NASA Astrophysics Data System (ADS)
Herzog, S.; Portmann, A. C.; Halpin, B. N.; Higgins, C.; McCray, J. E.
2017-12-01
Nonpoint source nitrogen pollution from agricultural and urban runoff is one of the leading causes of impairment to US rivers and streams. The hyporheic zone (HZ) offers a natural biogeochemical hotspot for the attenuation of nitrogen within streams, thereby complementing efforts to prevent aquatic nitrogen pollution in the first place. However, HZ in urban and agricultural streams are often degraded by scouring and colmation, which limit their potential to improve stream water quality at the reach scale. A recent effort to mitigate nitrogen pollution in the Chesapeake Bay region provides denitrification credits for hyporheic restoration projects. Unfortunately, many of the featured hyporheic zone best management practices (BMP) (e.g., weirs, cross-vanes) tend to create only localized, aerobic hyporheic flows that are not optimal for the anaerobic denitrification reaction. In short, practitioners lack an adaptable BMP that can both 1) increase hyporheic exchange, and 2) tailor HZ residence times to match reactions of interest. Here we present new performance data for an HZ engineering technique called Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange and control residence times, along with reactive geomedia to increase reaction rates within HZ sediments. This research utilized two artificial stream flumes: One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). Two different BEST media were tested: a coarse sand module with K 0.5 cm/s, and a fine sand module with K 0.15 cm/s. The flume with coarse sand BEST modules created aerobic HZ conditions and demonstrated rapid nitrification of ammonia at rates significantly higher than the control. However, denitrification was much slower and not significantly different between the two streams. In contrast, the fine sand module promoted anaerobic conditions and increased denitrification rates significantly compared to the all-sand control, but at the expense of nitrification. These results highlight the need to tailor HZ designs to provide appropriate conditions for reactions of interest, and demonstrate the applicability of BEST for this purpose.
Mineralization and nitrification patterns at eight northeastern USA forested research sites
Ross, D.S.; Lawrence, G.B.; Fredriksen, G.
2004-01-01
Nitrogen transformation rates in eight northeastern US research sites were measured in soil samples taken in the early season of 2000 and the late season of 2001. Net mineralization and nitrification rates were determined on Oa or A horizon samples by two different sampling methods - intact cores and repeated measurements on composite samples taken from around the cores. Net rates in the composite samples (n=30) showed three different temporal patterns: high net nitrification with minimal NH4+ accumulation, high net nitrification and high NH4+ accumulation, and minimal net nitrification and moderate NH4+ accumulation. The 4-week net rates in intact cores were about half that of the rates from the composite samples but were well related (R2 > 0.70). Composite samples from sites that exhibited high net nitrification were incubated with acetylene and net nitrification was completely stopped, suggesting an autotrophic pathway. Gross mineralization and nitrification (2000 only) rates were estimated using the isotope dilution technique. Gross rates of nitrification and consumption in intact cores were relatively low. Gross rates of mineralization and net rates of nitrification were both related to the soil C/N ratio, with higher rates generally occurring in sites containing Acer saccharum as a dominant or co-dominant species. The comparison of methods suggests that all provide a similar hierarchy of potential rates but that the degree of net nitrification is strongly influenced by the degree of sample disturbance. Differences between sites appear to be related to an interaction of soil (C/N) and vegetation (A. saccharum contribution) characteristics. ?? 2003 Elsevier B.V. All rights reserved.
Caffrey, J.M.; Miller, L.G.
1995-01-01
Nitrification rates were measured using intact sediment cores from South San Francisco Bay and two different nitrification inhibitors: acetylene and methyl fluoride. Sediment oxygen consumption and ammonium and nitrate fluxes were also measured in these cores. Four experiments were conducted in the spring, and one in the fall of 1993. There was no significant difference in nitrification rates measured using the two inhibitors, which suggests that methyl fluoride can be used as an effective inhibitor of nitrification. Nitrification was positively correlated with sediment oxygen consumption and numbers of macrofauna. This suggests that bioturbation by macrofauna is an important control of nitrification rates. Irrigation by the tube-dwelling polychaete, Asychis elongata, which dominates the benthic biomass at this location, appears particularly important. Ammonium fluxes out of the sediment were greatest about one week after the spring bloom, while nitrification peaked about one month later.
Strauss, E.A.; Lamberti, G.A.
2002-01-01
1. Microbial decomposition of dissolved organic carbon (DOC) contributes to overall stream metabolism and can influence many processes in the nitrogen cycle, including nitrification. Little is known, however, about the relative decomposition rates of different DOC sources and their subsequent effect on nitrification. 2. In this study, labile fraction and overall microbial decomposition of DOC were measured for leaf leachates from 18 temperate forest tree species. Between 61 and 82% (mean, 75%) of the DOC was metabolized in 24 days. Significant differences among leachates were found for labile fraction rates (P < 0.0001) but not for overall rates (P = 0.088). 3. Nitrification rates in stream sediments were determined after addition of 10 mg C L-1 of each leachate. Nitrification rates ranged from below detection to 0.49 ??g N mL sediment-1 day-1 and were significantly correlated with two independent measures of leachate DOC quality, overall microbial decomposition rate (r = -0.594, P = 0.0093) and specific ultraviolet absorbance (r = 0.469, P = 0.0497). Both correlations suggest that nitrification rates were lower in the presence of higher quality carbon. 4. Nitrification rates in sediments also were measured after additions of four leachates and glucose at three carbon concentrations (10, 30, and 50 mg C L-1). For all carbon sources, nitrification rates decreased as carbon concentration increased. Glucose and white pine leachate most strongly depressed nitrification. Glucose likely increased the metabolism of heterotrophic bacteria, which then out-competed nitrifying bacteria for NH4+. White pine leachate probably increased heterotrophic metabolism and directly inhibited nitrification by allelopathy.
Strauss, E.A.; Richardson, W.B.; Bartsch, L.A.; Cavanaugh, J.C.; Bruesewitz, D.A.; Imker, H.; Heinz, J.A.; Soballe, D.M.
2004-01-01
We measured nitrification rates in sediment samples collected from a variety of aquatic habitats in Navigation Pool 8 of the Upper Mississippi River (UMR) 7 times between May 2000 and October 2001. We also conducted nutrient-enrichment experiments and analyzed vertical profiles of sediment to determine factors regulating nitrification. Nitrification rates were relatively high compared to other ecosystems (ranging from 0-8.25 ??g N cm-2 h-1) and exhibited significant temporal and spatial patterns. Nitrification rates were greatest during the summer and spring compared to autumn and winter (ANOVA, p < 0.05) and were greater in contiguous backwater and impounded habitats compared to main and side-channel habitats (p < 0.05). Regression analysis indicated that nitrification rates were weakly (r 2 = 0.18, p < 0.0001) related to temperature and exchangeable NH4+ of the sediment. However, nutrient-enrichment experiments showed that NH4+ availability did not limit nitrification in 3 sediment types with variable organic matter. Vertical profiles of sediment cores demonstrated that oxygen concentration and nitrification had similar patterns suggesting that nitrification may be limited by oxygen penetration into sediments. We conclude that temperature and sediment NH4+ can be useful for predicting broad-scale temporal and spatial nitrification patterns, respectively, but oxygen penetration into the sediments likely regulates nitrification rates in much of the UMR. Overall, we estimated that nitrification produces 6982 mt N/y of NO3- or 7% of the total annual NO3- budget.
Strauss, E.A.; Mitchell, N.L.; Lamberti, G.A.
2002-01-01
We investigated the response in nitrification to organic carbon (C) availability, the interactive effects of the C: nitrogen (N) ratio and organic N availability, and differing pH in sediments from several streams in the upper midwestern United States. In addition, we surveyed 36 streams to assess variability in sediment nitrification rates. Labile dissolved organic carbon (DOC) additions of 30 mg C??L-1 (as acetate) to stream sediments reduced nitrification rates (P < 0.003), but lower concentration additions or dilution of ambient DOC concentration had no effect on nitrification. C:N and organic N availability strongly interacted to affect nitrification (P < 0.0001), with N availability increasing nitrification most at lower C:N. Nitrification was also strongly influenced by pH (P < 0.002), with maximum rates occurring at pH 7.5. A multiple regression model developed from the stream survey consisted of five variables (stream temperature, pH, conductivity, DOC concentration, and total extractable NH4+) and explained 60% of the variation observed in nitrification. Our results suggest that nitrification is regulated by several variables, with NH4+ availability and pH being the most important. Organic C is likely important at regulating nitrification only under high environmental C:N conditions and if most available C is relatively labile.
NASA Astrophysics Data System (ADS)
Ross, D.; Bailey, S.; Shanley, J.; Fredriksen, G.; Jamison, A.
2004-05-01
Possible links have been suggested between soil nitrification rates, soil calcium concentrations and tree species composition (e.g. sugar maple). We are measuring soil nitrification rates and stream nitrate export in ten watersheds in Vermont, New Hampshire and New York. These include relatively Ca-poor sites at Cone Pond NH and Ca-rich sites at Sleepers River, VT. Our objectives are to determine the relationship between nitrification rates and watershed characteristics (e.g. vegetation, soils, topography), and to explore the link between these rates and watershed nitrate export. Net nitrification rates are highly variable both within and among the eight sites and are related to the soil C/N ratio and vegetation characteristics at some, but not all, sites. Our preliminary results show distinct differences in exchangeable Ca concentrations among watersheds. Although some locations are enriched in Ca and high in sugar maple density, we have not found a good overall relationship between Ca and net nitrification rates. High rates can be found in Ca-enriched sites that are also relatively high in pH.
Liu, Aiju; Fang, Dianmei; Wang, Chao; Li, Menghong; Young, Robert B
2015-01-01
Soils sampled from different locations of China were used to manipulate soil microbial diversity and to assess the effect of the diversity of the soil nitrifying community on the recovery of the soil nitrification to metal stress (zinc). Ten treatments were either or not amended with ZnCl2. Subsequently, a spike-on-spike assay was set up to test for the tolerance of soil nitrification to zinc (Zn) and copper (Cu). Initially, Zn amendment completely inhibited nitrification. After a year of Zn exposure, recovery of the potential nitrification rate in Zn-amended soils ranged from 28 to 126% of the potential nitrification rate in the corresponding Zn-nonamended soils. This recovery was strongly related to the potential nitrification rate before Zn amendment and soil pH. Increased Zn tolerance of the soil nitrification was consistently observed in response to corresponding soil contamination. Co-tolerance to Cu was obtained in all 1,000-mg kg(-1) Zn-amended soils. This tolerance was also strongly related to the potential nitrification rate before Zn amendment and soil pH. Our data indicate that inherently microbial activity can be a significant factor for the recovery of soil functioning derived from metal contamination.
Effect of organic loading on nitrification and denitrification in a marine sediment microcosm
Caffrey, J.M.; Sloth, N.P.; Kaspar, H.F.; Blackburn, T.H.
1993-01-01
The effects of organic additions on nitrification and denitrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control, 30 g dry weight (dw) m-2 mixed throughout the 10 cm sediment column (30 M), 100 g dw m-2 mixed throughout sediments (100M), and 100 g dw m-2 mixed into top 1 cm (100S). After the microcosms had been established for 7-11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurries. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m-2 d-1, and NO3- flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30 M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3- (40 ??M) in the overlying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3- supply for denitrification. This ratio decreased from 1.55 to 0.05 with increased organic addition.
Prehn, Jonas; Waul, Christopher K; Pedersen, Lars-Flemming; Arvin, Erik
2012-07-01
Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS's. The aim of this study was to determine the impact of hydraulic film diffusion on the nitrification rate in a submerged biofilter. Using an experimental batch reactor setup with recirculation, active nitrifying biofilter units from a RAS were exposed to a range of hydraulic flow velocities. Corresponding nitrification rates were measured following ammonium chloride, NH₄Cl, spikes and the impact of hydraulic film diffusion was quantified. The nitrification performance of the tested biofilter could be significantly increased by increasing the hydraulic flow velocity in the filter. Area based first order nitrification rate constants ranged from 0.065 m d⁻¹ to 0.192 m d⁻¹ for flow velocities between 2.5 m h⁻¹ and 40 m h⁻¹ (18 °C). This study documents that hydraulic film diffusion may have a significant impact on the nitrification rate in fixed film biofilters with geometry and hydraulic flows corresponding to our experimental RAS biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baer, Steven E.; Connelly, Tara L.; Sipler, Rachel E.; Yager, Patricia L.; Bronk, Deborah A.
2014-12-01
Biogeochemical rate processes in the Arctic are not currently well constrained, and there is very limited information on how rates may change as the region warms. Here we present data on the sensitivity of ammonium (NH4+) uptake and nitrification rates to short-term warming. Samples were collected from the Chukchi Sea off the coast of Barrow, Alaska, during winter, spring, and summer and incubated for 24 h in the dark with additions of 15NH4+ at -1.5, 6, 13, and 20°C. Rates of NH4+ uptake and nitrification were measured in conjunction with bacterial production. In all seasons, NH4+ uptake rates were highest at temperatures similar to current summertime conditions but dropped off with increased warming, indicative of psychrophilic (i.e., cold-loving) microbial communities. In contrast, nitrification rates were less sensitive to temperature and were higher in winter and spring compared to summer. These findings suggest that as the Arctic coastal ecosystem continues to warm, NH4+ assimilation may become increasingly important, relative to nitrification, although the magnitude of NH4+ assimilation would be still be lower than nitrification.
Christensson, M; Welander, T
2004-01-01
An activated sludge/biofilm hybrid process treating municipal wastewater was studied in pilot plant trials. A new type of suspended carrier, with large effective surface area, was employed in the process with the aim of enhancing nitrification. The pilot plant was operated for 1.5 years in five different configurations including pre-denitrification in all five and enhanced biological phosphorus removal in the final two. The wastewater temperature ranged between 11 degrees C and 20 degrees C, and the nominal dissolved oxygen (DO) level was 5-6 mg/L. The nitrification rate obtained on the new carrier within the hybrid stage was in the range of 0.9-1.2 g NH4-N/m2/d corresponding to a volumetric rate of 19-23 g NH4-N/m3/h (total nitrification including nitrification in the suspended solids). More than 80% of the total nitrification took place on the carrier (and the remainder in the suspended solids). The nitrification rate was shown to correlate with DO, decreasing when the DO was decreased. The results supported the idea of using the new carrier as a tool to upgrade plants not having nitrification today or improve nitrification in activated sludge processes not reaching necessary discharge levels. The large surface area present for nitrification makes it possible to obtain high nitrification rates within limited volumes. The possibility to keep the total suspended solid content low (< 3 g/L) and avoiding problems with the filament Microthrix parvicella, are other beneficial properties of the hybrid process.
Nitrification rates in a headwater stream: influences of seasonal variation in C and N supply
Olyssa S. Starry; H. Maurice Valett
2005-01-01
Nitrification, the chemoautotrophic process by which NH4-N is converted to NO,-N, is an integral biogeochemical transformation in stream ecosystems. Previous research has shown that experimental addition of dissolved organic C inhibits rates of nitrification, and that NH4
Nitrification and the ammonia-oxidizing communities in the central Baltic Sea water column
NASA Astrophysics Data System (ADS)
Jäntti, Helena; Ward, Bess B.; Dippner, Joachim W.; Hietanen, Susanna
2018-03-01
The redoxclines that form between the oxic and anoxic water layers in the central Baltic Sea are sites of intensive nitrogen cycling. To gain better understanding of nitrification, we measured the biogeochemical properties along with potential nitrification rates and analyzed the assemblages of ammonia-oxidizing bacteria and archaea using functional gene microarrays. To estimate nitrification in the entire water column, we constructed a regression model for the nitrification rates and applied it to the conditions prevailing in the area in 2008-2012. The highest ammonia oxidation rates were found in a thin layer at the top of the redoxcline and the rates quickly decreased below detection limit when oxygen was exhausted. This is probably because extensive suboxic layers, which are known to harbor pelagic nitrification, are formed only for short periods after inflows in the Baltic Sea. The nitrification rates were some of the highest measured in the water columns, but the thickness of the layer where conditions were favorable for nitrification, was very small and it remained fairly stable between years. However, the depth of the nitrification layer varied substantially between years, particularly in the eastern Gotland Basin (EGB) due to turbulence in the water column. The ammonia oxidizer communities clustered differently between the eastern and western Gotland Basin (WGB) and the composition of ammonia-oxidizing assemblages correlated with the environmental variables. The ammonia oxidizer community composition was more even in the EGB, which may be related to physical instability of the redoxcline that does not allow predominance of a single archetype, whereas in the WGB, where the position of the redoxcline is more constant, the ammonia-oxidizing community was less even. Overall the ammonia-oxidizing communities in the Baltic Sea redoxclines were very evenly distributed compared to other marine environments where microarrays have been applied previously.
Magalhães, Catarina M; Joye, Samantha B; Moreira, Rosa M; Wiebe, William J; Bordalo, Adriano A
2005-05-01
The regulatory effects of salinity and inorganic nitrogen compounds on nitrification and denitrification were studied in intertidal sandy sediments and rocky biofilms in the Douro River estuary, Portugal, over a 12-month period. Nitrification and denitrification rates were measured in slurries of field samples and enrichment experiments using the difluoromethane and the acetylene inhibition techniques, respectively. Salinity did not regulate denitrification in either environment, suggesting that halotolerant bacteria dominated the denitrifier communities. However, nitrification rates were stimulated when salinity increased from 0 to 15 practical salinity units. NO3- addition experiments revealed that NO3- availability stimulates denitrification rates in sandy sediments, but not in rocky biofilms; however, in rocky biofilms a positive and linear relationship was observed between denitrification rates and water column NO3- concentrations (r=0.92) during the monthly surveys. The N2O:N2 ratios increased rapidly when NO3- increased from 63 to 363 microM; however, results from monthly surveys showed that environmental parameters other than NO3- availability may be important in controlling the variation in N2O production via denitrification. Ammonium additions to sandy sediments stimulated nitrification rates by 35% for the 20 microM NH4+ addition, but NH4+ appeared to inhibit nitrification at high concentration addition (200 microM NH4+). In contrast, rocky biofilm nitrification was stimulated by 65% when 200 microM NH4+ was added.
Ross, D.S.; Shanley, J.B.; Campbell, J.L.; Lawrence, G.B.; Bailey, S.W.; Likens, G.E.; Wemple, B.C.; Fredriksen, G.; Jamison, A.E.
2012-01-01
Nitrogen export from small forested watersheds is known to be affected by N deposition but with high regional variability. We studied 10 headwater catchments in the northeastern United States across a gradient of N deposition (5.4 - 9.4 kg ha -1 yr -1) to determine if soil nitrification rates could explain differences in stream water NO 3 - export. Average annual export of two years (October 2002 through September 2004) varied from 0.1 kg NO 3 --N ha -1 yr -1 at Cone Pond watershed in New Hampshire to 5.1 kg ha -1 yr -1 at Buck Creek South in the western Adirondack Mountains of New York. Potential net nitrification rates and relative nitrification (fraction of inorganic N as NO 3 -) were measured in Oa or A soil horizons at 21-130 sampling points throughout each watershed. Stream NO 3 - export was positively related to nitrification rates (r 2 = 0.34, p = 0.04) and the relative nitrification (r 2 = 0.37, p = 0.04). These relationships were much improved by restricting consideration to the 6 watersheds with a higher number of rate measurements (59-130) taken in transects parallel to the streams (r 2 of 0.84 and 0.70 for the nitrification rate and relative nitrification, respectively). Potential nitrification rates were also a better predictor of NO 3 - export when data were limited to either the 6 sampling points closest to the watershed outlet (r 2 = 0.75) or sampling points <250 m from the watershed outlet (r 2 = 0.68). The basal area of conifer species at the sampling plots was negatively related to NO 3 - export. These spatial relationships found here suggest a strong influence of near-stream and near-watershed-outlet soils on measured stream NO 3 - export. Copyright 2012 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Damashek, J.; Casciotti, K. L.; Francis, C.
2015-12-01
Nitrification is the link between reduced and oxidized forms of inorganic nitrogen, and is therefore a crucial step in the estuarine nitrogen cycle. Ammonia-oxidizing microorganisms catalyze the rate-limiting step of ammonia oxidation to nitrite and thus play key roles in the biogeochemical cycling nutrient-rich estuaries. Yet, few studies have measured nitrification rates in tandem with ammonia oxidizer functional gene (amoA) expression, abundance, and diversity in estuary waters. Here, we present a multi-year data set on the microbial ecology and biogeochemistry of nitrification in the San Francisco Bay-Delta, the largest estuary on the North American west coast, collected throughout all regions of the estuary from 2012 to 2014. Data on microbial community distributions use functional gene-based PCR assays to assess the diversity, abundance, and mRNA expression of ammonia oxidizers, while stable isotope tracer experiments were used to measure nitrification rates. Ammonia-oxidizing archaea (AOA) typically outnumbered ammonia-oxidizing bacteria (AOB) throughout the sampled gradient, though the relative abundance of AOB was often greater in brackish regions. mRNA expression of amoA appeared to largely track DNA abundance, but suggested only a fraction of the ammonia-oxidizing community was typically active. AOA were always numerically dominant in the Sacramento River, where average nitrification rates were highest, suggesting the AOA communities in this river are responsible for a relatively constant nitrification hotspot. Additionally, depth profiles of nitrification rates suggested high biogeochemical activity near the sediment-water interface in samples with abnormally high turbidity, indicating similar but transient nitrification hotspots in bottom waters containing resuspended sediments. This work increases our knowledge of the ecology and dynamics of ammonia oxidizers in the San Francisco Bay-Delta, with time series data allowing for the putative identification of regions of persistent or transiently high nitrogen cycling rates.
Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine.
Fumasoli, Alexandra; Etter, Bastian; Sterkele, Bettina; Morgenroth, Eberhard; Udert, Kai M
2016-01-01
Source-separated urine contains most of the excreted nutrients, which can be recovered by using nitrification to stabilize the urine before concentrating the nutrient solution with distillation. The aim of this study was to test this process combination at pilot scale. The nitrification process was efficient in a moving bed biofilm reactor with maximal rates of 930 mg N L(-1) d(-1). Rates decreased to 120 mg N L(-1) d(-1) after switching to more concentrated urine. At high nitrification rates (640 mg N L(-1) d(-1)) and low total ammonia concentrations (1,790 mg NH4-N L(-1) in influent) distillation caused the main primary energy demand of 71 W cap(-1) (nitrification: 13 W cap(-1)) assuming a nitrogen production of 8.8 g N cap(-1) d(-1). Possible process failures include the accumulation of the nitrification intermediate nitrite and the selection of acid-tolerant ammonia-oxidizing bacteria. Especially during reactor start-up, the process must therefore be carefully supervised. The concentrate produced by the nitrification/distillation process is low in heavy metals, but high in nutrients, suggesting a good suitability as an integral fertilizer.
Ammonium Uptake by Phytoplankton Regulates Nitrification in the Sunlit Ocean
Smith, Jason M.; Chavez, Francisco P.; Francis, Christopher A.
2014-01-01
Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean’s surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L−1 d−1) to those in well-lit layers (<1 nmol L−1 d−1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean. PMID:25251022
Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean.
Smith, Jason M; Chavez, Francisco P; Francis, Christopher A
2014-01-01
Nitrification, the microbial oxidation of ammonium to nitrate, is a central part of the nitrogen cycle. In the ocean's surface layer, the process alters the distribution of inorganic nitrogen species available to phytoplankton and produces nitrous oxide. A widely held idea among oceanographers is that nitrification is inhibited by light in the ocean. However, recent evidence that the primary organisms involved in nitrification, the ammonia-oxidizing archaea (AOA), are present and active throughout the surface ocean has challenged this idea. Here we show, through field experiments coupling molecular genetic and biogeochemical approaches, that competition for ammonium with phytoplankton is the strongest regulator of nitrification in the photic zone. During multiday experiments at high irradiance a single ecotype of AOA remained active in the presence of rapidly growing phytoplankton. Over the course of this three day experiment, variability in the intensity of competition with phytoplankton caused nitrification rates to decline from those typical of the lower photic zone (60 nmol L-1 d-1) to those in well-lit layers (<1 nmol L-1 d-1). During another set of experiments, nitrification rates exhibited a diel periodicity throughout much of the photic zone, with the highest rates occurring at night when competition with phytoplankton is lowest. Together, the results of our experiments indicate that nitrification rates in the photic zone are more strongly regulated by competition with phytoplankton for ammonium than they are by light itself. This finding advances our ability to model the impact of nitrification on estimates of new primary production, and emphasizes the need to more strongly consider the effects of organismal interactions on nutrient standing stocks and biogeochemical cycling in the surface of the ocean.
Significance of archaeal nitrification in hypoxic waters of the Baltic Sea
Berg, Carlo; Vandieken, Verona; Thamdrup, Bo; Jürgens, Klaus
2015-01-01
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread, and their abundance in many terrestrial and aquatic ecosystems suggests a prominent role in nitrification. AOA also occur in high numbers in oxygen-deficient marine environments, such as the pelagic redox gradients of the central Baltic Sea; however, data on archaeal nitrification rates are scarce and little is known about the factors, for example sulfide, that regulate nitrification in this system. In the present work, we assessed the contribution of AOA to ammonia oxidation rates in Baltic deep basins and elucidated the impact of sulfide on this process. Rate measurements with 15N-labeled ammonium, CO2 dark fixation measurements and quantification of AOA by catalyzed reporter deposition–fluorescence in situ hybridization revealed that among the three investigated sites the highest potential nitrification rates (122–884 nmol l−1per day) were measured within gradients of decreasing oxygen, where thaumarchaeotal abundance was maximal (2.5–6.9 × 105 cells per ml) and CO2 fixation elevated. In the presence of the archaeal-specific inhibitor GC7, nitrification was reduced by 86–100%, confirming the assumed dominance of AOA in this process. In samples spiked with sulfide at concentrations similar to those of in situ conditions, nitrification activity was inhibited but persisted at reduced rates. This result together with the substantial nitrification potential detected in sulfidic waters suggests the tolerance of AOA to periodic mixing of anoxic and sulfidic waters. It begs the question of whether the globally distributed Thaumarchaeota respond similarly in other stratified water columns or whether the observed robustness against sulfide is a specific feature of the thaumarchaeotal subcluster present in the Baltic Deeps. PMID:25423026
Ahn, Joon Ho; Kwan, Tiffany; Chandran, Kartik
2011-04-01
The goal of this study was to compare the microbial ecology, gene expression, biokinetics, and N2O emissions from a lab-scale bioreactor operated sequentially in full-nitrification and partial-nitrification modes. Based on sequencing of 16S rRNA and ammonia monooxygenase subunit A (amoA) genes, ammonia oxidizing bacteria (AOB) populations during full- and partial-nitrification modes were distinct from one another. The concentrations of AOB (XAOB) and their respiration rates during full- and partial-nitrification modes were statistically similar, whereas the concentrations of nitrite oxidizing bacteria (XNOB) and their respiration rates declined significantly after the switch from full- to partial-nitrification. The transition from full-nitrification to partial nitrification resulted in a protracted transient spike of nitrous oxide (N2O) and nitric oxide (NO) emissions, which later stabilized. The trends in N2O and NO emissions correlated well with trends in the expression of nirK and norB genes that code for the production of these gases in AOB. Both the transient and stabilized N2O and NO emissions during partial nitrification were statistically higher than those during steady-state full-nitrification. Based on these results, partial nitrification strategies for biological nitrogen removal, although attractive for their reduced operating costs and energy demand, may need to be optimized against the higher carbon foot-print attributed to their N2O emissions.
Ammonia oxidation rates and nitrification in the Arabian Sea
NASA Astrophysics Data System (ADS)
Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.
2011-12-01
Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.
Banning, Natasha C.; Maccarone, Linda D.; Fisk, Louise M.; Murphy, Daniel V.
2015-01-01
Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0–10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10–90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils. PMID:26053257
Banning, Natasha C; Maccarone, Linda D; Fisk, Louise M; Murphy, Daniel V
2015-06-08
Ammonia-oxidising archaea (AOA) and bacteria (AOB) are responsible for the rate limiting step in nitrification; a key nitrogen (N) loss pathway in agricultural systems. Dominance of AOA relative to AOB in the amoA gene pool has been reported in many ecosystems, although their relative contributions to nitrification activity are less clear. Here we examined the distribution of AOA and AOB with depth in semi-arid agricultural soils in which soil organic matter content or pH had been altered, and related their distribution to gross nitrification rates. Soil depth had a significant effect on gene abundances, irrespective of management history. Contrary to reports of AOA dominance in soils elsewhere, AOA gene copy numbers were four-fold lower than AOB in the surface (0-10 cm). AOA gene abundance increased with depth while AOB decreased, and sub-soil abundances were approximately equal (10-90 cm). The depth profile of total archaea did not mirror that of AOA, indicating the likely presence of archaea without nitrification capacity in the surface. Gross nitrification rates declined significantly with depth and were positively correlated to AOB but negatively correlated to AOA gene abundances. We conclude that AOB are most likely responsible for regulating nitrification in these semi-arid soils.
Zhang, Manyun; Wang, Weijin; Wang, Dianjie; Heenan, Marijke; Xu, Zhihong
2018-06-17
As an anthropogenic disturbance, prescribed burning may alter the biogeochemistries of nutrients, including nitrogen (N) cycling, in forest ecosystems. This study aimed to examine the changes in N mineralization, nitrification and denitrification rates following prescribed burning in a suburban forest located in subtropical Australia and assess the interactive relationships among soil properties, functional gene abundances and N transformation rates. After a prescribed burning event, soil pH value increased, but soil labile carbon and mineral N contents decreased. Net N mineralization rates, potential nitrification rates and ammonium-oxidizing archaea and bacteria (AOA and AOB) amoA gene abundances in the soils all increased after 3 months of the prescribed burning. However, the abundances of different functional genes related to denitrification changed differently after the prescribed burning. The net N mineralization rates could be best described by soil abiotic properties, rather than functional gene abundances. In contrast, potential denitrification rates were positively related to soil nirK gene abundances. Potential nitrification rates could be influenced by both soil chemical and microbial properties. The results revealed that the prescribed burning might increase N mineralization and nitrification rates in the forest soil. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Veuger, B.; Pitcher, A.; Schouten, S.; Sinninghe Damsté, J. S.; Middelburg, J. J.
2013-03-01
Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC (dissolved inorganic carbon) in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) in combination with compound-specific stable isotope (13C) analysis of bacterial and Thaumarchaeotal lipid biomarkers. Net nitrification during the sampling period was evident from the concentration dynamics of ammonium, nitrite and nitrate. Measured nitrification rates were high (41-221 nmol N L-1 h-1). Ammonium assimilation was always substantially lower than nitrification - with nitrification on average contributing 89% (range 73-97%) to total ammonium consumption. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95 %). The inhibitor-sensitive 13C-PLFA (phospholipid-derived fatty acid) pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the nitrifying Thaumarchaeota throughout the whole sampling period, even during the peak in Thaumarchaeotal abundance and activity. This suggests that the contribution of autotrophic Thaumarchaeota to nitrification during winter in the coastal North Sea may have been smaller than expected from their gene abundance (16S rRNA and amoA (ammonia monooxygenase)). These results emphasize the importance of direct measurements of the actual activity of bacteria and Thaumarchaeota, rather than abundance measurements only, in order to elucidate their biogeochemical importance. The ratio between rates of nitrification versus DIC fixation by bacterial nitrifiers was higher or even much higher than typical values for autotrophic nitrifiers, indicating that little DIC was fixed relative to the amount of energy that was generated by nitrification.
NASA Astrophysics Data System (ADS)
Veuger, B.; Pitcher, A.; Schouten, S.; Sinninghe Damsté, J. S.; Middelburg, J. J.
2012-11-01
Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) in combination with compound-specific stable isotope (13C) analysis of bacterial- and Thaumarchaeotal lipid biomarkers. Net nitrification during the sampling period was evident from the concentration dynamics of ammonium, nitrite and nitrate. Measured nitrification rates were high (41-221 nmol N l-1h-1). Ammonium assimilation was always substantially lower than nitrification with nitrification on average contributing 89% (range 73-97%) to total ammonium consumption. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95%). The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the nitrifying Thaumarchaeota throughout the whole sampling period, even during the peak in Thaumarchaeotal abundance and activity. This suggests that the contribution of autotrophic Thaumarchaeota to nitrification during winter in the coastal North Sea may have been smaller than expected from their gene abundance. These results emphasize the importance of direct measurements of the actual activity of bacteria and Thaumarchaeota, rather than abundance measurements only, in order to elucidate their biogeochemical importance. The ratio between rates of nitrification versus DIC fixation by nitrifiers was higher or even much higher than typical values for autotrophic nitrifiers, indicating that little DIC was fixed relative to the amount of energy that was generated by nitrification.
NASA Astrophysics Data System (ADS)
Hampel, Justyna J.; McCarthy, Mark J.; Gardner, Wayne S.; Zhang, Lu; Xu, Hai; Zhu, Guangwei; Newell, Silvia E.
2018-02-01
Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms. These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium (NH4+). We measured NH4+ regeneration and potential uptake rates and total nitrification using stable-isotope techniques. Nitrification studies included abundance of the functional gene for NH4+ oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential NH4+ uptake rates ranged from 0.02 to 6.80 µmol L-1 h-1 in the light and from 0.05 to 3.33 µmol L-1 h-1 in the dark, and NH4+ regeneration rates ranged from 0.03 to 2.37 µmol L-1 h-1. Nitrification rates exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded 200 nmol L-1 d-1 and was > 1000 nmol L-1 d-1 at one station near a river discharge. AOA amoA gene copies were more abundant than AOB gene copies (p < 0.005) at all times; however, only abundance of AOB amoA (not AOA) was correlated with nitrification rates for all stations and all seasons (p < 0.005). Nitrification rates in Taihu Lake varied seasonally; at most stations, rates were highest in March, lower in June, and lowest in July, corresponding with cyanobacterial bloom progression, suggesting that nitrifiers were poor competitors for NH4+ during the bloom. Regeneration results suggested that cyanobacteria relied extensively on regenerated NH4+ to sustain the bloom. Internal NH4+ regeneration exceeded external N loading to the lake by a factor of 2 but was ultimately fueled by external N loads. Our results thus support the growing literature calling for watershed N loading reductions in concert with existing management of P loads.
NASA Astrophysics Data System (ADS)
Bartl, I.; Münster Happel, E.; Riemann, L.; Voss, M.
2016-02-01
Baltic coastal zones are among the most eutrophied in the world receiving high loads of nitrogen from riverine inputs. However, not only the loads but also the internal dynamics in coastal zones might have positive feedback on eutrophication through efficient remineralisation of organic material in the bottom water. Therefore, we studied nitrification, which is a vital remineralisation process, near the seafloor along with the community of nitrifying microorganisms. We hypothesize that a high nutrient and organic matter load leads to elevated ammonium concentrations in coastal waters and thus stimulates nitrification rates and alters the nitrifying community. Here we present results from 3 cruises combining nitrification rate measurements by 15N-incubations with sequence-based analyses of present and active nitrifiers in the bottom water of two sites in the Baltic Sea receiving different nutrient loads. The first results from the Bonus projects COCOA and BLUEPRINT indicate an increase of nitrification rates with depth as well as distance from the river mouth. In situ rates in the bottom water of the nutrient rich Vistula plume range from 53 to 197 nmol L-1 d-1 and from 10 to 646 nmol L-1 d-1 during winter and summer, respectively. In the nutrient poor Öre estuary rates increased significantly by 11 nmol L-1 d-1 from the river mouth to the outermost station. The relationship between nitrification rates, nitrifiers and trophic state of the coastal zone shall be discussed.
Neill, Christopher; Piccolo, Marisa C; Cerri, Carlos C; Steudler, Paul A; Melillo, Jerry M; Brito, Marciano
1997-04-01
Previous studies of the effect of tropical forest conversion to cattle pasture on soil N dynamics showed that rates of net N mineralization and net nitrification were lower in pastures compared with the original forest. In this study, we sought to determine the generality of these patterns by examining soil inorganic N concentrations, net mineralization and nitrification rates in 6 forests and 11 pastures 3 years old or older on ultisols and oxisols that encompassed a wide variety of soil textures and spanned a 700-km geographical range in the southwestern Brazilian Amazon Basin state of Rondônia. We sampled each site during October-November and April-May. Forest soils had higher extractable NO 3 - -N and total inorganic N concentrations than pasture soils, but substantial NO 3 - -N occurred in both forest and pasture soils. Rates of net N mineralization and net nitrification were higher in forest soils. Greater concentrations of soil organic matter in finer textured soils were associated with greater rates of net N mineralization and net nitrification, but this relationship was true only under native forest vegetation; rates were uniformly low in pastures, regardless of soil type or texture. Net N mineralization and net nitrification rates per unit of total soil organic matter showed no pattern across the different forest sites, suggesting that controls of net N mineralization may be broadly similar across a wide range of soil types. Similar reductions in rates of net N transformations in pastures 3 years old or older across a range of textures on these soils suggest that changes to soil N cycling caused by deforestation for pasture may be Basin-wide in extent. Lower net N mineralization and net nitrification rates in established pastures suggest that annual N losses from largely deforested landscapes may be lower than losses from the original forest. Total ecosystem N losses since deforestation are likely to depend on the balance between lower N loss rates from established pastures and the magnitude and duration of N losses that occur in the years immediately following forest clearing.
Fortuna, Ann-Marie; Honeycutt, C Wayne; Vandemark, George; Griffin, Timothy S; Larkin, Robert P; He, Zhongqi; Wienhold, Brian J; Sistani, Karamat R; Albrecht, Stephan L; Woodbury, Bryan L; Torbert, Henry A; Powell, J Mark; Hubbard, Robert K; Eigenberg, Roger A; Wright, Robert J; Alldredge, J Richard; Harsh, James B
2012-01-01
Soil biotic and abiotic factors strongly influence nitrogen (N) availability and increases in nitrification rates associated with the application of manure. In this study, we examine the effects of edaphic properties and a dairy (Bos taurus) slurry amendment on N availability, nitrification rates and nitrifier communities. Soils of variable texture and clay mineralogy were collected from six USDA-ARS research sites and incubated for 28 d with and without dairy slurry applied at a rate of ~300 kg N ha(-1). Periodically, subsamples were removed for analyses of 2 M KCl extractable N and nitrification potential, as well as gene copy numbers of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Spearman coefficients for nitrification potentials and AOB copy number were positively correlated with total soil C, total soil N, cation exchange capacity, and clay mineralogy in treatments with and without slurry application. Our data show that the quantity and type of clay minerals present in a soil affect nitrifier populations, nitrification rates, and the release of inorganic N. Nitrogen mineralization, nitrification potentials, and edaphic properties were positively correlated with AOB gene copy numbers. On average, AOA gene copy numbers were an order of magnitude lower than those of AOB across the six soils and did not increase with slurry application. Our research suggests that the two nitrifier communities overlap but have different optimum environmental conditions for growth and activity that are partly determined by the interaction of manure-derived ammonium with soil properties. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
[Relationship between the nitrogen removal and oxygen demand in constructed wetlands].
He, Lian-sheng; Liu, Hong-liang; Xi, Bei-dou; Zhu, Ying-bo; Wei, Zi-min; Huo, Shou-liang
2006-06-01
A simplified model of sequential N transformations and sink was applied to investigate the relationship between the nitrogen removal and oxygen demand to verify the validity of full nitrification-denitrification mechanism in a newly-built multi-stages constructed wetlands. Average net rates of N mineralization ranged from 0.01 to 0.28 g x (m2 x d)(-1), nitrification from 0.50 to 1.54 g x (m2 x d)(-1), denitrification from 0.41 to 1.13 g x (m2 x d)(-1)(3.4% approximately 35.4% of measured N removal in different stage) and plant assimilation from 0.07 to 0.26 g x (m2 x d)(-1) in the five tanks. Nitrification and denitrification occurred concurrently with BOD removal, even in the first stage receiving the higher-strength wastewater. Surprisingly, net areal nitrification rates, was correlated with BOD removal rates positively. Nitrification rates were also correlated linearly with average NH4+-N concentrations in the cascade tanks. The nitrogenous oxygen demand (NOD) required to support full nitrification of ammonia and mineralized Org-N in the wetland was in the upper range of that expected to be able to be supplied through surface and plant-mediated oxygen transfer. Some potential alternative nitrogen removal pathways with reduced overall oxygen requirements that have relevance to constructed wetlands were discussed.
Yan, Dongdong; Wang, Qiuxia; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng
2017-05-01
Chloropicrin retards the conversion of ammonia to nitrite during the nitrification process in soil. In our study, the dynamic effect of chloropicrin fumigation on soil nitrification was evaluated in five different soil types to identify relationships between soil properties and the effect of fumigation on nitrification. Chloropicrin significantly inhibited nitrification in all soils; however, the recovery of nitrification varied greatly between the soils. Following chloropicrin fumigation, nitrification recovered to the control level in all soils, except in the acidic Guangxi soil. Nitrification recovered faster in fumigated sandy loam Beijing soil than in the other four fumigated soils. Soil texture and pH were two important factors that influenced chloropicrin's inhibitory effect on nitrification. An S-shaped function was fitted to soil NO 3 - -N content to assess the nitrification recovery tendency in different soils. The time taken to reach maximum nitrification (t max ) ranged from 2.4 to 3.0 weeks in all unfumigated soils. Results demonstrated that t max was greater in all fumigated soils than in untreated soils. Correlation calculations showed that t max was strongly correlated to soil texture. The correlation analysis results indicated that the recovery rate of nitrification after chloropicrin fumigation is much faster in sandy loam soil than silty loam soil. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.
2016-03-01
Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.
Boutet, E; Baillargeon, S; Patry, B; Lessard, P
2018-01-01
A pilot study was performed to evaluate the potential of an inert self-supported immersed fixed film media to upgrade aerated lagoons. Simultaneous organic matter removal and nitrification was assessed under different loading rates and temperatures (near 0 °C) using 12 laboratory-scale reactors operated in parallel. Test results showed that both the temperature and the load have an influence on organic matter effluent concentrations. Effluent quality seemed related to the observed biofilm thickness. Thicker biofilm is believed to have contributed to biomass detachment and increased particulate organic matter concentrations in the effluent. Simultaneous organic removal and nitrification was obtained at loads above 5 g CBOD 5 /m 2 ·d. The highest nitrification rate at 0.4 °C was obtained for the smallest load, which showed a nitrification limitation close to freezing point.
Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.
2006-01-01
Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 μM) and ammonium (19 to 625 μM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02–0.28 μmol (L aquifer)−1 h−1 with in situ oxygen concentrations and up to 0.81 μmol (L aquifer)−1 h−1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.
Happel, Elisabeth; Bartl, Ines; Voss, Maren; Riemann, Lasse
2018-06-19
Nitrification is important in nitrogen (N) cycling of aquatic environments, but knowledge about its regulation and importance is sparse. Here we examined nitrification and ammonia oxidizers in the Baltic Sea. We investigated two sites with different catchment characteristics (agricultural and forest), the Bay of Gdánsk (south) and the Öre Estuary (north), and measured pelagic nitrification rates and abundance, composition, and expression of ammonia monooxygenase (amoA) genes. Highest nitrification rates were found in the nutrient rich Bay of Gdańsk. Interestingly, abundances of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were orders of magnitude lower than reported from other sites. Although AOA were most abundant at both sites, the highest expression levels were from AOB. Interestingly, few AOA and AOB taxa dominated amoA gene expression, with a Nitrosomarinus related phylotype showing widespread expression. AOA and AOB communities differed between sites and depths, respectively, with the composition in rivers being distinct. A storm event, causing an even depth distribution of nitrification and particles in the Bay of Gdańsk, indicated that the presence of particles stimulate nitrification. The study highlights coastal regions as dynamic sites of extensive pelagic nitrification, which may affect local food web dynamics and loss of N mediated by denitrification. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Bi, Qing-Fang; Chen, Qiu-Hui; Yang, Xiao-Ru; Li, Hu; Zheng, Bang-Xiao; Zhou, Wei-Wei; Liu, Xiao-Xia; Dai, Pei-Bin; Li, Ke-Jie; Lin, Xian-Yong
2017-11-07
Soil amended with single biochar or nitrogen (N) fertilizer has frequently been reported to alter soil nitrification process due to its impact on soil properties. However, little is known about the dynamic response of nitrification and ammonia-oxidizers to the combined application of biochar and N fertilizer in intensive vegetable soil. In this study, an incubation experiment was designed to evaluate the effects of biochar and N fertilizer application on soil nitrification, abundance and community shifts of ammonia-oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in Hangzhou greenhouse vegetable soil. Results showed that single application of biochar had no significant effect on soil net nitrification rates and ammonia-oxidizers. Conversely, the application of only N fertilizer and N fertilizer + biochar significantly increased net nitrification rate and the abundance of AOB rather than AOA, and only AOB abundance was significantly correlated with soil net nitrification rate. Moreover, the combined application of N fertilizer and biochar had greater effect on AOB communities than that of the only N fertilizers, and the relative abundance of 156 bp T-RF (Nitrosospira cluster 3c) decreased but 60 bp T-RF (Nitrosospira cluster 3a and cluster 0) increased to become a single predominant group. Phylogenetic analysis indicated that all the AOB sequences were grouped into Nitrosospira cluster, and most of AOA sequences were clustered within group 1.1b. We concluded that soil nitrification was stimulated by the combined application of N fertilizer and biochar via enhancing the abundance and shifting the community composition of AOB rather than AOA in intensive vegetable soil.
NASA Astrophysics Data System (ADS)
Wang, Wentao; Yu, Zhiming; Wu, Zaixing; Song, Shuqun; Song, Xiuxian; Yuan, Yongquan; Cao, Xihua
2018-07-01
Being supplied from both terrestrial inputs and internal regeneration, nitrate is usually in excess in the Changjiang River estuary (CRE) and adjacent waters (CREAW). As significant reactions in the nitrogen cycle, nitrate assimilation and nitrification rates were calculated by field incubation experiments following the isotope dilution method during June and November 2014. Besides this, distribution of other field parameters in the CREAW were also investigated. The results showed that the nitrate assimilation rates were higher in nearshore areas and lower in offshore areas. The nitrate assimilation rates were also higher during June, at 0.3-11.9 μmol L-1 d-1, whereas the rates were 0-3.2 μmol L-1 d-1 in November. The highest rate was observed in the surface water of the estuary, where the chlorophyll-a (chl-a) concentration reached 11.02 μg L-1. In addition, the phytoplankton community structure affected the nitrate assimilation rates, and dinoflagellates presented weaker nitrate assimilation abilities than those of diatoms. By contrast, the nitrification rates were higher in nearshore areas in June but higher in offshore areas in November. The nitrification rates were 0-4.1 μmol L-1 d-1 and 0-3.6 μmol L-1 d-1 in June and November, respectively. At most sites, the nitrification rates were positively correlated with the ammonium concentrations and were higher in November, which might be attributable to the higher temperature. Moreover, a theoretical calculation was used to study the regional nitrate flux throughout the vertical water column. The results showed that a gradual supplement from nitrification might replenish the nitrate consumed by assimilation far from the CRE. The overall result was that terrestrial input remained the primary source of estuarine nitrate; however, the role of internal nitrate regeneration, which would be effective for primary production in the CREAW, should also be highlighted as a source of nitrate, especially in offshore areas.
Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue
2017-01-01
The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1 h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.
Sediment nitrification and denitrification rates in a Lake Superior estuary
Microbially-mediated nitrogen (N) cycling in aquatic sediments has been recognized as an ecosystem service due to mitigation of N-transport to receiving waters. In 2011 and 2012, we compared nitrification (NIT), unamended (DeNIT) and amended (DEA) denitrification rates among spat...
A case study of nitrogen saturation in western U.S. forests
Mark E. Fenn; Mark A. Poth
2001-01-01
Virtually complete nitrification of the available ammonium in soil and nitrification activity in the forest floor are important factors predisposing forests in the San Bernardino Mountains of southern California to nitrogen (N) saturation. As a result, inorganic N in the soil solution is dominated by nitrate. High nitrification rates also generate elevated nitric oxide...
Evaluation of hybrid processes for nitrification by comparing MBBR/AS and IFAS configurations.
Germain, E; Bancroft, L; Dawson, A; Hinrichs, C; Fricker, L; Pearce, P
2007-01-01
An integrated fixed-film activated sludge (IFAS) pilot plant and a moving bed biofilm reactor coupled with an activated sludge process (MBBR/AS) were operated under different temperatures, carbon loadings and solids retention times (SRTs). These two types of hybrid systems were compared, focusing on the nitrification capacity and the nitrifiers population of the media and suspended biomass alongside other process performances such as carbonaceous and total nitrogen (TN) removal rates. At high temperatures and loadings rates, both processes were fully nitrifying and achieved similarly high carbonaceous removal rates. However, under these conditions, the IFAS configuration performed better in terms of TN removal. Lower temperatures and carbon loadings led to lower carbonaceous removal rates for the MBBR/AS configuration, whereas the IFAS configuration was not affected. However, the nitrification capacity of the IFAS process decreased significantly under these conditions and the MBBR/AS process was more robust in terms of nitrification. Ammonia oxidising bacteria (AOB) and nitrite oxidising bacteria (NOB) population counts accurately reflected the changes in nitrification capacity. However, significantly less NOBs than AOBs were observed, without noticeable nitrite accumulation, suggesting that the characterisation method used was not as sensitive for NOBs and/or that the NOBs had a higher activity than the AOBs.
Kelly, John J; Policht, Katherine; Grancharova, Tanya; Hundal, Lakhwinder S
2011-09-01
The recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically digested biosolids or synthetic fertilizer was applied annually for three consecutive years to field plots used for corn production. Biosolids were applied at two loading rates, a typical agronomic rate (27 Mg hectare(-1) year(-1)) and double the agronomic rate (54 Mg hectare(-1) year(-1)), while synthetic fertilizer was applied at an agronomic rate typical for the region (291 kg N hectare(-1) year(-1)). Both biosolids amendments and synthetic fertilizer increased soil N and corn yield, but only the biosolids amendments resulted in significant increases in nitrification rates and increases in the copy numbers of archaeal and bacterial amoA genes. In addition, only archaeal amoA gene copy numbers increased in response to biosolids applied at the typical agronomic rate and showed a significant correlation with nitrification rates. Finally, copy numbers of archaeal amoA genes were significantly higher than copy numbers of bacterial amoA genes for all treatments. These results implicate AOA as being primarily responsible for the increased nitrification observed in an agricultural soil amended with biosolids. These results also support the hypothesis that physiological differences between AOA and AOB may enable them to occupy distinct ecological niches.
Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.
2016-01-01
Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.
Effectiveness of Nitrification Inhibition on Various Species of Brachiaria Grass Rhizosphere
NASA Astrophysics Data System (ADS)
Purwanto; Supriyadi; Hindrayani, Aniek
2018-02-01
Nitrification has the potential to decrease the efficiency of nitrogen utilization by plants. The use of nitrifying inhibitory chemicals proved to be effective in controlling nitrification, but also affects beneficial soil microbes. Another attempt to inhibit the more environmentally-friendly nitrification is to use plants that have allelochemical nitrification inhibiting compounds such as the grasses of Brachiaria. The aim of this research is to know the effectivity of B.mutica, B.decumbens, and B.humidicola as inhibitors of nitrification rate in soil. The experiment was carried out by pot experimental method based on nondestructive sampling and Complete Randomized Design, consisting of Brachiaria plant types and various doses of N fertilizer, 100 kg/ha, 150 kg/ha, 200 kg/ha. The results of this study show that 1) B.mutica, B.decumbens, and B.humidicola, highly significant to the soil potential nitrification, but the treatment of various doses of N fertilizer is not significant to the soil potential nitrification. 2) the highest soil potential nitrification in B.mutica rhizosphere was 5.160 mg NO2-/g of soil/5h, while the lowest soil potential nitrification in the rhizosphere of B.humidicola plant was 0.414 mg NO2-/g/5h. 3) From the four treatment of Brachiaria plants can be concluded B.humidicola plant more effective in inhibition of nitrification.
Wang, Qing; Zhang, Li-Mei; Shen, Ju-Pei; Du, Shuai; Han, Li-Li; He, Ji-Zheng
2016-11-01
Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are crucial for N 2 O emission as they carry out the key step of nitrification. Dicyandiamide (DCD) and acetylene (C 2 H 2 ) are typical nitrification inhibitors (NIs), while the comparative effects of these NIs on N 2 O production and ammonia oxidizers' (AOB and AOA) growth are unclear. Four treatments including a control, urea, urea + DCD, and urea + C 2 H 2 were set up to investigate their effect of inhibiting soil nitrification, nitrification-related N 2 O emission as well as the growth of ammonia oxidizers with a fluvo-aquic soil using microcosms for 28 days. N 2 O emission and net nitrification rate increased after the application of urea, but were significantly restrained in urea + NI treatments, while C 2 H 2 was more effective in reducing N 2 O emission and nitrification rate than DCD. The abundance of AOB, which was significantly correlated with N 2 O emission and net nitrification rate, was more inhibited by C 2 H 2 than DCD. Furthermore, the application of urea in all the soils had little impact on the AOA community, while obvious shifts of AOB community structure were found compared with the control. All AOB sequences fell within Nitrosospira cluster 3, and the AOA community was clustered to group 1.1b. Collectively, it indicated that application of urea combined with NIs (DCD or C 2 H 2 ) could potentially alter N 2 O emission, mainly through regulating the growth of AOB but not AOA in this fluvo-aquic soil.
Gaseous nitrogen losses from a forest site in the North Tyrolean Limestone Alps.
Härtel, Elisabeth; Zechmeister-Boltenstern, Sophie; Gerzabck, Martin
2002-01-01
Microorganisms are responsible for the mineralisation of organic nitrogen in soils. NH4+ can be further oxidised to NO3- during nitrification and NO3- can be reduced to gaseous nitrogen compounds during denitrification. During both processes, nitrous oxide (N2O), which is known as greenhouse gas, can be lost from the ecosystem. The aim of this study was to quantify N2O emissions and the internal microbial N cycle including net N mineralisation and net nitrification in a montane forest ecosystem in the North Tyrolean Limestone Alps during an 18-month measurement period and to estimate the importance of these fluxes in comparison with other components of the N cycle. Gas samples were taken every 2 weeks using the closed chamber method. Additionally, CO2 emission rates were measured to estimate soil respiration activity. Net mineralisation and net nitrification rates were determined by the buried bag method every month. Ion exchange resin bags were used to determine the N availability in the root zone. Mean N2O emission rate was 0.9 kg N ha(-1) a(-1), which corresponds to 5% of the N deposited in the forest ecosystem. The main influencing factors were air and soil temperature and NO3- accumulated on the ion exchange resin bags. In the course of net ammonification, 14 kg NH4+-N ha(-1) were produced per year. About the same amount of NO3--N was formed during nitrification, indicating a rather complete nitrification going on at the site. NO3- concentrations found on the ion exchange resin bags were about 3 times as high as NO3- produced during net nitrification, indicating substantial NO3- immobilisation. The results of this study indicate significant nitrification activities taking place at the Mühleggerköpfl.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanotti, M.B.; Hunt, P.G.
2000-04-01
Nitrification of ammonia (NH{sub 4}{sup +}) is a critical component for improved systems of animal wastewater treatment. One of the most effective processes uses nitrifying microorganisms encapsulated in polymer resins. It is used in Japan in municipal wastewater treatment plants for higher nitrification rates, shorter hydraulic retention times (HRT), and lower aeration treatment cost. The authors evaluated whether this technology could be adapted for treatment of higher-strength lagoon swine wastewaters containing {approximately}230 mg NH{sub 4}-N/L and 195 mg BOD{sub 5}/L. A culture of acclimated lagoon nitrifying sludge (ALNS) was prepared from a nitrifying biofilm developed in an overland flow soilmore » using fill-and-draw cultivation. The ALNS was successfully immobilized in 3- to 5-mm polyvinyl alcohol (PVA) polymer pellets by a PVA-freezing method. Swine wastewater was treated in aerated, suspended bioreactors with a 15% (w/v) pellet concentration using batch and continuous flow treatment. Alkalinity was supplemented with inorganic carbon to maintain the liquid pH within an optimum range (7.7--8.4). In batch treatment, only 14 h were needed for nitrification of NH{sub 4}{sup +}. Ammonia was nitrified readily, decreasing at a rate of 16.1 mg NH{sub 4}-N/L h. In contrast, it took 10 d for a control (no-pellets) aerated reactor to start nitrification; furthermore, 70% of the N was lost by air stripping. Without alkalinity supplements, the pH of the liquid fell to 6.0--6.2, and NH{sub 4}{sup +} oxidation stopped. In continuous flow treatment, nitrification efficiencies of 95% were obtained with NH{sub 4}{sup +} loading rates of 418 mg-N/L-reactor d (2.73 g-N/g-pellet d) and an HRT of 12 h. The rate of nitrification obtained with HRT of 4 h was 567 mg-N/L d. In all cases, the NH{sub 4}-N removed was entirely recovered in oxidized N forms. Nitrification rates obtained in this work were not greatly affected by high NH{sub 4}{sup +} or BOD concentration of swine wastewater. Thus, immobilized pellet technology can be adapted for fast and efficient removal of NH{sub 4}{sup +} contained in anaerobic swine lagoons using acclimated microorganisms.« less
Warming and drought reduce temperature sensitivity of nitrogen transformations.
Novem Auyeung, Dolaporn S; Suseela, Vidya; Dukes, Jeffrey S
2013-02-01
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single-factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old-field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze-thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming-induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant-available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change. © 2012 Blackwell Publishing Ltd.
Young, Bradley; Delatolla, Robert; Ren, Baisha; Kennedy, Kevin; Laflamme, Edith; Stintzi, Alain
2016-08-01
Pilot-scale moving bed biofilm reactor (MBBR) is used to investigate the kinetics and biofilm response of municipal, tertiary nitrification at 1°C. The research demonstrates that significant rates of tertiary MBBR nitrification are attainable and stable for extended periods of operation at 1°C, with a maximum removal rate of 230 gN/m(3) d at 1°C. At conventional nitrogen loading rates, low ammonia effluent concentrations below 5 mg-N/L were achieved at 1°C. The biofilm thickness and dry weight biofilm mass (massdw) were shown to be stable, with thickness values showing a correlation to the protein/polysaccharide ratio of the biofilm extracellular polymeric substances. Lastly, tertiary MBBR nitrification is shown to increase the effluent suspended solids concentrations by approximately 3 mg total suspended solids /L, with 19-60% of effluent solids being removed after 30 min of settling. The settleability of the effluent solids was shown to be correlated to the nitrogen loading of the MBBR system.
He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue
2017-01-01
The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626
NASA Astrophysics Data System (ADS)
Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.
2015-12-01
The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.
Kelly, John J.; Policht, Katherine; Grancharova, Tanya; Hundal, Lakhwinder S.
2011-01-01
The recently discovered ammonia-oxidizing archaea (AOA) have been suggested as contributors to the first step of nitrification in terrestrial ecosystems, a role that was previously assigned exclusively to ammonia-oxidizing bacteria (AOB). The current study assessed the effects of agricultural management, specifically amendment of soil with biosolids or synthetic fertilizer, on nitrification rates and copy numbers of archaeal and bacterial ammonia monooxygenase (amoA) genes. Anaerobically digested biosolids or synthetic fertilizer was applied annually for three consecutive years to field plots used for corn production. Biosolids were applied at two loading rates, a typical agronomic rate (27 Mg hectare−1 year−1) and double the agronomic rate (54 Mg hectare−1 year−1), while synthetic fertilizer was applied at an agronomic rate typical for the region (291 kg N hectare−1 year−1). Both biosolids amendments and synthetic fertilizer increased soil N and corn yield, but only the biosolids amendments resulted in significant increases in nitrification rates and increases in the copy numbers of archaeal and bacterial amoA genes. In addition, only archaeal amoA gene copy numbers increased in response to biosolids applied at the typical agronomic rate and showed a significant correlation with nitrification rates. Finally, copy numbers of archaeal amoA genes were significantly higher than copy numbers of bacterial amoA genes for all treatments. These results implicate AOA as being primarily responsible for the increased nitrification observed in an agricultural soil amended with biosolids. These results also support the hypothesis that physiological differences between AOA and AOB may enable them to occupy distinct ecological niches. PMID:21803892
Burns, Douglas A.; Murdoch, Peter S.
2005-01-01
The Catskill Mountains of southeastern New York receive among the highest rates of atmospheric nitrogen (N) deposition in eastern North America, and ecosystems in the region may be sensitive to human disturbances that affect the N cycle. We studied the effects of a clearcut in a northern hardwood forest within a 24-ha Catskill watershed on the net rates of N mineralization and nitrification in soil plots during 6 years (1994-1999) that encompassed 3-year pre- and post-harvesting periods. Despite stream NO3- concentrations that increased by more than 1400 ??mol l-1 within 5 months after the clearcut, and three measures of NO3- availability in soil that increased 6- to 8-fold during the 1st year after harvest, the net rates of N mineralization and nitrification as measured by in situ incubation in the soil remained unchanged. The net N-mineralization rate in O-horizon soil was 1- 2 mg N kg-1 day-1 and the net nitrification rate was about 1 mg N kg-1 day-1, and rates in B-horizon soil were only one-fifth to one-tenth those of the O-horizon. These rates were obtained in single 625 m2 plots in the clearcut watershed and reference area, and were confirmed by rate measurements at 6 plots in 1999 that showed little difference in N-mineralization and nitrification rates between the treatment and reference areas. Soil temperature increased 1 ?? 0.8??C in a clearcut study plot relative to a reference plot during the post-harvest period, and soil moisture in the clearcut plot was indistinguishable from that in the reference plot. These results are contrary to the initial hypothesis that the clearcut would cause net rates of these N-cycling processes to increase sharply. The in situ incubation method used in this study isolated the samples from ambient roots and thereby prevented plant N uptake; therefore, the increases in stream NO3- concentrations and export following harvest largely reflect diminished uptake. Changes in temperature and moisture after the clearcut were insufficient to measurably affect the net rates of N mineralization and nitrification in the absence of plant uptake. Soil acidification resulting from the harvest may have acted in part to inhibit the rates of these processes. ?? Springer 2005.
Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Zhen; Wan, Xianhui; Xu, Min Nina; Hsiao, Silver Sung-Yun; Zhang, Yao; Zheng, Li-Wei; Wu, Yanhua; Zou, Wenbin; Kao, Shuh-Ji
2017-09-01
Despite being the only link between reduced and oxidized nitrogen, the impact of environmental factors on nitrification, temperature and particles, in particular, remains unclear for coastal zones. By using the 15NH4+-labeling technique, we determined nitrification rates in bulk (NTRB) and free-living (NTRF, after removing particles >3 μm) for water samples with varying particle concentrations (as sampled at different tidal stages) during autumn, winter, and summer in a eutrophic coastal bay in southern China. The highest NTRB occurred in autumn, when particle concentrations were highest. In general, particle-associated nitrification rates (NTRP, >3 μm) were higher than NTRF and increased with particle abundance. Regardless of seasonally distinctive temperature and particle concentrations, nitrification exhibited consistent temperature dependence in all cases (including bulk, particle-associated, and free-living) with a
Mertoglu, Bulent; Calli, Baris; Girgin, Emine; Inanc, Bulent; Ozturk, Izzet
2005-01-01
In this study, nitrification performances and composition of nitrifying populations in a full-scale oxidation ditch and a high-rate submerged media nitrification biofilter were comparatively analyzed. In addition to different reactor configurations, effects of differing operational conditions on the nitrification efficiency and bacterial diversity were also explored and evaluated thoroughly. In microbial analysis of sludge samples fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques were used complementary to each other. The extended aeration oxidation ditch subjected to the study is operated as a nitrogen and phosphorus removal system consisting of anaerobic, anoxic, and aerobic zones. The high-rate submerged media aerated filter is operated as nitrification step following the conventional activated sludge unit and the nitrified wastewater is discharged to the sea without complete nitrogen removal. In situ hybridization results have indicated that Nitrosomonas-like ammonia oxidizing and Nitrospira-related nitrite oxidizing bacteria were intensively present in vigorous flocs in nitrification biofilter while carbonaceous bacteria belong to beta subclass of Proteobacteria were considerably dominant in oxidation ditch. Low quantities of nitrifiers in oxidation ditch were also confirmed by the dissimilarity in intensive bands between two systems obtained with DGGE analysis.
Brockmann, D; Morgenroth, E
2010-03-01
In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers. Copyright 2009 Elsevier Ltd. All rights reserved.
Yang, Jeongwoo; Tezel, Ulas; Li, Kexun; Pavlostathis, Spyros G
2015-03-01
The combined effect of benzalkonium chloride (BAC) and prolonged exposure to low temperature on nitrification was investigated. Ammonia oxidation at 22-24°C by an enriched nitrifying culture was inhibited at increasing BAC concentrations and ceased at 15 mg BAC/L. The non-competitive inhibition coefficient was 1.5±0.9 mg BAC/L. Nitrification tests were conducted without and with BAC at 5mg/L using an aerobic, mixed heterotrophic/nitrifying culture maintained at a temperature range of 24-10°C. Maintaining this culture at 10°C for over one month in the absence of BAC, resulted in slower nitrification kinetics compared to those measured when the culture was first exposed to 10°C. BAC was degraded by the heterotrophic population, but its degradation rate decreased significantly as the culture temperature decreased to 10°C. These results confirm the negative impact of quaternary ammonium compounds on the nitrification process, which is further exacerbated by prolonged, low temperature conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sheibley, R.W.; Jackman, A.P.; Duff, J.H.; Triska, F.J.
2003-01-01
Nitrification and denitrification kinetics in sediment perfusion cores were numerically modeled and compared to experiments on cores from the Shingobee River MN, USA. The experimental design incorporated mixing groundwater discharge with stream water penetration into the cores, which provided a well-defined, one-dimensional simulation of in situ hydrologic conditions. Ammonium (NH+4) and nitrate (NO-3) concentration gradients suggested the upper region of the cores supported coupled nitrification-denitrification, where groundwater-derived NH+4 was first oxidized to NO-3 then subsequently reduced via denitrification to N2. Nitrification and denitrification were modeled using a Crank-Nicolson finite difference approximation to a one-dimensional advection-dispersion equation. Both processes were modeled using first-order reaction kinetics because substrate concentrations (NH+4 and NO-3) were much smaller than published Michaelis constants. Rate coefficients for nitrification and denitrification ranged from 0.2 to 15.8 h-1 and 0.02 to 8.0 h-1, respectively. The rate constants followed an Arrhenius relationship between 7.5 and 22 ??C. Activation energies for nitrification and denitrification were 162 and 97.3 kJ/mol, respectively. Seasonal NH+4 concentration patterns in the Shingobee River were accurately simulated from the relationship between perfusion core temperature and NH+4 flux to the overlying water. The simulations suggest that NH+4 in groundwater discharge is controlled by sediment nitrification that, consistent with its activation energy, is strongly temperature dependent. ?? 2003 Elsevier Ltd. All rights reserved.
Overbank flooding is thought to be a critical process controlling nitrogen retention and cycling. In this study we investigated the effects of season and flood frequency on soil nitrification rates at ten sites in forested floodplains of Upper Mississippi River, Pool 8...A rough ...
Zheng, Xiao-Ying; Lu, Dan; Wang, Ming-Yang; Chen, Wei; Zhou, Gan; Zhang, Yuan
2017-06-12
The frequent appearance of Cr(VI) significantly impacts the microbial metabolism in wastewater. In this study, long-term effects of Cr(VI) on microbial community, nitrogen removal pathways and mechanism of aerobic granular sludge (AGS) were investigated. AGS had strong resistance ability to 1.0 mg/L Cr(VI). 3.0 mg/L Cr(VI) increased the heterotrophic-specific ammonia uptake rate (HSAUR) and heterotrophic-specific nitrate uptake rate (HSNUR) transiently, whereas 5.0 mg/L Cr(VI) sharply decreased the specific ammonia uptake rate (SAUR), specific nitrate uptake rate (SNUR) and simultaneous nitrification denitrification rate (SNDR). It was found that Cr (VI) has a greater inhibitory effect on autotrophic nitrification (ASAUR), and the maximal inhibition rate (IR) was 139.19%. Besides, the inhibition of Cr (VI) on nitrogen removal process belongs to non-competitive inhibition. Cr(VI) had a weaker negative impact on heterotrophic bacteria compared with that on autotrophic bacteria. Denaturing gradient gel electrophoresis analyses suggest that Acidovorax sp., flavobacterium sp., uncultured soil bacterium, uncultured nitrosospira sp., uncultured prokaryote, uncultured β-proteobacterium and uncultured pseudomonas sp. were the dominant species. The inhibition of Cr(VI) on nitrite-oxidizing bacteria was the strongest, followed by ammonia-oxidizing bacteria and denitrifying bacteria. Linear correlations between bacterial count and biomass-specific uptake rate were observed when the Cr(VI) concentration exceeded 3 mg/L. This study revealed the effect of Cr(VI) on nitrification is more serious than that on denitrification. Autotrophic and heterotrophic nitrification, heterotrophic denitrification and simultaneous nitrification denitrification played a significant role on nitrogen removal under Cr(VI) stress.
Enriched groundwater seeps in two Vermont headwater catchments are hotspots of nitrate turnover
Kaur, Amninder J.; Ross, Donald S.; Shanley, James B.; Yatzor, Anna R.
2016-01-01
Groundwater seeps in upland catchments are often enriched relative to stream waters, higher in pH, Ca2+ and sometimes NO3¯. These seeps could be a NO3¯ sink because of increased denitrification potential but may also be ‘hotspots’ for nitrification because of the relative enrichment. We compared seep soils with nearby well-drained soils in two upland forested watersheds in Vermont that are sites of ongoing biogeochemical studies. Gross N transformation rates were measured over three years along with denitrification rates in the third year. Gross ammonification rates were not different between the seep and upland soils but gross nitrification rates were about 3 × higher in the seep soils. Net nitrification rates trended higher in the upland soils and NO3¯ consumption (gross—net) was 8 times higher in the seep soils. The average denitrification rate for seep soils was about equal to the difference in NO3¯ consumption between seep and upland soils, suggesting denitrification can make up the difference. Temporal variation in seep water NO3¯ concentration was correlated with watershed outlet NO3¯ concentration. However, it is not clear that in-seep processes greatly altered seep water NO3¯ contribution to the streams. Seep soils appear to be hotspots of both nitrification and denitrification.
Weon, S Y; Lee, S I; Koopman, B
2004-11-01
Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.
The inhibition of marine nitrification by ocean disposal of carbon dioxide.
Huesemann, Michael H; Skillman, Ann D; Crecelius, Eric A
2002-02-01
In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.
Alves, Ricardo J Eloy; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M; Schleper, Christa; Urich, Tim
2013-01-01
The functioning of Arctic soil ecosystems is crucially important for global climate, and basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and its availability is strongly dependent on nitrification. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils were analyzed through a polyphasic approach, integrating determination of gross nitrification rates, qualitative and quantitative marker gene analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils and outnumbered AOB in four of the remaining six soils. The AOA identified showed great phylogenetic diversity and a multifactorial association with the soil properties, reflecting an overall distribution associated with tundra type and with several physico-chemical parameters combined. Remarkably, the different gross nitrification rates between soils were associated with five distinct AOA clades, representing the great majority of known AOA diversity in soils, which suggests differences in their nitrifying potential. This was supported by selective enrichment of two of these clades in cultures with different NH3 oxidation rates. In addition, the enrichments provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota–AOA lineage. Our results indicate that AOA are functionally heterogeneous and that the selection of distinct AOA populations by the environment can be a determinant for nitrification activity and N availability in soils. PMID:23466705
Fiona L. Jordan; J. Jason L. Cantera; Mark E. Fenn; Lisa Y. Stein
2005-01-01
Deposition rates of atmospheric nitrogenous pollutants to forests in the San Bernardino Mountains range east of Los Angeles, California, are the highest reported in North America. Acidic soils from the west end of the range are N-saturated and have elevated rates of N-mineralization, nitrification, and nitrate leaching. We assessed the impact of this heavy nitrogen...
One-day rate measurements for estimating net nitrification potential in humid forest soils
Ross, D.S.; Fredriksen, G.; Jamison, A.E.; Wemple, B.C.; Bailey, S.W.; Shanley, J.B.; Lawrence, G.B.
2006-01-01
Measurements of net nitrification rates in forest soils have usually been performed by extended sample incubation (2-8 weeks), either in the field or in the lab. Because of disturbance effects, these measurements are only estimates of nitrification potential and shorter incubations may suffice. In three separate studies of northeastern USA forest soil surface horizons, we found that laboratory nitrification rates measured over 1 day related well to those measured over 4 weeks. Soil samples of Oa or A horizons were mixed by hand and the initial extraction of subsamples, using 2 mol L-1 KCl, occurred in the field as soon as feasible after sampling. Soils were kept near field temperature and subsampled again the following day in the laboratory. Rates measured by this method were about three times higher than the 4-week rates. Variability in measured rates was similar over either incubation period. Because NO3- concentrations were usually quite low in the field, average rates from 10 research watersheds could be estimated with only a single, 1-day extraction. Methodological studies showed that the concentration of NH4+ increased slowly during contact time with the KCl extractant and, thus, this contact time should be kept similar during the procedure. This method allows a large number of samples to be rapidly assessed. ?? 2006 Elsevier B.V. All rights reserved.
[Quick Start-up and Sustaining of Shortcut Nitrification in Continuous Flow Reactor].
Wu, Peng; Zhang Shi-ying; Song, Yin-ling; Xu, Yue-zhong; Shen, Yao-liang
2016-04-15
How to achieve fast and stable startup of shortcut nitrification has a very important practical value for treatment of low C/N ratio wastewater. Thus, the quick start-up and sustaining of shortcut nitrification were investigated in continuous flow reactor targeting at the current situation of urban wastewater treatment plant using a continuous flow process. The results showed that quick start-up of shortcut nitrification could be successfully achieved in a continuous flow reactor after 60 days' operation with intermittent aeration and controlling of three stages of stop/aeration time (15 min/45 min, 45 min/45 min and 30 min/30 min). The nitrification rates could reach 90% or 95% respectively, while influent ammonia concentrations were 50 or 100 mg · L⁻¹ with stop/aeration time of 30 min/30 min. In addition, intermittent aeration could inhibit the activity of nitrite oxidizing bacteria (NOB), while short hydraulic retention time (HRT) may wash out NOB. And a combined use of both measures was beneficial to sustain shortcut nitrification.
Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen
2016-05-15
Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent concentrations of below 0.01 mg NH4-N L(-1), and had a long-term effect on nitrification performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza
2015-01-01
A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.
de Vet, W W J M; Kleerebezem, R; van der Wielen, P W J J; Rietveld, L C; van Loosdrecht, M C M
2011-07-01
In groundwater treatment for drinking water production, the causes of nitrification problems and the effectiveness of process optimization in rapid sand filters are often not clear. To assess both issues, the performance of a full-scale groundwater filter with nitrification problems and another filter with complete nitrification and pretreatment by subsurface aeration was monitored over nine months. Quantitative real-time polymerase chain reaction (qPCR) targeting the amoA gene of bacteria and archaea and activity measurements of ammonia oxidation were used to regularly evaluate water and filter sand samples. Results demonstrated that subsurface aeration stimulated the growth of ammonia-oxidizing prokaryotes (AOP) in the aquifer. Cell balances, using qPCR counts of AOP for each filter, showed that the inoculated AOP numbers from the aquifer were marginal compared with AOP numbers detected in the filter. Excessive washout of AOP was not observed and did not cause the nitrification problems. Ammonia-oxidizing archaea grew in both filters, but only in low numbers compared to bacteria. The cell-specific nitrification rate in the sand and backwash water samples was high for the subsurface aerated filter, but systematically much lower for the filter with nitrification problems. From this, we conclude that incomplete nitrification was caused by nutrient limitation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sun, Xiaojie; Zhang, Hongxia; Cheng, Zhaowen
2017-08-01
High concentrations of nitrate-nitrogen (NO 3 - -N) derived from ex situ nitrification phase can inhibit methane production during ex situ nitrification and in situ denitrification bioreactor landfill. A combined process comprised of ex situ simultaneous nitrification-denitrification (SND) in an aged refuse bioreactor (ARB) and in situ denitrification in a fresh refuse bioreactor (FRB) was conducted to reduce the negative effect of high concentrationsof NO 3 - -N. Ex situ SND can be achieved because NO 3 - -N concentration can be reduced and the removal rate of ammonium-nitrogen (NH 4 + -N) remains largely unchanged when the ventilation rate of ARB-A2 is controlled. The average NO 3 - -N concentrations of effluent were 470mg/L in ex situ nitrification ARB-A1 and 186mg/L in ex situ SND ARB-A2. The average NH 4 + -N removal rates of ARB-A1 and ARB-A2 were 98% and 94%, respectively. Based on the experimental data from week 4 to week 30, it is predicted that NH 4 + -N concentration in FRB-F1 of the ex situ nitrification and in situ denitrification process would reach 25mg/L after 63weeks, and about 40weeks for the FRB-F2 of ex situ SND and in situ denitrification process . Ex situ SND and in situ denitrification process can improve themethane production of FRB-F2. The lag phase time of methane production for the FRB-F2 was 11weeks. This phase was significantly shorter than the 15-week phases of FRB-F1 in ex situ nitrification and in situ denitrification process. A seven-week stabilizationphase was required to increase methane content from 5% to 50% for FRB-F2. Methane content in FRB-F1 did not reach 50% but reached the 45% peak after 20weeks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Potential nitrification in alum-treated soil slurries amended with poultry manure.
Gandhapudi, S K; Coyne, M S; D'Angelo, E M; Matocha, C
2006-03-01
Alum is used to reduce environmental pollutants in poultry production. Alum decreases NH3 volatilization and increases total N and NH4+-N compared to untreated poultry manure. Nitrification in poultry wastes could therefore be stimulated due to higher NH4+ concentrations or could be inhibited because the soil environment is acidified. A 10-day laboratory study was conducted to study potential nitrification rates in soil slurries (20 g soil in 150 ml water) amended with 2.0 g alum-treated poultry manure. Fecal bacteria, NH4+, NO2-, NO3-, orthophosphate, pH, and NH3 were measured at 2-day intervals. Alum significantly reduced fecal bacteria concentrations through day 6. Water-soluble P was reduced 82% by day 10. Alum-treated manure had significantly increased NH4+ concentrations by day 8 and 10, and significantly decreased NO2- and NO3- concentrations by days 6-10. Alum's effect on potential nitrification was inhibitory in the soil environment. Slurries with alum-treated poultry manure had reduced nitrification rates, fecal bacteria, and soluble P. Therefore, in addition to reducing P loss, alum could temporarily reduce the risk for environmental pollution from land-applied manures in terms of both NO3- and fecal bacteria loss.
[Effect of prescribed burning on grassland nitrogen gross mineralization and nitrification].
Li, Yuzhong; Zhu, Tingcheng; Li, Jiandong; Zhou, Daowei
2003-02-01
The seasonal dynamics of nitrogen gross mineralization, nitrification, and mineral nitrogen consumption rates in burned and unburned Leymus chinensis grasslands were studied with 15N pool dilution technique. The results indicated that the gross mineralization and nitrification rates in burned area were higher than those in unburned area in April and May, and lower than those in unburned area in September. NH4(+)-N consumption rates were higher than unburned area in April and May, and lower in September. NO3(-)-N consumption rates were higher than control in April and May, and lower than control in July and September. The NH4(+)-N concentrations were higher in burned area in April, May and July, and no difference in September. NO3(-)-N concentrations were no difference between burned and unburned areas in April and May, and higher in burned areas in July and September.
Nitrous Oxide Production in the Eastern Tropical South Pacific Upwelling Zone
NASA Astrophysics Data System (ADS)
Ji, Q.; Babbin, A. R.; Ward, B. B.
2014-12-01
The Eastern Tropical South Pacific upwelling zone, where low to undetectable oxygen concentrations exist in the water column, is a region of intense nitrous oxide (N2O) production in the ocean. N2O production is generally attributed to nitrification and denitrification in oxic and anoxic waters, respectively, with overlap under suboxic conditions. Seawater samples from different depths and in situ oxygen concentrations were incubated with 15N tracer labeled substrates (NH4+, NO2- and NO3-) to measure potential N2O production rates. These rates were used to determine contributions of nitrification and denitrification to total N2O production. N2O reached maximum concentrations at the base of oxycline just above the oxygen deficient zone (ODZ) and nitrification was the major production pathway. The N2O yield from nitrification, i.e., the ratio of N2O to NO2- production from NH4+, increased from ~0.04% to ~1% as oxygen concentration decreased from 100% to ~1% saturation. This relationship is consistent with culture studies showing increased N2O yield from nitrification at low oxygen; and thus with high N2O production rate from nitrification in the oxycline. N2O production from NO3- was detected at the base of oxycline. Highest N2O production rates (up to 10 nM d-1) were detected at the top of the ODZ, with denitrification as the major pathway. At the secondary nitrite maximum within the core of the ODZ, rates of N2O production from denitrification were relatively high despite low N2O concentration, suggesting N2O reduction to N2 must be co-occurring. This implies rapid N2O turnover by denitrification within the ODZ and a close coupling between production and consumption. These results indicate that oxygen concentrations greatly influence both the magnitude of N2O production and the relative contributions of nitrification and denitrification. Because most N2O production occurred in the oxycline and in the uppermost layer of the ODZ, anticipated spatial expansion of these zones could increase the extent of N2O production and the marine N2O efflux to the atmosphere.
Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In
2015-10-01
Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.
Chang, Yongkai; Fan, Jingfeng; Su, Jie; Ming, Hongxia; Zhao, Wen; Shi, Yan; Ji, Fengyun; Guo, Limei; Zan, Shuaijun; Li, Bochao; Guo, Hao; Guan, Daoming
2017-05-01
Ammonia-oxidizing bacteria (AOB) play an important role in nitrification in estuaries. The aim of this study was to examine the spatial abundance, diversity, and activity of AOB in coastal sediments of the Liaohe Estuary using quantitative PCR, high-throughput sequencing of the amoA gene coding the ammonia monooxygenase enzyme active subunit, and sediment slurry incubation experiments. AOB abundance ranged from 8.54 × 10 4 to 5.85 × 10 6 copies g -1 of wet sediment weight and exhibited an increasing trend from the Liaohe Estuary to the open coastal zone. Potential nitrification rates (PNRs) ranged from 0.1 to 336.8 nmol N g -1 day -1 along the estuary to the coastal zone. Log AOB abundance and PNRs were significantly positively correlated. AOB richness decreased from the estuary to the coastal zone. High-throughput sequencing analysis indicated that the majority of amoA gene sequences fell within the Nitrosomonas and Nitrosomonas-like clade, and only a few sequences were clustered within the Nitrosospira clade. This finding indicates that the Nitrosomonas-related lineage may be more adaptable to the specific conditions in this estuary than the Nitrosospira lineage. Sites with high nitrification rates were located in the southern open region and were dominated by the Nitrosomonas-like lineage, whereas the Nitrosospira lineage was found primarily in the northern estuary mouth sites with low nitrification rates. Thus, nitrification potentials in Liaohe estuarine sediments in the southern open region were greater than those in the northern estuary mouth, and the Nitrosomonas-related lineage might play a more important role than the Nitrosospira lineage in nitrification in this estuary.
Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun
2014-06-01
The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.
Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls
NASA Astrophysics Data System (ADS)
Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Warner, Mark J.; Devol, Allan H.; Ward, Bess B.
2016-03-01
Nitrification, the oxidation of ammonium (NH4+) to nitrite (NO2-) and to nitrate (NO3-), is a component of the nitrogen (N) cycle internal to the fixed N pool. In oxygen minimum zones (OMZs), which are hotspots for oceanic fixed N loss, nitrification plays a key role because it directly supplies substrates for denitrification and anaerobic ammonia oxidation (anammox), and may compete for substrates with these same processes. However, the control of oxygen and substrate concentrations on nitrification are not well understood. We performed onboard incubations with 15N-labeled substrates to measure rates of NH4+ and NO2- oxidation in the eastern tropical South Pacific (ETSP). The spatial and depth distributions of NH4+ and NO2- oxidation rates were primarily controlled by NH4+ and NO2- availability, oxygen concentration, and light. In the euphotic zone, nitrification was partially photoinhibited. In the anoxic layer, NH4+ oxidation was negligible or below detection, but high rates of NO2- oxidation were observed. NH4+ oxidation displayed extremely high affinity for both NH4+ and oxygen. The positive linear correlations between NH4+ oxidation rates and in situ NH4+ concentrations and ammonia monooxygenase subunit A (amoA) gene abundances in the upper oxycline indicate that the natural assemblage of ammonia oxidizers responds to in situNH4+ concentrations or supply by adjusting their population size, which determines the NH4+ oxidation potential. The depth distribution of archaeal and bacterial amoA gene abundances and N2O concentration, along with independently reported simultaneous direct N2O production rate measurements, suggests that AOA were predominantly responsible for NH4+ oxidation, which was a major source of N2O production at oxygen concentrations > 5 µM.
Bellucci, Micol; Ofiţeru, Irina D.; Graham, David W.; Head, Ian M.; Curtis, Thomas P.
2011-01-01
In wastewater treatment plants, nitrifying systems are usually operated with elevated levels of aeration to avoid nitrification failures. This approach contributes significantly to operational costs and the carbon footprint of nitrifying wastewater treatment processes. In this study, we tested the effect of aeration rate on nitrification by correlating ammonia oxidation rates with the structure of the ammonia-oxidizing bacterial (AOB) community and AOB abundance in four parallel continuous-flow reactors operated for 43 days. Two of the reactors were supplied with a constant airflow rate of 0.1 liter/min, while in the other two units the airflow rate was fixed at 4 liters/min. Complete nitrification was achieved in all configurations, though the dissolved oxygen (DO) concentration was only 0.5 ± 0.3 mg/liter in the low-aeration units. The data suggest that efficient performance in the low-DO units resulted from elevated AOB levels in the reactors and/or putative development of a mixotrophic AOB community. Denaturing gel electrophoresis and cloning of AOB 16S rRNA gene fragments followed by sequencing revealed that the AOB community in the low-DO systems was a subset of the community in the high-DO systems. However, in both configurations the dominant species belonged to the Nitrosomonas oligotropha lineage. Overall, the results demonstrated that complete nitrification can be achieved at low aeration in lab-scale reactors. If these findings could be extended to full-scale plants, it would be possible to minimize the operational costs and greenhouse gas emissions without risk of nitrification failure. PMID:21926211
Liu, Yangyang; Wang, Ruling; Zhang, Ping
2016-01-01
Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants. PMID:27217493
Ma, Jinxing; Wang, Zhiwei; Zhu, Chaowei; Liu, Shumeng; Wang, Qiaoying; Wu, Zhichao
2013-01-01
In this study, an approach using influent COD/N ratio reduction was employed to improve process performance and nitrification efficiency in a membrane bioreactor (MBR). Besides sludge reduction, membrane fouling alleviation was observed during 330 d operation, which was attributed to the decreased production of soluble microbial products (SMP) and efficient carbon metabolism in the autotrophic nitrifying community. 454 high-throughput 16S rRNA gene pyrosequencing revealed that the diversity of microbial sequences was mainly determined by the feed characteristics, and that microbes could derive energy by switching to a more autotrophic metabolism to resist the environmental stress. The enrichment of nitrifiers in an MBR with a low COD/N-ratio demonstrated that this condition stimulated nitrification, and that the community distribution of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) resulted in faster nitrite uptake rates. Further, ammonia oxidation was the rate-limiting step during the full nitrification. PMID:23667573
Xi, Ruijiao; Long, Xi-En; Huang, Sha; Yao, Huaiying
2017-12-01
Nitrification inhibitors and urease inhibitors, such as nitrapyrin and N-(n-butyl) thiophosphoric triamide (NBPT), can improve the efficiencies of nitrogen fertilizers in cropland. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across different soil pH levels are still unclear. In the present work, vegetable soils at four pH levels were tested to determine the impacts of nitrification and urease inhibitors on the nitrification activities, abundances and diversities of ammonia oxidizers at different pHs by real-time PCR, terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analysis. The analyses of the abundance of ammonia oxidizers and net nitrification rate suggested that AOA was the dominate ammonia oxidizer and the key driver of nitrification in acidic soil. The relationships between pH and ammonia oxidizer abundance indicated that soil pH dominantly controlled the abundance of AOA but not that of AOB. The T-RFLP results suggested that soil pH could significantly affect the AOA and AOB community structure. Nitrapyrin decreased the net nitrification rate and inhibited the abundance of bacterial amoA genes in this vegetable soil, but exhibited no effect on that of the archaeal amoA genes. In contrast, NBPT just lagged the hydrolysis of urea and kept low NH 4 + -N levels in the soil at the early stage. It exhibited no or slight effects on the abundance and community structure of ammonia oxidizers. These results indicated that soil pH, rather than the application of urea, nitrapyrin and NBPT, was a critical factor influencing the abundance and community structure of AOA and AOB.
Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei
2016-11-01
Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.
NASA Astrophysics Data System (ADS)
Challenor, T.; Menendez, A. D.; Damashek, J.; Francis, C. A.; Casciotti, K. L.
2014-12-01
Nitrification is the process of converting ammonium (NH4+) into nitrate (NO3-), and is a crucial step in removing nitrogen (N) from aquatic ecosystems. This process is governed by ammonia-oxidizing bacteria (AOB) and archaea (AOA) that utilize the ammonia monooxygenase gene (amoA). Studying the rates of nitrification and the abundances of ammonia-oxidizing microorganisms in south San Francisco Bay's Artesian Slough, which receives treated effluent from the massive San Jose-Santa Clara Regional Wastewater Facility, are important for understanding the cycling of nutrients in this small but complex estuary. Wastewater inputs can have negative environmental impacts, such as the release of nitrous oxide, a byproduct of nitrification and a powerful greenhouse gas. Nutrient inputs can also increase productivity and sometimes lead to oxygen depletion. Assessing the relative abundance and diversity of AOA and AOB, along with measuring nitrification rates gives vital information about the biology and biogeochemistry of this important N-cycling process. To calculate nitrification rates, water samples were spiked with 15N-labeled ammonium and incubated in triplicate for 24 hours. Four time-points were extracted across the incubation and the "denitrifier" method was used to measure the isotopic ratio of nitrate in the samples over time. In order to determine relative ratios of AOB to AOA, DNA was extracted from water samples and used in clade-specific amoA PCR assays. Nitrification rates were detectable in all locations sampled and were higher than in other regions of the bay, as were concentrations of nitrate and ammonium. Rates were highest in the regions of Artesian Slough most directly affected by wastewater effluent. AOB vastly outnumbered AOA, which is consistent with other studies showing that AOB prefer high nutrient environments. AOB diversity includes clades of Nitrosospira and Nitrosomonas prevalent in estuarine settings. Many of the sequenced genes are related to estuarine sediment found at other sites in the San Francisco Bay as well as the Chesapeake Bay, China East Sea, and Pearl River Estuary. Our data provide evidence for the path that N takes once entering the estuary and also further characterize the behavior of nitrifying microorganisms in extremely high-nutrient aquatic environments.
Li, Zheng-kui; Shi, Lu-na; Yang, Zhu-you; Zhang, Xiao-jiao; Wang, Yue-ming; Chen, Qi-chun; Wu, Kai
2009-10-15
A new kind of ammonia-oxidizing bacteria (AOB)-Comamonas aquatic LNL3 was screened out and immobilized by Poly (HEA)-Poly (HEMA) copolymer carrier using irradiation techniques. Four kinds of impact factors on short-cut nitrification, including temperature, pH, DO and free ammonia (FA) concentration had been investigated. The result showed that AOB-Comamonas aquatic LNL3 had short-cut nitrification capability and the optimal temperature, pH, DO and FA concentration were 30 degrees C, 8.5, 4.03 mg/L and 9 mg/L respectively. Corresponding to above results, ammonia nitrogen removal rate and short-cut nitrification efficiency were 93.52%, 94.73%; 79.74%, 94.67%; 91.17%, 94.66% and 90%, 94.4% respectively.
The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes inv...
USDA-ARS?s Scientific Manuscript database
Conservation tillage practices have combined genetically modified glyphosate resistant corn crops along with applications of the herbicide glyphosate. We tested the null hypothesis that the soil process of nitrification and the distribution of archaeal and bacterial nitrifying communities would not ...
Richard V. Pouyat
2001-01-01
Long- and short-term effects of urban site factors on net N-mineralization and nitrification rates were investigated in oak stands along an urban-rural land-use transect in the New York City metropolitan area. We used reciprocal transplants of undisturbed soil cores between urban and rural forests to determine the relative importance of long-term effects (mor vs. mull...
Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.
Zielinska, M; Wojnowska-Baryla, I
2006-05-01
Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.
Ross, D.S.; Wemple, B.C.; Jamison, A.E.; Fredriksen, G.; Shanley, J.B.; Lawrence, G.B.; Bailey, S.W.; Campbell, J.L.
2009-01-01
Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small forested research watersheds in the northeastern USA to determine if there were common factors related to soil ammonification and nitrification. Vegetation varied between mixed northern hardwoods and mixed conifers. Watershed surface soils (Oa or A horizons) were sampled at grid or transect points and analyzed for a suite of chemical characteristics. At each sampling point, vegetation and topographic metrics (field and GIS-based) were also obtained. Results were examined by watershed averages (n = 10), seasonal/watershed averages (n = 28), and individual sampling points (n = 608). Using both linear and tree regression techniques, the proportion of conifer species was the single best predictor of nitrification rates, with lower rates at higher conifer dominance. Similar to other studies, the soil C/N ratio was also a good predictor and was well correlated with conifer dominance. Unlike other studies, the presence of Acer saccharum was not by itself a strong predictor, but was when combined with the presence of Betula alleghaniensis. Topographic metrics (slope, aspect, relative elevation, and the topographic index) were not related to N transformation rates across the watersheds. Although found to be significant in other studies, neither soil pH, Ca nor Al was related to nitrification. Results showed a strong relationship between dominant vegetation, soil C, and soil C/N. ?? 2008 Springer Science+Business Media, LLC.
Global declines in oceanic nitrification rates as a consequence of ocean acidification.
Beman, J Michael; Chow, Cheryl-Emiliane; King, Andrew L; Feng, Yuanyuan; Fuhrman, Jed A; Andersson, Andreas; Bates, Nicholas R; Popp, Brian N; Hutchins, David A
2011-01-04
Ocean acidification produced by dissolution of anthropogenic carbon dioxide (CO(2)) emissions in seawater has profound consequences for marine ecology and biogeochemistry. The oceans have absorbed one-third of CO(2) emissions over the past two centuries, altering ocean chemistry, reducing seawater pH, and affecting marine animals and phytoplankton in multiple ways. Microbially mediated ocean biogeochemical processes will be pivotal in determining how the earth system responds to global environmental change; however, how they may be altered by ocean acidification is largely unknown. We show here that microbial nitrification rates decreased in every instance when pH was experimentally reduced (by 0.05-0.14) at multiple locations in the Atlantic and Pacific Oceans. Nitrification is a central process in the nitrogen cycle that produces both the greenhouse gas nitrous oxide and oxidized forms of nitrogen used by phytoplankton and other microorganisms in the sea; at the Bermuda Atlantic Time Series and Hawaii Ocean Time-series sites, experimental acidification decreased ammonia oxidation rates by 38% and 36%. Ammonia oxidation rates were also strongly and inversely correlated with pH along a gradient produced in the oligotrophic Sargasso Sea (r(2) = 0.87, P < 0.05). Across all experiments, rates declined by 8-38% in low pH treatments, and the greatest absolute decrease occurred where rates were highest off the California coast. Collectively our results suggest that ocean acidification could reduce nitrification rates by 3-44% within the next few decades, affecting oceanic nitrous oxide production, reducing supplies of oxidized nitrogen in the upper layers of the ocean, and fundamentally altering nitrogen cycling in the sea.
Luo, Weiwei; Jin, Xibiao; Yu, Yonglian; Zhou, Sichen; Lu, Shuguang
2014-01-01
Nitrogen-removal performance was investigated in a penicillin wastewater biological treatment plant (P-WWTP) reconstructed from a cyclic activated sludge system (CASS) tank designed for simultaneous nitrification and denitrification (SND). Good performance was obtained during a 900-day operation period, as indicated by effluent chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH₃‒N) values of 318 ± 34, 28.7 ± 2.4 and<0.2 mg L⁻¹ when the influent COD, total Kjeldahl nitrogen (TKN) and NH₃‒N were 3089 ± 453, 251.4 ± 26.5 and 124.8 ± 26.8 mg L⁻¹, respectively. Nitrification and denitrification occurred at different spaces, that is, 71.4% of TN removal occurred in the first 40% of the aeration tank, while 68.8% of the TKN removal occurred in 40-100% of the aeration tank. Sufficient easily biodegradable organics (EBO) in wastewater were key to the occurrence of SND. The denitrification rate under aeration conditions was 10.7 mg N g VSS⁻¹ h⁻¹ when EBO were sufficient, but 0.98 mg N g VSS⁻¹ h⁻¹ when EBO were completely degraded. Nitrification primarily occurred in the rear of the aeration tank owing to the competition for oxygen between carbonaceous oxidation and nitrification. The nitrification rate was only 7.13 mg NOD g VSS⁻¹ h⁻¹ at the beginning of the reaction, but 14.7 mg NOD g VSS⁻¹ h⁻¹ when EBO were completely degraded. These results will facilitate the improvement of nitrogen removal by existing WWTPs.
Abundance of ammonia oxidizing bacteria and archaea under long-term maize cropping systems.
USDA-ARS?s Scientific Manuscript database
Nitrification involves the oxidation of ammonium and is an important component of the overall N cycle. Nitrification occurs in two steps; first by oxidizing ammonium to nitrite, and then to nitrate. The first step is often the rate limiting step. Until recently ammonia-oxidizing bacteria were though...
Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of functional genes (amoA, hao, nirK and norB) were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures...
Soliman, Moomen; Eldyasti, Ahmed
2017-06-01
Recently, partial nitrification has been adopted widely either for the nitrite shunt process or intermediate nitrite generation step for the Anammox process. However, partial nitrification has been hindered by the complexity of maintaining stable nitrite accumulation at high nitrogen loading rates (NLR) which affect the feasibility of the process for high nitrogen content wastewater. Thus, the operational data of a lab scale SBR performing complete partial nitrification as a first step of nitrite shunt process at NLRs of 0.3-1.2kg/(m 3 d) have been used to calibrate and validate a process model developed using BioWin® in order to describe the long-term dynamic behavior of the SBR. Moreover, an identifiability analysis step has been introduced to the calibration protocol to eliminate the needs of the respirometric analysis for SBR models. The calibrated model was able to predict accurately the daily effluent ammonia, nitrate, nitrite, alkalinity concentrations and pH during all different operational conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stand-replacing wildfires increase nitrification for decades in southwestern ponderosa pine forests.
Kurth, Valerie J; Hart, Stephen C; Ross, Christopher S; Kaye, Jason P; Fulé, Peter Z
2014-05-01
Stand-replacing wildfires are a novel disturbance within ponderosa pine (Pinus ponderosa) forests of the southwestern United States, and they can convert forests to grasslands or shrublands for decades. While most research shows that soil inorganic N pools and fluxes return to pre-fire levels within a few years, we wondered if vegetation conversion (ponderosa pine to bunchgrass) following stand-replacing fires might be accompanied by a long-term shift in N cycling processes. Using a 34-year stand-replacing wildfire chronosequence with paired, adjacent unburned patches, we examined the long-term dynamics of net and gross nitrogen (N) transformations. We hypothesized that N availability in burned patches would become more similar to those in unburned patches over time after fire as these areas become re-vegetated. Burned patches had higher net and gross nitrification rates than unburned patches (P < 0.01 for both), and nitrification accounted for a greater proportion of N mineralization in burned patches for both net (P < 0.01) and gross (P < 0.04) N transformation measurements. However, trends with time-after-fire were not observed for any other variables. Our findings contrast with previous work, which suggested that high nitrification rates are a short-term response to disturbance. Furthermore, high nitrification rates at our site were not simply correlated with the presence of herbaceous vegetation. Instead, we suggest that stand-replacing wildfire triggers a shift in N cycling that is maintained for at least three decades by various factors, including a shift from a woody to an herbaceous ecosystem and the presence of fire-deposited charcoal.
Hu, Hang-Wei; Macdonald, Catriona A; Trivedi, Pankaj; Holmes, Bronwyn; Bodrossy, Levente; He, Ji-Zheng; Singh, Brajesh K
2015-02-01
Terrestrial arid and semi-arid ecosystems (drylands) constitute about 41% of the Earth's land surface and are predicted to experience increasing fluctuations in water and nitrogen availability. Mounting evidence has confirmed the significant importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in nitrification, plant nitrogen availability and atmospheric N2 O emissions, but their responses to environmental perturbations in drylands remain largely unknown. Here we evaluate how the factorial combinations of irrigation and fertilization in forests and land-use change from grassland to forest affects the dynamics of AOA and AOB following a 6-year dryland field study. Potential nitrification rates and AOA and AOB abundances were significantly higher in the irrigated plots, accompanied by considerable changes in community compositions, but their responses to fertilization alone were not significant. DNA-stable isotope probing results showed increased (13) CO2 incorporation into the amoA gene of AOA, but not of AOB, in plots receiving water addition, coupled with significantly higher net mineralization and nitrification rates. High-throughput microarray analysis revealed that active AOA assemblages belonging to Nitrosopumilus and Nitrosotalea were increasingly labelled by (13) CO2 following irrigation. However, no obvious effects of land-use changes on nitrification rates or metabolic activity of AOA and AOB could be observed under dry conditions. We provide evidence that water addition had more important roles than nitrogen fertilization in influencing the autotrophic nitrification in dryland ecosystems, and AOA are increasingly involved in ammonia oxidation when dry soils become wetted. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Sources of nitrous and nitric oxides in paddy soils: nitrification and denitrification.
Lan, Ting; Han, Yong; Roelcke, Marco; Nieder, Rolf; Car, Zucong
2014-03-01
Rice-paddies are regarded as one of the main agricultural sources of N 2O and NO emissions. To date, however, specific N2O and NO production pathways are poorly understood in paddy soils. (15)N-tracing experiments were carried out to investigate the processes responsible for N2O and NO production in two paddy soils with substantially different soil properties. Laboratory incubation experiments were carried out under aerobic conditions at moisture contents corresponding to 60% of water holding capacity. The relative importance of nitrification and denitrification to the flux of N2O was quantified by periodically measuring and comparing the enrichments of the N2O, NH(+)4-N and NO(-)3-N pools. The results showed that both N2O and NO emission rates in an alkaline paddy soil with clayey texture were substantially higher than those in a neutral paddy soil with silty loamy texture. In accordance with most published results, the ammonium N pool was the main source of N2O emission across the soil profiles of the two paddy soils, being responsible for 59.7% to 97.7% of total N2O emissions. The NO(-)3-N pool of N2O emission was relatively less important under the given aerobic conditions. The rates of N2O emission from nitrification (N2On) among different soil layers were significantly different, which could be attributed to both the differences in gross N nitrification rates and to the ratios of nitrified N emitted as N2O among soil layers. Furthermore, NO fluxes were positively correlated with the changes in gross nitrification rates and the ratios of NO/N2O in the two paddy soils were always greater than one (from 1.26 to 6.47). We therefore deduce that, similar to N2O, nitrification was also the dominant source of NO in the tested paddy soils at water contents below 60% water holding capacity. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.
Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W
2011-09-20
Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.
Significance of archaeal nitrification in hypoxic waters of the Baltic Sea
NASA Astrophysics Data System (ADS)
Berg, C.; Vandieken, V.; Thamdrup, B.; Jürgens, K.
2012-04-01
Marine oxygen deficient areas are sites of important microbially mediated transformations within the nitrogen cycle. In the Baltic Sea, suboxic waters (oxygen below 5 μmol L-1) are considered to be a major nitrification zone within the water column. Recent evidence indicates that Archaea and not Bacteria are here the major ammonium oxidizers. In a Baltic Sea pelagic redoxcline, the crenarchaeotal subcluster GD2 which is related to the first cultivated ammonia-oxidizing crenarchaeote Candidatus Nitrosopumilus maritimus occurs in high abundance. However, little is known about its function and importance for the nitrogen and carbon cycles in oxygen minimum zones of the Baltic Sea. To approach this question, we sampled pelagic redoxclines in the Baltic Sea and determined the rates of nitrification and light-independent, inorganic carbon fixation via 15N and 14C isotope incubations, and quantified the abundance of putative ammonia-oxidizing Crenarchaeota by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). Nitrification was detectable throughout the suboxic zone with maxima of 122-131 nmol L-1 d-1 in layers with 1.8-7.1 μmol oxygen L-1 and ammonium below 0.2 μmol L-1. However, a nitrification potential was detected even in the upper anoxic, sulfidic zone. Crenarchaeotal abundance correlated strongly with nitrification rates and accounted for up to 24% of total prokaryotic cells. In contrast, the CO2 fixation in the suboxic zone was with 1.6-19.6 nmol L-1 d-1 rather low when compared to the subjacent anoxic, sulfidic waters. Our study indicates that ammonia oxidation in the suboxic zone of the Baltic Sea is mainly driven by Crenarchaeota. Their occurrence also in the anoxic, sulfidic water masses and the maintained nitrification potential point to special adaptations in this habitat with a potentially reduced sensitivity against hydrogen sulfide.
Microbial community changes with decaying chloramine residuals in a lab-scale system.
Bal Krishna, K C; Sathasivan, Arumugam; Ginige, Maneesha P
2013-09-01
When chloramine is used as a disinfectant, managing an acceptable "residual" throughout the water distribution systems particularly once nitrification has set in is challenging. Managing chloramine decay prior to the onset of nitrification through effective control strategies is important and to-date the strategies developed around nitrification has been ineffective. This study aimed at developing a more holistic knowledge on how decaying chloramine and nitrification metabolites impact microbial communities in chloraminated systems. Five lab-scale reactors (connected in series) were operated to simulate a full-scale chloraminated distribution system. Culture independent techniques (cloning and qPCR) were used to characterise and quantify the mixed microbial communities in reactors maintaining a residual of high to low (2.18-0.03 mg/L). The study for the first time associates chloramine residuals and nitrification metabolites to different microbial communities. Bacterial classes Solibacteres, Nitrospira, Sphingobacteria and Betaproteobacteria dominated at low chloramine residuals whereas Actinobacteria and Gammaproteobacteria dominated at higher chloramine residuals. Prior to the onset of nitrification bacterial genera Pseudomonas, Methylobacterium and Sphingomonas were found to be dominant and Sphingomonas in particular increased with the onset of nitrification. Nitrosomonas urea, oligotropha, and two other novel ammonia-oxidizing bacteria were detected once the chloramine residuals had dropped below 0.65 mg/L. Additionally nitrification alone failed to explain chloramine decay rates observed in these reactors. The finding of this study is expected to re-direct the focus from nitrifiers to heterotrophic bacteria, which the authors believe could hold the key towards developing a control strategy that would enable better management of chloramine residuals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Donald S. Ross; Beverley C. Wemple; Austin E. Jamison; Guinevere Fredriksen; James B. Shanley; Gregory B. Lawrence; Scott W. Bailey; John L. Campbell
2009-01-01
Elevated N deposition is continuing on many forested landscapes around the world and our understanding of ecosystem response is incomplete. Soil processes, especially nitrification, are critical. Many studies of soil N transformations have focused on identifying relationships within a single watershed but these results are often not transferable. We studied 10 small...
Comparing Methods for Assessing Forest Soil Net Nitrogen Mineralization and Net Nitrification
S. S. Jefts; I. J. Fernandez; L.E. Rustad; D. B. Dail
2004-01-01
A variety of analytical techniques are used to evaluate rates of nitrogen (N) mineralization and nitrification in soils. The diversity of methods takes on added significance in forest ecosystem research where high soil heterogeneity and multiple soil horizons can make comparisons over time and space even more complex than in agricultural Ap horizons. This study...
Global declines in oceanic nitrification rates as a consequence of ocean acidification
Beman, J. Michael; Chow, Cheryl-Emiliane; King, Andrew L.; Feng, Yuanyuan; Fuhrman, Jed A.; Andersson, Andreas; Bates, Nicholas R.; Popp, Brian N.; Hutchins, David A.
2011-01-01
Ocean acidification produced by dissolution of anthropogenic carbon dioxide (CO2) emissions in seawater has profound consequences for marine ecology and biogeochemistry. The oceans have absorbed one-third of CO2 emissions over the past two centuries, altering ocean chemistry, reducing seawater pH, and affecting marine animals and phytoplankton in multiple ways. Microbially mediated ocean biogeochemical processes will be pivotal in determining how the earth system responds to global environmental change; however, how they may be altered by ocean acidification is largely unknown. We show here that microbial nitrification rates decreased in every instance when pH was experimentally reduced (by 0.05–0.14) at multiple locations in the Atlantic and Pacific Oceans. Nitrification is a central process in the nitrogen cycle that produces both the greenhouse gas nitrous oxide and oxidized forms of nitrogen used by phytoplankton and other microorganisms in the sea; at the Bermuda Atlantic Time Series and Hawaii Ocean Time-series sites, experimental acidification decreased ammonia oxidation rates by 38% and 36%. Ammonia oxidation rates were also strongly and inversely correlated with pH along a gradient produced in the oligotrophic Sargasso Sea (r2 = 0.87, P < 0.05). Across all experiments, rates declined by 8–38% in low pH treatments, and the greatest absolute decrease occurred where rates were highest off the California coast. Collectively our results suggest that ocean acidification could reduce nitrification rates by 3–44% within the next few decades, affecting oceanic nitrous oxide production, reducing supplies of oxidized nitrogen in the upper layers of the ocean, and fundamentally altering nitrogen cycling in the sea. PMID:21173255
Distinct N2O yields of AOB and AOA driven ammonia oxidation across a range of Oregon forest soils
NASA Astrophysics Data System (ADS)
Tzanakakis, Vasileios; Dörsch, Peter; Taylor, Anne E.; Giguere, Andrew T.; Bakken, Lars R.; Bottomley, Peter J.; Myrold, David D.
2017-04-01
Ammonia oxidation, as the first and limiting step of nitrification, is a critical process in global N cycling and an important source of nitrous oxide (N2O). Previous studies reported strong contrasts in potential nitrification rates and niche separation of ammonia oxidizing bacteria (AOB) and archaea (AOA) in three acid Oregon forest soils depending on tree stands. In the present study we were interested in the potential contribution of AOB and AOA to nitrification-derived N2O in these soils. We performed soil slurry incubations amended with NH4+ and determined the specific N2O yields of AOB and AOA using inhibitor techniques. Despite large differences in edaphic factors, potential nitrification rates, and niche partitioning, AOB- and AOA-mediated nitrification displayed fairly stable and distinct N2O yields. The N2O yields ranged from 0.11 to 0.17% for AOB and from 0.03 to 0.08% for AOA, which is in agreement with findings of previous pure culture and soil studies. Nitrite accumulation was observed in only one soil, upon NH4+ stimulation of AOB growth, without showing any effect on the apparent N2O yield. The partitioning between AOB and AOA activity was strongly affected by soil pH and nitrogen status, but there was no effect of these variables on the group-specific N2O yield. Together, this suggests that N2O yields of different ammonia oxidizing microorganisms are under tight biochemical control and that the potential contribution of nitrification to N2O emission in acid forest soils can be predicted from AOB - AOA partitioning.
Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.
2011-01-01
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches. PMID:21571885
GLORIA observations of de-/nitrification during the Arctic winter 2015/16 POLSTRACC campaign
NASA Astrophysics Data System (ADS)
Braun, Marleen; Woiwode, Wolfgang; Höpfner, Michael; Johansson, Sören; Friedl-Vallon, Felix; Oelhaf, Hermann; Preusse, Peter; Ungermann, Jörn; Grooß, Jens-Uwe; Jurkat, Tina; Khosrawi, Farahnaz; Kirner, Ole; Marsing, Andreas; Sinnhuber, Björn-Martin; Voigt, Christiane; Ziereis, Helmut; Orphal, Johannes
2017-04-01
Denitrification, the condensation and sedimentation of HNO3-containing particles in the winter stratosphere at high latitudes, is an important process affecting the deactivation of ozone-depleting halogen species. It modulates the vertical partitioning of chemically active NOy and the vertical redistribution of HNO3 can affect low stratospheric altitudes under sufficiently cold conditions. The capability of associated nitrification to disturb the NOy budget of the climate-relevant lowermost stratosphere (LMS) has hardly been investigated in detail and represents a challenge for model simulations. The Arctic winter 2015/16 was characterized by exceptionally cold stratospheric temperatures and widespread polar stratospheric clouds (PSCs) that were observed from mid-December 2015 until the end of February 2016 down to the LMS. Observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer during the POLSTRACC (Polar Stratosphere in a Changing Climate) aircraft mission allow us to study the development of nitrification of the Arctic LMS during and after the 2015/16 PSC period with high vertical resolution. The vertical cross-sections of HNO3 distribution along the HALO (High Altitude and LOng range research aircraft) flight tracks derived from GLORIA observations show the result of significant vertical redistribution of NOy with strong nitrification of up to 6 ppbv in the LMS. We compare the results of the GLORIA observations with simulations by the state-of-the-art chemical-transport model CLaMS and the climate-chemistry model EMAC and discuss the capability of these models to reproduce nitrification of the Arctic LMS.
NASA Astrophysics Data System (ADS)
Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.
2016-02-01
Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.
Han, Yuanyuan; Jin, Xibiao; Wang, Yuan; Liu, Yongdi; Chen, Xiurong
2014-02-01
Inhibition of nitrification by four typical pollutants (acrylonitrile, acrylic acid, acetonitrile and cyanide) in acrylonitrile wastewater was investigated. The inhibitory effect of cyanide on nitrification was strongest, with a 50% inhibitory concentration of 0.218 mg·gVSS-1 being observed in a municipal activated sludge system. However, the performance of nitrification was recovered when cyanide was completely degraded. The nitrification, which had been inhibited by 4.17 mg·gVSS-1 of free cyanide for 24 h, was recovered to greater than 95% of that without cyanide after 10 days of recovery. To overcome cyanide inhibition, cyanide-degrading bacteria were cultivated in a batch reactor by increasing the influent cyanide concentration in a stepwise manner, which resulted in an increase in the average cyanide degradation rate from 0.14 to 1.01 mg CN-·gVSS-1·h-1 over 20 days. The cultured cyanide-degrading bacteria were shaped like short rods, and the dominant cyanide-degrading bacteria strain was identified as Pseudomonas fluorescens NCIMB by PCR.
Suppression of soil nitrification by plants.
Subbarao, Guntur Venkata; Yoshihashi, Tadashi; Worthington, Margaret; Nakahara, Kazuhiko; Ando, Yasuo; Sahrawat, Kanwar Lal; Rao, Idupulapati Madhusudhana; Lata, Jean-Christophe; Kishii, Masahiro; Braun, Hans-Joachim
2015-04-01
Nitrification, the biological oxidation of ammonium to nitrate, weakens the soil's ability to retain N and facilitates N-losses from production agriculture through nitrate-leaching and denitrification. This process has a profound influence on what form of mineral-N is absorbed, used by plants, and retained in the soil, or lost to the environment, which in turn affects N-cycling, N-use efficiency (NUE) and ecosystem health and services. As reactive-N is often the most limiting in natural ecosystems, plants have acquired a range of mechanisms that suppress soil-nitrifier activity to limit N-losses via N-leaching and denitrification. Plants' ability to produce and release nitrification inhibitors from roots and suppress soil-nitrifier activity is termed 'biological nitrification inhibition' (BNI). With recent developments in methodology for in-situ measurement of nitrification inhibition, it is now possible to characterize BNI function in plants. This review assesses the current status of our understanding of the production and release of biological nitrification inhibitors (BNIs) and their potential in improving NUE in agriculture. A suite of genetic, soil and environmental factors regulate BNI activity in plants. BNI-function can be genetically exploited to improve the BNI-capacity of major food- and feed-crops to develop next-generation production systems with reduced nitrification and N2O emission rates to benefit both agriculture and the environment. The feasibility of such an approach is discussed based on the progresses made. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Donald S. Ross; James B. Shanley; John L. Campbell; Gregory B. Lawrence; Scott W. Bailey; Gene E. Likens; Beverley C. Wemple; I.F. Creed; F. Courchesne
2012-01-01
Nitrogen export from small forested watersheds is known to be affected by N deposition but with high regional variability. We studied 10 headwater catchments in the northeastern United States across a gradient of N deposition (5.4 − 9.4 kg ha−1Â yr−1) to determine if soil nitrification rates...
Cruvellier, Nelly; Poughon, Laurent; Creuly, Catherine; Dussap, C-Gilles; Lasseur, Christophe
2016-11-01
The aim of the present work was to study the growth of two nitrifying bacteria. For modelling the nitrifying subsystem of the MELiSSA loop, Nitrosomonas europaea ATCC® 19718 and Nitrobacter winogradskyi ATCC® 25931 were grown separately and in cocultures. The kinetic parameters of a stoichiometric mass balanced Pirt model were identified: μmax=0.054h(-1), decay rate b=0.003h(-1) and maintenance rate m=0.135gN-NH4(+)·gX(-1)·h(-1) for Nitrosomonas europaea; μmax=0.024h(-1), b=0.001h(-1) and m=0.467gN-NO2(-)·gX(-1)·h(-1) for Nitrobacter winogradskyi. A predictive structured model of nitrification in co-culture was developed. The online evolution of the addition of KOH is correlated to the nitritation; the dissolved oxygen concentration is correlated to both nitritation and nitratation. The model suitably represents these two variables so that transient partial nitrification is assessed. This is a clue for avoiding partial nitrification by predictive functional control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Jialin; Nedwell, David B.; Beddow, Jessica; Dumbrell, Alex J.; McKew, Boyd A.; Thorpe, Emma L.
2014-01-01
Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw]−1 day−1 in June, increasing to 37.4 μmol N gdw−1 day−1 in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw−1 day−1 in June, increasing to 11.7 μmol N gdw−1 day−1 in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. PMID:25326303
Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne
2015-01-01
Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.
Han, Jiangpei; Shi, Jiachun; Zeng, Lingzao; Xu, Jianming; Wu, Laosheng
2015-02-01
A greenhouse pot experiment was conducted to study the effects of conventional nitrogen fertilization on soil acidity and salinity. Three N rates (urea; N0, 0 kg N ha(-1); N1, 600 kg N ha(-1); and N2, 1,200 kg N ha(-1)) were applied in five soils with different greenhouse cultivation years to evaluate soil acidification and salinization rate induced by nitrogen fertilizer in lettuce production. Both soil acidity and salinity increased significantly as N input increased after one season, with pH decrease ranging from 0.45 to 1.06 units and electrolytic conductivity increase from 0.24 to 0.68 mS cm(-1). An estimated 0.92 mol H(+) was produced for 1 mol (NO2 (-) + NO3 (-))-N accumulation in soil. The proton loading from nitrification was 14.3-27.3 and 12.1-58.2 kmol H(+) ha(-1) in the center of Shandong Province under N1 and N2 rate, respectively. However, the proton loading from the uptake of excess bases by lettuces was only 0.3-4.5 % of that from nitrification. Moreover, the release of protons induced the direct release of base cations and accelerated soil salinization. The increase of soil acidity and salinity was attributed to the nitrification of excess N fertilizer. Compared to the proton loading by lettuce, nitrification contributed more to soil acidification in greenhouse soils.
Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil
Lehtovirta-Morley, Laura E.; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I.; Nicol, Graeme W.
2011-01-01
Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, “Candidatus Nitrosotalea devanaterra,” from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH. PMID:21896746
Levičnik-Höfferle, Spela; Nicol, Graeme W; Ausec, Luka; Mandić-Mulec, Ines; Prosser, James I
2012-04-01
Ammonia oxidation, the first step in nitrification, is performed by autotrophic bacteria and thaumarchaea, whose relative contributions vary in different soils. Distinctive environmental niches for the two groups have not been identified, but evidence from previous studies suggests that activity of thaumarchaea, unlike that of bacterial ammonia oxidizers, is unaffected by addition of inorganic N fertilizer and that they preferentially utilize ammonia generated from the mineralization of organic N. This hypothesis was tested by determining the influence of both inorganic and organic N sources on nitrification rate and ammonia oxidizer growth and community structure in microcosms containing acidic, forest soil in which ammonia oxidation was dominated by thaumarchaea. Nitrification rate was unaffected by the incubation of soil with inorganic ammonium but was significantly stimulated by the addition of organic N. Oxidation of ammonia generated from native soil organic matter or added organic N, but not added inorganic N, was accompanied by increases in abundance of the thaumarchaeal amoA gene, a functional gene for ammonia oxidation, but changes in community structure were not observed. Bacterial amoA genes could not be detected. Ammonia oxidation was completely inhibited by 0.01% acetylene in all treatments, indicating ammonia monooxygenase-dependent activity. The findings have implications for current models of soil nitrification and for nitrification control strategies to minimize fertilizer loss and nitrous oxide production. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stander, E. K.; Ehrenfeld, J. G.
2006-12-01
Wetlands are increasingly being used as management tools to combat the widespread problem of excess nitrogen in surface waters of the United States. This is particularly true in urban or urbanizing watersheds. However, due to hypothesized higher rates of atmospheric nitrogen deposition and altered hydrology in the urban context, urban wetlands may actually be acting as sources of nitrate to receiving bodies of water. Fourteen palustrine, forested wetlands in northeastern New Jersey, the most urban part of the state, were sampled for hydrology and rates of nitrogen cycling processes. One autowell in each site recorded water table measurements four times daily. In situ rates of net nitrogen mineralization and nitrification were measured monthly during the same time period using the static core technique. Denitrification rates were measured monthly in laboratory incubations using the acetylene block technique. Additionally, in nine of the 14 sites, which represent a gradient of urban intensity from very urban to less urban, we measured inorganic nitrogen in throughfall and leachate on a weekly basis. Throughfall collectors and lysimeters to 50cm depth were installed in three locations in each of the nine sites. Throughfall and leachate samples were analyzed for 15N and 18O isotopes to distinguish between atmospheric versus nitrification sources of nitrate in soil leachate. Hydrographs demonstrated that many sites have water table depths below 30 cm (i.e., below the biologically active zone) for long periods of time. Many wetlands display uncharacteristically flashy hydrographs. Wetlands with dry or flashy hydrographs had higher rates of nitrification and lower rates of denitrification than wetlands with more normal hydrology. Rates of atmospheric N deposition were higher in wetlands located in municipalities with higher population densities. Population density, however, was not a good predictor of nitrification or denitrification rates. Results from the isotopic analysis are forthcoming.
NASA Astrophysics Data System (ADS)
Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Li, Jiwei; Ta, Kaiwen
2015-04-01
The occurrence of microbial mediated ammonia oxidation and these organisms are present in large numbers in natural environments indicated a potential biogeochemical role for them in the global nitrogen cycle. However, very little is understood about their role and contribution to nitrification in the high temperature extreme environments. Here we explore the ammonia oxidation rates and abundance of potential ammonia-oxidizing archaea (AOA) in upper and bottom sediments from Gongxiaoshe hot spring, Tengchong, Yunnan, China. The 15N-incorporating AOA cells and cell aggregated were detected with Fluorescence in situ hybridization (FISH) and Nano secondary ion mass spectrometry (Nano-SIMS). Ammonia oxidation rates measured using 15N-NO3- pool dilution in upper and bottom sediments (without NH4+ stimulated) were 4.8 and 5.3 nmol N g-1h-1, respectively. Close relatives of the autotrophic, ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus yellowstonii' represented the most abundant OTU in both of the two spring sediments by 16S rRNA gene analysis. Furthermore, it should be noted that no ammonia-oxidizing bacterial clones detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present at 2.75-9.80×105 and 0.128-1.96×108 gene copies g-1 sediment. Based on the reaction rates and AOA abundance, we estimated the cell-specific nitrification rates were 0.41 to 0.79 fmol N archaeal cell-1 h-1, which are comparable to those observed in estuary environment. We suggest that AOA have the responsibility in nitrification in this hot spring, and these archaea rather than bacteria may be considered as a driver in nitrogen cycling in terrestrial hot ecosystems. Key words: ammonia-oxidizing archaea (AOA); nitrification; ammonia-oxidizing rate; hot spring;
Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A
2014-01-01
The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity—ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts—varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification. PMID:24553472
Tomar, Sachin Kumar; Chakraborty, Saswati
2018-08-01
The impact of air flow rate on aerobic granulation was evaluated for treating toxic multiple pollutants; phenol (400 mg L -1 ), thiocyanate (100 mg L -1 ) and ammonia nitrogen (100 mg L -1 ) by using three lab scale sequencing batch reactors (SBRs) (R1, R2 and R3). Larger granules (2938.67 ± 64.91 μm) with higher biomass concentration (volatile solids of 4.17 ± 0.09 g L -1 ), higher granule settling velocity (55.56 ± 1.36 m h -1 ) and lower sludge volume index (35.25 ± 1.71 mL gTSS -1 ) were observed at optimal air flow rate of 2.5 L min -1 (R2). Confocal laser scanning microscopic images illustrated the extended fluorescence for extracellular polymeric substances in R2. In R2, partial nitrification was achieved. Phenol was completely removed in all the reactors while partial removal of SCN - and no nitrification were observed with a decrease (1.5 L min -1 ) and an increase (3.5 L min -1 ) in air flow rates (R1 and R3, respectively). This study provides an experimental contribution to examine the effect of optimal combination of aeration and toxic multiple pollutants, governing characteristics and nitrification efficiency of granules along with SBR performance in an economic way in terms of optimal air supply. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen
2018-04-01
Drinking water treatment plants based on groundwater may suffer from incomplete ammonium removal, which deteriorates drinking water quality and constrains water utilities in the operation of their plants. Ammonium is normally removed through nitrification in biological granular media filters, and recent studies have demonstrated that dosing of copper can stimulate the removal of ammonium. Here, we investigated if copper dosing could generically improve ammonium removal of biofilters, at treatment plants with different characteristics. Copper was dosed at ≤1.5 μg Cu/L to biofilters at 10 groundwater treatment plants, all of which had displayed several years of incomplete nitrification. Plants exceeded the Danish national water quality standard of 0.05 mg NH 4 + /L by a factor of 2-12. Within only 2-3 weeks of dosing, ammonium removal rates increased significantly (up to 150%). Nitrification was fully established, with ammonium effluent concentrations of <0.01 mg NH 4 + -N/L at most plants, regardless of the differences in raw water chemistry, ammonium loading rates, filter design and operation, or treatment plant configuration. However, for filters without primary filtration, it took longer time to reach complete ammonium removal than for filters receiving prefiltered water, likely due to sorption of copper to iron oxides, at plants without prefiltration. With complete ammonium removal, we subjected two plants to short-term loading rate upshifts, to examine the filters' ability to cope with loading rate variations. After 2 months of dosing and an average loading rate of 1.0 g NH 4 + -N/m 3 filter material/h, the loading rate was upshifted by 50%. Yet, a filter managed to completely remove all the influent ammonium, showing that with copper dosing the filter had extra capacity to remove ammonium even beyond its normal loading rates. Depth sampling revealed that the ammonium removal rate of the filter's upper 10 cm increased more than 7-fold from 0.67 to 4.90 g NH 4 + -N/m 3 /h, and that nitrite produced from increased ammonium oxidation was completely oxidized further to nitrate. Hence, no problems with nitrite accumulation or breakthrough occurred. Overall, copper dosing generically enhanced nitrification efficiency and allowed a range of quite different plants to meet water quality standards, even at increased loading rates. The capacity increase is highly relevant in practice, as it makes filters more robust towards sudden ammonium loading rate variations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro
2017-02-01
A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.
Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y
2016-01-01
Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.
Xu, Yongbo; Xu, Zhihong
2015-07-01
Land use change affects soil gross nitrogen (N) transformations, but such information is particularly lacking under subtropical conditions. A study was carried out to investigate the potential gross N transformation rates in forest and agricultural (converted from the forest) soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a (15)N tracing study under aerobic conditions. The results showed that change of land use types substantially altered most gross N transformation rates. The gross ammonification and nitrification rates were significantly higher in the agricultural soils than in the forest soils, while the reverse was true for the gross N immobilization rates. The higher total carbon (C) concentrations and C / N ratio in the forest soils relative to the agricultural soils were related to the greater gross N immobilization rates in the forest soils. The lower gross ammonification combined with negligible gross nitrification rates, but much higher gross N immobilization rates in the forest soils than in the agricultural soils suggest that this may be a mechanism to effectively conserve available mineral N in the forest soils through increasing microbial biomass N, the relatively labile organic N. The greater gross nitrification rates and lower gross N immobilization rates in the agricultural soils suggest that conversion of forests to agricultural soils may exert more negative effects on the environment by N loss through NO3 (-) leaching or denitrification (when conditions for denitrification exist).
NASA Astrophysics Data System (ADS)
Damashek, J.; Casciotti, K. L.; Francis, C. A.
2014-12-01
Nitrification is the sole link between nitrogen inputs and losses in marine ecosystems, and understanding the microbial ecology and biogeochemistry of nitrification is therefore crucial for understanding how aquatic ecosystems process nitrogen. Recently-discovered ammonia-oxidizing archaea (AOA), rather than ammonia-oxidizing bacteria (AOB), appear to drive ammonia oxidation in many ecosystems, including much of the ocean. However, few studies have investigated these microbes in estuary waters, despite the fact nitrogen concentrations in estuaries are often far higher than the ocean, and can cause drastic ecological harm. We sought to determine the roles of AOA and AOB in driving pelagic nitrification throughout San Francisco Bay, by combining biogeochemical rate measurements with a suite of measurements of the abundance and diversity of AOA and AOB. It addition to traditional functional gene analyses and high-throughput 16S amplicon sequencing, we developed novel qPCR assays to selectively target the ammonia-oxidizing clades found in this estuary, which gave insights into clade-specific distributional patterns. Our biogeochemical data suggest a sizable fraction of ammonium in the bay is oxidized in the water column, likely by AOA, with nitrification in bottom waters also oxidizing a substantial portion of the ammonium exuded by sediments. Generally, Sacramento River waters and Suisun Bay bottom waters had the highest nitrification rates. AOA outnumbered AOB at most stations, and were present in high abundance at both the marine and freshwater ends of the estuary, while AOB abundance was highest in the low-salinity, brackish regions. Different archaeal clades were found at either end of the estuary, suggesting strong niche partitioning along the salinity gradient, with a third clade present largely in brackish waters. This work helps to assess the ability of ammonia-oxidizing microbes in estuaries to transform nitrogen prior to water discharge into the sea, and furthers our understanding of the roles of specific clades of these microbes in complex estuarine ecosystems.
Xia, Xinghui; Liu, Ting; Yang, Zhifeng; Michalski, Greg; Liu, Shaoda; Jia, Zhimei; Zhang, Sibo
2017-02-01
Present-day estimations of global nitrogen loss (N-loss) are underestimated. Commonly, N-loss from rivers is thought to be caused by denitrification only in bed-sediments. However, coupled nitrification-denitrification occurring in overlying water with suspended sediments (SPS) where oxic and anoxic/low oxygen zones may coexist is ignored for N-loss in rivers. Here the Yellow and Yangtze Rivers were taken as examples to investigate the effect of SPS, which exists in many rivers of the world, on N loss through coupled nitrification-denitrification with nitrogen stable ( 15 N) isotopic tracer simulation experiments and in-situ investigation. The results showed even when SPS was surrounded by oxic waters, there were redox conditions that transitioned from an oxic surface layer to anoxic layer near the particle center, enabling coupled nitrification-denitrification to occur around SPS. The production rate of 15 N 2 from 15 NH 4 + -N (R 15N2-production ) increased with increasing SPS concentration ([SPS]) as a power function (R 15N2-production =a·[SPS] b ) for both the SPS-water and bed sediment-SPS-water systems. The power-functional increase of nitrifying and denitrifying bacteria population with [SPS] accounted for the enhanced coupled nitrification-denitrification rate in overlying water. SPS also accelerated denitrification in bed-sediment due to increased NO 3 - concentration caused by SPS-mediated nitrification. For these two rivers, 1gL -1 SPS will lead to N-loss enhancement by approximately 25-120%, and the enhancement increased with organic carbon content of SPS. Thus, we conclude that SPS in overlying water is a hot spot for nitrogen loss in river systems and current estimates of in-stream N-loss are underestimated without consideration of SPS; this may partially compensate for the current imbalance of global nitrogen inputs and sinks. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wellman, R. L.; Boutton, T. W.; Tjoelker, M. G.; Volder, A.; Briske, D. D.
2013-12-01
Increasing concentrations of greenhouse gases are projected to elevate global surface air temperatures by 1.1 to 6.4°C by the end of the century, and potentially magnify the intensity and variability of seasonal precipitation distribution. The mid-latitude grasslands of North America are predicted to experience substantial modification in precipitation regimes, with a shift towards drier summers and wetter spring and fall seasons. Despite these predictions, little is known concerning the effects of these global climate change drivers or their potential interactive effects on nitrogen (N) cycling processes. The purpose of this study is to quantify seasonal variation in rates of N-mineralization, nitrification, and N-losses via leaching in soil subjected to experimental warming and rainfall manipulation. Research was conducted at the Texas A&M Warming and Rainfall Manipulation (WaRM) Site in College Station where eight 9x18m rainout shelters and two unsheltered controls were established in post oak savanna in 2003. Replicate annual rainfall redistribution treatments (n = 4) are applied at the shelter level (long term mean vs. 40% of summer redistributed to fall and spring with same annual total). Warming treatments (ambient vs. 24-hr IR canopy warming of 1-3°C) were applied to planted monocultures of juniper and little bluestem, and a juniper-grass combination. Both juniper and little bluestem are key species within the post oak savanna region. Plots were sampled from the full factorial design during years six and seven of the WaRM experiment. Soil N-mineralization, nitrification, and N-losses via leaching were assessed quarterly for two years using the resin core incubation method. Rainfall, species composition, and time interacted significantly to influence both ammonification and nitrification. Highest rates of ammonification (0.115 mg NH4+ -N/ kg soil/day) occurred in grass monocultures during summer in the control rainfall plots, whereas highest rates of nitrification (1.581 mg NO2-/NO3- -N/ kg soil/day) were in juniper monocultures during fall and spring in redistributed rainfall treatments. Lowest rates of ammonification (0.002 mg NH4+ -N/ kg soil/day) occurred under grass during fall and winter in redistributed rainfall plots, while lowest rates of nitrification (-0.016 mg NO2-/NO3- -N/ kg soil/day) were in juniper-grass mixtures during fall and winter in redistributed rainfall plots. Losses of N through leaching were highest in the same treatment combinations that had high rates of nitrification. Results indicate that while rainfall redistribution interacted strongly with other experimental treatments to influence rates of N-transformations, warming had little effect. These changes in rates of N-transformations and leaching losses in response to global change drivers may have important implications for net primary production, soil fertility, carbon storage, trace gas fluxes, water quality, interspecific interactions, and vegetation dynamics in the oak savanna region of North America.
HONO (nitrous acid) emissions from acidic northern soils
NASA Astrophysics Data System (ADS)
Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Sulassaari, Sirkka; Martikainen, Pertti J.
2014-05-01
The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). There are missing sources of HONO when considering the chemical reactions in the atmosphere. Soil could be such a missing source. Emissions of HONO from soils studied in laboratory incubations have been recently reported. The soil-derived HONO has been connected to soil nitrite (NO2-) and a study with an ammonium oxidizing bacterium has shown that HONO could be produced in ammonium oxidation. Our hypothesis was that boreal acidic soils with high nitrification activity could be important sources of HONO. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle processes. In contrast to drained peatlands, natural peatlands with high water table and boreal coniferous forests on mineral soils with low nitrification capacity had low HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low nitrification rate and low availability of nitrite in these soils are the likely reasons for their low HONO production rates. We studied the origin of HONO in one drained peat soil by inhibiting nitrification with acetylene. Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus ammonium oxidation is not the direct mechanism for the HONO emission in this soil. It is still an open question if HONO originates directly from some microbial process like ammonium oxidation or chemically from nitrite produced in microbial processes.
NASA Astrophysics Data System (ADS)
Chen, Jie; Xiao, Guoliang; Kuzyakov, Yakov; Jenerette, G. Darrel; Ma, Ying; Liu, Wei; Wang, Zhengfeng; Shen, Weijun
2017-05-01
The frequency of dry-season droughts and wet-season storms has been predicted to increase in subtropical areas in the coming decades. Since subtropical forest soils are significant sources of N2O and NO3-, it is important to understand the features and determinants of N transformation responses to the predicted precipitation changes. A precipitation manipulation field experiment was conducted in a subtropical forest to reduce dry-season precipitation and increase wet-season precipitation, with annual precipitation unchanged. Net N mineralization, net nitrification, N2O emission, nitrifying (bacterial and archaeal amoA) and denitrifying (nirK, nirS and nosZ) gene abundance, microbial biomass carbon (MBC), extractable organic carbon (EOC), NO3-, NH4+ and soil water content (SWC) were monitored to characterize and explain soil N transformation responses. Dry-season precipitation reduction decreased net nitrification and N mineralization rates by 13-20 %, while wet-season precipitation addition increased both rates by 50 %. More than 20 % of the total variation of net nitrification and N mineralization could be explained by microbial abundance and SWC. Notably, archaeal amoA abundance showed the strongest correlation with net N transformation rates (r ≥ 0.35), suggesting the critical role of archaeal amoA abundance in determining N transformations. Increased net nitrification in the wet season, together with large precipitation events, caused substantial NO3- losses via leaching. However, N2O emission decreased moderately in both dry and wet seasons due to changes in nosZ gene abundance, MBC, net nitrification and SWC (decreased by 10-21 %). We conclude that reducing dry-season precipitation and increasing wet-season precipitation affect soil N transformations through altering functional microbial abundance and MBC, which are further affected by changes in EOC and NH4+ availabilities.
Tran, N H; Nguyen, V T; Urase, T; Ngo, H H
2014-06-01
The biodegradation of the six artificial sweetening agents including acesulfame (ACE), aspartame (ASP), cyclamate (CYC), neohesperidindihydrochalcone (NHDC), saccharin (SAC), and sucralose (SUC) by nitrifying activated sludge was first examined. Experimental results showed that ASP and NHDC were the most easily degradable compounds even in the control tests. CYC and SAC were efficiently biodegraded by the nitrifying activated sludge, whereas ACE and SUC were poorly removed. However, the biodegradation efficiencies of the ASs were increased with the increase in initial ammonium concentrations in the bioreactors. The association between nitrification and co-metabolic degradation was investigated and a linear relationship between nitrification rate and co-metabolic biodegradation rate was observed for the target artificial sweeteners (ASs). The contribution of heterotrophic microorganisms and autotrophic ammonia oxidizers in biodegradation of the ASs was elucidated, of which autotrophic ammonia oxidizers played an important role in the biodegradation of the ASs, particularly with regards to ACE and SUC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.
2016-01-01
The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.
Stoliker, Deborah L; Repert, Deborah A; Smith, Richard L; Song, Bongkeun; LeBlanc, Denis R; McCobb, Timothy D; Conaway, Christopher H; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B
2016-04-05
The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.
Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.
Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas
2012-02-01
Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.
Inhibitory effect of cyanide on wastewater nitrification ...
The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN- used in the batch assays were 0.03, 0.06, 0.1 and 1.0 mg/L. There was considerable decrease in SOUR with increasing dosages of CN-. A decrease of more than 50% in nitrification activity was observed at 0.1 mg/L CN-. Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN- dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric heme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. Nitrification is the first step of nitrogen removal is wastewater, and it is susceptible to inhibition by many industrial chemical. We looked at
Ammonia oxidisers in a non-nitrifying Brazilian savanna soil.
Catão, Elisa C P; Thion, Cécile; Krüger, R H; Prosser, James I
2017-11-01
Low nitrification rates in Brazilian savanna (Cerrado) soils have puzzled researchers for decades. Potential mechanisms include biological inhibitors, low pH, low microbial abundance and low soil moisture content, which hinders microbial activity, including ammonia oxidation. Two approaches were used to evaluate these potential mechanisms: (i) manipulation of soil moisture and pH in microcosms containing Cerrado soil and (ii) assessment of nitrification inhibition in slurries containing mixtures of Cerrado soil and an actively nitrifying agricultural soil. Despite high ammonium concentration in Cerrado soil microcosms, little NO3- accumulation was observed with increasing moisture or pH, but in some Cerrado soil slurries, ammonia-oxidising archaea (AOA) amoA transcripts were detected after 14 days. In mixed soil slurries, the final NO3- concentration reflected the initial proportions of agricultural and Cerrado soils in the mixture, providing no evidence of nitrification inhibitors in Cerrado soil. AOA community denaturing gradient gel electrophoresis profiles were similar in the mixed and nitrifying soils. These results suggest that nitrification in Cerrado soils is not constrained by water availability, ammonium availability, low pH or biological inhibitors, and alternative potential explanations for low nitrification levels are discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Huang, Fei; Pan, Luqing; Lv, Na; Tang, Xianming
2017-11-01
The development of an intensive aquaculture industry has been accompanied by increasing environmental impacts, especially nitrogen pollution. In this study, a novel halophilic bacterium capable of heterotrophic nitrification and aerobic denitrification was isolated from mariculture water and identified as Bacillus litoralis N31. The efficiency of ammonium, nitrite and nitrate removal by N31 were 86.3%, 89.3% and 89.4%, respectively, after a 48-h cultivation in sole N-source medium with initial nitrogen approximately 20 mg/L. However, ammonium was removed preferentially, and no obvious nitrite accumulated during the simultaneous nitrification and denitrification process in mixed N-source media. The existence of hao, napA and nirS genes further proved the heterotrophic nitrification-aerobic denitrification capability of N31. The optimal conditions for ammonium removal were 30°C, initial pH 7.5-8.5, C/N ratio 5-20 and salinity 30-40‰, and the nitrification rate of N31 increased with increasing initial [Formula: see text] from 10 to 250 mg/L. Biosecurity assessment with shrimp indicated that strain N31 could be applied in the marine aquaculture industry safely for culture water remediation and effluent treatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong
2018-06-01
Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.
NASA Astrophysics Data System (ADS)
Mushinski, R. M.; Boutton, T. W.; Gentry, T. J.; Dorosky, R. J.
2016-12-01
The rate-limiting step in nitrification, ammonia oxidation, is performed by both ammonia oxidizing bacteria (AOB) and archaea (AOA); however, reports on the relative contribution of each of these groups to forest soil nitrification has varied. We coupled qPCR and next generation sequencing of the amoA gene to a whole-soil assay that stimulates nitrification and allows for the discrimination of AOA- from AOB-activity using 1-octyne, which inhibits the activity of the bacterial ammonia monooxygenase. Soils, to a depth of 1 meter, were collected from replicated (n = 3) loblolly pine (Pinus taeda L.) stands subjected to three different intensities of timber harvest (i.e., unharvested old growth stands, bole-only harvest stands, and whole-tree harvest + forest floor removal stands). The abundance of both bacterial and archaeal amoA were influenced by harvest method and soil depth; furthermore, archaeal amoA was 13x more abundant than bacterial amoA, across all soil depths. Sequencing and subsequent annotation of the ammonia oxidizing community revealed that the AOA were dominated by Crenarchaeota and AOB were dominated by Nitrosospira. Surface mineral soils (0-10 cm) amended with 1-octyne revealed that approximately 67-86% of total nitrification can be attributable to AOA activity. The highest rates of nitrification (total and 1-octyne resistant) occurred in the soils taken from the unharvested reference stands which were significantly greater than harvested stands. We can conclude that in this pine forest system, AOA dominates AOB in regards to amoA copy number and ammonia oxidizing activity. Not only is this study one of the first to investigate the ammonia-oxidizing population in southern pine forests, but also illustrates that timber harvest can lead to long-term alterations in nitrogen cycle processes.
Rapid nitrification of wastewater ammonium near coastal ocean outfalls, Southern California, USA
NASA Astrophysics Data System (ADS)
McLaughlin, Karen; Nezlin, Nikolay P.; Howard, Meredith D. A.; Beck, Carly D. A.; Kudela, Raphael M.; Mengel, Michael J.; Robertson, George L.
2017-02-01
In the southern California Bight (SCB), there has been a longstanding hypothesis that anthropogenic nutrient loading is insignificant compared to the nutrient loading from upwelling. However, recent studies have demonstrated that, in the nearshore environment, nitrogen (N) flux from wastewater effluent is equivalent to the N flux from upwelling. The composition of the N pool and N:P ratios of wastewater and upwelled water are very different and the environmental effects of wastewater discharges on coastal systems are not well characterized. Capitalizing on routine maintenance of the Orange County Sanitation District's ocean outfall, wherein a wastewater point source was "turned off" in one area and "turned on" in another for 23 days, we were able to document changes in coastal N cycling, specifically nitrification, related to wastewater effluent. A "hotspot" of ammonium (NH4+) and nitrite (NO2-) occurred over the ocean outfall under normal operations and nitrification rates were significantly higher offshore when the deeper outfall pipe was operating. These rates were sufficiently high to transform all effluent NH4+ to nitrate (NO3-). The dual isotopic composition of dissolved NO3- (δ15NNO3 and δ18ONO3) indicated that N-assimilation and denitrification were low relative to nitrification, consistent with the relatively low chlorophyll and high dissolved oxygen levels in the region during the study. The isotopic composition of suspended particulate organic matter (POM) recorded low δ15NPN and δ13CPN values around the outfall under normal operations suggesting the incorporation of "nitrified" NO3- and wastewater dissolved organic carbon into POM. Our results demonstrate the critical role of nitrification in nitrogen cycling in the nearshore environment of urban oceans.
Awolusi, Oluyemi Olatunji; Nasr, Mahmoud; Kumari, Sheena; Bux, Faizal
2016-07-01
Nitrification at a full-scale activated sludge plant treating municipal wastewater was monitored over a period of 237 days. A combination of fluorescent in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qPCR) were used for identifying and quantifying the dominant nitrifiers in the plant. Adaptive neuro-fuzzy inference system (ANFIS), Pearson's correlation coefficient, and quadratic models were employed in evaluating the plant operational conditions that influence the nitrification performance. The ammonia-oxidizing bacteria (AOB) abundance was within the range of 1.55 × 10(8)-1.65 × 10(10) copies L(-1), while Nitrobacter spp. and Nitrospira spp. were 9.32 × 10(9)-1.40 × 10(11) copies L(-1) and 2.39 × 10(9)-3.76 × 10(10) copies L(-1), respectively. Specific nitrification rate (qN) was significantly affected by temperature (r 0.726, p 0.002), hydraulic retention time (HRT) (r -0.651, p 0.009), and ammonia loading rate (ALR) (r 0.571, p 0.026). Additionally, AOB was considerably influenced by HRT (r -0.741, p 0.002) and temperature (r 0.517, p 0.048), while HRT negatively impacted Nitrospira spp. (r -0.627, p 0.012). A quadratic combination of HRT and food-to-microorganism (F/M) ratio also impacted qN (r (2) 0.50), AOB (r (2) 0.61), and Nitrospira spp. (r (2) 0.72), while Nitrobacter spp. was considerably influenced by a polynomial function of F/M ratio and temperature (r (2) 0.49). The study demonstrated that ANFIS could be used as a tool to describe the factors influencing nitrification process at full-scale wastewater treatment plants.
NASA Astrophysics Data System (ADS)
Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.
2015-10-01
The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.
Humic fractions of forest, pasture and maize crop soils resulting from microbial activity
Tavares, Rose Luiza Moraes; Nahas, Ely
2014-01-01
Humic substances result from the degradation of biopolymers of organic residues in the soil due to microbial activity. The objective of this study was to evaluate the influence of three different ecosystems: forest, pasture and maize crop on the formation of soil humic substances relating to their biological and chemical attributes. Microbial biomass carbon (MBC), microbial respiratory activity, nitrification potential, total organic carbon, soluble carbon, humic and fulvic acid fractions and the rate and degree of humification were determined. Organic carbon and soluble carbon contents decreased in the order: forest > pasture > maize; humic and fulvic acids decreased in the order forest > pasture=maize. The MBC and respiratory activity were not influenced by the ecosystems; however, the nitrification potential was higher in the forest than in other soils. The rate and degree of humification were higher in maize soil indicating greater humification of organic matter in this system. All attributes studied decreased significantly with increasing soil depth, with the exception of the rate and degree of humification. Significant and positive correlations were found between humic and fulvic acids contents with MBC, microbial respiration and nitrification potential, suggesting the microbial influence on the differential formation of humic substances of the different ecosystems. PMID:25477932
Lima, P S; Dezotti, M; Bassin, J P
2016-06-01
A pre-anoxic MBBR system was subjected to increasing organic loading rates up to 18 gCOD/(m(2) day). At 3 gCOD/(m(2) day), most of the incoming organic matter was removed via denitrification. However, at higher loads, anoxic COD removal became limited by the nitrite/nitrate supply from the aerobic reactor, which assumed an important role in this conversion. Despite the application of low dissolved oxygen (DO) levels (<2 mg/L) in this tank, nitrification was observed to be nearly complete until 8 gCOD/(m(2) day). As the organic input was increased, the maximum specific nitrifying activity gradually declined. Activity tests suggested that an oxygen-limited environment was established in the biofilm. At lower loads [3-8 gCOD/(m(2) day)], the nitrification product obtained was affected by the DO concentration, whereas from 16 to 21 gCOD/(m(2) day), nitrite/nitrate profiles were likely associated with microbial stratification in the biofilm. The results also indicated that the role of the suspended biomass in the overall nitrification and denitrification can be very significant in high loaded MBBRs and should not be neglected, even at low HRTs.
How partial nitrification could improve reclaimed wastewater transport in long pipes.
Delgado, S; Alvarez, M; Rodríguez-Gómez, L E; Elmaleh, S; Aguiar, E
2001-01-01
Reclaimed wastewater transport is studied in a concrete-lined cast iron pipe, where a nitrification-denitrification process occurs. The pipe is part of the Reuse System of Reclaimed Wastewater of South Tenerife (Spain), 0.6 m in diameter and 61 km long. In order to improve wastewater quality, at 10 km from the inlet there is injection of fresh water saturated in dissolved oxygen (DO), after which a fast nitrification process usually appears (less than two hours of space time). The amount of oxidized nitrogen compounds produced varies between 0.8 and 4.4 mg/l NOx(-)-N. When DO has disappeared, a denitrification process begins. The removal of nitrite is complete at the end of the pipe, whereas the nitrate does not disappear completely, leaving a concentration of about 0.4-0.5 mg/l. For a COD/NOx(-)-N ratio higher than 5, a first order nitrification rate in NOx(-)-N has resulted, with the constant k20 = 0.079 h-1, for a NOx(-)-N concentration range of 0.8-4.4 mg/l. Finally the following temperature dependency for the first order denitrification rate constant has been found: k = k20 x 1 x 15T-20. Although nitrogen could be used as nutrient in the agricultural reuse, its removal from reclaimed wastewater could be useful in order to diminish the chlorine needs for reclaimed wastewater disinfection.
Simulation of nitrous oxide emissions at field scale using the SPACSYS model
Wu, L.; Rees, R.M.; Tarsitano, D.; Zhang, Xubo; Jones, S.K.; Whitmore, A.P.
2015-01-01
Nitrous oxide emitted to the atmosphere via the soil processes of nitrification and denitrification plays an important role in the greenhouse gas balance of the atmosphere and is involved in the destruction of stratospheric ozone. These processes are controlled by biological, physical and chemical factors such as growth and activity of microbes, nitrogen availability, soil temperature and water availability. A comprehensive understanding of these processes embodied in an appropriate model can help develop agricultural mitigation strategies to reduce greenhouse gas emissions, and help with estimating emissions at landscape and regional scales. A detailed module to describe the denitrification and nitrification processes and nitrogenous gas emissions was incorporated into the SPACSYS model to replace an earlier module that used a simplified first-order equation to estimate denitrification and was unable to distinguish the emissions of individual nitrogenous gases. A dataset derived from a Scottish grassland experiment in silage production was used to validate soil moisture in the top 10 cm soil, cut biomass, nitrogen offtake and N2O emissions. The comparison between the simulated and observed data suggested that the new module can provide a good representation of these processes and improve prediction of N2O emissions. The model provides an opportunity to estimate gaseous N emissions under a wide range of management scenarios in agriculture, and synthesises our understanding of the interaction and regulation of the processes. PMID:26026411
Zheng, Yanling; Hou, Lijun; Liu, Min; Newell, Silvia E; Yin, Guoyu; Yu, Chendi; Zhang, Hongli; Li, Xiaofei; Gao, Dengzhou; Gao, Juan; Wang, Rong; Liu, Cheng
2017-08-01
Silver nanoparticles (AgNPs) are the most common materials in nanotechnology-based consumer products globally. Because of the wide application of AgNPs, their potential environmental impact is currently a highly topical focus of concern. Nitrification is one of the processes in the nitrogen cycle most susceptible to AgNPs but the specific effects of AgNPs on nitrification in aquatic environments are not well understood. We report the influence of AgNPs on nitrification and associated nitrous oxide (N 2 O) production in estuarine sediments. AgNPs inhibited nitrification rates, which decreased exponentially with increasing AgNP concentrations. The response of nitrifier N 2 O production to AgNPs exhibited low-dose stimulation (<534, 1476, and 2473 μg liter -1 for 10-, 30-, and 100-nm AgNPs, respectively) and high-dose inhibition (hormesis effect). Compared with controls, N 2 O production could be enhanced by >100% at low doses of AgNPs. This result was confirmed by metatranscriptome studies showing up-regulation of nitric oxide reductase (norQ) gene expression in the low-dose treatment. Isotopomer analysis revealed that hydroxylamine oxidation was the main N 2 O production pathway, and its contribution to N 2 O emission was enhanced when exposed to low-dose AgNPs. This study highlights the molecular underpinnings of the effects of AgNPs on nitrification activity and demonstrates that the release of AgNPs into the environment should be controlled because they interfere with nitrifying communities and stimulate N 2 O emission.
Ambient groundwater flow diminishes nitrogen cycling in streams
NASA Astrophysics Data System (ADS)
Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.
2017-12-01
Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.
Hewawasam, Choolaka; Matsuura, Norihisa; Takimoto, Yuya; Hatamoto, Masashi; Yamaguchi, Takashi
2018-05-26
A rotational sponge (RS) reactor was proposed as an alternative sewage treatment process. Prior to the application of an RS reactor for sewage treatment, this study evaluated reactor performance with regard to organic removal, nitrification, and nitrogen removal and sought to optimize the rotational speed and hydraulic retention time (HRT) of the system. RS reactor obtained highest COD removal, nitrification, and nitrogen removal efficiencies of 91%, 97%, and 65%, respectively. For the optimization, response surface methodology (RSM) was employed and optimum conditions of rotational speed and HRT were 18 rounds per hour and 4.8 h, respectively. COD removal, nitrification, and nitrogen removal efficiencies at the optimum conditions were 85%, 85%, and 65%, respectively. Corresponding removal rates at optimum conditions were 1.6 kg-COD m -3 d -1 , 0.3 kg-NH 4 + -N m -3 d -1 , and 0.12 kg-N m -3 d -1 . Microbial community analysis revealed an abundance of nitrifying and denitrifying bacteria in the reactor, which contributed to nitrification and nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria.
Hovanec, T A; DeLong, E F
1996-01-01
Three nucleic acid probes, two for autotrophic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria and one for alpha subdivision nitrite-oxidizing bacteria, were developed and used to study nitrifying bacterial phylotypes associated with various freshwater and seawater aquarium biofilters. Nitrosomonas europaea and related species were detected in all nitrifying seawater systems and accounted for as much as 20% of the total eubacterial rRNA. In contrast, nitrifying bacteria belonging to the beta-proteobacterial subdivision were detected in only two samples from freshwater aquaria showing vigorous nitrification rates. rRNA originating from nitrite-oxidizing alpha subdivision proteobacteria was not detected in samples from either aquarium environment. The data obtained indicate that chemolithotrophic ammonia oxidation in the freshwater aquaria was not due to beta-proteobacterial phylotypes related to members of the genus Nitrosomonas and their close relatives, the organisms usually implicated in freshwater nitrification. It is likely that nitrification in natural environments is even more complex than nitrification in these simple systems and is less well characterized with regard to the microorganisms responsible. PMID:8702281
Xu, Hanli; Wang, Cunbao; Liang, Zhiwei; He, Liyi; Wu, Weixiang
2015-04-01
The differences in the structure and component characteristics of partial nitrification biofilms between autotrophic and heterotrophic conditions were investigated in this work. Three-dimensional excitation-emission matrix fluorescence spectroscopy (EEM), fluorescence staining, and confocal laser scanning microscopy (CLSM) were used to determine differences in the architecture and extracellular polymeric substance (EPS) distribution of the autotrophic and heterotrophic biofilms. Partial nitrification was successfully achieved, and the results demonstrated that an appropriate amount of organic carbon (chemical oxygen demand (COD)/N = 2.6) is advantageous for obtaining better partial nitrification. The final ammoniation and nitrosation rates achieved were 97 and 99 %, respectively. Proteins (PN) and polysaccharides (PS) were dominant in the tightly bound EPS (TB-EPS) of autotrophic and heterotrophic biofilms, with PN/PS ratios of 0.96 and 0.69, respectively. Proteins, lipids, α-D-glucopyranose polysaccharides, and nucleic acids were mostly present within the layers of biofilms, but they were distributed in the upper-middle portion of the autotrophic biofilm and increased with depth from the upper layer in the heterotrophic biofilms.
The effect of nitrification in the oxygen balance of the Upper Chattahoochee River, Georgia
Ehlke, Theodore A.
1979-01-01
Oxygen consumption as a result of nitrification, and carbonaceous bacterial oxidation were compared in a 108 kilometer reach of the Chattahoochee River, Georgia. Nitrogenous and carbonaceous oxygen consumption were separated by using an inhibitor of nitrification 1-allyl-2-thiourea. The comparison was conducted in the laboratory using samples collected from the water column. Nitrification accounted for 38 to 52 percent of the total oxygen consumption. Nitrifying bacteria were enumerated from the same reach of the river. The population of Nitrosomonas ranged from 10 to 1,000 per milliliter in the water column and 100 to 100,000 per gram of benthic sediment. The nitrobacter population ranged from 10 to 100 per milliliter in the water column and 100 to 1,000 per gram in the benthic sediment. The concentration of ammonium, nitrite, and nitrate as N was determined from water samples collected throughout the study reach. The average rate of ammonium disappearance and of nitrate appearance was 0.02 milligram per liter per hour of flow time. (Woodard-USGS)
Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria.
Martens-Habbena, Willm; Berube, Paul M; Urakawa, Hidetoshi; de la Torre, José R; Stahl, David A
2009-10-15
The discovery of ammonia oxidation by mesophilic and thermophilic Crenarchaeota and the widespread distribution of these organisms in marine and terrestrial environments indicated an important role for them in the global nitrogen cycle. However, very little is known about their physiology or their contribution to nitrification. Here we report oligotrophic ammonia oxidation kinetics and cellular characteristics of the mesophilic crenarchaeon 'Candidatus Nitrosopumilus maritimus' strain SCM1. Unlike characterized ammonia-oxidizing bacteria, SCM1 is adapted to life under extreme nutrient limitation, sustaining high specific oxidation rates at ammonium concentrations found in open oceans. Its half-saturation constant (K(m) = 133 nM total ammonium) and substrate threshold (
Tatari, K; Smets, B F; Albrechtsen, H-J
2013-10-15
A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dai, Yu; Di, Hong J; Cameron, Keith C; He, Ji-Zheng
2013-11-01
Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) are important drivers of a key step of the nitrogen cycle - nitrification, which affects the production of the potent greenhouse gas, nitrous oxide (N2O). A field experiment was conducted to determine the effect of nitrogen application rates and the nitrification inhibitor dicyandiamide (DCD) on the abundance of AOB and AOA and on N2O emissions in a grazed pasture soil. Nitrogen (N) was applied at four different rates, with urea applied at 50 and 100 kg N ha(-1) and animal urine at 300 and 600 kg N ha(-1). DCD was applied to some of the N treatments at 10 kg ha(-1). The results showed that the AOB amoA gene copy numbers were greater than those of AOA. The highest ratio of the AOB to AOA amoA gene copy numbers was 106.6 which occurred in the urine-N 600 treatment. The AOB amoA gene copy numbers increased with increasing nitrogen application rates. DCD had a significant impact in reducing the AOB amoA gene copy numbers especially in the high nitrogen application rates. N2O emissions increased with the N application rates. DCD had the most significant effect in reducing the daily and total N2O emissions in the highest nitrogen application rate. The greatest reduction of total N2O emissions by DCD was 69% in the urine-N 600 treatment. The reduction in the N2O emission factor by DCD ranged from 58% to 83%. The N2O flux and NO3(-)-N concentrations were significantly correlated to the growth of AOB, rather than AOA. This study confirms the importance of AOB in nitrification and the effect of DCD in inhibiting AOB growth and in decreasing N2O emissions in grazed pasture soils under field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Chiemchaisri, C; Yamamoto, K
2005-01-01
Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.
Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil
Zhao, Jun; Wang, Baozhan
2015-01-01
Paddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaeal amoA gene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance of Nitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), and Nitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of 13C-labeled DNA further revealed that 13CO2 was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA and Nitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated with Nitrosospira sp. strain L115 and the Nitrosospira multiformis lineage and that the 13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “Candidatus Nitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “Candidatus Nitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields. PMID:25724959
Zhang, Xin; Zhang, Daijun; Lu, Peili; Bai, Cui; Xiao, Pengying
2011-01-01
Based on the structure of the hybrid respirometer previously developed in our group, a novel implementation for titrimetry was developed, in which two pH electrodes were installed at the inlet and outlet of the measuring cell. The software capable of digital filtering and titration time delay correction was developed in LabVIEW. The hardware and software of the titrimeter and the respirometer were integrated to construct a novel system of respirometry-titrimetry. The system was applied to monitor a batch nitrification process. The obtained profiles of oxygen uptake rate (OUR) and hydrogen ion production rate (HPR) are consistent with each other and agree with the principle of the biological nitrification reaction. According to the OUR and HPR measurements, the oxidized ammonium concentrations were estimated accurately. Furthermore, the endpoint of ammonium oxidation was identified with much higher sensitivity by the HPR measurement. The system could be potentially used for on-line monitoring of biochemical reactions occurring in any kind of bioreactors because its measuring cell is completely independent of the bioreactor.
Majumdar, Deepanjan
2002-06-01
A laboratory incubation study was undertaken to study nitirification and N2O emission in an alluvial, sandy loam soil (typic ustochrept), fertilized with urea and urea combined with different levels of two nitrification inhibitors viz. karanjin and dicyandiamide (DCD). Karanjin [a furanoflavonoid, obtained from karanja (Pongamia glabra Vent.) seeds] and DCD were incorporated at the rate of 5%, 10%, 15%, 20% and 25% of applied urea-N (100 mg kg(-1) soil), to the soil (100 g) adjusted to field capacity moisture content. Mean N2O flux was appreciably reduced on addition of the inhibitors with urea. Amounts of nitrified N (i.e. (NO3- + NO2-)-N) in total inorganic N (i.e. (NO3 + NO2- + NH4+)-N) in soil were found to be much lower on the addition of karanjin with urea (2-8%) as compared to urea plus DCD (14-66%) during incubation, indicating that karanjin was much more potent nitrification inhibitor than DCD. Nitrification inhibition was appreciable on the application of different levels of karanjin (62-75%) and DCD (9-42%). Cumulative N2O-N loss was found to be in the range of 0.5-80% of the nitrified N at different stages of incubation. Application of karanjin resulted in higher mitigation of total N2O-N emission (92-96%) when compared with DCD (60-71%).
Cytryn, Eddie; Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner
2012-09-01
Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems.
Levkovitch, Irit; Negreanu, Yael; Dowd, Scot; Frenk, Sammy; Silber, Avner
2012-01-01
Soilless medium-based horticulture systems are highly prevalent due to their capacity to optimize growth of high-cash crops. However, these systems are highly dynamic and more sensitive to physiochemical and pH perturbations than traditional soil-based systems, especially during nitrification associated with ammonia-based fertilization. The objective of this study was to assess the impact of nitrification-generated acidification on ammonia oxidation rates and nitrifying bacterial community dynamics in soilless growth media. To achieve this goal, perlite soilless growth medium from a commercial bell pepper greenhouse was incubated with ammonium in bench-scale microcosm experiments. Initial quantitative real-time PCR analysis indicated that betaproteobacterial ammonia oxidizers were significantly more abundant than ammonia-oxidizing archaea, and therefore, research focused on this group. Ammonia oxidation rates were highest between 0 and 9 days, when pH values dropped from 7.4 to 4.9. Pyrosequencing of betaproteobacterial ammonia-oxidizing amoA gene fragments indicated that r-strategist-like Nitrosomonas was the dominant ammonia-oxidizing bacterial genus during this period, seemingly due to the high ammonium concentration and optimal growth conditions in the soilless media. Reduction of pH to levels below 4.8 resulted in a significant decrease in both ammonia oxidation rates and the diversity of ammonia-oxidizing bacteria, with increased relative abundance of the r-strategist-like Nitrosospira. Nitrite oxidizers (Nitrospira and Nitrobacter) were on the whole more abundant and less sensitive to acidification than ammonia oxidizers. This study demonstrates that nitrification and nitrifying bacterial community dynamics in high-N-load intensive soilless growth media may be significantly different from those in in-terra agricultural systems. PMID:22773643
Wang, Pengcheng; Di, Hong J; Cameron, Keith C; Tan, Qiling; Podolyan, Andriy; Zhao, Xiaohu; McLaren, Ron G; Hu, Chengxiao
2017-01-01
An incubation experiment was conducted to investigate the response of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and the nitrification rate to the contamination of Cu, Zn, and Cd in two New Zealand grassland soils. The soils spiked with different concentrations of Cu (20 and 50 mg kg -1 ), Zn (20 and 50 mg kg -1 ), and Cd (2 and 10 mg kg -1 ) were incubated for 14 days and then treated with 500 mg kg -1 urine-N before continuing incubation for a total of 115 days. Soils were sampled at intervals throughout the incubation. The nitrification rate in soils at each sampling period was determined, and the abundance of AOB and AOA was measured by real-time quantification polymerase chain reaction (qPCR) assay of the amoA gene copy numbers. The results revealed that moderate trace metal stress did not significantly affect the abundance of AOB and AOA in the two soils, probably due to the high organic matter content of the soils which would have reduced the toxic effect of the metals. Nitrification rates were much greater and the observable nitrification period was much shorter in the dairy farm (DF) soil, in which the AOB and AOA abundances were greater than those of the mixed cropping farm (MF) soil. AOB were shown to grow under high nitrogen conditions, whereas AOA were shown to grow under low N environments, with different metal concentrations. Therefore, nitrogen status rather than metal applications was the main determining factor for AOB and AOA growth in the two soils studied.
Harris, S.H.; Smith, R.L.
2009-01-01
Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for < 12% of the ammonium consumed, indicating that other ammonium-consuming processes were also occurring. In dark incubations, nitrite and nitrate consumption were dominant processes, while ammonium was produced rather than consumed. At a downstream location nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.
NASA Astrophysics Data System (ADS)
Challenor, T.; Damashek, J.; Tolar, B. B.; Francis, C.; Casciotti, K. L.
2016-12-01
Nitrification, the oxidation of ammonium (NH4+) to nitrate (NO3-) by a coterie of ammonia-oxidizing bacteria (AOB) and archaea (AOA), is a crucial step in removing nitrogen from marine ecosystems. The Sacramento/San Joaquin River delta receives ammonium-laden effluent from the Sacramento Regional Wastewater Treatment Plant (SRWTP) and nitrate from agriculture runoff. The system provides freshwater to irrigate the Central Valley and drinking water for many millions of people. In recent years, however, this environment has experienced ecological turmoil - the Pelagic Organism Decline (POD) refers to a die-out of fish and other species over the course of three decades. One explanation implicated excessive ammonium input, claiming it limited primary productivity and hurt pelagic fish down the line. A new hypothesis, however, posits that the ecosystem may soon face the opposite problem: over-productivity and hypoxia due to increased light availability and reduced turbidity. Studying the rate of nitrification and the makeup of the microbial community will further elucidate how nutrient loading has impacted this ecosystem. Nitrification rates were calculated from water samples collected in the Sacramento River starting at the SRWTP and moving downstream. Samples were spiked with 15N-labeled ammonium and incubated for 24 hours in triplicate. Four time-points were extracted and the "denitrifier" method was used to measure the isotopic ratio of N over time. DNA and RNA were extracted from filtered water at each site and PCR and qPCR assays were used targeting the amoA gene, which encodes the α-subunit of ammonia monooxygenase, responsible for oxidizing ammonium to nitrite (NO2-). Consistent with previous nitrification data, rates were highest in the lower river downstream of the SRWTP, where nitrate concentrations were correspondingly elevated. AOB predominated in the ammonia oxidizing community, and some clades were unique to this ecosystem. Nitrifying microbes provide an ecological service in reducing ammonium availability, a goal of wastewater regulation. Monitoring the activity of the Sacramento River's nitrifying community will be important for analyzing how this ecosystem responds to future changes that will impact populations of fish and people living in California.
Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua
2018-04-01
The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.
Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite
NASA Technical Reports Server (NTRS)
McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.
1999-01-01
As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.
Accelerated degradation of methyl iodide by agrochemicals.
Zheng, Wei; Papiernik, Sharon K; Guo, Mingxin; Yates, Scott R
2003-01-29
The fumigant methyl iodide (MeI, iodomethane) is considered a promising alternative to methyl bromide (MeBr) for soil-borne pest control in high-cash-value crops. However, the high vapor pressure of MeI results in emissions of a significant proportion of the applied mass into the ambient air, and this may lead to pollution of the environment. Integrating the application of certain agrochemicals with soil fumigation provides a novel approach to reduce excessive fumigant emissions. This study investigated the potential for several agrochemicals that are commonly used in farming operations, including fertilizers and nitrification inhibitors, to transform MeI in aqueous solution. The pseudo-first-order hydrolysis half-life (t(1/2)) of MeI was approximately 108 d, while the transformation of MeI in aqueous solutions containing selected agrochemicals was more rapid, with t(1/2) < 100 d (t(1/2) < 0.5 d in some solutions containing nitrification inhibitors). The influence of these agrochemicals on the rate of MeI degradation in soil was also determined. Adsorption to soil apparently reduced the availability of some nitrification inhibitors in the soil aqueous phase and lowered the degradation rate in soil. In contrast, addition of the nitrification inhibitors thiourea and allylthiourea to soil significantly accelerated the degradation of MeI, possibly due to soil surface catalysis. The t(1/2) of MeI was <20 h in thiourea- and allylthiourea-amended soil, considerably less than that in unamended soil (t(1/2) > 300 h).
Nitrification in a zeoponic substrate
NASA Technical Reports Server (NTRS)
McGilloway, R. L.; Weaver, R. W.; Ming, D. W.; Gruener, J. E.
2003-01-01
Clinoptilolite is a zeolite mineral with high cation exchange capacity used in zeoponic substrates that have been proposed as a solid medium for growing plants or as a fertilizer material. The kinetics of nitrification has not been measured for NH4+ saturated zeoponic substrate. Experiments were conducted to evaluate the production of NO2- and NO3-, and nitrifier populations in zeoponic substrates. Small columns were filled with zeoponic substrate inoculated with a commercial inoculum or soil enrichment culture of nitrifying bacteria. In addition to column studies, a growth chamber study was conducted to evaluate the kinetics of nitrification in zeoponic substrates used to grow radishes (Raphanus sativus L.). The zeoponic substrate provided a readily available source of NH4+, and nitrifying bacteria were active in the substrate. Ammonium oxidation rates in column studies ranged from 5 to 10 micrograms N g-1 substrate h-1, and NO2- oxidation rates were 2 to 9.5 micrograms N g-1 substrate h-1. Rates determined from the growth chamber study were approximately 1.2 micrograms N g-1 substrate h-1. Quantities of NH4+ oxidized to NO2- and NO3- in inoculated zeoponic substrate were in excess of plant up-take. Acidification as a result of NH4+ oxidation resulted in a pH decline, and the zeoponic substrate showed limited buffering capacity.
NASA Astrophysics Data System (ADS)
Ma, Yuexin; Tao, Wei; Liu, Jiao; Liu, Changfa; Li, Jin; Liu, Jichen
2018-03-01
This study examines the impacts of short-term (6 months) fertilization on the community structure and abundance of ammonia-oxidizing betaproteobacteria (β-AOB) and the potential nitrification rate in sediment colonized by Suaeda heteroptera in a saltmarsh located in Shuangtai estuary, China. The sediment samples were collected from plots treated with different amounts of an N fertilizer (urea supplied at 0.1, 0.2, 0.4, and 0.8 g/kg (nitrogen content in dry sediment)), and with different forms of N fertilizers (urea, (NH4)2SO4, and NH4NO3, each supplied at 0.2 g/kg). The fertilizers were applied 1-4 times during the plant-growing season in May, July, August and September of 2013. Untreated plots were included as a control. As revealed in denaturing gradient gel electrophoresis of the 16S rRNA gene, the β-AOB community responded to both the amount and form of N. Real-time quantitative PCR indicated that both abundance and potential nitrification rate of β-AOB increased after N addition, regardless of concentration and form (except NH4NO3). These results provide evidence that short-term N application influences the sediment β-AOB community, β-AOB abundance and potential nitrification rate in a saltmarsh ecosystem.
Lata, J C; Guillaume, K; Degrange, V; Abbadie, L; Lensi, R
2000-01-01
Previous studies have shown that Lamto savannah exhibits two different types of nitrogen cycle with high and low nitrification sites and suggested that the perennial grass Hyparrhenia diplandra is responsible for this duality at a subpopulation level, with one ecotype being thought to be able to inhibit nitrification. The present work aimed to investigate the relationships between nitrification and the roots of H. diplandra at two scales. (i) Site-scale experiments gave new insight into the hypothesized control of nitrification by H. diplandra tussocks: the two ecotypes exhibited opposite influences, inhibition in a low nitrification site (A) and stimulation in a high nitrification site (B). (ii) Decimetric-scale experiments demonstrated close negative or positive relationships (in sites A or B, respectively) between the roots and nitrification (in the 0-10 cm soil layer), showing an unexpectedly high sensitivity of the nitrification process to root density. In both soils, the correlation between the roots and nitrification decreased with depth and practically disappeared in the 20-30 cm soil layer (where the nitrification potential was found to be very low). Therefore, the impact of H. diplandra on nitrification may be viewed as an inhibition-stimulation balance. PMID:10787164
Wild, Birgit; Schnecker, Jörg; Knoltsch, Anna; Takriti, Mounir; Mooshammer, Maria; Gentsch, Norman; Mikutta, Robert; Alves, Ricardo J Eloy; Gittel, Antje; Lashchinskiy, Nikolay; Richter, Andreas
2015-01-01
Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using 15N pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67°N) to steppe (54°N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest. Key Points We compared soil N dynamics of seven ecosystems along a latitudinal transectShifts in N dynamics suggest a decrease in microbial N limitation with depthWe found no decrease in microbial N limitation from arctic to temperate zones PMID:26693204
NASA Astrophysics Data System (ADS)
Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim
2014-05-01
The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited different NH3 oxidation rates. In addition, the enrichment cultures provided the first direct evidence for NH3 oxidation by an AOA from an uncharacterized Thaumarchaeota-AOA lineage. Our results indicate that AOA are functionally heterogeneous, and that the selection of distinct AOA populations by the environment can be determinant for nitrification activity and N availability in soils. Furthermore, our observations emphasize the fact that, disturbances in populations of specific microbial functional groups, such as nitrifiers, constitute potential response mechanisms to environmental changes. These findings are not only relevant for Arctic environments, but have implications for the role of AOA in nitrification in all soils.
Lee, Carson O; Boe-Hansen, Rasmus; Musovic, Sanin; Smets, Barth; Albrechtsen, Hans-Jørgen; Binning, Philip
2014-11-01
Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot and the full-scale filter. Nitrification rates and ammonia-oxidizing bacteria and archaea were quantified throughout the depth of the filter. The ammonium removal capacity of the filter was determined to be 3.4 g NH4-N m(-3) h(-1), which was 5 times greater than the average ammonium loading rate under reference operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal and ammonia-oxidizing bacteria density were strongly stratified, with the highest removal and ammonia-oxidizing bacteria densities at the top of the filter. Cell specific ammonium oxidation rates were on average 0.6 × 10(2) ± 0.2 × 10(2) fg NH4-N h(-1) cell(-1). Our findings indicate that these rapid sand filters can safely remove both nitrite and ammonium over a larger range of loading rates than previously assumed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial catabolic activities are naturally selected by metabolic energy harvest rate.
González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge
2015-12-01
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.
HONO (nitrous acid) emissions from acidic northern soils
NASA Astrophysics Data System (ADS)
Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.
2015-04-01
The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.
Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong
2017-07-03
This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH 3 -N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH 3 -N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.
Simulation of nitrous oxide emissions at field scale using the SPACSYS model.
Wu, L; Rees, R M; Tarsitano, D; Zhang, Xubo; Jones, S K; Whitmore, A P
2015-10-15
Nitrous oxide emitted to the atmosphere via the soil processes of nitrification and denitrification plays an important role in the greenhouse gas balance of the atmosphere and is involved in the destruction of stratospheric ozone. These processes are controlled by biological, physical and chemical factors such as growth and activity of microbes, nitrogen availability, soil temperature and water availability. A comprehensive understanding of these processes embodied in an appropriate model can help develop agricultural mitigation strategies to reduce greenhouse gas emissions, and help with estimating emissions at landscape and regional scales. A detailed module to describe the denitrification and nitrification processes and nitrogenous gas emissions was incorporated into the SPACSYS model to replace an earlier module that used a simplified first-order equation to estimate denitrification and was unable to distinguish the emissions of individual nitrogenous gases. A dataset derived from a Scottish grassland experiment in silage production was used to validate soil moisture in the top 10 cm soil, cut biomass, nitrogen offtake and N2O emissions. The comparison between the simulated and observed data suggested that the new module can provide a good representation of these processes and improve prediction of N2O emissions. The model provides an opportunity to estimate gaseous N emissions under a wide range of management scenarios in agriculture, and synthesises our understanding of the interaction and regulation of the processes. Copyright © 2015. Published by Elsevier B.V.
Effects of drying on nitrification activity in zeoponic medium used for long-term space missions
NASA Technical Reports Server (NTRS)
McGilloway, R. L.; Weaver, R. W.
2004-01-01
One component of a proposed life support system is the use of zeoponic substrates, which slowly release NH4+ into "soil" solution, for the production of plants. Nitrifying bacteria that convert NH4+ to NO3- are among the important microbial components of these systems. Survival of nitrifying bacteria in dry zeoponic substrates is needed, because the substrate would likely be stored in an air-dry state between croppings. Substrate was enriched for nitrifying bacteria and allowed to air-dry in a laminar flow hood. Stored substrate was analyzed for nitrifier survivability by measuring nitrifier activity at the beginning, 3 days, 1, 2, and 3 weeks. After rewetting, activity was approximately 9 micrograms N g-1 h-1 regardless of storage time. Nitrification rates did not decrease during storage. It seems unlikely that drying between plantings would result in practical reductions in nitrification, and reinoculation with nitrifying bacteria would not be necessary.
Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams
NASA Astrophysics Data System (ADS)
Azizian, Morvarid; Boano, Fulvio; Cook, Perran L. M.; Detwiler, Russell L.; Rippy, Megan A.; Grant, Stanley B.
2017-05-01
Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. Here we utilize a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N-cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damköhler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.
Ammonia and nitrite oxidation in the Eastern Tropical North Pacific
NASA Astrophysics Data System (ADS)
Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.
2015-12-01
Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.
Kapoor, V; Elk, M; Li, X; Santo Domingo, J W
2016-08-01
The effect of cyanide (CN(-) ) on nitrification was examined with samples from nitrifying bacterial enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN(-) used in the batch assays were 0·03, 0·06, 0·1 and 1·0 mg l(-1) . There was considerable decrease in SOUR with increasing dosages of CN(-) . A decrease of more than 50% in nitrification activity was observed at 0·1 mg l(-1) CN(-) . Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN(-) dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric haeme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA-based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. The effect of cyanide on nitrifying bacteria was characterized by measuring physiological and transcriptional response. Cyanide was inhibitory to nitrification at concentrations that may be found in industrial waste. The RNA-based function-specific assays represent a mechanistic approach for better understanding the effect of toxic compounds on nitrification activity in wastewater. Moreover, the relative abundance of RNA transcripts can be used to closely track in situ nitrifying bacterial activity which can be used to predict inhibition events, thereby providing a metric to potentially improve performance of wastewater nitrifying systems. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Soil nitrogen dynamics in a river floodplain mosaic.
Shrestha, J; Niklaus, P A; Frossard, E; Samaritani, E; Huber, B; Barnard, R L; Schleppi, P; Tockner, K; Luster, J
2012-01-01
In their natural state, river floodplains are heterogeneous and dynamic ecosystems that may retain and remove large quantities of nitrogen from surface waters. We compared the soil nitrogen dynamics in different types of habitat patches in a restored and a channelized section of a Thur River floodplain (northeast Switzerland). Our objective was to relate the spatiotemporal variability of selected nitrogen pools (ammonium, nitrate, microbial nitrogen), nitrogen transformations (mineralization, nitrification, denitrification), and gaseous nitrogen emission (NO) to soil properties and hydrological processes. Our study showed that soil water content and carbon availability, which depend on sedimentation and inundation dynamics, were the key factors controlling nitrogen pools and processes. High nitrogen turnover rates were measured on gravel bars, characterized by both frequent inundation and high sediment deposition rates, as well as in low-lying alluvial forest patches with a fine-textured, nutrient-rich soil where anaerobic microsites probably facilitated coupled nitrification-denitrification. In contrast, soils of the embankment in the channelized section had comparatively small inorganic nitrogen pools and low transformation rates, particularly those related to nitrate production. Environmental heterogeneity, characteristic of the restored section, favors nitrogen removal by creating sites of high sedimentation and denitrification. Of concern, however, are the locally high NO efflux and the possibility that nitrate could leach from nitrification hotspots. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Shan, Mingjun; Zhang, Yan; Kou, Lihong
2014-01-01
This paper describes the total nitrogen balance, and the direction and degree of nitrogen transformation during the nitrification process of coking wastewater. According to the actual nitrification process, the conventional nitrification kinetic equation was amended. After 48 h of nitrification, the total nitrogen content remained almost the same with error less than 0.6%. The total removal efficiency of NH4(+)-N was 91.1%, in which blow-off, producing cells and transforming to nitrate nitrogen accounted for 1.1, 17.8 and 72.2% respectively. Considering the influences of NH4(+)-N blow-off and conversion from cyanide, thiocyanide and organic nitrogen, the nitrification kinetic equation was amended as μ'=0.82·S/(0.48+S).
Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi
2015-12-01
The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carol E., Adair; Binkley, Dan; Andersen, Douglas C.
2004-01-01
Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m−2 year−1 for years 10–70, and 2.7 g N m−2year−1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.
Soil nitrogen biogeochemical cycles in karst ecosystems, southwest China
NASA Astrophysics Data System (ADS)
Li, Dejun; Chen, Hao; Xiao, Kongcao; Wang, Kelin
2017-04-01
Soil nitrogen (N) status are crucial for ecosystem development and carbon sequestration. Although most terrestrial ecosystems are proposed to be limited by N, some tropical low-land forests have been found to be N saturated. Nevertheless, soil N status in the karst ecosystems of southwest China have not been well assessed so far. In the present study, N status in the karst ecosystems were evaluated based on several lines of evidence. Bulk N content increased rapidly along a post-agricultural succession sequence including cropland, grassland, shrubland, secondary forest and primary forest. Across the sequence, soil N accumulated with an average rate of 12.4 g N m-2 yr-1. Soil N stock recovered to the primary forest level in about 67 years following agricultural abandonment. Nitrate concentrations increased while ammonium concentrations decreased with years following agricultural abandonment. N release from bedrock weathering was likely a potential N source in addition to atmospheric N deposition and biological N fixation. Both gross N mineralization and nitrification (GN) rates decreased initially and then increased greatly following agricultural abandonment. The rate of dissimilatory nitrate reduction to ammonium (DNRA) was highest in the shrubland while lowest in the cropland and forest. Across the vegetation types, DNRA was lowest among the gross rates. Gross ammonium immobilization (GAI) tended to decrease while there was no clear variation pattern for gross nitrate immobilization during the post-agricultural succession. DNRA and nitrate assimilation combined only accounted for 22% to 57% of gross nitrification across the vegetation types. Due to the high nitrate production while low nitrate consumption, net nitrate production was found to vary following the pattern of gross nitrification and explained 69% of soil nitrate variance. Comparison of gross N transformations between a secondary karst forest and an adjacent non-karst forest showed that the gross rates of N mineralization, nitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrate assimilation were significantly greater in the karst forest. Ammonium assimilation was comparable to gross N mineralization, so that ammonium could be efficiently conserved in the non-karst forest. Meanwhile, the produced nitrate was almost completely retained via DNRA and nitrate assimilation. This resulted in a negligible net nitrate production in the non-karst forest. In contrast, ammonium assimilation rate only accounted for half of gross N mineralization rate in the karst forest. DNRA and nitrate assimilation accounted for 21% and 51% of gross nitrification, respectively. Due to relatively low nitrate retention capacity, nitrate was accumulated in the karst forest. Our results indicate that 1) N would not be the limiting nutrient for secondary succession and ecological restoration in the karst region, 2) the decoupling of nitrate consumption with production results in the increase of soil nitrate level and hence nitrate leaching risk during post-agricultural succession in the karst region, and 3) the non-karst forest with red soil holds a very conservative N cycle, but the N cycle in the karst forest is leaky.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guardia, A. de, E-mail: amaury.de-guardia@cemagref.f; Universite Europeenne de Bretagne, F-35000 Rennes; Mallard, P.
This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates andmore » in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.« less
Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Zhao, Ke
2018-03-01
The vegetation-activated sludge process (V-ASP) has been proved to be an environment-friendly decentralized wastewater treatment system with extra esthetic function and less footprint. However, the effects of low temperature on the treatment performance of V-ASP and related improvement methods are rarely investigated, up to now. In this work, the effect of low temperature on nitrification in V-ASP was comprehensively investigated from overall nitrification performance, substrate utilization kinetics, functional enzymatic activities, and microbial community structure shift by comparison with conventional ASP. Bio-augmentation methods in terms of single-time nitrifier-enriched biomass dosage were employed to improve nitrification efficiency in bench- and full-scale systems. The experiment results demonstrated that the NH 4 + -N removal efficiency in V-ASP system decreased when the operational temperature decreased from 30 to 15 °C, and the decreasing extent was rather smaller compared to ASP, as well as ammonium and nitrite oxidation rates and enzymatic activities, which indicated the V-ASP system possesses high resistance to low temperature. With direct dosage of 1.6 mg nitrifier/gSS sludge, the nitrification efficiency in V-ASP was enhanced dramatically from below 50% to above 90%, implying that bio-augmentation was effective for V-ASP whose enzymatic activities and microbial communities were both also improved. The feasibility and effectiveness of bio-augmentation was further confirmed in a full-scale V-ASP system after a long-term experiment which is instructive for the practical application.
Andersson, A; Laurent, P; Kihn, A; Prévost, M; Servais, P
2001-08-01
The impact of temperature on nitrification in biological granular activated carbon (GAC) filters was evaluated in order to improve the understanding of the nitrification process in drinking water treatment. The study was conducted in a northern climate where very cold water temperatures (below 2 degrees C) prevail for extended periods and rapid shifts of temperature are frequent in the spring and fall. Ammonia removals were monitored and the fixed nitrifying biomass was measured using a method of potential nitrifying activity. The impact of temperature was evaluated on two different filter media: an opened superstructure wood-based activated carbon and a closed superstructure activated carbon-based on bituminous coal. The study was conducted at two levels: pilot scale (first-stage filters) and full-scale (second-stage filters) and the results indicate a strong temperature impact on nitrification activity. Ammonia removal capacities ranged from 40 to 90% in pilot filters, at temperatures above 10 degrees C, while more than 90% ammonia was removed in the full-scale filters for the same temperature range. At moderate temperatures (4-10 degrees C), the first stage pilot filters removed 10-40% of incoming ammonia for both media (opened and closed superstructure). In the full-scale filters, a difference between the two media in nitrification performances was observed at moderate temperatures: the ammonia removal rate in the opened superstructure support (more than 90%) was higher than in the closed superstructure support (45%). At low temperatures (below 4 degrees C) both media performed poorly. Ammonia removal capacities were below 30% in both pilot- and full-scale filters.
Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments.
Winkel, Matthias; de Beer, Dirk; Lavik, Gaute; Peplies, Jörg; Mußmann, Marc
2014-06-01
Hydrothermal sediments in the Guaymas Basin are covered by microbial mats that are dominated by nitrate-respiring and sulphide-oxidizing Beggiatoa. The presence of these mats strongly correlates with sulphide- and ammonium-rich fluids venting from the subsurface. Because ammonium and oxygen form opposed gradients at the sediment surface, we hypothesized that nitrification is an active process in these Beggiatoa mats. Using biogeochemical and molecular methods, we measured nitrification and determined the diversity and abundance of nitrifiers. Nitrification rates ranged from 74 to 605 μmol N l(-1) mat day(-1), which exceeded those previously measured in hydrothermal plumes and other deep-sea habitats. Diversity and abundance analyses of archaeal and bacterial ammonia monooxygenase subunit A genes, archaeal 16S ribosomal RNA pyrotags and fluorescence in situ hybridization confirmed that ammonia- and nitrite-oxidizing microorganisms were associated with Beggiatoa mats. Intriguingly, we observed cells of bacterial and potential thaumarchaeotal ammonia oxidizers attached to narrow, Beggiatoa-like filaments. Such a close spatial coupling of nitrification and nitrate respiration in mats of large sulphur bacteria is novel and may facilitate mat-internal cycling of nitrogen, thereby reducing loss of bioavailable nitrogen in deep-sea sediments. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Teng, Ying; Zhang, Manyun; Yang, Guangmei; Wang, Jun; Christie, Peter; Luo, Yongming
2017-02-01
Broad-spectrum fungicide chlorothalonil (CTN) is successively applied into intensive agriculture soil. However, the impacts of successive CTN applications on soil nitrification and related microorganisms remain poorly understood. A microcosm study was conducted to reveal the effects of successive CTN applications on soil nitrification and functional genes involved in soil nitrogen (N) cycling. The CTN at the dosages of 5 mg kg -1 dry soil (RD) and 25 mg kg -1 dry soil (5RD) was successively applied into the test soil at 7-day intervals which resulted in the accumulations of CTN residues. After 28 days of incubation, CTN residues in the RD and 5RD treatments were 3.14 and 69.7 mg kg -1 dry soil respectively. Net nitrification rates in the RD and 5RD treatments were lower than that obtained from the blank control (CK). Real-time PCR analysis revealed that AOA and AOB amoA gene abundances were significantly decreased by CTN applications. Moreover, CTN applications also discrepantly decreased the abundances of functional genes involved in soil denitrification, with the exception of nosZ gene. Principal component analysis further supported the observation that successive CTN applications could result in enhanced ecological toxicity.
Ribeiro, Renato P; Bueno, Rodrigo F; Piveli, Roque P; Kligerman, Débora C; de Mello, William Z; Oliveira, Jaime L M
2017-11-01
The continuous measurements of N 2 O emissions from the aeration tanks of three activated sludge wastewater treatment plants (WWTPs) operated with biological nitrogen removal (BNR) and non-BNR were performed during the different operating conditions of several parameters, such as aeration, dissolved oxygen (DO) profiling and organic shock loading (with landfill leachate). The nitrification process is the main driving force behind N 2 O emission peaks. There are indications that the variation of the air flow rate influenced N 2 O emissions; high N 2 O emissions denote over-aeration conditions or incomplete nitrification, with accumulation of NO 2 - concentrations. Thus, continuous measurements of N 2 O emissions can provide information on aeration adequacy and the efficiency of complete nitrification, with major focus on DO control, in order to reduce N 2 O emissions. An additional concern is the observed propensity of WWTPs in developing countries to receive landfill leachates in their wastewater systems. This practice could have adverse effects on climate change, since wastewater treatment during periods of organic shock loading emitted significantly higher amounts of N 2 O than without organic shock loading. In short, non-BNR WWTPs are subject to high N 2 O emissions, in contrast to BNR WWTP with controlled nitrification and denitrification processes.
Sundberg, C; Tonderski, K; Lindgren, P E
2007-01-01
Constructed wetlands can be used to decrease the high ammonium concentrations in landfill leachates. We investigated nitrification/denitrification activity and the corresponding bacterial communities in landfill leachate that was treated in a compact constructed wetland, Tveta Recycling Facility, Sweden. Samples were collected at three depths in a filter bed and the sediment from a connected open pond in July, September and November 2004. Potential ammonia oxidation was measured by short-term incubation method and potential denitrification by the acetylene inhibition technique. The ammonia-oxidising and the denitrifying bacterial communities were investigated using group-specific PCR primers targeting 16S rRNA genes and the functional gene nosZ, respectively. PCR products were analysed by denaturing gradient gel electrophoresis and nucleotide sequencing. The same degree of nitrification activity was observed in the pond sediment and at all levels in the filter bed, whereas the denitrification activity decreased with filter bed depth. Denitrification rates were higher in the open pond, even though the denitrifying bacterial community was more diverse in the filter bed. The ammonia-oxidising community was also more varied in the filter bed. In the filter bed and the open pond, there was no obvious relationship between the nitrification/denitrification activities and the composition of the corresponding bacterial communities.
Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.
Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y
2012-01-01
Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9 months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10 g) was added to retention pond water (100 mL) amended with 5 mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20 mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass.
Nitrite formation and nitrous oxide emissions as affected by reclaimed effluent application.
Master, Y; Laughlin, R J; Stevens, R J; Shaviv, A
2004-01-01
The effect of irrigation with reclaimed effluent (RE) (after secondary treatment) on the mechanisms and rates of nitrite formation, N2O emissions, and N mineralization is not well known. Grumosol (Chromoxerert) soil was incubated for 10 to 14 d with fresh water (FW) and RE treated with 15NO3- and 15NH4+ to provide a better insight on N transformations in RE-irrigated soil. Nitrite levels in RE-irrigated soil were one order of magnitude higher than in FW- irrigated soil and ranged between 15 to 30 mg N kg(-1) soil. Higher levels of NO2- were observed at a moisture content of 60% than at 70% and 40% w/w. Nitrite levels were also higher when RE was applied to a relatively dry Grumosol (20% w/w) than at subsequent applications of RE to soil at 40% w/w. Isotopic labeling indicated that the majority of NO2 was formed via nitrification. The amount of N2O emitted from RE-treated Grumosol was double the amount emitted from FW treatments at 60% w/w. Nitrification was responsible for about 42% of the emissions. The N20 emission from the RE-treated bulk soil (passing a 9.5-mm sieve) was more than double the amount formed in large aggregates (4.76-9.5 mm in diameter). No dinitrogen was detected under the experimental conditions. Results indicate that irrigation with secondary RE stimulates nitrification, which may enhance NO3 leaching losses. This could possibly be a consequence of long-term exposure of the nitrifier population to RE irrigation. Average gross nitrification rate estimates were 11.3 and 15.8 mg N kg(-1) soil d(-1) for FW- and RE-irrigated bulk soils, respectively. Average gross mineralization rate estimates were about 3 mg N kg(-1) soil d(-1) for the two water types.
NASA Astrophysics Data System (ADS)
Loick, Nadine; Dixon, Elizabeth R.; Repullo Ruibérriz de Torres, Miguel A.; Ciganda, Veronica; Lopez-Aizpun, Maria A.; Matthews, G. Peter; Müller, Christoph; Cardenas, Laura M.
2017-04-01
Nitrous oxide (N2O) is considered to be an important greenhouse gas (GHG) accounting for approximately 6% of the current global warming. The atmospheric N2O concentration has been increasing since the Industrial Revolution, with soils representing its major source, making the understanding of its sources and removal processes very important for the development of mitigation strategies. In soils N gases are mainly produced via nitrification and denitrification. It is assumed that under dry/aerobic conditions nitrification is the dominant N consuming process, while denitrification becomes dominant under wetter conditions promoting anaerobicity. Nitrification and denitrification may occur simultaneously in different microsites of the same soil but there is often uncertainty associated with which process dominates in a particular soil under specific conditions. N2O predominantly derives from incomplete denitrification of nitrate (NO3-). The existence of different pools of NO3- in soils, namely the native soil pool, and the fertiliser-added one, has been suggested through a series of laboratory incubation experiments (Meijide et al., 2010; Bergstermann et al., 2011) using the denitrification incubation system, DENIS (Cardenas et al., 2003), in which soil cores are incubated under an N-free atmosphere, allowing direct measurements of all emitted N gases (NO, N2O and N2) as well as CO2. A third pool, NO3- produced from nitrification of applied NH4+, can also be a source of N2O via denitrification and also from nitrification. In this study labelling of substrate-N with 15N is used to quantify the underlying gross N transformation rates and link them to N-emissions to identify the production and consumption pathways and temporal dynamics of N2O. In three experiments twelve soil cores each were incubated in the DENIS to measure gaseous emissions, while parallel incubations under the same conditions were set up for destructive soil sampling at 7 time points. Using the triple labelling technique - i.e. applying NH4NO3 with either the N at the NH4+ or at the NO3-, or in both places being labelled - this study investigates the effects of a low, medium and high water filled pore space (55, 70, 85%) in a clay soil on gaseous N emissions and investigates the source and processes leading to N2O emissions. To assess the utilisation of applied NO3- vs nitrified NO3- from applied NH4+, the model developed by Müller et al. (2007) is used to calculate the immobilisation of added NO3- and NH4+, nitrification of added NH4+, mineralisation of organic N and subsequent nitrification by the analysis of the 15N in the soil. Gross transformation rates, indicating the relative importance of added NO3- and NO3- derived from nitrified added NH4+ are calculated. Bergstermann et al. (2011) Soil Biol. & Biochem. 43, 240-250. Meijide et al. (2010) Eur. J. Soil Sci. 61, 364-374. Cárdenas et al. (2003) Soil Biol. & Biochem. 35, 867-870. Müller et al. (2007) Soil Biol. & Biochem. 39, 715-726.
NASA Astrophysics Data System (ADS)
Wankel, S. D.; Buchwald, C.; Ziebis, W.; Wenk, C. B.; Lehmann, M. F.
2015-12-01
Nitrogen (N) is a key component of fundamental biomolecules. Hence, its cycling and availability are central factors governing the extent of ecosystems across the Earth. In the organic-lean sediment porewaters underlying the oligotrophic ocean, where low levels of microbial activity persist despite limited organic matter delivery from overlying water, the extent and modes of nitrogen transformations have not been widely investigated. Here we use the N and oxygen (O) isotopic composition of porewater nitrate (NO3-) from a site in the oligotrophic North Atlantic (Integrated Ocean Drilling Program - IODP) to determine the extent and magnitude of microbial nitrate production (via nitrification) and consumption (via denitrification). We find that NO3- accumulates far above bottom seawater concentrations (~ 21 μM) throughout the sediment column (up to ~ 50 μM) down to the oceanic basement as deep as 90 m b.s.f. (below sea floor), reflecting the predominance of aerobic nitrification/remineralization within the deep marine sediments. Large changes in the δ15N and δ18O of nitrate, however, reveal variable influence of nitrate respiration across the three sites. We use an inverse porewater diffusion-reaction model, constrained by the N and O isotope systematics of nitrification and denitrification and the porewater NO3- isotopic composition, to estimate rates of nitrification and denitrification throughout the sediment column. Results indicate variability of reaction rates across and within the three boreholes that are generally consistent with the differential distribution of dissolved oxygen at this site, though not necessarily with the canonical view of how redox thresholds separate nitrate regeneration from dissimilative consumption spatially. That is, we provide stable isotopic evidence for expanded zones of co-occurring nitrification and denitrification. The isotope biogeochemical modeling also yielded estimates for the δ15N and δ18O of newly produced nitrate (δ15NNTR (NTR, referring to nitrification) and δ18ONTR), as well as the isotope effect for denitrification (15ϵDNF) (DNF, referring to denitrification), parameters with high relevance to global ocean models of N cycling. Estimated values of δ15NNTR were generally lower than previously reported δ15N values for sinking particulate organic nitrogen in this region. We suggest that these values may be, in part, related to sedimentary N2 fixation and remineralization of the newly fixed organic N. Values of δ18ONTR generally ranged between -2.8 and 0.0 ‰, consistent with recent estimates based on lab cultures of nitrifying bacteria. Notably, some δ18ONTR values were elevated, suggesting incorporation of 18O-enriched dissolved oxygen during nitrification, and possibly indicating a tight coupling of NH4+ and NO2- oxidation in this metabolically sluggish environment. Our findings indicate that the production of organic matter by in situ autotrophy (e.g., nitrification, nitrogen fixation) supplies a large fraction of the biomass and organic substrate for heterotrophy in these sediments, supplementing the small organic-matter pool derived from the overlying euphotic zone. This work sheds new light on an active nitrogen cycle operating, despite exceedingly low carbon inputs, in the deep sedimentary biosphere.
Simulated Distribution Nitrification: Nitrification Index Evaluation and Viable AOB
Lab-scale reactors evaluated the impact of increasing temporal influent monochloramine (NH2Cl) concentrations (0.0 to 3.2 mg Cl2 L-1) and chlorine to nitrogen mass ratios (0:1 to 3.2:1) on nitrification, allowing evaluation of the recently proposed nitrification index (NI) for ch...
Alteration of Oceanic Nitrification Under Elevated Carbon Dioxide Concentrations
NASA Astrophysics Data System (ADS)
Beman, J.; Chow, C. E.; Popp, B. N.; Fuhrman, J. A.; Feng, Y.; Hutchins, D. A.
2008-12-01
Atmospheric carbon dioxide (CO2) concentrations are increasing exponentially and expected to double by the year 2100. Dissolution of excess CO2 in the upper ocean reduces pH, alters carbonate chemistry, and also represents a potential resource for autotrophic organisms that convert inorganic carbon into biomass--including a broad spectrum of marine microbes. These bacteria and archaea drive global biogeochemical cycles of carbon and nitrogen and constitute the vast majority of biomass in the sea, yet their responses to reduced pH and increased pCO2 remain largely undocumented. Here we show that elevated pCO2 may sharply reduce nitrification rates and populations of nitrifying microorganisms in the ocean. Multiple experiments were performed in the Sargasso Sea and the Southern California Bight under glacial maximum (193 ppm), present day (390 ppm), and projected (750 ppm) pCO2 concentrations, over time scales from hours to multiple days, and at depths of 45 m to 240 m. Measurement of nitrification rates using isotopically-labeled nitrogen showed 2-5 fold reduction under elevated pCO2--as well as an increase under glacial maximum pCO2. Marine Crenarchaeota are likely involved in nitrification as ammonia-oxidizing archaea (AOA) and are among the most abundant microbial groups in the ocean, yet this group decreased by 40-80% under increased pCO2, based on quantification of both 16S rRNA and ammonia monooxygenase (amoA) gene copies. Crenarchaeota also steadily declined over the course of multiple days under elevated pCO2, whereas ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were more variable in their responses or were not detected. These findings suggest that projected increases in pCO2 and subsequent decreases in pH may strongly influence marine biogeochemistry and microbial community structure in the sea.
Removal of bisphenol A (BPA) in a nitrifying system with immobilized biomass.
Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Bernat, Katarzyna; Bułkowska, Katarzyna; Wojnowska-Baryła, Irena
2014-11-01
The potential for bisphenol A (BPA) removal by mixed consortia of immobilized microorganisms with high nitrification activity was investigated with BPA concentrations in the influent from 2.5 to 10.0 mg/L. The presence of BPA limited ammonium oxidation; nitrification efficiency decreased from 91.2±1.3% in the control series to 47.4±9.4% when BPA concentration in wastewater was the highest. The efficiency of BPA removal rose from 87.1±5.5% to 92.9±2.9% with increased BPA concentration in the influent. Measurement of oxygen uptake rates by biomass exposed to BPA showed that BPA was mainly removed by heterotrophic bacteria. A strong negative correlation between the BPA removal efficiency and nitrification efficiency indicated the limited contribution of ammonia-oxidizing bacteria (AOB) to BPA biodegradation. Exposure of biomass to BPA changed the quantity and diversity of AOB in the biomass as shown by real-time PCR and denaturing gradient gel electrophoresis. Copyright © 2014 Elsevier Ltd. All rights reserved.
He, Tengxia; Li, Zhenlun; Sun, Quan; Xu, Yi; Ye, Qing
2016-01-01
A hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was found to display high removal capabilities for heterotrophic nitrification with ammonium and for aerobic denitrification with nitrate or nitrite nitrogen. When strain Y-11 was cultivated for 4days at 15°C with the initial ammonium, nitrate and nitrite nitrogen concentrations of 209.62, 204.61 and 204.33mg/L (pH 7.2), the ammonium, nitrate and nitrite removal efficiencies were 93.6%, 93.5% and 81.9% without nitrite accumulation, and the corresponding removal rates reached as high as 2.04, 1.99 and 1.74mg/L/h, respectively. Additionally, ammonium was removed mainly during the simultaneous nitrification and denitrification process. All results demonstrate that P. tolaasii strain Y-11 has the particularity to remove ammonium, nitrate and nitrite nitrogen at low temperatures, which guarantees it for future application in winter wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Y Z; He, Y L; Ohandja, D G; Ji, J; Li, J F; Zhou, T
2008-09-01
This study assessed the performance of different single-stage continuous aerated submerged membrane bioreactors (MBR) for nitrogen removal. Almost complete nitrification was achieved in each MBR irrespective of operating mode and biomass system. Denitrification was found to be the rate-limiting step for total nitrogen (T-N) removal. The MBR with internal-loop airlift reactor (ALR) configuration performed better as regards T-N removal compared with continuous stirred-tank reactor (CSTR). It was demonstrated that simultaneous nitrification and denitrification (SND) is the mechanism leading to nitrogen removal and the contribution of microenvironment on SND is more remarkable for the MBRs with hybrid biomass. Macroenvironment analyses showed that gradient distribution of dissolved oxygen (DO) level in airlift MBRs imposed a significant effect on SND. Higher mixed liquor suspended solid (MLSS) concentration led to the improvement in T-N removal by enhancing anoxic microenvironment. Apparent nitrite accumulation coupled with higher nitrogen reduction was accomplished at MLSS concentration exceeded 12.6 g/L.
Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils.
Nejidat, Ali
2005-03-01
Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.
Effect of orchard age on soil nitrogen transformation in subtropical China and implications.
Zhang, Yushu; Zhang, Jinbo; Zhu, Tongbin; Müller, Christoph; Cai, Zucong
2015-08-01
A better understanding of nitrogen transformation in soils could reveal the capacity for biological inorganic N supply and improve the efficiency of N fertilizers. In this study, a (15)N tracing study was carried out to investigate the effects of converting woodland to orchard, and orchard age on the gross rates of N transformation occurring simultaneously in subtropical soils in Eastern China. The results showed that inorganic N supply rate was remained constant with soil organic C and N contents increased after converting woodland into citrus orchard and with increasing orchard age. This phenomenon was most probably due to the increase in the turnover time of recalcitrant organic-N, which increased with decreasing soil pH along with increasing orchard age significantly. The amoA gene copy numbers of both archaeal and bacterial were stimulated by orchard planting and increased with increasing orchard age. The nitrification capacity (defined as the ratio of gross rate of nitrification to total gross rate of mineralization) increased following the Michaelis-Menten equation, sharply in the first 10 years after woodland conversion to orchard, and increased continuously but much more slowly till 30 years. Due to the increase in nitrification capacity and unchanged NO3(-) consumption, the dominance of ammonium in inorganic N in woodland soil was shifted to nitrate dominance in orchard soils. These results indicated that the risk of NO3(-) loss was expected to increase and the amount of N needed from fertilizers for fruit growth did not change although soil organic N accumulated with orchard age. Copyright © 2015. Published by Elsevier B.V.
Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions.
Vogeler, I; Giltrap, D; Cichota, R
2013-11-01
Various models have been developed to better understand nitrogen (N) cycling in soils, which is governed by a complex interaction of physical, chemical and biological factors. Two process-based models, the Agricultural Production Systems sIMulator (APSIM) and DeNitrification DeComposition (DNDC), were used to simulate nitrification, denitrification and nitrous oxide (N2O) emissions from soils following N input from either fertiliser or excreta deposition. The effect of environmental conditions on N transformations as simulated by the two different models was compared. Temperature had a larger effect in APSIM on nitrification, whereas in DNDC, water content produced a larger response. In contrast, simulated denitrification showed a larger response to temperature and also organic carbon content in DNDC. And while denitrification in DNDC is triggered by rainfall ≥5mm/h, in APSIM, the driving factor is soil water content, with a trigger point at water content at field capacity. The two models also showed different responses to N load, with nearly linearly increasing N2O emission rates with N load simulated by DNDC, and a lower rate by APSIM. Increasing rainfall intensity decreased APSIM-simulated N2O emissions but increased those simulated by DNDC. Copyright © 2012 Elsevier B.V. All rights reserved.
Yu, Lifang; Peng, Dangcong; Pan, Ruiling
2012-01-01
This study used two laboratory-scale sequencing batch reactors (SBRs) to evaluate the shifts in nitrification kinetics and microbial communities of an activated sludge sewage treatment system (main stream) during bioaugmentation with nitrifiers cultivated on real sludge reject water (side stream). Although bioaugmentation exerted a strong influence on the microbial community and the nitrification kinetics in the main stream, there was 58% of maximum ammonia uptake rate (AUR) and 80% of maximum nitrite uptake rate (NUR) loss of the seed source after bioaugmentation. In addition, nitrite accumulation occurred during bioaugmentation due to the unequal and asynchronous increase of the AUR (from 2.88 to 13.36 mg N/L·h) and NUR (from 0.76 to 4.34 mg N/L·h). FISH results showed that ammonia oxidizing bacteria (AOB) was inclined to be washed out with effluent in contrast to nitrite oxidizing bacteria (NOB), and Nitrosococcus mobilis lineage was the dominant AOB, while the dominant NOB in the main stream gradually transferred from Nitrospira to Nitrobacter. Nitrospina and Nitrococcus which existed in the seed source could not be detected in the main stream. It can be inferred that nitrite accumulation occurred due to the mismatch of NOB structure but washed out with effluent. PMID:23091354
NASA Astrophysics Data System (ADS)
Gardiner, C. A.; Clough, T.; Cameron, K.; Di, H.; Edwards, G. R.
2017-12-01
Nitrous oxide (N2O) losses derived from grazing ruminant livestock urine patches account for 40% of global N2O emissions. It has been shown that Plantago lanceolata, an herb species used in grazed pastures, contains an active secondary metabolite (aucubin) that has the potential to be excreted by grazing ruminants and inhibit nitrification in the urine patch, a key step in soil N2O production. However, the urinary excretion rate of aucubin needed to significantly reduce urine patch N2O emissions remains unknown. Aucubin was dissolved in bovine urine at three rates (47, 243, and 486 kg ha-1), based on rates used in Dietz et al. (2013) and the calculated highest potential aucubin application rate, from Gardiner et al. (2017). A control, along with a urine treatment and the three aucubin treatments (all urine applied at 700 kg N ha-1), was applied to 20 g soil and incubated in the laboratory for 35 d. Soils were monitored for surface pH, inorganic N concentration (NH4+/NO3-), and gas (N2O and CO2) fluxes. This experiment is currently underway and the results will be presented at the conference. Dietz M, Machill S, Hoffmann H, Schmidtke K 2013. Inhibitory effects of Plantago lanceolata L. on soil N mineralization. Plant and Soil 368: 445-458. Gardiner CA, Clough TJ, Cameron KC, Di HJ, Edwards GR, de Klein CAM 2017. The potential inhibitory effects of Plantago lanceolata and its active secondary metabolite aucubin on soil nitrification and nitrous oxide emissions under ruminant urine patch conditions. Manuscript submitted for publication.
Casciotti, Karen L; Buchwald, Carolyn; Santoro, Alyson E; Frame, Caitlin
2011-01-01
Nitrification is a microbially-catalyzed process whereby ammonia (NH(3)) is oxidized to nitrite (NO(2)(-)) and subsequently to nitrate (NO(3)(-)). It is also responsible for production of nitrous oxide (N(2)O), a climatically important greenhouse gas. Because the microbes responsible for nitrification are primarily autotrophic, nitrification provides a unique link between the carbon and nitrogen cycles. Nitrogen and oxygen stable isotope ratios have provided insights into where nitrification contributes to the availability of NO(2)(-) and NO(3)(-), and where it constitutes a significant source of N(2)O. This chapter describes methods for determining kinetic isotope effects involved with ammonia oxidation and nitrite oxidation, the two independent steps in the nitrification process, and their expression in the marine environment. It also outlines some remaining questions and issues related to isotopic fractionation during nitrification. Copyright © 2011 Elsevier Inc. All rights reserved.
Jennifer D. Knoepp; Wayne T. Swank
1998-01-01
The authors measured nitrogen (N) transformation rates for six years to examine temporal variation across the vegetation and elevation gradient that exists within the Coweeta Hydrologic Laboratory. Net N mineralization and nitrification rates were measured using 28-day in situ closed core incubations. Incubations were conducted at various intervals, ranging from...
NASA Astrophysics Data System (ADS)
Dietrich, Charlotte C.; Koller, Robert; Nagel, Kerstin A.; Schickling, Anke; Schrey, Silvia D.; Jablonowski, Nicolai D.
2017-04-01
Optimizing the application of and nutrient uptake from organic nutrient sources, such as the nutrient-rich residues ("digestates") from the biogas industry, is becoming a viable option in remediating fertility on previously unsuitable soils for agricultural utilization. Proposedly, concurrent changes in root system architecture and functioning could also serve as the basis of future phytomining approaches. Herein, we evaluate the effect of spatial nutrient availability and nitrification on maize root architecture and nutrient uptake. We test these effects by applying maize-based digestate at a rate of 170 kg/ha in layers of varying depths (10, 25 and 40 cm) and through either the presence or absence of nitrification inhibitors. In order to regularly monitor above- and below-ground plant biomass production, we used the noninvasive phenotyping platform, GROWSCREEN-Rhizo at the Forschungszentrum Jülich, using rhizotrons (Nagel et al., 2012). Measured parameters included projected plant height and leaf area, as well as root length and spatial distribution. Additionally, root diameters were quantified after the destructive harvest, 21 days after sowing (DAS). Spatial nutrient availability significantly affected root system architecture, as for example root system size -the area occupied by roots- increased alongside nutrient layer depths. Fertilization also positively affected root length density (RLD). Within fertilized layers, the presence of nitrification inhibitors increased RLD by up to 30% and was most pronounced in the fine root biomass fraction (0.1 to 0.5mm). Generally, nitrification inhibitors promoted early plant growth by up to 45% across treatments. However, their effect varied in dependence of layer depths, leading to a time-delayed response in deeper layers, accounting for plants having to grow significantly longer roots in order to reach fertilized substrate. Nitrification inhibitors also initiated the comparatively early on-set of growth differences in shallower layers, where their effect on plant growth was temporarily most pronounced. At final harvest (21 DAS) however, effects of nitrification inhibitors on plant height were visible only in deeper layers. Furthermore, the statistically significant interaction between the factors time x layer depths x nitrification inhibitors underlined the dynamic influence of nitrification inhibitors on plant growth over time and across rooting depths. This study offers insights into optimizing nutrient uptake and plant productivity by (re-) using residues from the biogas industry. It is among the first to monitor and try to explain the dynamics of nitrification inhibitors on root system architecture over time. A modified N-fertilization application scheme might also serve as a promising tool in optimizing phytoremediation and phytomining techniques through predictably altering root structure in fertilized layers. References: Nagel, K. A. ; Putz, A. ; Gilmer, F. ; Heinz, K. ; Fischbach, A. ; Pfeifer, J. ; Faget, M. ; Blossfeld, S. ; Ernst, M. ; Dimaki, C. ; Kastenholz, B. ; Kleinert, A.-K. ; Galinski, A. ; Scharr, H. ; Fiorani, F. ; Schurr, U. (2012): GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Functional plant biology 39(11), 891-904.
Romera, Alvaro J; Cichota, Rogerio; Beukes, Pierre C; Gregorini, Pablo; Snow, Val O; Vogeler, Iris
2017-01-01
Intensification of pastoral dairy systems often means more nitrogen (N) leaching. A number of mitigation strategies have been proposed to reduce or reverse this trend. The main strategies focus on reducing the urinary N load onto pastures or reducing the rate of nitrification once the urine has been deposited. Restricted grazing is an example of the former and the use of nitrification inhibitors an example of the latter. A relevant concern is the cost effectiveness of these strategies, independently and jointly. To address this concern, we employed a modeling approach to estimate N leaching with and without the use of these mitigation options from a typical grazing dairy farm in New Zealand. Three restricted grazing options were modeled with and without a nitrification inhibitor (dicyandiamide, DCD) and the results were compared with a baseline farm (no restricted grazing, no inhibitor). Applying DCD twice a year, closely following the cows after an autumn and winter grazing round, has the potential to reduce annualized and farm-scale N leaching by ∼12%, whereas restricted grazing had leaching reductions ranging from 23 to 32%, depending on the timing of restricted grazing. Combining the two strategies resulted in leaching reductions of 31 to 40%. The abatement cost per kilogram of N leaching reduction was NZ$50 with DCD, NZ$32 to 37 for restricted grazing, and NZ$40 to 46 when the two were combined. For the range analyzed, all treatments indicated similar cost per percentage unit of mitigated N leaching, demonstrating that restricted grazing and nitrification inhibitors can be effective when used concurrently. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Barneze, A S; Minet, E P; Cerri, C C; Misselbrook, T
2015-01-01
Nitrous oxide (N2O) has become the prime ozone depleting atmospheric emission and the third most important anthropogenic greenhouse gas, with a global warming potential approximately 300 times higher than CO2. Nitrification and denitrification are processes responsible for N2O emission from the soil after nitrogen input. The application of a nitrification inhibitor can reduce N2O emissions from these processes. The objective of this study was to assess the effect of two different nitrification inhibitors (dicyandiamide (DCD) and a commercial formulation containing two pyrazole derivatives (PD), 1H-1,2,4-triazole and 3-methylpyrazole) on N2O emissions from cattle urine applications for summer grazing conditions in the UK. Experiments were conducted under controlled conditions in a laboratory incubator and under field conditions on a grassland soil. The N2O emissions showed similar temporal dynamics in both experiments. DCD concentration in the soil showed an exponential degradation during the experiment, with a half-life of the order of only 10d (air temperature c. 15 °C). DCD (10 kg ha(-1)) and PD at the highest application rate (3.76 kg ha(-1)) reduced N2O emissions by 13% and 29% in the incubation experiment and by 33% and 6% in the field experiment, respectively, although these reductions were not statistically significant (P>0.05). Under UK summer grazing conditions, these nitrification inhibitors appear to be less effective at reducing N2O emissions than reported for other conditions elsewhere in the literature, presumably due to the higher soil temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Taylor, Anne E; Giguere, Andrew T; Zoebelein, Conor M; Myrold, David D; Bottomley, Peter J
2017-04-01
Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4-42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (T opt ) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having T opt >12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔC P ‡ ) was correlated with T opt across the eight soils, and the ΔC P ‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (T min ) and different, albeit very similar, maximum temperature (T max ) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different T min , but no evidence of multiple T min values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH 3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments.
Durán, U; del Val Río, A; Campos, J L; Mosquera-Corral, A; Méndez, R
2014-01-01
The Anammox-based processes are suitable for the treatment of wastewaters characterized by a low carbon to nitrogen (C/N) ratio. The application of the Anammox process requires the availability of an effluent with a NO2- -N/NH4+ -N ratio composition around 1 g g-1, which involves the necessity of a previous step where the partial nitrification is performed. In this step, the inhibition of the nitrite-oxidizing bacteria (NOB) is crucial. In the present work, a combined partial nitrification-ANaerobic AMmonia OXidation (Anammox) two-units system operated at room temperature (20 degreeC) has been tested for the nitrogen removal of pre-treated pig slurry. To achieve the successful partial nitrification and inhibit the NOB activity, different ammonium/inorganic carbon (NH4+/IC) ratios were assayed from 1.19 to 0.82g NH4+-Ng-1 HCO3-C. This procedure provoked a decrease of the pH value to 6.0 to regulate the inhibitory effect over ammonia-oxidizing bacteria caused by free ammonia. Simultaneously, the NOB experienced the inhibitory effect of free nitrous acid which avoided the presence of nitrate in the effluent. The NH4+/IC ratio which allowed the obtaining of the desired effluent composition (50% of both ammonium and nitrite) was 0.82 +/- 0.02 g NH4+-N g-1 HCO3- -C. The Anammox reactor was fed with the effluent of the partial nitrification unit containing a NO2 -N/NH4+ -N ratio of 1 g g-1' where a nitrogen loading rate of 0.1 g N L-1 d-1 was efficiently removed.
Taylor, Anne E; Giguere, Andrew T; Zoebelein, Conor M; Myrold, David D; Bottomley, Peter J
2017-01-01
Soil nitrification potential (NP) activities of ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) were evaluated across a temperature gradient (4–42 °C) imposed upon eight soils from four different sites in Oregon and modeled with both the macromolecular rate theory and the square root growth models to quantify the thermodynamic responses. There were significant differences in response by the dominant AOA and AOB contributing to the NPs. The optimal temperatures (Topt) for AOA- and AOB-supported NPs were significantly different (P<0.001), with AOA having Topt>12 °C greater than AOB. The change in heat capacity associated with the temperature dependence of nitrification (ΔCP‡) was correlated with Topt across the eight soils, and the ΔCP‡ of AOB activity was significantly more negative than that of AOA activity (P<0.01). Model results predicted, and confirmatory experiments showed, a significantly lower minimum temperature (Tmin) and different, albeit very similar, maximum temperature (Tmax) values for AOB than for AOA activity. The results also suggested that there may be different forms of AOA AMO that are active over different temperature ranges with different Tmin, but no evidence of multiple Tmin values within the AOB. Fundamental differences in temperature-influenced properties of nitrification driven by AOA and AOB provides support for the idea that the biochemical processes associated with NH3 oxidation in AOA and AOB differ thermodynamically from each other, and that also might account for the difficulties encountered in attempting to model the response of nitrification to temperature change in soil environments. PMID:27996979
NASA Astrophysics Data System (ADS)
Lu, Meng-Chang; Huang, -Chuan, Jr.; Chang, Chung-Te; Shih, Yu-Ting; Lin, Teng-Chiu
2016-04-01
The riverine DIN is a crucial indicator for eutrophication in river network. The riverine DIN export in Taiwan is featured by the extremely high yield, ~3800 kg-N km-2yr-1, nearly 20-fold than the global average, showing the interesting terrestrial N process yet rarely documented. In this study we collected the DIN samples in rainwater, soil water, and stream water in a mountainous forest watershed, FuShan experimental forest watershed 1 (WS1) which is a natural broadleaf forest without human activities. Based on the intensive observations, we applied the INCA-N to simulate the riverine DIN response and thus estimate the terrestrial N processes in a global synthesis. The result showed that both discharge and DIN yield were simulated well with the average Nash-Sutcliffe efficiency coefficient of 0.83 and 0.76 , respectively. Among all N processes, N uptake, mineralization, nitrification, denitrfication, and immobilization are significantly positive correlated with soil moisture (R2>0.99), which indicates that soil moisture greatly influences N cycle processes. The average rate of mineralization and nitrification in wet years are consistent with documented values, whereas the rates in dry years are lower than the observations. Despite the high nitrification rate, the secondary forest may uptake abundant N indicating the plant uptake, which responds for removing considerable nitrate, is a controlling factor in forest ecosystem. Our simulated denitrification rate falls between the documented rates of temperate forest and agricultural area, and that may be affected by the high N-deposition in Taiwan. Simulated in-stream denitrification rate is less than 10% of the rate in soil, and is a little lower than that in temperate forest. This preliminary simulation provides an insightful guide to establish the monitoring programme and improve the understanding of N cycle in subtropical.
Sawada, Kozue; Toyota, Koki
2015-01-01
Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers. PMID:25740173
Sawada, Kozue; Toyota, Koki
2015-01-01
Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers.
Biological and microbiological assessment of the upper Chattahoochee River basin, Georgia
Lium, Bruce W.; Stamer, J.K.; Ehlke, T.A.; Faye, R.E.; Cherry, R.N.
1979-01-01
Biological and microbiological studies were conducted by the U.S. Geological Survey as a part of the Intensive River-Quality Assessment studies of the upper Chattahoochee River basin, Georgia. Phytoplankton concentrations in cells per milliliter (cells/mL) were generally higher downstream from Atlanta than upstream. The highest concentrations, mostly blue-green algae, occurred in West Point Lake with an average of 90,000 cells/mL for the sampling period. The lowest concentrations, 1,000 cells/mL, occurred upstream of Lake Sidney Lanier. Dissolved orthophosphate and nitrite plus nitrate concentrations were highest in the river reaches and upper reaches of the two lakes and were lowest at the dam pools of both lakes. The high nitrite plus nitrate concentrations downstream from Atlanta were primarily a result of nitrification by Nitrosomonas and Nitrobacter bacteria. Algal growth potential was highest downstream from Atlanta, 25 milligrams per liter (mg/L) at Whitesburg, and was the lowest in the headwaters and at the dam pools of Lake Sidney Lanier and West Point Lake. The rate of nitrification in the Atlanta to Franklin reach of the river was comparatively low, 0.02 mg/L per hour. Nitrification was an important cause of dissolved-oxygen consumption in a 45-mi reach of the river downstream from the Atlanta wastewater treatment facilities. Dissolved-oxygen consumption as a result of nitrification may be greatest during low flow. (Woodard-USGS)
Guo, Jia; Jiang, Xianjun; Zhou, Xue; Meng, Yao; Jia, Zhongjun
2016-06-04
This study was aimed to elucidate the effect of periodic flooding-drying to ecological processes of ammonia oxidizers in the hydro-fluctuation belt of the Three Gorges Reservoir. Soil samples were collected at thee altitudes in regions of Wanzhou, Fengdu and Changshou, representing 8, 5 and 0 times floodingdrying management, respectively. Soil physiochemical properties were analyzed and microcosms were constructed to monitor nitrification activity by fertilizing soils with ammonium substrate. Real-time PCR was used to quantify the population size of ammonia-oxidizing archaea (AOA) and bacteria (AOB). DGGE fingerprints and clone libraries were conducted to study the shift of AOA and AOB compositions in nitrifying soils. Among the physiochemical characteristics of the soils, soil organic matter and total phosphates increased along with cycle increasing. After incubation for 13 days, the net nitrification rates of the samples with 8 cycles exceeded those with 5 cycles. The quantities of both AOA and AOB have increased during the incubation. Phylogenetic analysis showed that AOA were placed within the soil group 1.1b and soil group 1.1a, while bacterial ammonia oxidizers were closely related to Nitrosospira and Cluster 0. Periodical flooding-drying increased soil organic matter, enhanced soil nitrification activity and likely played important roles in shaping community structures of soil ammonia oxidizers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsutsui, Hirofumi, E-mail: jm-tsutsuih@kochi-u.ac.jp; Japan Science and Technology Agency, CREST; Fujiwara, Taku
2015-08-15
Highlights: • RQ can be an indicator of N{sub 2}O emission in forced aerated composting process. • Emission of N{sub 2}O with nitrification was observed with RQ decrease. • Mass balances demonstrated the RQ decrease was caused by nitrification. • Conversion ratio of oxidized ammonia and total N to N{sub 2}O were ∼2.7%. - Abstract: We assessed the relationship between respiratory quotient (RQ) and nitrification and nitrous oxide (N{sub 2}O) emission in forced aerated composting using lab-scale reactors. Relatively high RQ values from degradation of readily degradable organics initially occurred. RQ then stabilized at slightly lower values, then decreased. Continuousmore » emission of N{sub 2}O was observed during the RQ decrease. Correlation between nitrification and N{sub 2}O emission shows that the latter was triggered by nitrification. Mass balances demonstrated that the O{sub 2} consumption of nitrification (∼24.8 mmol) was slightly higher than that of CO{sub 2} emission (∼20.0 mmol), indicating that the RQ decrease was caused by the occurrence of nitrification. Results indicate that RQ is a useful index, which not only reflects the bioavailability of organics but also predicts the occurrence of nitrification and N{sub 2}O emission in forced aerated composting.« less
Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils
Xinda Lu; Peter J. Bottomley; David D. Myrold
2015-01-01
Ammonia oxidation, the first step of nitrification, is mediated by both ammonia-oxidizing archaea (AOA) and bacteria (AOB); however, the relative contributions of AOA and AOB to soil nitrification are not well understood. In this study we used 1-octyne to discriminate between AOA-and AOB-supported nitrifi-cation determined both in soil-water slurries and in unsaturated...
Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion
NASA Technical Reports Server (NTRS)
Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)
2001-01-01
The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.
NASA Astrophysics Data System (ADS)
Mekala, C.; Nambi, Indumathi M.
2017-07-01
Irrigation practice will be effective if it supplies optimal water and nutrients to crops and act as a filter for contaminants leaching to ground water. There is always a scope for improving the fertilizer use efficiency and scheduling of wastewater irrigation if the fate and transport of nutrients particularly nitrogenous compounds in the soil are well understood. In the present study, nitrogen transport experiments for two different agricultural soils are performed under varying saturation 33, 57, 78% water filled pore space for sandy soil 1 and 52, 81 and 96% for loam soil 2. A HYDRUS 2D model with constructed wetland (CW2D) module could simulate aerobic nitrification and anoxic denitrification well for both soils and estimated the reaction kinetics. A hot spot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) pathway has been observed at 81% moisture content for a loamy sand soil. The presence of high organic content and reductive soil environment (5.53 C/NO3- ratio; ORP = - 125 mV) results in ammonium accumulation of 16.85 mg in the soil. The overall observation from this study is nitrification occurs in a wide range of saturations 33-78% with highest at 57% whereas denitrification is significant at higher water saturations 57-78% for sandy soil texture. For a loamy sand soil, denitrification is dominant at 96% saturation with least nitrification at all saturation studies. The greatest nitrogen losses (> 90%) was observed for soil 2 while 30-70% for soil1. The slow dispersive subsurface transport with varying oxygen dynamics enhanced nitrogen losses from soil2 due to lesser soil permeability. This in turn, prevents NO3- leaching and groundwater contamination. This type of modeling study should be used before planning field experiments for designing optimal irrigation and fertigation schedules.
Quantifying the Global Nitrous Oxide Emissions Using a Trait-based Biogeochemistry Model
NASA Astrophysics Data System (ADS)
Zhuang, Q.; Yu, T.
2017-12-01
Nitrogen is an essential element for the global biogeochemical cycle. It is a key nutrient for organisms and N compounds including nitrous oxide significantly influence the global climate. The activities of bacteria and archaea are responsible for the nitrification and denitrification in a wide variety of environments, so microbes play an important role in the nitrogen cycle in soils. To date, most existing process-based models treated nitrification and denitrification as chemical reactions driven by soil physical variables including soil temperature and moisture. In general, the effect of microbes on N cycling has not been modeled in sufficient details. Soil organic carbon also affects the N cycle because it supplies energy to microbes. In my study, a trait-based biogeochemistry model quantifying N2O emissions from the terrestrial ecosystems is developed based on an extant process-based model TEM (Terrestrial Ecosystem Model). Specifically, the improvement to TEM includes: 1) Incorporating the N fixation process to account for the inflow of N from the atmosphere to biosphere; 2) Implementing the effects of microbial dynamics on nitrification process; 3) fully considering the effects of carbon cycling on N nitrogen cycling following the principles of stoichiometry of carbon and nitrogen in soils, plants, and microbes. The difference between simulations with and without the consideration of bacterial activity lies between 5% 25% based on climate conditions and vegetation types. The trait based module allows a more detailed estimation of global N2O emissions.
Daebeler, Anne; Bodelier, Paul LE; Yan, Zheng; Hefting, Mariet M; Jia, Zhongjun; Laanbroek, Hendrikus J
2014-01-01
Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature. PMID:24858784
Effects of urea and (NH4)2SO4 on nitrification and acidification of Ultisols from southern China.
Tong, Deli; Xu, Renkou
2012-01-01
The mechanisms for the effects of ammonium-based fertilizers on soil acidification in subtropical regions are not well understood. Two Ultisols collected from cropland and a tea garden in Anhui and Jiangxi Provinces in subtropical southern China, respectively, were used to study the effects of urea and (NH4)2SO4 on the nitrification and acidification of soils with incubation experiments. Nitrification occurred at very low pH with no N fertilizer added and led to lowering of the soil pH by 0.53 and 0.30 units for the soils from Jiangxi and Anhui, respectively. Addition of urea accelerated nitrification and soil acidification in both Ultisols; while nitrification was inhibited by the addition of (NH4)2SO4, and greater input of (NH4)2SO4 led to greater inhibition of nitrification. Ammonia-oxidizing bacteria (AOB) played an important role in nitrification in cropland soil under acidic conditions. Addition of urea increased the soil pH at the early stages of incubation due to hydrolysis and stimulated the increase in the AOB population, and thus accelerated nitrification and soil acidification. At the end of incubation, the pH of Ultisol from Jiangxi had decreased by 1.25, 1.54 and 1.84 units compared to maximum values for the treatments with 150, 300 and 400 mg/kg of urea-N added, respectively; the corresponding figures were 0.95, 1.25 and 1.69 for the Ultisol from Anhui. However, addition of (N-H4)2SO4 inhibited the increase in the AOB population and thus inhibited nitrification and soil acidification. Soil pH for the treatments with 300 and 400 mg/kg of (NH4)2SO4-N remained almost constant during the incubation. AOB played an important role in nitrification of the cropland soil under acidic conditions. Addition of urea stimulated the increase in the AOB population and thus accelerated nitrification and soil acidification; while addition of (NH4)2SO4 inhibited the increase in the AOB population and thus inhibited nitrification.
Nitrogen source and rate effects on furrow irrigated corn yields and NUE
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) rate studies were conducted under furrow irrigated corn (Zea mays L.) production on a silty clay soil to compare polymer-coated urea (PCU) and stabilized urea (SU; contains urease and nitrification inhibitors) effects on corn yields, plant N uptake and N use efficiency (NUE) to granular...
Behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor.
Zhang, Xinbo; Song, Zi; Guo, Wenshan; Lu, Yanmin; Qi, Li; Wen, Haitao; Ngo, Huu Hao
2017-12-01
This study aims to investigate the behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor by evaluating nitrification and denitrification rates of sponge biocarriers from three aerobic moving bed biofilm reactors (MBBRs) with filling ratios of 10% (R-10), 20% (R-20) and 30% (R-30). Results showed that the highest removal efficiencies of total nitrogen in three reactors were 84.5% (R-10), 93.6% (R-20) and 95.3% (R-30). Correspondingly, simultaneous nitrification and denitrification rate (SND) was 90.9%, 97.6% and 100%, respectively. Although R-20 had the highest attached-growth biomass (AGB) per gram of sponge compared to the other two reactors, R-30 showed the maximum ammonium oxidation rate (AOR) (2.1826±0.0717mgNH 4 + -N/gAGB/h) and denitrification rate (DNR) (5.0852±0.0891mgNO 3 - -N/gAGB/h), followed by R-20 and R-10. These results indicated AOR, DNR and AGB were affected by the filling ratio under the same operation mode. Copyright © 2017 Elsevier Ltd. All rights reserved.
Production of a nitrogeneous humic fertilizer by the oxidation-ammoniation of lignite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coca, J.
1984-12-01
Two lignite samples were oxidised with HNO/sub 3/ (20% wt) at 75 C and treated afterwards with NH/sub 3/ in a fluidised-bed reactor in a temperature range 100-375 C. The effects of temperature, NH/sub 3/ flow rate, and reaction time on the total N/sub 2/ content of the product are reported. The product contained 7-13% wt of total N/sub 2/ which increased as the ammoniation temperature increased. Soil nitrification measurements of the N/sub 2/-enriched lignites showed that the maximum conversion to nitrates and rate of nitrification are exhibited by the product obtained at the lowest ammoniation temperature, i.e. 100 C.more » Maximum conversion to nitrates at that temperature was 45%, which compares well with similar products such as ammoniated peat (35%) and ammonium nitrohumates (45%).« less
Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin
2015-03-01
Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1) yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully considered before large-scale application. © 2014 John Wiley & Sons Ltd.
Smith, R.L.; Böhlke, J.K.; Repert, D.A.; Hart, C.P.
2009-01-01
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3-], 15N[NO2-], or 15N[NH4+]) for 24-44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220-3,560 ??mol N m-2 h-1) greatly exceeded corresponding denitrification rates (34-212 ??mol N m-2 h-1) and both of these rates were correlated with nitrate concentrations (90-1,330 ??M), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 ??M), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 ??M). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 ??mol N m-2 h-1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification. ?? Springer Science+Business Media B.V. 2009.
Zheng, Lei; Zhao, Xue; Zhu, Guibing; Yang, Wei; Xia, Chao; Xu, Tao
2017-08-01
Using molecular biology methods (qualitative and quantitative PCR), we determined the occurrence and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) from a dry inland soil in Basel, Switzerland, and from the riparian zone of Baiyangdian Lake, China. We also determined the contributions of these microorganisms to ammonia oxidization at different depths based on the nitrification rate. The number of archaeal amoA genes (the key functional gene in AOA) was larger than the number of bacterial amoA genes in each sample, suggesting a dominant role for the AOA amoA gene in environments with a low ammonium concentration. In Baiyangdian Lake, the number of archaeal amoA genes was highest at 6 m and lowest at 12 m from the land-water interface in the soil (at depths from 40 to 60 cm), close to the groundwater, which suggests that AOA become more competitive in environments with a low dissolved oxygen content and are promoted by low pH. The nitrification rate was significantly negatively correlated with depth in the Baiyangdian Lake soil and significantly positively correlated with the number of AOB amoA genes at this site, 6 m from the water. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Kundu, Pradyut; Pramanik, Arnab; Dasgupta, Arpita; Mukherjee, Somnath; Mukherjee, Joydeep
2014-01-01
A heterotrophic carbon utilizing microbe (R31) capable of simultaneous nitrification and denitrification (SND) was isolated from wastewater of an Indian slaughterhouse. From an initial COD value of 583.0 mg/L, 95.54% was removed whilst, from a starting NH4 +-N concentration of 55.7 mg/L, 95.87% was removed after 48 h contact. The concentrations of the intermediates hydroxylamine, nitrite, and nitrate were low, thus ensuring nitrogen removal. Aerobic denitrification occurring during ammonium removal by R31 was confirmed by utilization of both nitrate and nitrite as nitrogen substrates. Glucose and succinate were superior while acetate and citrate were poor substrates for nitrogen removal. Molecular phylogenetic identification, supported by chemotaxonomic and physiological properties, assigned R31 as a close relative of Chryseobacterium haifense. The NH4 +-N utilization rate and growth of strain R31 were found to be higher at C/N = 10 in comparison to those achieved with C/N ratios of 5 and 20. Monod kinetic coefficients, half saturation concentration (K s), maximum rate of substrate utilization (k), yield coefficient, (Y) and endogenous decay coefficient (K d) indicated potential application of R31 in large-scale SND process. This is the first report on concomitant carbon oxidation, nitrification, and denitrification in the genus Chryseobacterium and the associated kinetic coefficients. PMID:24991552
Surface Nitrification: A Major Uncertainty in Marine N2O Emissions
NASA Technical Reports Server (NTRS)
Zamora, Lauren M.; Oschlies, Andreas
2014-01-01
The ocean is responsible for up to a third of total global nitrous oxide (N2O) emissions, but uncertainties in emission rates of this potent greenhouse gas are high (approaching 100%). Here we use a marine biogeochemical model to assess six major uncertainties in estimates of N2O production, thereby providing guidance in how future studies may most effectively reduce uncertainties in current and future marine N2O emissions. Potential surface N2O production from nitrification causes the largest uncertainty in N2O emissions (estimated up to approximately 1.6 Tg N/yr (sup -1) or 48% of modeled values), followed by the unknown oxygen concentration at which N2O production switches to N2O consumption (0.8 Tg N/yr (sup -1)or 24% of modeled values). Other uncertainties are minor, cumulatively changing regional emissions by less than 15%. If production of N2O by surface nitrification could be ruled out in future studies, uncertainties in marine N2O emissions would be halved.
Hou, Jie; Wang, Xin; Wang, Jie; Xia, Ling; Zhang, Yiqing; Li, Dapeng; Ma, Xufa
2018-06-01
This study aimed at assessing the influence of aeration mode and influent COD/N ratio on nitrogen removal in constructed wetlands (CWs). The results showed that a simultaneous partial nitrification, anammox and denitrification (SNAD) process was established in the intermittent aerated V1. While nitrogen removal pathway gradually changed from partial nitrification-denitrification to complete nitrification-denitrification along with reducing COD/N ratio in the continuous limited aerated V2. Effective inhibition of NOBs under intermittent aeration conditions, good retention of anammox bacteria biomass and much faster depletion of COD prior to substantial NH 4 + -N conversion jointly led to the successful achievement of stable SNDA process with elevated influent COD/N ratios in V1. Furthermore, the presence of SNAD ensured a robust ammonium (84-92%) and TN (80-91%) removal efficiency in V1 under varying COD loading rates. In contrast, the TN removal efficiency decreased rapidly along with the reducing influent COD/N ratios in V2. Copyright © 2018 Elsevier Ltd. All rights reserved.
Whang, Liang-Ming; Wu, Yi-Ju; Lee, Ya-Chin; Chen, Hong-Wei; Fukushima, Toshikazu; Chang, Ming-Yu; Cheng, Sheng-Shung; Hsu, Shu-Fu; Chang, Cheng-Huey; Shen, Wason; Huang, Chung Kai; Fu, Ryan; Chang, Barkley
2012-10-01
This study investigated nitrification performance and nitrifying community in one full-scale membrane bioreactor (MBR) treating TFT-LCD wastewater. For the A/O MBR system treating monoethanolamine (MEA) and dimethyl sulfoxide (DMSO), no nitrification was observed, due presumably to high organic loading, high colloidal COD, low DO, and low hydraulic retention time (HRT) conditions. By including additional A/O or O/A tanks, the A/O/A/O MBR and the O/A/O MBR were able to perform successful nitrification. The real-time PCR results for quantification of nitrifying populations showed a high correlation to nitrification performance, and can be a good indicator of stable nitrification. Terminal restriction fragment length polymorphism (T-RFLP) results of functional gene, amoA, suggest that Nitrosomonas oligotropha-like AOB seemed to be important to a good nitrification in the MBR system. In the MBR system, Nitrobacter- and Nitrospira-like NOB were both abundant, but the low nitrite environment is likely to promote the growth of Nitrospira-like NOB. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence
This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...
Effect of arsenic on nitrification of simulated mining water.
Papirio, S; Zou, G; Ylinen, A; Di Capua, F; Pirozzi, F; Puhakka, J A
2014-07-01
Mining and mineral processing of gold-bearing ores often release arsenic to the environment. Ammonium is released when N-based explosives or cyanide are used. Nitrification of simulated As-rich mining waters was investigated in batch bioassays using nitrifying cultures enriched in a fluidized-bed reactor (FBR). Nitrification was maintained at 100mg AsTOT/L. In batch assays, ammonium was totally oxidized by the FBR enrichment in 48 h. As(III) oxidation to As(V) occurred during the first 3h attenuating arsenic toxicity to nitrification. At 150 and 200mg AsTOT/L, nitrification was inhibited by 25%. Candidatus Nitrospira defluvii and other nitrifying species mainly colonized the FBR. In conclusion, the FBR enriched cultures of municipal activated sludge origins tolerated high As concentrations making nitrification a potent process for mining water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integrating pH, substrate, and plant regrowth effects on soil nitrogen cycling after fire
NASA Astrophysics Data System (ADS)
Hanan, E. J.; Schimel, J.; Tague, C.; D'Antonio, C. M.
2014-12-01
Mediterranean-type ecosystems are structured by fire. In California chaparral, fires uncouple N production and consumption by enhancing nitrification and reducing plant uptake. NO3- that accumulates after fire is vulnerable to leaching. However, the extent to which fires decouple N fluxes can vary spatially and with timing of fire, and the specific mechanisms controlling N metabolism in recovering chaparral are not well understood. We combined empirical analysis and modeling in two chaparral watersheds to better understand how these systems recover from fire, and to explore their sensitivity to changing climate and fire regimes. To evaluate how pH, charcoal, and NH4+ supply influence N cycling, we measured mineralization and nitrification rates in chaparral soils that burned 1, 4, 20 and 40 years prior to sampling. We then experimentally adjusted pH, charcoal, and NH4+ concentrations for all soils in a factorial design, and incubated them for 8 weeks. Each week, we measured respiration, exchangeable NH4+ and NO3- content, nitrification potential, microbial biomass, and pH. Then to project the effects of altered precipitation patterns and fire timing on nitrogen dynamics and recovery, we used the hydro-biogeochemical model RHESSys. Fires were imposed at the beginning and end of the growing season under various climates. NO3- production was highest in soils collected from the most recently burned sites. Also, NO3- concentrations increased over the course of incubation in soils from all sites, especially at high pH, and with NH4+ addition. Charcoal slightly augmented the effects of elevated pH and NH4+ on NO3- production iduring the early stages of incubation in 1 and 4-year old sites, while it slightly dampened their effects by week 8. However, in 20 and 40-year old sites, charcoal had no effect. Overall, nitrification was most powerfully constrained by NH4+ supply. However, increases in pH that occur after fire may enhance nitrification rates when substrate is available. Also, charcoal might enhance N cycling immediately after fire, perhaps by supplying C to microbes, but impacts are short-lived. Modeling results suggest that soil acidity and rapid plant recovery reduce leaching. However, during drought and temperature extremes nutrients pools recover more slowly when fires occur prior to the hot, dry summer.
Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence
Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...
Indicators of nitrate export from forested watersheds of the Chesapeake Bay region
Karl W. J. Williard
1997-01-01
Soil net nitrogen mineralization and nitrification rates were studied on nine relatively undisturbed, forested watersheds in an effort to explain the large variations in nitrate export in streamflow within the Chesapeake Bay region. The primary hypothesis tested was that nitrate export from the watersheds was positively associated with rates of net soil nitrogen...
Koper, Teresa E; Stark, John M; Habteselassie, Mussie Y; Norton, Jeanette M
2010-11-01
An agricultural soil was treated with dairy-waste compost, ammonium-sulfate fertilizer or no added nitrogen (control) and planted to silage corn for 6 years. The kinetics of nitrification were determined in laboratory-shaken slurry assays with a range of substrate concentrations (0-20 mM NH(4)(+)) over a 24-h period for soils from the three treatments. Determined concentrations of substrate and product were fit to Michaelis-Menten and Haldane models. For all the treatments, the Haldane model was a better fit, suggesting that significant nitrification inhibition may occur in soils under high ammonium conditions similar to those found immediately after fertilization or waste applications. The maximum rate of nitrification (V(max)) was significantly higher for the fertilized and compost-treated soils (1.74 and 1.50 mmol N kg(-1) soil day(-1)) vs. control soil (0.98 mmol kg(-1) soil day(-1)). The K(m) and K(i) values were not significantly different, with average values of 0.02 and 27 mM NH(4)(+), respectively. Our results suggest that both N sources increased nitrifier community size, but did not shift the nitrifier community structure in ways that influenced enzyme affinity or sensitivity to ammonium. The K(m) values are comparable to those determined directly in other soils, but are substantially lower than those from most pure cultures of ammonia-oxidizing bacteria. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.
NASA Astrophysics Data System (ADS)
Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana
2015-05-01
Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (<10% change in mean annual rates) because positive warming and negative drying effects on the soil N cycle may counterbalance each other.
A case study of nitrogen saturation in western U.S. forests.
Fenn, M E; Poth, M A
2001-11-08
Virtually complete nitrification of the available ammonium in soil and nitrification activity in the forest floor are important factors predisposing forests in the San Bernardino Mountains of southern California to nitrogen (N) saturation. As a result, inorganic N in the soil solution is dominated by nitrate. High nitrification rates also generate elevated nitric oxide (NO) emissions from soil. High-base cation saturation of these soils means that soil calcium depletion or effects associated with soil acidification are not an immediate risk for forest health as has been postulated for mesic forests in the eastern U.S. Physiological disturbance (e.g., altered carbon [C] cycling, reduced fine root biomass, premature needle abscission) of ozone-sensitive ponderosa pine trees exposed to high N deposition and high ozone levels appear to be the greater threat to forest sustainability. However, N deposition appears to offset the aboveground growth depression effects of ozone exposure. High nitrification activity reported for many western ecosystems suggests that with chronic N inputs these systems are prone to N saturation and hydrologic and gaseous losses of N. High runoff during the winter wet season in California forests under a Mediterranean climate may further predispose these watersheds to high nitrate leachate losses. After 4 years of N fertilization at a severely N saturated site in the San Bernardino Mountains, bole growth unexpectedly increased. Reduced C allocation below- ground at this site, presumably in response to ozone or N or both pollutants, may enhance the bole growth response to added N.
Morimoto, Sho; Hayatsu, Masahito; Takada Hoshino, Yuko; Nagaoka, Kazunari; Yamazaki, Masatsugu; Karasawa, Toshihiko; Takenaka, Makoto; Akiyama, Hiroko
2011-01-01
Soil type is one of the key factors affecting soil microbial communities. With regard to ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), however, it has not been determined how soil type affects their community size and soil nitrification activity. Here we quantitatively analyzed the ammonia monooxygenase genes (amoA) of these ammonia oxidizers in fields with three different soil types (Low-humic Andosol [LHA], Gray Lowland Soil [GLS], and Yellow Soil [YS]) under common cropping conditions, and assessed the relationships between soil nitrification activity and the abundance of each amoA. Nitrification activity of LHA was highest, followed by that of GLS and YS; this order was consistent with that for the abundance of AOB amoA. Abundance of AOB amoA showed temporal variation, which was similar to that observed in nitrification activity, and a strong relationship (adjusted R(2)=0.742) was observed between the abundance of AOB amoA and nitrification activity. Abundance of AOA amoA also exhibited a significant relationship (adjusted R(2)=0.228) with nitrification activity, although this relationship was much weaker. Our results indicate that soil type affects the community size of AOA and AOB and the resulting nitrification activity, and that AOB are major contributors to nitrification in soils, while AOA are partially responsible.
Nitrification in four acidic streams in southern New Jersey
Schornick, James C.; Ram, Neil M.
1978-01-01
Four characteristically acidic streams in southern New Jersey were investigated to determine the effect of secondary effluent on nitrification in the receiving waters. Chemical and microbiological data were obtained at four sites on each stream. From these data seven factors were evaluated to determine the proclivity of each stream to nitrify. pH, water temperature, and dissolved oxygen were used to describe the general condition of the streams, while neutralization of alkalinity, nitrogen species concentration trends, biological and nitrogenous oxygen demand incubations, and nitrifying bacteria densities were used to determine the actual presence of nitrification in each stream. Each stream had a unique distribution of conditions, making it possible to qualitatively rank the streams according to their proclivity to nitrify. Hay StackBrook showes strong evidence for nitrification on the basis of all four nitrification indicators, whereas Landing Creek showed little, if any, evidence of nitrification. Hammonton Creek is apparently nitrifying, but because of the uncertainty in the downstream trends of the nitrogen species and a lower level of alkalinity neutralization, it is nitrifying less than Hay Stack Brook. Squankum Branch also showed some evidence for nitrification, mostly on the basis of the biological and nitrogenous oxygen demand incubations. Although these streams are acidic in character, acidity does not appear to be an exclusive factor in determining whether a stream will undergo nitrification. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Scheer, Clemens; Deuter, Peter; Firrell, Mary; Rowlings, David; Grace, Peter
2015-04-01
The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.
NASA Astrophysics Data System (ADS)
Hungate, B. A.; Dijkstra, P.; Brown, J.; Mau, R. L.; Thomas, S.; Dodsworth, J. A.; Hedlund, B. P.; Boyd, E. S.; de la Torre, J. R.; Jewell, T.
2012-12-01
Ammonium oxidation occurs in terrestrial and aquatic ecosystems, and from temperatures approaching freezing to close to 80 °C. This reaction is catalyzed by ammonium oxidase associated with both Bacteria and Archaea, although those associated with Archaea appear dominant at temperatures above ~ 60°C. For bacteria, this process is coupled to active CO2 uptake, although whether Archaea use this reaction in situ to drive C fixation has yet to be definitively established. For some hot spring communities, the Thaumarcheota (specifically close relatives of Nitrosocaldus yellowstonii) represent a substantial proportion of the microbial community. We conducted gross nitrification and CO2 fixation measurements to determine 1- the upper in situ temperature limit for nitrification and 2- the contribution of ammonium oxidizers to the community C fixation by inhibiting nitrification using allylthiourea (ATU). We used 15NO3- pool dilution to determine nitrification in sediment slurries and incubated sediment with 14C-labeled bicarbonate to measure C fixation. Sediment samples were collected from the Great Boiling Spring near Gerlach, Nevada. The water temperature ranged between 83 and 50°C depending on the location in the main pool. We collected samples at 82, 72, 59, and 51 °C. The sediment was homogenized, 15NO3- was added. The nitrification inhibitor ATU was added before adding the 15N label. One sample was immediately stored cold, while another was incubated overnight at the collection temperature. In parallel experiments, 14C bicarbonate was added to the headspace and likewise incubated in situ for several hours in the presence and absence of ATU. We observed significant nitrification at temperatures from 51-72 °C, but not at 82 °C. This nitrification was blocked by ATU. We also observed significant CO2 fixation at 51 and 59 °C, but not at higher temperature. CO2 fixation was not blocked by the nitrification inhibitor. We conclude that 1- ammonium oxidizers are responsible for at most a small proportion of the community CO2 fixation, and 2- at the highest temperature assessed, nitrification is negligible even though the organism capable of ammonium oxidization is still present.
NASA Astrophysics Data System (ADS)
Wankel, S. D.; Buchwald, C.; Ziebis, W.; Wenk, C. B.; Lehmann, M. F.
2015-08-01
Nitrogen (N) is a key component of fundamental biomolecules. Hence, the cycling and availability of N is a central factor governing the extent of ecosystems across the Earth. In the organic-lean sediment porewaters underlying the oligotrophic ocean, where low levels of microbial activity persist despite limited organic matter delivery from overlying water, the extent and modes of nitrogen transformations have not been widely investigated. Here we use the N and oxygen (O) isotopic composition of porewater nitrate (NO3-) from a site in the oligotrophic North Atlantic (IODP) to determine the extent and magnitude of microbial nitrate production (via nitrification) and consumption (via denitrification). We find that NO3- accumulates far above bottom seawater concentrations (∼ 21 μM) throughout the sediment column (up to ∼ 50 μM) down to the oceanic basement as deep as 90 mbsf, reflecting the predominance of aerobic nitrification/remineralization within the deep marine sediments. Large changes in the δ15N and δ18O of nitrate, however, reveal variable influence of nitrate respiration across the three sites. We use an inverse porewater diffusion-reaction model, constrained by the N and O isotope systematics of nitrification and denitrification and the porewater NO3- isotopic composition, to estimate rates of nitrification and denitrification throughout the sediment column. Results indicate variability of reaction rates across and within the three boreholes that are generally consistent with the differential distribution of dissolved oxygen at this site, though not necessarily with the canonical view of how redox thresholds separate nitrate regeneration from dissimilative consumption spatially. That is, we provide isotope evidence for expanded zones of co-ocurring nitrification and denitrification. The isotope biogeochemical modeling also yielded estimates for the δ15N and δ18O of newly produced nitrate (δ15NNTR and δ18ONTR), as well as the isotope effect for denitrification (15ϵDNF), parameters with high relevance to global ocean models of N cycling. Estimated values of δ15NNTR were generally lower than previously reported δ15N values for sinking PON in this region. We suggest that these values can be related to sedimentary N-fixation and remineralization of the newly fixed organic N. Values of δ18ONTR generally ranged between -2.8 and 0.0 ‰, consistent with recent estimates based on lab cultures of nitrifying bacteria. Notably, some δ18ONTR values were elevated, suggesting incorporation of 18O-enriched dissolved oxygen during nitrification, and possibly indicating a tight coupling of NH4+ and NO2- oxidation in this metabolically sluggish environment. Our findings indicate that the production of organic matter by in situ autotrophy (e.g., nitrification, nitrogen fixation) supply a large fraction of the biomass and organic substrate for heterotrophy in these sediments, supplementing the small organic matter pool derived from the overlying euphotic zone. This work sheds new light on an active nitrogen cycle operating, despite exceedingly low carbon inputs, in the deep sedimentary biosphere.
Nitrification in Water and Wastewater Treatment
This chapter discusses available information on the occurrence of nitrification in water treatment plants and its potential impact on distribution system water quality. Nitrification as part of the water treatment process can occur whenever ammonia is present in or added to the s...
Overview of Causes and Control of Nitrification in Chloraminated Drinking Water Distribution Systems
This chapter provides an integrated overview of nitrification causes and control in chloraminated drinking water distribution systems, leading to an in-depth discussion of nitrification microbiology, monitoring, prevention, response, and engineering improvements in subsequent man...
NASA Astrophysics Data System (ADS)
Do, T. D.; Pifer, A.; Chowdhury, Z.; Wahman, D.; Zhang, W.; Fairey, J.
2017-12-01
Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events that necessitate extensive flushing, resulting in the loss of billions of gallons of finished water. Biological techniques used to quantify the activity of nitrifying bacteria are impractical for real-time monitoring because they require significant laboratory efforts and/or lengthy incubation times. At present, DWU and CoH regularly rely on physicochemical parameters including total chlorine and monochloramine residual, and free ammonia, nitrite, and nitrate as indicators of nitrification, but these metrics lack specificity to nitrifying bacteria. To improve detection of nitrification in chloraminated drinking water distribution systems, we seek to develop a real-time fluorescence-based sensor system to detect the early onset of nitrification events by measuring the fluorescence of soluble microbial products (SMPs) specific to nitrifying bacteria. Preliminary data indicates that fluorescence-based metrics have the sensitivity to detect these SMPs in the early stages of nitrification, but several remaining challenges will be explored in this presentation. We will focus on benchtop and sensor results from ongoing batch and annular reactor experiments designed to (1) identify fluorescence wavelength pairs and data processing techniques suitable for measurement of SMPs from nitrification and (2) assess and correct potential interferences, such as those from monochloramine, pH, iron, nitrite, nitrate and humic substances. This work will serve as the basis for developing fluorescence sensor packages for full-scale testing and validation in the DWU and CoH systems. Findings from this research could be leveraged to identify nitrification events in their early stages, facilitating proactive interventions and decreasing the severity and frequency of nitrification episodes and water loss due to flushing.
Applying Molecular Tools for Monitoring Inhibition of Nitrification by Heavy Metals
The biological removal of ammonia in conventional wastewater treatment plants (WWTPs) is performed by promoting nitrification and denitrification as sequential steps. The first step in nitrification, the oxidation of ammonia to nitrite by ammonia oxidizing bacteria (AOB), is sens...
Nitrification can be a problem in distribution systems where chloramines are used as secondary disinfectants. A very rapid monochloramine residual loss is often associated with the onset of nitrification. During nitrification, ammonia-oxidizing bacteria biologically oxidize fre...
NASA Astrophysics Data System (ADS)
Khan, Aamir; Heiling, Maria; Zaman, Mohammad; Resch, Christian
2017-04-01
Nitrous oxide (N2O), one of the key greenhouse and ozone (O3) depleting gases, constitutes 7% of the anthropogenic greenhouse effect. Its global warming potential is 310 times higher than that of carbon dioxide (CO2) and 16 times than methane (CH4) over a 100-year period. To develop mitigation tools for N2O emissions, and to investigate the relationship between gross N transformation and N2O emission from soil, it is imperative to understand N2O emission from soils as influenced by N inputs, environmental conditions and farm management practices. The use of nitrification inhibitor such as Nitrapyrin and crop residues (mulch) may have a role in mitigating N2O losses from soil because of their effects on nitrification and denitrification. It prevents hydrolytic action on urea and keeps nitrogen in ammonium form. To determine the effects of urea applied with nitrification inhibitor and mulch on N2O emissions from soil, an incubation experiment was conducted under controlled moisture of 60% water filled pore space (WFPS) and temperature (20±2oC) conditions. Soil samples (0-20 cm soil depth) collected from an arable site were treated with 15N-labelled urea (5 atom %) at 150 kg N/ha rate. The 5 treatments including control, (urea, urea with Nitrapyrin (800 g/100 kg urea), urea with mulch (5 tons/ha) and urea with Nitrapyrin and mulch) were replicated 4 times using 500 ml glass jars. The N2O isotopic signature and the intramolecular distribution of 15N were measured by off-axis integrated cavity output spectroscopy (Los Gatos Research). The preliminary results showed that nitrification inhibitor (Nitrapyrin) can be used to distinguish between different pathways of N2O production from soil. In addition to the site preference of the 15N promises to be a helpful tool to determine the source of the generated N2O.
Song, He; Che, Zhao; Cao, Wenchao; Huang, Ting; Wang, Jingguo; Dong, Zhaorong
2016-06-01
Nitrification coupled with nitrate leaching contributes to soil acidification. However, little is known about the effect of soil acidification on nitrification, especially on ammonia oxidation that is the rate-limiting step of nitrification and performed by ammonia-oxidizing bacteria (AOB) and archaea (AOA). Serious soil acidification occurs in Chinese greenhouses due to the overuse of N-fertilizer. In the present study, greenhouse soils with 1, 3, 5, 7, and 9 years of vegetable cultivation showed a consistent pH decline (i.e., 7.0, 6.3, 5.6, 4.9, and 4.3). Across the pH gradient, we analyzed the community structure and abundance of AOB and AOA by pyrosequencing and real-time PCR techniques, respectively. The recovered nitrification potential (RNP) method was used to determine relative contributions of AOA and AOB to nitrification potential. The results revealed that soil acidification shaped the community structures of AOA and AOB. In acidifying soil, soil pH, NH3 concentration, and DOC content were critical factors shaping ammonia oxidizer community structure. AOB abundance, but not AOA, was strongly influenced by soil acidification. When soil pH was below 5.0, AOA rather than AOB were responsible for almost all of the RNP. However, when soil pH ranged from 5.6 to 7.0, AOB were the major contributors to RNP. The group I.1a-associatied AOA had more relative abundance in low pH (pH<6.3), whereas group I.1b tended to prefer neutral pH. Clusters 2, 10, and 12 in AOB were more abundant in acidic soil (pH <5.6), while Nitrosomonas-like lineage and unclassified lineage 3 were prevailing in neutral soil and slightly acidic soil (pH, 6.0-6.5), respectively. These results suggested that soil acidification had a profound impact on ammonia oxidation and more specific lineages in AOB occupying different pH-associated niches required further investigation.
Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak
2014-07-01
An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.
An analysis of nitrification during the aerobic digestion of secondary sludges.
Bhargava, D S; Datar, M T
1989-01-01
Investigations were undertaken to study the occurrence and progress of nitrification during aerobic digestion of activated sludge in a wide range of initial concentrations of total solids (1000 to 80 000 mg litre(-1), initial pH range of 4.5 to 10.4 and digestion temperature range of 5 degrees to 60 degrees C. Batch aerobic digestion studies on activated sludge grown on wastewater (enriched with organic solids from human excretal material) indicate that almost complete elimination of the 'biodegradable' matter of the activated sludge was one of the essential prerequisites to initiate nitrification. Favourable ranges of temperature and pH for nitrification were observed to be 25 degrees to 30 degrees C and 6.0 to 8.3, respectively. With all favourable conditions, a minimum period of about 2 days was necessary for population build-up of genera Nitrosomonas and Nitrobacter, and to initiate nitrification. Nitrate formation invariably lagged behind nitrite formation, but under certain conditions both phases of nitrification were observed to progress hand in hand.
Wang, Zhenyu; Zong, Haiying; Zheng, Hao; Liu, Guocheng; Chen, Lei; Xing, Baoshan
2015-11-01
Adding biochar into soils has potential to manipulate soil nitrification process due to its impacts on nitrogen (N) cycling, however, the exact mechanisms underlying the alteration of nitrification process in soils are still not clear. Nitrification in an acidic orchard soil amended with peanut shell biochar (PBC) produced at 400 °C was investigated. Nitrification was weakened by PBC addition due to the decreased NH4(+)-N content and reduced ammonia-oxidizing bacteria (AOB) abundance in PBC-amended soils. Adding phenolic compounds (PHCs) free biochar (PBC-P) increased the AOB abundance and the DGGE band number, indicating that PHCs remaining in the PBC likely reduced AOB abundance and diversity. However, PBC addition stimulated rape growth and increased N bioavailability. Overall, adding PBC could suppress the nitrification process and improve N bioavailability in the agricultural soils, and thus possibly mitigate the environmental negative impacts and improving N use efficiency in the acidic soils added with N fertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nitrogen removal via nitrite from seawater contained sewage.
Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing
2004-01-01
Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).
Dube, P J; Vanotti, M B; Szogi, A A; García-González, M C
2016-03-01
Gas-permeable membrane technology is useful to recover ammonia from manure. In this study, the technology was enhanced using aeration instead of alkali chemicals to increase pH and the ammonium (NH4(+)) recovery rate. Digested effluents from covered anaerobic swine lagoons containing 1465-2097 mg NH4(+)-N L(-1) were treated using submerged membranes (0.13 cm(2) cm(-3)), low-rate aeration (120 mL air L-manure(-1) min(-1)) and nitrification inhibitor (22 mg L(-1)) to prevent nitrification. The experiment included a control without aeration. The pH of the manure with aeration rose from 8.6 to 9.2 while the manure without aeration decreased from 8.6 to 8.1. With aeration, 97-99% of the NH4(+) was removed in about 5 days of operation with 96-98% recovery efficiency. In contrast, without aeration it took 25 days to treat the NH4(+). Therefore, the recovery of NH4(+) was five times faster with the low-rate aeration treatment. This enhancement could reduce costs by 70%. Published by Elsevier Ltd.
Moradi, Sina; Liu, Sanly; Chow, Christopher W K; van Leeuwen, John; Cook, David; Drikas, Mary; Amal, Rose
2017-07-01
The management of chloramine decay and the prevention of nitrification are some of the critical issues faced by water utilities that use chloramine as a disinfectant. In this study, potential association between high performance size exclusion chromatography (HPSEC) data obtained with multiple wavelength Ultraviolet (UV) detection from two drinking water distribution systems in Australia and nitrification occurrence was investigated. An increase in the absorbance signal of HPSEC profiles with UV detection at λ=230nm between apparent molecular weights of 200 to 1000Da was observed at sampling sites that experienced rapid chloramine decay and nitrification while its absorbance signal at λ=254nm decreased. A chloramine decay index (C.D.I) defined as the ratio of area beneath the HPSEC spectra at two different wavelengths of 230 and 254nm, was used in assessing chloramine decay occurrences. The C.D.Is of waters at locations that experienced nitrification were consistently higher than locations not experiencing nitrification. A simulated laboratory study showed that the formation of nitrite/nitrate and/or soluble microbial products and/or the release of extracellular polymeric substances (EPS) during nitrification may contribute to the C.D.I. increase. These findings suggest that C.D.I derived from HPSEC with multiple wavelength UV detection could be an informative index to track the occurrence of rapid chloramine decay and nitrification. Copyright © 2016. Published by Elsevier B.V.
Evidence for biological nitrification inhibition in Brachiaria pastures
Subbarao, G. V.; Nakahara, K.; Hurtado, M. P.; Ono, H.; Moreta, D. E.; Salcedo, A. F.; Yoshihashi, A. T.; Ishikawa, T.; Ishitani, M.; Ohnishi-Kameyama, M.; Yoshida, M.; Rondon, M.; Rao, I. M.; Lascano, C. E.; Berry, W. L.; Ito, O.
2009-01-01
Nitrification, a key process in the global nitrogen cycle that generates nitrate through microbial activity, may enhance losses of fertilizer nitrogen by leaching and denitrification. Certain plants can suppress soil-nitrification by releasing inhibitors from roots, a phenomenon termed biological nitrification inhibition (BNI). Here, we report the discovery of an effective nitrification inhibitor in the root-exudates of the tropical forage grass Brachiaria humidicola (Rendle) Schweick. Named “brachialactone,” this inhibitor is a recently discovered cyclic diterpene with a unique 5-8-5-membered ring system and a γ-lactone ring. It contributed 60–90% of the inhibitory activity released from the roots of this tropical grass. Unlike nitrapyrin (a synthetic nitrification inhibitor), which affects only the ammonia monooxygenase (AMO) pathway, brachialactone appears to block both AMO and hydroxylamine oxidoreductase enzymatic pathways in Nitrosomonas. Release of this inhibitor is a regulated plant function, triggered and sustained by the availability of ammonium (NH4+) in the root environment. Brachialactone release is restricted to those roots that are directly exposed to NH4+. Within 3 years of establishment, Brachiaria pastures have suppressed soil nitrifier populations (determined as amoA genes; ammonia-oxidizing bacteria and ammonia-oxidizing archaea), along with nitrification and nitrous oxide emissions. These findings provide direct evidence for the existence and active regulation of a nitrification inhibitor (or inhibitors) release from tropical pasture root systems. Exploiting the BNI function could become a powerful strategy toward the development of low-nitrifying agronomic systems, benefiting both agriculture and the environment. PMID:19805171
Wang, Hongyu; He, Jiajie; Yang, Kai
2010-01-01
This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.
Nitrification can be a problem in distribution systems where chloramines are used as secondary disinfectants. A very rapid monochloramine residual loss is often associated with the onset of nitrification. During nitrification, ammonia-oxidizing bacteria biologically oxidize fre...
Abstract: The biological removal of ammonia in conventional wastewater treatment plants (WWTPs) is performed by promoting nitrification, which transforms ammonia into nitrate, which in turn is converted into nitrogen gas by denitrifying bacteria. The first step in nitrification, ...
Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...
Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...
Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...
S. Pierre; I. Hewson; J. P. Sparks; C. M. Litton; C. Giardina; P. M. Groffman; T. J. Fahey
2017-01-01
Functional gene approaches have been used to better understand the roles of microbes in driving forest soil nitrogen (N) cycling rates and bioavailability. Ammonia oxidation is a rate limiting step in nitrification, and is a key area for understanding environmental constraints on N availability in forests. We studied how increasing temperature affects the role of...
Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin
2007-05-01
Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.
He, Tiehu; Liu, Deyan; Yuan, Junji; Luo, Jiafa; Lindsey, Stuart; Bolan, Nanthi; Ding, Weixin
2018-07-01
The effects of biochar combined with the urease inhibitor, hydroquinone, and nitrification inhibitor, dicyandiamide, on gaseous nitrogen (N 2 O, NO and NH 3 ) emissions and wheat yield were examined in a wheat crop cultivated in a rice-wheat rotation system in the Taihu Lake region of China. Eight treatments comprised N fertilizer at a conventional application rate of 150kgNha -1 (CN); N fertilizer at an optimal application rate of 125kgNha -1 (ON); ON+wheat-derived biochar at rates of 7.5 (ONB1) and 15tha -1 (ONB2); ON+nitrification and urease inhibitors (ONI); ONI+wheat-derived biochar at rates of 7.5 (ONIB1) and 15tha -1 (ONIB2); and, a control. The reduced N fertilizer application rate in the ON treatment decreased N 2 O, NO, and NH 3 emissions by 45.7%, 17.1%, and 12.3%, respectively, compared with the CN treatment. Biochar application increased soil organic carbon, total N, and pH, and also increased NH 3 and N 2 O emissions by 32.4-68.2% and 9.4-35.2%, respectively, compared with the ON treatment. In contrast, addition of urease and nitrification inhibitors decreased N 2 O, NO, and NH 3 emissions by 11.3%, 37.9%, and 38.5%, respectively. The combined application of biochar and inhibitors more effectively reduced N 2 O and NO emissions by 49.1-49.7% and 51.7-55.2%, respectively, compared with ON and decreased NH 3 emission by 33.4-35.2% compared with the ONB1 and ONB2 treatments. Compared with the ON treatment, biochar amendment, either alone or in combination with inhibitors, increased wheat yield and N use efficiency (NUE), while addition of inhibitors alone increased NUE but not wheat yield. We suggest that an optimal N fertilizer rate and combined application of inhibitors+biochar at a low application rate, instead of biochar application alone, could increase soil fertility and wheat yields, and mitigate gaseous N emissions. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of edaphic factors on the mineralization of neem oil coated urea in four Indian soils.
Kumar, Rajesh; Devakumar, C; Kumar, Dinesh; Panneerselvam, P; Kakkar, Garima; Arivalagan, T
2008-11-12
The utility of neem (Azadirachta indica A Juss) oil coated urea as a value-added nitrogenous fertilizer has been now widely accepted by Indian farmers and the fertilizer industry. In the present study, the expeller grade (EG) and hexane-extracted (HE) neem oils, the two most common commercial grades, were used to prepare neem oil coated urea (NOCU) of various oil doses, for which mineralization rates were assessed in four soils at three incubation temperatures (20, 27, and 35 degrees C). Neem oil dose-dependent conservation of ammonium N was observed in NOCU treatments in all of the soils. However, a longer incubation period and a higher soil temperature caused depletion of ammonium N. Overall, the nitrification in NOCU treatment averaged 56.6% against 77.3% for prilled urea in four soils. NOCU prepared from EG neem oil was consistently superior to that derived from hexane-extracted oil. The performance of NOCUs was best in coarse-textured soil and poorest in sodic soil. The nitrification rate (NR) of the NOCUs in the soils followed the order sodic > fine-textured > medium-textured > coarse-textured. The influence of edaphic factors on NR of NOCUs has been highlighted. The utility of the present study in predicting the performance of NOCU in diverse Indian soils was highlighted through the use of algorithms for computation of the optimum neem oil dose that would cause maximum inhibition of nitrification in any soil.
Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang
2017-12-01
A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mohammed, R N; Abu-Alhail, S; Xi-Wu, L
2014-08-01
The performance of a new pilot-scale six tanks activated sludge process has been evaluated for 303 d, receiving real domestic wastewater with a flow rate of 15-24.4 L/h. Partial nitrification via nitrite and microbial community structure were investigated in this system. The result shows that the nitrite accumulation rate was achieved successfully over 94% in the last aerobic compartment through a combination of short hydraulic retention time and low dissolved oxygen (DO) level. Fluorescence in situ hybridization analysis was used to correlate ammonia-oxidizing bacteria (AOB) numbers with nutrient removal via nitrite. It was shown that in response to complete and partial nitrification modes, the numbers of AOB population were 7.7 x 10(7) cells/g mixed liquor suspended solids (MLSS) and 5.31 x 10(8) cells/g MLSS, respectively. The morphology of the sludge indicated that there is a small rod-shaped and spherical cluster which was mainly dominantly bacterial according to scanning electron microscope. Higher pollutant removal efficiencies of 86.2%, 98%, and 96.1%, for total nitrogen, NH4+ - N, and total phosphorus, respectively, were achieved by a long-term operation of the six tanks activated sludge process at a low DO concentration and low chemical oxygen demand to nitrogen ratio which were approximately equal to the complete nitrification-ldenitrification with the addition of an external carbon source at a concentration of 1.5-2.5 mg/L.
Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands
Noe, Gregory B.; Hupp, Cliff R.; Rybicki, Nancy B.
2013-01-01
Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.
Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities.
Tolar, Bradley B; Wallsgrove, Natalie J; Popp, Brian N; Hollibaugh, James T
2017-12-01
Urea nitrogen has been proposed to contribute significantly to nitrification by marine thaumarchaeotes. These inferences are based on distributions of thaumarchaeote urease genes rather than activity measurements. We found that ammonia oxidation rates were always higher than oxidation rates of urea-derived N in samples from coastal Georgia, USA (means ± SEM: 382 ± 35 versus 73 ± 24 nmol L -1 d -1 , Mann-Whitney U-test p < 0.0001), and the South Atlantic Bight (20 ± 8.8 versus 2.2 ± 1.7 nmol L -1 d -1 , p = 0.026) but not the Gulf of Alaska (8.8 ± 4.0 versus 1.5 ± 0.6, p > 0.05). Urea-derived N was relatively more important in samples from Antarctic continental shelf waters, though the difference was not statistically significant (19.4 ± 4.8 versus 12.0 ± 2.7 nmol L -1 d -1 , p > 0.05). We found only weak correlations between oxidation rates of urea-derived N and the abundance or transcription of putative Thaumarchaeota ureC genes. Dependence on urea-derived N does not appear to be directly related to pH or ammonium concentrations. Competition experiments and release of 15 NH 3 suggest that urea is hydrolyzed to ammonia intracellularly, then a portion is lost to the dissolved pool. The contribution of urea-derived N to nitrification appears to be minor in temperate coastal waters, but may represent a significant portion of the nitrification flux in Antarctic coastal waters. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Nitrification and denitrification activity in simulated beef cattle bedded manure packs
USDA-ARS?s Scientific Manuscript database
Besides significant nitrogen (N) losses through ammonia, N can also be lost as nitrous oxide (N2O) via microbial incomplete nitrification and denitrification in the manure. We conducted lab-scale experiments to determine N2O, denitrification enzyme activity (DEA) and nitrification activity potential...
An Operations Manual for Achieving Nitrification in an Activated Sludge Plant.
ERIC Educational Resources Information Center
Ontario Ministry of the Environment, Toronto.
In Ontario, the attainment of nitrification (oxidation of ammonia) in activated sludge plants is receiving increased attention. Nitrification of waste water is a necessary requirement because it reduces plant discharge of nitrogenous oxygen demand and/or toxic ammonia. However, this new requirement will result in added responsibility for…
Nitrification in drinking water distribution systems is a concern of many drinking water systems. Although chloramination as a source of nitrification (i.e., addition of excess ammonia or breakdown of chloramines) has drawn the most attention, many source waters contain signific...
Albers, Christian Nyrop; Ellegaard-Jensen, Lea; Hansen, Lars Hestbjerg; Sørensen, Sebastian R
2018-02-01
Ammonium oxidation to nitrite and then to nitrate (nitrification) is a key process in many waterworks treating groundwater to make it potable. In rapid sand filters, nitrifying microbial communities may evolve naturally from groundwater bacteria entering the filters. However, in new filters this may take several months, and in some cases the nitrification process is never sufficiently rapid to be efficient or is only performed partially, with nitrite as an undesired end product. The present study reports the first successful priming of nitrification in a rapid sand filter treating groundwater. It is shown that nitrifying communities could be enriched by microbiomes from well-functioning rapid sand filters in waterworks and that the enriched nitrifying consortium could be used to inoculate fresh filters, significantly shortening the time taken for the nitrification process to start. The key nitrifiers in the enrichment were different from those in the well-functioning filter, but similar to those that initiated the nitrification process in fresh filters without inoculation. Whether or not the nitrification was primed with the enriched nitrifying consortium, the bacteria performing the nitrification process during start-up appeared to be slowly outcompeted by Nitrospira, the dominant nitrifying bacterium in well-functioning rapid sand filters. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vipindas, P. V.; Anas, Abdulaziz; Jayalakshmy, K. V.; Lallu, K. R.; Benny, P. Y.; Shanta, Nair
2018-02-01
Estuaries are ecologically important environments, which function as the reception point of nitrogenous inputs of terrestrial and anthropogenic origin. In the present study, we discuss the influence of nutrient characteristics on the distribution and activity of nitrifiers in the water column of Cochin Estuary (CE), a tropical estuary along the southeast Arabian Sea (SEAS). Nitrifying bacteria (i.e. Ammonia- (AOB) and nitrite- (NOB) -oxidizing bacteria), which were enumerated using fluorescent in situ hybridization (FISH), showed marked seasonality while maintaining the abundance within an order of 107 cells L-1. Denaturing Gradient Gel Electrophoresis (DGGE) analysis of AOB exhibited spatio-temporal adaptability without much variation. Nitrification rate in the CE ranged from 2.25 to 426.17 nmol N L-1 h-1 and it was 10-40 fold higher during the pre-monsoon compared with the monsoon. We attributed this increase to high nutrient availability during pre-monsoon due to low flushing rate of the estuary. The study shows that the distribution and activities of nitrifiers in the CE are modulated by the changes in nutrient concentration imparted by the monsoon-driven seasonal variation in river-water discharge and flushing.
NASA Astrophysics Data System (ADS)
Cruvellier, Nelly; Lasseur, Christophe; Poughon, Laurent; Creuly, Catherine; Dussap, Gilles
Nitrogen is a key element for the life and its balance on Earth is regulated by the nitrogen cycle. This loop includes several steps among which nitrification that permits the transformation of the ammonium into nitrate. The MELiSSA loop is an artificial ecosystem designed for life support systems (LSS). It is based on the carbon and nitrogen cycles and the recycling of the non-edible part of the higher plants and the waste produced by the crew. In this order, all the wastes are collected in the first compartment to degrade them into organic acids and CO2. These compounds are joining the second compartment which is a photoheterotrophic compartment where at the outlet an organic-free medium containing ammonium is produced. This solution will be the substrate of the third compartment where nitrification is done. This compartment has to oxidize the ammonium into nitrate, and this biological reaction needs two steps. In the MELiSSA loop, the nitrification is carried out by two bacteria: Nitrosomonas europaea ATCC® 19718™ which is oxidizing ammonia into nitrite and Nitrobacter winogradskyi ATCC® 25391™ which is producing nitrate from nitrite in the third compartment. These two bacteria are growing in axenic conditions on a fixed bed bioreactor filled with Biostyr® beads. The nitrogen compounds are controlled by Ionic Chromatography and colorimetric titration for each sample. The work presented here deals with the culture of both bacteria in pure cultures and mixed cultures in stirred and aerated bioreactors of different volumes. The first aim of our work is the characterization of the bacteria growth in bioreactors and in the nitrifying fixed-bed column. The experimental results confirm that the growth is slow; the maximal growth rate in suspended cultures is 0.054h-1 for Nitrosomonas europaea and 0.022h-1 for Nitrobacter winogradskyi. Mixed cultures are difficult to control and operate but one could be done for more than 500 hours. The characterization of the bacteria will be used to calibrate the nitrification model which will be the basis of the control model for managing the nitrification process in the MELiSSA loop. The experimental results highlighted the use of online measurement of base addition and oxygen consumption as possible parameters for the control of the nitrification process. Keywords: Nitrosomonas europaea, Nitrobacter winogradskyi, MELiSSA, bioreactor
Abzazou, Tarik; Araujo, Rosa M; Auset, María; Salvadó, Humbert
2016-01-15
A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L(-1)), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH4(+) removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) losses associated with fertilizer application have negative economic and environmental consequences, but urease and nitrification inhibitors have potential to reduce N losses. The effectiveness of these inhibitors has been studied extensively in irrigated but not rainfed systems. Theref...
Chai, Li-Yuan; Ali, Mohammad; Min, Xiao-Bo; Song, Yu-Xia; Tang, Chong-Jian; Wang, Hai-Ying; Yu, Cheng; Yang, Zhi-Hui
2015-06-01
The partial nitrification (PN) performance under high ammonium concentrations was evaluated in an airlift reactor (ALR). The ALR was operated for 253days with stepwise elevation of ammonium concentration to 1400mg/L corresponding nitrogen loading rate of 2.1kg/m(3)/d. The ammonium removal rate was finally developed to 2.0kg/m(3)/d with average removal efficiency above 91% and nitrite accumulation percentage of 80%. Results showed that the combined effect of limited DO, high bicarbonate, pH and free ammonia (FA) contributed to the stable nitrite accumulation substantially. The biomass in the ALR was improved with the inception of granulation. Precipitates on biomass surface was unexpectedly experienced which might improve the settleability of PN biomass. Organic functional groups attached to the PN biomass suggested the possible absorbability to different types of pollutant. The results provided important evidence for the possibility of applying an ALR to treat high strength ammonium wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Complete nutrient recovery from source-separated urine by nitrification and distillation.
Udert, K M; Wächter, M
2012-02-01
In this study we present a method to recover all nutrients from source-separated urine in a dry solid by combining biological nitrification with distillation. In a first process step, a membrane-aerated biofilm reactor was operated stably for more than 12 months, producing a nutrient solution with a pH between 6.2 and 7.0 (depending on the pH set-point), and an ammonium to nitrate ratio between 0.87 and 1.15 gN gN(-1). The maximum nitrification rate was 1.8 ± 0.3 gN m(-2) d(-1). Process stability was achieved by controlling the pH via the influent. In the second process step, real nitrified urine and synthetic solutions were concentrated in lab-scale distillation reactors. All nutrients were recovered in a dry powder except for some ammonia (less than 3% of total nitrogen). We estimate that the primary energy demand for a simple nitrification/distillation process is four to five times higher than removing nitrogen and phosphorus in a conventional wastewater treatment plant and producing the equivalent amount of phosphorus and nitrogen fertilizers. However, the primary energy demand can be reduced to values very close to conventional treatment, if 80% of the water is removed with reverse osmosis and distillation is operated with vapor compression. The ammonium nitrate content of the solid residue is below the limit at which stringent EU safety regulations for fertilizers come into effect; nevertheless, we propose some additional process steps that will increase the thermal stability of the solid product. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zimmer, J.; O'Connor, B.; Halmo, K.; Xiong, A.
2016-02-01
Nitrification is one of the processes that prevents accumulation of ammonium in aerobic near-bottom water of almost any basin-type ecosystem. Ammonium arises in part from digestive excretion as well as decomposition and diagenesis of organic matter. Ammonium inputs are especially pronounced near abundant benthic invertebrate communities (e.g., mussel or oyster beds) and where fish congregate en masse. Recent basin-scale changes in ecology of Lake Michigan have resulted in several zones of high excretion that are not accompanied by ammonium accumulation. A roller-bottle simulation of the sediment-water interface, using sand as the solid phase, is used with natural enrichments of nitrifier communities to measure empirical values for key terms in a mathematical model to describe the N-cycle process components of our closed model system. The maximum velocity of transformation is directly proportional to solid phase material in a mature system, with half-saturation values for ammonium and nitrite transformation of 207.3 and 10.8 µM respectively. These are significantly higher than ambient concentrations of 2-5 and 0.2-1.0 µM respectively for dense invertebrate communities but in line with observed values for dense fish aggregations. Thus regulation of reduced nitrogenous compounds can be very effective in these communities when there is sufficient interaction of the solid substrate with the source water. Further analysis of rate parameters and controls in the model system, and assessment of different natural and artificial solid phases for biofilm establishment and nitrification parameters is underway.
Ruyters, Stefan; Springael, Dirk; Smolders, Erik
2013-08-01
A soil sterilization-reinoculation approach was used to manipulate soil microbial diversity and to assess the effect of the diversity of the ammonia-oxidizing bacteria (AOB) on the recovery of the nitrifying community to metal stress (zinc). Gamma-irradiated soil was inoculated with 13 different combinations of up to 22 different soils collected worldwide to create varying degrees of AOB diversity. Two months after inoculation, AOB amoA DGGE based diversity (weighted richness) varied more than 10-fold among the 13 treatments, the largest value observed where the number of inocula had been largest. Subsequently, the 13 treatments were either or not amended with ZnCl2. Initially, Zn amendment completely inhibited nitrification. After 6 months of Zn exposure, recovery of the potential nitrification activity in the Zn amended soils ranged from <10 % to >100 % of the potential nitrification activity in the corresponding non-amended soils. This recovery was neither related to DGGE-based indices of AOB diversity nor to the AOB abundance assessed 2 months after inoculation (p > 0.05). However, recovery was significantly related (r = 0.75) to the potential nitrification rate before Zn amendment and only weakly to the number of soil inocula used in the treatments (r = 0.46). The lack of clear effects of AOB diversity on recovery may be related to an inherently sufficient diversity and functional redundancy of AOB communities in soil. Our data indicate that potential microbial activity can be a significant factor in recovery.
Magda, Konopka; Hugh A L, Henry; Romain, Marti; Edward, Topp
2015-03-01
A field experiment was initiated whereby a series of replicated plots received annual applications of ivermectin, monensin, and zinc bacitracin, either singly or in a mixture. Pharmaceuticals were added at concentrations of 0.1 mg/kg soil or 10 mg/kg soil. The authors collected soil samples in 2013, before and after the fourth annual application of pharmaceuticals. In addition, a 30-d laboratory experiment was undertaken with the same soil and same pharmaceuticals, but at concentrations of 100 mg/kg soil. The impact of the pharmaceuticals on nitrification rates, on the abundance of ammonia-oxidizing bacteria (AOB), and on the abundance of ammonia-oxidizing archaea (AOA) was assessed. None of the pharmaceuticals at 0.1 mg/kg had any effect on nitrification. Referenced to control soil, nitrification was accelerated in soil exposed to 100 mg/kg zinc bacitracin or 10 mg/kg of the pharmaceutical mixture, but none of the treatments inhibited nitrification. Neither AOB abundance nor AOA abundance was affected by the pharmaceuticals at 0.1 mg/kg. At 10 mg/kg, monensin, zinc bacitracin, and a mixture of all 3 pharmaceuticals suppressed the abundance of AOB, and zinc bacitracin and the mixture increased AOA abundance. The decrease in AOB abundance and increase in AOA abundance when exposed to 10 mg/kg soil suggests that AOB are more sensitive to these chemicals and that AOA populations can expand to occupy the partially vacated niche. Published 2014 SETAC.
Li, Yilin; Shi, Weiming; Wang, Xingxiang
2014-01-01
The differences in rhizosphere nitrification activities between high- and low- fertility soils appear to be related to differences in dissolved oxygen concentrations in the soil, implying a relationship to differences in the radial oxygen loss (ROL) of rice roots in these soils. A miniaturised Clark-type oxygen microelectrode system was used to determine rice root ROL and the rhizosphere oxygen profile, and rhizosphere nitrification activity was studied using a short-term nitrification activity assay. Rice planting significantly altered the oxygen cycling in the water-soil system due to rice root ROL. Although the oxygen content in control high-fertility soil (without rice plants) was lower than that in control low-fertility soil, high rice root ROL significantly improved the rhizosphere oxygen concentration in the high-fertility soil. High soil fertility improved the rice root growth and root porosity as well as rice root ROL, resulting in enhanced rhizosphere nitrification. High fertility also increased the content of nitrification-induced nitrate in the rhizosphere, resulting in enhanced ammonium uptake and assimilation in the rice. Although high ammonium pools in the high-fertility soil increased rhizosphere nitrification, rice root ROL might also contribute to rhizosphere nitrification improvement. This study provides new insights into the reasons that an increase in soil fertility may enhance the growth of rice. Our results suggest that an amendment of the fertiliser used in nutrient- and nitrification-poor paddy soils in the red soil regions of China may significantly promote rice growth and rice N nutrition. PMID:25291182
Studies are currently underway to help fill knowledge gaps that exist in the general understanding of nitrification episodes. One of these gaps includes the need for growth and inactivation kinetic parameters for nitrifiers representative of those inhabiting distribution systems ...
Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment.
Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon
2008-04-15
Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of toxic compounds such as phenols, cyanides and thiocyanate. Although activated sludge process has been adapted to treat this wastewater, nitrification process has been occasionally upset by serious inhibitory effects of toxic compounds. In this study, therefore, we examined inhibitory effects of ammonia, thiocyanate, free cyanide, ferric cyanide, phenol and p-cresol on nitrification in an activated sludge system, and then correlated their threshold concentrations with the full-scale pre-denitrification process for treating cokes wastewater. Ammonia below 350 mg/L did not cause substrate inhibition for nitrifying bacteria. Thiocyanate above 200mg/L seemed to inhibit nitrification, but it was due to the increased loading of ammonia produced from its biodegradation. Free cyanide above 0.2mg/L seriously inhibited nitrification, but ferric cyanide below 100mg/L did not. Phenol and p-cresol significantly inhibited nitrification above 200 mg/L and 100mg/L, respectively. Meantime, activated carbon was added to reduce inhibitory effects of phenol and free cyanide.
Nitrification in agricultural soils: impact, actors and mitigation.
Beeckman, Fabian; Motte, Hans; Beeckman, Tom
2018-04-01
Nitrogen is one of the most important nutrients for plant growth and hence heavily applied in agricultural systems via fertilization. Nitrification, that is, the conversion of ammonium via nitrite to nitrate by soil microorganisms, however, leads to nitrate leaching and gaseous nitrous oxide production and as such to an up to 50% loss of nitrogen availability for the plant. Nitrate leaching also results in eutrophication of groundwater, drinking water and recreational waters, toxic algal blooms and biodiversity loss, while nitrous oxide is a greenhouse gas with a global warming potential 300× greater than carbon dioxide. Logically, inhibition of nitrification is an important strategy used in agriculture to reduce nitrogen losses, and contributes to a more environmental-friendly practice. However, recently identified and crucial players in nitrification, that is, ammonia-oxidizing archaea and comammox bacteria, seem to be under-investigated in this respect. In this review, we give an update on the different pathways in ammonia oxidation, the relevance for agriculture and the interaction with nitrification inhibitors. As such, we hope to pinpoint possible strategies to optimize the efficiency of nitrification inhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fan, Changhua; Li, Bo; Xiong, Zhengqin
2018-01-15
Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased yield, respectively. Our findings highlight the benefits of nitrification inhibitors for integrating environment and agronomy in intensive vegetable ecosystems in China. Copyright © 2017. Published by Elsevier B.V.
Kraus, Tamara; O'Donnell, Katy; Downing, Bryan D.; Burau, Jon R.; Bergamaschi, Brian
2017-01-01
We used paired continuous nitrate ( ) measurements along a tidally affected river receiving wastewater discharge rich in ammonium ( ) to quantify rates of change in concentration ( ) and estimate nitrification rates. sensors were deployed 30 km apart in the Sacramento River, California (USA), with the upstream station located immediately above the regional wastewater treatment plant (WWTP). We used a travel time model to track water transit between the stations and estimated every 15 min (October 2013 to September 2014). Changes in concentration were strongly related to water temperature. In the presence of wastewater, was generally positive, ranging from about 7 µM d−1 in the summer to near zero in the winter. Numerous periods when the WWTP halted discharge allowed the to be estimated under no-effluent conditions and revealed that in the absence of effluent, net gains in were substantially lower but still positive in the summer and negative (net sink) in the winter. Nitrification rates of effluent-derived NH4 ( ) were estimated from the difference between measured in the presence versus absence of effluent and ranged from 1.5 to 3.4 µM d−1, which is within literature values but tenfold greater than recently reported for this region. was generally lower in winter (∼2 µM d−1) than summer (∼3 µM d−1). This in situ, high frequency approach provides advantages over traditional discrete sampling, incubation, and tracer methods and allows measurements to be made over broad areas for extended periods of time. Incorporating this approach into environmental monitoring programs can facilitate our ability to protect and manage aquatic systems.
[Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].
Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang
2011-09-01
In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in wastewater by the absorption of activated sludge.
NASA Astrophysics Data System (ADS)
Kraus, T. E. C.; O'Donnell, K.; Downing, B. D.; Burau, J. R.; Bergamaschi, B. A.
2017-10-01
We used paired continuous nitrate (NO3-) measurements along a tidally affected river receiving wastewater discharge rich in ammonium (NH4+) to quantify rates of change in NO3- concentration (RΔNO3) and estimate nitrification rates. NO3- sensors were deployed 30 km apart in the Sacramento River, California (USA), with the upstream station located immediately above the regional wastewater treatment plant (WWTP). We used a travel time model to track water transit between the stations and estimated RΔNO3 every 15 min (October 2013 to September 2014). Changes in NO3- concentration were strongly related to water temperature. In the presence of wastewater, RΔNO3 was generally positive, ranging from about 7 µM d-1 in the summer to near zero in the winter. Numerous periods when the WWTP halted discharge allowed the RΔNO3 to be estimated under no-effluent conditions and revealed that in the absence of effluent, net gains in NO3- were substantially lower but still positive in the summer and negative (net sink) in the winter. Nitrification rates of effluent-derived NH4 (RNitrific_E) were estimated from the difference between RΔNO3 measured in the presence versus absence of effluent and ranged from 1.5 to 3.4 µM d-1, which is within literature values but tenfold greater than recently reported for this region. RNitrific_E was generally lower in winter (˜2 µM d-1) than summer (˜3 µM d-1). This in situ, high frequency approach provides advantages over traditional discrete sampling, incubation, and tracer methods and allows measurements to be made over broad areas for extended periods of time. Incorporating this approach into environmental monitoring programs can facilitate our ability to protect and manage aquatic systems.
Study on nitrification process in two calcareous and non-calcareous contaminated soils
NASA Astrophysics Data System (ADS)
Yazdanpanah, Najme
2010-05-01
Heavy metals are well known to be toxic to most microorganisms when present in high concentration in the soil. They are a serious threat to soil quality due to their persistence after entering the soil. It has been demonstrated repeatedly that heavy metals adversely affect biological functions in soil. While calcareous soils are widespread in Iran, there is lack of information on the behavior of microbial activity in the presence of heavy metals in these soils. Therefore, the aim of this study was to investigate the effect of Cd and Zn as pollutant on nitrification process in two calcareous and non-calcareous soils. After additions of 0, 10 and 100 µg Cd g-1 and 0, 100 and 500 µg Zn g-1 to the soils, nitrification in the presence and absence of ammonium was measured after 45 days incubation. Nitrification results showed that nitrate decreased in both treated soils. Toxic effect of Cd and Zn intensified with increase of metal concentration. The difference of nitrate in samples without ammonium was more pronounced than ammonium treated ones. Nitrification led to decrease in soil pH which was intensified especially in non-calcareous soil. The results of this study indicated that toxic effect of Cd and Zn on measured nitrification was more evident in non- calcareous soil. Keywords: Nitrification, Cadmium, Zinc, Calcareous and non-calcareous soil.
Effect of new lines of winter wheat on microbiological activity in Luvisol
NASA Astrophysics Data System (ADS)
Jezierska-Tys, S.; Rachoń, L.; Rutkowska, A.; Szumiło, G.
2012-02-01
The study presented in this paper was conducted under the conditions of a field experiment. Microbiological analyses were made at various stages of winter wheat plants development ie heading, milk ripeness and full ripeness. The objective of the study was to acquire knowledge on the effect of cultivation of various lines of winter wheat on the numbers of bacteria and fungi with proteolytic capabilities, on protease and urease activity, and on the rate of the processes of ammonification and nitrification. The results of conducted study demonstrated that the number of proteolytic bacteria and fungi, as well as the activity of protease and urease, and the intensity of ammonification and nitrification processes in soil depended on both the development stage and cultivated line of winter wheat.
Chloramination has been shown to promote nitrifying bacteria and 30 to 63% of utility plants using secondary chloramine disinfection experience nitrification episodes. Although nitrifying bacteria are not considered human pathogens, nitrification can affect drinking water qualit...
Treatment of Spacecraft Wastewater Using a Hollow Fiber Membrane Biofilm Redox Control Reactor
NASA Technical Reports Server (NTRS)
Smith, Daniel P.
2003-01-01
The purpose of this project was to develop and evaluate design concepts for biological treatment reactors for the purification of spacecraft wastewater prior to reverse osmosis treatment. The motivating factor is that wastewater recovery represents the greatest single potential reduction in the resupply requirements for crewed space missions. Spacecraft wastewater composition was estimated from the characteristics of the three major component streams: urine/flush water, hygiene water, and atmospheric condensate. The key characteristics of composite spacecraft wastewater are a theoretical oxygen demand of 4519 mg/L, of which 65% is nitrogenous oxygen demand, in a volume of 11.5 liter/crew-day. The organic carbon to nitrogen ratio of composite wastewater is 0.86. Urine represents 93% of nitrogen and 49% of the organic carbon in the composite wastestream. Various bioreaction scenarios were evaluated to project stoichiometric oxygen demands and the ability of wastewater carbon to support denitrification. Ammonia nitrification to the nitrite oxidation state reduced the oxygen requirement and enabled wastewater carbon to provide nearly complete denitrification. A conceptual bioreactor design was established using hollow fiber membranes for bubbleless oxygen transfer in a gravity-free environment, in close spatial juxtaposition to a second interspaced hollow fiber array for supplying molecular hydrogen. Highly versatile redox control and an enhanced ability to engineer syntrophic associations are stated advantages. A prototype reactor was constructed using a microporous hollow fiber membrane module for aeration. Maintaining inlet gas pressure within 0.25 psi of the external water pressure resulted in bubble free operation with no water ingress into hollow fiber lumens. Recommendations include the design and operational testing of hollow fiber bioreactors using: 1) Partial nitrification/nitrite predenitrification; 2) Limited aeration for simultaneous nitrification/denitrification or for nitrite reduction/ammonia oxidation; 3) Hydrogenotrophic denitrification.
2017-01-01
Ammonia oxidation decreases the pH in wastewaters where alkalinity is limited relative to total ammonia. The activity of ammonia oxidizing bacteria (AOB), however, typically decreases with pH and often ceases completely in slightly acidic wastewaters. Nevertheless, nitrification at low pH has been reported in reactors treating human urine, but it has been unclear which organisms are involved. In this study, we followed the population dynamics of ammonia oxidizing organisms and reactor performance in synthetic fully hydrolyzed urine as the pH decreased over time in response to a decrease in the loading rate. Populations of the β-proteobacterial Nitrosomonas europaea lineage were abundant at the initial pH close to 6, but the growth of a possibly novel Nitrosococcus-related AOB genus decreased the pH to the new level of 2.2, challenging the perception that nitrification is inhibited entirely at low pH values, or governed exclusively by β-proteobacterial AOB or archaea. With the pH shift, nitrite oxidizing bacteria were not further detected, but nitrous acid (HNO2) was still removed through chemical decomposition to nitric oxide (NO) and nitrate. The growth of acid-tolerant γ-proteobacterial AOB should be prevented, by keeping the pH above 5.4, which is a typical pH limit for the N. europaea lineage. Otherwise, the microbial community responsible for high-rate nitrification can be lost, and strong emissions of hazardous volatile nitrogen compounds such as NO are likely. PMID:28509546
Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory
2016-01-01
The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.
Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei
2015-01-01
Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (P<0.05). In bulk soil, compared with the control, the treatments of pH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease their availability, alter their rhizosphere effects, and have impact on nutrient cycling in tea plantation.
Ahn, K H; Yoo, H; Lee, J W; Maeng, S K; Park, K Y; Song, K G
2001-01-01
Injecting acetate into the sludge layer during the settling and decanting periods was adopted to enhance phosphorus release inside the sludge layer during those periods and phosphorus uptake during the subsequent aeration period in a KIST Intermittently Decanted Extended Aeration (KIDEA) process. The relationship among nitrification, denitrification and phosphorus removal was investigated in detail and analyzed with a qualitative floc model. Dependencies of nitrification on the maximum DO level during the aerobic phase and phosphorus release on residual nitrate concentration during the settling phase were significant. High degree of nitrification resulted that phosphorus release inside the sludge layer was significantly interfered with nitrate due to the limitation of available acetate and the carbon sources from influent. Such limitation was related to the primary utilization of organic substance for denitrification in the outer layer of the floc and the retarded mass transfer into the inner layer of the floc. Nevertheless, effects of acetate injection on both denitrification and phosphorus release during the settling phase were significant. Denitrification rate after acetate injection was two times as high as that before acetate injection, and phosphorus release reached about 14 mg PO4(3-)-P/g MLVSS/hr during the decanting phase after the termination of denitrification inside the sludge layer. Extremely low level of maximum DO (around 0.5 mg/L) during the aerobic phase may inhibited nitrification, considerably, and thus nearly no nitrate was present. However, the absence of nitrate increased when the phosphorus release rate was reached up to 33 mg PO4(3-)-P/g MLVSS/hr during the settling and decanting phase, and nearly all phosphorus was taken up during subsequent aerobic phase. Since the sludge layer could function as a blocking layer, phosphorus concentrations in the supernatant was not influenced by the released phosphorus inside the sludge layer during the settling and decanting period. Phosphorus removal was directly (for uptake) and indirectly (for release) dependent on the median and maximum DO concentration during the aerobic phase, and those optimal values may exist within the range from 0.2 to 0.6 mg/L and 0.4 to 1.2 mg/L, respectively.
Investigation of organic nitrogen and carbon removal in the aerobic digestion of various sludges.
Genç, Nevim; Yonsel, Sems; Dağaşan, Levent; Onar, A N
2002-11-01
Nitrification and carbon removal are investigated in aerobic batch digestion of various sludges. The experiments are carried out with activated sludge (Test 1) and with a mixture of activated and primary settling sludge (Test 2). The nitrification rate was monitored, measuring the NO2- concentration. At the 3rd day of the digestion 40.7 mgNO2-N/l and 3.89 mgNO2-N/l were found in Tests 1 and 2 respectively. In a digestion process, the degradation of biomass indicates the beginning of the endogenous phase. Our measure for biomass content of the sludge was protein analysis. In Test 1, the first day values of 50.93 mgTOC/ g(dry) matter/day and 138.53 mg(protein)-C/g(dry) matter/day for specific TOC and protein-C removal rates showed, that the digestion process began in the endogenous phase. For Test 2, since the endogenous phase began after removal of raw organic matter in primary settling sludge, specific TOC and protein-C removal rates were observed to be 60.12 mgTOC/g(dry) matter/day and 26.72 mg(protein-C/g(dry)matter/day, respectively.
NASA Astrophysics Data System (ADS)
Mo, Qifeng; Li, Zhi'An; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming
2016-01-01
Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China.
Mo, Qifeng; Li, Zhi'an; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming
2016-01-22
Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China.
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system.
Peng, Yongzhen; Hou, Hongxun; Wang, Shuying; Cui, Youwei; Zhiguo, Yuan
2008-01-01
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobic-anoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (r(SND)) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and r(SND) dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NO(x) to NH4+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified.
Wang, Bin-Bin; Gu, Ya-Wei; Chen, Jian-Meng; Yao, Qian; Li, Hui-Juan; Peng, Dang-Cong; He, Feng
2017-06-01
Different from monomeric substrate, polymeric substrate (PS) needs to undergo slow hydrolysis process before becoming available for consumption by bacteria. Hydrolysis products will be available for the heterotrophs in low concentration, which will reduce competitive advantages of heterotrophs to nitrifiers in mixed culture. Therefore, some links between PS and nitrification process can be expected. In this study, three lab-scale sequencing batch reactors with different PS/total substrate (TS) ratio (0, 0.5 or 1) in influent were performed in parallel to investigate the influence of PS on nitrification process in activated sludge system. The results showed that with the increase of PS/TS ratio, apparent sludge yields decreased, while NO 3 - -N concentration in effluent increased. The change of PS/TS ratio in influent also altered the cycle behaviors of activated sludge. With the increase of PS/TS ratio from 0 to 0.5 and 1, the ammonium and nitrite utilization rate increased ∼2 and 3 times, respectively. The q-PCR results showed that the abundance of nitrifiers in activated sludge for PS/TS ratio of 0.5 and 1 were 0.7-0.8 and 1.4-1.5 orders of magnitude higher than that for PS/TS ratio of 0. However, the abundance of total bacteria decreased about 0.5 orders of magnitude from the former two to the latter. The FISH observation confirmed that the nitrifiers' microcolony became bigger and more robust with the increase of PS/TS ratio. This paper paves a path to understand the role of PS/TS in affecting the nitrification process in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.
Livesley, S J; Adams, M A; Grierson, P F
2007-01-01
Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of forest soils to store and transform N inputs through organic matter management must consider the dynamic equilibrium between N input, uptake, and immobilization according to soil C status, and the effect changing microbial processes and environmental conditions can have on this equilibrium.
Deforestation for oil palm alters the fundamental balance of the soil N cycle
NASA Astrophysics Data System (ADS)
Hamilton, Liz; Trimmer, Mark; Bradley, Chris; Pinay, Gilles
2016-04-01
Expansion of commercial agriculture in equatorial regions has significant implications for regional nitrogen (N) budgets, particularly nitrous oxide (N2O) and nitric oxide (NO) emissions, produced largely by microbial nitrification and denitrification. However, current estimates of soil N turnover are poorly constrained in Southeast Asia for nitrogen gas (N2) production and lesser known N transformations such as nitrate ammonification (DNRA) and anaerobic ammonium oxidation (anammox). We investigated changes in N availability and turnover following replacement of tropical forest with oil palm plantations along a chronosequence of oil palm maturity (3-months to 15-year-old stands) and secondary to primary forest succession in Sabah, Malaysian Borneo. Samples were taken from ten sites during March and April 2012. Using 15N tracing techniques, we measured rates of gross ammonium (NH4+) and nitrate (NO3-) production (mineralisation and nitrification) and consumption (n= 8), potential denitrification, DNRA and anammox (n= 12) in soil cores and slurries respectively. Gross mineralisation rates (0.05 - 3.08 g N m-2 d-1) remained unchanged in oil palm relative to forests. However, a significant reduction in gross nitrification (0.04 - 2.31 g N m-2 d-1) and an increase in NH4+ immobilisation disrupt the pathway to N2 production substantially reducing (by > 90%) rates of denitrification and anammox in recently planted oil palm relative to primary forest. In forests, N2 produced via anammox was ˜30% of that from denitrification highlighting the potential for anammox to contribute significantly to N2 production. NH4+ production rates from DNRA were over two orders of magnitude less than N2 production rates indicating that denitrification is the primary dissimilatory nitrate consumption process in these soils. Potential N2O emissions were greater than potential N2 production, remaining unchanged across the chronosequence and indicating an increased N2O:N2 emission ratio when soils were first disturbed. These results are an important precursor to studies providing improved estimates of regional N turnover and loss in Southeast Asia which will have global implications for N biogeochemical cycling.
Rathnayake, R M L D; Song, Y; Tumendelger, A; Oshiki, M; Ishii, S; Satoh, H; Toyoda, S; Yoshida, N; Okabe, S
2013-12-01
Emission of nitrous oxide (N2O) during biological wastewater treatment is of growing concern since N2O is a major stratospheric ozone-depleting substance and an important greenhouse gas. The emission of N2O from a lab-scale granular sequencing batch reactor (SBR) for partial nitrification (PN) treating synthetic wastewater without organic carbon was therefore determined in this study, because PN process is known to produce more N2O than conventional nitrification processes. The average N2O emission rate from the SBR was 0.32 ± 0.17 mg-N L(-1) h(-1), corresponding to the average emission of N2O of 0.8 ± 0.4% of the incoming nitrogen load (1.5 ± 0.8% of the converted NH4(+)). Analysis of dynamic concentration profiles during one cycle of the SBR operation demonstrated that N2O concentration in off-gas was the highest just after starting aeration whereas N2O concentration in effluent was gradually increased in the initial 40 min of the aeration period and was decreased thereafter. Isotopomer analysis was conducted to identify the main N2O production pathway in the reactor during one cycle. The hydroxylamine (NH2OH) oxidation pathway accounted for 65% of the total N2O production in the initial phase during one cycle, whereas contribution of the NO2(-) reduction pathway to N2O production was comparable with that of the NH2OH oxidation pathway in the latter phase. In addition, spatial distributions of bacteria and their activities in single microbial granules taken from the reactor were determined with microsensors and by in situ hybridization. Partial nitrification occurred mainly in the oxic surface layer of the granules and ammonia-oxidizing bacteria were abundant in this layer. N2O production was also found mainly in the oxic surface layer. Based on these results, although N2O was produced mainly via NH2OH oxidation pathway in the autotrophic partial nitrification reactor, N2O production mechanisms were complex and could involve multiple N2O production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Almutairi, Azel; Weatherley, Laurence R
2015-09-01
The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the presence of nitrifying bacteria is compared to that in columns in which only ion exchange is occurring. The aeration performance of each of the chosen membranes was compared experimentally using a newly developed membrane support module which is also described. Comparison of ammonia removal in columns equipped with in-situ aeration using each membrane was undertaken and the breakthrough characteristics determined. The results showed that ammonia removal in the presence of the nitrifiers was significantly intensified. Column operation with membrane aeration showed further enhancement of ammonia removal. The greatest enhancement was observed in the case of the polyethersulfone membrane (PES). It is concluded that combined nitrification and ion-exchange is significantly intensified in packed columns by in-situ aeration using a novel membrane module. There is significant potential for extending the ion-exchange cycle time and thus potential cost reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fan, Fenliang; Yang, Qianbao; Li, Zhaojun; Wei, Dan; Cui, Xi'an; Liang, Yongchao
2011-11-01
The microbiology underpinning soil nitrogen cycling in northeast China remains poorly understood. These agricultural systems are typified by widely contrasting temperature, ranging from -40 to 38°C. In a long-term site in this region, the impacts of mineral and organic fertilizer amendments on potential nitrification rate (PNR) were determined. PNR was found to be suppressed by long-term mineral fertilizer treatment but enhanced by manure treatment. The abundance and structure of ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities were assessed using quantitative polymerase chain reaction and denaturing gradient gel electrophoresis techniques. The abundance of AOA was reduced by all fertilizer treatments, while the opposite response was measured for AOB, leading to a six- to 60-fold reduction in AOA/AOB ratio. The community structure of AOA exhibited little variation across fertilization treatments, whereas the structure of the AOB community was highly responsive. PNR was correlated with community structure of AOB rather than that of AOA. Variation in the community structure of AOB was linked to soil pH, total carbon, and nitrogen contents induced by different long-term fertilization regimes. The results suggest that manure amendment establishes conditions which select for an AOB community type which recovers mineral fertilizer-suppressed soil nitrification.
Zhang, Chaosheng; Zhang, Shaoqing; Zhang, Liqiu; Rong, Hongwei; Zhang, Kefang
2015-04-01
On the basis of achieving shortcut nitrification in a lab-scale SBR, the effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment was investigated. The results indicate that under the condition of DO of 0.5 ± 0.2 mg/L and temperature of 30 ± 2 °C, the absolute value of nitrite accumulation increased significantly with the increase in free ammonia (FA) concentration from 5.30 to 48.67 mg/L; however, the nitrite accumulation rate remained almost constant at a constant pH of 8.0 ± 0.1. Ammonia oxidation and the nitrite accumulation become slow with the pH decreased from 8.0 ± 0.1 to 7.5 ± 0.2, and the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were severely inhibited when the pH further decreased to 6.5. More importantly, this study confirmed that the pH decrease from 8.0 to 6.5 within a short time exhibited significant negative effect on the ammonia oxidation rather than the FA concentration.
Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle
Kits, K. Dimitri; Sedlacek, Christopher J.; Lebedeva, Elena V.; Han, Ping; Bulaev, Alexandr; Pjevac, Petra; Daebeler, Anne; Romano, Stefano; Albertsen, Mads; Stein, Lisa Y.; Daims, Holger; Wagner, Michael
2017-01-01
Summary paragraph Nitrification, the oxidation of ammonia (NH3) via nitrite (NO2-) to nitrate (NO3-), is a key process of the biogeochemical nitrogen cycle. For decades, ammonia and nitrite oxidation were thought to be separately catalyzed by ammonia-oxidizing bacteria (AOB) and archaea (AOA), and by nitrite-oxidizing bacteria (NOB). The recent discovery of complete ammonia oxidizers (comammox) in the NOB genus Nitrospira1,2, which alone convert ammonia to nitrate, raised questions about the ecological niches where comammox Nitrospira successfully compete with canonical nitrifiers. Here we isolated the first pure culture of a comammox bacterium, Nitrospira inopinata, and show that it is adapted to slow growth in oligotrophic and dynamic habitats based on a high affinity for ammonia, low maximum rate of ammonia oxidation, high growth yield compared to canonical nitrifiers, and genomic potential for alternative metabolisms. The nitrification kinetics of four AOA from soil and hot springs were determined for comparison. Their surprisingly poor substrate affinities and lower growth yields reveal that, in contrast to earlier assumptions, not all AOA are most competitive in strongly oligotrophic environments and that N. inopinata has the highest substrate affinity of all analyzed ammonia oxidizer isolates except the marine AOA Nitrosopumilus maritimus SCM13. These results suggest a role of comammox organisms for nitrification under oligotrophic and dynamic conditions. PMID:28847001
Further contributions to the understanding of nitrogen removal in waste stabilization ponds.
Bastos, R K X; Rios, E N; Sánchez, I A
2018-06-01
A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.
The evaluation of enhanced nitrification by immobilized biofilm on a clinoptilolite carrier.
Park, Se Jin; Lee, Hyung Sool; Yoon, Tae Il
2002-04-01
This study was conducted to evaluate the effect of clinoptilolite on nitrification in activated sludge (AS), and was focused on a relationship between ammonium exchange capacity of this mineral and improvement of nitrification. In batch experiments, the adsorption property of biofilm-attached clinoptilolite did not show substantial difference from that of natural clinoptilolite, indicating that bioregeneration became completely achieved without any regenerant in the AS. The AS with added clinoptilolite (ZR) was compared to the control AS (CR) when the ratio of chemical oxygen demand (COD) to total kjeldahl nitrogen (TKN) of influent, i.e. C/N ratio, was varied from 3.25 to 7.5 at a hydraulic retention time (HRT) of 3 h. Enhanced nitrification was comparatively observed for the ZR as C/N ratio gradually increased. The results indicated that the clinoptilolite provided a relatively low C/N ratio for nitrifiers, due to ammonium adsorption of this mineral, and consequently nitrification was accelerated.
Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin
2014-09-01
The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.
Cho, Kyungjin; Shin, Seung Gu; Lee, Joonyeob; Koo, Taewoan; Kim, Woong; Hwang, Seokhwan
2016-08-01
The aim of this study was to investigate the nitrification resilience pattern and examine the key ammonia-oxidizing bacteria (AOB) with respect to ammonia loading shocks (ALSs) in a nitrification bioreactor treating steel wastewater. The perturbation experiments were conducted in a 4-L bioreactor operated in continuous mode with a hydraulic retention time of 10 d. Three sequential ALSs were given to the bioreactor (120, 180 and 180 mg total ammonia nitrogen (TAN)/L. When the first shock was given, the nitrification process completely recovered after 14 d of further operation. However, the resilience duration was significantly reduced to ∼1 d after the second and third ALSs. In the bioreactor, Nitrosomonas aestuarii dominated the other AOB species, Nitrosomonas europaea and N. nitrosa, throughout the process. In addition, the population of N. aestuarii increased with ammonia utilization following each ALS; i.e., this species responded to acute ammonia overloadings by contributing to ammonia oxidation. This finding suggests that N. aestuarii could be exploited to achieve stable nitrification in industrial wastewaters that contain high concentrations of ammonia. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Anthropogenic inputs of excess nitrogen (N) to aquatic systems are detrimental, but aquatic plants and sediments have the potential to mitigate N-loading. Sediment processes are driven by microbially mediated N-cycling. Coastal embayments purportedly play a significant role in N-...
Presentation is designed to enlighten the interested masses about potentials in nutrient trading and ecosystem services in our great river floodplain ecosystems. It is not intended for policy, rather to stimulate thought on the importance of natural flooding regimes and how to b...
Responses of redwood soil microbial community structure and N transformations to climate change
Damon C. Bradbury; Mary K. Firestone
2012-01-01
Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...
Wei, Dong; Zhang, Keyi; Ngo, Huu Hao; Guo, Wenshan; Wang, Siyu; Li, Jibin; Han, Fei; Du, Bin; Wei, Qin
2017-04-01
In present study, the feasibility of partial nitrification (PN) process achievement and its greenhouse gas emission were evaluated in a sequencing batch biofilm reactor (SBBR). After 90days' operation, the average effluent NH 4 + -N removal efficiency and nitrite accumulation rate of PN-SBBR were high of 98.2% and 87.6%, respectively. Both polysaccharide and protein contents were reduced in loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) during the achievement of PN-biofilm. Excitation-emission matrix spectra implied that aromatic protein-like, tryptophan protein-like and humic acid-like substances were the main compositions of both kinds of EPS in seed sludge and PN-biofilm. According to typical cycle, the emission rate of CO 2 had a much higher value than that of N 2 O, and their total amounts per cycle were 67.7 and 16.5mg, respectively. Free ammonia (FA) played a significant role on the inhibition activity of nitrite-oxidizing bacteria and the occurrence of nitrite accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko
2014-01-01
We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors. PMID:25247426
Li, Xi; Zhang, Miaomiao; Liu, Feng; Chen, Liang; Li, Yuyuan; Li, Yong; Xiao, Rulin; Wu, Jinshui
2018-01-01
Surface flow constructed wetlands (SFCWs) planted with Myriophyllum elatinoides for treatment of swine wastewater were examined to evaluate the effect of season, segment (site S1, S2, and S3), and treatment (100mgL -1 TN, T1; 300mgL -1 TN, T2; 500mgL -1 TN, T3) on the activity, and abundances of nitrifying and, denitrifying microorganisms, and on the abundance of sediment bacteria. The activity and abundances of nitrifiers, denitrifiers, and the abundance of bacteria were the highest in T3 samples, especially in S1 (P<0.05). The potential nitrification rate (PNR) was highest in the summer and potential denitrification rate (PDR) showed an increasing trend over seasons. The abundance of ammonia-oxidizing bacteria (AOB) was strongly correlated with PNR, while abundance of denitrifying gene (nirK) was strongly correlated with PDR. These results indicate that M. elatinoides SFCWs for swine wastewater treatment stimulate the growth of nitrifiers, denitrifiers and bacteria in sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L
2011-01-01
Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.
Yang, Li-Lin; Mao, Ren-Zhao; Liu, Jun-Jie; Liu, Xiao-Jing
2011-11-01
A comparative study was conducted to determine nitrification potentials and ammonia-oxidizing bacterial (AOB) community composition in 0-20 cm soil depth in adjacent native forest,natural grassland, and cropland soils on the Tibetan Plateau, by incubation experiment and by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA, respectively. Cropland has the highest nitrification potential and nitrate concentration among the three land-use types (LUT), approximately 9 folds and more than 11 folds than that of the forests and grasslands, respectively. NO3(-) -N accounted for 70%-90% of inorganic N in cropland soil, while NH4(+) -N was the main form of inorganic N in forest and grassland soils. Nitrification potentials and nitrate concentrations showed no significant difference between native forest and grassland soils. The native forest showed the lowest nitrification potentials and the lowest AOB diversity and community composition among the three LUT. Conversions from natural grasslands to croplands remarkably decreased the AOB diversity and composition, but croplands remain high similarity in AOB community composition compared with grasslands. The minimal and the lowest diversity of AOB in native forests directly resulted to the lowest nitrification potentials compared to natural grasslands and croplands. From the fact of the highest nitrification potentials and nitrate concentrations in croplands indicated that there were the most substantial AOB with higher activity and priority. The results provide evidence that changes of land-use type can affect both soil nitrogen internal cycling process, the diversity, community and activity of AOB, which further affect soil environment quality and the long-term sustainability of ecosystems.
Subbarao, G V; Sahrawat, K L; Nakahara, K; Rao, I M; Ishitani, M; Hash, C T; Kishii, M; Bonnett, D G; Berry, W L; Lata, J C
2013-07-01
Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed 'biological nitrification inhibition' (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4(+))-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspective, the BNI function in plants could potentially have a large influence on biogeochemical cycling and closure of the N loop in crop-livestock systems.
Subbarao, G. V.; Sahrawat, K. L.; Nakahara, K.; Rao, I. M.; Ishitani, M.; Hash, C. T.; Kishii, M.; Bonnett, D. G.; Berry, W. L.; Lata, J. C.
2013-01-01
Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4+)-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and environmental perspective, the BNI function in plants could potentially have a large influence on biogeochemical cycling and closure of the N loop in crop–livestock systems. PMID:23118123
Effect of COD/N ratio on N2O production during nitrogen removal by aerobic granular sludge.
Velho, V F; Magnus, B S; Daudt, G C; Xavier, J A; Guimarães, L B; Costa, R H R
2017-12-01
N 2 O-production was investigated during nitrogen removal using aerobic granular sludge (AGS) technology. A pilot sequencing batch reactor (SBR) with AGS achieved an effluent in accordance with national discharge limits, although presented a nitrite accumulation rate of 95.79% with no simultaneous nitrification-denitrification. N 2 O production was 2.06 mg L -1 during the anoxic phase, with N 2 O emission during air pulses and the aeration phase of 1.6% of the nitrogen loading rate. Batch tests with AGS from the pilot reactor verified that at the greatest COD/N ratio (1.55), the N 2 O production (1.08 mgN 2 O-N L -1 ) and consumption (up to 0.05 mgN 2 O-N L -1 ), resulted in the lowest remaining dissolved N 2 O (0.03 mgN 2 O-N L -1 ), stripping the minimum N 2 O gas (0.018 mgN 2 O-N L -1 ). Conversely, the carbon supply shortage, under low C/N ratios, increased N 2 O emission (0.040 mgN 2 O-N L -1 ), due to incomplete denitrification. High abundance of ammonia-oxidizing and low abundance of nitrite-oxidizing bacteria were found, corroborating the fact of partial nitrification. A denitrifying heterotrophic community, represented mainly by Pseudoxanthomonas, was predominant in the AGS. Overall, the AGS showed stable partial nitrification ability representing capital and operating cost savings. The SBR operation flexibility could be advantageous for controlling N 2 O emissions, and extending the anoxic phase would benefit complete denitrification in cases of low C/N influents.
McCaig, Allison E.; Phillips, Carol J.; Stephen, John R.; Kowalchuk, George A.; Harvey, S. Martyn; Herbert, Rodney A.; Embley, T. Martin; Prosser, James I.
1999-01-01
A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantly disrupted directly beneath the fish cage, with inhibition of nitrification and denitrification. Although visual examination indicated some slight changes in sediment appearance at 20 m, all other measurements were similar to those obtained at 40 m, where the sediment was considered pristine. The community structures of proteobacterial β-subgroup ammonia-oxidizing bacteria at the sampling sites were compared by PCR amplification of 16S ribosomal DNA (rDNA), using primers which target this group. PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE) and with oligonucleotide hybridization probes specific for different ammonia oxidizers. A DGGE doublet observed in PCR products from the highly polluted fish cage sediment sample was present at a lower intensity in the 20-m sample but was absent from the pristine 40-m sample station. Band migration, hybridization, and sequencing demonstrated that the doublet corresponded to a marine Nitrosomonas group which was originally observed in 16S rDNA clone libraries prepared from the same sediment samples but with different PCR primers. Our data suggest that this novel Nitrosomonas subgroup was selected for within polluted fish farm sediments and that the relative abundance of this group was influenced by the extent of pollution. PMID:9872782
Roughness and temperature effects on the filter media of a trickling filter for nitrification.
Kishimoto, Naoyuki; Ohara, Tetsuya; Hinobayashi, Jouji; Hashimoto, Tsutomu
2014-01-01
The performance of trickling filters using two types of plastic media with the same material, the same shape and different roughness was evaluated during a temperature-decreasing period to understand the roughness and temperature effects on the filter media. Real restaurant wastewater was used for the experiments. The chemical oxygen demand (COD) removal and nitrification performance of plastic media with a rough surface (LT-15) was superior to that with a smooth surface (KT-15). Because the biomass of microorganisms attached on the LT-15 was twice that attached on the KT-15, the larger biomass attached on the LT-15 was thought to be responsible for the higher performance. During the operation, the COD loading and water temperature varied in the range from 0.37 to 1.9 kg m(-3) d(-1) and 17.0--10.0 degrees C, respectively. However, the COD removal performance was not dependent on the COD loading or water temperature. On the contrary, the COD loading and the water temperature influenced the nitrification performance. Although a nitrification efficiency of 100% was recorded at a COD loading of 0.37 kg m(-3) d(-1), it deteriorated to 17-28% at higher COD loading. Moreover, a decline in the water temperature decreased the nitrification performance. The temperature-activity coefficient for nitrification was estimated to be 1.096. Based on this value, it was inferred that the COD loading should be set at less than 0.20 kg m(-3) d(-1) for the complete nitrification of the restaurant wastewater in winter, when the water temperature usually drops to around 10 degrees C.
He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid
2012-11-15
Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Martínez-Farré, F Xavier; López, Marga; Soliva, Montserrat; Marfà, Oriol
2016-12-01
Next generation of waste management systems should apply product-oriented bioconversion processes that produce composts or biofertilisers of desired quality that can be sold in high priced markets such as horticulture. Natural acidification linked to nitrification can be promoted during composting. If nitrification is enhanced, suitable compost in terms of pH can be obtained for use in horticultural substrates. Green waste compost (GW) represents a potential suitable product for use in growing medium mixtures. However its low N provides very limited slow-release nitrogen fertilization for suitable plant growth; and GW should be composted with a complementary N-rich raw material such as the solid fraction of cattle slurry (SFCS). Therefore, it is important to determine how very different or extreme proportions of the two materials in the mixture can limit or otherwise affect the nitrification process. The objectives of this work were two-fold: (a) To assess the changes in chemical and physicochemical parameters during the prolonged composting of extreme mixtures of green waste (GW) and separated cattle slurry (SFCS) and the feasibility of using the composts as growing media. (b) To check for nitrification during composting in two different extreme mixtures of GW and SFCS and to describe the conditions under which this process can be maintained and its consequences. The physical and physicochemical properties of both composts obtained indicated that they were appropriate for use as ingredients in horticultural substrates. The nitrification process occurred in both mixtures in the medium-late thermophilic stage of the composting process. In particular, its feasibility has been demonstrated in the mixtures with a low N content. Nitrification led to the inversion of each mixture's initial pH. Copyright © 2016 Elsevier Ltd. All rights reserved.
1980-01-01
ciple we can use these data in nitrification models, ON NITRIFICATION provided the concentration of oxygen in soil solution is known. This, however, is...Soil nitrifiers 30 0.8 (mixed culture) *As determined by Shah (1975). than within bulk soil solution , and McLaren and Packer these soils. The spatial...concentration concentration of 70 mg/l since this is the reported in soil solution depends on a soil-specific equilibrium influent concentration
Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F
2011-09-15
Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.
NASA Astrophysics Data System (ADS)
Ni, Kang; Kage, Henning; Pacholski, Andreas
2018-02-01
A 41-day incubation trial was conducted to test the single and combined effects of the novel urease (N-(2-Nitrophenyl) phosphoric triamide, 2-NPT) and nitrification inhibitors (mixture of dicyandiamide and 1H-1,2,4-triazole, DCD/TZ) on N2O emissions and underlying soil processes from a North German sandy loam soil. The effects of treatment on N2O emission were determined using static closed chamber incubation and detected using a photo-acoustic gas monitor. The emission processes were strongly related to soil mineral N and pH dynamics, obtained from destructive sampling of replicate incubation chambers. The combined use of urease and nitrification inhibitors slightly increased the reduction of N2O compared with single use of the nitrification inhibitor (69% vs. 61%). The small amount of soil used in the incubation and the depletion of labile carbon by air drying and pre-incubation caused very low initial N2O emissions, and glucose addition significantly stimulated N2O emission by supplying labile carbon. The urease inhibitor significantly reduced simultaneously determined qualitative NH3 emissions in either urea alone (90%) or urea plus nitrification inhibitor treatment (82%). These results highlighted the potential of the combined use of urease and nitrification inhibitors with urea application to mitigate soil NH3 and N2O emissions.
Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.
2015-01-01
Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762
Feng, Shuo; Xie, Shuguang; Zhang, Xiaojian; Yang, Zhiyu; Ding, Wei; Liao, Xiaobin; Liu, Yuanyuan; Chen, Chao
2012-01-01
A GAC-sand dual media filter (GSF) was devised as an alternative solution for drinking water treatment plant to tackle the raw water polluted by ammonium in place of expensive ozone-GAC processes or bio-pretreatments. The ammonium removal pathways and microbial community in the GSFs were investigated. The concentrations of ammonium, nitrite and nitrate nitrogen were monitored along the filter. Total inorganic nitrogen (TIN) loss occurred during the filtration. For 1 mg ammonium removal, the TIN loss was as high as 0.35 mg, DO consumption was 3.06 mg, and alkalinity consumption was 5.55 mg. It was assumed that both nitrification and denitrification processes occur in the filters to fit the TIN loss and low DO consumption. During the filtration, nitritation, nitrification and nitritation-anaerobic ammonium oxidation processes probably occur, while traditional nitrification and denitrification and simultaneous nitrification and denitrification processes may occur. In the GSFs, Nitrosomonas and Nitrospira are likely to be involved in nitrification processes, while Novosphingobium, Comamonadaceae and Oxalobacteraceae may be involved in denitrification processes.
Qian, Guangsheng; Hu, Xiaomin; Li, Liang; Ye, Linlin; Lv, Weijian
2017-11-01
This study explored the nitrification mechanism of a periodic reversal bio-electrocoagulation system with Fe-C electrodes. The ammonia nitrogen removal was compared in four identical cylindrical sequencing bath reactors. Two of them were reactors with Fe-C electrodes (S1) and C-C electrodes (S2), respectively. The other two were a reactor with iron ions (S3) and a traditional SBR (S4), respectively. The results demonstrated that the effect on enhancing nitrification in S1 was the best among all four SBRs, followed by S3, S2 and S4. Iron ions increased the biomass, and electric field improved the proton transfer and enzyme activity. The dominant bacterial genera in the four SBRs were Hyphomicrobium, Thauera, Nitrobacter, Nitrosomonas, Paracoccus and Hydrogenophaga. The iron ions may increase the levels of Nitrosomonas and Nitrobacter, both of which were the main microbes of the nitrification process. This study provided a significant and meaningful understanding of nitrification in a bio-electrocoagulation system. Copyright © 2017 Elsevier Ltd. All rights reserved.
2012-01-01
Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system. PMID:23083531
Ma, Fen; Ma, Hong-liang; Qiu, Hong; Yang, Hong-yu
2015-02-01
An incubation experiment was conducted to investigate the effects of the additions of different nitrogen forms on nitrogen transformation in red soils of subtropical forest under soil moisture conditions with 40%, 70% and 110% of water holding capacity (WHC). The results showed that soil net mineralization and ammonification rates were maximum at 70% WHC and minimum at 40% WHC. Compared with the control, the addition of NO(3-)-N decreased the soil net mineralization and ammonification rates by 56.1% and 43.0% under 70% WHC condition, and decreased by 68.2% and 19.0% under 110% WHC, respectively. However, the proportion of ammonification to mineralization increased at 70% and 110% WHC, which suggested that nitrate addition inhibited the nitrification. With addition of NO(3-)-N at 110% WHC, the net nitrification rate was lowest while N20 emission was highest with the concomitant decrease of nitrate content, indicating that N2O emission was largely derived from denitrification. However, at 40% WHC and 70% WHC, the maximum N20 flux was found at the early stage of incubation. Even with addition of NH(4+)-N and NO(3-)-N, N2O flux did not change much at the latter stage of incubation, indicating that autotrophic nitrification was dominant for N20 production at the early stage of incubation. Under 40% WHC condition, soluble organic carbon increased more and it increased largely with NH(4+)-N addition, which meant NH(4+)-N addition could enhance the mineralization of soil organic matter. Under 40% and 110% WHC conditions, the addition of NH(4+)-N increased significantly the soil soluble organic nitrogen (SON) by 73.6% and 176.6% compared with the control, respectively. A significant increase of 78.7% for SON was only found at 40% WHC under addition of NO(3-)-N compared with the control. These results showed that high soil moisture condition and addition of NH(4+)-N were of benefit to SON formation.
Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree
2012-10-19
Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance. The estuary was phosphorus limited in postmonsoon whereas nitrogen-limited in premonsoon and monsoon period. High algal biomass and primary productivity indicated the estuary to be in eutrophic state in most of the time throughout the year. Our study also indicated a seasonal shifting between autotrophic and heterotrophic conditions in Sundarban estuarine ecosystem and it is a tropical, well mixed (high tidal influx) and marine dominated (no fresh water connection) system.
Denitrification in a South Louisiana wetland forest receiving treated sewage effluent
Boustany, R.G.; Crozier, C.R.; Rybczyk, J.M.; Twilley, R.R.
1996-01-01
Although denitrification has the potential to reduce nitrate (NO3a??) pollution of surface waters, the quantification of denitrification rates is complex because it requires differentiation from other mechanisms and is highly variable in both space and time. This study first measured potential denitrification rates at a wetland forest site in south Louisiana before receipt of secondary wastewater effluent, and then, following 30 months of effluent application, landscape gradients of dissolved nitrate (NO3a??) and nitrous oxide (N2O) were measured. A computer model was developed to quantify N transformations. Floodwater NO3a?? and N2O concentrations were higher in the forest receiving effluent than in the adjacent control forest. Denitrification rates of NO3a?? -amended soil cores ranged from 0.03a??0.45 g N ma??2 da??1 with an overall mean of 0.10 g N ma??2 da??1. Effluent N is being applied at a rate of approximately 0.034 g N ma??2 da??1, with approximately 95% disappearing along a 1 km transect. In the treatment forest, floodwater NO3a?? concentrations decreased from 1000 M at the inflow point to 50 M along the 1 km transect. Nitrous oxide concentrations increased from 0.25 M to 1.2 M within the first 100 m, but decreased to 0.1 M over the next 900 m. The initial increase in N2O was presumably a result ofin situ denitrification. Model analyses indicated that denitrification was directly associated with nitrification and was limited by the availability of NO3a?? produced by nitrification. Due to different redox potential optima, coupling of nitrification and denitrification was a function of a balance of environmental conditions that was moderately favorable to both processes. N removal efficiency was largely dependent on the proportion of effluent NH4+ to NO3a?? . When NH4+ /NO3a?? was 1, average N removal efficiency ranged from 95a??100%, but ratios that were >1 reduced average efficiencies to as low as 57%. Actual effluent NH4+ /NO3a?? loading ratios at this site are approximately 0.2 and are consistently <1.
Padhi, Soumesh Kumar; Tripathy, Swetaleena; Mohanty, Sriprakash; Maiti, Nikhil Kumar
2017-05-01
Heterotrophic bacterium, Enterobacter cloacae CF-S27 exhibited simultaneous nitrification and aerobic denitrification in presence of high concentration of hydroxylamine. With the initial nitrogen concentration of 100mgL -1 h -1 , ammonium, nitrate and nitrite removal efficiencies were 81%, 99.9% and 92.8%, while the corresponding maximum removal rates reached as high as 11.6, 15.1 and 11.2mgL -1 h -1 respectively. Quantitative amplification by real time PCR and enzyme assay demonstrated that hydroxylamine reductase gene (hao) is actively involved in hetrotrophic nitrification and aerobic denitrification process of Enterobacter cloacae CF-S27. PCR primers were designed targeting amplification of hao gene from diversified environmental soil DNA. The strain Enterobacter cloacae CF-S27 significantly maintained the undetectable amount of dissolved nitrogen throughout 60days of zero water exchange fish culture experiment in domestic wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nitrogen Transformation and Microbial Spatial Distribution in Drinking Water Biofilter
NASA Astrophysics Data System (ADS)
Qian, Yongxing; Zhang, Huining; Jin, Huizheng; Wu, Chengxia
2018-02-01
Well understanding the rule of nitrogen mutual transformation in biofilters is important for controlling the DBPs formation in the subsequent disinfection process. Ammonia nitrogen removal effect and nitrogen transformation approach in biofilter of drinking water was researched in the study. The biofilter removed ammonia of 48.5% and total phosphorus of 72.3%. And the removal rate of TN, NO3 --N, DON were 37.1%, 33.1%, 46.9%, respectively. Biomass and bioactivity of different depth of the biofilter were determined, too. The overall distribution of biomass showed a decreasing trend from top to bottom. The bioactivity in lower layer gradually increased. Especially the bioactivity of heterotrophic microorganisms showed a gradual increase trend. The amount of the nitrogen loss was 3.06mg/L. Non-nitrification pathway of “nitrogen loss” phenomenon in biofilter might exist assimilation, nitrification and denitrification in autotrophic.
Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions.
Fernandez-Fontaina, E; Gomes, I B; Aga, D S; Omil, F; Lema, J M; Carballa, M
2016-01-15
The effect of nitrification, nitratation and heterotrophic conditions on the biotransformation of several pharmaceuticals in a highly enriched nitrifying activated sludge was evaluated in this study by selective activation of ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and heterotrophic bacteria. Nitrifiers displayed a noticeable capacity to process ibuprofen due to hydroxylation by ammonia monooxygenase (AMO) to produce 2-hydroxy-ibuprofen. Naproxen was also biotransformed under nitrifying conditions. On the other hand, heterotrophic bacteria present in the nitrifying activated sludge (NAS) biotransformed sulfamethoxazole. In contrast, both nitrifying and heterotrophic activities were ineffective against diclofenac, diazepam, carbamazepine and trimethoprim. Similar biotransformation rates of erythromycin, roxithromycin and fluoxetine were observed under all conditions tested. Overall, results from this study give more evidence on the role of the different microbial communities present in activated sludge reactors on the biological removal of pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Meyer, Caitlin E.; Pensinger, Stuart; Pickering, Karen D.; Barta, Daniel; Shull, Sarah A.; Vega, Letticia M.; Christenson, Dylan; Jackson, W. Andrew
2015-01-01
Membrane aerated bioreactors (MABR) are attached-growth biological systems used for simultaneous nitrification and denitrification to reclaim water from waste. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal and implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to under two weeks, and that despite low ammonium removal rates, the MABRs are oversized.
Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites.
Murphy, Anna E; Nizzoli, Daniele; Bartoli, Marco; Smyth, Ashley R; Castaldelli, Giuseppe; Anderson, Iris C
2018-02-01
As bivalve aquaculture expands globally, an understanding of how it alters nitrogen is important to minimize impacts. This study investigated nitrogen cycling associated with clam aquaculture in the Sacca di Goro, Italy (Ruditapes philipinarum) and the Eastern Shore, USA (Mercenaria mercenaria). Ammonium and dissolved oxygen fluxes were positively correlated with clam biomass; R. philippinarum consumed ~6 times more oxygen and excreted ~5 times more NH 4 + than M. mercenaria. There was no direct effect of clams on denitrification or dissimilatory nitrate reduction to ammonium (DNRA); rather, nitrate availability controlled the competition between these microbial pathways. Highest denitrification rates were measured at sites where both water column nitrate and nitrification were elevated due to high densities of a burrowing amphipod (Corophium sp.). DNRA exceeded denitrification where water column nitrate was low and nitrification was suppressed in highly reduced sediment, potentially due to low hydrologic flow and high clam densities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Symptoms of nitrogen saturation in two central Appalachian hardwood forest ecosystems
William T. Peterjohn; Mary Beth Adams; Frank S. Gilliam
1996-01-01
By synthesizing more than twenty years of research at the Fernow Experimental Forest, we have documented 7 symptoms of nitrogen saturation in two adjacent watersheds. The symptoms include: 1) high relative rates of net nitrification, 2) long-term increases in streamwater concentrations of nitrate and base cations, 3) relatively high nitrate concentrations in solution...
Influence of endrin on soil microbial populations and their activity.
W.B. Bollen; C.M. Tu
1971-01-01
Endrin applied to soil at rates of more than three times the maximum that might be expected from application of endrin-treated tree seed exerted no appreciable effect on numbers of soil microbes or on ammonification, nitrification, or sulfur oxidation. The decomposition of soil organic matter, as indicated by the production of CO2, was increased...
Mo, Qifeng; Li, Zhi’an; Zhu, Weixing; Zou, Bi; Li, Yingwen; Yu, Shiqin; Ding, Yongzhen; Chen, Yao; Li, Xiaobo; Wang, Faming
2016-01-01
Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China. PMID:26794649
Proteomics as a tool to understand the distribution and activity of ammonia-oxidizing archaea
NASA Astrophysics Data System (ADS)
Lundeen, R. A.; Qin, W.; Moffett, J.; Devol, A.; Armbrust, E. V.; Stahl, D.; Ingalls, A. E.
2016-02-01
Nitrification plays a central role in the marine nitrogen cycle and ammonia-oxidizing archaea (AOA) are now known to be the principle microorganisms involved in catalyzing the first step of nitrification in the ocean. Typical AO rate profiles show lower rates in surface waters and increasing rates with depth, reaching a maximum just below the photic zone. Despite numerous observations of this ubiquitous and abundant group, the interactions between environment and AOA genetic capability that shape their natural distribution and activity are largely unknown. Here we use proteomics to study the response of an AOA isolate (Nitrosopulimus maritimus) to environmental stress (e.g., sunlight and low nutrient conditions) in order to understand factors determining AOA distributions. We hypothesize that the activity of marine AOA may be impacted by sunlight and/or competition for nutrients. For instance, harmful ultraviolet radiation can exert stress on cellular machinery by both direct damage and indirect damage caused by photochemically produced reactive oxygen species. Our aim is to elucidate N. maritimus response to varying conditions of environmental stress by surveying protein damage and regulation using shotgun proteomic approaches. Ultimately we will use these tools to assess the status of natural AOA communities to provide a more complete understanding of the environmental factors that influence AOA physiology, activity and biogeography across marine ecosystems.
Dobbeleers, Thomas; D'aes, Jolien; Miele, Solange; Caluwé, Michel; Akkermans, Veerle; Daens, Dominique; Geuens, Luc; Dries, Jan
2017-09-01
In this study, a sequencing batch reactor (SBR), treating synthetic wastewater (COD/N = 5), was operated in two stages. During stage I, an aeration control strategy based on oxygen uptake rate (OUR) was applied, to accomplish nitrogen removal via nitrite >80%. In stage II, the development of aerobic granular sludge (AGS) was examined while two aeration control strategies (OUR and pH slope) maintained the nitrite pathway and optimized the simultaneous nitrification-denitrification (SND) performance. Stimulation of slow-growing organisms, (denitrifying) polyphosphate-accumulating organisms (D)PAO and (denitrifying) glycogen-accumulating organisms (D)GAO leads to full granulation (at day 200, SVI 10 = 47.0 mL/g and SVI 30 = 43.1 mL/g). The average biological nutrient removal efficiencies, for nitrogen and phosphorus, were 94.6 and 83.7%, respectively. Furthermore, the benefits of an increased dissolved oxygen concentration (1.0-2.0 mg O 2 /L) were shown as biomass concentrations increased with approximately 2 g/L, and specific ammonium removal rate and phosphorus uptake rate increased with 33 and 44%, respectively. It was shown that the combination of both aeration phase-length control strategies provided an innovative method to achieve SND via nitrite in AGS.
NASA Astrophysics Data System (ADS)
Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.
2013-12-01
A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV Polaris. The samples were collected for DIC and particulate organic matter (POM, used as a proxy for phytoplankton) concentration and isotopic analysis. Our analyses were combined with water chemistry data provided by the USGS Water Quality of San Francisco Bay Program (http://sfbay.wr.usgs.gov/access/wqdata/index.html) . The results show a clear mixing trend between distinct freshwater and salt water end-members in terms of δ13C-DIC, δ13C-POM and concentration measurements. The baywater DIC endmember is produced largely through gas exchange with the atmosphere while the upstream endmember shows a significant component of CO2 produced through heterotrophic bacterial respiration. Local deviations from the mixing trend indicate variations in the balance between heterotrophic and autotrophic processes. The upstream effects of nitrification are not readily apparent but may be masked by the effects of reduced growth rates of phytoplankton due to elevated ammonium concentrations. Outliers to the mixing trend suggest local effects of biological processes. Pending nitrate and ammonium δ15N data will help to clarify these processes.
Andrade do Canto, Catarina Simone; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Zaiat, Marcelo; Foresti, Eugênio
2008-02-01
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.
Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng
2017-01-01
Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%-85%, 57.4%-86%, 32.4%-78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. Copyright © 2016. Published by Elsevier B.V.
Li, Hui; Zuo, Wei; Tian, Yu; Zhang, Jun; Di, Shijing; Li, Lipin; Su, Xinying
2017-02-01
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m 3 and a current density of 8.5 A/m 3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.
He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei
2017-03-01
Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.
[Effects of continuous cropping of vegetables on ammonia oxidizers community structure].
Meng, De-Long; Yang, Yang; Wu, Yan-Zheng; Wu, Min-Na; Qin, Hong-Ling; Zhu, Yi-Jun; Wei, Wen-Xue
2012-04-01
Investigations were conducted on the effects of intensive application of chemical fertilizers in crop production on soil nitrifier communities and the relationship between nitrifier communities and soil nitrification ability. Two series of vegetable soils were selected from Huangxing, Changsha, reflecting continuous vegetable cropping with about 20 years and new vegetable field with only about 2 years vegetable growing history. In each series five independent topsoils (0-20 cm) were sampled and each soil was a mixture of 10 cores randomly taken in the same field. Terminal restriction fragment length polymorphism (T-RFLP) and quantity PCR (Q-PCR) were used to determine the composition and abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities. Results indicated that long-term and continuous vegetable cropping obviously changed the compositions of both AOB and AOA amoA gene, soil pH and Olsen-P content were the dominant factors affecting the composition of AOB amoA. In the vegetable soils, although the copy number of AOA amoA gene was about 5 times higher than AOB amoA gene, no significant correlation was detected between AOA amoA gene abundance and soil nitrification rate. It was not sure whether long-term and continuous vegetable cropping could shift the abundance of AOB and AOA, but it resulted in the enrichment of some dominant AOB species and increase of soil nitrification potential (PNF).
Fang, Qinglin; Xu, Wenlai; Yan, Zhijiao; Qian, Lei
2018-04-04
A constructed rapid infiltration (CRI) system is a new type of sewage biofilm treatment technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires less organic matter, and requires less time for denitrification compared to conventional nitrogen removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained. However, as its reaction process shows that the first and the most important step of achieving shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen species in effluent, by the addition of potassium chlorate (KClO₃) to the influent. In an experimental CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were studied, and the advantages of achieving a shortcut nitrification–denitrification process were also analysed. The results showed that shortcut nitrification was successfully achieved and maintained in a CRI system by adding 5 mM KClO₃ to the influent at a constant pH of 8.4. Under these conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM KClO₃ had no obvious effect. The addition of 5mM KClO₃ in influent presumably inhibited the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but inhibition of nitrite-oxidizing bacteria (NOB) was so strong that it resulted in a maximum nitrite accumulation percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the effluent. Moreover, if the shortcut denitrification process will be achieved in the subsequent research, it could save 60.27 mg CH₃OH per litre of sewage in the CRI system compared with the full denitrification process.
Hira, Daisuke; Aiko, Nobuyuki; Yabuki, Yoshinori; Fujii, Takao
2018-03-01
Nitrogenous pollution of water is regarded as a global environmental problem, and nitrogen removal has become an important issue in wastewater treatment processes. Landfill leachate is a typical large source of nitrogenous wastewater. Although the characteristics of leachate vary according to the age of the landfill, leachates of mature landfill have high concentrations of nitrogenous compounds. Most nitrogen in these leachates is in the form of ammonium nitrogen. In this study, we investigated the bacterial community of sludge from a landfill leachate lagoon by pyrosequencing of the bacterial 16S rRNA gene. The sludge was acclimated in a laboratory-scale reactor with aeration using a mechanical stirrer to promote nitrification. On 149 days, nitrification was achieved and then the bacterial community was also analyzed. The bacterial community was also analyzed after nitrification was achieved. Pyrosequencing analyses revealed that the abundances of ammonia-oxidizing and nitrite-oxidizing bacteria were increased by acclimation and their total proportions increased to >15% of total biomass. Changes in the sulfate-reducing and sulfur-oxidizing bacteria were also observed during the acclimation process. The aerobic acclimation process enriched a nitrifying microbial community from the landfill leachate sludge. These results suggested that the aerobic acclimation is a processing method for the nitrification ammonium oxidizing throw the enrichment of nitrifiers. Improvement of this acclimation method would allow nitrogen removal from leachate by nitrification and sulfur denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Xiuzhen; Hu, Hang-Wei; Zhu-Barker, Xia; Hayden, Helen; Wang, Juntao; Suter, Helen; Chen, Deli; He, Ji-Zheng
2017-12-01
Soil ecosystem represents the largest contributor to global nitrous oxide (N 2 O) production, which is regulated by a wide variety of microbial communities in multiple biological pathways. A mechanistic understanding of these N 2 O production biological pathways in complex soil environment is essential for improving model performance and developing innovative mitigation strategies. Here, combined approaches of the 15 N- 18 O labelling technique, transcriptome analysis, and Illumina MiSeq sequencing were used to identify the relative contributions of four N 2 O pathways including nitrification, nitrifier-induced denitrification (nitrifier denitrification and nitrification-coupled denitrification) and heterotrophic denitrification in six soils (alkaline vs. acid soils). In alkaline soils, nitrification and nitrifier-induced denitrification were the dominant pathways of N 2 O production, and application of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) significantly reduced the N 2 O production from these pathways; this is probably due to the observed reduction in the expression of the amoA gene in ammonia-oxidizing bacteria (AOB) in the DMPP-amended treatments. In acid soils, however, heterotrophic denitrification was the main source for N 2 O production, and was not impacted by the application of DMPP. Our results provide robust evidence that the nitrification inhibitor DMPP can inhibit the N 2 O production from nitrifier-induced denitrification, a potential significant source of N 2 O production in agricultural soils. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Lansdown, Katrina; Heppell, Catherine M; Dossena, Matteo; Ullah, Sami; Heathwaite, A Louise; Binley, Andrew; Zhang, Hao; Trimmer, Mark
2014-04-15
Alteration of the global nitrogen cycle by man has increased nitrogen loading in waterways considerably, often with harmful consequences for aquatic ecosystems. Dynamic redox conditions within riverbeds support a variety of nitrogen transformations, some of which can attenuate this burden. In reality, however, assessing the importance of processes besides perhaps denitrification is difficult, due to a sparseness of data, especially in situ, where sediment structure and hydrologic pathways are intact. Here we show in situ within a permeable riverbed, through injections of (15)N-labeled substrates, that nitrate can be either consumed through denitrification or produced through nitrification, at a previously unresolved fine (centimeter) scale. Nitrification and denitrification occupy different niches in the riverbed, with denitrification occurring across a broad chemical gradient while nitrification is restricted to more oxic sediments. The narrow niche width for nitrification is in effect a break point, with the switch from activity "on" to activity "off" regulated by interactions between subsurface chemistry and hydrology. Although maxima for denitrification and nitrification occur at opposing ends of a chemical gradient, high potentials for both nitrate production and consumption can overlap when groundwater upwelling is strong.
Drinking Water Microbiome as a Screening Tool for ...
Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated through four successive operational schemes, including two stable events (SS) and an episode of nitrification (SF), followed by a ‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine. The current research investigated the viability of biological signatures as potential indicators of operational failure and predictors of nitrification in DWDS. For this purpose, we examined the bulk water (BW) bacterial microbiome of a chloraminated DWDS simulator operated through successive operational schemes, including an episode of nitrification. BW data was chosen because sampling of BW in a DWDS by water utility operators is relatively simpler and easier than collecting biofilm samples from underground pipes. The methodology applied a supervised classification machine learning approach (naïve Bayes algorithm) for developing predictive models for nitrification. Classification models were trained with biological datasets (Operational Taxonomic Unit [OTU] and genus-level taxonomic groups) generated using next generation high-throughput technology, and divided into two groups (i.e. binary) of positives and negatives (Failure and Stable, respectively). We also invest
Effects of graphite nanoparticles on nitrification in an activated sludge system.
Dong, Qian; Liu, Yanchen; Shi, Hanchang; Huang, Xia
2017-09-01
Graphite nanoparticles (GNPs) might result in unexpected effects during their transportation and transformation in wastewater treatment systems, including strong thermo-catalytic and catalytic effects and microbial cytotoxicity. In particular, the effects of GNPs on the nitrification process in activated sludge systems should be addressed. This study aimed to estimate the influence of GNPs on the nitrification process in a short-term nitrification reactor with exposure to different light sources. The results indicated that GNPs could only improve the efficiency of photothermal transformation slightly in the activated sludge system because of its photothermal effects under the standard illuminant (imitating 1 × sun). However, even with better photothermal effects, the nitrification efficiency still decreased significantly with GNP dosing under the standard illuminant, which might result from stronger cytotoxic effects of GNPs on the nitrifying bacteria. The disappearance of extracellular polymeric substances (EPS) around bacterial cells was observed, and the total quantity of viable bacteria decreased significantly after GNP exposuring. Variation in bacterial groups primarily occurred in nitrifying microbial communities, including Nitrosomonas sp., Nitrosospira sp., Comamonas sp. and Bradyrhizobiace sp. Nitrifiers significantly decreased, while the phyla Gammaproteobacteria, Deinocccus, and Bacteroidetes exhibited greater stability during GNP treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil
J.S. Norman; J.E. Barrett
2014-01-01
Ammonia-oxidizing microbes control the rate-limiting step of nitrification, a critical ecosystem process, which affects retention and mobility of nitrogen in soil ecosystems. This study investigated substrate (NH4þ) and nutrient (K and P) limitation of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in temperate forest soils at Coweeta Hydrologic...
D. W. Frazier; J. G. McColl; R. F. Powers
1990-01-01
Soil ammonification, nitrification, and N mobility were studied for 1 yr in three Sierra Nevada (USA) mixed-conifer stands to examine the long-term influence of timber harvesting on soil N dynamics. Clearcutting had a persistent effect on soil N mineralization, detectable by in situ incubation but not by conventional low-tension lysimetry. Mineralization rates were...
Meyer, Annabel; Focks, Andreas; Radl, Viviane; Welzl, Gerhard; Schöning, Ingo; Schloter, Michael
2014-01-01
In the present study, the influence of the land use intensity on the diversity of ammonia oxidizing bacteria (AOB) and archaea (AOA) in soils from different grassland ecosystems has been investigated in spring and summer of the season (April and July). Diversity of AOA and AOB was studied by TRFLP fingerprinting of amoA amplicons. The diversity from AOB was low and dominated by a peak that could be assigned to Nitrosospira. The obtained profiles for AOB were very stable and neither influenced by the land use intensity nor by the time point of sampling. In contrast, the obtained patterns for AOA were more complex although one peak that could be assigned to Nitrosopumilus was dominating all profiles independent from the land use intensity and the sampling time point. Overall, the AOA profiles were much more dynamic than those of AOB and responded clearly to the land use intensity. An influence of the sampling time point was again not visible. Whereas AOB profiles were clearly linked to potential nitrification rates in soil, major TRFs from AOA were negatively correlated to DOC and ammonium availability and not related to potential nitrification rates.
Removal of nitrogen by a layered soil infiltration system during intermittent storm events.
Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong
2009-07-01
The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate.
Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium
Sandu, S.I.; Boardman, G.D.; Watten, B.J.; Brazil, B.L.
2002-01-01
The performance of fluidized bed nitrification filters charged with 2 ?? 4 ABS plastic beads (specific gravity 1.06) was evaluated. Three unique bed-height to diameter ratios were established, in triplicate, using column diameters of 12.7, 15.2 and 17.8 cm. Filters received water spiked with recycled nutrients and ammonia (TAN), from one of the three 500 1 feed tank system. With daily ammonia loading fixed at 8.6 g per system, TAN removal increased with column diameter at each of four tests hydraulic loading rates (6, 8, 10 and 12 Lpm). TAN in recirculated water (influent) rose from 0.5 to 1.0 mg/1 as ammonia loading increased from 180 mg/m2-day to 360 mg/m2-day. When hydraulic loading was fixed at 12 Lpm, TAN removal (%) was maximized with ammonia loadings ranging from 225 to 270 mg/m2-day. Biofilm thickness increased with ammonia loading, but decreased with increased hydraulic loading rates. Fluidized beds of ABS plastic beads were effective in reducing energy costs (head loss) of water treatment. ?? 2002 Elsevier Science B.V. All rights reserved.
Bacterial oxidation of methyl bromide in Mono Lake, California
Connell, T.L.; Joye, S.B.; Miller, L.G.; Oremland, R.S.
1997-01-01
The oxidation of methyl bromide (MeBr) in the water column of Mono Lake, CA, was studied by measuring the formation of H14CO3 from [14C]MeBr. Potential oxidation was detected throughout the water column, with highest rates occurring in the epilimnion (5-12 m depth). The oxidation of MeBr was eliminated by filter-sterilization, thereby demonstrating the involvement of bacteria. Vertical profiles of MeBr activity differed from those obtained for nitrification and methane oxidation, indicating that MeBr oxidation is not simply a co-oxidation process by either nitrifiers or methanotrophs. Furthermore, specific inhibitors of methane oxidation and/or nitrification (e.g., methyl fluoride, acetylene, allyl sulfide) had no effect upon the rate of MeBr oxidation in live samples. Of a variety of potential electron donors added to Mono Lake water, only trimethylamine resulted in the stimulation of MeBr oxidation. Cumulatively, these results suggest that the oxidation of MeBr in Mono Lake waters is attributable to trimethylamine-degrading methylotrophs. Neither methyl chloride nor methanol inhibited the oxidation of [14C]MeBr in live samples, indicating that these bacteria directly oxidized MeBr rather than the products of MeBr nucleophilic substitution reactions.
Morvannou, Ania; Choubert, Jean-Marc; Vanclooster, Marnik; Molle, Pascal
2011-10-15
We developed an original method to measure nitrification rates at different depths of a vertical flow constructed wetland (VFCW) with variable contents of organic matter (sludge, colonized gravel). The method was adapted for organic matter sampled in constructed wetland (sludge, colonized gravel) operated under partially saturated conditions and is based on respirometric principles. Measurements were performed on a reactor, containing a mixture of organic matter (sludge, colonized gravel) mixed with a bulking agent (wood), on which an ammonium-containing liquid was applied. The oxygen demand was determined from analysing oxygen concentration of the gas passing through the reactor with an on-line analyzer equipped with a paramagnetic detector. Within this paper we present the overall methodology, the factors influencing the measurement (sample volume, nature and concentration of the applied liquid, number of successive applications), and the robustness of the method. The combination of this new method with a mass balance approach also allowed determining the concentration and maximum growth rate of the autotrophic biomass in different layers of a VFCW. These latter parameters are essential inputs for the VFCW plant modelling. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Xuefeng; Ji, Qixing; Angell, John H.; Kearns, Patrick J.; Yang, Hannah J.; Bowen, Jennifer L.; Ward, Bess B.
2016-08-01
Salt marshes provide numerous valuable ecological services. In particular, nitrogen (N) removal in salt marsh sediments alleviates N loading to the coastal ocean. N removal reduces the threat of eutrophication caused by increased N inputs from anthropogenic sources. It is unclear, however, whether chronic nutrient overenrichment alters the capacity of salt marshes to remove anthropogenic N. To assess the effect of nutrient enrichment on N cycling in salt marsh sediments, we examined important N cycle pathways in experimental fertilization plots in a New England salt marsh. We determined rates of nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) using sediment slurry incubations with 15N labeled ammonium or nitrate tracers under oxic headspace (20% oxygen/80% helium). Nitrification and denitrification rates were more than tenfold higher in fertilized plots compared to control plots. By contrast, DNRA, which retains N in the system, was high in control plots but not detected in fertilized plots. The relative contribution of DNRA to total nitrate reduction largely depends on the carbon/nitrate ratio in the sediment. These results suggest that long-term fertilization shifts N cycling in salt marsh sediments from predominantly retention to removal.
Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M
2015-10-01
Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.
Subbarao, G V; Rao, I M; Nakahara, K; Sahrawat, K L; Ando, Y; Kawashima, T
2013-06-01
Agriculture and livestock production systems are two major emitters of greenhouse gases. Methane with a GWP (global warming potential) of 21, and nitrous oxide (N2O) with a GWP of 300, are largely emitted from animal production agriculture, where livestock production is based on pasture and feed grains. The principal biological processes involved in N2O emissions are nitrification and denitrification. Biological nitrification inhibition (BNI) is the natural ability of certain plant species to release nitrification inhibitors from their roots that suppress nitrifier activity, thus reducing soil nitrification and N2O emission. Recent methodological developments (e.g. bioluminescence assay to detect BNIs in plant root systems) have led to significant advances in our ability to quantify and characterize the BNI function. Synthesis and release of BNIs from plants is a highly regulated process triggered by the presence of NH4 + in the rhizosphere, which results in the inhibitor being released precisely where the majority of the soil-nitrifier population resides. Among the tropical pasture grasses, the BNI function is strongest (i.e. BNI capacity) in Brachiaria sp. Some feed-grain crops such as sorghum also have significant BNI capacity present in their root systems. The chemical identity of some of these BNIs has now been established, and their mode of inhibitory action on Nitrosomonas has been characterized. The ability of the BNI function in Brachiaria pastures to suppress N2O emissions and soil nitrification potential has been demonstrated; however, its potential role in controlling N2O emissions in agro-pastoral systems is under investigation. Here we present the current status of our understanding on how the BNI functions in Brachiaria pastures and feed-grain crops such as sorghum can be exploited both genetically and, from a production system's perspective, to develop low-nitrifying and low N2O-emitting production systems that would be economically profitable and ecologically sustainable.
NASA Astrophysics Data System (ADS)
Fernandes, Sheryl Oliveira; Javanaud, Cedric; Aigle, Axel; Michotey, Valérie D.; Guasco, Sophie; Deborde, Jonathan; Deflandre, Bruno; Anschutz, Pierre; Bonin, Patricia C.
2015-04-01
Field measurements in the Arcachon Bay (southwest France) indicated anaerobic production of NOx via nitrification, which was coupled to the reduction of Mn-oxides. To prove the occurrence of this process, laboratory microcosm experiments were set up. A 15N tracer-based approach was used to track if NOx produced through Mn-oxide-mediated anaerobic nitrification would be reduced to N2 via denitrification or anammox. We also hypothesized the generation of the potent greenhouse gas nitrous oxide (N2O) during nitrification-denitrification in the presence of Mn-oxides. The microcosms were prepared using sediment sectioned at varying depths (0-2.5, 2.5-4.5, 4.5-8.5, 8.5-12 and 12-17 cm) during two sampling campaigns in October (fall) and January (winter). Labeling with 15NO3- revealed low N2 production originating from NO3- in the water column (Pw), which did not increase significantly on amendment with Mn-oxides during both sampling periods. However, for both seasons, a significant increase of N2 produced via nitrification (Pn) was observed upon addition of Mn-oxides reaching 76-fold enhancement at ≤ 2.5 cm. To support these results, sediment slurries of October were subjected to amendment of 15NH4+, 14NO3- with or without addition of Mn-oxides. A substantial production of P15 (N2 production from 15NH4+) within 0-17 cm provided further evidence on nitrification-denitrification mediated by Mn-oxides probably with minimal intervention of anammox. In organically rich sediments, anaerobic nitrification-denitrification mediated by Mn-oxides could play an important role in lowering re-mineralized NH4+ levels in the benthic system. As hypothesized, significant production of N2O through the pathway was observed revealing newer mechanisms leading to the generation of the radiative gas.
Subbarao, G V; Arango, J; Masahiro, K; Hooper, A M; Yoshihashi, T; Ando, Y; Nakahara, K; Deshpande, S; Ortiz-Monasterio, I; Ishitani, M; Peters, M; Chirinda, N; Wollenberg, L; Lata, J C; Gerard, B; Tobita, S; Rao, I M; Braun, H J; Kommerell, V; Tohme, J; Iwanaga, M
2017-09-01
Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (N 2 O) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Complete nitrification by Nitrospira bacteria
Daims, Holger; Lebedeva, Elena V.; Pjevac, Petra; Han, Ping; Herbold, Craig; Albertsen, Mads; Jehmlich, Nico; Palatinszky, Marton; Vierheilig, Julia; Bulaev, Alexandr; Kirkegaard, Rasmus H.; von Bergen, Martin; Rattei, Thomas; Bendinger, Bernd; Nielsen, Per H.; Wagner, Michael
2016-01-01
Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered as a two-step process catalyzed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes both the pathways for ammonia and nitrite oxidation, which are concomitantly expressed during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities. PMID:26610024
Meyer, Rikke Louise; Zeng, Raymond Jianxiong; Giugliano, Valerio; Blackall, Linda Louise
2005-05-01
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO(3)(-) accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes.
Hu, Bo; Ye, Junhong; Zhao, Jianqiang; Ding, Xiaoqian; Yang, Liwei; Tian, Xiaolei
2018-01-01
In order to study the characteristics of nitrous oxide (N 2 O) production and hydroxylamine (NH 2 OH) variation under oxic conditions, concentrations of NH 2 OH and N 2 O were simultaneously monitored in a short-cut nitrification sequencing batch reactor (SBR) operated with different influent ammonia concentrations. In the short-cut nitrification process, N 2 O production was increased with the increasing of ammonia concentration in influent. The maximum concentrations of dissolved N 2 O-N in the reactor were 0.11 mg/L and 0.52 mg/L when ammonia concentrations in the influent were 50 mg/L and 70 mg/L respectively. Under the low and medium ammonia load phases, the concentrations of NH 2 OH-N in the reactor were remained at a low level which fluctuated around 0.06 mg/L in a small range, and did not change with the variation of influent NH 4 + -N concentration. Based on the determination results, the half-saturation of NH 2 OH in the biochemical conversion process of NH 2 OH to NO 2 - -N was very small, and the value of 0.05 mg NH 2 OH-N/L proposed in the published literature was accurate. NH 2 OH is an important intermediate in the nitrification process, and the direct determination of NH 2 OH in the nitrification process was beneficial for revealing the kinetic process of NH 2 OH production and consumption as well as the effects of NH 2 OH on N 2 O production in the nitrification process.
Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring
During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...
Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring
During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during...
US EPA Research on Monochloramine Disinfection Kinetics of Nitrosomonas europaea
Based on utility surveys, 30 to 63% of utilities practicing chloramination for secondary disinfection experience nitrification episodes (American Water Works Association 2006). Nitrification in drinking water distribution systems is undesirable and may result in water quality deg...
USEPA Research on Monochloramine Disinfection Kinetics of Nitrosomonas Europaea
Based on utility surveys, 30 to 63% of utilities practicing chloramination for secondary disinfection experience nitrification episodes (American Water Works Association 2006). Nitrification in drinking water distribution systems is undesirable and may result in water quality deg...
Overview of EPA Research on Drinking Water Distribution System Nitrification
Results from USEPA research investigating drinking water distribution system nitrification will be presented. The two research areas include: (1) monochloramine disinfection kinetics of Nitrosomonas europaea using Propidium Monoazide Quantitative Real-time PCR (PMA-qPCR) and (2...
Liu, Rui; Hu, Hangwei; Suter, Helen; Hayden, Helen L; He, Jizheng; Mele, Pauline; Chen, Deli
2016-01-01
Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However, very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A (15)N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate ([Formula: see text]), and ammonium ([Formula: see text]) concentration and (15)N2O, (15)[Formula: see text], and (15)[Formula: see text] enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O-value) varied across different soils, with the highest PN2O-value (0.26‰) found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil type and land-use might have strongly affected the relative contribution of nitrification and denitrification to N2O production from agricultural soils.
Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.
Svardal, K; Lindtner, S; Winkler, S
2003-01-01
Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.
Landfill leachate management in Istanbul: applications and alternatives.
Calli, Baris; Mertoglu, Bulent; Inanc, Bulent
2005-05-01
Treatment alternatives for Istanbul, Komurcuoda Landfill (KL) leachate that is currently transported to the nearest central wastewater treatment plant were comprehensively investigated with laboratory scale experiments. As flow rate of leachate increases parallel to increment in landfilled solid waste, an individual treatment will be needed to reduce the transportation cost and pollution load on central treatment. However, if the leachate is separately treated and discharged to a brook, in that case more stringent discharge standards will be valid and therefore advanced processes in addition to conventional ones should be included. In laboratory scale experiments, the young landfill leachate having BOD5/COD ratio above 0.6 was successfully treated with efficiencies above 90% in upflow anaerobic reactors if pH is kept below free ammonia inhibition level. Subsequently, nitrification of anaerobically treated leachate was performed with rates of about 8.5 mg NH4+-Ng-1 VSS h-1 and efficiencies above 99% were provided with automated pH regulation by using sodium bicarbonate. Furthermore, denitrification rates as high as 8.1 mg NOx-N g-1VSS h-1 was obtained when carbon source was externally supplied. In addition to nitrification and denitrification, air stripping and struvite precipitation were also applied to remove ammonia in leachate and in average 94% and 98% efficiencies were achieved, respectively. Finally, in average 85% of biologically inert COD was successfully removed by using either ozone or Fenton's oxidation.
Nivelle, Elodie; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry
2017-01-01
The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates. Overall, the lack of N fertilization in the 6 past years combined with the highest glyphosate application rate (100FR) induced the highest values of AWCD, functional diversity, NO3-, PO43- and nitrification. We concluded that the intensive use of N fertilization for 6 years may change the non-target effects of glyphosate application on enzyme activities. The functional activities, nitrification and nutrient contents were increased by glyphosate only when applied at 100 times the field application rate. PMID:28552945
Nivelle, Elodie; Verzeaux, Julien; Chabot, Amélie; Roger, David; Spicher, Fabien; Lacoux, Jérôme; Nava-Saucedo, Jose-Edmundo; Catterou, Manuella; Tétu, Thierry
2017-01-01
The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\\100FR and N+\\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates. Overall, the lack of N fertilization in the 6 past years combined with the highest glyphosate application rate (100FR) induced the highest values of AWCD, functional diversity, NO3-, PO43- and nitrification. We concluded that the intensive use of N fertilization for 6 years may change the non-target effects of glyphosate application on enzyme activities. The functional activities, nitrification and nutrient contents were increased by glyphosate only when applied at 100 times the field application rate.
Nitrification and Autotrophic Nitrifying Bacteria in a Hydrocarbon-Polluted Soil
Deni, Jamal; Penninckx, Michel J.
1999-01-01
In vitro ammonia-oxidizing bacteria are capable of oxidizing hydrocarbons incompletely. This transformation is accompanied by competitive inhibition of ammonia monooxygenase, the first key enzyme in nitrification. The effect of hydrocarbon pollution on soil nitrification was examined in situ. In a microcosm study, adding diesel fuel hydrocarbon to an uncontaminated soil (agricultural unfertilized soil) treated with ammonium sulfate dramatically reduced the amount of KCl-extractable nitrate but stimulated ammonium consumption. In a soil with long history of pollution that was treated with ammonium sulfate, 90% of the ammonium was transformed into nitrate after 3 weeks of incubation. Nitrate production was twofold higher in the contaminated soil than in the agricultural soil to which hydrocarbon was not added. To assess if ammonia-oxidizing bacteria acquired resistance to inhibition by hydrocarbon, the contaminated soil was reexposed to diesel fuel. Ammonium consumption was not affected, but nitrate production was 30% lower than nitrate production in the absence of hydrocarbon. The apparent reduction in nitrification resulted from immobilization of ammonium by hydrocarbon-stimulated microbial activity. These results indicated that the hydrocarbon inhibited nitrification in the noncontaminated soil (agricultural soil) and that ammonia-oxidizing bacteria in the polluted soil acquired resistance to inhibition by the hydrocarbon, possibly by increasing the affinity of nitrifying bacteria for ammonium in the soil. PMID:10473409
Wankel, Scott D.; Kendall, C.; Pennington, J.T.; Chavez, F.P.; Paytan, A.
2007-01-01
Coupled measurements of nitrate (NO3-), nitrogen (N), and oxygen (O) isotopic composition (??15NNO3 and ??18ONO3) were made in surface waters of Monterey Bay to investigate multiple N cycling processes occurring within surface waters. Profiles collected throughout the year at three sites exhibit a wide range of values, suggesting simultaneous and variable influence of both phytoplankton NO3- assimilation and nitrification within the euphotic zone. Specifically, increases ??18ONO3 were consistently greater than those in ??15NN03. A coupled isotope steady state box model was used to estimate the amount of NO3- supplied by nitrification in surface waters relative to that supplied from deeper water. The model highlights the importance of the branching reaction during ammonium (NH4+) consumption, in which NH4+ either serves as a substrate for regenerated production or for nitrification. Our observations indicate that a previously unrecognized proportion of nitrate-based productivity, on average 15 to 27%, is supported by nitrification in surface waters and should not be considered new production. This work also highlights the need for a better understanding of isotope effects of NH4+ oxidation, NH4+ assimilation, and NO4+ assimilation in marine environments.
Puglisi, Edoardo; Vasileiadis, Sotirios; Demiris, Konstantinos; Bassi, Daniela; Karpouzas, Dimitrios G; Capri, Ettore; Cocconcelli, Pier S; Trevisan, Marco
2012-10-01
Litter soil cover constitutes an important micro-ecosystem in sustainable viticulture having a key role in nutrient cycling and serving as a habitat of complex microbial communities. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are known to regulate nitrification in soil while little is known regarding their function and diversity in litter. We investigated the effects of two fungicides, penconazole and cyprodinil, commonly used in vineyards, on the function and diversity of total and active AOB and AOA in a microcosm study. Functional changes measured via potential nitrification and structural changes assessed via denaturating gradient gel electrophoresis (DGGE) at the DNA and RNA levels were contrasted with pesticide dissipation in the litter layer. The latter was inversely correlated with potential nitrification, which was temporarily inhibited at the initial sampling dates (0 to 21 days) when nearly 100 % of the applied pesticide amounts was still present in the litter. Fungicides induced changes in AOB and AOA communities with RNA-DGGE analysis showing a higher sensitivity. AOA were more responsive to pesticide application compared to AOB. Potential nitrification was less sensitive to the fungicides and was restored faster than structural changes, which persisted. These results support the theory of microbial redundancy for nitrification in a stressed litter environment.
Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea
Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun
2012-01-01
The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested. PMID:22592820
Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea.
Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun
2012-10-01
The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, (15)N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested.
A Long-Term Study of the Microbial Community Structure in a ...
Many US water treatment facilities use chloramination to limit regulated disinfectant by-product formation. However, chloramination has been shown to promote nitrifying bacteria, and 30 to 63% of water utilities using secondary chloramine disinfection experience nitrification episodes. In this study, we examined the Bacterial population in a simulated chloraminated drinking water distribution system (DWDS). After six months of continuous operation, coupons were incubated in CDC reactors receiving water from the simulated DWDS to study biofilm development. The DWDS was then subjected to episodes of nitrification, followed by a ‘chlorine burn’ by switching disinfectant from chloramine to chlorine, a common nitrification control strategy. The study was organized into five distinct operational schemes: (1) PRE-MODIFIED; system stabilization, (2) STANDARD I; stable chloramine residual, (3) FAILURE; complete nitrification and minimal chloramine residual, (4) RESTORE; chlorine burn, and (5) STANDARD II; stable chloramine residual. Bulk water and biofilm samples were collected and analyzed for water quality parameters and microbial composition. No change in microbial biomass (ATP) in bulk water and biofilm samples was detected during the STANDARD I scheme, while an increase in biofilms was detected after 80 days (FAILURE, i.e. nitrification) followed by a decrease after a chlorine burn with a final increase to previous values (STANDARD I) during the STANDARD I
USDA-ARS?s Scientific Manuscript database
Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It...
Disturbance decouples biogeochemical cycles across forests of the southeastern US
Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford
2016-01-01
Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...
Treatment efficiency and stoichiometry of a high-strength graywater.
Morse, Audra; Khatri, Sukrut; Jackson, W Andrew
2007-12-01
The transit mission wastewater may represent a future graywater, in which toilet waste is separated from other household waste streams, and dilution water is minimal. A loading rate study indicated that denitrification is stoichiometrically limited, and nitrification was kinetically limited. Denitrification stoichiometry was developed by deriving hypothetical molecular formulas of organic carbon inputs to be represented by the relative proportions of carbon, hydrogen, oxygen, and nitrogen. The derived stoichiometry was validated against experimental data by adjusting the values of fe and fs and multiplying the total dissolved organic carbon loss across the system by the overall R equation and then comparing the total nitrogen removed in the reaction to experimentally observed total nitrogen removal. The nitrification stoichiometry was similarly validated by multiplying the R equation by the ammonium-nitrogen removed and then comparing the NO(x)-N formed in the equation to actual NO(x)-N production values. The fs values for the denitrifying and nitrifying bacteria were 0.33 and 0.15, respectively.
Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon
Rinella, F.A.; McKenzie, S.W.; Wille, S.A.
1981-01-01
During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)
Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie
2016-10-01
Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. Copyright © 2016 Elsevier B.V. All rights reserved.
[Treatment of ANAMMOX technique on treating high concentration poultry wastewater].
Zhu, Jie; Huang, Tao; Fan, Xing-Jian; Zhang, Cheng-Fu
2009-05-15
Taking the effluent of the UASB-shortcut nitrification technique of typical high concentration poultry wastewater as the object, it is discussed that the ANAMMOX is applicable as a treatment of denitrification. Firstly, it successfully starts ANAMMOX reactor by the denitrifying activated sludge, on this basis, finding the optimal ammonia loading is about 0.2 kg/(m3 x d) and the HRT of system is 2 d. Moreover, after studyingon the operating conditions, the optimum is that pH is about 7.50; temperature is 30 degrees C without adding organic carbon. Under optimum conditions, the removal efficiencies of ammonia and nitrite nitrogen could be above 85% and 95%, the system is running well and has reproducibility. Finally, it reaches that the reaction rates of ammonia and nitrite nitrogen are 0.0126 d(-1) and 0.0131 d(-1) through dynamic analysis. So it can make the theory basis for spreading and application of after/continuous process, neural network simulation and "UASB + SBR shortcut nitrification + ANAMMOX + land treating system" newly combined process.
Formulation and Testing of a Novel River Nitrification Model
The nitrification process in many riverwater quality models has been approximated by a simple first order dependency on the water column ammonia concentration, while the benthic contribution has routinely been neglected. In this study a mathematical framework was developed for se...
Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...
NASA Astrophysics Data System (ADS)
Trammell, T. L.
2017-12-01
The natural abundance of stable isotopes in plants and soils has been utilized to understand ecological phenomenon. Foliar δ15N is an integrator of soil δ15N, atmospheric N sources, and fractionation processes that occur during plant N uptake, plant N assimilation, and mycorrhizal associations. The amount of reactive N in the environment has greatly increased due to human activities, and urban ecosystems experience excess N deposition that can have cascading effects on plants and soils. Foliar δ15N has been shown to increase with increasing N deposition and nitrification rates suggesting increased foliar δ15N occurs with greater N inputs as a result of accelerated soil N cycling. Thus, foliar δ15N can be an indication of soil N availability for plant uptake and soil N cycling rates, since high N availability results in increased soil N cycling and subsequent loss of 14N. Limited research has utilized foliar and soil δ15N in urban forests to assess the importance of plant uptake of atmospheric N deposition and to gain insight about ecosystem processes. Previous investigations found foliar δ15N of mature trees in urban forests is not only related to elevated pollutant-derived N deposition, but also to soil N availability and soil N cycling rates. Similarly, enriched foliar δ15N of urban saplings was attributed to soil characteristics that indicated higher nitrification, thus, greater nitrate leaching and low N retention in the urban soils. These studies demonstrate the need for measuring the δ15N of various plant and soil N sources while simultaneously measuring soil N processes (e.g., net nitrification rates) in order to use natural abundance δ15N of plants and soils to assess N sources and cycling in urban forests. A conceptual framework that illustrates biogenic and anthropogenic controls on nitrogen isotope composition in urban plants and soils will be presented along with foliar and soil δ15N from urban forests across several cities as a proof of concept. Foliar and soil 15N can be extremely useful when N sources are isotopically distinct, patterns are detectable, or multiple tools are used simultaneously to understand N cycling. N cycles tightly in most ecosystems, thus δ15N in plants and soils can provide information about N source and availability to ecosystems.
Le Roux, X; Bardy, M; Loiseau, P; Louault, F
2003-11-01
Stimulation of nitrification and denitrification by long term (from years to decades) grazing has commonly been reported in different grassland ecosystems. However, grazing generally induces important changes in plant species composition, and whether changes in nitrification and denitrification are primarily due to changes in vegetation composition has never been tested. We compared soil nitrification- and denitrification-enzyme activities (NEA and DEA, respectively) between semi-natural grassland sites experiencing intensive (IG) and light (LG) grazing/mowing regimes for 13 years. Mean NEA and DEA (i.e. observed from random soil sampling) were higher in IG than LG sites. The NEA/DEA ratio was higher in IG than LG sites, indicating a higher stimulation of nitrification. Marked changes in plant species composition were observed in response to the grazing/mowing regime. In particular, the specific phytomass volume of Elymus repens was lower in IG than LG sites, whereas the specific volume of Lolium perenne was higher in IG than LG sites. In contrast, the specific volume of Holcus lanatus, Poa trivialis and Arrhenatherum elatius were not significantly different between treatments. Soils sampled beneath grass tussocks of the last three species exhibited higher DEA, NEA and NEA/DEA ratio in IG than LG sites. For a given grazing regime, plant species did not affect significantly soil DEA, NEA and NEA/DEA ratio. The modification of plant species composition is thus not the primary factor driving changes in nitrification and denitrification in semi-natural grassland ecosystems experiencing long term intensive grazing. Factors such as trampling, N returned in animal excreta, and/or modification of N uptake and C exudation by frequently defoliated plants could be responsible for the enhanced microbial activities.
Giguere, Andrew T.; Murthy, Ganti S.; Bottomley, Peter J.; Sayavedra-Soto, Luis A.
2018-01-01
ABSTRACT Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification. PMID:29577088
Variations in soil N cycling and trace gas emissions in wet tropical forests.
Holtgrieve, Gordon W; Jewett, Peter K; Matson, Pamela A
2006-01-01
We used a previously described precipitation gradient in a tropical montane ecosystem of Hawai'i to evaluate how changes in mean annual precipitation (MAP) affect the processes resulting in the loss of N via trace gases. We evaluated three Hawaiian forests ranging from 2200 to 4050 mm year-1 MAP with constant temperature, parent material, ecosystem age, and vegetation. In situ fluxes of N2O and NO, soil inorganic nitrogen pools (NH4+ and NO3-), net nitrification, and net mineralization were quantified four times over 2 years. In addition, we performed 15N-labeling experiments to partition sources of N2O between nitrification and denitrification, along with assays of nitrification potential and denitrification enzyme activity (DEA). Mean NO and N2O emissions were highest at the mesic end of the gradient (8.7+/-4.6 and 1.1+/-0.3 ng N cm-2 h-1, respectively) and total oxidized N emitted decreased with increased MAP. At the wettest site, mean trace gas fluxes were at or below detection limit (
Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui
2016-01-01
The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p < 0.01). The addition of earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.
Mellbye, Brett L; Giguere, Andrew T; Murthy, Ganti S; Bottomley, Peter J; Sayavedra-Soto, Luis A; Chaplen, Frank W R
2018-01-01
Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO 2 , and N 2 O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi . The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH 4 + ). Up to 60% of NH 4 + -based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO 3 - ), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO 2 ], and nitrous oxide [N 2 O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.
Whole-stream response to nitrate loading in three streams draining agricultural landscapes
Duff, J.H.; Tesoriero, A.J.; Richardson, W.B.; Strauss, E.A.; Munn, M.D.
2008-01-01
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3 −) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d “snapshots” during biotically active periods, we estimated reach-level NO3 − sources, NO3 − mass balance, in-stream processing (nitrification, denitrification, and NO3 − uptake), and NO3 − retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3 − input. Streambed processes potentially reduced 45 to 75% of ground water NO3 − before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3 − retention. Estimated nitrification (1.6–4.4 mg N m−2 h−1) and unamended denitrification rates (2.0–16.3 mg N m−2 h−1) in sediment slurries were high relative to pristine streams. Denitrification of NO3 − was largely independent of nitrification because both stream and ground water were sources of NO3 − Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3 − exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3 − inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3 − variation. Biotic processing potentially removed 75% of ground water NO3 − at this site, suggesting an important role for photosynthetic assimilation of ground water NO3 − relative to subsurface denitrification as water passed directly through benthic diatom beds.
Liu, Feng; Zhang, Shunan; Wang, Yi; Li, Yong; Xiao, Runlin; Li, Hongfang; He, Yang; Zhang, Miaomiao; Wang, Di; Li, Xi; Wu, Jinshui
2016-01-15
The aim of this research was to assess the applicability of Myriophyllum (M.) aquaticum for swine wastewater treatment. Nitrogen (N) removal processes were investigated in M. aquaticum mesocosms with swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two strengths of synthetic wastewater, 200 mg [Formula: see text] L(-1) (200 [Formula: see text] ) and 400 mg [Formula: see text] L(-1) (400 [Formula: see text] ). During a 28-day incubation period, the average [Formula: see text] and TN removal rates were 99.8% and 94.2% for 50% SW and 99.8% and 93.8% for SW, which were greater than 86.5% and 83.7% for 200 [Formula: see text] , and 73.7% and 74.1% for 400 [Formula: see text] , respectively. A maximum areal total nitrogen (TN) removal rate of 157.8 mg N m(-2) d(-1) was found in M. aquaticum mesocosms with SW. During the incubation period, the observed dynamics of [Formula: see text] concentrations in water and gene copy numbers of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), nirK and nirS in soil unraveled strong nitrification and denitrification processes occurring in M. aquaticum mesocosms with swine wastewater. The N mass balance analysis indicated that plant uptake and soil N accumulation accounted for 17.9-42.2% and 18.0-43.8% of the initial TN load, respectively. The coupled nitrification and denitrification process was calculated to account for, on average, 36.8% and 62.8% of TN removal for 50% SW and SW, respectively. These findings demonstrated that the N uptake by M. aquaticum contributed to a considerable proportion of N removal. In particular, the activities of ammonia-oxidizing and denitrification microbes responsible for nitrification and denitrification processes in M. aquaticum mesocosm accelerated [Formula: see text] and TN removal from swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
Böhlke, J.K.; Smith, Richard L.; Miller, Daniel N.
2006-01-01
Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large‐scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3−, N2, and sorbed NH4+; and in situ natural gradient 15NH4+tracer tests with numerical simulations of 15NH4+, 15NO3−, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3− and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH4+. The δ15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH4+‐consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.
Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza
2017-05-15
Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m 3 air/d per 1 m 3 /d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required. Copyright © 2017 Elsevier Ltd. All rights reserved.
We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...
NITRIFICATION AND ARSENIC REMOVAL IN BIOLOGICALLY ACTIVE FILTERS: A CASE STUDY
Ammonia in source waters can cause water treatment and distribution system problems, many of which are associated with biological nitrification. Therefore, in some cases, the removal of ammonia from water is desirable. Biological oxidation of ammonia to nitrate and nitrate (nitr...
Sources of nitric oxide and nitrous oxide following wetting of dry soil
NASA Technical Reports Server (NTRS)
Davidson, Eric A.
1992-01-01
A study is presented which is aimed at distinguishing among autotrophic nitrification, denitrification, and abiological processes as sources of NO and N2O production following wetting of dry soil. To distinguish among these processes, combinations of treatments in laboratory incubations of soil were used which included varying soil water content, autoclaving, C2H2 inhibition, and NO2(-) addition. Biological sources of NO and N2O commenced within minutes of wetting dry soil. Acetylene inhibition revealed that emissions of NO were dependent on nitrification, although a combination of NO2(-) production by nitrifiers and abiological reduction of NO2(-) to NO is also possible. NO emissions exceeded N2O emissions, and nitrification was the dominant source of both gases when soil water was below field capacity. It is concluded that NO emissions appear to be more important when good soil aeration favors nitrification, whereas N2O emissions appear more important when elevated soil water favors denitrification.
Ciesielski, Slawomir; Kulikowska, Dorota; Kaczowka, Ewelina; Kowal, Przemysław
2010-07-01
Differences in DNA banding patterns, obtained by ribosomal intergenic spacer analysis (RISA), and nitrification were followed in a moving-bed biofilm reactor (MBBR) receiving municipal landfill leachate. Complete nitrification (> 99%) to nitrate was obtained in the two-stage MBBR system with an ammonium load of 1.09 g N-NH(4)/m(2).d. Increasing the ammonium load to 2.03 g N-NH(4)/m(2).d or more caused a decline in process efficiency to 70-86%. Moreover, at the highest ammonium load (3.76 g N-NH(4)/m(2).d), nitrite was the predominant product of nitrification. Community succession was evident in both compartments in response to changes in ammonium load. Non-metric multidimensional scaling (NMDS) supported by similarity analysis (ANOSIM) showed that microbial biofilm communities differed between compartments. The microbial biofilm was composed mainly of ammonia-oxidizing bacteria (AOB), with Nitrosomonas europeae and N. eutropha being most abundant. These results suggest that high ammonium concentrations select for particular AOB strains.
Partial nitrification using aerobic granules in continuous-flow reactor: rapid startup.
Wan, Chunli; Sun, Supu; Lee, Duu-Jong; Liu, Xiang; Wang, Li; Yang, Xue; Pan, Xiangliang
2013-08-01
This study applied a novel strategy to rapid startup of partial nitrification in continuous-flow reactor using aerobic granules. Mature aerobic granules were first cultivated in a sequencing batch reactor at high chemical oxygen demand in 16 days. The strains including the Pseudoxanthomonas mexicana strain were enriched in cultivated granules to enhance their structural stability. Then the cultivated granules were incubated in a continuous-flow reactor with influent chemical oxygen deamnad being stepped decreased from 1,500 ± 100 (0-19 days) to 750 ± 50 (20-30 days), and then to 350 ± 50 mg l(-1) (31-50 days); while in the final stage 350 mg l(-1) bicarbonate was also supplied. Using this strategy the ammonia-oxidizing bacterium, Nitrosomonas europaea, was enriched in the incubated granules to achieve partial nitrification efficiency of 85-90% since 36 days and onwards. The partial nitrification granules were successfully harvested after 52 days, a period much shorter than those reported in literature. Copyright © 2013 Elsevier Ltd. All rights reserved.
The history of aerobic ammonia oxidizers: from the first discoveries to today.
Monteiro, Maria; Séneca, Joana; Magalhães, Catarina
2014-07-01
Nitrification, the oxidation of ammonia to nitrite and nitrate, has long been considered a central biological process in the global nitrogen cycle, with its first description dated 133 years ago. Until 2005, bacteria were considered the only organisms capable of nitrification. However, the recent discovery of a chemoautotrophic ammonia-oxidizing archaeon, Nitrosopumilus maritimus, changed our concept of the range of organisms involved in nitrification, highlighting the importance of ammonia-oxidizing archaea (AOA) as potential players in global biogeochemical nitrogen transformations. The uniqueness of these archaea justified the creation of a novel archaeal phylum, Thaumarchaeota. These recent discoveries increased the global scientific interest within the microbial ecology society and have triggered an analysis of the importance of bacterial vs archaeal ammonia oxidation in a wide range of natural ecosystems. In this mini review we provide a chronological perspective of the current knowledge on the ammonia oxidation pathway of nitrification, based on the main physiological, ecological and genomic discoveries.
Fukushima, Toshikazu; Whang, Liang-Ming; Chen, Po-Chun; Putri, Dyah Wulandari; Chang, Ming-Yu; Wu, Yi-Ju; Lee, Ya-Ching
2013-08-01
This study investigated the linkage between performance of two full-scale membrane bioreactor (MBR) systems treating thin-film transistor liquid crystal display (TFT-LCD) wastewater and the population dynamics of dimethylsulfoxide (DMSO)/dimethylsulfide (DMS) degrading bacteria. High DMSO degradation efficiencies were achieved in both MBRs, while the levels of nitrification inhibition due to DMS production from DMSO degradation were different in the two MBRs. The results of real-time PCR targeting on DMSO/DMS degrading populations, including Hyphomicrobium and Thiobacillus spp., indicated that a higher DMSO oxidation efficiency occurred at a higher Hyphomicrobium spp. abundance in the systems, suggesting that Hyphomicrobium spp. may be more important for complete DMSO oxidation to sulfate compared with Thiobacillus spp. Furthermore, Thiobacillus spp. was more abundant during poor nitrification, while Hyphomicrobium spp. was more abundant during good nitrification. It is suggested that microbial population of DMSO/DMS degrading bacteria is closely linking to both DMSO/DMS degradation efficiency and nitrification performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Krustok, I; Odlare, M; Truu, J; Nehrenheim, E
2016-02-01
The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of a gravity-independent wastewater bioprocessor for advanced life support in space
NASA Technical Reports Server (NTRS)
Nashashibi-Rabah, Majda; Christodoulatos, Christos; Korfiatis, George P.; Janes, H. W. (Principal Investigator)
2005-01-01
Operation of aerobic biological reactors in space is controlled by a number of challenging constraints, mainly stemming from mass transfer limitations and phase separation. Immobilized-cell packed-bed bioreactors, specially designed to function in the absence of gravity, offer a viable solution for the treatment of gray water generated in space stations and spacecrafts. A novel gravity-independent wastewater biological processor, capable of carbon oxidation and nitrification of high-strength aqueous waste streams, is presented. The system, consisting of a fully saturated pressurized packed bed and a membrane oxygenation module attached to an external recirculation loop, operated continuously for over one year. The system attained high carbon oxidation efficiencies often exceeding 90% and ammonia oxidation reaching approximately 60%. The oxygen supply module relies on hydrophobic, nonporous, oxygen selective membranes, in a shell and tube configuration, for transferring oxygen to the packed bed, while keeping the gaseous and liquid phases separated. This reactor configuration and operating mode render the system gravity-independent and suitable for space applications.
Field study of nitrous oxide production with in situ aeration in a closed landfill site.
Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai
2016-03-01
Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of nitrous oxide production potential during in situ aeration in an old landfill site revealed that increased temperatures and oxygen content inside the landfill site are potential factors for nitrous oxide production. Temperatures within the range of optimum nitrification process (30-40°C) induce nitrous oxide formation with high oxygen concentration as a by-product of nitrogen turnover. Decrease of oxygen content during nitrification leads increase of nitrous oxide production, while temperatures above 40°C with moderate and/or low oxygen content inhibit nitrous oxide generation.
NASA Astrophysics Data System (ADS)
Wu, D.; Cardenas, L. M.; Sanz, S. C.; Brueggemann, N.; Loick, N.; Liu, S.; Bol, R.
2016-12-01
Emissions of gaseous forms of nitrogen from soil, such as nitrous oxide (N2O) and nitric oxide (NO), have shown great impact on global warming and atmospheric chemistry. Although in soil both nitrification and denitrification could cause N2O and NO emissions, most recent studies demonstrated that denitrification is the dominant process responsible for the increase of atmospheric N2O, while nitrification produces most of NO. The use of nitrification inhibitors (NI) has repeatedly been shown to lower both N2O and NO emissions from agricultural soils; nevertheless, the efficiency of the mitigation effect varies greatly. It is generally assumed that nitrification inhibitors have no direct effect on denitrification. However, the indirect impact, due to the reduced substrate delivery (NO3-) to microsites where denitrification occurs, may have significant effects on denitrification product stoichiometry that may significantly lower soil born N2O emissions. In the present study, soil incubation experiments were carried out in a fully automated continuous-flow incubation system under a He/O2 atmosphere. Ammonium sulfate was applied with and without NI (DMPP) to a UK grassland soil under three different soil moisture conditions (50% WFPS, 65% WFPS, 80% WFPS). With every treatment glucose was applied to supply enough carbon for denitrification. We examined the effect of DMPP on NO, N2O and N2 emissions at different soil moisture conditions which favor nitrification, a mixture of both nitrification and denitrification, or denitrification, respectively. Generally cumulative NO emissions were about 17% of cumulative N2O emissions, while N2 emissions were only detected at high soil moisture condition (80% WFPS). Higher soil moisture increased both N2O and NO emissions. DMPP application increased N2 emissions at soil moisture condition favoring denitrification. Although the application of DMPP significantly mitigated both N2O and NO emissions in all DMPP treatments, the efficiency of the mitigation effect varied with different soil moisture conditions. Overall, DMPP application mitigated about 40- 60% N2O emissions and 50-70% NO emissions during the 44-day incubation period.
Consequences and Reduction of Elevated Ammonia in Illinois Groundwaters: U.S. EPA Research Efforts
Nitrification in drinking water distribution systems is a concern of many drinking water systems. Although chloramination as a source of nitrification has drawn the most attention, many source waters contain significant levels of ammonia, particularly in Midwestern States such a...
Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....
NITRIFICATION AND IRON AND ARSENIC REMOVAL IN BIOLOGICALLY ACTIVE FILTERS: A CASE STUDY
Ammonia in source waters can cause water treatment and distribution system problems, many of which are associated with biological nitrification. Therefore, in some cases, the removal of ammonia from water is desirable. Biological oxidation of ammonia to nitrate and nitrate (nitr...
Oyanedel, V; Garrido, J M; Lema, J M; Méndez, R
2003-01-01
An innovative membrane assisted hybrid bioreactor was used to treat a mixture of two streams produced in a fish canning factory: a highly loaded stream that had previously been treated in an anaerobic contact reactor, and a second stream with a relatively low COD and N concentration. Experiments were carried out during two experimental stages: an aerobic stage, which is focused in the study on the aerobic oxidation of ammonia and COD and a nitrification-denitrification stage in which the study was mainly focused on the removal of nitrogen. Results of the aerobic period pointed out that it was feasible to achieve ammonia and COD removals of around 99% at OLR of 6.5 kg COD/m3 x d and NLR of 1.8 kg N-NH4+/m3 x d. Specific nitrifying activities of up to 0.78 g N-NH4+/g protein x d and 0.25 g N-NH4+/g VSS x d, were recorded for the attached and suspended biomass, respectively. Around 50-60% of the nitrifying capacity of the reactor was a result of the nitrifying capacity of the biofilm. During the nitrification-denitrification stage 76% of nitrogen removal was attained at an NLR of 0.8 kg N-NH4+/m3 x d. The biofilm nitrifying activity was not affected by the operating conditions of the system, as a result of the preferential consumption of COD by suspended biomass in the reactor. Thus, the combination of a hybrid system, with both suspended and attached biomass, and an ultrafiltration membrane module might be an alternative for treating wastewaters in compact biological systems. The intrinsic characteristics of the system made it feasible to operate at high OLR without problems related with the settling properties of the sludge or the drop in the nitrogen conversion. There were no solids in the effluent as a result of the use of the membrane filtration module.
Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Menert, Anne; Lemmiksoo, Vallo; Saluste, Alar; Tenno, Taavo; Tomingas, Martin
2011-01-01
Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to be the inhibition of nitrifying activity by higher FA concentrations (up to 6.5 mg/L) in the process. Reject water from sludge treatment from the Tallinn Wastewater Treatment Plant was used as substrate in the MBBR. The performance of high-surfaced biocarriers taken from the nitritating activity MBBR was further studied in batch tests to investigate nitritation and nitrification kinetics with various FA concentrations and temperatures. The maximum nitrite accumulation ratio (96.6%) expressed as the percentage of NO2(-)-N/NOx(-)-N was achieved for FA concentration of 70 mg/L at 36 degrees C. Under the same conditions the specific nitrite oxidation rate achieved was 30 times lower than the specific nitrite formation rate. It was demonstrated that in the biofilm system, inhibition by FA combined with the optimization of the main control parameters is a good strategy to achieve nitritating activity and suppress nitrification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Qi; Graduate School of Chinese Academy of Sciences, Beijing 100049; Li Daping
2009-04-15
Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l{sup -1} d{sup -1} and 3.84 g COD l{sup -1} d{sup -1}, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factorsmore » affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t{sup -1} TS d{sup -1} and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t{sup -1} TS d{sup -1} and the inhibition was enhanced with the increase of TON loading.« less
Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines
2010-11-01
Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2015-01-01
The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in soil using the denaturing gradient gel electrophoresis (DGGE) approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S) and the Shannon-Wiener index (H) values for soil treated with the field rate (FR) dosage of imidacloprid (1 mg/kg soil) showed no changes in measured indices for the AOA and AOB community members. In turn, the 10∗FR dosage of insecticide (10 mg/kg soil) negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4 (+), known as the most important factor which determines the contribution of these microorganisms to soil nitrification.
Cycoń, Mariusz; Piotrowska-Seget, Zofia
2015-01-01
The purpose of this experiment was to assess the effect of imidacloprid on the community structure of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in soil using the denaturing gradient gel electrophoresis (DGGE) approach. Analysis showed that AOA and AOB community members were affected by the insecticide treatment. However, the calculation of the richness (S) and the Shannon-Wiener index (H) values for soil treated with the field rate (FR) dosage of imidacloprid (1 mg/kg soil) showed no changes in measured indices for the AOA and AOB community members. In turn, the 10∗FR dosage of insecticide (10 mg/kg soil) negatively affected the AOA community, which was confirmed by the decrease of the S and H values in comparison with the values obtained for the control soil. In the case of AOB community, an initial decline followed by the increase of the S and H values was obtained. Imidacloprid decreased the nitrification rate while the ammonification process was stimulated by the addition of imidacloprid. Changes in the community structure of AOA and AOB could be due to an increase in the concentration of N-NH4 +, known as the most important factor which determines the contribution of these microorganisms to soil nitrification. PMID:25705674
[Non-nitrification pathway for NH4+ -N removal in pilot-scale drinking water biological processes].
Yu, Xin; Ye, Lin; Li, Xu-dong; Zhang, Xiao-jian; Shi, Xu; Liu, Bo; Li, Rui-hua
2008-04-01
The non-nitrification pathway for NH4+ -N removal in pilot-scale drinking water biological treatment processes and its possible mechanism were investigated through calculating N and DO stoichiometric balance. With more than 2 mg/L NH4+ -N in the influent, for the fluidized bed bioreactor (FBBR), the total of NH4+ -N, NO2(-) -N, NO3(-) -N in the influent was 0.91 mg/L higher than that in the effluent, and for the biofilter, its DO consumption was 2.90 mg/L less than the stoichiometric amount. The results suggested that nitrogen loss occurred in both reactors and a part of NH4+ -N was removed through non-nitrification pathway. Because the utilization of phosphorus and organic matters was independent of nitrogen loss, the assimilation and denitrification could be excluded from the possible mechanisms. Because the very low C/N in the influent and the accumulation of NO2(-) -N in the reactors were similar with the wastewater biological processes, the "autotrophic removal of nitrogen" was regarded as the most probable non-nitrification pathway. In this mechanism, the couple of short-cut nitrification and ANAMMOX (or OLAND) leading to the transformation of NH4+ -N and NO2(-) -N into gaseous N2 was responsible for the nitrogen loss in drinking water biological processes.
Hernández, Marcela; Jia, Zhongjun; Conrad, Ralf; Seeger, Michael
2011-12-01
s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50 μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.
Offre, Pierre; Prosser, James I; Nicol, Graeme W
2009-10-01
Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 degrees C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.
USDA-ARS?s Scientific Manuscript database
DeNitrification DeComposition (DNDC) model predictions of NH3 fluxes following chemical fertilizer application were evaluated by comparison to relaxed eddy accumulation (REA) measurements, in Central Illinois, United States, over the 2014 growing season of corn. Practical issues for evaluating closu...
Chloramine has replaced free chorine for secondary disinfection at many water utilities because of disinfection by-product (DBP) regulations. Because chloramination provides a source of ammonia, there is a potential for nitrification when using chloramines. Nitrification in dri...
Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...
BIOLOGICAL NITRIFICATION IN A FULL-SCALE AND PILOT-SCALE IRON REMOVAL DRINKING WATER TREATMENT PLANT
Ammonia in source waters can cause water treatment and distribution system problems, many of which are associated with biological nitrification. Therefore, in some cases, the removal of ammonia from water is desirable. Biological oxidation of ammonia to nitrite and nitrate (nitr...
The Role of Microbial Processes in the Oxidation and Removal of Ammonia from Drinking Water
The purpose of this study was two-fold: (1) to monitor and evaluate nitrification in a full-scale iron removal filtration plant with biologically active granular media filters located in Ohio, and (2) to determine how to most efficiently regain nitrification following filter rebe...
Desimone, Leslie A.; Howes, Brian L.
1998-01-01
Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.
NASA Astrophysics Data System (ADS)
Zarnetske, J. P.; Haggerty, R.; Wondzell, S. M.; Baker, M. A.
2010-12-01
We examined transport time and substrate controls on hyporheic (HZ) nitrification and denitrification in an upland agricultural stream with a series of 15N tracer studies - whole-stream and in situ well-to-well steady-state 15NO3- and conservative tracer (Cl-) addition experiments. For the whole-stream experiment, we measured relevant solute, 15N isotope, and hydraulic transport conditions of the reach and along HZ flowpaths of an instrumented gravel bar. HZ exchange was observed across the entire gravel bar with flowpath lengths up to 4.2m and corresponding median residence times greater than 28.5h. The HZ transitioned from a net nitrification environment at its head (small residence times, <6.9h) to a net denitrification environment at its tail (large residence times, 6.9-28.5h). HZ denitrification was confirmed as 15N2 was produced across the entire gravel bar. Production of 15N2 across all observed flowpaths and residence times indicated that denitrification microsites are present even where net nitrification occurred. At large residence times, the rate of denitrification decreased despite persistent anoxic conditions, indicating substrate (NO3- and carbon) limitations. Consequently, we conducted in situ 15NO3-, conservative tracers (Cl- and Br), and acetate injection experiments to determine how the availability of labile dissolved organic carbon (DOC) as acetate influences microbial denitrification in the HZ, especially along anoxic flowpaths with large residence times. The acetate addition to the HZ stimulated significant increases in 15N2 production by factors of 2.7 to 26.1 in all receiving wells, and significant decreases of NO3- and DOC aromaticity in the wells most hydrologically connected to the injection. Further, 100% of acetate was retained in the HZ, a portion of which is due to biological consumption. These studies demonstrate that: 1. the HZ is an active nitrogen sink in this study system, 2. the distinction between net nitrification and denitrification in the HZ is a function of residence time and exhibits threshold behavior, and 3. microbial denitrification in anaerobic portions of the HZ can be limited by labile DOC supply.
NASA Astrophysics Data System (ADS)
Deppe, Marianna; Well, Reinhard; Giesemann, Anette; Kücke, Martin; Flessa, Heinz
2013-04-01
N2O emitted from soil originates either from denitrification of nitrate and/or nitrification of ammonium. N fertilization can have an important impact on N2O emission rates. Injection of nitrate-free ammonium-N fertilizer, in Germany also known as CULTAN (Controlled Uptake Long-Term Ammonium Nutrition), results in fertilizer depots with ammonium concentrations of up to 10 mg N g-1 soil-1. High concentrations of ammonium are known to inhibit nitrification. However, it has not yet been clarified how N2O fluxes are affected by CULTAN. In a field experiment, two application methods of nitrogen fertilizer were used at a loamy sand site: Ammonium sulphate was applied either by point injection or by surface application. 15N-ammonium sulphate was used to distinguish between N2O originating from either fertilizer-N or soil-N. Unfertilized plots and plots fertilized with unlabeled ammonium sulphate served as control. N2O emissions were measured using static chambers, nitrate and ammonium concentrations were determined in soil extracts. Stable isotope analysis of 15N in N2O, nitrate and ammonium was used to calculate the contribution of fertilizer N to N2O emissions and the fertilizer turnover in soil. 15N analysis clearly indicated that fertilizer derived N2O fluxes were higher from surface application plots. For the period of the growing season, about 24% of the flux measured in surface application treatment and less than 10% from injection treatment plots originated from the fertilizer. In addition, a lab experiment was conducted to gain insight into processes leading to N2O emission from fertilizer depots. One aim was to examine whether the ratio of N2O to nitrate formation differs depending on the ammonium concentration. Loamy sand soil was incubated in microcosms continuously flushed with air under conditions favouring nitrification. 15N-labeled nitrate was used to differentiate between nitrification and denitrification. Stable isotope analyses of 15N were performed on N2O in the gas phase and on ammonium and nitrate extracted from soil samples.
Kapoor, Vikram; Li, Xuan; Chandran, Kartik; Impellitteri, Christopher A; Santo Domingo, Jorge W
2016-04-01
Autotrophic nitrification in biological nitrogen removal systems has been shown to be sensitive to the presence of heavy metals in wastewater treatment plants. Using transcriptase-quantitative polymerase chain reaction (RT-qPCR) data, we examined the effect of copper on the relative expression of functional genes (i.e., amoA, hao, nirK, and norB) involved in redox nitrogen transformation in batch enrichment cultures obtained from a nitrifying bioreactor operated as a continuous reactor (24-h hydraulic retention time). 16S ribosomal RNA (rRNA) gene next-generation sequencing showed that Nitrosomonas-like populations represented 60-70% of the bacterial community, while other nitrifiers represented <5%. We observed a strong correspondence between the relative expression of amoA and hao and ammonia removal in the bioreactor. There were no considerable changes in the transcript levels of amoA, hao, nirK, and norB for nitrifying samples exposed to copper dosages ranging from 0.01 to 10 mg/L for a period of 12 h. Similar results were obtained when ammonia oxidation activity was measured via specific oxygen uptake rate (sOUR). The lack of nitrification inhibition by copper at doses lower than 10 mg/L may be attributed to the role of copper as cofactor for ammonia monooxygenase or to the sub-inhibitory concentrations of copper used in this study. Overall, these results demonstrate the use of molecular methods combined with conventional respirometry assays to better understand the response of wastewater nitrifying systems to the presence of copper.
Di Trapani, Daniele; Christensso, Magnus; Odegaard, Hallvard
2011-01-01
A hybrid activated sludge/biofilm process was investigated for wastewater treatment in a cold climate region. This process, which contains both suspended biomass and biofilm, usually referred as IFAS process, is created by introducing plastic elements as biofilm carrier media into a conventional activated sludge reactor. In the present study, a hybrid process, composed of an activated sludge and a moving bed biofilm reactor was used. The aim of this paper has been to investigate the performances of a hybrid process, and in particular to gain insight the nitrification process, when operated at relatively low MLSS SRT and low temperatures. The results of a pilot-scale study carried out at the Department of Hydraulic and Environmental Engineering at the Norwegian University of Science and Technology in Trondheim are presented. The experimental campaign was divided into two periods. The pilot plant was first operated with a constant HRT of 4.5 hours, while in the second period the influent flow was increased so that HRT was 3.5 hours. The average temperature was near 11.5°C in the overall experimental campaign. The average mixed liquor SRT was 5.7 days. Batch tests on both carriers and suspended biomass were performed in order to evaluate the nitrification rate of the two different biomasses. The results demonstrated that this kind of reactor can efficiently be used for the upgrading of conventional activated sludge plant for achieving year-round nitrification, also in presence of low temperatures, and without the need of additional volumes.
Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng
2016-08-01
Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community.
Turner, Monica G.; Smithwick, Erica A. H.; Metzger, Kristine L.; Tinker, Daniel B.; Romme, William H.
2007-01-01
Understanding ecosystem processes as they relate to wildfire and vegetation dynamics is of growing importance as fire frequency and extent increase throughout the western United States. However, the effects of severe, stand-replacing wildfires are poorly understood. We studied inorganic nitrogen pools and mineralization rates after stand-replacing wildfires in the Greater Yellowstone Ecosystem, Wyoming. After fires that burned in summer 2000, soil ammonium concentration peaked in 2001 (33 mg NH4-N· kgsoil−1); soil nitrate increased subsequently (2.7 mg NO3-N·kgsoil−1 in 2003) but was still low. However, annual net ammonification rates were largely negative from 2001 to 2004, indicating ammonium depletion. Thus, although net nitrification rates were positive, annual net nitrogen mineralization (net ammonification plus net nitrification) remained low. Aboveground net primary production (ANPP) increased from 0.25 to 1.6 Mg·ha−1·yr−1 from 2001 to 2004, but variation in ANPP among stands was not related to net nitrogen mineralization rates. Across a broader temporal gradient (stand age zero to >250 yr), negative rates of net annual ammonification were especially pronounced in the first postfire year. Laboratory incubations using 15N isotope pool dilution revealed that gross production of ammonium was reduced and ammonium consumption greatly exceeded gross production during the initial postfire years. Our results suggest a microbial nitrogen sink for several years after severe, stand-replacing fire, confirming earlier hypotheses about postdisturbance succession and nutrient cycling in cold, fire-dominated coniferous forests. Postfire forests in Yellowstone seem to be highly conservative for nitrogen, and microbial immobilization of ammonium plays a key role during early succession. PMID:17360349
Bürgmann, Helmut; Jenni, Sarina; Vazquez, Francisco; Udert, Kai M.
2011-01-01
The microbial population and physicochemical process parameters of a sequencing batch reactor for nitrogen removal from urine were monitored over a 1.5-year period. Microbial community fingerprinting (automated ribosomal intergenic spacer analysis), 16S rRNA gene sequencing, and quantitative PCR on nitrogen cycle functional groups were used to characterize the microbial population. The reactor combined nitrification (ammonium oxidation)/anammox with organoheterotrophic denitrification. The nitrogen elimination rate initially increased by 400%, followed by an extended period of performance degradation. This phase was characterized by accumulation of nitrite and nitrous oxide, reduced anammox activity, and a different but stable microbial community. Outwashing of anammox bacteria or their inhibition by oxygen or nitrite was insufficient to explain reactor behavior. Multiple lines of evidence, e.g., regime-shift analysis of chemical and physical parameters and cluster and ordination analysis of the microbial community, indicated that the system had experienced a rapid transition to a new stable state that led to the observed inferior process rates. The events in the reactor can thus be interpreted to be an ecological regime shift. Constrained ordination indicated that the pH set point controlling cycle duration, temperature, airflow rate, and the release of nitric and nitrous oxides controlled the primarily heterotrophic microbial community. We show that by combining chemical and physical measurements, microbial community analysis and ecological theory allowed extraction of useful information about the causes and dynamics of the observed process instability. PMID:21724875
Many utilities have used monochloramine as a secondary disinfectant for regulation compliance. Along with the addition of chloramine comes the risk of nitrification. Nitrification in drinking water distribution systems may result in degradation of water quality and non-complian...
Many utilities have used monochloramine as a secondary disinfectant for regulation compliance. Along with the addition of chloramine comes the risk of nitrification. Nitrification in drinking water distribution systems may result in degradation of water quality and non-complian...
Evaluating Fluorscence-Based Metrics for Early Detection of ...
Summary: This paper discusses the results of an ongoing Water Research Foundation project on developing a fluorescence sensor system for early detection of distribution system nitrification Summary: This paper discusses the results of an ongoing Water Research Foundation project on developing a fluorescence sensor system for early detection of distribution system nitrification
Ralph E. J. Boerner; Elaine Kennedy Sutherland
1996-01-01
This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oak-dominated, unmanaged forest stands in seven USDA Forest Service experimental forests (EF) ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia.
Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons
Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter
2016-01-01
Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-. PMID:27175907
Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons.
Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter
2016-01-01
Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-.
NASA Astrophysics Data System (ADS)
Burzaco, Juan P.; Smith, Doug R.; Vyn, Tony J.
2013-09-01
Nitrification inhibitors have the potential to reduce N2O emissions from maize fields, but optimal results may depend on deployment of integrated N fertilizer management systems that increase yields achieved per unit of N2O lost. A new micro-encapsulated formulation of nitrapyrin for liquid N fertilizers became available to US farmers in 2010. Our research objectives were to (i) assess the impacts of urea-ammonium nitrate (UAN) management practices (timing, rate and nitrification inhibitor) and environmental variables on growing-season N2O fluxes and (ii) identify UAN treatment combinations that both reduce N2O emissions and optimize maize productivity. Field experiments near West Lafayette, Indiana in 2010 and 2011 examined three N rates (0, 90 and 180 kg N ha-1), two timings (pre-emergence and side-dress) and presence or absence of nitrapyrin. Mean cumulative N2O-N emissions (Q10 corrected) were 0.81, 1.83 and 3.52 kg N2O-N ha-1 for the rates of 0, 90 and 180 kg N ha-1, respectively; 1.80 and 2.31 kg N2O-N ha-1 for pre-emergence and side-dress timings, respectively; and 1.77 versus 2.34 kg N2O-N ha-1 for with and without nitrapyrin, respectively. Yield-scaled N2O-N emissions increased with N rates as anticipated (averaging 167, 204 and 328 g N2O-N Mg grain-1 for the 0, 90 and 180 kg N ha-1 rates), but were 22% greater with the side-dress timing than the pre-emergence timing (when averaged across N rates and inhibitor treatments) because of environmental conditions following later applications. Overall yield-scaled N2O-N emissions were 22% lower with nitrapyrin than without the inhibitor, but these did not interact with N rate or timing.
Webster, Gordon; Embley, T Martin; Freitag, Thomas E; Smith, Zena; Prosser, James I
2005-05-01
Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.
Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity
NASA Astrophysics Data System (ADS)
Morris, C. K.; Knighton, J.
2017-12-01
Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.
Wang, Shuang; Deng, Liangwei; Zheng, Dan; Wang, Lan; Zhang, Yunhong; Yang, Hongnan; Jiang, Yiqi; Huang, Fangyu
2018-04-22
Three sequencing batch reactors (SBRs) were used to investigate the influence of pulse frequencies on the partial nitrification (PN) process in this study. At a total aeration time of 6 min each hour, the aerated frequencies of R1, R2 and R3 were 6, 3 and 2 time h -1 . During the steady period (117-143d), the nitrite accumulation rates (NARs) were 90.80%, 90.71% and 90.23% in R1, R2 and R3, respectively, indicating a steady nitritation was acquired. Activity measurements of the sludge samples taken at day 138 showed the activity of nitrite oxidating bacteria (NOB) was 0, indicating NOBs were successfully suppressed. The ratio of NO 2 - -N to NH 4 + -N in the effluent of R3 was 1.35, which most closely matched the influent of Anammox process. However, the energy efficiency evaluation showed that R1 had the highest actual oxygen transfer efficiency (AOTE) and dynamical efficiency (DE). Copyright © 2018 Elsevier Ltd. All rights reserved.
Ju, Xiaotang; Lu, Xing; Gao, Zhiling; Chen, Xinping; Su, Fang; Kogge, Martin; Römheld, Volker; Christie, Peter; Zhang, Fusuo
2011-04-01
An automated system for continuous measurement of N₂O fluxes on an hourly basis was employed to study N₂O emissions in an intensively managed low carbon calcareous soil under sub-humid temperate monsoon conditions. N₂O emissions occurred mainly within two weeks of application of NH₄(+) based fertilizer and total N₂O emissions in wheat (average 0.35 or 0.21 kg N ha⁻¹ season⁻¹) and maize (average 1.47 or 0.49 kg N ha⁻¹ season⁻¹) under conventional and optimum N fertilization (300 and 50-122 kg N ha⁻¹, respectively) were lower than previously reported from low frequency measurements. Results from closed static chamber showed that N₂O was produced mainly from nitrification of NH₄(+)-based fertilizer, with little denitrification occurring due to limited readily oxidizable carbon and low soil moisture despite consistently high soil nitrate-N concentrations. Significant reductions in N₂O emissions can be achieved by optimizing fertilizer N rates, using nitrification inhibitors, or changing from NH₄(+)- to NO₃(-)-based fertilizers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Seasonal effect on N2O formation in nitrification in constructed wetlands.
Inamori, Ryuhei; Wang, Yanhua; Yamamoto, Tomoko; Zhang, Jixiang; Kong, Hainan; Xu, Kaiqin; Inamori, Yuhei
2008-10-01
Constructed wetlands are considered to be important sources of nitrous oxide (N(2)O). In order to investigate the contribution of nitrification in N(2)O formation, some environmental factors, plant species and ammonia-oxidizing bacteria (AOB) in active layers have been compared. Vegetation cells indicated remarkable effect of seasons and different plant species on N(2)O emission and AOB amount. Nitrous oxide data showed large temporal and spatial fluctuations ranging 0-52.8 mg N(2)O m(-2)d(-1). Higher AOB amount and N(2)O flux rate were observed in the Zizania latifolia cell, reflecting high potential of global warming. Roles of plants as ecosystem engineers are summarized with rhizosphere oxygen release and organic matter transportation to affect nitrogen transformation. The Phragmites australis cell contributed to keeping high T-N removal performance and lower N(2)O emission. The distribution of AOB also supported this result. Statistical analysis showed several environmental parameters affecting the strength of observed greenhouse gases emission, such as water temperature, water level, TOC, plant species and plant cover.
Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana
2013-02-01
A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The DAYCENT biogeochemical model was used to investigate how the use of fertilisers coated with nitrification inhibitors and the introduction of legumes in the crop rotation can affect subtropical cereal production and N2O emissions. The model was validated using comprehensive multi-seasonal, high-f...
Charlene N. Kelly; Stephen H. Schoenholtz; Mary Beth Adams
2011-01-01
Nitrate (NO3-N) in soil solution and streamwater can be an important vector of nitrogen (N) loss from forested watersheds, and nitrification is associated with negative consequences of soil acidification and eutrophication of aquatic ecosystems. The purpose of this study was to identify vegetation-mediated soil properties that may control...
Cáceres, Rafaela; Magrí, Albert; Marfà, Oriol
2015-10-01
This work aimed to demonstrate the feasibility of nitrification applied to the treatment of leachates formed during composting of cattle and pig manure in order to promote their further use as liquid fertilizer in horticulture. Nitrification trials were successfully conducted in summer and winter seasons under Mediterranean climate conditions. Subsequently, effect of using the nitrified effluents as nutritive solution in the fertigation of lettuce (Lactuca sativa L.) was assessed in terms of productivity and nutrient uptake. Similar productivities were obtained when using the nitrified effluents and a standard nutritive solution. However, results also evidenced high nutrient uptake, which indicates that dosage should be adjusted to culture requirements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon
Thiel, A.L.; Perakis, S.S.
2009-01-01
Silvicultural canopy gaps are emerging as an alternative management tool to accelerate development of complex forest structure in young, even-aged forests of the Pacific Northwest. The effect of gap creation on available nitrogen (N) is of concern to managers because N is often a limiting nutrient in Pacific Northwest forests. We investigated patterns of N availability in the forest floor and upper mineral soil (0-10 cm) across 6-8-year-old silvicultural canopy gaps in three 50-70-year-old Douglas-fir forests spanning a wide range of soil N capital in the Coast Range and Cascade Mountains of western Oregon. We used extractable ammonium (NH4+) and nitrate (NO3-) pools, net N mineralization and nitrification rates, and NH4+ and NO3- ion exchange resin (IER) concentrations to quantify N availability along north-south transects run through the centers of 0.4 and 0.1 ha gaps. In addition, we measured several factors known to influence N availability, including litterfall, moisture, temperature, and decomposition rates. In general, gap-forest differences in N availability were more pronounced in the mineral soil than in the forest floor. Mineral soil extractable NH4+ and NO3- pools, net N mineralization and nitrification rates, and NH4+ and NO3- IER concentrations were all significantly elevated in gaps relative to adjacent forest, and in several cases exhibited significantly greater spatial variability in gaps than forest. Nitrogen availability along the edges of gaps more often resembled levels in the adjacent forest than in gap centers. For the majority of response variables, there were no significant differences between northern and southern transect positions, nor between 0.4 and 0.1 ha gaps. Forest floor and mineral soil gravimetric percent moisture and temperature showed few differences along transects, while litterfall carbon (C) inputs and litterfall C:N ratios in gaps were significantly lower than in the adjacent forest. Reciprocal transfer incubations of mineral soil samples between gap and forest positions revealed that soil originating from gaps had greater net nitrification rates than forest samples, regardless of incubation environment. Overall, our results suggest that increased N availability in 6-8-year-old silvicultural gaps in young western Oregon forests may be due more to the quality and quantity of litterfall inputs resulting from early-seral species colonizing gaps than by changes in temperature and moisture conditions caused by gap creation.
Li, Dejun; Liu, Jing; Chen, Hao; Zheng, Liang; Wang, Kelin
2018-04-15
Gross nitrogen (N) transformations can provide important information for assessing indigenous soil N supply capacity and soil nitrate leaching potential. The current study aimed to assess the variation of gross N transformations in response to conversion of maize-soybean fields to sugarcane, mulberry, and forage grass fields in a subtropical karst region of southwest China. Mature forests were included for comparison. Gross rates of N mineralization (GNM) were highest in the forests, intermediate in the maize-soybean and forage grass fields, and lowest in the sugarcane and mulberry fields, suggesting capacity of indigenous soil N supply derived from organic N mineralization was lowered after conversion to sugarcane and mulberry fields. The relative high indigenous soil N supply capacity in the maize-soybean fields was obtained at the cost of soil organic N depletion. Gross nitrification (GN) rates were highest in the forests, intermediate in the forage grass fields and lowest in the other three agricultural land use types. The nitrate retention capacity (24.1 ± 2.0% on average) was similar among the five land use types, implying that nitrate leaching potential was not changed after land use conversion. Microbial biomass N exerted significant direct effects on the rates of N mineralization, nitrification, ammonium immobilization and nitrate immobilization. Soil organic carbon, total N and exchangeable magnesium had significant indirect effects on these N transformation rates. Our findings suggest that forage grass cultivation instead of other agricultural land uses should be recommended from the perspective of increasing indigenous soil N supply while not depleting soil organic N pool. Copyright © 2018 Elsevier Ltd. All rights reserved.
Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification.
Onyia, C O; Uyu, A M; Akunna, J C; Norulaini, N A; Omar, A K
2001-01-01
Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.
Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia
2011-11-01
Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Nutrient transport and transformation beneath an infiltration basin
Sumner, D.M.; Rolston, D.E.; Bradner, L.A.
1998-01-01
Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.
Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.
Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-an; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei
2016-04-01
Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13% in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54% when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions.
Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification
NASA Astrophysics Data System (ADS)
Boshers, D.; Granger, J.; Bohlke, J. K.
2016-12-01
Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.
Nitrous Oxide Emissions Affected by Biochar and Nitrogen Stabilizers
NASA Astrophysics Data System (ADS)
Gao, S.; Cai, Z.; Xu, M.
2016-12-01
Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emissions and N transformations in soil amended with biochar and N transformation inhibitors. The soil was a sandy loam soil and adjusted to 10% soil water content and incubated at 25oC. Biochar amendment at 1% (w/w), Agrotain® Ultra (urease inhibitor), Agrotain® Plus (urease and nitrification inhibitor), and N-Serve® 24 (nitrification inhibitor) as well as another potential nitrification inhibitor, potassium thiosulfate (KTS), at 0.25-1:1 K2O/N ratios (w/w) were tested. Emissions of N2O, soil mineral N species change, and soil pH were determined for 35 days after fertilizers were applied. Biochar, Agrotain® Ultra or Plus, or N-Serve® 24 all effectively reduced N2O emissions by more than 60% as compared to no amendment control. The KTS, however, was only effective in reducing N2O emissions at a high ratio (1:1 K2O/N, w/w). There was a strong correlation between N2O emission and the concentration of nitrite (NO2-) in soil but not other mineral species. All the amendments showed that their effects on N transformation and N2O emissions were completed within a few weeks after application. Laboratory analysis indicated that biochar affected the N dynamics most likely via adsorption of ammonium (NH4+) and the inhibitors by affecting N transformation rate. This research has gained further understanding on how biochar and N stabilizers affect N2O emissions and the knowledge can assist in developing mitigation strategies.
Segawa, Takahiro; Ishii, Satoshi; Ohte, Nobuhito; Akiyoshi, Ayumi; Yamada, Akinori; Maruyama, Fumito; Li, Zhongqin; Hongoh, Yuichi; Takeuchi, Nozomu
2014-10-01
Cryoconites are microbial aggregates commonly found on glacier surfaces where they tend to take spherical, granular forms. While it has been postulated that the microbes in cryoconite granules play an important role in glacier ecosystems, information on their community structure is still limited, and their functions remain unclear. Here, we present evidence for the occurrence of nitrogen cycling in cryoconite granules on a glacier in Central Asia. We detected marker genes for nitrogen fixation, nitrification and denitrification in cryoconite granules by digital polymerase chain reaction (PCR), while digital reverse transcription PCR analysis revealed that only marker genes for nitrification and denitrification were abundantly transcribed. Analysis of isotope ratios also indicated the occurrence of nitrification; nitrate in the meltwater on the glacier surface was of biological origin, while nitrate in the snow was of atmospheric origin. The predominant nitrifiers on this glacier belonged to the order Nitrosomonadales, as suggested by amoA sequences and 16S ribosomal RNA pyrosequencing analysis. Our results suggest that the intense carbon and nitrogen cycles by nitrifiers, denitrifiers and cyanobacteria support abundant and active microbes on the Asian glacier. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Climate Change Impairs Nitrogen Cycling in European Beech Forests.
Dannenmann, Michael; Bimüller, Carolin; Gschwendtner, Silvia; Leberecht, Martin; Tejedor, Javier; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz
2016-01-01
European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here specifically nitrification is vulnerable to reduced water availability, which can directly lead to nutritional limitations of beech seedlings. This tight link between reduced water availability, drought stress for nitrifiers, decreased gross nitrification rates and nitrate availability and finally nitrate uptake by beech seedlings could represent the Achilles' heel for beech under climate change stresses.
Climate Change Impairs Nitrogen Cycling in European Beech Forests
Dannenmann, Michael; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz
2016-01-01
European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here specifically nitrification is vulnerable to reduced water availability, which can directly lead to nutritional limitations of beech seedlings. This tight link between reduced water availability, drought stress for nitrifiers, decreased gross nitrification rates and nitrate availability and finally nitrate uptake by beech seedlings could represent the Achilles’ heel for beech under climate change stresses. PMID:27410969
Priha; Grayston; Pennanen; Smolander
1999-10-01
The aim of this study was to determine whether Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) seedlings have a selective influence on the soil microbial community structure and activity and whether this varies in different soils. Seedlings of pine, spruce and birch were planted into pots of two soil types: an organic soil and a mineral soil. Pots without seedlings were also included. After one growing season, microbial biomass C (C(mic)) and N (N(mic)), C mineralization, net ammonification, net nitrification, denitrification potential, phospholipid fatty acid (PLFA) patterns and community level physiological profiles (CLPPs) were measured in the rhizosphere soil of the seedlings. In the organic soil, C(mic) and N(mic) were higher in the birch rhizosphere than in pine and spruce rhizosphere. The C mineralization rate was not affected by tree species. Unplanted soil contained the highest amount of mineral N and birch rhizosphere the lowest, but rates of net N mineralization and net nitrification did not differ between treatments. The microbial community structure, measured by PLFAs, had changed in the rhizospheres of all tree species compared to the unplanted soil. Birch rhizosphere was most clearly separated from the others. There was more of the fungal specific fatty acid 18:2omega6,9 and more branched fatty acids, common in Gram-positive bacteria, in this soil. CLPPs, done with Biolog GN plates and 30 additional substrates, separated only birch rhizosphere from the others. In the mineral soil, roots of all tree species stimulated C mineralization in soil and prevented nitrification, but did not affect C(mic) and N(mic), PLFA patterns or CLPPs. The effects of different tree species did not vary in the mineral soil. Thus, in the mineral soil, the strongest effect on soil microbes was the presence of a plant, regardless of the tree species, but in the organic soil, different tree species varied in their influence on soil microbes.
Ali, Mohammad; Chai, Li-Yuan; Wang, Hai-Ying; Tang, Chong-Jian; Min, Xiao-Bo; Yan, Xu; Peng, Cong; Song, Yu-Xia; Zheng, Ping
2016-06-01
The short-cut nitrification (SCN) performance of an airlift reactor (ALR) was investigated under increasing bicarbonate condition. The sequential increase of bicarbonate from 2.5 to 7.0 g/L accelerated the nitrite accumulation and improved the NAP to 99 %. With the increase of bicarbonate dose to 11 g/L, the ammonium removal efficiency and the ammonium removal rate (ARR) were improved to 95.1 % and 0.57 kg/m(3)/day, respectively. However, the elevation of bicarbonate concentration from 11.0 to 14.0 g/L gradually depreciated the nitrite accumulation percentage to 62.5 %. Then, the reactor was operated in increasing ammonium strategy to increase the nitrogen loading rate (NLR) to 1.1 kg/m(3)/day under 700 mg/L influent ammonium concentration. The ARR and nitrite production rate were elevated to 1.1 and 0.9 kg/m(3)/day, respectively. The SCN performance was improved to 1.8 kg/m(3)/day (NLR) by the subsequent progressive shortening of HRT to 4.8 h at ammonium concentration of 350 mg/L, which was 1.6 times higher than that of the increasing ammonium strategy. Chemical analysis with EDS, FTIR and XRD confirmed the presence of CaCO3 precipitates on biomass surface during the long-term operation under high bicarbonate conditions. The attachment of precipitates to the SCN sludge helped to improve the biomass settleability and finally enhanced the SCN performance of the ALR.
Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring
NASA Astrophysics Data System (ADS)
Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen
2016-04-01
The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.
Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada.
Abalos, Diego; Smith, Ward N; Grant, Brian B; Drury, Craig F; MacKell, Sarah; Wagner-Riddle, Claudia
2016-12-15
Effective management of nitrogen (N) fertilizer application by farmers provides great potential for reducing emissions of the potent greenhouse gas nitrous oxide (N 2 O). However, such potential is rarely achieved because our understanding of what practices (or combination of practices) lead to N 2 O reductions without compromising crop yields remains far from complete. Using scenario analysis with the process-based model DNDC, this study explored the effects of nine fertilizer practices on N 2 O emissions and crop yields from two corn production systems in Canada. The scenarios differed in: timing of fertilizer application, fertilizer rate, number of applications, fertilizer type, method of application and use of nitrification/urease inhibitors. Statistical analysis showed that during the initial calibration and validation stages the simulated results had no significant total error or bias compared to measured values, yet grain yield estimations warrant further model improvement. Sidedress fertilizer applications reduced yield-scaled N 2 O emissions by c. 60% compared to fall fertilization. Nitrification inhibitors further reduced yield-scaled N 2 O emissions by c. 10%; urease inhibitors had no effect on either N 2 O emissions or crop productivity. The combined adoption of split fertilizer application with inhibitors at a rate 10% lower than the conventional application rate (i.e. 150kgNha -1 ) was successful, but the benefits were lower than those achieved with single fertilization at sidedress. Our study provides a comprehensive assessment of fertilizer management practices that enables policy development regarding N 2 O mitigation from agricultural soils in Canada. Copyright © 2016 Elsevier B.V. All rights reserved.
Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo
2013-01-01
Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.
Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu
2009-12-01
In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.
The effect of Cr(III) and Cr(VI) on ammonia oxidation, the transcriptional responses of functional genes involved in nitrification and changes in 16S rRNA level sequences were examined in nitrifying enrichment cultures. The nitrifying bioreactor was operated as a continuous react...
Frank S. Gilliam; Nikki L. Lyttle; Ashley Thomas; Mary Beth Adams
2005-01-01
Some N-saturated watersheds of the Fernow Experimental Forest (FEF), West Virginia, exhibit a high degree of spatial heterogeneity in soil N processing. We used soils from four sites at FEF representing a gradient in net N mineralization and nitrification to consider the causes and consequences of such spatial heterogeneity. We collected soils with extremely high vs....
Zhang, Rui Xue; Yang, Hong Qiang; Xu, Ying; Lyu, Ting Wen; Cao, Hui; Ning, Liu Fang; Zhou, Chun Ran; Fan, Wei Guo
2016-08-01
This study explored the effects of mulching straw mat, agricultural carpet, transparent-plastic film and horticultural fabric on nitrification-denitrification, nitrate reductase (NR), nitrite reductase (NiR), ammonium, nitrate and nitrite nitrogen in root-zone soil grown with three-year old apple trees (Malus domestica cv. Starkrimson) during summer and autumn. Results showed that the four treatments decreased nitrification intensity in summer soil, NiR activity in summer-autumn soil and the variation coefficient of nitrification-denitrification intensity and NR in both summer and autumn soil. The treatments increased the denitrification intensity, NR activity, ammonium nitrogen contents in summer-autumn soil and ammonium nitrogen contents in autumn soil. Straw mat treatment increased denitrification intensity and nitrate nitrogen contents in both summer and autumn soil and decreased the activity of NR and NiR in summer soil. The coefficient of variation of nitrification-denitrification intensity and NR activity treated by mulching straw mat was lower than those in the other treatments in both summer and autumn soil. Agricultural carpet increased the NR and NiR activity in summer soil, the nitrate nitrogen contents in summer-autumn soil and the denitrification intensity in autumn soil and decreased denitrification intensity in summer soil. Transparent-plastic film increased the nitrite nitrogen contents in summer soil, the contents of nitrate nitrogen in summer-autumn soil, the nitrification intensity and NiR activity in autumn soil, and decreased nitrate nitrogen contents in summer soil. Horticultural fabric increased denitrification intensity in summer soil, nitrification intensity in summer-autumn and autumn soil and the nitrate nitrogen contents in autumn soil. The four mulching treatments all promoted plant growth. In the four mulching treatments, the new shoot and trunk thickening growth were more under straw mat and horticultural fabric treatments. The four mulching treatments had different effects on nitrate metabolism in summer and autumn soil, but they were able to stabilize the soil nitrate metabolism and transformation. Among the treatments, straw mat had the best stable effect.
Nitrification in lake sediment with addition of drinking water treatment residuals.
Wang, Changhui; Liu, Juanfeng; Wang, Zhixin; Pei, Yuansheng
2014-06-01
Drinking water treatment residuals (WTRs), non-hazardous by-products generated during potable water production, can effectively reduce the lake internal phosphorus (P) loading and improve water quality in lakes. It stands to reason that special attention regarding the beneficial reuse of WTRs should be given not only to the effectiveness of P pollution control, but also to the effects on the migration and transformation of other nutrients (e.g., nitrogen (N)). In this work, based on laboratory enrichment tests, the effects of WTRs addition on nitrification in lake sediment were investigated using batch tests, fluorescence in situ hybridization, quantitative polymerase chain reaction and phylogenetic analysis techniques. The results indicated that WTRs addition had minor effects on the morphologies of AOB and NOB; however, the addition slightly enhanced the sediment nitrification potential from 12.8 to 13.2 μg-N g(-1)-dry sample h(-1) and also increased the ammonia oxidation bacteria (AOB) and nitrite oxidizing bacteria (NOB) abundances, particularly the AOB abundances (P < 0.05), which increased from 1.11 × 10(8) to 1.31 × 10(8) copies g(-1)-dry sample. Moreover, WTRs addition was beneficial to the enrichment of Nitrosomonas and Nitrosospira multiformis and promoted the emergence of a new Nitrospira cluster, causing the increase in AOB and NOB diversities. Further analysis showed that the variations of nitrification in lake sediment after WTRs addition were primarily due to the decrease of bioavailable P, the introduction of new nitrifiers and the increase of favorable carriers for microorganism attachment in sediments. Overall, these results suggested that WTRs reuse for the control of lake internal P loading would also lead to conditions that are beneficial to nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fungi regulate response of N2O production to warming and grazing in a Tibetan grassland
NASA Astrophysics Data System (ADS)
Zhong, Lei; Wang, Shiping; Xu, Xingliang; Wang, Yanfen; Rui, Yichao; Zhou, Xiaoqi; Shen, Qinhua; Wang, Jinzhi; Jiang, Lili; Luo, Caiyun; Gu, Tianbao; Ma, Wenchao; Chen, Guanyi
2018-03-01
Lack of understanding of the effects of warming and winter grazing on soil fungal contribution to nitrous oxide (N2O) production has limited our ability to predict N2O fluxes under changes in climate and land use management, because soil fungi play an important role in driving terrestrial N cycling. Here, we examined the effects of 10 years' warming and winter grazing on soil N2O emissions potential in an alpine meadow. Our results showed that soil bacteria and fungi contributed 46 % and 54 % to nitrification, and 37 % and 63 % to denitrification, respectively. Neither warming nor winter grazing affected the activity of enzymes responsible for overall nitrification and denitrification. However, warming significantly increased the enzyme activity of bacterial nitrification and denitrification to 53 % and 55 %, respectively. Warming significantly decreased enzyme activity of fungal nitrification and denitrification to 47 % and 45 %, respectively, while winter grazing had no such effect. We conclude that soil fungi could be the main source for N2O production potential in the Tibetan alpine grasslands. Warming and winter grazing may not affect the potential for soil N2O production potential, but climate warming can alter biotic pathways responsible for N2O production. These findings indicate that characterizing how fungal nitrification/denitrification contributes to N2O production, as well as how it responds to environmental and land use changes, can advance our understanding of N cycling. Therefore, our results provide some new insights about ecological controls on N2O production and lead to refine greenhouse gas flux models.
He, Tengxia; Li, Zhenlun; Xie, Deti; Sun, Quan; Xu, Yi; Ye, Qing; Ni, Jiupai
2018-04-01
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 5 mg/L-N each) and high concentration of mixed NH 4 + -N and NO 3 - -N/NO 2 - -N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.
NASA Astrophysics Data System (ADS)
Datta, A.; Adhya, T. K.
2014-08-01
We have studied the effects of application of different nitrification inhibitors on methane (CH4) and nitrous oxide (N2O) emissions from rice paddy and associated soil chemical and biological dynamics during wet and dry seasons of rice crop in a tropical climate of eastern India. The experiment consisted of four treatments viz. (i) Prilled urea amended control (ii) urea + Dicyandiamide (DCD), (iii) urea + Nimin and (iv) urea + Karanjin. CH4 emission was significantly higher from the DCD (372.36 kg ha-1) and Karanjin (153.07 kg ha-1) applied plots during the wet and dry season, respectively. N2O emission was significantly inhibited in the Nimin applied plots during both seasons (69% and 85% over control during wet season and dry season respectively). CH4 and N2O emissions per Mg of rice grain yield were lowest from the Nimin applied plots during both seasons. Global warming potential (GWP) of the plot treated with DCD (13.93) was significantly higher during the experimental period. CH4 production potential was significantly higher from the nitrification inhibitor applied plots compared to control. While, CH4 oxidation potential followed the order; urea + Nimin > urea + Karanjin > urea + DCD > control. Application of Nimin significantly increased the methanotrophic bacterial population in the soil during the maximum tillering to flowering stage and may be attributed to low CH4 emission from the plots. Denitrification enzyme activity (DEA) of the soil was significantly low from the Nimin and Karanjin applied plots. Results suggest that apart from being potent nitrification inhibitors, Nimin and Karanjin also have the potential to reduce the denitrification activity in the soil. This in turn, would reduce N2O emission from flooded paddy where both nitrification and denitrification processes causes N2O emission.
Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng
2012-01-01
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. 13CO2-DNA-stable isotope probing results showed significant assimilation of 13C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active 13CO2-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. PMID:22134644
Zeng, Teng; Mitch, William A
2016-03-15
Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.