, Dae-Hyun; Jang, Hong Seok; Song, Jin Ho; Choi, Byung Ock; Cho, Seok Goo; Jung, Ji-Young; Kay, Chul Seung

    2012-10-01

    Recent advances in radiotherapy techniques have allowed a significant improvement in the therapeutic ratio of whole abdominal irradiation (WAI) through linear-accelerator (Linac) based intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT). IMRT has been shown to reduce the dose to organs at risk (OAR) while adequately treating the tumor volume. HT operates by adjusting 51 beam directions, couch speed, pitch and shapes of a binary multileaf collimator (MLC), with the purpose of clinically increasing the befit to the patient. We incorporated helical tomotherapy as a new modality for WAI for the treatment of non-Hodgkin's lymphoma patients whose disease involved the intestine and the mesenteric lymph nodes. Excellent tumor coverage with effective sparing of normal organ sparings, and homogeneous dose distribution could be achieved. This study dosimetrically compared HT and linac-based IMRT by using several indices, including the conformity index (CI) and the homogeneity index (HI) for the planning target volume (PTV), as well as the, max dose and the mean dose and the quality index (QI) for five organs at risk (OARs). The HI and the CI were used to compare the quality of target coverage while the QI was used compare the dosimetric performans for OAR systems. The target coverages between the two systems were similar, but the most QIs were lower than 1, what means that HT is batter at sparing OARs than IMRT. Tomotherapy enabled excellent target coverage, effective sparing of normal tissues, and homogeneous dose distribution without severe acute toxicity.

  12. Tunable Helical Origami

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Dai, Eric; Zheng, Huang

    2014-03-01

    Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has begun to inspire innovations in science and engineering. For example, K. Miura led the study of a paper folding pattern in regards to deployment of solar panels to outer space, resulting in more efficient packing and unpacking of the solar panels into tightly constrained spaces. In this work, we study the geometric and mechanical properties of a twisting origami pattern. The pattern created by the fold exhibits several interesting properties, including rigid foldibility, and finely tunable helical coiling, with control over pitch, radius, and handedness of the helix. In addition, the pattern closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. In our work, we relate the six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. In addition, we demonstrate that the morphogenesis of such folding pattern can be modeled through finite element analysis. We hope our research into the diagonal fold brings insight into the potential scientific and engineering applications of origami and spark further research into how the traditional paper art can be applied as a simple, inexpensive model for complex problems.

  13. Twist Helicity in Classical Vortices

    NASA Astrophysics Data System (ADS)

    Scheeler, Martin W.; Kedia, Hridesh; Kleckner, Dustin; Irvine, William T. M.

    2015-11-01

    Recent experimental work has demonstrated that a partial measure of fluid Helicity (the sum of linking and writhing of vortex tubes) is conserved even as those vortices undergo topology changing reconnections. Measuring the total Helicity, however, requires additional information about how the vortex lines are locally twisted inside the vortex core. To bridge this gap, we have developed a novel technique for experimentally measuring twist Helicity. Using this method, we are able to measure the production and eventual decay of twist for a variety of vortex evolutions. Remarkably, we observe twist dynamics capable of conserving total Helicity even in the presence of rapidly changing writhe. This work was supported by the NSF MRSEC shared facilities at the University of Chicago (DMR-0820054) and an NSF CAREER award (DMR-1351506). W.T.M.I. further acknowledges support from the A.P. Sloan Foundation and the Packard Foundation.

  14. Helicity multiplexed broadband metasurface holograms

    PubMed Central

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong

    2015-01-01

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices. PMID:26354497

  15. Magnetic Helicity and Planetary Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  16. ORACLE: a module for the description of ORganic Aerosol Composition and Evolution in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tsimpidi, A. P.; Karydis, V. A.; Pozzer, A.; Pandis, S. N.; Lelieveld, J.

    2014-08-01

    A computationally efficient module for the description of organic aerosol (OA) partitioning and chemical aging has been developed and implemented into the EMAC atmospheric chemistry-climate model. The model simulates the formation of secondary organic aerosol (SOA) from semi-volatile (SVOCs), intermediate-volatility (IVOCs) and volatile organic compounds (VOCs). The model distinguishes SVOCs from biomass burning and all other combustion sources using two surrogate species for each source category with an effective saturation concentration at 298 K of C* = 0.1 and 10 μg m-3. Two additional surrogate species with C* = 103 and 105 μg m-3 are used for the IVOCs emitted by the above two source categories. Gas-phase photochemical reactions that change the volatility of the organics are taken into account. The oxidation products (SOA-sv, SOA-iv, and SOA-v) of each group of precursors (SVOCs, IVOCs, and VOCs) are simulated separately in the module to keep track of their origin. ORACLE efficiently describes the OA composition and evolution in the atmosphere and can be used to (i) estimate the relative contributions of SOA and primary organic aerosol (POA) to total OA, (ii) determine how SOA concentrations are affected by biogenic and anthropogenic emissions, and (iii) evaluate the effects of photochemical aging and long-range transport on the OA budget. Here we estimate that the predicted domain-average global surface OA concentration is 1.5 μg m-3 and consists of 7% POA from fuel combustion, 11% POA from biomass burning, 2% SOA-sv from fuel combustion, 3% SOA-sv from biomass burning, 15% SOA-iv from fuel combustion, 28% SOA-iv from biomass burning, 19% biogenic SOA-v, and 15% anthropogenic SOA-v. The tropospheric burden of OA components is predicted to be 0.23 Tg POA, 0.16 Tg SOA-sv, 1.41 Tg SOA-iv, and 1.2 Tg SOA-v.

  17. Does modulation of organic cation transporters improve pralidoxime activity in an animal model of organophosphate poisoning?

    PubMed

    Kayouka, Maya; Houzé, Pascal; Baud, Frederic J; Cisternino, Salvatore; Debray, Marcel; Risède, Patricia; Schinkel, Alfred H; Warnet, Jean-Michel

    2011-04-01

    Pralidoxime is an organic cation used as an antidote in addition to atropine to treat organophosphate poisoning. Pralidoxime is rapidly eliminated by the renal route and thus has limited action. The objectives of this work were as follows. 1) Study the role of organic cation transporters in the renal secretion of pralidoxime using organic cation transporter substrates (tetraethylammonium) and knockout mice (Oct1/2⁻/⁻; Oct3⁻/⁻). 2) Assess whether sustained high plasma concentrations increase pralidoxime antidotal activity toward paraoxon-induced respiratory toxicity. INSERM U705, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France. Rodents: Knockout mice (Oct1/2⁻/⁻; Oct3⁻/⁻) and Sprague-Dawley rats. None. In rats, the renal clearance of pralidoxime was 3.6-fold higher than the creatinine clearance. Pretreatment with tetraethylammonium (75 mg/kg) in rats or deficiencies in organic cation transporters 1 and 2 in mice (Oct1/2⁻/⁻) resulted in a significant increase in plasma pralidoxime concentrations. Lack of Oct3 did not alter plasma pralidoxime concentrations. The antidotal activity of pralidoxime (50 mg/kg intramuscularly) was longer and with greater effect, resulting in a return to normal values when administered to rats pretreated with tetraethylammonium. Pralidoxime is secreted in rats and mice by renal Oct1 and/or Oct2 but not by Oct3. Modulation of organic cation transporter activity increased the plasma pralidoxime concentrations and the antidotal effect of pralidoxime with sustained return within the normal range of respiratory variables in paraoxon-poisoned rats. These results suggest a promising approach in an animal model toward the increase in efficiency of pralidoxime. However, further studies are needed before these results are extended to human poisoning.

  18. omega-Helices in proteins.

    PubMed

    Enkhbayar, Purevjav; Boldgiv, Bazartseren; Matsushima, Norio

    2010-05-01

    A modification of the alpha-helix, termed the omega-helix, has four residues in one turn of a helix. We searched the omega-helix in proteins by the HELFIT program which determines the helical parameters-pitch, residues per turn, radius, and handedness-and p = rmsd/(N - 1)(1/2) estimating helical regularity, where "rmsd" is the root mean square deviation from the best fit helix and "N" is helix length. A total of 1,496 regular alpha-helices 6-9 residues long with p < or = 0.10 A were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical alpha-helix and omega-helix. Sixty-two right handed omega-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the omega-helices occur really in proteins.

  19. The next large helical devices

    NASA Astrophysics Data System (ADS)

    Iiyoshi, Atsuo; Yamazaki, Kozo

    1995-06-01

    Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.

  20. The feasibility of a regional CTDIvol to estimate organ dose from tube current modulated CT exams.

    PubMed

    Khatonabadi, Maryam; Kim, Hyun J; Lu, Peiyun; McMillan, Kyle L; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F

    2013-05-01

    In AAPM Task Group 204, the size-specific dose estimate (SSDE) was developed by providing size adjustment factors which are applied to the Computed Tomography (CT) standardized dose metric, CTDI(vol). However, that work focused on fixed tube current scans and did not specifically address tube current modulation (TCM) scans, which are currently the majority of clinical scans performed. The purpose of this study was to extend the SSDE concept to account for TCM by investigating the feasibility of using anatomic and organ specific regions of scanner output to improve accuracy of dose estimates. Thirty-nine adult abdomen/pelvis and 32 chest scans from clinically indicated CT exams acquired on a multidetector CT using TCM were obtained with Institutional Review Board approval for generating voxelized models. Along with image data, raw projection data were obtained to extract TCM functions for use in Monte Carlo simulations. Patient size was calculated using the effective diameter described in TG 204. In addition, the scanner-reported CTDI(vo)l (CTDI(vol),global) was obtained for each patient, which is based on the average tube current across the entire scan. For the abdomen/pelvis scans, liver, spleen, and kidneys were manually segmented from the patient datasets; for the chest scans, lungs and for female models only, glandular breast tissue were segmented. For each patient organ doses were estimated using Monte Carlo Methods. To investigate the utility of regional measures of scanner output, regional and organ anatomic boundaries were identified from image data and used to calculate regional and organ-specific average tube current values. From these regional and organ-specific averages, CTDI(vol) values, referred to as regional and organ-specific CTDI(vol), were calculated for each patient. Using an approach similar to TG 204, all CTDI(vol) values were used to normalize simulated organ doses; and the ability of each normalized dose to correlate with patient size was

  1. Efficient terahertz-wave generation and its ultrafast optical modulation in charge ordered organic ferroelectrics

    SciTech Connect

    Itoh, Hirotake Iwai, Shinichiro; Itoh, Keisuke; Goto, Kazuki; Yamamoto, Kaoru; Yakushi, Kyuya

    2014-04-28

    Efficient terahertz (THz) wave generation in strongly correlated organic compounds α-(ET){sub 2}I{sub 3} and α′-(ET){sub 2}IBr{sub 2} (ET:bis(ethylenedithio)-tetrathiafulvalene) was demonstrated. The spontaneous polarization induced by charge ordering or electronic ferroelectricity was revealed to trigger the THz-wave generation via optical rectification; the estimated 2nd-order nonlinear optical susceptibility for α-(ET){sub 2}I{sub 3} is over 70 times larger than that for prototypical THz-source ZnTe. Ultrafast (<1 ps) and sensitive (∼40%) photoresponse of the THz wave was observed for α-(ET){sub 2}I{sub 3}, which is attributable to photoinduced quenching of the polarization accompanied by insulator(ferroelectric)-to-metal transition. Modulation of the THz wave was observed for α′-(ET){sub 2}IBr{sub 2} upon the poling procedure, indicating the alignment of polar domains.

  2. Design principles for Bernal spirals and helices with tunable pitch

    NASA Astrophysics Data System (ADS)

    Fejer, Szilard N.; Chakrabarti, Dwaipayan; Kusumaatmaja, Halim; Wales, David J.

    2014-07-01

    Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment.Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00324a

  3. Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton.

    PubMed

    Demais, V; Audrain, C; Mabilleau, G; Chappard, D; Baslé, M F

    2014-06-01

    Interaction of cells with extracellular matrix is an essential event for differentiation, proliferation and activity of osteoblasts. In bone, binding of osteoblasts to bone matrix is required to determine specific activities of the cells and to synthesize matrix bone proteins. Integrins are the major cell receptors involved in the cell linkage to matrix proteins such as fibronectin, type I collagen and vitronectin, via the RGD-sequences. In this study, cultures of osteoblast-like cells (Saos-2) were done on coated glass coverslips in various culture conditions: DMEM alone or DMEM supplemented with poly-L-lysine (PL), fetal calf serum (FCS), fibronectin (FN), vitronectin (VN) and type I collagen (Col-I). The aim of the study was to determine the specific effect of these bone matrix proteins on cell adherence and morphology and on the cytoskeleton status. Morphological characteristics of cultured cells were studied using scanning electron microscopy and image analysis. The heterogeneity of cytoskeleton was studied using fractal analysis (skyscrapers and blanket algorithms) after specific preparation of cells to expose the cytoskeleton. FAK and MAPK signaling pathways were studied by western blotting in these various culture conditions. Results demonstrated that cell adhesion was reduced with PL and VN after 240 min. After 60 min of adhesion, cytoskeleton organization was enhanced with FN, VN and Col-I. No difference in FAK phosphorylation was observed but MAPK phosphorylation was modulated by specific adhesion on extracellular proteins. These results indicate that culture conditions modulate cell adhesion, cytoskeleton organization and intracellular protein pathways according to extracellular proteins present for adhesion.

  4. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  5. Differential backbone dynamics of companion helices in the extended helical coiled-coil domain of a bacterial chemoreceptor

    PubMed Central

    Bartelli, Nicholas L; Hazelbauer, Gerald L

    2015-01-01

    Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four-helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent-exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin-labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane-distal tight turn (N-helix), and the other carboxyl terminal (C-helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide-spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N- and C-helices. For bilayer-inserted receptors, EPR spectra from sites in the membrane-distal protein-interaction region and throughout the C-helix were typical of well-structured helices. In contrast, for approximately two-thirds of the N-helix, from its origin as the AS-2 helix of the membrane-proximal HAMP domain to the beginning of the membrane-distal protein-interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four-helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function. PMID:26257396

  6. Helical muon beam cooling channel engineering design

    SciTech Connect

    Johnson, Rolland

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  7. Cooperative polymerization of α-helices induced by macromolecular architecture

    NASA Astrophysics Data System (ADS)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  8. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization.

    PubMed

    Galati, Alessandra; Micheli, Emanuela; Alicata, Claudia; Ingegnere, Tiziano; Cicconi, Alessandro; Pusch, Miriam Caroline; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Cacchione, Stefano

    2015-07-13

    The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex determination module

    PubMed Central

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-01-01

    Tissues that generate specialized cell-types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the C. elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis/organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase) and TRA-1 (Gli transcriptional repressor), which acts both in sex-determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2 mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. PMID:21571224

  10. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

    PubMed

    Arur, Swathi; Ohmachi, Mitsue; Berkseth, Matt; Nayak, Sudhir; Hansen, David; Zarkower, David; Schedl, Tim

    2011-05-17

    Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to control plasma membrane biogenesis and organization during oogenesis. We discovered repeated utilization of a self-contained negative regulatory module, consisting of NOS-3 translational repressor, FEM-CUL-2 (E3 ubiquitin ligase), and TRA-1 (Gli transcriptional repressor), which acts both in sex determination and in physiological demand control of oogenesis, coordinating these processes. In the distal germline, where MPK-1 is not activated, TRA-1 represses the male fate as NOS-3 functions in translational repression leading to inactivation of the FEM-CUL-2 ubiquitin ligase. In the proximal germline, sperm-dependent physiological MPK-1 activation results in phosphorylation-based inactivation of NOS-3, FEM-CUL-2-mediated degradation of TRA-1 and the promotion of membrane organization during oogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Alicata, Claudia; Ingegnere, Tiziano; Cicconi, Alessandro; Pusch, Miriam Caroline; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Cacchione, Stefano

    2015-01-01

    The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection. PMID:25999344

  12. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow.

    PubMed

    Sun, Yaqi; Casella, Selene; Fang, Yi; Huang, Fang; Faulkner, Matthew; Barrett, Steve; Liu, Lu-Ning

    2016-05-01

    Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO2 fixation. The central CO2-fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO2-fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of β-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that β-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO2 fixation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Dose as a Function of Lung Volume and Planned Treatment Volume in Helical Tomotherapy Intensity-Modulated Radiation Therapy-Based Stereotactic Body Radiation Therapy for Small Lung Tumors

    SciTech Connect

    Baisden, Joseph M.; Romney, Davis A.; Reish, Andrew G.; Cai Jing; Sheng Ke; Jones, David R.; Benedict, Stanley H.; Read, Paul W.; Larner, James M. . E-mail: JML2P@virginia.edu

    2007-07-15

    Purpose: To evaluate the limitations of Hi-Art Helical Tomotherapy (Middleton, WI) stereotactic body radiotherapy (SBRT) for lung lesions, and to provide an initial report on patients treated with this method. Stereotactic body radiotherapy was shown to be an effective, well-tolerated treatment for early-stage, non-small-cell lung carcinoma (NSCLC). The Radiation Therapy Oncology Group (RTOG) 0236 protocol is currently evaluating three-dimensional conformal SBRT that delivers 60 Gy in three fractions. Methods and Materials: Inverse treatment planning for hypothetical lung gross tumor volumes (GTV) and planned treatment volume (PTV) expansions were performed. We tested the hypothesis that the maximum acceptable dose (MAD) to be delivered to the lesion by SBRT could be predicted by PTV and lung volume. Dose constraints on normal tissue were as designated by the RTOG protocol. Inverse planning was performed to find the maximum tolerated SBRT dose up to 60 Gy. Results: Regression analysis of the data obtained indicated a linear relationship between MAD, PTV, and lung volume. This generated two equations which may be useful predictive tools. Seven patients with Stage I and II NSCLC treated at University of Virginia with this method tolerated the treatment extremely well, and suffered no greater than grade I toxicity, with no evidence of disease recurrence in follow-up from 2-20 months. Conclusions: Helical tomotherapy SBRT for lung lesions is well-tolerated. In addition, the likely MAD for patients considered for this type of treatment can be predicted by PTV and lung volume.

  14. Selective control for helical microswimmers

    NASA Astrophysics Data System (ADS)

    Katsamba, Panayiota; Lauga, Eric

    2015-11-01

    One of the greatest aspirations for artificial microswimmers is their application in non-invasive medicine. For any practical use, adequate mechanisms enabling control of multiple artificial swimmers is of paramount importance. Here we propose a multi-helical, freely-jointed motor as a novel selective control mechanism. We show that the nonlinear step-out behavior of a magnetized helix driven by a rotating magnetic field can be exploited, when used in conjunction with other helices, to obtain a velocity profile that is non-negligible only within a chosen interval of operating frequencies. Specifically, the force balance between the competing opposite-handed helices is tuned to give no net motion at low frequencies while in the middle frequency range, the swimming velocity increases monotonically with the driving frequency if two opposite helices are used, thereby allowing speed adjustment by varying the driving frequency. We illustrate this idea in detail on a two-helix system, and demonstrate how to generalize to N helices, both numerically and theoretically. We finish by explaining how to solve the inverse problem and design an artificial swimmer with an arbitrarily-complex velocity vs. frequency relationship.

  15. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  16. The relationship between organ dose and patient size in tube current modulated adult thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Khatonabadi, Maryam; Zhang, Di; Yang, Jeffrey; DeMarco, John J.; Cagnon, Chris C.; McNitt-Gray, Michael F.

    2012-03-01

    Recently published AAPM Task Group 204 developed conversion coefficients that use scanner reported CTDIvol to estimate dose to the center of patient undergoing fixed tube current body exam. However, most performed CT exams use TCM to reduce dose to patients. Therefore, the purpose of this study was to investigate the correlation between organ dose and a variety of patient size metrics in adult chest CT scans that use tube current modulation (TCM). Monte Carlo simulations were performed for 32 voxelized models with contoured lungs and glandular breasts tissue, consisting of females and males. These simulations made use of patient's actual TCM data to estimate organ dose. Using image data, different size metrics were calculated, these measurements were all performed on one slice, at the level of patient's nipple. Estimated doses were normalized by scanner-reported CTDIvol and plotted versus different metrics. CTDIvol values were plotted versus different metrics to look at scanner's output versus size. The metrics performed similarly in terms of correlating with organ dose. Looking at each gender separately, for male models normalized lung dose showed a better linear correlation (r2=0.91) with effective diameter, while female models showed higher correlation (r2=0.59) with the anterior-posterior measurement. There was essentially no correlation observed between size and CTDIvol-normalized breast dose. However, a linear relationship was observed between absolute breast dose and size. Dose to lungs and breasts were consistently higher in females with similar size as males which could be due to shape and composition differences between genders in the thoracic region.

  17. Generalized helicity and Beltrami fields

    SciTech Connect

    Buniy, Roman V.; Kephart, Thomas W.

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  18. Fabry-Perot Interferometer-Based Electrooptic Modulator using LiNbO3 and Organic Thin Films

    NASA Technical Reports Server (NTRS)

    Banks, C.; Frazier, D.; Penn, B.; Abdeldayem, H.; Sharma, A.; Yelleswarapu, C.; Leyderman, Alexander; Correa, Margarita; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We report the study of a Fabry-Perot electro-optical modulator using thin crystalline film NPP, and Crystalline LiNbO3. We are able to observe 14, and 60 percent degree of modulation. Measurements were carried using a standard lock-in amplifier with a silicon detector. The proposal to design a Fabry-Perot electro-optic modulator with an intracavity electro-optically active organic material was based on the initial results using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Packets cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside die resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field.

  19. Helical axis stellarator equilibrium model

    SciTech Connect

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.

  20. On steady kinematic helical dynamos

    NASA Astrophysics Data System (ADS)

    Eltayeb, I. A.; Loper, D. E.

    The equations governing steady kinematic helical dynamos are studied, using the formalism of Benton (1979), when the flow has no radial component (in cylindrical coordinates). It is shown that all solutions must decay exponentially to zero at large distances, s, from the axis of the helix. When the flow depends on s only it is shown that a necessary condition for dynamo action is that the flow possesses components along both the primary and secondary helices. It is also found that periodic motion of one mode along the primary helix cannot support dynamo action even if the field is composed of mean and periodic parts.

  1. Brownian motion of helical flagella.

    PubMed

    Hoshikawa, H; Saito, N

    1979-07-01

    We develops a theory of the Brownian motion of a rigid helical object such as bacterial flagella. The statistical properties of the random forces acting on the helical object are discussed and the coefficients of the correlations of the random forces are determined. The averages , and are also calculated where z and theta are the position along and angle around the helix axis respectively. Although the theory is limited to short time interval, direct comparison with experiment is possible by using the recently developed cinematography technique.

  2. Helical fold prediction for the cyclin box.

    PubMed

    Bazan, J F

    1996-01-01

    The smooth progression of the eukaryotic cell cycle relies on the periodic activation of members of a family of cell cycle kinases by regulatory proteins called cyclins. Outside of the cell cycle, cyclin homologs play important roles in regulating the assembly of transcription complexes; distant structural relatives of the conserved cyclin core or "box" can also function as general transcription factors (like TFIIB) or survive embedded in the chain of the tumor suppressor, retinoblastoma protein. The present work attempts the prediction of the canonical secondary, supersecondary, and tertiary fold of the minimal cyclin box domain using a combination of techniques that make use of the evolutionary information captured in a multiple alignment of homolog sequences. A tandem set of closely packed, helical modules are predicted to form the cyclin box domain.

  3. Designing α-helical peptides with enhanced synergism and selectivity against Mycobacterium smegmatis: Discerning the role of hydrophobicity and helicity.

    PubMed

    Khara, Jasmeet Singh; Lim, Fang Kang; Wang, Ying; Ke, Xi-Yu; Voo, Zhi Xiang; Yang, Yi Yan; Lakshminarayanan, Rajamani; Ee, Pui Lai Rachel

    2015-12-01

    backbone sequence (LLKK)2, with the ability to kill susceptible and drug-resistant M. tuberculosis. In this study, we evaluated a series of synthetic α-helical (LLKK)2 peptides over a range of hydrophobicities for their activity against mycobacteria and provide the first report on the modulating effect of hydrophobicity and α-helicity on the antimicrobial mechanisms of synthetic AMPs and their synergism with first-line antibiotics. These findings demonstrate the applicability of strategies employed here for the rational design of AMPs with the aim of improving cell selectivity and synergistic interactions when co-administered with first-line antibiotics in the fight against drug-resistant tuberculosis. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Non-axisymmetric Electrostatic Helicity Injection into the HIST Spherical Torus

    NASA Astrophysics Data System (ADS)

    Nagata, M.; Akamatsu, T.; Kagei, Y.; Fukumoto, N.; Uyama, T.

    2000-10-01

    Studies of helicity injection physics including the magnetohydrodynamic (MHD) dynamo and self-organizing phenomena are very important in the spherical torus (ST) and spheromak research. In the HIST experiment, we have found that the intermittent generation of plasma current on ST by coaxial helicity injection (CHI) is responsible for repetitive plasmoid injection from the coaxial gun. We have verified that helicity balance is satisfied during the axisymmetric plasmoid injection process. In order to investigate furthermore the important role of helicity by varying the topology of the system, i.e. symmetry breaking, we perform non-axisymmetric electrostatic helicity injection experiments on FACT and HIST using Compact Torus (CT) injector. CT injector can inject the spheromak with both particle and helicity into the ST plasma from the outboard side. A long-lived spheromak tends to relax to the m=1 helical state in the entrance/drift tube of the CT injector. If we can maintain the m=1 helical configuration there in a steady state, so helicity is continuously transported from the injector toward the outer edge of ST, resulting in current drive through MHD relaxation. In the FACT-ST experiment, we observed that the toroidal current is amplified during spheromak injection, and also investigated the behavoir of the spheromak injected in the ST plasma.

  5. Shaping organs by a wingless-int/Notch/nonmuscle myosin module which orients feather bud elongation

    PubMed Central

    Li, Ang; Chen, Meng; Jiang, Ting-Xin; Wu, Ping; Nie, Qing; Widelitz, Randall; Chuong, Cheng-Ming

    2013-01-01

    How organs are shaped to specific forms is a fundamental issue in developmental biology. To address this question, we used the repetitive, periodic pattern of feather morphogenesis on chicken skin as a model. Avian feathers within a single tract extend from dome-shaped primordia to thin conical structures with a common axis of orientation. From a systems biology perspective, the process is precise and robust. Using tissue transplantation assays, we demonstrate that a “zone of polarizing activity,” localized in the posterior feather bud, is necessary and sufficient to mediate the directional elongation. This region contains a spatially well-defined nuclear β-catenin zone, which is induced by wingless-int (Wnt)7a protein diffusing in from posterior bud epithelium. Misexpressing nuclear β-catenin randomizes feather polarity. This dermal nuclear β-catenin zone, surrounded by Notch1 positive dermal cells, induces Jagged1. Inhibition of Notch signaling disrupts the spatial configuration of the nuclear β-catenin zone and leads to randomized feather polarity. Mathematical modeling predicts that lateral inhibition, mediated by Notch signaling, functions to reduce Wnt7a gradient variations and fluctuations to form the sharp boundary observed for the dermal β-catenin zone. This zone is also enriched for nonmuscle myosin IIB. Suppressing nonmuscle myosin IIB disrupts directional cell rearrangements and abolishes feather bud elongation. These data suggest that a unique molecular module involving chemical–mechanical coupling converts a pliable chemical gradient to a precise domain, ready for subsequent mechanical action, thus defining the position, boundary, and duration of localized morphogenetic activity that molds the shape of growing organs. PMID:23576731

  6. Electrostatic Braiding and Homologous Pairing of DNA Double Helices

    PubMed Central

    Cortini, Ruggero; Kornyshev, Alexei A.; Lee, Dominic J.; Leikin, Sergey

    2011-01-01

    Homologous pairing and braiding (supercoiling) have crucial effects on genome organization, maintenance, and evolution. Generally, the pairing and braiding processes are discussed in different contexts, independently of each other. However, analysis of electrostatic interactions between DNA double helices suggests that in some situations these processes may be related. Here we present a theory of DNA braiding that accounts for the elastic energy of DNA double helices as well as for the chiral nature of the discrete helical patterns of DNA charges. This theory shows that DNA braiding may be affected, stabilized, or even driven by chiral electrostatic interactions. For example, electrostatically driven braiding may explain the surprising recent observation of stable pairing of homologous double-stranded DNA in solutions containing only monovalent salt. Electrostatic stabilization of left-handed braids may stand behind the chiral selectivity of type II topoisomerases and positive plasmid supercoiling in hyperthermophilic bacteria and archea. PMID:21843478

  7. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    DOE PAGES

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; ...

    2017-02-13

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here in this paper we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g-1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, OH∙∙∙ =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique OCOmore » $$_2$$···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. Lastly, the macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites.« less

  8. Highly efficient low color temperature organic LED using blend carrier modulation layer

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  9. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    DOE PAGES

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; ...

    2017-01-27

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generationmore » that is sufficient to achieve d33 > 10pm V–1, when incorporated in a non-centrosymmetric DA multilayer stack. Lastly, using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.« less

  10. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    PubMed Central

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin

    2017-01-01

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites. PMID:28194014

  11. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework.

    PubMed

    Lu, Zhenzhong; Godfrey, Harry G W; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J L; Teat, Simon J; Gagnon, Kevin J; Frogley, Mark D; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J; Easun, Timothy L; Yang, Sihai; Schröder, Martin

    2017-02-13

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host-guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(V(III)) {[V(III)2(OH)2(L)], LH4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(V(IV)), [V(IV)2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(V(III)) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g(-1)) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(V(IV)) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites.

  12. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    PubMed Central

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.

    2017-01-01

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor–acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V−1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date. PMID:28128278

  13. Sub-wavelength modulation of χ(2) optical nonlinearity in organic thin films

    NASA Astrophysics Data System (ADS)

    Yan, Yixin; Yuan, Yakun; Wang, Baomin; Gopalan, Venkatraman; Giebink, Noel C.

    2017-01-01

    Modulating the second-order nonlinear optical susceptibility (χ(2)) of materials at the nanoscale represents an ongoing technological challenge for a variety of integrated frequency conversion and nonlinear nanophotonic applications. Here we exploit the large hyperpolarizability of intermolecular charge transfer states, naturally aligned at an organic semiconductor donor-acceptor (DA) interface, as a means to control the magnitude and sign of χ(2) at the nanoscale. Focusing initially on a single pentacene-C60 DA interface, we confirm that the charge transfer transition is strongly aligned orthogonal to the heterojunction and find that it is responsible for a large interfacial nonlinearity probed via second harmonic generation that is sufficient to achieve d33>10 pm V-1, when incorporated in a non-centrosymmetric DA multilayer stack. Using grating-shadowed oblique-angle deposition to laterally structure the DA interface distribution in such multilayers subsequently enables the demonstration of a χ(2) grating with 280 nm periodicity, which is the shortest reported to date.

  14. Modulating supramolecular binding of carbon dioxide in a redox-active porous metal-organic framework

    NASA Astrophysics Data System (ADS)

    Lu, Zhenzhong; Godfrey, Harry G. W.; da Silva, Ivan; Cheng, Yongqiang; Savage, Mathew; Tuna, Floriana; McInnes, Eric J. L.; Teat, Simon J.; Gagnon, Kevin J.; Frogley, Mark D.; Manuel, Pascal; Rudić, Svemir; Ramirez-Cuesta, Anibal J.; Easun, Timothy L.; Yang, Sihai; Schröder, Martin

    2017-02-01

    Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host-guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3',5,5'-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g-1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ...c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites.

  15. Better understanding of tubular helical buckling

    SciTech Connect

    Wu, J.

    1996-09-01

    Tubular buckling is a significant problem within the oil industry. Although it has been studied for many years, methods to analyze tubular helical buckling continues to appear in the literature. Several criteria have been derived and presented leading to confusion in understanding and correctly predicting tubular helical buckling. The prediction of tubular helical buckling is complicated by the fact that the tubular is confined within the wellbore. The tubular initially buckles sinusoidally, and then changes into the shape of a helix (helical buckling) as the axial load increases. Different approaches in modeling the helical buckling process and the use of energy methods resulted in those different helical buckling criteria. Helical buckling criteria proposed in the literature, as well as their derivations are discussed in this paper, to help better understand and effectively predict tubular helical buckling in engineering operations.

  16. The transport of relative canonical helicity

    SciTech Connect

    You, S.

    2012-09-15

    The evolution of relative canonical helicity is examined in the two-fluid magnetohydrodynamic formalism. Canonical helicity is defined here as the helicity of the plasma species' canonical momentum. The species' canonical helicity are coupled together and can be converted from one into the other while the total gauge-invariant relative canonical helicity remains globally invariant. The conversion is driven by enthalpy differences at a surface common to ion and electron canonical flux tubes. The model provides an explanation for why the threshold for bifurcation in counter-helicity merging depends on the size parameter. The size parameter determines whether magnetic helicity annihilation channels enthalpy into the magnetic flux tube or into the vorticity flow tube components of the canonical flux tube. The transport of relative canonical helicity constrains the interaction between plasma flows and magnetic fields, and provides a more general framework for driving flows and currents from enthalpy or inductive boundary conditions.

  17. A fixed-jaw method to protect critical organs during intensity-modulated radiotherapy

    SciTech Connect

    Chen, Jiayun; Chen, Xinyuan; Huang, Manni; Dai, Jianrong

    2014-01-01

    Intensity-modulated radiotherapy (IMRT) plays an important role in cancer radiotherapy. For some patients being treated with IMRT, the extremely low tolerances of critical organs (such as lens, ovaries, and testicles) cannot be met during treatment planning. The aim of this article is to introduce a new planning method to overcome that problem. In current planning practice, jaw positions are automatically set to cover all target volumes by the planning system (e.g., Pinnacle{sup 3} system). Because of such settings, critical organs may be fully blocked by the multileaf collimator (MLC), but they still sit in the field that is shaped by collimator jaws. These critical organs receive doses from the transmission and leakage of MLC leaves. We manually fixed jaw positions to block them to further reduce such doses. This method has been used for different treatment sites in our clinic, and it was thoroughly evaluated in patients with radical hysterectomy plus ovarian transposition after surgery. For each patient, 2 treatment plans were designed with the same optimization parameters: the original plan with automatically chosen jaw positions (called O-plan) and the plan with fixed-jaw positions (named F-plan). In the F-plan, the jaws were manually fixed to block the ovaries. For target coverage, the mean conformity index (CI) of the F-plan (1.28 ± 0.02) was remarkably lower than that of the O-plan (1.53 ± 0.09) (p < 0.05). The F-plan and the O-plan performed similarly in target dose homogeneity. Meanwhile, for the critical organ sparing, the mean dose of both ovaries were much lower in the F-plan than that in the O-plan (p < 0.05). The V{sub 20}, V{sub 30}, and V{sub 40} of bladder were also lower in the F-plan (93.57 ± 1.98, 73.99 ± 5.76, and 42.33 ± 3.7, respectively) than those in the O-plan (97.98 ± 1.11, 85.07 ± 4.04, and 49.71 ± 3.63, respectively) (p < 0.05). The maximum dose to the spinal cord planning organ at risk (OAR) volume (PRV) in the O-plan (3940

  18. Note: Helical nanobelt force sensors

    SciTech Connect

    Hwang, G.; Hashimoto, H.

    2012-12-15

    We present the fabrication and characterization of helical nanobelt force sensors. These self-sensing force sensors are based on the giant piezoresistivity of helical nanobelts. The three-dimensional helical nanobelts are self-formed from 27 nm-thick n-type InGaAs/GaAs bilayers using rolled-up techniques, and assembled onto electrodes on a micropipette using nanorobotic manipulations. The helical nanobelt force sensors can be calibrated using a calibrated atomic force microscope cantilever system under scanning electron microscope. Thanks to their giant piezoresistance coefficient (515 Multiplication-Sign 10{sup -10} Pa{sup -1}), low stiffness (0.03125 N/m), large-displacement capability ({approx}10 {mu}m), and good fatigue resistance, they are well suited to function as stand-alone, compact ({approx}20 {mu}m without the plug-in support), light ({approx}5 g including the plug-in support), versatile and large range ({approx}{mu}N) and high resolution ({approx}nN) force sensors.

  19. Note: Helical nanobelt force sensors

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Hashimoto, H.

    2012-12-01

    We present the fabrication and characterization of helical nanobelt force sensors. These self-sensing force sensors are based on the giant piezoresistivity of helical nanobelts. The three-dimensional helical nanobelts are self-formed from 27 nm-thick n-type InGaAs/GaAs bilayers using rolled-up techniques, and assembled onto electrodes on a micropipette using nanorobotic manipulations. The helical nanobelt force sensors can be calibrated using a calibrated atomic force microscope cantilever system under scanning electron microscope. Thanks to their giant piezoresistance coefficient (515 × 10-10 Pa-1), low stiffness (0.03125 N/m), large-displacement capability (˜10 μm), and good fatigue resistance, they are well suited to function as stand-alone, compact (˜20 μm without the plug-in support), light (˜5 g including the plug-in support), versatile and large range (˜μN) and high resolution (˜nN) force sensors.

  20. Helical symmetry in linear systems

    SciTech Connect

    Bicak, Jiri; Schmidt, Bernd G.

    2007-11-15

    We investigate properties of solutions of the scalar wave equation and Maxwell's equations on Minkowski space with helical symmetry. Existence of local and global solutions with this symmetry is demonstrated with and without sources. The asymptotic properties of the solutions are analyzed. We show that the Newman-Penrose retarded and advanced scalars exhibit specific symmetries and generalized peeling properties.

  1. Conservation of magnetic helicity during plasma relaxation

    SciTech Connect

    Ji, H.; Prager, S.C.; Sarff, J.S.

    1994-07-01

    Decay of the total magnetic helicity during the sawtooth relaxation in the MST Reversed-Field Pinch is much larger than the MHD prediction. However, the helicity decay (3--4%) is smaller than the magnetic energy decay (7--9%), modestly supportive of the helicity conservation hypothesis in Taylor`s relaxation theory. Enhanced fluctuation-induced helicity transport during the relaxation is observed.

  2. Investigation of Helical Pulse Forming Line

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxiang; Zhang, Jiande

    2006-09-01

    To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The results indicate that it is feasible to employ a helical line as a long-pulse PFL, and the influence of its dispersion is negligible. Compared with a conventional coaxial PFL, the helical PFL with the same size can produce a longer pulse.

  3. Hybrid helical snakes and rotators for RHIC

    SciTech Connect

    Courant, E.D.

    1995-06-13

    The spin rotators and Siberian snakes presently envisaged for RHIC utilize helical dipole magnets. The snakes and the rotators each consist of four helices, each with a full twist (360{degrees}) of the field. Here we investigate an alternate layout, namely combinations of helical and pure bending magnet, and show that this may have advantages.

  4. Enantiomeric differentiation by synthetic helical polymers.

    PubMed

    Yashima, Eiji; Iida, Hiroki; Okamoto, Yoshio

    2013-01-01

    Recent advances in the synthesis of helical polymers and their applications as chiral materials, in particular chiral stationary phases (CSPs), for high-performance liquid chromatography (HPLC) are reviewed with an emphasis on the key role of the helical conformations with one-handedness for the prominent chiral recognition of enantiomers. The historical background of artificial optically active helical polymers is also briefly described.

  5. Helicity Within and Among Macromolecules

    NASA Astrophysics Data System (ADS)

    Green, Mark M.

    2004-03-01

    There are several classes of helical polymers and supramolecular arrays in which the left and right helical senses are of equal probability and as well in dynamic equilibrium. One example of this class of materials is a polymer first created at Dupont as a commercial fiber candidate almost fifty years ago but which did not rise to the level necessary for commercial use. The polymer, nylon 1, widely known as a polyisocyanate, did become a focal point of research for polymer physics because of its stiff archetypical wormlike nature. An array of research tools was able to elucidate the conformational characteristics of this polymer and therefore reveal in quantitative detail both the source of its stiffness and the limit to this characteristic. Further effort explored the nature of the expected lyotropic liquid crystal properties with similar success. As part of these studies, chiral experiments, which were introduced to determine how to favor one helical sense, played a key role. Statistical physical analysis of these chiral experiments first by Shneior Lifson for uniform chiral fields and later by Jonathan Selinger for quenched random chiral fields gave insight into the cooperative characteristics by which the chiral information influenced the helical senses in these polymers. These kinds of experiments finding parallels to the behavior of sergeants and soldiers and to majority rule were later applied widely in the literature offering insight into the cooperative nature of helical polymers and arrays in general. Moreover, the interplay between the character of the single chains and the liquid crystals that arise in concentrated solutions from the polyisocyanates yielded new kinds of information about the cholesteric state formed by lyotropic liquid crystals in general and even led to new phenomena connecting liquid crystal behavior to temperature.

  6. Hypofractionated breast and chest wall irradiation using simultaneous in-field boost IMRT delivered via helical tomotherapy.

    PubMed

    Rong, Y; Fahner, T; Welsh, J S

    2008-12-01

    Although helical tomotherapy has been described as a means of administering accelerated partial breast irradiation, its practicality in routine whole breast irradiation as part of breast conserving therapy or chest wall irradiation has been questioned. In this technical note we describe our method of whole breast or chest wall irradiation using helical tomotherapy based image-guided, hypofractionated, simultaneous in-field boost intensity modulated radiation therapy. We have observed that excellent dose-distributions can be achieved with helical tomotherapy through a careful selection of treatment planning parameters. Dose homogeneity to the whole breast and simultaneously targeted lumpectomy region appears superior to conventional "tangents" with minimal hot or cold spots. Dose-volume histogram analysis documents effective reduction of high dose to critical sensitive structures (heart and lung) although a greater volume of these non-target organs receives low dose compared to what is typical with tangential beams. Treatment planning is efficient and is usually completed within one to two hours, although physician contouring requires more time and attention than non-IMRT approaches. Pretreatment megavoltage CT (MVCT) imaging has proved invaluable in aiding set-up and engenders greater confidence that the planned IMRT dose distributions are truly being delivered. In some situations, MVCT can provide visual feedback when a seroma or overall breast volume has changed significantly since simulation, thereby identifying cases where replanning might be prudent. Treatment is brief, typically completed in 6 to 9 minutes. Initial clinical application has confirmed the feasibility and practicality of helical tomotherapy as an efficient means of administering radiation therapy for routine breast-conserving therapy and post-mastectomy chest wall irradiation. A simultaneous in-field boost technique reduces the length of the overall course by about a week thereby adding

  7. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    SciTech Connect

    Parker, William; Brodeur, Marylene; Roberge, David; Freeman, Carolyn

    2010-07-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as part of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.

  8. Treatment planning of epithelial ovarian cancers using helical tomotherapy.

    PubMed

    Swamidas, V Jamema; Mahantshetty, Umesh; Vineeta, Goel; Engineer, Reena; Deshpande, Deepak D; Sarin, Rajiv; Shrivastava, Shyam Kishore

    2009-10-07

    Whole Abdomen Radiotherapy (WAR) for epithelial ovarian cancer though effective has been used sparingly due to inadequate target coverage and poor sparing of Organ At Risk (OAR) leading to significantly higher toxicities. Newer radiation techniques have shown potential for significant improvement in the therapeutic ratio. The purpose of this study was to evaluate Helical Tomotherapy(HT) for WAR. The objective parameters were to obtain uniform and adequate target coverage with maximum OAR sparing. HT plans were generated for five patients with field-width of 5.0/2.5 cm, modulation factor of 3.5/3.0, and a pitch of 0.3. A dose of 25 Gy in 25 fractions was prescribed to the abdomen with a simultaneous boost of 45 Gy in 25 fractions to the pelvis. Dose-volume parameters and various indices were analyzed and compared. Mean volume (standard-deviation) of abdominal and pelvic PTV (planning target volume) was 6630 +/-450 cm3 and 1235 +/-98 cm3 respectively. Mean length of PTV in cranio-caudal direction was 41+/-4 cm. Volume receiving 95% and 107% of the prescription dose, (V95% and V107%) was 95.6+/-2.7% and 2.6+/-0.5% for abdominal-PTV, and 95.7+/-2.4% and 0% for pelvic-PTV respectively. Homogeneity and Conformity indices were 17.5+/-1.7, 1.2+/-0.03 for abdominal PTV, and 5.2+/-0.7, 1.1+/-0.02 for pelvic-PTV respectively. Median dose received by the kidneys, liver and bone marrow were 9.6+/-1.2 Gy, 17+/-2.7 Gy and 22+/-1.4 Gy respectively. HT achieves an excellent coverage of WAR target with simultaneous pelvic boost and better organ (kidneys and liver) sparing. HT for WAR has the potential as consolidative therapy which is being evaluated further in a phase II cohort study in epithelial ovarian cancers.

  9. GABAergic modulation of serotonin release in the rat subfornical organ area.

    PubMed

    Takahashi, Makoto; Nomura, Masahiko; Tanaka, Junichi

    2016-09-06

    The present study was carried out to examine whether γ-aminobutyric acid (GABA) receptor mechanisms are involved in the release of serotonin (5-hydroxytryptamine, 5-HT) in the subfornical organ (SFO) using intracerebral microdialysis techniques. Perfusion with the GABA receptor antagonists as well as agonists was performed in the region of the SFO through a microdialysis probe and extracellular concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in freely moving rats. Perfusion with the GABAA receptor antagonist bicuculline (10 and 50μM), but not the GABAB receptor antagonist phaclofen (10 and 50μM), increased dialysate 5-HT and 5-HIAA concentrations in the SFO area, suggesting that the GABAergic system may tonically inhibit the 5-HT release in the SFO area through GABAA receptors. Higher perfusion with the GABAA receptor agonist muscimol (50μM) or the GABAB receptor agonist baclofen (250μM) decreased extracellular levels of 5-HT and 5-HIAA in the SFO area. Nonhypotensive hypovolemia induced by subcutaneous injection of polyethylene glycol (PEG, 30%, 5ml) significantly enhanced the 5-HT and 5-HIAA concentrations in the SFO area. The enhanced 5-HT and 5-HIAA levels elicited the PEG treatment were reduced by perfusion with muscimol (10μM), but not by baclofen (50μM). These results show the involvement of both GABAA and GABAB receptors in the modulation of the 5-HT release in the SFO area, and imply that the GABAA receptor mechanism may be importance for the serotonergic regulatory system of body fluid balance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Dissolved organic carbon modulates mercury concentrations in insect subsidies from streams to terrestrial consumers

    PubMed Central

    Chaves-Ulloa, Ramsa; Taylor, Brad W.; Broadley, Hannah J.; Cottingham, Kathryn L.; Baer, Nicholas A.; Weathers, Kathleen C.; Ewing, Holly A.; Chen, Celia Y.

    2016-01-01

    Mercury (Hg) concentrations in aquatic environments have increased globally, exposing consumers of aquatic organisms to high Hg levels. For both aquatic and terrestrial consumers, exposure to Hg depends on their food sources as well as environmental factors influencing Hg bioavailability. The majority of the research on the transfer of methylmercury (MeHg), a toxic and bioaccumulating form of Hg, between aquatic and terrestrial food webs has focused on terrestrial piscivores. However, a gap exists in our understanding of the factors regulating MeHg bioaccumulation by non-piscivorous terrestrial predators, specifically consumers of adult aquatic insects. Because dissolved organic carbon (DOC) binds tightly to MeHg, affecting its transport and availability in aquatic food webs, we hypothesized that DOC affects MeHg transfer from stream food webs to terrestrial predators feeding on emerging adult insects. We tested this hypothesis by collecting data over two years from 10 low-order streams spanning a broad DOC gradient in the Lake Sunapee watershed in New Hampshire. We found that streamwater MeHg concentration increased linearly with DOC concentration. However, streams with the highest DOC concentrations had emerging stream prey and spiders with lower MeHg concentrations than streams with intermediate DOC concentrations; a pattern that is similar to fish and larval aquatic insects. Furthermore, high MeHg concentrations found in spiders show that MeHg transfer in adult aquatic insects is an overlooked but potentially significant pathway of MeHg bioaccumulation in terrestrial food webs. Our results suggest that although MeHg in water increases with DOC, MeHg concentrations in stream and terrestrial consumers did not consistently increase with increases in streamwater MeHg concentrations. In fact, there was a change from a positive to a negative relationship between aqueous exposure and bioaccumulation at streamwater MeHg concentrations associated with DOC above around 5

  11. Temporary organ displacement coupled with image-guided, intensity-modulated radiotherapy for paraspinal tumors

    PubMed Central

    2013-01-01

    Background To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. Methods Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. Results The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80–1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7–32). The median dose prescribed was 2400 cGy in one fraction (range, 2100–3000 in 3 fractions). The mean GTV Dmin and PTV Dmin pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel Dmax (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and Dmax by 25% (0.022). Conclusions TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors

  12. Information Identification and Organization. Student Study Guide. Module III: Information Types and Sources.

    ERIC Educational Resources Information Center

    Bolvin, Boyd M.; Dupras, Rheba

    This third module, in a three module program, begins with a discussion of basic reference sources such as dictionaries, encyclopedias, almanacs, atlases, and periodical indexes. It then describes the uses of special Alaska resources such as Alaska Almanac, Alaska Blue Book, Milepost, Education Directory, AULS (Alaska Union List of Serials), and…

  13. Amplitude modulation rate dependent topographic organization of the auditory steady-state response in human auditory cortex.

    PubMed

    Weisz, Nathan; Lithari, Chrysoula

    2017-10-01

    Periodic modulations of an acoustic feature, such as amplitude over a certain frequency range, leads to phase locking of neural responses to the envelope of the modulation. Using electrophysiological methods this neural activity pattern, also called the auditory steady-state response (aSSR), is visible following frequency transformation of the evoked response as a clear spectral peak at the modulation frequency. Despite several studies employing the aSSR that show, for example, strongest responses for ∼40 Hz and an overall right-hemispheric dominance, it has not been investigated so far to what extent within auditory cortex different modulation frequencies elicit aSSRs at a homogenous source or whether the localization of the aSSR is topographically organized in a systematic manner. The latter would be suggested by previous neuroimaging works in monkeys and humans showing a periodotopic organization within and across distinct auditory fields. However, the sluggishness of the signal from these neuroimaging works prohibit inferences with regards to the fine-temporal features of the neural response. In the present study, we employed amplitude-modulated (AM) sounds over a range between 4 and 85 Hz to elicit aSSRs while recording brain activity via magnetoencephalography (MEG). Using beamforming and a fine spatially resolved grid restricted to auditory cortical processing regions, our study revealed a topographic representation of the aSSR that depends on AM rate, in particular in the medial-lateral (bilateral) and posterior-anterior (right auditory cortex) direction. In summary, our findings confirm previous studies that showing different AM rates to elicit maximal response in distinct neural populations. They extend these findings however by also showing that these respective neural ensembles in auditory cortex actually phase lock their activity over a wide modulation frequency range. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Magnetic Helicity Injection and Sigmoidal Coronal Loops

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tetsuya T.; Kusano, K.; Maeshiro, T.; Yokoyama, T.; Sakurai, T.

    2005-05-01

    We studied the relationship between magnetic helicity injection and the formation of sigmoidal loops. We analyzed seven active regions: three regions showed coronal loops similar to the potential field, and four regions showed the sigmoidal loops. The magnetic helicity injection rate was evaluated using the method proposed by Kusano et al. In order to compare the helicity of regions of various sizes, we defined the normalized helicity injection rate as the magnetic helicity injection rate divided by the magnetic flux squared. We found that the sigmoidal regions and nonsigmoidal regions have comparable normalized helicity injection rates. Next, we calculated the magnetic helicity content of the sigmoidal loops by using the magnetic flux tube model (Longcope & Welsch) and compared it with the magnetic helicity injected from around the footpoints of three sigmoidal loops. For two sigmoidal loops, it is found that these values are comparable. Another loop showed significant disagreement between helicity injection rate and its magnetic helicity content. Excluding this region on the basis of its complexity (perhaps multiple loops forming a sigmoidal loop), we can conclude that geometric twist of the sigmoidal loops is consistent with the magnetic helicity injected from around the footpoints of the sigmoidal loops.

  15. Predictive supracolloidal helices from patchy particles

    NASA Astrophysics Data System (ADS)

    Guo, Ruohai; Mao, Jian; Xie, Xu-Ming; Yan, Li-Tang

    2014-11-01

    A priori prediction of supracolloidal architectures from nanoparticle and colloidal assembly is a challenging goal in materials chemistry and physics. Despite intense research in this area, much less has been known about the predictive science of supracolloidal helices from designed building blocks. Therefore, developing conceptually new rules to construct supracolloidal architectures with predictive helicity is becoming an important and urgent task of great scientific interest. Here, inspired by biological helices, we show that the rational design of patchy arrangement and interaction can drive patchy particles to self-assemble into biomolecular mimetic supracolloidal helices. We further derive a facile design rule for encoding the target supracolloidal helices, thus opening the doors to the predictive science of these supracolloidal architectures. It is also found that kinetics and reaction pathway during the formation of supracolloidal helices offer a unique way to study supramolecular polymerization, and that well-controlled supracolloidal helices can exhibit tailorable circular dichroism effects at visible wavelengths.

  16. Predictive supracolloidal helices from patchy particles

    PubMed Central

    Guo, Ruohai; Mao, Jian; Xie, Xu-Ming; Yan, Li-Tang

    2014-01-01

    A priori prediction of supracolloidal architectures from nanoparticle and colloidal assembly is a challenging goal in materials chemistry and physics. Despite intense research in this area, much less has been known about the predictive science of supracolloidal helices from designed building blocks. Therefore, developing conceptually new rules to construct supracolloidal architectures with predictive helicity is becoming an important and urgent task of great scientific interest. Here, inspired by biological helices, we show that the rational design of patchy arrangement and interaction can drive patchy particles to self-assemble into biomolecular mimetic supracolloidal helices. We further derive a facile design rule for encoding the target supracolloidal helices, thus opening the doors to the predictive science of these supracolloidal architectures. It is also found that kinetics and reaction pathway during the formation of supracolloidal helices offer a unique way to study supramolecular polymerization, and that well-controlled supracolloidal helices can exhibit tailorable circular dichroism effects at visible wavelengths. PMID:25387544

  17. A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability.

    PubMed

    Cai, Guorui; Jiang, Hai-Long

    2017-01-09

    The pore size enlargement and structural stability have been recognized as two crucial targets, which are rarely achieved together, in the development of metal-organic frameworks (MOFs). Herein, we have developed a versatile modulator-induced defect-formation strategy, in the presence of monocarboxylic acid as a modulator and an insufficient amount of organic ligand, successfully realizing the controllable synthesis of hierarchically porous MOFs (HP-MOFs) with high stability and tailorable pore characters. Remarkably, the integration of high stability and large mesoporous property enables these HP-MOFs to be important porous platforms for applications involving large molecules, especially in catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. An experimental superconducting helical undulator

    SciTech Connect

    Caspi, S.; Taylor, C.

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  19. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  20. Adjustable phase planar helical undulator

    NASA Astrophysics Data System (ADS)

    Carr, Roger G.; Lidia, Steve

    1993-11-01

    We present here the design description of a new type of planar helical undulator, which we are constructing for the SPEAR storage ring at the Stanford Synchrotron Radiation Laboratory. It comprises four rows of pure permanent magnet blocks, one row in each quadrant about the axis defined by the electron beam. Rows may be translated longitudinally with respect to each other to change the helicity of the magnetic field they create at the position of the beam. They may also be translated longitudinally to vary the energy of the x-rays emitted, unlike designs where this function is performed by varying the gap between the rows. This work includes numerical calculations of the fields, electron trajectories, and x-ray spectra, including off-axis effects.

  1. Helical screw expander evaluation project

    NASA Astrophysics Data System (ADS)

    McKay, R.

    1982-03-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  2. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  3. Modulating the rate of charge transport in a metal-organic framework thin film using host:guest chemistry.

    PubMed

    Hod, Idan; Farha, Omar K; Hupp, Joseph T

    2016-01-28

    Herein we demonstrate the use of host-guest chemistry to modulate rates of charge transport in metal-organic framework (MOF) films. The kinetics of site-to-site of charge hopping and, in turn, the overall redox conductivity, of a ferrocene-modified MOF can be altered by up to 30-fold by coupling electron exchange to the oxidation-state-dependent formation of inclusion complexes between cyclodextrin and channel-tethered metallocenes.

  4. Topology of modified helical gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhang, J.; Handschuh, R. F.; Coy, J. J.

    1989-01-01

    The topology of several types of modified surfaces of helical gears is proposed. The modified surfaces allow absorption of a linear or almost linear function of transmission errors. These errors are caused by gear misalignment and an improvement of the contact of gear tooth surfaces. Principles and corresponding programs for computer aided simulation of meshing and contact of gears have been developed. The results of this investigation are illustrated with numerical examples.

  5. Topology of modified helical gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhang, J.; Handschuh, R. F.; Coy, J. J.

    1989-01-01

    The topology of several types of modified surfaces of helical gears is proposed. The modified surfaces allow absorption of a linear or almost linear function of transmission errors. These errors are caused by gear misalignment and an improvement of the contact of gear tooth surfaces. Principles and corresponding programs for computer aided simulation of meshing and contact of gears have been developed. The results of this investigation are illustrated with numerical examples.

  6. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.

    PubMed

    Zhao, Biao; Deng, Jinrui; Deng, Jianping

    2016-04-01

    Optically active nano- and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right- and left-handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification-induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer-derived optically active nanoparticles based on racemic helical polymers.

  7. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    SciTech Connect

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  8. Helicity comparison among three magnetographs

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Gao, Yu; Zhang, Hongqi; Sakurai, T.; Pevtsov, A. A.; Sokoloff, D.

    We compare vector magnetograms of 228 active regions observed by Solar Magnetic Field Telescope (SMFT) at Huairou (HR) Solar Observing Station and the Solar Flare Telescope (SFT) at Mitaka (MTK) of the National Astronomical Observatory of Japan from 1992 to 2005 and 55 active regions observed by SFT and Haleakala Stokes Polarimeter (HSP) at Mees Solar Observatory, University of Hawaii from 1997 to 2000. Two helicity parameters, current helicity density hc and αff coefficient of linear force free field are calculated. From this comparison we conclude: (1) the mean azimuthal angle differences of transverse fields between HR and MTK data are systematic smaller than that between MTK and Mees data; (2) there are 83.8% of hc and 78.1% of αff for 228 active regions observed at HR and MTK agree in sign, and the Pearson linear correlation coefficient between these two data sets is 0.72 for hc and 0.56 for αff. There are 61.8% of hc and 58.2% of αff for 55 active regions observed at MTK and Mees agree in sign, and the Pearson linear correlation coefficient between these two data sets is 0.34 for hc and 0.31 for αff; (3) there is a basic agreement on time variation of helicity parameters in active regions observed at HR, Mees, and MTK.

  9. Helically twisted photonic crystal fibres.

    PubMed

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Authors.

  10. Helically twisted photonic crystal fibres

    PubMed Central

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  11. Helically twisted photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  12. Predicting Helical Topologies in RNA Junctions as Tree Graphs

    PubMed Central

    Kim, Namhee; Elmetwaly, Shereef; Zahran, Mai; Schlick, Tamar

    2013-01-01

    RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires knowledge of their tertiary structures. Though computational RNA folding approaches exist, they often require manual manipulation and expert intuition; predicting global long-range tertiary contacts remains challenging. Here we develop a computational approach and associated program module (RNAJAG) to predict helical arrangements/topologies in RNA junctions. Our method has two components: junction topology prediction and graph modeling. First, junction topologies are determined by a data mining approach from a given secondary structure of the target RNAs; second, the predicted topology is used to construct a tree graph consistent with geometric preferences analyzed from solved RNAs. The predicted graphs, which model the helical arrangements of RNA junctions for a large set of 200 junctions using a cross validation procedure, yield fairly good representations compared to the helical configurations in native RNAs, and can be further used to develop all-atom models as we show for two examples. Because junctions are among the most complex structural elements in RNA, this work advances folding structure prediction methods of large RNAs. The RNAJAG module is available to academic users upon request. PMID:23991010

  13. Predicting helical topologies in RNA junctions as tree graphs.

    PubMed

    Laing, Christian; Jung, Segun; Kim, Namhee; Elmetwaly, Shereef; Zahran, Mai; Schlick, Tamar

    2013-01-01

    RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires knowledge of their tertiary structures. Though computational RNA folding approaches exist, they often require manual manipulation and expert intuition; predicting global long-range tertiary contacts remains challenging. Here we develop a computational approach and associated program module (RNAJAG) to predict helical arrangements/topologies in RNA junctions. Our method has two components: junction topology prediction and graph modeling. First, junction topologies are determined by a data mining approach from a given secondary structure of the target RNAs; second, the predicted topology is used to construct a tree graph consistent with geometric preferences analyzed from solved RNAs. The predicted graphs, which model the helical arrangements of RNA junctions for a large set of 200 junctions using a cross validation procedure, yield fairly good representations compared to the helical configurations in native RNAs, and can be further used to develop all-atom models as we show for two examples. Because junctions are among the most complex structural elements in RNA, this work advances folding structure prediction methods of large RNAs. The RNAJAG module is available to academic users upon request.

  14. Low Cost, Light Weight SOlar Modules Based on Organic Photovoltaic Technology

    SciTech Connect

    Russell Gaudiana; David GInley; Robert Birkmeyer

    2009-09-20

    Objectives - In order to produce solar modules for rooftop applications the performance and the lifetime must be improved to 5% - 7% and >10 year life. Task 1 Stability - (1) Flexible modules are stable to 1000 hrs at 65 C/85%RH, (2) Flexible modules in glass are stable to >2000 hrs at 85 C/85%RH (no decrease in performance); (3) Adhesive + filler helps stabilize modules; and (4) Solution coatable barriers exhibit good WVTR; work in-progress. Task 2 Performance: n-type charge carriers - (1) N-type polymers could not be synthesized; and (2) More than 30 fullerene derivatives synthesized and tested, Several deep LUMO derivatives accept charge from deep LUMO polymers, higher voltage observed, Improvement in cell efficiency not observed, morphology problem. Task 3 Performance: grid electrode - (1) Exceeded flatness and roughness goals; (2) Exceeds sheet resistance goals; (3) Achieved %T goals; and (4) Performance equivalent to ITO - 2% Efficiency ( av.); work in-progress.

  15. Solar Trees: First Large-Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules.

    PubMed

    Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry

    2016-05-01

    The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.

  16. Functional tetrametallic linker modules for coordination polymers and metal-organic frameworks.

    PubMed

    Johansson, Frank B; Bond, Andrew D; McKenzie, Christine J

    2007-03-19

    The new biphenol-based tetranucleating ligand, 2,2',6,6'-tetrakis(N,N-bis(2-pyridylmethyl)aminomethyl)-4,4'-biphenolate, dbpbp2-, comprises two linearly disposed phenolato-hinged dinucleating heptadentate units, each of which offer one O and three N donors to a total of four metal ions. The ligand has been isolated as the zinc chloride complex [Zn4(dbpbp)Cl4]2+, and the ZnII ions have been completely or partially substituted by CuII, FeIII, CoII, and CoIII in metathesis reactions. Similarly, the chloride ligands of [Zn4(dbpbp)Cl4]2+ have been exchanged for solvent molecules (acetonitrile and/or water) and bridging carboxylate ligands. The resulting complexes have been characterized by single-crystal X-ray diffraction, ESI mass spectrometry (ESI-MS), cyclic voltammetry (CV), and EPR spectroscopy. The structures containing [M4(dbpbp)Cl4]2+ with M = ZnII or CuII exhibit 2-D polymeric honeycomb sheets in which intermolecular M...Cl interactions bridge between adjacent [M4(dbpbp)Cl4]2+ cations. Two mixed-metal tetrabenzoate complexes [M4(dbpbp)(O2CC6H5)4]2+/3+ have also been prepared, namely a stoichiometric CuII2ZnII2 complex and a nonstoichiometric FeIII/ZnII system. In the latter case, ESI-MS identifies FeZn3, Fe2Zn2, and Zn4 species, and X-ray crystallography suggests an average composition of Fe0.8Zn3.2. Preparation of a CoII4 complex by metathesis was considerably more difficult than preparation of [Cu4(dbpbp)Cl4]2+, requiring both a large excess of the cobalt source and the presence of auxiliary benzoate. In the presence of 2 equiv of benzoate per starting [Zn4(dbpbp)Cl4]2+ unit and excess CoII, dioxygen binds as peroxide at each end of the molecule to give the CoIII4 complex [Co4(dbpbp)(O2)2(O2CC6H5)2]4+. This latter complex, together with new tetra- and hexametallic benzenedicarboxylato- and benzenetricarboxylato-bridged complexes of dinuclear [Co2(O2)(bpbp)]3+ units (bpbp- = 2,6-bis(N,N-bis-(2-pyridylmethyl)aminomethyl)-4-tert-butyl-phenolate), is a module for

  17. Structural Basis by Which Alternative Splicing Modulates the Organizer Activity of FGF8 in the Brain

    SciTech Connect

    Olsen,S.; Li, J.; Eliseenkova, A.; Ibrahimi, O.; Lao, Z.; Zhang, F.; Linhardt, R.; Joyner, A.; Mohammadi, M.

    2006-01-01

    Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alternative splicing modulates the organizing activity of FGF8, we solved the crystal structure of FGF8b in complex with the 'c' splice isoform of FGF receptor 2 (FGFR2c). Using surface plasmon resonance (SPR), we also characterized the receptor-binding specificity of FGF8a and FGF8b, the 'b' isoform of FGF17 (FGF17b), and FGF18. The FGF8b-FGFR2c structure shows that alternative splicing permits a single additional contact between phenylalanine 32 (F32) of FGF8b and a hydrophobic groove within Ig domain 3 of the receptor that is also present in FGFR1c, FGFR3c, and FGFR4. Consistent with the structure, mutation of F32 to alanine reduces the affinity of FGF8b toward all these receptors to levels characteristic of FGF8a. More importantly, analysis of the mid-hindbrain patterning ability of the FGF8b{sup F32A} mutant in chick embryos and murine midbrain explants shows that this mutation functionally converts FGF8b to FGF8a. Moreover, our data suggest that the intermediate receptor-binding affinities of FGF17b and FGF18, relative to FGF8a and FGF8b, also account for the distinct patterning abilities of these two ligands. We also show that the mode of FGF8 receptor-binding specificity is distinct from that of other FGFs and provide the first biochemical evidence for a physiological FGF8b-FGFR1c interaction during mid-hindbrain development. Consistent with the indispensable role of FGF8 in embryonic development, we show that the FGF8 mode of receptor binding appeared as early as in nematodes and has been preserved throughout evolution.

  18. Experimental results on microwave pulse compression using helically corrugated waveguide

    NASA Astrophysics Data System (ADS)

    McStravick, M.; Samsonov, S. V.; Ronald, K.; Mishakin, S. V.; He, W.; Denisov, G. G.; Whyte, C. G.; Bratman, V. L.; Cross, A. W.; Young, A. R.; MacInnes, P.; Robertson, C. W.; Phelps, A. D. R.

    2010-09-01

    The paper presents new results on the development of a method to generate ultrahigh-power short-microwave pulses by using a known principle of compression (reduction in pulse duration accompanying with increase in pulse amplitude) of a frequency-swept wave packet propagating through a dispersive medium. An oversized circular waveguide with helical-corrugations of its inner surface ensures an eigenwave with strongly frequency dependent group velocity far from cutoff. These dispersive properties in conjunction with high rf breakdown strength and low Ohmic losses make a helically corrugated waveguide attractive for increasing microwave peak power. The experiments performed at kilowatt power levels, demonstrate that an X-band microwave pulse of 80 ns duration with a 5% frequency sweep can be compressed into a 1.5 ns pulse having 25 times higher peak power by optimizing the frequency modulation of the input wave packet.

  19. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    NASA Astrophysics Data System (ADS)

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  20. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system.

    PubMed

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-28

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  1. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    PubMed Central

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-01-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales. PMID:27677227

  2. Tunable morphology of the self-assembled organic microcrystals for the efficient laser optical resonator by molecular modulation.

    PubMed

    Wang, Xuedong; Li, Hui; Wu, Yishi; Xu, Zhenzhen; Fu, Hongbing

    2014-11-26

    Organic single-crystalline micro/nanostructures can effectively generate and carry photons due to their smooth morphologies, high photoluminescence quantum efficiency, and minimized defects density and therefore are potentially ideal building blocks for the optical circuits in the next generation of miniaturized optoelectronics. However, the tailor-made organic molecules can be generally obtained by organic synthesis, ensuring that the organic molecules aggregate in a specific form and generate micro/nanostructures with desirable morphology and therefore act as the efficient laser optical resonator remains a great challenge. Here, the molecular modulation of the morphology on the laser optical resonator properties has been investigated through the preparation of the elongated hexagonal microplates (PHMs) and the rectangular microplates (ORMs), respectively, from two model isomeric organic molecules of 1,4-bis(4-methylstyryl)benzene (p-MSB) and 1,4-bis(2-methylstyryl)benzene (o-MSB). Significantly, fluorescence resonance phenomenon was only observed in the individual ORM other than the PHM. It indicates that the rectangular resonators possess better light-confinement property over the elongated hexagonal resonators. More importantly, optically pumped lasing action was observed in the o-MSB rectangular morphology microplates resonator with a high Q ≈ 1500 above a threshold of ∼540 nJ/cm(2). The excellent optical properties of these microstructures are associated with the morphology, which can be precisely modulated by the organic molecular structure. These self-assembled organic microplates with different morphologies can contribute to the distinct functionality of photonics elements in the integrated optical circuits at micro/nanoscale.

  3. Stabilization of Collagen-Model, Triple-Helical Peptides for In Vitro and In Vivo Applications

    PubMed Central

    Bhowmick, Manishabrata; Fields, Gregg B.

    2014-01-01

    The triple-helical structure of collagen has been accurately reproduced in numerous chemical and recombinant model systems. Triple-helical peptides and proteins have found application for dissecting collagen-stabilizing forces, isolating receptor- and protein-binding sites in collagen, mechanistic examination of collagenolytic proteases, and development of novel biomaterials. Introduction of native-like sequences into triple-helical constructs can reduce the thermal stability of the triple-helix to below that of the physiological environment. In turn, incorporation of nonnative amino acids and/or templates can enhance triple-helix stability. We presently describe approaches by which triple-helical structure can be modulated for use under physiological or near-physiological conditions. PMID:24014440

  4. Contemporary strategies for the stabilization of peptides in the alpha-helical conformation.

    PubMed

    Henchey, Laura K; Jochim, Andrea L; Arora, Paramjit S

    2008-12-01

    Herein we review contemporary synthetic and protein design strategies to stabilize the alpha-helical motif in short peptides and miniature proteins. Advances in organometallic catalyst design, specifically for the olefin metathesis reaction, enable the use of hydrocarbon bridges to either crosslink side chains of specific residues or mimic intramolecular hydrogen bonds with carbon-carbon bonds. The resulting hydrocarbon-stapled and hydrogen bond surrogate alpha-helices provide unique synthetic ligands for targeting biomolecules. In the protein design realm, several classes of miniature proteins that display stable helical domains have been engineered and manipulated with powerful in vitro selection technologies to yield libraries of sequences that retain their helical folds. Rational re-design of these scaffolds provide distinctive reagents for the modulation of protein-protein interactions.

  5. Stabilization of collagen-model, triple-helical peptides for in vitro and in vivo applications.

    PubMed

    Bhowmick, Manishabrata; Fields, Gregg B

    2013-01-01

    The triple-helical structure of collagen has been accurately reproduced in numerous chemical and recombinant model systems. Triple-helical peptides and proteins have found application for dissecting collagen-stabilizing forces, isolating receptor- and protein-binding sites in collagen, mechanistic examination of collagenolytic proteases, and development of novel biomaterials. Introduction of native-like sequences into triple-helical constructs can reduce the thermal stability of the triple-helix to below that of the physiological environment. In turn, incorporation of nonnative amino acids and/or templates can enhance triple-helix stability. We presently describe approaches by which triple-helical structure can be modulated for use under physiological or near-physiological conditions.

  6. Insights into the Hendra virus NTAIL-XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions.

    PubMed

    Erales, Jenny; Beltrandi, Matilde; Roche, Jennifer; Maté, Maria; Longhi, Sonia

    2015-08-01

    The Hendra virus is a member of the Henipavirus genus within the Paramyxoviridae family. The nucleoprotein, which consists of a structured core and of a C-terminal intrinsically disordered domain (N(TAIL)), encapsidates the viral genome within a helical nucleocapsid. N(TAIL) partly protrudes from the surface of the nucleocapsid being thus capable of interacting with the C-terminal X domain (XD) of the viral phosphoprotein. Interaction with XD implies a molecular recognition element (MoRE) that is located within N(TAIL) residues 470-490, and that undergoes α-helical folding. The MoRE has been proposed to be embedded in the hydrophobic groove delimited by helices α2 and α3 of XD, although experimental data could not discriminate between a parallel and an antiparallel orientation of the MoRE. Previous studies also showed that if the binding interface is enriched in hydrophobic residues, charged residues located close to the interface might play a role in complex formation. Here, we targeted for site directed mutagenesis two acidic and two basic residues within XD and N(TAIL). ITC studies showed that electrostatics plays a crucial role in complex formation and pointed a parallel orientation of the MoRE as more likely. Further support for a parallel orientation was afforded by SAXS studies that made use of two chimeric constructs in which XD and the MoRE were covalently linked to each other. Altogether, these studies unveiled the multiparametric nature of the interactions established within this complex and contribute to shed light onto the molecular features of protein interfaces involving intrinsically disordered regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Low-Damage Indium Tin Oxide Formation on Organic Layers Using Unique Cylindrical Sputtering Module and Application in Transparent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hidetoshi; Oyamada, Takahito; Hale, William; Aoshima, Shoichi; Sasabe, Hiroyuki; Adachi, Chihaya

    2006-02-01

    We demonstrate a low-damage technique for forming an indium tin oxide (ITO) layer on an organic layer by using a unique cylindrical sputtering module and the fabrication of high-performance transparent organic light-emitting diodes (TOLEDs). The ITO target has an off-axis alignment to the substrate, and it confines plasma to the inside of the module, thereby forming ITO with little damage to the underlying organic layers. We found that the composition ratio of In2O3 (90%) and SnO2 (10%) in the deposited film is the same as the target composition ratio, and that the composition ratio distribution was spatially uniform, showing no angular dependence. We fabricated an ITO [110 nm]/4,4'-bis[N(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD) [50 nm]/tris-(8-hydroxy-quinoline)aluminum (Alq3) [30 nm]/Cs:phenyldipyrenylphosphine oxide (POPy2) [20 nm]/ITO [100 nm] device, using a cylindrical target for the top ITO cathode fabrication. The device showed excellent J-V characteristics, with a current density of J=883 mA/cm2 at an applied voltage of 10 V and a maximum external quantum efficiency of ηext=0.76%.

  8. Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers.

    PubMed

    Jian, Xian; Chen, Xiangnan; Zhou, Zuowan; Li, Gang; Jiang, Man; Xu, Xiaoling; Lu, Jun; Li, Qiming; Wang, Yong; Gou, Jihua; Hui, David

    2015-02-07

    Helical nanofibers are prepared through in situ growth on the surface of a tetrapod-shaped ZnO whisker (T-ZnO), by employing a precursor decomposition method then adding substrate. After heat treatment at 900 °C under argon, this new composite material, named helical nanofiber-T-ZnO, undergoes a significant change in morphology and structure. The T-ZnO transforms from a solid tetrapod ZnO to a micro-scaled tetrapod hollow carbon film by reduction of the organic fiber at 900 °C. Besides, helical carbon nanofibers, generated from the carbonization of helical nanofibers, maintain the helical morphology. Interestingly, HCNFs with the T-hollow exhibit remarkable improvement in electromagnetic wave loss compared with the pure helical nanofibers. The enhanced loss ability may arise from the efficient dielectric friction, interface effect in the complex nanostructures and the micro-scaled tetrapod-hollow structure.

  9. Demonstration of 40 MHz thin-film electro-optic modulator using an organic molecular salt

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya; Ahyi, Ayayi; Tan, Shida; Mishra, Alpana; Thakur, Mrinal

    2000-03-01

    Recently we reported the first demonstration of a single-pass thin-film electro-optic modulator based on a DAST single-crystal film.(M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635-637 (1999).) In this work, we report a larger modulation depth ( ~80%) and higher speed of operation. Excellent optical quality single-crystal films were prepared by a modified shear method.(M. Thakur and S. Meyler, Macromolecules 18, 2341 (1985); M. Thakur, Y. Shani, G. C. Chi, and K. O'Brien, Synth. Met. 28, D595 (1989).) Thin-film modulator was constructed by depositing electrodes across the polar axis. The beam from a Ti-Sapphire laser, tunable over 720-850 nm, was propagated perpendicular to the film surface. The modulated signal was detected using a fast photodetector, and displayed on a high bandwidth oscilloscope and a spectrum analyzer. The response was independent of the frequency of applied field over the measurement range (2 kHz - 40 MHz). A much higher speed (>100 GHz) of operation should be possible using these films. These modulators involve negligible losses compared to the waveguide structures, and have significant potential for a broad range of applications in high speed optical signal processing.

  10. Deceleration of arginine kinase refolding by induced helical structures.

    PubMed

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  11. Investigation of dose homogeneity for loose helical tomotherapy delivery in the context of breath-hold radiation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Bryan; Kron, Tomas; Battista, Jerry; Van Dyk, Jake

    2005-05-01

    Loose helical delivery is a potential solution to account for respiration-driven tumour motion in helical tomotherapy (HT). In this approach, a treatment is divided into a set of interlaced 'loose' helices commencing at different gantry angles. Each loose helix covers the entire target length in one gantry rotation during a single breath-hold. The dosimetric characteristics of loose helical delivery were investigated by delivering a 6 MV photon beam in a HT-like manner. Multiple scenarios of conventional 'tight' HT and loose helical deliveries were modelled in treatment planning software, and carried out experimentally with Kodak EDR2 film. The advantage of loose helical delivery lies in its ability to produce a more homogeneous dose distribution by eliminating the 'thread' effect—an inherent characteristic of HT, which results in dose modulations away from the axis of gantry rotation. However, loose helical delivery was also subjected to undesirable dose modulations in the direction of couch motion (termed 'beating' effect), when the ratio between the number of beam projections per gantry rotation (n) and pitch factor (p) was a non-integer. The magnitude of dose modulations decreased with an increasing n/p ratio. The results suggest that for the current HT unit (n = 51), dose modulations could be kept under 5% by selecting a pitch factor smaller than 7. A pitch factor of this magnitude should be able to treat a target up to 30 cm in length. Loose helical delivery should increase the total session time only by a factor of 2, while the planning time should stay the same since the total number of beam projections remains unchanged. Considering its dosimetric advantage and clinical practicality, loose helical delivery is a promising solution for the future HT treatments of respiration-driven targets.

  12. Shaping helical electrospun filaments: a review.

    PubMed

    Silva, P E S; Vistulo de Abreu, F; Godinho, M H

    2017-10-04

    Nature abounds with helical filaments designed for specific tasks. For instance, some plants use tendrils to coil and attach to the surroundings, while Spiroplasma, a helical bacterium, moves by inverting the helical handedness along the filament axis. Therefore, developing methods to shape filaments on demand to exhibit a diversity of physical properties and shapes could be of interest to many fields, such as the textile industry, biomedicine or nanotechnology. Electrospinning is a simple and versatile technique that allows the production of micro and nanofibres with many different helical shapes. In this work, we review the different electrospinning procedures that can be used to obtain helical shapes similar to those found in natural materials. These techniques also demonstrate that the creation of helical shapes at the micro/nanoscale is not limited by the chirality of the building blocks at the molecular level, a finding which opens new horizons on filament shaping.

  13. A periodicity analysis of transmembrane helices.

    PubMed

    Leonov, Hadas; Arkin, Isaiah T

    2005-06-01

    Transmembrane helices and the helical bundles which they form are the major building blocks of membrane proteins. Since helices are characterized by a given periodicity, it is possible to search for patterns of traits which typify one side of the helix and not the other (e.g. amphipathic helices contain a polar and apolar sides). Using Fourier transformation we have analyzed solved membrane protein structures as well as sequences of membrane proteins from the Swiss-Prot database. The traits searched included aromaticity, volume and ionization. While a number of motifs were already recognized in the literature, many were not. One particular example involved helix VII of lactose permease which contains seven aromatic residues on six helical turns. Similarly six glycine residues in four consecutive helical turns were identified as forming a motif in the chloride channel. A tabulation of all the findings is presented as well as a possible rationalization of the function of the motif.

  14. Helicity fluctuations in incompressible turbulent flows

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moin, Parviz

    1987-01-01

    Results from direct numerical simulations of several homogeneous flows and fully developed turbulent channel flow indicate that the probability distribution function (pdf) of relative helicity density exhibits at most a 20 percent deviation from a flat distribution. Isotropic flows exhibit a slight helical nature but the presence of mean strain in homogeneous turbulence suppresses helical behavior. All the homogeneous turbulent flows studied show no correlation between relative helicity density and the dissipation of turbulent kinetic energy. The channel flow simulations indicate that, except for low-dissipation regions near the outer edge of the buffer layer, there is no tendency for the flow to be helical. The strong peaks in the relative helicity density pdf and the association of these peaks with regions of low dissipation found in previous simulations by Pelz et al.(1985) are not observed.

  15. Modulate Organic-Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells.

    PubMed

    Li, Chang-Zhi; Huang, Jiang; Ju, Huanxin; Zang, Yue; Zhang, Jianyuan; Zhu, Junfa; Chen, Hongzheng; Jen, Alex K-Y

    2016-09-01

    By creating an effective π-orbital hybridization between the fullerene cage and the aromatic anchor (addend), the azafulleroid interfacial modifiers exhibit enhanced electronic coupling to the underneath metal oxides. High power conversion efficiency of 10.3% can be achieved in organic solar cells using open-cage phenyl C61 butyric acid methyl ester (PCBM)-modified zinc oxide layer.

  16. Class-Wide Access to a Commercial Step 1 Question Bank During Preclinical Organ-Based Modules: A Pilot Project.

    PubMed

    Baños, James H; Pepin, Mark E; Van Wagoner, Nicholas

    2017-08-16

    The authors examined the usefulness of a commercially available Step 1 question bank as a formative academic support tool throughout organ-based modules in an integrated preclinical medical curriculum. The authors also determined the extent to which correlation between question bank utilization and academic metrics varied with Medical College Admission Test (MCAT) scores. In 2015, a cohort of 185 first-year medical students at University of Alabama School of Medicine were provided with 18-month full access to a commercially available Step 1 question bank of over 2,100 items throughout organ-based modules, although there were no requirements for use. Data on student use of the question bank were collected via an online administrative portal. Relationships between question bank utilization and academic outcomes including exams, module grades, and United States Medical Licensing Examination (USMLE) Step 1 were determined using multiple linear regression. MCAT scores and number of items attempted in the question bank significantly predicted all academic measures, with question bank utilization as the stronger predictor. The association between question bank utilization and academic outcome was stronger for individuals with lower MCAT scores. The findings elucidate a novel academic support mechanism that, for some programs, may help bridge the gap between holistic and mission-based admissions practices and a residency match process that places a premium on USMLE exam scores. Distributed formative use of USMLE Step 1 practice questions may be of value as an academic support tool that benefits all students, but particularly those entering with lower MCAT scores.

  17. Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds.

    PubMed

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho

    2016-02-04

    Axially, planar, and helical chiral compounds are indispensable building blocks in modern organic synthesis. A wide variety of chiral ligands and catalysts were designed based on these chiral scaffolds, and these chiral ligands and catalysts were used for various catalytic asymmetric transformations to produce important chiral compounds in an optically enriched form. Furthermore, these chiral skeletons are found in the structure of biologically active natural products. Thus, the development of efficient enantioselective methods for the synthesis of these chiral compounds is an important task in the field of organic chemistry. In the last few years, organocatalyzed approaches, which are one of the most reliable catalytic asymmetric methods, became a hot topic. This Focus Review summarizes asymmetric organocatalytic methods for the synthesis of axially, planar, and helical chiral compounds as useful chiral building blocks.

  18. Architecture of the Mediator head module

    SciTech Connect

    Imasaki, Tsuyoshi; Calero, Guillermo; Cai, Gang; Tsai, Kuang-Lei; Yamada, Kentaro; Cardelli, Francesco; Erdjument-Bromage, Hediye; Tempst, Paul; Berger, Imre; Kornberg, Guy Lorch; Asturias, Francisco J.; Kornberg, Roger D.; Takagi, Yuichiro

    2011-09-06

    Mediator is a key regulator of eukaryotic transcription, connecting activators and repressors bound to regulatory DNA elements with RNA polymerase II (Pol II). In the yeast Saccharomyces cerevisiae, Mediator comprises 25 subunits with a total mass of more than one megadalton (refs 5, 6) and is organized into three modules, called head, middle/arm and tail. Our understanding of Mediator assembly and its role in regulating transcription has been impeded so far by limited structural information. Here we report the crystal structure of the essential Mediator head module (seven subunits, with a mass of 223 kilodaltons) at a resolution of 4.3 angstroms. Our structure reveals three distinct domains, with the integrity of the complex centred on a bundle of ten helices from five different head subunits. An intricate pattern of interactions within this helical bundle ensures the stable assembly of the head subunits and provides the binding sites for general transcription factors and Pol II. Our structural and functional data suggest that the head module juxtaposes transcription factor IIH and the carboxy-terminal domain of the largest subunit of Pol II, thereby facilitating phosphorylation of the carboxy-terminal domain of Pol II. Our results reveal architectural principles underlying the role of Mediator in the regulation of gene expression.

  19. Phases in holographic helical superconductor

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subir; Paul, Chandrima

    2017-05-01

    We study SU(2)×U(1) gauge theory with Chern-Simons term, coupled to scalar field in adjoint, in a probe approximation by ignoring back reaction on metric. Considering a simple ansatz for non-Abelian gauge field with helical structure, we find it admits s-wave and p-wave phases along with their coexistence. We study free energies for different phases along with those for p-wave phases for different values of pitch and frequency dependence of optical conductivities below critical temperature.

  20. Neutrino helicity asymmetries in leptogenesis

    SciTech Connect

    Bento, Luis; Santos, Francisco C.

    2005-05-01

    It is pointed out that the heavy singlet neutrinos characteristic of leptogenesis develop asymmetries in the abundances of the two helicity states as a result of the same mechanism that generates asymmetries in the standard lepton sector. Neutrinos and standard leptons interchange asymmetries in collisions with each other. It is shown that an appropriate quantum number, B-L{sup '}, combining baryon, lepton and neutrino asymmetries, is not violated as fast as the standard B-L. This suppresses the washout effects relevant for the derivation of the final baryon asymmetry. One presents detailed calculations for the period of neutrino thermal production in the framework of the singlet seesaw mechanism.

  1. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  2. Building blocks for subleading helicity operators

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-01

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. We also describe an interesting angular momentum selection rule that restricts how these building blocks can be assembled.

  3. Magnetic helicity distribution in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin; Büchner, Jörg; Zhang, Hongqi

    We have developed a method to derive the relative magnetic helicity in the solar corona based on the magnetic helicity flux at the solar photosphere. We apply the method to the two newly emerging active regions (ARs) with simple and complex magnetic structures respectively. It is found that the helicity change rate in the solar corona is consistent with the helicity flux at the solar photosphere. However, the accumulated magnetic helicity in the solar corona for the simple one reverse sign as time changed. For the complex one, there is a continuous magnetic helicity accumulated just before the occurrence of solar storm, which may reflect the formation of the magnetic flux rope. It is also found that 90% of magnetic helicity is accumulated in less than 1.1 solar radius both for the two ARs After discussing the different sources of magnetic helicity, we suggested that the long term of differential rotations could play an important role to the accumulation of magnetic helicity in the solar corona and the interplanetary space, together with strong magnetic flux emergency at the solar photosphere.

  4. Higher helicity invariants and solar dynamo

    NASA Astrophysics Data System (ADS)

    Sokolov, D. D.; Illarionov, E. A.; Akhmet'ev, P. M.

    2017-01-01

    Modern models of nonlinear dynamo saturation in celestial bodies (specifically, on the Sun) are largely based on the consideration of the balance of magnetic helicity. This physical variable has also a topological meaning: it is associated with the linking coefficient of magnetic tubes. In addition to magnetic helicity, magnetohydrodynamics has a number of topological integrals of motion (the so-called higher helicity moments). We have compared these invariants with magnetic helicity properties and concluded that they can hardly serve as nonlinear constraints on dynamo action.

  5. Building blocks for subleading helicity operators

    SciTech Connect

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-24

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks can be assembled.

  6. RF helicity injection and current drive

    NASA Astrophysics Data System (ADS)

    Hamamatsu, K.; Fukuyama, A.; Itoh, S.-I.; Itoh, K.; Azumi, M.

    1990-07-01

    The relation between (Range of Frequency) RF-driven current and wave helicity is analytically and numerically studied for tokamak plasma. The helicity conversion coefficient from the wave to the plasma is generally obtained and numerically examined for the waves in the range of ion cyclotron frequency. The wave propagation equation is solved as a boundary-value problem with one-dimensional inhomogeneities. It is shown that the wave helicity well satisfies the continuity equation. It was confirmed that the RF-helicity injection is not an identical phenomenon of the reduction of the one turn loop voltage due to the RF-driven current.

  7. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  8. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  9. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  10. Comparison of Measured and Estimated CT Organ Doses for Modulated and Fixed Tube Current:: A Human Cadaver Study.

    PubMed

    Padole, Atul; Deedar Ali Khawaja, Ranish; Otrakji, Alexi; Zhang, Da; Liu, Bob; Xu, X George; Kalra, Mannudeep K

    2016-05-01

    The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Spheromak Power and Helicity Balance

    SciTech Connect

    Thomassen, K.I.

    2000-05-18

    This note addresses the division of gun power and helicity between the open line volume and the closed flux surface volume in a steady state flux core spheromak. Our assumptions are that fine scale turbulence maintains each region close to a Taylor state, {mu}{sub o}J = {lambda}B. The gun region that feeds these two volumes surrounded by a flux conserver is shown topologically below. (The actual geometry is toroidal). Flux and current from the magnetized gun flow on open lines around the entire closed surface containing the spheromak. The gun current flows down the potential gradient, the potential difference between the two ends of each line being the gun voltage. Here, the gun voltage excludes the sheath drops at each end. When these volumes have different values of {lambda} (ratio of {mu}{sub o}B{sup -2}j {center_dot} B in each region) in the open line volume V{sub 1} and the closed spheromak volume V{sub 2} the efficiency of transferring the gun power to the spheromak to sustain the ohmic loss is the {lambda}-ratio of these regions, in the limit V{sub 1} << V{sub 2}. This result follows immediately from helicity balance in that limit. Here we give an accounting of all the gun power, and do not assume a small edge (open line) region.

  12. Helical coil thermal hydraulic model

    NASA Astrophysics Data System (ADS)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  13. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates.

    PubMed

    Stawikowski, Maciej J; Stawikowska, Roma; Fields, Gregg B

    2015-05-19

    Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.

  14. Segregation of helicity in inertial wave packets

    NASA Astrophysics Data System (ADS)

    Ranjan, A.

    2017-03-01

    Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.

  15. Control of Thermoacoustic Axisymmetric and Helical Instabilities

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Paschereit, Christian Oliver; Weisenstein, Wolfgang

    1998-11-01

    Unstable thermoacoustic modes were investigated and controlled in an experimental low-emission swirl stabilized combustor, in which the acoustic boundary conditions were modified to obtain combustion instability. Several axisymmetric and helical unstable modes were identified for fully premixed conditions. These unstable modes were associated with flow instabilities related to the recirculating wake-like region near the combustor axis and shear layer instabilities at the sudden expansion (dump plane). Open and closed loop active control systems were used to suppress the thermoacoustic pressure oscillations and to reduce undesired emissions of pollutants during premixed combustion. Pressure transducers and OH emission detection sensors monitored the combustion process and provide input to the processor of the control system. The actuators were high frequency valves, which were employed to superimpose modulations in the fuel stream. Symmetric and antisymmetric fuel injection schemes were tested. Suppression levels of up to 24 dB in the pressure oscillations were obtained. In some of the cases tested, concomitant reductions of NOx and CO emissions were achieved. The effect of the various pulsed fuel injection methods on the combustion structure was investigated.

  16. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  17. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  18. Effect of the modulating of organic content on optical properties of single-crystal perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Yan, Jun; Wang, Ji; Chen, Yunlin

    2016-12-01

    Most of the systematic studies on affecting photoluminescence (PL) properties in single-crystal perovskite (MAPbX3: MA = CH3NH3, X = Br, I) have focused on changing the compositions of inorganic content. Here, a serious of MAPbX3 perovskite single crystals with different molar ratio of organic to inorganic were successfully prepared by inverse temperature crystallization (ITC) method. The morphology and the PL properties of the single crystals with different ratios of organic to inorganic content were investigated. We demonstrated that the PL intensity of MAPbX3 was increased with increasing the organic content of the perovskite single crystals. It was found that morphology and lattice constants of the perovskite crystals were varied with changing of the organic content. The mechanism of the effect of organic content on optical properties of single-crystal perovskite was discussed.

  19. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    NASA Astrophysics Data System (ADS)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  20. Metal-capped silicon organic micro-ring electro-optical modulator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zaki, Aya O.; Kirah, Khaled A.; Swillam, Mohamed A.

    2017-02-01

    An ultra-compact hybrid plasmonic waveguide ring electro-optical modulator is designed to be easily fabricated on silicon on insulator (SOI) substrates using standard silicon photonics technology. The proposed waveguide is based on a buried standard silicon waveguide of height 220 nm topped with polymer and metal. The key advantage of this novel design is that only the silicon layer of the waveguide is structured as a coupled ring resonator. Then, the device is covered with electro-optical polymer and metal in post processes with no need for lithography or accurate mask alignment techniques. The simple fabrication method imposes many design challenges to obtain a resonator of reasonable loaded quality factor and high extinction ratio. Here, the performance of the resonator is optimized in the telecom wavelength range around 1550 nm using 3D FDTD simulations. The design of the coupling junction between the access waveguide and the tightly bent ring is thoroughly studied. The extension of the metal over the coupling region is exploited to make the critical dimension of the design geometry at least 2.5 times larger than conventional plasmonic resonators and the design is thus more robust. In this paper, we demonstrate an electro-optical modulator that offers an insertion loss < 1 dB, a modulation depth of 12 dB for an applied peak to peak voltage of only 2 V and energy consumption of 1.74 fJ/bit. The performance is superior to previously reported hybrid plasmonic ring resonator based modulators while the design shows robustness and low fabrication cost.

  1. Diverse feather shape evolution enabled by coupling anisotropic signalling modules with self-organizing branching programme

    PubMed Central

    Li, Ang; Figueroa, Seth; Jiang, Ting-Xin; Wu, Ping; Widelitz, Randall; Nie, Qing; Chuong, Cheng-Ming

    2017-01-01

    Adaptation of feathered dinosaurs and Mesozoic birds to new ecological niches was potentiated by rapid diversification of feather vane shapes. The molecular mechanism driving this spectacular process remains unclear. Here, through morphology analysis, transcriptome profiling, functional perturbations and mathematical simulations, we find that mesenchyme-derived GDF10 and GREM1 are major controllers for the topologies of rachidial and barb generative zones (setting vane boundaries), respectively, by tuning the periodic-branching programme of epithelial progenitors. Their interactions with the anterior–posterior WNT gradient establish the bilateral-symmetric vane configuration. Additionally, combinatory effects of CYP26B1, CRABP1 and RALDH3 establish dynamic retinoic acid (RA) landscapes in feather mesenchyme, which modulate GREM1 expression and epithelial cell shapes. Incremental changes of RA gradient slopes establish a continuum of asymmetric flight feathers along the wing, while switch-like modulation of RA signalling confers distinct vane shapes between feather tracts. Therefore, the co-option of anisotropic signalling modules introduced new dimensions of feather shape diversification. PMID:28106042

  2. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs.

    PubMed

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe2O3-NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe2O3-NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe2O3-NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe2O3-NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe2O3-NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe2O3-NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe2O3-NPs could be an environmental risk factor for reproductive disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  4. Simplified Fabrication of Helical Copper Antennas

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    2006-01-01

    A simplified technique has been devised for fabricating helical antennas for use in experiments on radio-frequency generation and acceleration of plasmas. These antennas are typically made of copper (for electrical conductivity) and must have a specific helical shape and precise diameter.

  5. Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization

    PubMed Central

    2011-01-01

    Background Despite its critical role for mammalian gene regulation, the basic structural landscape of chromatin in living cells remains largely unknown within chromosomal territories below the megabase scale. Results Here, using the 3C-qPCR method, we investigate contact frequencies at high resolution within interphase chromatin at several mouse loci. We find that, at several gene-rich loci, contact frequencies undergo a periodical modulation (every 90 to 100 kb) that affects chromatin dynamics over large genomic distances (a few hundred kilobases). Interestingly, this modulation appears to be conserved in human cells, and bioinformatic analyses of locus-specific, long-range cis-interactions suggest that it may underlie the dynamics of a significant number of gene-rich domains in mammals, thus contributing to genome evolution. Finally, using an original model derived from polymer physics, we show that this modulation can be understood as a fundamental helix shape that chromatin tends to adopt in gene-rich domains when no significant locus-specific interaction takes place. Conclusions Altogether, our work unveils a fundamental aspect of chromatin dynamics in mammals and contributes to a better understanding of genome organization within chromosomal territories. PMID:21569291

  6. A high performance all-organic flexural piezo-FET and nanogenerator via nanoscale soft-interface strain modulation.

    PubMed

    Dhakras, Dipti; Gawli, Yogesh; Chhatre, Shraddha; Wadgaonkar, Prakash; Ogale, Satishchandra

    2014-11-07

    Flexural strain fields are encountered in a wide variety of situations and invite novel device designs for their effective use in sensing, actuating, as well as energy harvesting (nanogenerator) applications. In this work we demonstrate an interesting all-organic device design comprising an electrospun P(VDF-TrFE) fiber-mat built directly on a conducting PANI film, which is also grown on a flexible PET substrate, for flexural piezo-FET and nanogenerator applications. Orders of magnitude stronger modulation of electrical transport in PANI film is realized in this device as compared to the case of a similar device but with a uniform spin-coated P(VDF-TrFE) film. We find that in the flexural mode of operation, the interaction between the laterally modulated nanoscale strain field distributions created by the fibers and the applied coherent strain field strongly influences the carrier transport in PANI. The transport modulation is suggested to occur due to strain-induced conformational changes in P(VDF-TrFE) leading to changes in carrier localization-delocalization. We further show that the fiber-mat based device system also works as an efficient nanogenerator capable of delivering power for low power applications.

  7. Binding of copper(II) ions to the polyproline II helices of PEVK modules of the giant elastic protein titin as revealed by ESI-MS, CD, and NMR.

    PubMed

    Ma, Kan; Wang, Kuan

    2003-10-01

    Titin, a family of giant elastic proteins, constitutes an elastic sarcomere matrix in striated muscle. In the I-band region of the sarcomere, the titin PEVK segment acts as a molecular spring to generate elasticity as well as sites of adhesion with parallel thin filaments. Previously, we reported that PEVK consists of tandem repeats of 28 residue modules and that the "polyproline II-coil" motif is the fundamental conformational motif of the PEVK module. In order to characterize the factors that may affect and alter the PPII-coil conformational motifs, we have initiated a systematic study of the interaction with divalent cations (Cu2+, Ca2+, Zn2+, and Ni2+) and a conformational profile of PEVK peptides (a representative 28-mer peptide PR: PEPPKEVVPEKKAPVAPPKKPEVPPVKV and its subfragments PR1: kvPEPPKEVVPE, PR2: VPEKKAPVAPPK, PR3: KPEVPPVKV). UV-Vis absorption difference spectra and CD spectra showed that Cu2+ bound to PR1 with high affinity (20 microM), while its binding to PR2 and PR3 as well as the binding of other cations to all four peptides were of lower affinity (>100 microM). Conformational studies by CD revealed that Cu2+ binding to PR1 resulted in a polyproline II to turn transition up to a 1:2 PR1/Cu2+ ratio and a coil to turn transition at higher Cu2+ concentration. ESI-MS provided the stoichiometry of PEVK peptide-Cu2+ complexes at both low and high ion strength, confirming the specific high affinity binding of Cu2+ to PR1 and PR. Furthermore, NMR and ESI-MS/MS fragmentation analysis elucidated the binding sites of the PEVK peptide-Cu2+ complexes at (-2)KVPE2, 8VPE10, 13APV15, and 22EVP24. A potential application of Cu2+ binding in peptide sequencing by mass spectrometry was also revealed. We conclude that Cu2+ binds and bends PEVK peptides to a beta-turn-like structure at specific sites. The specific targeting of Cu2+ towards PPII is likely to be of significant value in elucidating the roles of PPII in titin elasticity as well as in interactions of

  8. Robust plan optimization using edge-enhanced intensity for intrafraction organ deformation in prostate intensity-modulated radiation therapy

    PubMed Central

    Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Tamari, Keisuke; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2017-01-01

    This study evaluated a method for prostate intensity-modulated radiation therapy (IMRT) based on edge-enhanced (EE) intensity in the presence of intrafraction organ deformation using the data of 37 patients treated with step-and-shoot IMRT. On the assumption that the patient setup error was already accounted for by image guidance, only organ deformation over the treatment course was considered. Once the clinical target volume (CTV), rectum, and bladder were delineated and assigned dose constraints for dose optimization, each voxel in the CTV derived from the DICOM RT-dose grid could have a stochastic dose from the different voxel location according to the probability density function as an organ deformation. The stochastic dose for the CTV was calculated as the mean dose at the location through changing the voxel location randomly 1000 times. In the EE approach, the underdose region in the CTV was delineated and optimized with higher dose constraints that resulted in an edge-enhanced intensity beam to the CTV. This was compared to a planning target volume (PTV) margin (PM) approach in which a CTV to PTV margin equivalent to the magnitude of organ deformation was added to obtain an optimized dose distribution. The total monitor units, number of segments, and conformity index were compared between the two approaches, and the dose based on the organ deformation of the CTV, rectum, and bladder was evaluated. The total monitor units, number of segments, and conformity index were significantly lower with the EE approach than with the PM approach, while maintaining the dose coverage to the CTV with organ deformation. The dose to the rectum and bladder were significantly reduced in the EE approach compared with the PM approach. We conclude that the EE approach is superior to the PM with regard to intrafraction organ deformation. PMID:28282417

  9. Elliptical Muon Helical Cooling Channel Coils

    SciTech Connect

    Kahn, S. A.; Flanagan, G.; Lopes, M. L.; Yonehara, K.

    2013-09-01

    A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoid, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional phase space reduction for muon beams. The most effective approach to implementing the desired magnetic field is a helical solenoid (HS) channel composed of short solenoid coils arranged in a helical pattern. The HS channel along with an external solenoid allows the B$_z$ and B$_{\\phi}$ components along the reference orbit to be set to any desired values. To set dB$_{\\phi}$/dr to the desired value for optimum focusing requires an additional variable to tune. We shall show that using elliptical shaped coils in the HS channel allows the flexibility to achieve the desired dB$_{\\phi}$/dr on the reference orbit without significant change to B$_z$ and B$_{\\phi}$.

  10. Simultaneous Adjustment of Size and Helical Sense of Chiral Nanospheres and Nanotubes Derived from an Axially Racemic Poly(phenylacetylene).

    PubMed

    Arias, Sandra; Núñez-Martínez, Manuel; Quiñoá, Emilio; Riguera, Ricardo; Freire, Félix

    2017-01-01

    Nanospheres and nanotubes with full control of their size and helical sense are obtained in chloroform from the axially racemic chiral poly(phenylacetylene) poly-(R)-1 using either Ag(+) as both chiral inducer and cross-linking agent or Na(+) as chiral inducer and Ag(+) as cross-linking agent. The size is tuned by the polymer/ion ratio while the helical sense is modulated by the polymer/cosolvent (i.e., MeCN) ratio. In this way, the helicity and the size of the nanoparticles can be easily interconverted by very simple experimental changes.

  11. Silica biomineralization via the self-assembly of helical biomolecules.

    PubMed

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Solubilization and fractionation of paired helical filaments.

    PubMed

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  13. Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima.

    PubMed

    Houmani, Hayet; Rodríguez-Ruiz, Marta; Palma, José M; Abdelly, Chedly; Corpas, Francisco J

    2016-05-01

    Superoxide dismutase (SOD) activity catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. This enzyme is considered to be a first line of defense for controlling the production of reactive oxygen species (ROS). In this study, the number and type of SOD isozymes were identified in the principal organs (roots, stems, leaves, flowers, and seeds) of Cakile maritima. We also analyzed the way in which the activity of these SOD isozymes is modulated during development and under high long-term salinity (400 mM NaCl) stress conditions. The data indicate that this plant contains a total of ten SOD isozymes: two Mn-SODs, one Fe-SOD, and seven CuZn-SODs, with the Fe-SOD being the most prominent isozyme in the different organs analyzed. Moreover, the modulation of SOD isozymes, particularly CuZn-SODs, was only detected during development and under severe salinity stress conditions. These data suggest that, in C. maritima, the occurrence of these CuZn-SODs in roots and leaves plays an adaptive role since this CuZn-SOD isozyme might replace the diminished Fe-SOD activity under salinity stress to overcome this adverse environmental condition.

  14. Respiratory modulation of the activity in sympathetic neurones supplying muscle, skin and pelvic organs in the cat.

    PubMed Central

    Boczek-Funcke, A; Häbler, H J; Jänig, W; Michaelis, M

    1992-01-01

    1. The respiratory-related modulation of activity in neurones of the lumbar sympathetic outflow to skeletal muscle, skin and pelvic organs was investigated in anaesthetized, paralysed and artificially ventilated cats, using single- and multi-unit recordings. The activity of the neurones was analysed with respect to the phrenic nerve discharge under various experimental conditions. 2. Neurones tentatively classified as muscle vasoconstrictor and visceral vasoconstrictor neurones exhibited two activity peaks, one caused by baroreceptor unloading during the declining phase of the second order blood pressure waves and a respiratory drive-dependent peak in parallel with inspiration. The two peaks were separated by depressions of activity in early inspiration and post-inspiration. After cutting vagus and buffer nerves the activity peak during inspiration remained and was followed and sometimes preceded by a depression of activity. 3. The majority of the neurones tentatively classified as cutaneous vasoconstrictor neurones exhibited no respiratory modulation in their activity. Others exhibited an activity peak in expiration, an activity peak in inspiration, or a respiratory profile similar to that in muscle vasoconstrictor neurones. During increased respiratory drive (induced by hypercapnia) some neurones with unmodulated activity changed to an inspiratory or an expiratory pattern. Neurones discharging predominantly in inspiration projected preferentially to hairless skin. 4. Neurones which were tentatively classified as sudomotor neurones discharged predominantly in early expiration. 5. Some preganglionic neurones which were tentatively classified as motility-regulating neurones discharged during expiration. The majority of these neurones disclosed no respiratory modulation of their activity. 6. The study shows that different types of neurone of the lumbar sympathetic system exhibit distinct patterns of respiratory modulation in their activity. We conclude that the type

  15. Respiratory modulation of the activity in sympathetic neurones supplying muscle, skin and pelvic organs in the cat.

    PubMed

    Boczek-Funcke, A; Häbler, H J; Jänig, W; Michaelis, M

    1992-04-01

    1. The respiratory-related modulation of activity in neurones of the lumbar sympathetic outflow to skeletal muscle, skin and pelvic organs was investigated in anaesthetized, paralysed and artificially ventilated cats, using single- and multi-unit recordings. The activity of the neurones was analysed with respect to the phrenic nerve discharge under various experimental conditions. 2. Neurones tentatively classified as muscle vasoconstrictor and visceral vasoconstrictor neurones exhibited two activity peaks, one caused by baroreceptor unloading during the declining phase of the second order blood pressure waves and a respiratory drive-dependent peak in parallel with inspiration. The two peaks were separated by depressions of activity in early inspiration and post-inspiration. After cutting vagus and buffer nerves the activity peak during inspiration remained and was followed and sometimes preceded by a depression of activity. 3. The majority of the neurones tentatively classified as cutaneous vasoconstrictor neurones exhibited no respiratory modulation in their activity. Others exhibited an activity peak in expiration, an activity peak in inspiration, or a respiratory profile similar to that in muscle vasoconstrictor neurones. During increased respiratory drive (induced by hypercapnia) some neurones with unmodulated activity changed to an inspiratory or an expiratory pattern. Neurones discharging predominantly in inspiration projected preferentially to hairless skin. 4. Neurones which were tentatively classified as sudomotor neurones discharged predominantly in early expiration. 5. Some preganglionic neurones which were tentatively classified as motility-regulating neurones discharged during expiration. The majority of these neurones disclosed no respiratory modulation of their activity. 6. The study shows that different types of neurone of the lumbar sympathetic system exhibit distinct patterns of respiratory modulation in their activity. We conclude that the type

  16. Subfornical organ differentially modulates baroreflex function in normotensive and two-kidney, one-clip hypertensive rats.

    PubMed

    Maliszewska-Scislo, Maria; Chen, Haiping; Augustyniak, Robert A; Seth, Dale; Rossi, Noreen F

    2008-09-01

    During activation of the renin-angiotensin system, hindbrain circumventricular organs such as the area postrema have been implicated in modulating the arterial baroreflex. This study was undertaken to test the hypothesis that the subfornical organ (SFO), a forebrain circumventricular structure, may also modulate the baroreflex. Studies were performed in rats with two-kidney, one-clip (2K,1C) hypertension as a model of endogenously activated renin-angiotensin system. Baroreflex function was ascertained during ramp infusions of phenylephrine and nitroprusside in conscious sham-clipped and 5-wk 2K,1C rats with either a sham or electrolytically lesioned SFO. Lesioning significantly decreased mean arterial pressure in 2K,1C rats from 158 +/- 7 to 131 +/- 4 mmHg but not in sham-clipped rats. SFO-lesioned, sham-clipped rats had a significantly higher upper plateau and range of the renal sympathetic nerve activity-mean arterial pressure relationship compared with sham-clipped rats with SFO ablation. In contrast, lesioning the SFO in 2K,1C rats significantly decreased both the upper plateau and range of the baroreflex control of renal sympathetic nerve activity, but only the range of the baroreflex response of heart rate decreased. Thus, during unloading of the baroreceptors, the SFO differentially modulates the baroreflex responses in sham-clipped vs. 2K,1C rats. Since lesioning the SFO did not influence plasma angiotensin II (ANG II), the effects of the SFO lesion are not caused by changes in circulating levels of ANG II. These findings support a pivotal role for the SFO in the sympathoexcitation observed in renovascular hypertension and in baroreflex regulation of sympathetic activity in both normal and hypertensive states.

  17. Potential pharmacokinetic role of organic cation transporters in modulating the transcorneal penetration of its substrates administered topically

    PubMed Central

    Nirmal, J; Singh, S B; Biswas, N R; Thavaraj, V; Azad, R V; Velpandian, T

    2013-01-01

    Purpose We hypothesize organic cation transporters (OCT) may have a potential role in determining the pharmacokinetics and toxicity of organic cation drugs applied topically. Hence, in the present in vivo study, we attempted to evaluate the role of OCT in modulating the transport of its substrates after topical application. Methods New Zealand albino rabbits of either sex were used. Transcorneal penetration of OCT substrates tetraethylammonium and metformin after single instillation was evaluated in the absence and presence of OCT blockers (quinidine and atropine). Aqueous humor (AH) samples were collected through paracentesis amounting to 70–100 μl under topical anesthesia at various time intervals. The samples were subjected for estimation of both substrate as well as blocker concentrations using liquid chromatography mass spectrometry. Results Topical pre-treatment (30 min before substrate) of OCT blockers significantly decreased the transcorneal penetration of OCT substrates after single topical administration. The levels of blockers reaching AH in the presence of substrates were also modulated at 60 min after its administration as compared with its control. Conclusion OCT are functionally active in the uptake of their substrates from tear to AH. Therefore, OCT in the corneal epithelium may be positioned from apical to basolateral. When administering their substrates/blockers topically, both may be competing for OCT for their uptake across the cornea, thereby decreasing the corneal penetration. Hence OCT can have a potential pharmacokinetic role in modulating the ocular bioavailability of their substrates administered topically, which are used as ocular therapeutics. PMID:23846373

  18. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions.

    PubMed

    Wang, Jing; Ghosh, Siddhartha S; Ghosh, Shobha

    2017-04-01

    Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability. Copyright © 2017 the American Physiological Society.

  19. Thermal deformation of helical gears

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Fei, Ye-tai; Liu, Shan-lin

    2010-08-01

    The analytical equation for the thermal field of a helical gear under normal working condition in a stable thermal field is established using mathematical physics, and the thermal deformation of the gear can be computed using this equation. The variations of gear geometric parameters, such as radial dimension, tooth depth, spiral angle, pressure angle, flank clearance and etc., are investigated with respect to the temperature change. According to the analytical and computational results obtained using the equation, the thermal deformation of the gear is strongly dependent on the choice of parameters, which is also confirmed using simulation software (COMSOL Multiphysic software). This is significant for the improvement of the rotation precision and working efficiency of screw gears.

  20. Cationic Nitrogen Doped Helical Nanographenes.

    PubMed

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Best packing of identical helices

    NASA Astrophysics Data System (ADS)

    Huh, Youngsik; Hong, Kyungpyo; Kim, Hyoungjun; No, Sungjong; Oh, Seungsang

    2016-10-01

    In this paper we prove the unique existence of a ropelength-minimizing conformation of the θ-spun double helix in a mathematically rigorous way, and find the minimal ropelength {{{Rop}}}* (θ )=-\\tfrac{8π }{t} where t is the unique solution in [-θ ,0] of the equation 2-2\\cos (t+θ )={t}2. Using this result, the pitch angles of the standard, triple and quadruple helices are around 39.3771^\\circ , 42.8354^\\circ and 43.8351^\\circ , respectively, which are almost identical with the approximated pitch angles of the zero-twist structures previously known by Olsen and Bohr. We also find the ropelength of the standard N-helix.

  2. The quantum Hall effect helicity

    SciTech Connect

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  3. Formation of helical ion chains

    NASA Astrophysics Data System (ADS)

    Nigmatullin, R.; del Campo, A.; De Chiara, G.; Morigi, G.; Plenio, M. B.; Retzker, A.

    2016-01-01

    We study the nonequilibrium dynamics of the linear-to-zigzag structural phase transition exhibited by an ion chain confined in a trap with periodic boundary conditions. The transition is driven by reducing the transverse confinement at a finite quench rate, which can be accurately controlled. This results in the formation of zigzag domains oriented along different transverse planes. The twists between different domains can be stabilized by the topology of the trap, and under laser cooling the system has a chance to relax to a helical chain with nonzero winding number. Molecular dynamics simulations are used to obtain a large sample of possible trajectories for different quench rates. The scaling of the average winding number with different quench rates is compared to the prediction of the Kibble-Zurek theory, and a good quantitative agreement is found.

  4. 40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides.

    PubMed

    Wülbern, Jan Hendrik; Prorok, Stefan; Hampe, Jan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K-Y; Jenett, Martin; Jacob, Arne

    2010-08-15

    In this Letter we demonstrate broadband electro-optic modulation with frequencies of up to 40 GHz in slotted photonic crystal waveguides based on silicon-on-insulator substrates covered and infiltrated with a nonlinear optical polymer. Two-dimensional photonic crystal waveguides in silicon enable integrated optical devices with an extremely small geometric footprint on the scale of micrometers. The slotted waveguide design optimizes the overlap of the optical and electric fields in the second-order nonlinear optical medium and, hence, the interaction of the optical and electric waves.

  5. Progress in the magnetic helicity studies in solar physics

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Fan; Zhang, Hong-Qi

    2005-03-01

    This paper reviews the history of magnetic helicity studies and its concepts introduced into solar physics. With the physical discussions on a new measurable quantity (relative magnetic helicity), some problems in both theory and observations are pointed out. The balance of magnetic helicity attracts much attention during recent helicity research, which is discussed in detail. Both the relationship between magnetic and current helicity, and research progress in helicity's hemispheric chirality are briefly discussed. This paper summarizes the role of helicity in some solar activities, keeping an eye on the restrictive effect of helicity in solar explosive events. Some unresolved problems and highlights are also drawn.

  6. Helicity Evolution at Small x

    NASA Astrophysics Data System (ADS)

    Sievert, Michael; Kovchegov, Yuri; Pitonyak, Daniel

    2017-01-01

    We construct small- x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of ln2(1 / x) in the polarization-dependent evolution along with the powers of ln(1 / x) in the unpolarized evolution which includes saturation effects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc &Nf limits. After solving the large-Nc equations numerically we obtain the following small- x asymptotics for the flavor-singlet g1 structure function along with quarks hPDFs and helicity TMDs (in absence of saturation effects): g1S(x ,Q2) ΔqS(x ,Q2) g1L S(x ,kT2) (1/x) > αh (1/x) 2.31√{αsNc/2 π. We also give an estimate of how much of the proton's spin may be at small x and what impact this has on the so-called ``spin crisis.'' Work supported by the U.S. DOE, Office of Science, Office of Nuclear Physics under Award Number DE-SC0004286 (YK), the RIKEN BNL Research Center, and TMD Collaboration (DP), and DOE Contract No. DE-SC0012704 (MS).

  7. Evolution of radiation techniques in the treatment of mediastinal lymphoma: from 3D conformal radiotherapy (3DCRT) to intensity-modulated RT (IMRT) using helical tomotherapy (HT): a single-centre experience and review of the literature

    PubMed Central

    Besson, Nadia; Pernin, Victor; Zefkili, Sofia

    2016-01-01

    Objective: To evaluate radiation techniques and their toxicity in the treatment of Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL) with mediastinal disease over a 10-year period. Methods: Between 2003 and 2015, 173 patients with Stage I–III nodal lymphoma were treated in our institution: some of these patients were irradiated for HL or NHL with mediastinal disease. Some of the patients were treated by three-dimensional conformal radiotherapy (3DCRT), others by intensity-modulated radiotherapy (IMRT). Results: We studied 26 males and 43 females with a median age of 26 years. The median follow-up was 43 months. 49 patients were treated by 3DCRT and 20 patients by IMRT. The median dose received by patients treated for NHL was 40 Gy (range: 36–44 Gy), and the median dose received by patients with HL was 30 Gy (range: 30–36 Gy). Between 2003 and 2006, 16 patients were treated by 3DCRT vs 0 patients by IMRT. Between 2007 and 2009, 16 patients received 3DCRT and one patient received IMRT. Between 2010 and 2015, 19 patients received IMRT, and no patients received 3DCRT. 11 of the 20 (55%) patients treated by IMRT and 35 of the 49 (71.4%) patients treated by 3DCRT experienced acute toxicity. Among the patients treated by 3DCRT, one patient experienced Grade 1 radiation pneumonitis and two patients experienced Grade 1 acute mucositis. No late toxicity was observed in patients treated by IMRT. Conclusion: Improvement of radiation techniques for HL and NHL appears to have improved acute and late clinical safety. Longer follow-up is necessary to evaluate very late toxicity. Advances in knowledge: Improvement of radiation techniques for HL and NHL appears to improve the tolerance. PMID:26744079

  8. Collective instabilities of the electron beam in magnetic fields of a helical undulator and solenoid

    NASA Astrophysics Data System (ADS)

    Artamonov, A. S.; Inozemtsev, N. I.

    1989-03-01

    The collective instabilities of a continuous electron beam propagating in the magnetic fields of a helical undulator and solenoid are analyzed theoretically in the framework of a one-dimensional model. Modulation of charge density is investigated along with modulation of the transverse velocity of the electrons by an electromagnetic wave. A dispersion equation describing the collective-excitation spectrum is obtained, and analyzed in the hydrodynamic approximation for two-, three-, and four-wave interaction.

  9. Pore with gate: modulating hydrogen storage in metal-organic framework materials via cation exchange.

    PubMed

    Yang, Sihai; Callear, Samantha K; Ramirez-Cuesta, Anibal J; David, William I F; Sun, Junliang; Blake, Alexander J; Champness, Neil R; Schröder, Martin

    2011-01-01

    A range of anionic metal-organic framework (MOF) materials has been prepared by combination of In(III) with tetracarboxylate isophthalate-based ligands. These materials incorporate organic cations, either H2ppz2+ (ppz = piperazine) or Me2NH2+, that are hydrogen bonded to the pore wall. These cations act as a gate controlling entry of N2 and H2 gas into and out of the porous host. Thus, hysteretic adsorption/desorption for N2 and H2 is observed in these systems, reflecting the role of the bulky hydrogen bonded organic cations in controlling the kinetic trapping of substrates. Post-synthetic cation exchange with Li+ leads to removal of the organic cation and the formation of the corresponding Li+ salts. Replacement of the organic cation with smaller Li+ leads to an increase in internal surface area and pore volume of the framework material, and in some cases to an increase in the isosteric heat of adsorption of H2 at zero coverage, as predicted by theoretical modelling. The structures, characterisation and analysis of these charged porous materials as storage portals for H2 are discussed. Inelastic neutron scattering experiments confirm interaction of H2 with the carboxylate groups of the isophthalate ligands bound to In(III) centres.

  10. Palpation force modulation strategies to identify hard regions in soft tissue organs

    PubMed Central

    Konstantinova, Jelizaveta; Cotugno, Giuseppe; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2017-01-01

    This paper presents experimental evidence for the existence of a set of unique force modulation strategies during manual soft tissue palpation to locate hard abnormalities such as tumors. We explore the active probing strategies of defined local areas and outline the role of force control. In addition, we investigate whether the applied force depends on the non-homogeneity of the soft tissue. Experimental results on manual palpation of soft silicone phantoms show that humans have a well defined force control pattern of probing that is used independently of the non-homogeneity of the soft tissue. We observed that the modulations of lateral forces are distributed around the mean frequency of 22.3 Hz. Furthermore, we found that the applied normal pressure during probing can be modeled using a second order reactive autoregressive model. These mathematical abstractions were implemented and validated for the autonomous palpation for different stiffness parameters using a robotic probe with a rigid spherical indentation tip. The results show that the autonomous robotic palpation strategy abstracted from human demonstrations is capable of not only detecting the embedded nodules, but also enhancing the stiffness perception compared to static indentation of the probe. PMID:28199349

  11. Palpation force modulation strategies to identify hard regions in soft tissue organs.

    PubMed

    Konstantinova, Jelizaveta; Cotugno, Giuseppe; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2017-01-01

    This paper presents experimental evidence for the existence of a set of unique force modulation strategies during manual soft tissue palpation to locate hard abnormalities such as tumors. We explore the active probing strategies of defined local areas and outline the role of force control. In addition, we investigate whether the applied force depends on the non-homogeneity of the soft tissue. Experimental results on manual palpation of soft silicone phantoms show that humans have a well defined force control pattern of probing that is used independently of the non-homogeneity of the soft tissue. We observed that the modulations of lateral forces are distributed around the mean frequency of 22.3 Hz. Furthermore, we found that the applied normal pressure during probing can be modeled using a second order reactive autoregressive model. These mathematical abstractions were implemented and validated for the autonomous palpation for different stiffness parameters using a robotic probe with a rigid spherical indentation tip. The results show that the autonomous robotic palpation strategy abstracted from human demonstrations is capable of not only detecting the embedded nodules, but also enhancing the stiffness perception compared to static indentation of the probe.

  12. Designing artificial photosynthetic devices using hybrid organic-inorganic modules based on polyoxometalates.

    PubMed

    Symes, Mark D; Cogdell, Richard J; Cronin, Leroy

    2013-08-13

    Artificial photosynthesis aims at capturing solar energy and using it to produce storable fuels. However, while there is reason to be optimistic that such approaches can deliver higher energy conversion efficiencies than natural photosynthetic systems, many serious challenges remain to be addressed. Perhaps chief among these is the issue of device stability. Almost all approaches to artificial photosynthesis employ easily oxidized organic molecules as light harvesters or in catalytic centres, frequently in solution with highly oxidizing species. The 'elephant in the room' in this regard is that oxidation of these organic moieties is likely to occur at least as rapidly as oxidation of water, meaning that current device performance is severely curtailed. Herein, we discuss one possible solution to this problem: using self-assembling organic-polyoxometalate hybrid structures to produce compartments inside which the individual component reactions of photosynthesis can occur without such a high incidence of deleterious side reactions.

  13. Dietary omega-3 fatty acids modulate large-scale systems organization in the rhesus macaque brain.

    PubMed

    Grayson, David S; Kroenke, Christopher D; Neuringer, Martha; Fair, Damien A

    2014-02-05

    Omega-3 fatty acids are essential for healthy brain and retinal development and have been implicated in a variety of neurodevelopmental disorders. This study used resting-state functional connectivity MRI to define the large-scale organization of the rhesus macaque brain and changes associated with differences in lifetime ω-3 fatty acid intake. Monkeys fed docosahexaenoic acid, the long-chain ω-3 fatty acid abundant in neural membranes, had cortical modular organization resembling the healthy human brain. In contrast, those with low levels of dietary ω-3 fatty acids had decreased functional connectivity within the early visual pathway and throughout higher-order associational cortex and showed impairment of distributed cortical networks. Our findings illustrate the similarity in modular cortical organization between the healthy human and macaque brain and support the notion that ω-3 fatty acids play a crucial role in developing and/or maintaining distributed, large-scale brain systems, including those essential for normal cognitive function.

  14. Comparing step-and-shoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer

    SciTech Connect

    Vulpen, Marco van . E-mail: M.vanVulpen@azu.nl; Field, Colin; Raaijmakers, Cornelis P.J.; Parliament, Matthew B.; Terhaard, Chris H.J.; MacKenzie, Marc A.; Scrimger, Rufus; Lagendijk, Jan J.W.; Fallone, B. Gino

    2005-08-01

    Purpose: The goal of this planning study was to compare step-and-shoot intensity-modulated radiotherapy (IMRT) plans with helical dynamic IMRT plans for oropharynx patients on the basis of dose distribution. Methods and Materials: Five patients with oropharynx cancer had been previously treated by step-and-shoot IMRT at University Medical Centre Utrecht, The Netherlands, applying five fields and approximately 60-90 segments. Inverse planning was carried out using Plato, version 2.6.2. For each patient, an inverse IMRT plan was also made using Tomotherapy Hi-Art System, version 2.0, and using the same targets and optimization goals. Statistical analysis was performed by a paired t test. Results: All tomotherapy plans compared favorably with the step-and-shoot plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Tomotherapy plans in particular realized sharper dose gradients compared with the step-and-shoot plans. The mean dose to all parotid glands (n = 10) decreased on average 6.5 Gy (range, -4 to 14; p = 0.002). The theoretical reduction in normal tissue complication probabilities in favor of the tomotherapy plans depended on the parotid normal tissue complication probability model used (range, -3% to 32%). Conclusion: Helical tomotherapy IMRT plans realized sharper dose gradients compared with the clinically applied step-and shoot plans. They are expected to be able to reduce the parotid normal tissue complication probability further, keeping a similar target dose homogeneity.

  15. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines.

    PubMed

    Bobeica, Natalia; Poni, Stefano; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2015-01-01

    Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3% as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1%. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9%) than under carbon sufficiency (48%). Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary metabolites.

  16. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines

    PubMed Central

    Bobeica, Natalia; Poni, Stefano; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2015-01-01

    Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3% as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1%. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9%) than under carbon sufficiency (48%). Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary metabolites. PMID:26074942

  17. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.

    PubMed

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Sowinski, Karol; Luchowski, Rafal; Grudzinski, Wojciech; Matosiuk, Dariusz; Gruszecki, Wieslaw I

    2016-02-15

    The effect of violaxanthin and zeaxanthin, two main carotenoids of the xanthophyll cycle, on molecular organization of LHCII, the principal photosynthetic antenna complex of plants, was studied in a model system based on lipid-protein membranes, by means of analysis of 77 K chlorophyll a fluorescence and "native" electrophoresis. Violaxanthin was found to promote trimeric organization of LHCII, contrary to zeaxanthin which was found to destabilize trimeric structures. Moreover, violaxanthin was found to induce decomposition of oligomeric LHCII structures formed in the lipid phase and characterized by the fluorescence emission band at 715 nm. Both pigments promoted formation of two-component supramolecular structures of LHCII and xanthophylls. The violaxanthin-stabilized structures were composed mostly of LHCII trimers while, the zeaxanthin-stabilized supramolecular structures of LHCII showed more complex organization which depended periodically on the xanthophyll content. The effect of the xanthophyll cycle pigments on molecular organization of LHCII was analyzed based on the results of molecular modeling and discussed in terms of a physiological meaning of this mechanism. Supramolecular structures of LHCII stabilized by violaxanthin, prevent uncontrolled oligomerization of LHCII, potentially leading to excitation quenching, therefore can be considered as structures protecting the photosynthetic apparatus against energy loses at low light intensities.

  18. [Copper nanoparticles as modulators of apoptosis and structural changes in some organs].

    PubMed

    Sizova, E A; Miroshnikov, S A; Poliakova, V S; Lebedev, S V; Glushchenko, N N

    2013-01-01

    The effect of repeated intramuscular injection into the organism of copper nanoparticles (CNP) with the diameter of 103 nm on the index of cell readiness to apoptosis and the structure of liver, spleen, kidney, as well as sensomotor cerebral cortex, was studied in 78 male Wistar rats. CNP were injected once per week for 12 weeks. The organs were studied using histological, immunohistochemical and morphometric methods. It was found that after the injections, CNP were distributed into organs and tissues of animals causing structural changes that were specific for eaach tissue. Toxicity of CNP in respect to microgliocytes was demonstrated at a dose of 2 mg/kg, hepatotoxicity and nephrotoxicity--at 6 mg/kg. The increase of CNP load on the organism up to toxic threshold (maximum tolerated dose) resulted in the appearance of signs of dystrophy and tissue necrosis. The data obtained suggest the application of an index of cell readiness to apoptosis, as assessed by caspase 3 expression, as a criterion for evaluation of CNP injection safety.

  19. Marine Organisms in the Classroom. Project CAPE [Teaching Module] SC1.

    ERIC Educational Resources Information Center

    Hampton, Carolyn H.; Weston, Toni

    Nine lessons which involve the use of marine organisms in the classroom are presented in this seventh-grade biology unit. The unit offers instructors alternative ways of meeting common life science goals. It is not meant to be an extra curriculum added to the normal course load, but was developed to consolidate a group of activities designed for…

  20. Marine Organisms in the Classroom. Project CAPE [Teaching Module] SC1.

    ERIC Educational Resources Information Center

    Hampton, Carolyn H.; Weston, Toni

    Nine lessons which involve the use of marine organisms in the classroom are presented in this seventh-grade biology unit. The unit offers instructors alternative ways of meeting common life science goals. It is not meant to be an extra curriculum added to the normal course load, but was developed to consolidate a group of activities designed for…

  1. HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression.

    PubMed

    González-Carranza, Zinnia H; Zhang, Xuebin; Peters, Janny L; Boltz, Veronique; Szecsi, Judit; Bendahmane, Mohammed; Roberts, Jeremy A

    2017-01-01

    The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT (HWS) affects organ growth and the timing of floral organ abscission. The loss-of-function hws-1 mutant exhibits fused sepals and increased organ size. To understand the molecular mechanisms of HWS during plant development, we mutagenized hws-1 seeds with ethylmethylsulphonate (EMS) and screened for mutations suppressing hws-1 associated phenotypes. We isolated the shs1/hws-1 (suppressor of hws-1) mutant in which hws-1 sepal fusion phenotype was suppressed. The shs1/hws-1 mutant carries a G→A nucleotide substitution in the MIR164 binding site of CUP-SHAPED COTYLEDON 1 (CUC1) mRNA. CUC1 and CUP-SHAPED COTYLEDON 2 (CUC2) transcript levels were altered in shs1, renamed cuc1-1D, and in hws-1 mutant. Genetic interaction analyses using single, double and triple mutants of cuc1-1D, cuc2-1D (a CUC2 mutant similar to cuc1-1D), and hws-1, demonstrate that HWS, CUC1 and CUC2 act together to control floral organ number. Loss of function of HWS is associated with larger petal size due to alterations in cell proliferation and mitotic growth, a role shared with the CUC1 gene.

  2. Interfacial stabilization of organic-aqueous two-phase microflows for a miniaturized DNA extraction module.

    PubMed

    Reddy, Varun; Zahn, Jeffrey D

    2005-06-01

    Organic-aqueous liquid (phenol) extraction is one of many standard techniques to efficiently purify DNA directly from cells. The cell components naturally distribute themselves into the two fluid phases in order to minimize interaction energies of the biological components with the surrounding solvents. The membrane components and protein partition to the interface between the organic and aqueous phases while the DNA stays in the aqueous phase. The aqueous phase is then removed with a purified DNA sample. This work studies the first steps towards miniaturizing this liquid extraction technique in a microfluidic device. The first step is to understand how the two liquid phases behave in microchannels. Due to the interfacial tension between the two liquid phases, novel approaches must be examined in order to obtain interfacial stability under flow conditions. The stability of the organic-aqueous interface is improved by reducing the interfacial tension between the two phases by incorporating a surfactant into the aqueous phase. The variation of the interfacial tension as a function of surfactant concentration is also quantified in this work. This has led to the ability to create stable stratified microflows in both a dual inlet and three inlet microfluidic systems. Also, the first step in understanding biological interactions at the organic-aqueous interface is investigated using a fluorescently labeled bovine serum albumin protein.

  3. Helicity within the vortex filament model.

    PubMed

    Hänninen, R; Hietala, N; Salman, H

    2016-11-24

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments.

  4. Helicity within the vortex filament model

    NASA Astrophysics Data System (ADS)

    Hänninen, R.; Hietala, N.; Salman, H.

    2016-11-01

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments.

  5. Helicity within the vortex filament model

    PubMed Central

    Hänninen, R.; Hietala, N.; Salman, H.

    2016-01-01

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments. PMID:27883029

  6. Volatile Organic Compounds Identified in Post-Flight Air Analysis of the Multipurpose Logistics Module from International Space Station

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Wheeler, R.

    Bioregenerative systems involve storing and processing waste along with atmospheric management. The MPLM, Multipurpose Logistics Module, is a reusable logistics carrier and primary delivery system used to resupply the International Space Station (ISS) and return Station cargo that requires a pressurized environment. The cylindrical module is approximately 6.4 meters long, 4.6 meters in diameter, and weighs almost 4,082kg. The module provides storage and additional workspace for up to two astronauts when docked to the ISS. It can carry up to 9,072 kg of supplies, science experiments, spare parts and other logistical components for ISS. There is concern for a potentially hazardous condition caused by contamination of the atmosphere in the MPLM upon return from orbit. This would be largely due to unforeseen spills or container leakage. This has led to the need for special care in handling the returned module prior to processing the module for its next flight. Prior to opening the MPLM, atmospheric samples are analyzed for trace volatile organic compounds, VOC's. It is noted that our analyses also reflect the atmosphere in the ISS on that day of closure. With the re turn of STS-108, 12th ISS Flight (UF1), the analysis showed 24 PPM of methane. This corresponds to the high levels on space station during a time period when the air filtration system was shut off. Chemical characterization of atmospheres on the ISS and MPLM provide useful information for concerns with plant growth experiments on ISS. Work with closed plant growth chambers show potential for VOC's to accumulate to toxic levels for plants. The ethylene levels for 4 MPLM analyses over the course on one year were measured at, 0.070, 0.017, 0.012 and 0.007 PPM. Phytochemical such as ethylene are detected with natural plant physiological events such as flowering and as a result of plant damage or from decaying food. A build up of VOC's may contribute to phytotoxic effects for the plant growth experiments or

  7. A comparison of methods to estimate organ doses in CT when utilizing approximations to the tube current modulation function

    PubMed Central

    Khatonabadi, Maryam; Zhang, Di; Mathieu, Kelsey; Kim, Hyun J.; Lu, Peiyun; Cody, Dianna; DeMarco, John J.; Cagnon, Chris H.; McNitt-Gray, Michael F.

    2012-01-01

    Purpose: Most methods to estimate patient dose from computed tomography (CT) exams have been developed based on fixed tube current scans. However, in current clinical practice, many CT exams are performed using tube current modulation (TCM). Detailed information about the TCM function is difficult to obtain and therefore not easily integrated into patient dose estimate methods. The purpose of this study was to investigate the accuracy of organ dose estimates obtained using methods that approximate the TCM function using more readily available data compared to estimates obtained using the detailed description of the TCM function. Methods: Twenty adult female models generated from actual patient thoracic CT exams and 20 pediatric female models generated from whole body PET/CT exams were obtained with IRB (Institutional Review Board) approval. Detailed TCM function for each patient was obtained from projection data. Monte Carlo based models of each scanner and patient model were developed that incorporated the detailed TCM function for each patient model. Lungs and glandular breast tissue were identified in each patient model so that organ doses could be estimated from simulations. Three sets of simulations were performed: one using the original detailed TCM function (x, y, and z modulations), one using an approximation to the TCM function (only the z-axis or longitudinal modulation extracted from the image data), and the third was a fixed tube current simulation using a single tube current value which was equal to the average tube current over the entire exam. Differences from the reference (detailed TCM) method were calculated based on organ dose estimates. Pearson's correlation coefficients were calculated between methods after testing for normality. Equivalence test was performed to compare the equivalence limit between each method (longitudinal approximated TCM and fixed tube current method) and the detailed TCM method. Minimum equivalence limit was reported for

  8. Hydrodynamic interaction between two helical swimmers

    NASA Astrophysics Data System (ADS)

    Ruiz Esparza, Alejandro; Godinez, Francisco; Lauga, Eric; Zenit, Roberto

    2016-11-01

    Many motile bacteria, such as E. coli, possess several helical flagellar filaments that bundle together to form a coherent helical element for propulsion. In order to understand the process of bundling, we study the interaction between two identical helical magnetic swimmers that self propel in a highly viscous Newtonian fluid due to the rotation of an external magnetic field. Our experiments reveal that hydrodynamic interactions lead to nontrivial collective and relative effects, both in translation and rotation. We will present our experimental results and discuss the physical mechanisms responsible for our observations.

  9. Helical, dissipative, magnetohydrodynamic states with flow

    NASA Technical Reports Server (NTRS)

    Montgomery, David; Phillips, Lee; Theobald, Michael L.

    1989-01-01

    It is shown that for an axially periodic column of magnetofluid driven by an applied axial electric field, the total rate of energy dissipation (Ohmic plus viscous) can be lowered by permitting a helical component with vortical flow in the solution. The principle of minimum energy-dissipation rate suggests that this partially helical state will be preferred to the axisymmetric one that exists for the same parameters. The result is consistent with the repeated appearance of such partially-helical states in several fully three-dimensional numerical computations and is not inconsistent with the data from some confinement experiments.

  10. Polymorphic transformation of helical flagella of bacteria

    NASA Astrophysics Data System (ADS)

    Lim, Sookkyung; Howard Berg Collaboration; William Ko Collaboration; Yongsam Kim Collaboration; Wanho Lee Collaboration; Charles Peskin Collaboration

    2016-11-01

    Bacteria such as E. coli swim in an aqueous environment by utilizing the rotation of flagellar motors and alternate two modes of motility, runs and tumbles. Runs are steady forward swimming driven by bundles of flagellar filaments whose motors are turning CCW; tumbles involve a reorientation of the direction of swimming triggered by motor reversals. During tumbling, the helical flagellum undergoes polymorphic transformations, which is a local change in helical pitch, helical radius, and handedness. In this work, we investigate the underlying mechanism of structural conformation and how this polymorphic transition plays a role in bacterial swimming. National Science Foundation.

  11. Helicity oscillations of Dirac and Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Kartavtsev, Alexander; Raffelt, Georg

    2016-06-01

    The helicity of a Dirac neutrino with mass m evolves under the influence of a B field because it has a magnetic dipole moment proportional to m . Moreover, it was recently shown that a polarized or anisotropic medium engenders the same effect for both Dirac and Majorana neutrinos. Because a B field polarizes a background medium, it instigates helicity oscillations even for Majorana neutrinos unless the medium is symmetric between matter and antimatter. Motivated by these observations, we review the impact of a B field and of an anisotropic or polarized medium on helicity oscillations for Dirac and Majorana neutrinos from the common perspective of in-medium dispersion.

  12. Does Hooke's law work in helical nanosprings?

    PubMed

    Ben, Sudong; Zhao, Junhua; Rabczuk, Timon

    2015-08-28

    Hooke's law is a principle of physics that states that the force needed to extend a spring by some distance is proportional to that distance. The law is always valid for an initial portion of the elastic range for nearly all helical macrosprings. Here we report the sharp nonlinear force-displacement relation of tightly wound helical carbon nanotubes at even small displacement via a molecular mechanics model. We demonstrate that the van der Waals (vdW) interaction between the intertube walls dominates the nonlinear relation based on our analytical expressions. This study provides physical insights into the origin of huge nonlinearity of the helical nanosprings.

  13. Thermally activated helicity reversals of skyrmions

    NASA Astrophysics Data System (ADS)

    Yu, X. Z.; Shibata, K.; Koshibae, W.; Tokunaga, Y.; Kaneko, Y.; Nagai, T.; Kimoto, K.; Taguchi, Y.; Nagaosa, N.; Tokura, Y.

    2016-04-01

    Magnetic bubbles with winding number S =1 are topologically equivalent to skyrmions. Here we report the discovery of helicity (in-plane magnetization-swirling direction) reversal of skyrmions, while keeping their hexagonal lattice form, at above room temperature in a thin hexaferrite magnet. We have observed that the frequency of helicity reversals dramatically increases with temperature in a thermally activated manner, revealing that the generation energy of a kink-soliton pair for switching helicity on a skyrmion rapidly decreases towards the magnetic transition temperature.

  14. ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tsimpidi, A. P.; Karydis, V. A.; Pozzer, A.; Pandis, S. N.; Lelieveld, J.

    2014-12-01

    A computationally efficient module to describe organic aerosol (OA) partitioning and chemical aging has been developed and implemented into the EMAC atmospheric chemistry-climate model. The model simulates the formation of secondary organic aerosol (SOA) from semivolatile (SVOCs), intermediate-volatility (IVOCs), and volatile organic compounds (VOCs). It distinguishes SVOCs from biomass burning and all other combustion sources using two surrogate species for each source category with an effective saturation concentration at 298 K of C* = 0.1 and 10 μg m-3. Two additional surrogate species with C* = 103 and 105 μg m-3 are used for the IVOCs emitted by the above source categories. Gas-phase photochemical reactions that change the volatility of the organics are taken into account. The oxidation products (SOA-sv, SOA-iv, and SOA-v) of each group of precursors (SVOCs, IVOCs, and VOCs) are simulated separately to keep track of their origin. ORACLE efficiently describes the OA composition and evolution in the atmosphere and can be used to (i) estimate the relative contributions of SOA and primary organic aerosol (POA) to total OA, (ii) determine how SOA concentrations are affected by biogenic and anthropogenic emissions, and (iii) evaluate the effects of photochemical aging and long-range transport on the OA budget. We estimate that the global average near-surface OA concentration is 1.5 μg m-3 and consists of 7% POA from fuel combustion, 11% POA from biomass burning, 2% SOA-sv from fuel combustion, 3% SOA-sv from biomass burning, 15% SOA-iv from fuel combustion, 28% SOA-iv from biomass burning, 19% biogenic SOA-v, and 15% anthropogenic SOA-v. The modeled tropospheric burden of OA components is 0.23 Tg POA, 0.16 Tg SOA-sv, 1.41 Tg SOA-iv, and 1.2 Tg SOA-v.

  15. Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming

    2006-07-01

    Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.

  16. Electronic Structure Modulation of Metal–Organic Frameworks for Hybrid Devices

    PubMed Central

    2014-01-01

    The study of metal–organic frameworks has largely been motivated by their structural and chemical diversity; however, these materials also possess rich physics, including optical, electronic, and magnetic activity. If these materials are to be employed in devices, it is necessary to develop an understanding of their solid-state behavior. We report an approach to calculate the effect of strain on the band structure of porous frameworks. The origin of the bidirectional absolute deformation potentials can be described from perturbations of the organic and inorganic building blocks. The unified approach allows us to propose several uses for hybrid materials, beyond their traditionally posited applications, including gas sensing, photoelectrochemistry, and as hybrid transistors. PMID:25436990

  17. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    SciTech Connect

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander; Fuhrmann, Bodo; Schmidt, Georg

    2016-04-15

    Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  18. SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation

    SciTech Connect

    Liu, H; Liu, T; Xu, X; Wu, J; Zhuo, W

    2015-06-15

    Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, and the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)

  19. The Strip-Hippo Pathway Regulates Synaptic Terminal Formation by Modulating Actin Organization at the Drosophila Neuromuscular Synapses.

    PubMed

    Sakuma, Chisako; Saito, Yoshie; Umehara, Tomoki; Kamimura, Keisuke; Maeda, Nobuaki; Mosca, Timothy J; Miura, Masayuki; Chihara, Takahiro

    2016-08-30

    Synapse formation requires the precise coordination of axon elongation, cytoskeletal stability, and diverse modes of cell signaling. The underlying mechanisms of this interplay, however, remain unclear. Here, we demonstrate that Strip, a component of the striatin-interacting phosphatase and kinase (STRIPAK) complex that regulates these processes, is required to ensure the proper development of synaptic boutons at the Drosophila neuromuscular junction. In doing so, Strip negatively regulates the activity of the Hippo (Hpo) pathway, an evolutionarily conserved regulator of organ size whose role in synapse formation is currently unappreciated. Strip functions genetically with Enabled, an actin assembly/elongation factor and the presumptive downstream target of Hpo signaling, to modulate local actin organization at synaptic termini. This regulation occurs independently of the transcriptional co-activator Yorkie, the canonical downstream target of the Hpo pathway. Our study identifies a previously unanticipated role of the Strip-Hippo pathway in synaptic development, linking cell signaling to actin organization. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens.

    PubMed

    Echeverry, H; Yitbarek, A; Munyaka, P; Alizadeh, M; Cleaver, A; Camelo-Jaimes, G; Wang, P; O, K; Rodriguez-Lecompte, J C

    2016-03-01

    The effect of organic trace mineral supplementation on performance, intestinal morphology, immune organ weights (bursa of Fabricius and spleen), expression of innate immune response related genes, blood heterophils/lymphocytes ratio, chemical metabolic panel, natural antibodies (IgG), and oxidative stress of broiler chickens was studied. A total of 1,080 day-old male broilers were assigned to 1 of 3 dietary treatments, which included basal diet with Monensin (control), control diet supplemented with bacitracin methylene disalicylate (BMD), and BMD diet supplemented with organic trace minerals (OTM). No difference in feed conversion ratio was observed among treatments; ileum histomorphological analysis showed a lower crypt depth, higher villi height/crypt depth ratio, and lower villi width in the OTM treatment compared to control. Furthermore, OTM treatment resulted in higher uric acid and lower plasma malondehaldehyde (MDA), indicating lower oxidative stress. Gene expression analysis showed that OTM treatment resulted in up-regulations of TLR2 bin the ileum, and TLR2b, TLR4, and IL-12p35 in the bursa of Fabricius, and down-regulation of TLR2b and TLR4 in the cecal tonsils. In the spleen, OTM treatment resulted in up-regulation of IL-10. In conclusion, OTM supplementation to broiler diets may have beneficial effects on intestinal development, immune system status, and survival by improving ileum histomorphological parameters, modulation of Toll-like receptors and anti-inflammatory cytokines, and decreasing level of MDA, which in conjunction could enhance health status.

  1. Effect of Serum and Insulin Modulation on the Organization and Morphology of Matrix Synthesized by Bovine Corneal Stromal Cells

    PubMed Central

    Bueno, Ericka M.; Saeidi, Nima; Melotti, Suzanna

    2009-01-01

    The in vitro production of highly organized collagen fibrils by corneal keratocytes in a three-dimensional scaffold-free culture system presents a unique opportunity for the direct observation of organized matrix formation. The objective of this investigation was to develop such a culture system in a glass substrate (for optical accessibility) and to directly examine the effect of reducing serum and/or increasing insulin on the stratification and secretion of aligned matrix by fourth- to fifth-passage bovine corneal stromal keratocytes. Medium concentrations of 0%, 1%, or 10% fetal bovine serum and 0% or 1% insulin–transferrin–selenium were investigated. High-resolution differential interference contrast microscopy, quick-freeze/deep-etch, and conventional transmission electron microscopy were used to monitor the evolution, morphology, and ultrastructure of the cell–matrix constructs. In a medium containing 1% each of serum and insulin–transferrin–selenium, stromal cells stratified and secreted abundant and locally aligned matrix, generating the thickest cell–matrix constructs (allowing handling with forceps). The results of this study have the potential to significantly advance the field of developmental functional engineering of load-bearing tissues by (i) elucidating cues that modulate in vitro cell secretion of organized matrix and (ii) establishing an optically accessible cell culture system for investigating the mechanism of cell secretion of aligned collagen fibrils. PMID:19480568

  2. Chiral electron transport: Scattering through helical potentials

    NASA Astrophysics Data System (ADS)

    Yeganeh, Sina; Ratner, Mark A.; Medina, Ernesto; Mujica, Vladimiro

    2009-07-01

    We present a model for the transmission of spin-polarized electrons through oriented chiral molecules, where the chiral structure is represented by a helix. The scattering potential contains a confining term and a spin-orbit contribution that is responsible for the spin-dependent scattering of electrons by the molecular target. The differential scattering cross section is calculated for right- and left-handed helices and for arbitrary electron spin polarizations. We apply our model to explain chiral effects in the intensity of photoemitted polarized electrons transmitted through thin organic layers. These are molecular interfaces that exhibit spin-selective scattering with surprisingly large asymmetry factors as well as a number of remarkable magnetic properties. In our model, differences in intensity are generated by the preferential transmission of electron beams whose polarization is oriented in the same direction as the sense of advance of the helix. This model can be easily extended to the Landauer regime of conductance where conductance is due to elastic scattering, so that we can consider the conductance of chiral molecular junctions.

  3. Dietary Omega-3 Fatty Acids Modulate Large-Scale Systems Organization in the Rhesus Macaque Brain

    PubMed Central

    Kroenke, Christopher D.; Neuringer, Martha; Fair, Damien A.

    2014-01-01

    Omega-3 fatty acids are essential for healthy brain and retinal development and have been implicated in a variety of neurodevelopmental disorders. This study used resting-state functional connectivity MRI to define the large-scale organization of the rhesus macaque brain and changes associated with differences in lifetime ω-3 fatty acid intake. Monkeys fed docosahexaenoic acid, the long-chain ω-3 fatty acid abundant in neural membranes, had cortical modular organization resembling the healthy human brain. In contrast, those with low levels of dietary ω-3 fatty acids had decreased functional connectivity within the early visual pathway and throughout higher-order associational cortex and showed impairment of distributed cortical networks. Our findings illustrate the similarity in modular cortical organization between the healthy human and macaque brain and support the notion that ω-3 fatty acids play a crucial role in developing and/or maintaining distributed, large-scale brain systems, including those essential for normal cognitive function. PMID:24501348

  4. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape

    PubMed Central

    Constantino, Maira A.; Jabbarzadeh, Mehdi; Fu, Henry C.; Bansil, Rama

    2016-01-01

    It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion. PMID:28138539

  5. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape.

    PubMed

    Constantino, Maira A; Jabbarzadeh, Mehdi; Fu, Henry C; Bansil, Rama

    2016-11-01

    It has frequently been hypothesized that the helical body shapes of flagellated bacteria may yield some advantage in swimming ability. In particular, the helical-shaped pathogen Helicobacter pylori is often claimed to swim like a corkscrew through its harsh gastric habitat, but there has been no direct confirmation or quantification of such claims. Using fast time-resolution and high-magnification two-dimensional (2D) phase-contrast microscopy to simultaneously image and track individual bacteria in bacterial broth as well as mucin solutions, we show that both helical and rod-shaped H. pylori rotated as they swam, producing a helical trajectory. Cell shape analysis enabled us to determine shape as well as the rotational and translational speed for both forward and reverse motions, thereby inferring flagellar kinematics. Using the method of regularized Stokeslets, we directly compare observed speeds and trajectories to numerical calculations for both helical and rod-shaped bacteria in mucin and broth to validate the numerical model. Although experimental observations are limited to select cases, the model allows quantification of the effects of body helicity, length, and diameter. We find that due to relatively slow body rotation rates, the helical shape makes at most a 15% contribution to propulsive thrust. The effect of body shape on swimming speeds is instead dominated by variations in translational drag required to move the cell body. Because helical cells are one of the strongest candidates for propulsion arising from the cell body, our results imply that quite generally, swimming speeds of flagellated bacteria can only be increased a little by body propulsion.

  6. Parotid Gland Sparing With Helical Tomotherapy in Head-and-Neck Cancer

    SciTech Connect

    Voordeckers, Mia; Farrag, Ashraf; Everaert, Hendrik; Tournel, Koen; Storme, Guy; Verellen, Dirk; De Ridder, Mark

    2012-10-01

    Purpose: This study evaluated the ability of helical tomotherapy to spare the function of the parotid glands in patients with head-and-neck cancer by analyzing dose-volume histograms, salivary gland scintigraphy, and quality of life assessment. Methods and Materials: Data from 76 consecutive patients treated with helical tomotherapy (Hi-Art Tomotherapy) at University Hospital Brussel were analyzed. During planning, priority was given to planning target volume (PTV) coverage: {>=}95% of the dose must be delivered to {>=}95% of the PTV. Elective nodal regions received 54 Gy (1.8 Gy/fraction). A dose of 70.5 Gy (2.35 Gy/fraction) was prescribed to the primary tumor and pathologic lymph nodes (simultaneous integrated boost scheme). Objective scoring of salivary excretion was performed by salivary gland scintigraphy. Subjective scoring of salivary gland function was evaluated by the European Organization for Research and Treatment of Cancer quality of life questionnaires Quality of Life Questionnaire-C30 (QLQ-C30) and Quality of Life Questionnaire-Head and Neck 35 (H and N35). Results: Analysis of dose-volume histograms (DVHs) showed excellent coverage of the PTV. The volume of PTV receiving 95% of the prescribed dose (V95%) was 99.4 (range, 96.3-99.9). DVH analysis of parotid gland showed a median value of the mean parotid dose of 32.1 Gy (range, 17.5-70.3 Gy). The median parotid volume receiving a dose <26 Gy was 51.2%. Quality of life evaluation demonstrated an initial deterioration of almost all scales and items in QLQ-C30 and QLQ-H and N35. Most items improved in time, and some reached baseline values 18 months after treatment. Conclusion: DVH analysis, scintigraphic evaluation of parotid function, and quality of life assessment of our patient group showed that helical tomotherapy makes it possible to preserve parotid gland function without compromising disease control. We recommend mean parotid doses of <34 Gy and doses <26 Gy to a maximum 47% of the parotid

  7. BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization.

    PubMed

    Alcántara, Soledad; Pozas, Esther; Ibañez, Carlos F; Soriano, Eduardo

    2006-04-01

    The present study utilizes nestin-BDNF transgenic mice, which offer a model for early increased brain-derived neurotrophic factor (BDNF) signalling, to examine the role of BDNF in the development of cortical architecture. Our results demonstrate that the premature and homogeneous expression of BDNF, while preserving tangential migration from the ganglionic eminence to the cortex, impairs the final radial migration of GABAergic neurons, as well as their integration in the appropriate cortical layers. Moreover, Cajal-Retzius (CR) cells and GABAergic neurons segregate in the cortical marginal zone (MZ) in response to BDNF signalling, leading to an alternating pattern and a columnar cortical organization, within which the migration of different neuronal populations is specifically affected. These results suggest that both CR and GABAergic neurons play a role in directing the radial migration of late-generated cortical neurons, and that the spatial distribution of these cells in the MZ is critical for the development of correct cortical organization. In addition, reelin secreted by CR cells in the MZ is not sufficient to direct the migration of late-born neurons to the upper cortical layers, which most likely requires the presence of reelin-secreting interneurons in layers V-VI. We propose that in addition to modulating reelin expression, BDNF regulates the patched distribution of CR and GABAergic neurons in the MZ, and that this spatial distribution is involved in the formation of anatomical and/or functional columns and convoluted structures.

  8. The feasibility of a regional CTDI{sub vol} to estimate organ dose from tube current modulated CT exams

    SciTech Connect

    Khatonabadi, Maryam; Kim, Hyun J.; Lu, Peiyun; McMillan, Kyle L.; Cagnon, Chris H.; McNitt-Gray, Michael F.; DeMarco, John J.

    2013-05-15

    Purpose: In AAPM Task Group 204, the size-specific dose estimate (SSDE) was developed by providing size adjustment factors which are applied to the Computed Tomography (CT) standardized dose metric, CTDI{sub vol}. However, that work focused on fixed tube current scans and did not specifically address tube current modulation (TCM) scans, which are currently the majority of clinical scans performed. The purpose of this study was to extend the SSDE concept to account for TCM by investigating the feasibility of using anatomic and organ specific regions of scanner output to improve accuracy of dose estimates. Methods: Thirty-nine adult abdomen/pelvis and 32 chest scans from clinically indicated CT exams acquired on a multidetector CT using TCM were obtained with Institutional Review Board approval for generating voxelized models. Along with image data, raw projection data were obtained to extract TCM functions for use in Monte Carlo simulations. Patient size was calculated using the effective diameter described in TG 204. In addition, the scanner-reported CTDI{sub vol} (CTDI{sub vol,global}) was obtained for each patient, which is based on the average tube current across the entire scan. For the abdomen/pelvis scans, liver, spleen, and kidneys were manually segmented from the patient datasets; for the chest scans, lungs and for female models only, glandular breast tissue were segmented. For each patient organ doses were estimated using Monte Carlo Methods. To investigate the utility of regional measures of scanner output, regional and organ anatomic boundaries were identified from image data and used to calculate regional and organ-specific average tube current values. From these regional and organ-specific averages, CTDI{sub vol} values, referred to as regional and organ-specific CTDI{sub vol}, were calculated for each patient. Using an approach similar to TG 204, all CTDI{sub vol} values were used to normalize simulated organ doses; and the ability of each normalized

  9. Generation of 64 GBd 4ASK signals using a silicon-organic hybrid modulator at 80°C.

    PubMed

    Lauermann, M; Wolf, S; Hartmann, W; Palmer, R; Kutuvantavida, Y; Zwickel, H; Bielik, A; Altenhain, L; Lutz, J; Schmid, R; Wahlbrink, T; Bolten, J; Giesecke, A L; Freude, W; Koos, C

    2016-05-02

    We demonstrate a silicon-organic hybrid (SOH) Mach-Zehnder modulator (MZM) generating four-level amplitude shift keying (4ASK) signals at symbol rates of up to 64 GBd both at room temperature and at an elevated temperature of 80°C. The measured line rate of 128 Gbit/s corresponds to the highest value demonstrated for silicon-based MZM so far. We report bit error ratios of 10-10 (64 GBd BPSK), 10-5 (36 GBd 4ASK), and 4 × 10-3 (64 GBd 4ASK) at room temperature. At 80 °C, the respective bit error ratios are 10-10, 10-4, and 1.3 × 10-2. The high-temperature experiments were performed in regular oxygen-rich ambient atmosphere.

  10. Cortical organization of inhibition-related functions and modulation by psychopathology

    PubMed Central

    Warren, Stacie L.; Crocker, Laura D.; Spielberg, Jeffery M.; Engels, Anna S.; Banich, Marie T.; Sutton, Bradley P.; Miller, Gregory A.; Heller, Wendy

    2013-01-01

    Individual differences in inhibition-related functions have been implicated as risk factors for a broad range of psychopathology, including anxiety and depression. Delineating neural mechanisms of distinct inhibition-related functions may clarify their role in the development and maintenance of psychopathology. The present study tested the hypothesis that activity in common and distinct brain regions would be associated with an ecologically sensitive, self-report measure of inhibition and a laboratory performance measure of prepotent response inhibition. Results indicated that sub-regions of DLPFC distinguished measures of inhibition, whereas left inferior frontal gyrus and bilateral inferior parietal cortex were associated with both types of inhibition. Additionally, co-occurring anxiety and depression modulated neural activity in select brain regions associated with response inhibition. Results imply that specific combinations of anxiety and depression dimensions are associated with failure to implement top-down attentional control as reflected in inefficient recruitment of posterior DLPFC and increased activation in regions associated with threat (MTG) and worry (BA10). Present findings elucidate possible neural mechanisms of interference that could help explain executive control deficits in psychopathology. PMID:23781192

  11. Living organisms influence on environmental conditions: pH modulation by amphibian embryos versus aluminum toxicity.

    PubMed

    Herkovits, Jorge; Castañaga, Luis Alberto; D'Eramo, José Luis; Jourani, Victoria Platonova

    2015-11-01

    The LC10, 50 and 90/24h of aluminum for Rhinella arenarum embryos at complete operculum stage were 0.55, 0.75 and 1mgAl(3+)/L respectively. Those values did not change significantly by expanding the exposure period till 168h. The aluminum toxicity was evaluated in different pH conditions by means of a citrate buffer resulting for instance, 1mgAl(3+)/L at pH 4, 4.1, 5 and 6 in 100%, 70%, 35% and 0% of lethality respectively. As an outstanding feature, the embryos changed the pH of the maintaining media both in the case of Al(3+) or citrate buffer treatments toward neutral. 10 embryos in 40mL of AMPHITOX solution were able to increase the pH from 4.2 to 7.05, a fact related with a metabolic shift resulting in an increase in nitrogen loss as ammonia. Our study point out the natural selection of the most resistant amphibian embryos both for pH or aluminum as well as the capacity of living organisms (as a population) to alter their chemical environment toward optimal conditions for their survival. As these facts occur at early life stages, it expand the concept that living organisms at ontogenic stages are biomarker of environmental signatures of the evolutionary process (Herkovits, 2006) to a global Onto-Evo concept which imply also the feedback mechanisms from living organisms to shape environmental conditions in a way that benefits them.

  12. Organic Fabry-Perot micro-cavity for electro-optic sampling by amplitude modulation

    NASA Astrophysics Data System (ADS)

    Gaborit, G.; Martin, G.; Duvillaret, L.; Coutaz, J.-L.; Nguyen, C.; Hierle, R.; Zyss, J.

    2006-02-01

    We present herein a original concept of electro-optic (EO) probe for high frequency electric field measurements. This sensors is based on a thin organic layer of DR1-PMMA embedded in a high finesse Fabry-Perot cavity. The optimal orientation of DRl molecules, parallel to the face of the micro-cavity, has been obtained thanks to a lateral poling method. A r 33 of 2.5 pm/V has been reached for a 16 μm thick polymer layer. The final probe exhibits high sensitivity of 2V.cm -1.Hz -1/2.

  13. Organic thin film transistor by using polymer electrolyte to modulate the conductivity of conjugated polymer

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ju; Li, Yu-Chang; Yeh, Chih-Chieh; Chung, Sheng-Feng; Huang, Li-Ming; Wen, Ten-Chin; Wang, Yeong-Her

    2006-11-01

    This work presents an organic thin film transistor using double polymer layers, polymer electrolyte/conjugated polymer, i.e., poly(diallyldimethylammonium chloride) (PDDA)/poly(diphenylamine) (PDPA) structure. The single mobile anions (Cl-) pending on the PDDA are stuffed into the conjugated polymer to dope the nitrogen atoms (imine) by applying the gate bias, resulting a higher drain current under the same source-drain voltage. The PDDA/PDPA polymer structure working in the enhancement mode which operates under atmospheric conditions as a typical p-channel transistor is demonstrated.

  14. Motion of multiple helical vortices

    NASA Astrophysics Data System (ADS)

    Velasco Fuentes, Oscar

    2015-11-01

    In 1912 Joukowsky deduced that in an unbounded ideal fluid a set of helical vortices--when these are equal, coaxial and symmetrically arranged--would translate and rotate steadily while the vortices preserve their form and relative position. Each vortex is an infinite tube whose cross-section is circular (with radius a) and whose centerline is a helix of pitch L and radius R. The motion is thus determined by three non-dimensional parameters only: the number of vortices N, the vortex radius α = a / R and the vortex pitch τ = L / 2 πR . Here, we express the linear and angular velocities of the vortices as the sum of the mutually induced velocities found by Okulov (2004) and the self-induced velocities found by Velasco Fuentes (2015). We verified that our results are accurate over the whole range of values of the vortices' pitch and radius by numerically computing the vortex motion with two smoothed versions of the Biot-Savart law. It was found that the translation velocity U grows with the number of vortices (N) but decreases as the vortices' radius and pitch (a and τ, respectively) increase; in contrast, the rotation velocity Ω grows with N and a but has a local minimum around τ = 1 for fixed values of N and a.

  15. The motion of helical vortices

    NASA Astrophysics Data System (ADS)

    Velasco Fuentes, Oscar

    2014-11-01

    We study the motion of a helical vortex in an inviscid, incompressible fluid of infinite extent. The vortex is a thin tube, of circular cross section and uniform vorticity, whose centerline is a helix of uniform pitch. Ever since Joukowsky (1912) deduced that this vortex is a steady solution of the Euler equations, numerous attempts have been made to compute its self-induced velocity. Here we use Hardin's (1982) solution for the velocity field in order to compute, for any pitch value, the linear and angular velocities of the vortex. Our formulas were verified by direct numerical integration of both the Biot-Savart and Helmholtz equations, and were also found to compare favourably with previous theoretical results. In terms of the vortex capacity to transport fluid, we identified three regimes: a helix of large pitch moves slowly, carrying a large mass of fluid; a thin helix of small pitch moves fast, carrying a small mass of fluid; and a fat helix of small pitch is a moderate carrier itself but it pushes fluid forward along its axis.

  16. Helical modes in boundary layer transition

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Durbin, Paul A.

    2016-11-01

    Observations are presented to show that in an adverse pressure gradient boundary layer, beneath free-stream turbulence, the interaction between Klebanoff streaks and naturally arising instability waves leads to helical disturbances which break down to form turbulent spots. This occurs under low to moderate levels, 1%-2%, of free-stream turbulence. At high levels of free-stream turbulence, conventional bypass mechanisms are seen. The helical structures are clearly identifiable in visualizations of isosurfaces of streamwise perturbation velocity. A direct numerical simulation also was performed in zero pressure gradient, with a time-periodic Tollmien-Schlichting wave eigenfunction at the inlet. Again, under a moderate level of free-stream turbulence, helices were observed, and found to trigger transition. Their wave speed is on the order of 1/2 U∞ , so helical breakdown can be viewed as a type of inner mode, secondary instability.

  17. The anisotropy of kinetic and current helicity

    NASA Astrophysics Data System (ADS)

    Reshetnyak, M. Yu.

    2017-09-01

    A three-dimensional model for thermal convection with a dynamo in a rotating planar layer heated from below is used to investigate the behavior of the mean kinetic and current helicities. In spite of the presence of gravity and rotation, which introduce anisotropy into the system, the components of the helicity determined from the field components in the directions tangent and normal to the boundary have similar values. The existence of a separation by scale, when the current helicity has different signs on different spatial scales, is demonstrated. The number of regions where the sign of the helicity does not coincide with the sign of its mean value in that region is estimated (˜43-45% of the total number of regions). The estimates presented are relevant for interpretations of observations of solar activity and analysis of the properties of rotating magnetohydrodynamical turbulence.

  18. Microfluidic Lithography of Bioinspired Helical Micromotors.

    PubMed

    Yu, Yunru; Shang, Luoran; Gao, Wei; Zhao, Ze; Wang, Huan; Zhao, Yuanjin

    2017-07-29

    Considerable efforts have been devoted to developing artificial micro/nanomotors that can convert energy into movement. A flow lithography integrated microfluidic spinning and spiraling system is developed for the continuous generation of bioinspired helical micromotors. Because the generation processes could be precisely tuned by adjusting the flow rates and the illuminating frequency, the length, diameter, and pitch of the helical micromotors were highly controllable. Benefiting from the fast online gelation and polymerization, the resultant helical micromotors could be imparted with Janus, triplex, and core-shell cross-sectional structures that have never been achieved by other methods. Owing to the spatially controlled encapsulation of functional nanoparticles in the microstructures, the helical micromotors can perform locomotion not only by magnetically actuated rotation or corkscrew motion but also through chemically powered catalytic reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures.

    PubMed

    Silva, Pedro Emanuel Santos; Godinho, Maria Helena

    2017-03-01

    There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Helical vortices: viscous dynamics and instability

    NASA Astrophysics Data System (ADS)

    Rossi, Maurice; Selcuk, Can; Delbende, Ivan; Ijlra-Upmc Team; Limsi-Cnrs Team

    2014-11-01

    Understanding the dynamical properties of helical vortices is of great importance for numerous applications such as wind turbines, helicopter rotors, ship propellers. Locally these flows often display a helical symmetry: fields are invariant through combined axial translation of distance Δz and rotation of angle θ = Δz / L around the same z-axis, where 2 πL denotes the helix pitch. A DNS code with built-in helical symmetry has been developed in order to compute viscous quasi-steady basic states with one or multiple vortices. These states will be characterized (core structure, ellipticity, ...) as a function of the pitch, without or with an axial flow component. The instability modes growing in the above base flows and their growth rates are investigated by a linearized version of the DNS code coupled to an Arnoldi procedure. This analysis is complemented by a helical thin-cored vortex filaments model. ANR HELIX.

  1. Scaling laws in decaying helical hydromagnetic turbulence

    NASA Astrophysics Data System (ADS)

    Christensson, M.; Hindmarsh, M.; Brandenburg }%, A.

    2005-07-01

    We study the evolution of growth and decay laws for the magnetic field coherence length ξ, energy E_M and magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self-similarity of the magnetic power spectrum alone implies that ξ σm t1/2. This in turn implies that magnetic helicity decays as Hσm t-2s, where s=(ξ_diff/ξH)2, in terms of ξ_diff, the diffusion length scale, and ξ_H, a length scale defined from the helicity power spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as E_M σm t-1/2-2s. The parameter s is inversely proportional to the magnetic Reynolds number Re_M, which is constant in the self-similar regime.

  2. Emergence of helicity in rotating stratified turbulence

    NASA Astrophysics Data System (ADS)

    Marino, Raffaele; Mininni, Pablo D.; Rosenberg, Duane; Pouquet, Annick

    2013-03-01

    We perform numerical simulations of decaying rotating stratified turbulence and show, in the Boussinesq framework, that helicity (velocity-vorticity correlation), as observed in supercell storms and hurricanes, is spontaneously created due to an interplay between buoyancy and rotation common to large-scale atmospheric and oceanic flows. Helicity emerges from the joint action of eddies and of inertia-gravity waves (with inertia and gravity with respective associated frequencies f and N), and it occurs when the waves are sufficiently strong. For N/f<3 the amount of helicity produced is correctly predicted by a quasilinear balance equation. Outside this regime, and up to the highest Reynolds number obtained in this study, namely Re≈10000, helicity production is found to be persistent for N/f as large as ≈17, and for ReFr2 and ReRo2, respectively, as large as ≈100 and ≈24000.

  3. Building blocks for subleading helicity operators

    DOE PAGES

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-24

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less

  4. Dissecting π-helices: sequence, structure and function.

    PubMed

    Kumar, Prasun; Bansal, Manju

    2015-11-01

    A new procedure for the identification of regular secondary structures using a C(α) trace has identified 659 π-helices in 3582 protein chains, solved at high resolution. Taking advantage of this significantly expanded database of π-helices, we have analysed the functional and structural roles of π-helices and determined the position-wise amino acid propensity within and around them. These helices range from 5 to 18 residues in length with the average twist and rise being 85.2 ± 7.2° and 1.28 ± 0.31 Å, respectively. A total of 546 (~ 83%) out of 659 π-helices occur in conjunction with α-helices, with 101 π-helices being interspersed between two α-helices. The majority of interspersed π-helices were found to be conserved across a large number of structures within a protein family and produce a significant bend in the overall helical segment as well as local distortions in the neighbouring α-helices. The presence of a π-helical fragment leads to appropriate orientation of the constituent residues, so as to facilitate favourable interactions and also help in proper folding of the protein chain. In addition to intra helical 6→1 N-H···O hydrogen bonds, π-helices are also stabilized by several other non-bonded interactions. π-Helices show distinct positional residue preferences, which are different from those of α-helices.

  5. Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells

    NASA Astrophysics Data System (ADS)

    Devadas, Mary Sajini; Devkota, Tuphan; Guha, Samit; Shaw, Scott K.; Smith, Bradley D.; Hartland, Gregory V.

    2015-05-01

    Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer.Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer. Electronic supplementary information (ESI

  6. Disruption of actin cytoskeleton mediates loss of tensile stress induced early phenotypic modulation of vascular smooth muscle cells in organ culture.

    PubMed

    Zheng, Jian-Pu; Ju, Donghong; Shen, Jianbin; Yang, Maozhou; Li, Li

    2010-02-01

    Aorta organ culture has been widely used as an ex vivo model for studying vessel pathophysiology. Recent studies show that the vascular smooth muscle cells (VSMCs) in organ culture undergo drastic dedifferentiation within the first few hours (termed early phenotypic modulation). Loss of tensile stress to which aorta is subject in vivo is the cause of this early phenotypic modulation. However, no underlying molecular mechanism has been discovered thus far. The purpose of the present study is to identify intracellular signals involved in the early phenotypic modulation of VSMC in organ culture. We find that the drastic VSMC dedifferentiation is accompanied by accelerated actin cytoskeleton dynamics and downregulation of SRF and myocardin. Among the variety of signal pathways examined, increasing actin polymerization by jasplakinolide is the only one hindering VSMC dedifferentiation in organ culture. Moreover, jasplakinolide reverses actin dynamics during organ culture. Latrunculin B (disrupting actin cytoskeleton) and jasplakinolide respectively suppressed and enhanced the expression of VSMC markers, SRF, myocardin, and CArG-box-mediated SMC promoters in PAC1, a VSMC line. These results identify actin cytoskeleton degradation as a major intracellular signal for loss of tensile stress-induced early phenotypic modulation of VSMC in organ culture. This study suggests that disrupting actin cytoskeleton integrity may contribute to the pathogenesis of vascular diseases. Published by Elsevier Inc.

  7. CURRENT HELICITY OF ACTIVE REGIONS AS A TRACER OF LARGE-SCALE SOLAR MAGNETIC HELICITY

    SciTech Connect

    Zhang, H.; Gao, Y.; Xu, H.; Moss, D.; Kleeorin, N.; Rogachevskii, I.; Kuzanyan, K.; Sokoloff, D.

    2012-05-20

    We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced two-dimensional mean-field dynamo model with dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic two-dimensional mean-field dynamo model with simple algebraic alpha-quenching only. Using these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by -A {center_dot} B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are, respectively, the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of these results is given.

  8. Organization and Dynamics of Fas Transmembrane Domain in Raft Membranes and Modulation by Ceramide

    PubMed Central

    Castro, Bruno M.; de Almeida, Rodrigo F.M.; Goormaghtigh, Erik; Fedorov, Aleksander; Prieto, Manuel

    2011-01-01

    To comprehend the molecular processes that lead to the Fas death receptor clustering in lipid rafts, a 21-mer peptide corresponding to its single transmembrane domain (TMD) was reconstituted into mammalian raft model membranes composed of an unsaturated glycerophospholipid, sphingomyelin, and cholesterol. The peptide membrane lateral organization and dynamics, and its influence on membrane properties, were studied by steady-state and time-resolved fluorescence techniques and by attenuated total reflection Fourier transformed infrared spectroscopy. Our results show that Fas TMD is preferentially localized in liquid-disordered membrane regions and undergoes a strong reorganization as the membrane composition is changed toward the liquid-ordered phase. This results from the strong hydrophobic mismatch between the length of the peptide hydrophobic stretch and the hydrophobic thickness of liquid-ordered membranes. The stability of nonclustered Fas TMD in liquid-disordered domains suggests that its sequence may have a protective function against nonligand-induced Fas clustering in lipid rafts. It has been reported that ceramide induces Fas oligomerization in lipid rafts. Here, it is shown that neither Fas TMD membrane organization nor its conformation is affected by ceramide. These results are discussed within the framework of Fas membrane signaling events. PMID:21961589

  9. Decay of helical and nonhelical magnetic knots

    NASA Astrophysics Data System (ADS)

    Candelaresi, Simon; Brandenburg, Axel

    2011-07-01

    We present calculations of the relaxation of magnetic field structures that have the shape of particular knots and links. A set of helical magnetic flux configurations is considered, which we call n-foil knots of which the trefoil knot is the most primitive member. We also consider two nonhelical knots; namely, the Borromean rings as well as a single interlocked flux rope that also serves as the logo of the Inter-University Centre for Astronomy and Astrophysics in Pune, India. The field decay characteristics of both configurations is investigated and compared with previous calculations of helical and nonhelical triple-ring configurations. Unlike earlier nonhelical configurations, the present ones cannot trivially be reduced via flux annihilation to a single ring. For the n-foil knots the decay is described by power laws that range form t-2/3 to t-1/3, which can be as slow as the t-1/3 behavior for helical triple-ring structures that were seen in earlier work. The two nonhelical configurations decay like t-1, which is somewhat slower than the previously obtained t-3/2 behavior in the decay of interlocked rings with zero magnetic helicity. We attribute the difference to the creation of local structures that contain magnetic helicity which inhibits the field decay due to the existence of a lower bound imposed by the realizability condition. We show that net magnetic helicity can be produced resistively as a result of a slight imbalance between mutually canceling helical pieces as they are being driven apart. We speculate that higher order topological invariants beyond magnetic helicity may also be responsible for slowing down the decay of the two more complicated nonhelical structures mentioned above.

  10. Helical rotary screw expander power system

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.; Sprankle, R. S.

    1974-01-01

    An energy converter for the development of wet steam geothermal fields is described. A project to evaluate and characterize a helical rotary screw expander for geothermal applications is discussed. The helical screw expander is a positive displacement machine which can accept untreated corrosive mineralized water of any quality from a geothermal well. The subjects of corrosion, mineral deposition, the expansion process, and experience with prototype devices are reported.

  11. RF Pulse Compression Using Helically Corrugated Waveguides

    NASA Astrophysics Data System (ADS)

    MacInnes, P.; Ronald, K.; Burt, G.; Cross, A. W.; Young, A. R.; Phelps, A. D. R.; Konoplev, I. V.; He, W.; Samsonov, S. V.; Bratman, V. L.; Denisov, G. G.

    2006-01-01

    This paper describes the use of a helically corrugated waveguide as a dispersive medium for microwave pulse compression. The helically corrugated waveguide has a large variation of group velocity with frequency, but in a region where the group velocity remains large. Therefore this compressor does not suffer from reflections associated with cut-off scenarios at frequencies close to its operating regime and may be used in conjunction with high power wideband tunable microwave sources and amplifiers.

  12. On the stability of multiple helical vortices

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.

    2004-12-01

    The classical problem of linear stability of a regular N-gon of point vortices to infinitesimal space displacements from an equilibrium of the vortex configuration is generalized to the one for N helical vortices (couple, triplet, etc., N {>} 1) for the first time. As a consequence of this consideration, the analytical form for the stability boundaries has been obtained. This solution allows an efficient analysis to be made of the existence of stable helical vortex arrays, which were repeatedly observed in practice.

  13. Effective dose and organ doses estimation taking tube current modulation into account with a commercial software package.

    PubMed

    Lopez-Rendon, X; Bosmans, H; Oyen, R; Zanca, F

    2015-07-01

    To evaluate the effect of including tube current modulation (TCM) versus using the average mAs in estimating organ and effective dose (E) using commercial software. Forty adult patients (24 females, 16 males) with normal BMI underwent chest/abdomen computed tomography (CT) performed with TCM at 120 kVp, reference mAs of 110 (chest) and 200 (abdomen). Doses to fully irradiated organs (breasts, lungs, stomach, liver and ovaries) and E were calculated using two versions of a dosimetry software: v.2.0, which uses the average mAs, and v.2.2, which accounts for TCM by implementing a gender-specific mAs profile. Student's t-test was used to assess statistically significant differences between organ doses calculated with the two versions. A statistically significant difference (p < 0.001) was found for E on chest and abdomen CT, with E being lower by 4.2% when TCM is considered. Similarly, organ doses were also significantly lower (p < 0.001): 13.7% for breasts, 7.3% for lungs, 9.1% for the liver and 8.5% for the stomach. Only the dose to the ovaries was higher with TCM (11.5%). When TCM is used, for the stylized phantom, the doses to lungs, breasts, stomach and liver decreased while the dose to the ovaries increased. • Estimated dose to the ovaries increased with TCM. • Estimated dose to lungs, breasts, stomach and liver decreased with TCM. • A unique but gender-specific mAs profile resulted in a radiation dose shift. • Even for normal size patients there is a variety in mAs profiles.

  14. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    PubMed

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  15. A non-classical view of the modulation of mineral precipitation by organic additives

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Encarnacion; Ruiz-Agudo, Cristina; Burgos-Cara, Alejandro; Putnis, Christine; Rodriguez-Navarro, Carlos; Putnis, Andrew

    2016-04-01

    Questions persist on the mechanisms of crystallization of sparingly soluble minerals such as calcium carbonate, calcium oxalate or barium sulphate. Compared to CaCO3, the mechanisms of nucleation and growth in the CaC2O4-H2O or BaSO4-H2O systems have received less attention. These phases are important due to their relevance as biominerals and/or unwanted mineral deposits in technological applications. Growing evidence suggests that sparingly soluble salts form by non-classical nucleation and growth pathways, where pre-nucleation ion associates and amorphous (solid or liquid) precursor phase(s) play a critical role (e.g. Rodríguez-Navarro et al. (2015), Ruiz-Agudo et al. (2015)). Indeed the identification of pre-nucleation species in these systems and their strong interactions with organic compounds (Verch et al. 2011) raises the possibility that the control of organics on biomineralization may begin even earlier than previously thought. A sound knowledge of the physical mechanisms by which acidic macromolecules affect nucleation and early growth may offer general insights concerning the molecular control of biomineralization, as well as being critical for improving strategies to control unwanted mineral deposition or for the synthesis of biomimetic materials. Here we present investigations on the initial stages of the precipitation of these relevant minerals in organic-free solutions to identify the precipitation pathway and to look for any potential precursor phase(s) to the final, crystalline polymorph. As well, we explore the effects that several acidic organic compounds have on the different precipitation stages identified. We find that organic additives such as citric acid, polyacrilic acid or a commercial copolymer of maleic acid/allyl sulfonic acid with phosphonate groups can be active at modifying pre-nucleation stages (destabilizing of pre-nucleation species or hampering the aggregation and growth of pre-nucleation associates) and subsequently strongly

  16. Modulation of myosin filament organization by C-protein family members.

    PubMed

    Seiler, S H; Fischman, D A; Leinwand, L A

    1996-01-01

    We have analyzed the interactions between two types of sarcomeric proteins: myosin heavy chain (MyHC) and members of an abundant thick filament-associated protein family (myosin-binding protein; MyBP). Previous work has demonstrated that when MyHC is transiently transfected into mammalian nonmuscle COS cells, the expressed protein forms spindle-shaped structures consisting of bundles of myosin thick filaments. Co-expression of MyHC and MyBP-C or -H modulates the MyHC structures, resulting in dramatically longer cables consisting of myosin and MyBP encircling the nucleus. Immunoelectron microscopy indicates that these cable structures are more uniform in diameter than the spindle structures consisting solely of MyHC, and that the myosin filaments are compacted in the presence of MyBP. Deletion analysis of MyBP-H indicates that cable formation is dependent on the carboxy terminal 24 amino acids. Neither the MyHC spindles nor the MyHC/MyBP cables associate with the endogenous actin cytoskeleton of the COS cell. While there is no apparent co-localization between these structures and the microtubule network, colchicine treatment of the cells promotes the formation of longer assemblages, suggesting that cytoskeletal architecture may physically impede or regulate polymer formation/extension. The data presented here contribute to a greater understanding of the interactions between the MyBP family and MyHC, and provide additional evidence for functional homology between MyBP-C and MyBP-H.

  17. Influence of initial mean helicity on homogeneous turbulent shear flow.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2011-11-01

    Helicity statistics are studied in homogeneous turbulent shear flow. Initial mean helicity is imposed on an isotropic turbulence field using a decomposition of the flow into complex-valued helical waves. The initial decay of the turbulent kinetic energy is weakened in the presence of strong mean helicity, consistent with an analytic analysis of the spectral tensor of velocity correlations. While exponential growth of the mean turbulent kinetic energy is obtained, the mean helicity decays. Probability distribution functions (PDFs) of helicity are skewed and show that the imposed mean helicity prevails throughout the simulations. A wavelet-based scale-dependent analysis shows a trend to two dimensionalization for large scales of motion and a preference for helical motion at small scales. The magnitude of the skewness of the PDFs decreases for smaller scales. Joint PDFs indicate a strong correlation of the signs of both, helicity and superhelicity, for all cases. This correlation supports the conjecture that superhelicity dissipates helicity.

  18. Complete measurement of helicity and its dynamics in vortex tubes

    NASA Astrophysics Data System (ADS)

    Scheeler, Martin W.; van Rees, Wim M.; Kedia, Hridesh; Kleckner, Dustin; Irvine, William T. M.

    2017-08-01

    Helicity, a topological measure of the intertwining of vortices in a fluid flow, is a conserved quantity in inviscid fluids but can be dissipated by viscosity in real flows. Despite its relevance across a range of flows, helicity in real fluids remains poorly understood because the entire quantity is challenging to measure. We measured the total helicity of thin-core vortex tubes in water. For helical vortices that are stretched or compressed by a second vortex, we found conservation of total helicity. For an isolated helical vortex, we observed evolution toward and maintenance of a constant helicity state after the dissipation of twist helicity by viscosity. Our results show that helicity can remain constant even in a viscous fluid and provide an improved basis for understanding and manipulating helicity in real flows.

  19. Filament Channel Formation Via Magnetic Helicity Condensation

    NASA Astrophysics Data System (ADS)

    Knizhnik, Kalman Joshua; Antiochos, Spiro K.; DeVore, C. Richard

    2015-04-01

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear, in the form of filament channels, at photospheric polarity inversion lines (PILs). In addition to free energy, this shear also represents magnetic helicity, which is conserved under reconnection. In this work, we address the problem of filament channel formation and show how they acquire their shear and magnetic helicity. The results of 3D simulations using the Adaptively Refined Magnetohydrodynamics Solver (ARMS) are presented that support the model of filament channel formation by magnetic helicity condensation developed by Antiochos (2013). We consider the convective twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse-cascade up to the largest allowable scales that defined the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity-condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations. Our research was supported by NASA's Earth and Space Science Fellowship (K.J.K.) and Heliophysics Supporting Research (S.K.A. and C.R.D.) programs.

  20. Filament Channel Formation via Magnetic Helicity Condensation

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2015-08-01

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear in the form of filament channels at photospheric polarity inversion lines (PILs). In addition to free energy, this shear represents magnetic helicity, which is conserved under reconnection. In this paper we address the problem of filament channel formation and show how filaments acquire their shear and magnetic helicity. The results of three-dimensional (3D) simulations using the Adaptively Refined Magnetohydrodynamics Solver are presented. Our findings support the model of filament channel formation by magnetic helicity condensation that was developed by Antiochos. We consider the small-scale photospheric twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations.

  1. The AGS with four helical magnets

    SciTech Connect

    Tsoupas, N.; Huang, H.; MacKay, W.W.; Roser, T.; Trbojevic, D.

    2010-02-25

    The idea of using multiple partial helical magnets was applied successfully to the AGS synchrotron, to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. This modification provides many advantages over the present setup of the AGS that uses two partial helical magnets. First, it provides a larger 'spin tune gap' for the placement of the vertical betatron tune of the AGS during acceleration, second, the vertical spin direction during the beam injection and extraction is closer to vertical, third, the symmetric placement of the snakes allows for a better control of the AGS optics, and for reduced values of the beta and eta functions, especially near injection, fourth, the optical properties of the helical magnets also favor the placement of the horizontal betatron tune in the 'spin tune gap', thus eliminating the horizontal spin resonances. In this paper we provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and we compare these results with the present setup of the AGS that uses two partial helical magnets.

  2. MHD Gauge Fields: Helicities and Casimirs

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Webb, G. M.; Zank, G. P.; Anco, S.

    2016-12-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector P in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction B, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of Bis zero), is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether's theorem, and gauge symmetries are used to derive the conservation laws for (a) magnetic helicity (b) cross helicity, (c) fluid helicity for non-magnetize