Science.gov

Sample records for modulate rhythmic body

  1. Gamma-Rhythmic Gain Modulation.

    PubMed

    Ni, Jianguang; Wunderle, Thomas; Lewis, Christopher Murphy; Desimone, Robert; Diester, Ilka; Fries, Pascal

    2016-10-05

    Cognition requires the dynamic modulation of effective connectivity, i.e., the modulation of the postsynaptic neuronal response to a given input. If postsynaptic neurons are rhythmically active, this might entail rhythmic gain modulation, such that inputs synchronized to phases of high gain benefit from enhanced effective connectivity. We show that visually induced gamma-band activity in awake macaque area V4 rhythmically modulates responses to unpredictable stimulus events. This modulation exceeded a simple additive superposition of a constant response onto ongoing gamma-rhythmic firing, demonstrating the modulation of multiplicative gain. Gamma phases leading to strongest neuronal responses also led to shortest behavioral reaction times, suggesting functional relevance of the effect. Furthermore, we find that constant optogenetic stimulation of anesthetized cat area 21a produces gamma-band activity entailing a similar gain modulation. As the gamma rhythm in area 21a did not spread backward to area 17, this suggests that postsynaptic gamma is sufficient for gain modulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    PubMed

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Growth and body composition in Brazilian female rhythmic gymnastics athletes.

    PubMed

    Camargo, Cristiane Teixeira Amaral; Gomez-Campos, Rossana Anelice; Cossio-Bolaños, Marco Antonio; Barbeta, Vinicius Justino De Oliveira; Arruda, Miguel; Guerra-Junior, Gil

    2014-01-01

    The aim was to analyse the physical growth and body composition of rhythmic gymnastics athletes relative to their level of somatic maturation. This was a cross-sectional study of 136 athletes on 23 teams from Brazil. Mass, standing height and sitting height were measured. Fat-free and fat masses, body fat percentages and ages of the predicted peak height velocity (PHV) were calculated. The z scores for mass were negative during all ages according to both WHO and Brazilian references, and that for standing height were also negative for all ages according to WHO reference but only until 12 years old according to Brazilian reference. The mean age of the predicted PHV was 12.1 years. The mean mass, standing and sitting heights, body fat percentage, fat-free mass and fat mass increased significantly until 4 to 5 years after the age of the PHV. Menarche was reached in only 26% of these athletes and mean age was 13.2 years. The mass was below the national reference standards, and the standing height was below only for the international reference, but they also had late recovery of mass and standing height during puberty. In conclusion, these athletes had a potential to gain mass and standing height several years after PHV, indicating late maturation.

  4. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    PubMed

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony.

  5. Bone Mineralization in Rhythmic Gymnasts Entering Puberty: Associations with Jumping Performance and Body Composition Variables

    PubMed Central

    Võsoberg, Kristel; Tillmann, Vallo; Tamm, Anna-Liisa; Maasalu, Katre; Jürimäe, Jaak

    2017-01-01

    This study examined bone mineral density (BMD) accrual in prepubertal rhythmic gymnasts entering puberty and their age-matched untrained control girls, and associations with baseline jumping performance and body composition over the 3-year period. Whole body (WB) and femoral neck (FN) BMD, WB fat mass (FM) and fat free mass (FFM), countermovement jump (CMJ) and rebound jumps for 15 s (RJ15s) were assessed in 25 rhythmic gymnasts and 25 untrained controls at baseline and after 3-year period. The changes over this period were calculated (Δ scores). Pubertal maturation over the 3-year period was slower in rhythmic gymnasts compared to untrained controls, while no difference in bone age development was seen. WB BMD increased similarly in both groups, while the increase in FN BMD was higher in rhythmic gymnasts compared with untrained controls. In rhythmic gymnasts, baseline FFM was the most significant predictor of ΔWB BMD explaining 19.2% of the variability, while baseline RJ15s was the most significant predictor of ΔFN BMD explaining 18.5% of the variability. In untrained controls, baseline FM explained 51.8 and 18.9% of the variability in ΔWB BMD and ΔFN BMD, respectively. In conclusion, mechanical loading of high-intensity athletic activity had beneficial effect on BMD accrual in rhythmic gymnasts and may have counterbalanced such negative factors on bone development as slower pubertal maturation and lower body FM. Baseline FFM and repeated jumps test performance were related to BMD accrual in rhythmic gymnasts, while baseline FM was related to BMD accrual in untrained controls. Key points Sudy examined bone mineralization in prepubertal rhythmic gymnasts entering puberty and their age-matched untrained control girls, and associations with baseline jumping performance and body composition. Jumping performance and fat free mass values predicted bone mineral accrual in rhythmic gymnasts. Fat mass predicted bone mineral accrual in untrained control girls

  6. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.

    PubMed

    Hira, Riichiro; Terada, Shin-Ichiro; Kondo, Masashi; Matsuzaki, Masanori

    2015-09-30

    Movements of animals are composed of two fundamental dynamics: discrete and rhythmic movements. Although the movements with distinct dynamics are thought to be differently processed in the CNS, it is unclear how they are represented in the cerebral cortex. Here, we investigated the cortical representation of movement dynamics by developing prolonged transcranial optogenetic stimulation (pTOS) using awake, channelrhodopsin-2 transgenic mice. We found two domains that induced discrete forelimb movements in the forward and backward directions, and these sandwiched a domain that generated rhythmic forelimb movements. The forward discrete movement had an intrinsic velocity profile and the rhythmic movement had an intrinsic oscillation frequency. Each of the forward discrete and rhythmic domains possessed intracortical synaptic connections within its own domain, independently projected to the spinal cord, and weakened the neuronal activity and movement induction of the other domain. pTOS-induced movements were also classified as ethologically relevant movements. Forepaw-to-mouth movement was mapped in a part of the forward discrete domain, while locomotion-like movement was in a part of the rhythmic domain. Interestingly, photostimulation of the rhythmic domain resulted in a nonrhythmic, continuous lever-pull movement when a lever was present. The motor cortex possesses functional modules for distinct movement dynamics, and these can adapt to environmental constraints for purposeful movements. Significance statement: Animal behavior has discrete and rhythmic components, such as reaching and locomotion. It is unclear how these movements with distinct dynamics are represented in the cerebral cortex. We investigated the dynamics of movements induced by long-duration transcranial photostimulation on the dorsal cortex of awake channelrhodopsin-2 transgenic mice. We found two domains causing forward and backward discrete forelimb movements and a domain for rhythmic forelimb

  7. Musical training modulates the early but not the late stage of rhythmic syntactic processing.

    PubMed

    Sun, Lijun; Liu, Fang; Zhou, Linshu; Jiang, Cunmei

    2017-08-23

    Syntactic processing is essential for musical understanding. Although the processing of harmonic syntax has been well studied, very little is known about the neural mechanisms underlying rhythmic syntactic processing. The present study investigated the neural processing of rhythmic syntax and whether and to what extent long-term musical training impacts such processing. Fourteen musicians and 14 nonmusicians listened to syntactic-regular or syntactic-irregular rhythmic sequences and judged the completeness of these sequences. Nonmusicians, as well as musicians, showed a P600 effect to syntactic-irregular endings, indicating that musical exposure and perceptual learning of music are sufficient to enable nonmusicians to process rhythmic syntax at the late stage. However, musicians, but not nonmusicians, also exhibited an early right anterior negativity (ERAN) response to syntactic-irregular endings, which suggests that musical training only modulates the early but not the late stage of rhythmic syntactic processing. These findings revealed for the first time the neural mechanisms underlying the processing of rhythmic syntax in music, which has important implications for theories of hierarchically organized music cognition and comparative studies of syntactic processing in music and language. © 2017 Society for Psychophysiological Research.

  8. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    PubMed

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from

  9. Theta oscillations locked to intended actions rhythmically modulate perception

    PubMed Central

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-01-01

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range. DOI: http://dx.doi.org/10.7554/eLife.25618.001 PMID:28686161

  10. Profiling the diet and body composition of subelite adolescent rhythmic gymnasts.

    PubMed

    D'Alessandro, Claudia; Morelli, Ester; Evangelisti, Irene; Galetta, Fabio; Franzoni, Ferdinando; Lazzeri, Donatella; Piazza, Marina; Cupisti, Adamasco

    2007-05-01

    The aim of this study was to investigate the body composition and dietary intake of competitive club-level rhythmic gymnasts, who represent the larger cohort of the sport's practitioners. Fifty-five rhythmic gymnasts and 55 nonathlete females (13-19 years of age) were seen individually to collect a dietary recall and to take anthropometric data and bioelectric-impedance analysis. Gymnasts had lower body-mass index and lesser skinfold thickness, although middle arm-muscle circumference was similar in the 2 groups. Gymnasts had lower body-fat measures but normal levels of fat-free mass (FFM) and body-cellular mass. Gymnasts had better dietary habits than the age-matched controls. Low levels of calcium, phosphorous, iron, and zinc and a disparity between reported energy intake and estimated energy requirement were observed in both groups.

  11. Hearing What the Body Feels: Auditory Encoding of Rhythmic Movement

    ERIC Educational Resources Information Center

    Phillips-Silver, Jessica; Trainor, Laurel J.

    2007-01-01

    Phillips-Silver and Trainor (Phillips-Silver, J., Trainor, L.J., (2005). Feeling the beat: movement influences infants' rhythm perception. "Science", 308, 1430) demonstrated an early cross-modal interaction between body movement and auditory encoding of musical rhythm in infants. Here we show that the way adults move their bodies to music…

  12. Hearing What the Body Feels: Auditory Encoding of Rhythmic Movement

    ERIC Educational Resources Information Center

    Phillips-Silver, Jessica; Trainor, Laurel J.

    2007-01-01

    Phillips-Silver and Trainor (Phillips-Silver, J., Trainor, L.J., (2005). Feeling the beat: movement influences infants' rhythm perception. "Science", 308, 1430) demonstrated an early cross-modal interaction between body movement and auditory encoding of musical rhythm in infants. Here we show that the way adults move their bodies to music…

  13. Subliminal stimuli modulate somatosensory perception rhythmically and provide evidence for discrete perception

    PubMed Central

    Baumgarten, Thomas J.; Königs, Sara; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13–18 Hz). This can be compellingly explained by a model of discrete perceptual cycles. PMID:28276493

  14. Hearing what the body feels: auditory encoding of rhythmic movement.

    PubMed

    Phillips-Silver, Jessica; Trainor, Laurel J

    2007-12-01

    Phillips-Silver and Trainor (Phillips-Silver, J., Trainor, L.J., (2005). Feeling the beat: movement influences infants' rhythm perception. Science, 308, 1430) demonstrated an early cross-modal interaction between body movement and auditory encoding of musical rhythm in infants. Here we show that the way adults move their bodies to music influences their auditory perception of the rhythm structure. We trained adults, while listening to an ambiguous rhythm with no accented beats, to bounce by bending their knees to interpret the rhythm either as a march or as a waltz. At test, adults identified as similar an auditory version of the rhythm pattern with accented strong beats that matched their previous bouncing experience in comparison with a version whose accents did not match. In subsequent experiments we showed that this effect does not depend on visual information, but that movement of the body is critical. Parallel results from adults and infants suggest that the movement-sound interaction develops early and is fundamental to music processing throughout life.

  15. Local modulation of human brain responses by circadian rhythmicity and sleep debt.

    PubMed

    Muto, Vincenzo; Jaspar, Mathieu; Meyer, Christelle; Kussé, Caroline; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Shaffii-Le Bourdiec, Anahita; Luxen, André; Middleton, Benita; Archer, Simon N; Phillips, Christophe; Collette, Fabienne; Vandewalle, Gilles; Dijk, Derk-Jan; Maquet, Pierre

    2016-08-12

    Human performance is modulated by circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level has not been established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging sessions scheduled across the circadian cycle, during 42 hours of wakefulness and after recovery sleep, in 33 healthy participants. Cortical responses showed significant circadian rhythmicity, the phase of which varied across brain regions. Cortical responses also significantly decreased with accrued sleep debt. Subcortical areas exhibited primarily a circadian modulation that closely followed the melatonin profile. These findings expand our understanding of the mechanisms involved in maintaining cognition during the day and its deterioration during sleep deprivation and circadian misalignment.

  16. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

    PubMed Central

    2017-01-01

    Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network. PMID:28144626

  17. Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.

    PubMed

    Chen, J; Friesen, W O; Iwasaki, T

    2011-02-15

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body-fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail.

  18. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence

    PubMed Central

    Chang, Andrew; Bosnyak, Dan J.; Trainor, Laurel J.

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15–25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15–20 Hz) was larger around 200–300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both “when” (timing) upcoming sounds will occur as well as the prediction precision error of “what” (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception. PMID:27014138

  19. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence.

    PubMed

    Chang, Andrew; Bosnyak, Dan J; Trainor, Laurel J

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15-25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15-20 Hz) was larger around 200-300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both "when" (timing) upcoming sounds will occur as well as the prediction precision error of "what" (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception.

  20. Modulation of cortical excitability and interhemispheric inhibition prior to rhythmic unimanual contractions.

    PubMed

    Sharples, Simon A; Kalmar, Jayne M

    2012-09-30

    The objective of this study was to investigate premotor modulation of motor cortical excitability between rhythmic unimanual finger contractions. Applying TMS at rest prior to an anticipated contraction provides a measure of cortical excitability that reflects premotor modulatory drive and is uncontaminated by the alterations in spinal and cortical excitability that occur during muscle activation. We hypothesized that premotor structures contribute to unimanual movement through the modulation of intracortical and interhemispheric inhibitory circuits within the primary motor cortex and that this premotor modulation would be evident at rest between contractions. Thus, we used transcranial magnetic stimulation (TMS) to assess short interval intracortical inhibition (SICI) and interhemispheric inhibition (IHI) in a 500-ms epoch prior to a planned contraction of the right FDI in 10 participants (21.4±1.9 years). These measures of inhibition were made in three different states: (1) at complete rest (with no plan to contract), (2) at rest between rhythmic contractions, and (3) during low level contractions. Cortical excitability was enhanced prior to a contraction and during a contraction compared to at rest (F₂,₁₈=758.3, p<0.001). IHI was also increased prior to a contraction compared to at rest and during a contraction while SICI was only reduced during a contraction (F₂,₃₈=30.3, p<0.001).We used this pre-contraction protocol to investigate the cortical mechanisms of unimanual control. However, this protocol would be a useful tool to investigate any neuromuscular adaptation that may occur as a result of altered premotor modulation of cortical excitability, such as neuromuscular fatigue, training and movement disorders.

  1. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes.

    PubMed

    Zehr, E P; Kido, A

    2001-12-15

    1. The organization and pattern of cutaneous reflex modulation during rhythmic cyclical movements of the human upper limbs has received much less attention than that afforded the lower limb. Our working hypothesis is that control mechanisms underlying the modulation of cutaneous reflex amplitude during rhythmic arm movement are similar to those that control reflex modulation in the leg. Thus, we hypothesized that cutaneous reflexes would show task dependency and nerve specificity in the upper limb during rhythmic cyclical arm movement as has been demonstrated in the human lower limb. 2. EMG was recorded from 10 muscles crossing the human shoulder, elbow and wrist joints while bilateral whole arm rhythmic cyclical movements were performed on a custom-made, hydraulic apparatus. 3. Cutaneous reflexes were evoked with trains (5 x 1.0 ms pulses at 300 Hz) of electrical stimulation delivered at non-noxious intensities (approximately 2 x threshold for radiating parasthesia) to the superficial radial, median and ulnar nerves innervating the hand. 4. Cutaneous reflexes were typically modulated with the movement cycle (i.e. phase dependency was observed). There was evidence for nerve specificity of cutaneous reflexes during rhythmic movement of the upper limbs. Task-dependent modulation was also seen as cutaneous reflexes were of larger amplitude or inhibitory (reflex reversal) during arm cycling as compared to static contraction. 5. While there are some differences in the patterns of cutaneous reflex modulation seen between the arms and legs, it is concluded that cutaneous reflexes are modulated similarly in the upper and lower limbs implicating similar motor control mechanisms.

  2. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes

    PubMed Central

    Zehr, E Paul; Kido, Aiko

    2001-01-01

    The organization and pattern of cutaneous reflex modulation during rhythmic cyclical movements of the human upper limbs has received much less attention than that afforded the lower limb. Our working hypothesis is that control mechanisms underlying the modulation of cutaneous reflex amplitude during rhythmic arm movement are similar to those that control reflex modulation in the leg. Thus, we hypothesized that cutaneous reflexes would show task dependency and nerve specificity in the upper limb during rhythmic cyclical arm movement as has been demonstrated in the human lower limb. EMG was recorded from 10 muscles crossing the human shoulder, elbow and wrist joints while bilateral whole arm rhythmic cyclical movements were performed on a custom-made, hydraulic apparatus. Cutaneous reflexes were evoked with trains (5× 1.0 ms pulses at 300 Hz) of electrical stimulation delivered at non-noxious intensities (∼2× threshold for radiating parasthesia) to the superficial radial, median and ulnar nerves innervating the hand. Cutaneous reflexes were typically modulated with the movement cycle (i.e. phase dependency was observed). There was evidence for nerve specificity of cutaneous reflexes during rhythmic movement of the upper limbs. Task-dependent modulation was also seen as cutaneous reflexes were of larger amplitude or inhibitory (reflex reversal) during arm cycling as compared to static contraction. While there are some differences in the patterns of cutaneous reflex modulation seen between the arms and legs, it is concluded that cutaneous reflexes are modulated similarly in the upper and lower limbs implicating similar motor control mechanisms. PMID:11744775

  3. Movement Coordination or Movement Interference: Visual Tracking and Spontaneous Coordination Modulate Rhythmic Movement Interference

    PubMed Central

    Romero, Veronica; Coey, Charles; Schmidt, R. C.; Richardson, Michael J.

    2012-01-01

    When an actor performs a rhythmic limb movement while observing a spatially incongruent movement he or she exhibits increased movement orthogonal to the instructed motion. Known as rhythmic movement interference, this phenomenon has been interpreted as a motor contagion effect, whereby observing the incongruent movement interferes with the intended movement and results in a motor production error. Here we test the hypothesis that rhythmic movement interference is an emergent property of rhythmic coordination. Participants performed rhythmic limb movements at a self-selected tempo while observing a computer stimulus moving in a congruent or incongruent manner. The degree to which participants visually tracked the stimulus was manipulated to influence whether participants became spontaneously entrained to the stimulus or not. Consistent with the rhythmic coordination hypothesis, participants only exhibited the rhythmic movement interference effect when they became spontaneously entrained to the incongruent stimulus. PMID:23028607

  4. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    PubMed Central

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli. PMID:25538576

  5. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams.

    PubMed

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  6. Phase-dependent and task-dependent modulation of stretch reflexes during rhythmical hand tasks in humans

    PubMed Central

    Xia, Ruiping; Bush, Brian M H; Karst, Gregory M

    2005-01-01

    Phase-dependent and task-dependent modulation of reflexes has been extensively demonstrated in leg muscles during locomotory activity. In contrast, the modulation of reflex responses of hand muscles during rhythmic movement is poorly documented. The objective of this study was to determine whether comparable reflex modulation occurs in muscles controlling finger motions during rhythmic, fine-motor tasks akin to handwriting. Twelve healthy subjects performed two rhythmic tasks while reflexes were evoked by mechanical perturbations applied at various phases of each task. Electromyograms (EMGs) were recorded from four hand muscles, and reflexes were averaged during each task relative to the movement phase. Stretch reflexes in all four muscles were found to be modulated in amplitude with respect to the phase of the rhythmic tasks, and also to vary distinctly with the tasks being conducted. The extent and pattern of reflex modulation differed between muscles in the same task, and between tasks for the same muscle. Muscles with a primary role in each task showed a higher correlation between reflex response and background EMG than other muscles. The results suggest that the modulation patterns observed may reflect optimal strategies of central–peripheral interactions in controlling the performance of fine-motor tasks. As with comparable studies on locomotion, the phase-dependency of the stretch reflexes implies a dynamically fluctuating role of proprioceptive feedback in the control of the hand muscles. The clear task-dependency is also consistent with a dynamic interaction of sensory feedback and central programming, presumably adapted to facilitate the successful performance of the different fine-motor tasks. PMID:15746170

  7. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  8. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2015-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  9. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration.

    PubMed

    Halgren, Eric; Kaestner, Erik; Marinkovic, Ksenija; Cash, Sydney S; Wang, Chunmao; Schomer, Donald L; Madsen, Joseph R; Ulbert, Istvan

    2015-09-01

    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context.

  10. Diel rhythmicity of lipid-body formation in a coral- Symbiodinium endosymbiosis

    NASA Astrophysics Data System (ADS)

    Chen, W.-N. U.; Kang, H.-J.; Weis, V. M.; Mayfield, A. B.; Jiang, P.-L.; Fang, L.-S.; Chen, C.-S.

    2012-06-01

    The biogenesis of intracellular lipid bodies (LBs) is dependent upon the symbiotic status between host corals and their intracellular dinoflagellates (genus Symbiodinium), though aside from this observation, little is known about LB behavior and function in this globally important endosymbiosis. The present research aimed to understand how LB formation and density are regulated in the gastrodermal tissue layer of the reef-building coral Euphyllia glabrescens. After tissue fixation and labeling with osmium tetroxide, LB distribution and density were quantified by imaging analysis of serial cryo-sections, and a diel rhythmicity was observed; the onset of solar irradiation at sunrise initiated an increase in LB density and size, which peaked at sunset. Both LB density and size then decreased to basal levels at night. On a seasonal timescale, LB density was found to be significantly positively correlated with seasonal irradiation, with highest densities found in the summer and lowest in the fall. In terms of LB lipid composition, only the concentration of wax esters, and not triglycerides or sterols, exhibited diel variability. This suggests that the metabolism and accumulation of lipids in LBs is at least partially light dependent. Ultrastructural examinations revealed that the LB wax ester concentration correlated with the number of electron-transparent inclusion bodies. Finally, there was a directional redistribution of the LB population across the gastroderm over the diel cycle. Collectively, these data reveal that coral gastrodermal LBs vary in composition and intracellular location over diel cycles, features which may shed light on their function within this coral-dinoflagellate mutualism.

  11. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  12. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M.; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions

  13. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.

    PubMed

    Zehr, E Paul; Collins, David F; Frigon, Alain; Hoogenboom, Nienke

    2003-01-01

    Although we move our arms rhythmically during walking, running, and swimming, we know little about the neural control of such movements. Our working hypothesis is that neural mechanisms controlling rhythmic movements are similar in the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that seen during leg movement. Our main experimental hypotheses were that the amplitude of H-reflexes in the forearm muscles would be modulated during arm movement (i.e., phase-dependent) and would be inhibited during cycling compared with static contraction (i.e., task-dependent). Furthermore, to determine the locus of any modulation, we tested the effect that active and passive movement of the ipsilateral (relative to stimulated arm) and contralateral arm had on H-reflex amplitude. Subjects performed rhythmic arm cycling on a custom-made hydraulic ergometer in which the two arms could be constrained to move together (180 degrees out of phase) or could rotate independently. Position of the stimulated limb in the movement cycle is described with respect to the clock face. H-reflexes were evoked at 12, 3, 6, and 9 o'clock positions during static contraction as well as during rhythmic arm movements. Reflex amplitudes were compared between tasks at equal M wave amplitudes and similar levels of electromyographic (EMG) activity in the target muscle. Surface EMG recordings were obtained bilaterally from flexor carpi radialis as well as from other muscles controlling the wrist, elbow, and shoulder. Compared with reflexes evoked during static contractions, movement of the stimulated limb attenuated H-reflexes by 50.8% (P < 0.005), 65.3% (P < 0.001), and 52.6% (P < 0.001) for bilateral, active ipsilateral, and passive ipsilateral movements, respectively. In contrast, movement of the contralateral limb did not significantly alter H-reflex amplitude. H-reflexes were also modulated by limb position (P < 0.005). Thus task- and phase

  14. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    PubMed

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs.

  15. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

    PubMed Central

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J.; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance. PMID:25309355

  16. The Beat Goes on: Rhythmic Modulation of Cortical Potentials by Imagined Tapping

    ERIC Educational Resources Information Center

    Osman, Allen; Albert, Robert; Ridderinkhof, K. Richard; Band, Guido; van der Molen, Maurits

    2006-01-01

    A frequency analysis was used to tag cortical activity from imagined rhythmic movements. Participants synchronized overt and imagined taps with brief visual stimuli presented at a constant rate, alternating between left and right index fingers. Brain potentials were recorded from across the scalp and topographic maps made of their power at the…

  17. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    PubMed

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  18. Circadian Rhythmicity of Active GSK3 Isoforms Modulates Molecular Clock Gene Rhythms in the Suprachiasmatic Nucleus

    PubMed Central

    Besing, R.C.; Paul, J.R.; Hablitz, L.M.; Rogers, C.O.; Johnson, R.L.; Young, M.E.; Gamble, K.L.

    2015-01-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprised of clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least five core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for two weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 μM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. PMID:25724980

  19. Modulation of reflex responses in hand muscles during rhythmical finger tasks in a subject with writer's cramp.

    PubMed

    Xia, Ruiping; Bush, Brian M H

    2007-03-01

    The objective of this study was to examine phase- and task-dependent modulation of stretch reflexes during repetitive finger movements in writer's cramp, and compare them with normal controls from our previous study. A subject with writer's cramp conducted two rhythmic tasks, index finger abduction (RFA) and a pen-squeezing (RPS) task akin to handwriting. Stretch reflexes were evoked by mechanical perturbations at random phases of each task. Surface electromyograms (EMG) were recorded from two hand muscles, first dorsal interosseous (FDI) and flexor digitorum superficialis (FDS). The reflex response and background EMG activity of each muscle were modulated in a phase-dependent manner in both tasks. However, they varied largely in phase during the RFA task, but in approximately inverse phase-relationship during RPS. Reflex sensitivity, as represented by the slope of the linear regression between response and background, was much lower for both muscles in the 'writing' task (RPS) than in the RFA task with its positively correlated responses. These phase- and task-related modulation patterns differed dramatically from those observed in our control subjects, where reflex responses were modulated largely in phase with background activity and reflex sensitivity was much higher, particularly in FDI during RFA and FDS during RPS. The altered reflex modulation patterns in writer's cramp may reflect deficiencies of integration of proprioceptive afferent inputs and reduced inhibition at cortical and spinal levels during writing performance. Results from this case study support clinically identified task-specific feature of focal hand dystonia.

  20. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open-close movements in humans.

    PubMed

    van der Bilt, A; Ottenhoff, F A; van der Glas, H W; Bosman, F; Abbink, J H

    1997-04-01

    The muscle spindles of the jaw elevator muscles provide positive feedback to the alpha motoneurons. It is generally assumed that the feedback is modulated during chewing so that counterproductive forces of the jaw elevator muscles can be avoided during jaw opening. Our aim was to investigate the modulation of the muscle spindle input to the alpha motoneurons during various phases of open-close movements in man. To that end, subjects made rhythmic open-close movements at their natural chewing frequency. A force impulse (5 N, 10 ms), eliciting a jaw-jerk reflex, was unexpectedly applied. The impulse was applied to the mandible at 8 different phases during an open-close cycle, but only 1 impulse per cycle. Jaw movement and surface EMG of the masseter and temporal muscles on both sides were recorded during 3 cycles without an impulse and 3 succeeding cycles with an impulse. To examine whether the modulation of the mandibular stretch reflex sensitivity depends on the food resistance, we applied an additional external force on the mandible, counteracting closing of the jaw each cycle. Two experimental sessions were performed in random order, i.e., without force and with an additional force of 20 N. We observed pronounced reflexes at the onset of jaw closing, during the closing phase, and at occlusion. No or only weak jaw-jerk reflexes were present during jaw opening. The reflex amplitudes at occlusion were larger when an external force was present. This increase in reflex amplitude may be the result of an adjusted gamma motoneuron activity, from pre-motor inhibition, or from both. The reflex amplitudes elicited during jaw closing were not correlated with the phase of the movement.

  1. Arterial CO2 Fluctuations Modulate Neuronal Rhythmicity: Implications for MEG and fMRI Studies of Resting-State Networks

    PubMed Central

    Whittaker, Joseph R.; Bright, Molly G.; Muthukumaraswamy, Suresh D.; Murphy, Kevin

    2016-01-01

    A fast emerging technique for studying human resting state networks (RSNs) is based on spontaneous temporal fluctuations in neuronal oscillatory power, as measured by magnetoencephalography. However, it has been demonstrated recently that this power is sensitive to modulations in arterial CO2 concentration. Arterial CO2 can be modulated by natural fluctuations in breathing pattern, as might typically occur during the acquisition of an RSN experiment. Here, we demonstrate for the first time the fine-scale dependence of neuronal oscillatory power on arterial CO2 concentration, showing that reductions in alpha, beta, and gamma power are observed with even very mild levels of hypercapnia (increased arterial CO2). We use a graded hypercapnia paradigm and participant feedback to rule out a sensory cause, suggesting a predominantly physiological origin. Furthermore, we demonstrate that natural fluctuations in arterial CO2, without administration of inspired CO2, are of a sufficient level to influence neuronal oscillatory power significantly in the delta-, alpha-, beta-, and gamma-frequency bands. A more thorough understanding of the relationship between physiological factors and cortical rhythmicity is required. In light of these findings, existing results, paradigms, and analysis techniques for the study of resting-state brain data should be revisited. SIGNIFICANCE STATEMENT In this study, we show for the first time that neuronal oscillatory power is intimately linked to arterial CO2 concentration down to the fine-scale modulations that occur during spontaneous breathing. We extend these results to demonstrate a correlation between neuronal oscillatory power and spontaneous arterial CO2 fluctuations in awake humans at rest. This work identifies a need for studies investigating resting-state networks in the human brain to measure and account for the impact of spontaneous changes in arterial CO2 on the neuronal signals of interest. Changes in breathing pattern that are

  2. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves.

    PubMed

    Chen, Jun; Friesen, W Otto; Iwasaki, Tetsuya

    2012-01-15

    Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body-fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body-fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce the intrinsic

  3. Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves

    PubMed Central

    Chen, Jun; Friesen, W. Otto; Iwasaki, Tetsuya

    2012-01-01

    SUMMARY Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body–fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body–fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce

  4. Body Temperature Patterns and Rhythmicity in Free-Ranging Subterranean Damaraland Mole-Rats, Fukomys damarensis

    PubMed Central

    Streicher, Sonja; Boyles, Justin G.; Oosthuizen, Maria K.; Bennett, Nigel C.

    2011-01-01

    Body temperature (Tb) is an important physiological component that affects endotherms from the cellular to whole organism level, but measurements of Tb in the field have been noticeably skewed towards heterothermic species and seasonal comparisons are largely lacking. Thus, we investigated patterns of Tb patterns in a homeothermic, free-ranging small mammal, the Damaraland mole-rat (Fukomys damarensis) during both the summer and winter. Variation in Tb was significantly greater during winter than summer, and greater among males than females. Interestingly, body mass had only a small effect on variation in Tb and there was no consistent pattern relating ambient temperature to variation in Tb. Generally speaking, it appears that variation in Tb patterns varies between seasons in much the same way as in heterothermic species, just to a lesser degree. Both cosinor analysis and Fast Fourier Transform analysis revealed substantial individual variation in Tb rhythms, even within a single colony. Some individuals had no Tb rhythms, while others appeared to exhibit multiple rhythms. These data corroborate previous laboratory work showing multiplicity of rhythms in mole-rats and suggest the variation seen in the laboratory is a true indicator of the variation seen in the wild. PMID:22028861

  5. Body temperature patterns and rhythmicity in free-ranging subterranean Damaraland mole-rats, Fukomys damarensis.

    PubMed

    Streicher, Sonja; Boyles, Justin G; Oosthuizen, Maria K; Bennett, Nigel C

    2011-01-01

    Body temperature (T(b)) is an important physiological component that affects endotherms from the cellular to whole organism level, but measurements of T(b) in the field have been noticeably skewed towards heterothermic species and seasonal comparisons are largely lacking. Thus, we investigated patterns of T(b) patterns in a homeothermic, free-ranging small mammal, the Damaraland mole-rat (Fukomys damarensis) during both the summer and winter. Variation in T(b) was significantly greater during winter than summer, and greater among males than females. Interestingly, body mass had only a small effect on variation in T(b) and there was no consistent pattern relating ambient temperature to variation in T(b). Generally speaking, it appears that variation in T(b) patterns varies between seasons in much the same way as in heterothermic species, just to a lesser degree. Both cosinor analysis and Fast Fourier Transform analysis revealed substantial individual variation in T(b) rhythms, even within a single colony. Some individuals had no T(b) rhythms, while others appeared to exhibit multiple rhythms. These data corroborate previous laboratory work showing multiplicity of rhythms in mole-rats and suggest the variation seen in the laboratory is a true indicator of the variation seen in the wild.

  6. Loss of circadian rhythmicity in body temperature and locomotor activity following suprachiasmatic lesions in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Haro, P. J.; Winget, C. M.

    1977-01-01

    In experiments on male and female ambulatory rats, the effect of bilateral suprachiasmatic lesions on deep body temperature and locomotor activity circadian rhythms was investigated. A L/D:12/12 cycle and 23 C ambient temperature were maintained. One-half of the rats received radiofrequency lesions in the suprachiasmic nucleus (SCN) while the second group were sham operated by lowering the radiofrequency electrode to the SCN without producing electrolytic lesions. Four weeks were allowed for recuperation. Autopsies were conducted to make sure that the lesions were restricted to SCN. The results show the complete disappearance of circadian rhythm in the SCN lesioned rats and only a slight diminution for the sham operated rats.

  7. Loss of circadian rhythmicity in body temperature and locomotor activity following suprachiasmatic lesions in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Haro, P. J.; Winget, C. M.

    1977-01-01

    In experiments on male and female ambulatory rats, the effect of bilateral suprachiasmatic lesions on deep body temperature and locomotor activity circadian rhythms was investigated. A L/D:12/12 cycle and 23 C ambient temperature were maintained. One-half of the rats received radiofrequency lesions in the suprachiasmic nucleus (SCN) while the second group were sham operated by lowering the radiofrequency electrode to the SCN without producing electrolytic lesions. Four weeks were allowed for recuperation. Autopsies were conducted to make sure that the lesions were restricted to SCN. The results show the complete disappearance of circadian rhythm in the SCN lesioned rats and only a slight diminution for the sham operated rats.

  8. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice

    PubMed Central

    Shende, Vikram R.; Goldrick, Marianna M.; Ramani, Suchitra; Earnest, David J.

    2011-01-01

    MicroRNAs (miRNAs) interact with 3′ untranslated region (UTR) elements of target genes to regulate mRNA stability or translation and thus play a role in regulating many different biological processes, including circadian rhythms. However, specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene, Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 3′ UTR activity of Bmal1. A number of miRNAs with Bmal1 as a predicted target were expressed in the serum of mice exposed to LD 12∶12 and of these miRNAs, miR-152 and miR-494 but not miR-142-3p were marked by diurnal oscillations with bimodal peaks in expression occurring near the middle of the day and 8 or 12 hr later during the night. Co-transfection of pre-miR over-expression constructs for miR-494 and miR-142-3p in HEK293 cells had significant effects in repressing luciferase-reported Bmal1 3′ UTR activity by as much as 60%, suggesting that these miRNAs may function as post-transcriptional modulators of Bmal1. In conjunction with previous studies implicating miRNAs as extracellular regulatory signals, our results suggest that circulating miRNAs may play a role in the regulation of the molecular clockworks in peripheral circadian oscillators. PMID:21799909

  9. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation

    PubMed Central

    Brown, Maile R; Kronengold, Jack; Gazula, Valeswara-Rao; Spilianakis, Charalampos G; Flavell, Richard A; von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2008-01-01

    The rates of activation and unitary properties of Na+-activated K+ (KNa) currents have been found to vary substantially in different types of neurones. One class of KNa channels is encoded by the Slack gene. We have now determined that alternative RNA splicing gives rise to at least five different transcripts for Slack, which produce Slack channels that differ in their predicted cytoplasmic amino-termini and in their kinetic properties. Two of these, termed Slack-A channels, contain an amino-terminus domain closely resembling that of another class of KNa channels encoded by the Slick gene. Neuronal expression of Slack-A channels and of the previously described Slack isoform, now called Slack-B, are driven by independent promoters. Slack-A mRNAs were enriched in the brainstem and olfactory bulb and detected at significant levels in four different brain regions. When expressed in CHO cells, Slack-A channels activate rapidly upon depolarization and, in single channel recordings in Xenopus oocytes, are characterized by multiple subconductance states with only brief transient openings to the fully open state. In contrast, Slack-B channels activate slowly over hundreds of milliseconds, with openings to the fully open state that are ∼6-fold longer than those for Slack-A channels. In numerical simulations, neurones in which outward currents are dominated by a Slack-A-like conductance adapt very rapidly to repeated or maintained stimulation over a wide range of stimulus strengths. In contrast, Slack-B currents promote rhythmic firing during maintained stimulation, and allow adaptation rate to vary with stimulus strength. Using an antibody that recognizes all amino-termini isoforms of Slack, Slack immunoreactivity is present at locations that have no Slack-B-specific staining, including olfactory bulb glomeruli and the dendrites of hippocampal neurones, suggesting that Slack channels with alternate amino-termini such as Slack-A channels are present at these locations. Our

  10. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.

    PubMed

    Rotstein, Horacio G; Schneider, Elisa; Szczupak, Lidia

    2017-09-20

    Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling (crawling). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit.SIGNIFICANCE STATEMENT Rhythmic movements of animals are controlled by neuronal networks that have been conceived as hierarchical structures. At the basis of this hierarchy, we find the motoneurons, few neurons at the top control global aspects of the behavior (e.g., onset, duration); and within these two ends, specific neuronal circuits control the

  11. Short-term effect of whole-body vibration training on balance, flexibility and lower limb explosive strength in elite rhythmic gymnasts.

    PubMed

    Despina, Tsopani; George, Dallas; George, Tsiganos; Sotiris, Papouliakos; Alessandra, Di Cagno; George, Korres; Maria, Riga; Stavros, Korres

    2014-02-01

    The purpose of this study was to examine whether whole-body vibration (WBV) training results in short-term performance improvements in flexibility, strength and balance tests in comparison to an equivalent exercise program performed without vibration. Eleven elite rhythmic gymnasts completed a WBV trial, and a control, resistance training trial without vibration (NWBV). The vibration trial consisted of eccentric and concentric squatting exercises on a vibration platform that was turned on, whereas the NWBV involved the same training protocol with the platform turned off. Balance was assessed using the Rhythmic Weight Shift (RWS) based on the EquiTest Dynamic Posturography system; flexibility was measured using the sit & reach test, and lower limb explosive strength was evaluated using standard exercises (squat jump, counter movement jump, single leg squat). All measurements were performed before (pre) immediately after the training program (post 1), and 15 minutes after the end of the program (post 15). Data were analyzed using repeated measures ANOVA was used with condition (WBV-NWBV) as the primary factor and time (pre, post 1, post 15) as the nested within subjects factor, followed by post-hoc pairwise comparison with Bonferroni corrections. Results confirmed the hypothesis of the superiority of WBV training, especially in the post 15 measurement, in all flexibility and strength measures, as well as in a number of balance tests. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Finger posture modulates structural body representations

    PubMed Central

    Tamè, Luigi; Dransfield, Elanah; Quettier, Thomas; Longo, Matthew R.

    2017-01-01

    Patients with lesions of the left posterior parietal cortex commonly fail in identifying their fingers, a condition known as finger agnosia, yet are relatively unimpaired in sensation and skilled action. Such dissociations have traditionally been interpreted as evidence that structural body representations (BSR), such as the body structural description, are distinct from sensorimotor representations, such as the body schema. We investigated whether performance on tasks commonly used to assess finger agnosia is modulated by changes in hand posture. We used the ‘in between’ test in which participants estimate the number of unstimulated fingers between two touched fingers or a localization task in which participants judge which two fingers were stimulated. Across blocks, the fingers were placed in three levels of splay. Judged finger numerosity was analysed, in Exp. 1 by direct report and in Exp. 2 as the actual number of fingers between the fingers named. In both experiments, judgments were greater when non-adjacent stimulated fingers were positioned far apart compared to when they were close together or touching, whereas judgements were unaltered when adjacent fingers were stimulated. This demonstrates that BSRs are not fixed, but are modulated by the real-time physical distances between body parts. PMID:28223685

  13. MicroRNA-122 Modulates the Rhythmic Expression Profile of the Circadian Deadenylase Nocturnin in Mouse Liver

    PubMed Central

    Kojima, Shihoko; Gatfield, David; Esau, Christine C.; Green, Carla B.

    2010-01-01

    Nocturnin is a circadian clock-regulated deadenylase thought to control mRNA expression post-transcriptionally through poly(A) tail removal. The expression of Nocturnin is robustly rhythmic in liver at both the mRNA and protein levels, and mice lacking Nocturnin are resistant to diet-induced obesity and hepatic steatosis. Here we report that Nocturnin expression is regulated by microRNA-122 (miR-122), a liver specific miRNA. We found that the 3′-untranslated region (3′-UTR) of Nocturnin mRNA harbors one putative recognition site for miR-122, and this site is conserved among mammals. Using a luciferase reporter construct with wild-type or mutant Nocturnin 3′-UTR sequence, we demonstrated that overexpression of miR-122 can down-regulate luciferase activity levels and that this effect is dependent on the presence of the putative miR-122 recognition site. Additionally, the use of an antisense oligonucleotide to knock down miR-122 in vivo resulted in significant up-regulation of both Nocturnin mRNA and protein expression in mouse liver during the night, resulting in Nocturnin rhythms with increased amplitude. Together, these data demonstrate that the normal rhythmic profile of Nocturnin expression in liver is shaped in part by miR-122. Previous studies have implicated Nocturnin and miR-122 as important post-transcriptional regulators of both lipid metabolism and circadian clock controlled gene expression in the liver. Therefore, the demonstration that miR-122 plays a role in regulating Nocturnin expression suggests that this may be an important intersection between hepatic metabolic and circadian control. PMID:20582318

  14. MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver.

    PubMed

    Kojima, Shihoko; Gatfield, David; Esau, Christine C; Green, Carla B

    2010-06-22

    Nocturnin is a circadian clock-regulated deadenylase thought to control mRNA expression post-transcriptionally through poly(A) tail removal. The expression of Nocturnin is robustly rhythmic in liver at both the mRNA and protein levels, and mice lacking Nocturnin are resistant to diet-induced obesity and hepatic steatosis. Here we report that Nocturnin expression is regulated by microRNA-122 (miR-122), a liver specific miRNA. We found that the 3'-untranslated region (3'-UTR) of Nocturnin mRNA harbors one putative recognition site for miR-122, and this site is conserved among mammals. Using a luciferase reporter construct with wild-type or mutant Nocturnin 3'-UTR sequence, we demonstrated that overexpression of miR-122 can down-regulate luciferase activity levels and that this effect is dependent on the presence of the putative miR-122 recognition site. Additionally, the use of an antisense oligonucleotide to knock down miR-122 in vivo resulted in significant up-regulation of both Nocturnin mRNA and protein expression in mouse liver during the night, resulting in Nocturnin rhythms with increased amplitude. Together, these data demonstrate that the normal rhythmic profile of Nocturnin expression in liver is shaped in part by miR-122. Previous studies have implicated Nocturnin and miR-122 as important post-transcriptional regulators of both lipid metabolism and circadian clock controlled gene expression in the liver. Therefore, the demonstration that miR-122 plays a role in regulating Nocturnin expression suggests that this may be an important intersection between hepatic metabolic and circadian control.

  15. Aperture modulated, translating bed total body irradiation

    SciTech Connect

    Hussain, Amjad; Villarreal-Barajas, Jose Eduardo; Dunscombe, Peter; Brown, Derek W.

    2011-02-15

    Purpose: Total body irradiation (TBI) techniques aim to deliver a uniform radiation dose to a patient with an irregular body contour and a heterogeneous density distribution to within {+-}10% of the prescribed dose. In the current article, the authors present a novel, aperture modulated, translating bed TBI (AMTBI) technique that produces a high degree of dose uniformity throughout the entire patient. Methods: The radiation beam is dynamically shaped in two dimensions using a multileaf collimator (MLC). The irregular surface compensation algorithm in the Eclipse treatment planning system is used for fluence optimization, which is performed based on penetration depth and internal inhomogeneities. Two optimal fluence maps (AP and PA) are generated and beam apertures are created to deliver these optimal fluences. During treatment, the patient/phantom is translated on a motorized bed close to the floor (source to bed distance: 204.5 cm) under a stationary radiation beam with 0 deg. gantry angle. The bed motion and dynamic beam apertures are synchronized. Results: The AMTBI technique produces a more homogeneous dose distribution than fixed open beam translating bed TBI. In phantom studies, the dose deviation along the midline is reduced from 10% to less than 5% of the prescribed dose in the longitudinal direction. Dose to the lung is reduced by more than 15% compared to the unshielded fixed open beam technique. At the lateral body edges, the dose received from the open beam technique was 20% higher than that prescribed at umbilicus midplane. With AMTBI the dose deviation in this same region is reduced to less than 3% of the prescribed dose. Validation of the technique was performed using thermoluminescent dosimeters in a Rando phantom. Agreement between calculation and measurement was better than 3% in all cases. Conclusions: A novel, translating bed, aperture modulated TBI technique that employs dynamically shaped MLC defined beams is shown to improve dose uniformity

  16. Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain

    PubMed Central

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang; Groh, Claudia

    2016-01-01

    Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies. PMID:27147994

  17. Kinesthetic motor imagery modulates body sway.

    PubMed

    Rodrigues, E C; Lemos, T; Gouvea, B; Volchan, E; Imbiriba, L A; Vargas, C D

    2010-08-25

    The aim of this study was to investigate the effect of imagining an action implicating the body axis in the kinesthetic and visual motor imagery modalities upon the balance control system. Body sway analysis (measurement of center of pressure, CoP) together with electromyography (EMG) recording and verbal evaluation of imagery abilities were obtained from subjects during four tasks, performed in the upright position: to execute bilateral plantar flexions; to imagine themselves executing bilateral plantar flexions (kinesthetic modality); to imagine someone else executing the same movement (visual modality), and to imagine themselves singing a song (as a control imagery task). Body sway analysis revealed that kinesthetic imagery leads to a general increase in CoP oscillation, as reflected by an enhanced area of displacement. This effect was also verified for the CoP standard deviation in the medial-lateral direction. An increase in the trembling displacement (equivalent to center of pressure minus center of gravity) restricted to the anterior-posterior direction was also observed to occur during kinesthetic imagery. The visual imagery task did not differ from the control (sing) task for any of the analyzed parameters. No difference in the subjects' ability to perform the imagery tasks was found. No modulation of EMG data were observed across imagery tasks, indicating that there was no actual execution during motor imagination. These results suggest that motor imagery performed in the kinesthetic modality evokes motor representations involved in balance control. Copyright (c)10 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis

    PubMed Central

    Pekovic-Vaughan, Vanja; Gibbs, Julie; Yoshitane, Hikari; Yang, Nan; Pathiranage, Dharshika; Guo, Baoqiang; Sagami, Aya; Taguchi, Keiko; Bechtold, David; Loudon, Andrew; Yamamoto, Masayuki; Chan, Jefferson; van der Horst, Gijsbertus T.J.; Fukada, Yoshitaka; Meng, Qing-Jun

    2014-01-01

    The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-box-mediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock “gated” pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic ClockΔ19 mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis. PMID:24637114

  19. Rhythmic 24 h Variation of Core Body Temperature and Locomotor Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  20. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.

    PubMed

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents.

  1. Association of body rolling, leg rolling, and rhythmic feet movements in a young adult: A video-polysomnographic study performed before and after one night of clonazepam.

    PubMed

    Merlino, Giovanni; Serafini, Anna; Dolso, Pierluigi; Canesin, Roberto; Valente, Mariarosaria; Gigli, Gian Luigi

    2008-03-15

    We report clinical and polysomnographic data of a young adult affected by several forms of rhythmic movement disorder (RMD), present in the same night, including a new kind of it, known as rhythmic feet movements. The patient was monitored by means of three consecutive video-polysomnographic recordings, the first two performed to confirm the presence of the sleep disorder and the last one to observe the acute effectiveness of clonazepam on rhythmic movements. We discuss the characteristics of the RMD and the response to the first administration of pharmacological treatment, observed in our patient. (c) 2007 Movement Disorder Society.

  2. Rhythmic neuronal synchronization in visual cortex entails spatial phase relation diversity that is modulated by stimulation and attention

    PubMed Central

    Maris, Eric; Womelsdorf, Thilo; Desimone, Robert; Fries, Pascal

    2013-01-01

    Groups of neurons tend to synchronize in distinct frequency bands. Within a given frequency band, synchronization is defined as the consistency of phase relations between site pairs, over time. This synchronization has been investigated in numerous studies and has been found to be modulated by sensory stimulation or cognitive conditions. Here, we investigate local field potentials (LFPs) and multi-unit activity (MUA) recorded from area V4 of two monkeys performing a selective visual attention task. We show that phase relations, that are consistent over time, are typically diverse across site pairs. That is, across site pairs, mean phase relations differ substantially and this across-site-pair phase-relation diversity (SPHARED, for Spatial PHAse RElation Diversity) is highly reliable. Furthermore, we show that visual stimulation and selective attention can shift the pattern of phase relations across site pairs. These shifts are again diverse and this across-site-pair phase-relation-shift diversity (SPHARESD) is again highly reliable. We find SPHARED for LFP-LFP, LFP-MUA and MUA-MUA pairs, stimulus-induced SPHARESD for LFP-LFP and LFP-MUA pairs, and attention-induced SPHARESD for LFP-LFP pairs. SPHARESD is a highly interesting signal from the perspective of impact on downstream neuronal activity. We provide several pieces of evidence for such a role. PMID:23416733

  3. Emotional modulation of body-selective visual areas

    PubMed Central

    Atkinson, Anthony P.; Andersson, Frederic; Vuilleumier, Patrik

    2007-01-01

    Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala. PMID:18985133

  4. Bilingual Vocational Training Program. Auto Body Repair. Module 4.0: Auto Body Welding.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on auto body welding is the fourth of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students to…

  5. Bilingual Vocational Training Program. Auto Body Repair. Module 1.0: Beginning Auto Body.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on beginning auto body is the first of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students…

  6. Bilingual Vocational Training Program. Auto Body Repair. Module 4.0: Auto Body Welding.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on auto body welding is the fourth of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students to…

  7. Multiple forms of rhythmic movements in an adolescent boy with rhythmic movement disorder.

    PubMed

    Su, Changjun; Miao, Jianting; Liu, Yu; Liu, Rui; Lei, Gesheng; Zhang, Wei; Yang, Ting; Li, Zhuyi

    2009-12-01

    Rhythmic movement disorder (RMD) refers to a group of stereotyped, repetitive movements involving large muscles, usually occurring prior to the onset of sleep and persisting into sleep. RMD more commonly exhibits only one or two forms of rhythmic movements (RM) in most reported cases. However, multiple RM forms of RMD occurring in a patient in the same night have rarely been reported. In this report, we present the unique case of a 15-year-old boy with RMD affected by multiple forms of RM in the same night, including four known forms (i.e., body rocking, head banging, leg rolling, and rhythmic feet movements) and two new kinds of RM (bilateral rhythmic arm rocking and rhythmic hands movements). Two video-polysomnographic recordings were performed in this patient before starting pharmacologic treatment and after long-term oral clonazepam treatment (1.0mg nightly for 3 months). The characteristics of RMD with multiple RM forms and the effectiveness of clonazepam on the RM episodes and polysomnographic findings observed in our patient are discussed. This report raises the fact that a patient with RMD may present with multiple complex rhythmic movements disrupting sleep, which emphasizes that better understanding of the clinical features of complex rhythmic movements during sleep in primary care settings is essential for early clinical diagnosis and optimal management.

  8. Calculating rhythmicity of infant breathing using wavelets

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.; Harper, Ronald M.; Macey, Paul M.; Ford, Rodney P. K.

    2000-12-01

    Breathing signals are one set of physiological data that may provide information regarding the mechanisms that cause SIDS. Isolated breathing pauses have been implicated in fatal events. Other features of interest include slow amplitude modulation of the breathing signal, a phenomenon whose origin is unclear, and periodic breathing. The latter describes a repetitive series of apnea, and may be considered an extreme manifestation of amplitude modulation with successive cessations of breathing. Rhythmicity is defined to assess the impact of amplitude modulation on breathing signals and describes the extent to which frequency components remain constant for the duration of the signal. The wavelet transform was used to identify sections of constant frequency components within signals. Rhythmicity can be evaluated for all the frequency components in a signal, for individual frequencies. The rhythmicity of eight breathing epochs from sleeping infants at high and low risk for SIDS was calculated. Initial results show breathing from infants at high risk for SIDS exhibits greater rhythmicity of modulating frequencies than breathing from low risk infants.

  9. Teaching Rhythmic Movement to Children: "Chock-Let Pie"

    ERIC Educational Resources Information Center

    Hastie, Peter A.; Martin, Ellen H.; Gibson, Gary S.

    2005-01-01

    It is doubtful that any teacher would question the value of rhythmic movement in a physical education program. The benefits of being able to move rhythmically and to keep a beat are numerous. First, children with rhythm have an increased kinesthetic awareness of their body in motion and stillness. As most physical activities have an inherent…

  10. Teaching Rhythmic Movement to Children: "Chock-Let Pie"

    ERIC Educational Resources Information Center

    Hastie, Peter A.; Martin, Ellen H.; Gibson, Gary S.

    2005-01-01

    It is doubtful that any teacher would question the value of rhythmic movement in a physical education program. The benefits of being able to move rhythmically and to keep a beat are numerous. First, children with rhythm have an increased kinesthetic awareness of their body in motion and stillness. As most physical activities have an inherent…

  11. Emotional and movement-related body postures modulate visual processing

    PubMed Central

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E.; Avenanti, Alessio

    2015-01-01

    Human body postures convey useful information for understanding others’ emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213

  12. Emotional and movement-related body postures modulate visual processing.

    PubMed

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Fun with Rhythmic Notation.

    ERIC Educational Resources Information Center

    Leto, Frank

    1996-01-01

    Presenting music and notation to elementary school children exposes them to musical concepts and inspires them to take an interest in music throughout their lives. Nine lessons demonstrate how to introduce rhythmic notation to elementary-age children while utilizing percussion instruments such as timpani drums, tambourines, and rhythm sticks. (TJQ)

  14. Guide to "Rhythmically Moving."

    ERIC Educational Resources Information Center

    Carlton, Elizabeth B.; Weikart, Phyllis S.

    This guide accompanies a series of recordings called "Rhythmically Moving." The series of nine recordings is a rare collection of international folk music designed to aid students as they learn to develop basic timing and musicianship. This guide helps the user of the series to receive maximum benefit from the first of the recordings (RM1). Using…

  15. PZEh-MO-8/Body Mass Measurement in Service Module

    NASA Image and Video Library

    2009-05-06

    ISS019-E-014216 (6 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  16. PZEh-MO-8/Body Mass Measurement in Service Module

    NASA Image and Video Library

    2009-05-06

    ISS019-E-014222 (6 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, uses the IM mass measurement device to perform the PZEh-MO-8/Body Mass Measurement Russian biomedical routine assessments in the Zvezda Service Module of the International Space Station.

  17. Cyclic modulation of the H-reflex in a wrist flexor during rhythmic flexion-extension movements of the ipsilateral foot.

    PubMed

    Baldissera, F; Cavallari, P; Leocani, L

    1998-02-01

    In 12 subjects, each sitting on an armchair with the right forearm prone, the H-reflex elicited in the resting flexor carpi radialis muscle underwent cyclic excitability changes correlated with rhythmic flexion-extension movements of the ipsilateral foot (frequency of oscillations between 1.5 and 2.5 Hz). During foot plantar flexion, the H-reflex underwent a clear-cut increase, the maximum facilitation falling, in most subjects, within the second half of that phase; then, a gradual reduction in size led the reflex amplitude back to the initial value at the end of foot dorsal extension. If present also when the wrist and the ankle are moved together, this facilitation should favour the in-phase (isodirectional) association between movements and, conversely, hinder the anti-phase coupling.

  18. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  19. Eicosapentaenoic acid in cancer improves body composition and modulates metabolism.

    PubMed

    Pappalardo, Giulia; Almeida, Ana; Ravasco, Paula

    2015-04-01

    The objective of this review article is to present the most recent intervention studies with EPA on nutritional outcomes in cancer patients, e.g. nutritional status, weight & lean body mass. For this purpose a PubMed(®) and MedLine(®) search of the published literature up to and including January 2014 that contained the keywords: cancer, sarcopenia, EPA, ω-3 fatty acids, weight, intervention trial, muscle mass was conducted. The collected data was summarized and written in text format and in tables that contained: study design, patient' population, sample size, statistical significance and results of the intervention. The paper will cover malignancy, body composition, intervention with EPA, physiological mechanisms of action of EPA, effect of EPA on weight and body composition, future research. In cancer patients deterioration of muscle mass can be present regardless of body weight or Body Mass Index (BMI). Thus, sarcopenia in cancer patients with excessive fat mass (FM), entitled sarcopenic obesity, has gained greater relevance in clinical practice; it can negatively influence patients' functional status, tolerance to treatments & disease prognosis. The search for an effective nutritional intervention that improves body composition (preservation of muscle mass and muscle quality) is of utmost importance for clinicians and patients. The improvement of muscle quality is an even more recent area of interest because it has probable implications in patients' prognosis. Eicosapentaenoic acid (EPA) has been identified as a promising nutrient with the wide clinical benefits. Several mechanisms have been proposed to explain EPA potential benefits on body composition: inhibition of catabolic stimuli by modulating pro-inflammatory cytokines production and enhancing insulin sensitivity that induces protein synthesis; also, EPA may attenuate deterioration of nutritional status resulting from antineoplastic therapies by improving calorie and protein intake as well. Indeed

  20. Age modulates attitudes to whole body donation among medical students.

    PubMed

    Perry, Gary F; Ettarh, Raj R

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to donations, this study surveyed, by Likert-type questionnaires, first-year graduate-entry medical students attending a dissection-based anatomy course. In contrast to attitudes among younger traditional-entry medical students, initial support for whole body donation by an unrelated stranger (83.8%), a family member (43.2%) or by the respondent (40.5%) did not decrease among graduate-entry medical students after exposure to dissection although there was a significant shift in strength of support for donation by stranger. This suggests that older medical students do not readily modify their pre-established attitudes to the idea of whole body donation after exposure and experience with dissection. Initial ambivalence among respondents to the idea of donation by family member was followed by opposition to this type of donation. These findings demonstrate that age modulates the influences on a priori attitudes to whole body donation that exposure to dissection causes in younger medical students.

  1. Decisions in motion: passive body acceleration modulates hand choice.

    PubMed

    Bakker, Romy S; Weijer, Roel H A; van Beers, Robert J; Selen, Luc P J; Medendorp, W Pieter

    2017-03-01

    In everyday life, we frequently have to decide which hand to use for a certain action. It has been suggested that for this decision the brain calculates expected costs based on action values, such as expected biomechanical costs, expected success rate, handedness and skillfulness. While these conclusions were based on experiments in stationary subjects, we often act while the body is in motion. We investigated how hand choice is affected by passive body motion, which directly affects the biomechanical costs of the arm movement due to its inertia. Using a linear motion platform, twelve right-handed subjects were sinusoidally translated (0.625Hz and 0.5Hz). At eight possible motion phases, they had to reach using either their left or right hand to a target presented at one of eleven possible locations. We predicted hand choice by calculating the expected biomechanical costs under different assumptions about the future acceleration involved in these computations, being the forthcoming acceleration during the reach, the instantaneous acceleration at target onset or zero acceleration as if the body is stationary. While hand choice was generally biased to using the dominant hand, it also modulated sinusoidally with the motion, with the amplitude of the bias depending on the motion's peak acceleration. The phase of hand choice modulation was consistent with the cost model that took the instantaneous acceleration signal at target onset. This suggest that the brain relies on the bottom-up acceleration signals, and not on predictions about future accelerations, when deciding on hand choice during passive whole-body motion.

  2. RNA transcription modulates phase transition-driven nuclear body assembly

    PubMed Central

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P.

    2015-01-01

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  3. Social exclusion modulates pre-reflective interpersonal body representation.

    PubMed

    Ambrosini, Ettore; Blomberg, Olle; Mandrigin, Alisa; Costantini, Marcello

    2014-01-01

    Perception of affordance is enhanced not only when that object is located in one's own peripersonal space, as compared to when it is located within extrapersonal space, but also when the object is located in another person's peripersonal space [as measured by a spatial alignment effect (SAE)]. It has been suggested that this reflects the existence of an interpersonal body representation (IBR) that allows us to represent the perceptual states and action possibilities of others. Here, we address the question of whether IBR can be modulated by higher level/reflective social cognition, such as judgments about one's own social status. Participants responded with either the right or the left hand as soon as a go signal appeared. The go signal screen contained a task-irrelevant stimulus consisting of a 3D scene in which a mug with a left- or right-facing handle was positioned on a table. The mug was positioned either inside or outside the reaching space of the participants. In a third of the trials, the mug was positioned within the reaching space of an avatar seated at the table. Prior to this task we induced an experience of social ostracism in half of the participants by means of a standardized social exclusion condition. The results were that the SAE that normally occurs when the mug is in the avatar's reaching space is extinguished by the induced social exclusion. This indicates that judgments about one's own social status modulate the effect of IBR.

  4. Acute corticospinal and spinal modulation after whole body vibration

    PubMed Central

    Krause, A.; Gollhofer, A.; Freyler, K.; Jablonka, L.; Ritzmann, R.

    2016-01-01

    Objectives: The objective of this study was to investigate neural effects of acute whole body vibration (WBV) on lower limb muscles regarding corticospinal and spinal excitability. Methods: In 44 healthy subjects (16 f/ 28 m), motor evoked potentials (MEP) and H-reflexes in m. soleus (SOL) and gastrocnemius medialis (GM) were elicited before (t1), immediately after (t2), 2 (t3), 4 (t4) and 10 min after (t5) WBV. Results: After WBV, MEP amplitudes were significantly increased in SOL (t2+15±30%, t3+22±32%, t4+15±35%, t5+20±30%, P<0.05), but not in GM (t2+32±62%, t3+9±35%, t4+8±36%, t5+22±47%; P=0.07). Contrarily, H-reflexes were significantly reduced in SOL (t2-19±28%, t3-21±22%, t4-20±21%, t5-14±28%, P<0.05) and GM (t2-14±37%, t3-16±25%, t4-18±29%, t5-16±28%, P<0.05). Conclusions: A temporary sustained enhancement of corticospinal excitability concomitant with spinal inhibition after WBV points towards persisting neural modulation in the central nervous system. This could indicate greater neural modulation over M1 and descending pathways, while the contribution of spinal pathways is reduced. PMID:27973385

  5. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning.

    PubMed

    Vitiello, Giuseppe

    2015-04-01

    The problem of the transition from the molecular and cellular level to the macroscopic level of observed assemblies of myriads of neurons is the subject addressed in this report. The great amount of detailed information available at molecular and cellular level seems not sufficient to account for the high effectiveness and reliability observed in the brain macroscopic functioning. It is suggested that the dissipative many-body model and thermodynamics might offer the dynamical frame underlying the rich phenomenology observed at microscopic and macroscopic level and help in the understanding on how to fill the gap between the bio-molecular and cellular level and the one of brain macroscopic functioning.

  6. Examination of rhythmicity of extracellularly recorded neurons in the entorhinal cortex

    PubMed Central

    Climer, Jason R.; DiTullio, Ronald; Newman, Ehren L.; Hasselmo, Michael E.; Eden, Uri T.

    2015-01-01

    A number of studies have examined the theta-rhythmic modulation of neuronal firing in the hippocampal circuit. For extracellular recordings, this is often done by examining spectral properties of the spike-time autocorrelogram, most significantly, for validating the presence or absence of theta modulation across species. These techniques can show significant rhythmicity for high firing rate, highly rhythmic neurons; however, they are substantially biased by several factors including the peak firing rate of the neuron, the amount of time spent in the neuron’s receptive field, and other temporal properties of the rhythmicity such as cycle-skipping. These limitations make it difficult to examine rhythmic modulation in neurons with low firing rates or when an animal has short dwell times within the firing field and difficult to compare rhythmicity under disparate experimental conditions when these factors frequently differ. Here, we describe in detail the challenges that researchers face when using these techniques and apply our findings to recent recordings from bat entorhinal grid cells, suggesting that they may have lacked enough data to examine theta rhythmicity robustly. We describe a more sensitive and statistically rigorous method using maximum likelihood estimation (MLE) of a parametric model of the lags within the autocorrelation window, which helps to alleviate some of the problems of traditional methods, which was also unable to detect rhythmicity in bat grid cells. Using large batteries of simulated data, we explored the boundaries for which the MLE technique and the theta index can detect rhythmicity. The MLE technique is less sensitive to many features of the autocorrelogram, and provides a framework for statistical testing to detect rhythmicity as well as changes in rhythmicity in individual sessions providing a substantial improvement over previous methods. PMID:25331248

  7. Parasomnia with rhythmic movements manifesting as nocturnal tongue biting.

    PubMed

    Tuxhorn, I; Hoppe, M

    1993-06-01

    The case of a healthy 2-year-old girl with repeated nocturnal tongue biting as a result of rhythmic movements of the jaw associated with body rocking in non-REM sleep is described. Parasomnias manifesting with rhythmic, stereotyped movements of the head, trunk and extremities are well described in healthy children. The term rhythmic movement disorders (RMD) was introduced for these repetive movements in sleep which may appear as head banging (jactatio capitis), body rocking or leg rolling. Severe injuries including fractures, subdural effusions and eye injures are reported. Repeated tongue injuries have not been described as a consequence of RMD. The differential diagnosis from nocturnal seizures is crucial to avoid overtreatment of this benign albeit dramatically presenting condition.

  8. Self-Attributed Body-Shadows Modulate Tactile Attention

    ERIC Educational Resources Information Center

    Pavani, Francesco; Galfano, Giovanni

    2007-01-01

    Our body-shadows are special stimuli in the visual world. They often have anatomical resemblance with our own body-parts and move as our body moves, with spatio-temporal correlation. Here, we show that self-attributed body-shadows cue attention to the body-part they refer to, rather than the location they occupy. Using speeded spatial…

  9. Matrix Rigidity-Modulated Cardiovascular Organoid Formation from Embryoid Bodies

    PubMed Central

    Shkumatov, Artem; Baek, Kwanghyun; Kong, Hyunjoon

    2014-01-01

    Stem cell clusters, such as embryoid bodies (EBs) derived from embryonic stem cells, are extensively studied for creation of multicellular clusters and complex functional tissues. It is common to control phenotypes of ES cells with varying molecular compounds; however, there is still a need to improve the controllability of cell differentiation, and thus, the quality of created tissue. This study demonstrates a simple but effective strategy to promote formation of vascularized cardiac muscle - like tissue in EBs and form contracting cardiovascular organoids by modulating the stiffness of a cell adherent hydrogel. Using collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we discovered that cellular organization in a form of vascularized cardiac muscle sheet was maximal on the gel with the stiffness similar to cardiac muscle. We envisage that the results of this study will greatly contribute to better understanding of emergent behavior of stem cells in developmental and regeneration process and will also expedite translation of EB studies to drug-screening device assembly and clinical treatments. PMID:24732893

  10. Predictive coding of music--brain responses to rhythmic incongruity.

    PubMed

    Vuust, Peter; Ostergaard, Leif; Pallesen, Karen Johanne; Bailey, Christopher; Roepstorff, Andreas

    2009-01-01

    During the last decades, models of music processing in the brain have mainly discussed the specificity of brain modules involved in processing different musical components. We argue that predictive coding offers an explanatory framework for functional integration in musical processing. Further, we provide empirical evidence for such a network in the analysis of event-related MEG-components to rhythmic incongruence in the context of strong metric anticipation. This is seen in a mismatch negativity (MMNm) and a subsequent P3am component, which have the properties of an error term and a subsequent evaluation in a predictive coding framework. There were both quantitative and qualitative differences in the evoked responses in expert jazz musicians compared with rhythmically unskilled non-musicians. We propose that these differences trace a functional adaptation and/or a genetic pre-disposition in experts which allows for a more precise rhythmic prediction.

  11. Central pattern generators and the control of rhythmic movements.

    PubMed

    Marder, E; Bucher, D

    2001-11-27

    Central pattern generators are neuronal circuits that when activated can produce rhythmic motor patterns such as walking, breathing, flying, and swimming in the absence of sensory or descending inputs that carry specific timing information. General principles of the organization of these circuits and their control by higher brain centers have come from the study of smaller circuits found in invertebrates. Recent work on vertebrates highlights the importance of neuro-modulatory control pathways in enabling spinal cord and brain stem circuits to generate meaningful motor patterns. Because rhythmic motor patterns are easily quantified and studied, central pattern generators will provide important testing grounds for understanding the effects of numerous genetic mutations on behavior. Moreover, further understanding of the modulation of spinal cord circuitry used in rhythmic behaviors should facilitate the development of new treatments to enhance recovery after spinal cord damage.

  12. Effects of rhythmic precursors on perception of stress/syllabicity

    NASA Astrophysics Data System (ADS)

    Stilp, Christian E.; Kluender, Keith R.

    2005-09-01

    Rhythmic structure is a common property of many environmental sounds including speech. Here, perceptual effects of preceding rhythmic context are assessed in experiments employing edited words for which perceived stress/syllabicity are assessed. A series of edited naturally spoken words varying perceptually from ``polite'' to ``plight,'' was created by deleting initial-vowel glottal pulses from a recording of ``polite.'' Words were identified following nonspeech precursor sequences having either trochaic (strong-weak) or iambic (weak-strong) rhythmic patterns. Precursors consisted of a harmonic spectrum (-6-dB/octave slope) filtered by four sinusoidally modulated single-pole filters. Trochaic (strong-weak) and iambic (weak-strong) rhythmic patterns were created by varying amplitude, pitch, and duration in successive segments (akin to beats) of the precursors. Precursors were comprised of two to six repetitions of these patterns. Following trochaic precursors, listeners were more likely to report hearing ``polite'' (iambic). This pattern of results indicates that perception did not assimilate to precursor pattern, consistent with rhythmic expectancy. Instead, perception shifted in a way that contrasts with precursor temporal pattern. Additional results with precursors that are more and less like speech are being conducted to further understand how auditory perception adjusts for temporal and spectral regularities. [Work supported by NIDCD.

  13. Some anthropologic factors of performance in rhythmic gymnastics novices.

    PubMed

    Miletić, Durdica; Katić, Ratko; Males, Boris

    2004-12-01

    The aim of the study was to determine motor and morphological factors, and to assess their impact on specific motor skill performance in rhythmic gymnastics (RG). Experimental training process aimed at learning and improving basic movement structures of rhythmic gymnastics was performed for nine months in a sample of 50 female rhythmic gymnastics novices (mean age 7.1 +/- 0.3 years). Seven dimensions in total were isolated by factorial analysis of 13 motor, 11 morphological, and 20 specific rhythmic gymnastics tests. The factors of flexibility (Beta = 0.26; p < 0.05), explosive strength (Beta = 0.25; p < 0.05) and adipose voluminosity (Beta = -0.42; p < 0.001) explains 41% of the success in performing RG basic body elements--jumps, rotations, balance and flexibility (R = 0.64), while the frequency of movement (Beta = 0.44; p < 0.001) and non-adipose voluminosity (Beta = 0.26; p < 0.05) explains 26% of RG-specific manipulations with the apparatus--club, ribbon and ball wrist manipulation (R = 0.52; p < 0.01). According to study results, the RG-training process intended for rhythmic gymnastics novices should be programmed, with preset objectives for the development of flexibility and explosive strength, speed and peripheral joint strength and adipose tissue reduction.

  14. Rhythmic movement disorder in childhood: An integrative review.

    PubMed

    Gwyther, Amy R M; Walters, Arthur S; Hill, Catherine M

    2017-10-01

    Rhythmic movement disorder consists of repetitive stereotypic movements, such as head banging or body rocking, that recur every second or so and may last from a few minutes to hours, usually prior to sleep onset. This review of childhood rhythmic movement disorder highlights the lack of systematic research into core aspects of the condition, relying heavily on small case series or case reports. Interpretation is further limited by almost universal failure to confirm the core diagnostic criteria (C) of the International classification of sleep disorders (III), namely that the rhythmic movements should have clinical consequences. Nonetheless, a number of themes emerge. Rhythmic movement disorder is likely to start in infancy and have a developmental course with spontaneous resolution in early childhood in many cases. Factors associated with persistence are, however, unclear. Associations with ADHD and neurodevelopmental disorders are intriguing, require further study and may shed light on the underlying cause of the condition. There is a pressing need for a systematic approach to classify rhythmic movement disorder, to allow standardization of the much needed research into the underlying aetiology and treatment of this relatively neglected sleep disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Annual rhythmicity and maturation of physiological parameters in goats.

    PubMed

    Piccione, G; Caola, G; Refinetti, R

    2007-10-01

    This study was conducted to investigate seasonal rhythmicity and maturation of physiological parameters in goats. Five kids (Capra hircus, Maltese breed) were studied for 24 months, starting at 5 months of age. Rectal temperature and various blood-borne substances (melatonin, cholesterol, urea, total bilirubin, albumin, glucose, calcium, magnesium, phosphate, and sodium) were measured once a month at dawn and dusk. Serum bilirubin concentration exhibited statistically significant 12-month rhythmicity, and melatonin concentration exhibited 6-month rhythmicity. Changes in the dusk-to-dawn difference in rectal temperature during the course of the study provided suggestive evidence that the circadian rhythm of body temperature in goats is not fully developed until the end of the second year of life. The results documented also maturational changes in cholesterol production and blood glucose regulation.

  16. Evidence for Multiple Rhythmic Skills

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  17. Evidence for Multiple Rhythmic Skills.

    PubMed

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions.

  18. Differences between the sexes in technical mastery of rhythmic gymnastics.

    PubMed

    Bozanic, Ana; Miletic, Durdica

    2011-02-01

    The aims of this study were to determine possible differences between the sexes in specific rhythmic gymnastics techniques, and to examine the influence of various aspects of technique on rhythmic composition performance. Seventy-five students aged 21 ± 2 years (45 males, 30 female) undertook four test sessions to determine: coefficients of asymmetry, stability, versatility, and the two rhythmic compositions (without apparatus and with rope). An independent-sample t-test revealed sex-based differences in technique acquisition: stability for ball (P < 0.05; effect size = 0.65) and club (P < 0.05; effect size = 0.79) performance and rhythmic composition without apparatus (P < 0.05; effect size = 0.66). Multiple regression analysis revealed that the variables for assessing stability (beta = 0.44; P < 0.05) and versatility (beta = 0.61; P < 0.05) explained 61% of the variance in the rhythmic composition performance of females, and the variables for assessing asymmetry (beta = -0.38; P < 0.05), versatility (beta = 0.32; P < 0.05), and stability (beta = 0.29; P < 0.05) explained 52% of the variance in the rhythmic composition performance of males. The results suggest that female students dominate in body skill technique, while male students have the advantage with apparatus. There was a lack of an expressive aesthetic component in performance for males. The need for ambidexterity should be considered in the planning of training programmes.

  19. FRAMES User Defined Body Burden Concentration File Module Documentation

    SciTech Connect

    Pelton, Mitchell A.; Rutz, Frederick C.; Eslinger, Melany A.; Gelston, Gariann M.

    2001-06-01

    The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) Body Burden Concentration File (BBF) contains time-varying, instantaneous, constituent concentrations for body burden by contaminant. This report contains the requirements for this file and will be used by software engineers and testers to ensure that the file inputs properly.

  20. Age Modulates Attitudes to Whole Body Donation among Medical Students

    ERIC Educational Resources Information Center

    Perry, Gary F.; Ettarh, Raj R.

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…

  1. Age Modulates Attitudes to Whole Body Donation among Medical Students

    ERIC Educational Resources Information Center

    Perry, Gary F.; Ettarh, Raj R.

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…

  2. Rhythmic movement disorder in children.

    PubMed

    Hoban, Timothy F

    2003-02-01

    How should sleep-related rhythmic movements in children be assessed and treated? Rhythmic movement disorder (RMD) represents an unusual variety of childhood parasomnia characterized by repetitive motion of the head, trunk, or extremities, which usually occurs during the transition from wakefulness to sleep or arises during sustained sleep. Although the condition most often affects infants and toddlers in a transient and self-limited fashion, the condition occasionally persists in a problematic fashion, which may nevertheless be amenable to treatment. Since RMD may occasionally cause injury or resemble nocturnal seizure, prompt recognition, and appropriate management on the part of the clinician is essential. This article will examine the spectrum of RMD in children, including their common clinical manifestations; data regarding their epidemiology and natural history; the role of polysomnography, electroencephalography; and other diagnostic testing. Potential causes of the condition and available methods of treatment are also examined.

  3. Rhythmicity in arterial smooth muscle

    PubMed Central

    Haddock, Rebecca E; Hill, Caryl E

    2005-01-01

    Many arteries and arterioles exhibit rhythmical contractions which are synchronous over considerable distances. This vasomotion is likely to assist in tissue perfusion especially during periods of altered metabolism or perfusion pressure. While the mechanism underlying vascular rhythmicity has been investigated for many years, it has only been recently, with the advent of imaging techniques for visualizing intracellular calcium release, that significant advances have been made. These methods, when combined with mechanical and electrophysiological recordings, have demonstrated that the rhythm depends critically on calcium released from intracellular stores within the smooth muscle cells and on cell coupling via gap junctions to synchronize oscillations in calcium release amongst adjacent cells. While these factors are common to all vessels studied to date, the contribution of voltage-dependent channels and the endothelium varies amongst different vessels. The basic mechanism for rhythmical activity in arteries thus differs from its counterpart in non-vascular smooth muscle, where specific networks of pacemaker cells generate electrical potentials which drive activity within the otherwise quiescent muscle cells. PMID:15905215

  4. Bilingual Vocational Training Program. Auto Body Repair. Module 2.0: Tools and Equipment.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on tools and equipment is the second of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students…

  5. Anatomy and Physiology. Module Set II: Major Body Systems. Teacher Edition [and] Student Edition. Surgical Technology.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…

  6. Anatomy and Physiology. Module Set II: Major Body Systems. Teacher Edition [and] Student Edition. Surgical Technology.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…

  7. Bilingual Vocational Training Program. Auto Body Repair. Module 2.0: Tools and Equipment.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on tools and equipment is the second of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students…

  8. Bilingual Skills Training Program. Auto Body Repair. Module 3.0: Basic Metal Repair.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on basic metal repair is the third of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students to…

  9. Biological clockwork underlying adaptive rhythmic movements

    PubMed Central

    Iwasaki, Tetsuya; Chen, Jun; Friesen, W. Otto

    2014-01-01

    Owing to the complexity of neuronal circuits, precise mathematical descriptions of brain functions remain an elusive ambition. A more modest focus of many neuroscientists, central pattern generators, are more tractable neuronal circuits specialized to generate rhythmic movements, including locomotion. The relative simplicity and well-defined motor functions of these circuits provide an opportunity for uncovering fundamental principles of neuronal information processing. Here we present the culmination of mathematical analysis that captures the adaptive behaviors emerging from interactions between a central pattern generator, the body, and the physical environment during locomotion. The biologically realistic model describes the undulatory motions of swimming leeches with quantitative accuracy and, without further parameter tuning, predicts the sweeping changes in oscillation patterns of leeches undulating in air or swimming in high-viscosity fluid. The study demonstrates that central pattern generators are capable of adapting oscillations to the environment through sensory feedback, but without guidance from the brain. PMID:24395788

  10. Proprioceptive Body Illusions Modulate the Visual Perception of Reaching Distance

    PubMed Central

    Petroni, Agustin; Carbajal, M. Julia; Sigman, Mariano

    2015-01-01

    The neurobiology of reaching has been extensively studied in human and non-human primates. However, the mechanisms that allow a subject to decide—without engaging in explicit action—whether an object is reachable are not fully understood. Some studies conclude that decisions near the reach limit depend on motor simulations of the reaching movement. Others have shown that the body schema plays a role in explicit and implicit distance estimation, especially after motor practice with a tool. In this study we evaluate the causal role of multisensory body representations in the perception of reachable space. We reasoned that if body schema is used to estimate reach, an illusion of the finger size induced by proprioceptive stimulation should propagate to the perception of reaching distances. To test this hypothesis we induced a proprioceptive illusion of extension or shrinkage of the right index finger while participants judged a series of LEDs as reachable or non-reachable without actual movement. Our results show that reach distance estimation depends on the illusory perceived size of the finger: illusory elongation produced a shift of reaching distance away from the body whereas illusory shrinkage produced the opposite effect. Combining these results with previous findings, we suggest that deciding if a target is reachable requires an integration of body inputs in high order multisensory parietal areas that engage in movement simulations through connections with frontal premotor areas. PMID:26110274

  11. Somatotype of Top-Level Serbian Rhythmic Gymnasts

    PubMed Central

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-01-01

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies. PMID:25031686

  12. Somatotype of top-level serbian rhythmic gymnasts.

    PubMed

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-03-27

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies.

  13. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb

    PubMed Central

    Carson, R G; Riek, S; Mackey, D C; Meichenbaum, D P; Willms, K; Forner, M; Byblow, W D

    2004-01-01

    Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas. PMID:15331684

  14. Visual detail about the body modulates tactile localisation biases.

    PubMed

    Margolis, Aaron N; Longo, Matthew R

    2015-02-01

    The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini et al. (Neuropsychologia 49:1194-1201, 2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought.

  15. Molecular bases of circadian rhythmicity in renal physiology and pathology

    PubMed Central

    Bonny, Olivier; Vinciguerra, Manlio; Gumz, Michelle L.; Mazzoccoli, Gianluigi

    2013-01-01

    The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental–social cues and physiological–behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time–dependent changes in renal pathology. PMID:23901050

  16. Romantic love modulates women's identification of men's body odors.

    PubMed

    Lundström, Johan N; Jones-Gotman, Marilyn

    2009-02-01

    Romantic love is one of our most potent and powerful emotions, but very little is known with respect to the hormonal and psychological mechanisms in play. Romantic love is thought to help intimate partners stay committed to each other and two mechanisms have been proposed to mediate this commitment: increased attention towards one's partner or deflected attention away from other potential partners. Both mechanisms find support in the literature. We explored the potential influence of each of these mechanisms by assessing women's ability to identify (ID) body odors originating from their boyfriend, a same-sex friend, and an opposite-sex friend and the relationship between this ability and the degree of romantic love expressed towards their boyfriend. We hypothesized that an increase in attention towards one's partner would render a positive correlation between ID of a boyfriend's body odor and degree of romantic love; conversely, we hypothesized that attention deflected away from other potential partners would render a negative correlation between ID of an opposite-sex friend's body odor and degree of romantic love for the boyfriend. Our results supported the deflection theory as we found a negative correlation between the degree of romantic love for the subjects' boyfriends and their ability to ID the body odor of an opposite-sex friend but not of their boyfriend or same-sex friend. Our results indicate that romantic love deflects attention away from potential new partners rather than towards the present partner. These changes are likely mediated by circulating neuropeptides and a testable model is suggested.

  17. Volitional exaggeration of body size through fundamental and formant frequency modulation in humans

    PubMed Central

    Pisanski, Katarzyna; Mora, Emanuel C.; Pisanski, Annette; Reby, David; Sorokowski, Piotr; Frackowiak, Tomasz; Feinberg, David R.

    2016-01-01

    Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans’ rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size. Modulation of F0, formant spacing (∆F), and apparent vocal tract length (VTL) were measured using Praat. Our results indicate that men and women spontaneously and systemically increased VTL and decreased F0 to imitate a large body size, and reduced VTL and increased F0 to imitate small size. These voice modulations did not differ substantially across cultures, indicating potentially universal sound-size correspondences or anatomical and biomechanical constraints on voice modulation. In each culture, men generally modulated their voices (particularly formants) more than did women. This latter finding could help to explain sexual dimorphism in F0 and formants that is currently unaccounted for by sexual dimorphism in human vocal anatomy and body size. PMID:27687571

  18. Neural basis of rhythmic timing networks in the human brain.

    PubMed

    Thaut, Michael H

    2003-11-01

    The study of rhythmicity provides insights into the understanding of temporal coding of music and temporal information processing in the human brain. Auditory rhythms rapidly entrain motor responses into stable steady synchronization states below and above conscious perception thresholds. Studying the neural dynamics of entrainment by measuring brain wave responses (MEG) we found nonlinear scaling of M100 amplitudes generated in primary auditory cortex relative to changes in the period of the rhythmic interval during subliminal and supraliminal tempo modulations. In recent brain imaging studies we have described the neural networks involved in motor synchronization to auditory rhythm. Activated regions include primary sensorimotor and cingulate areas, bilateral opercular premotor areas, bilateral SII, ventral prefrontal cortex, and, subcortically, anterior insula, putamen, and thalamus. Within the cerebellum, vermal regions and anterior hemispheres ipsilateral to the movement became significantly activated. Tracking temporal modulations additionally activated predominantly right prefrontal, anterior cingulate, and intraparietal regions as well as posterior cerebellar hemispheres. Furthermore, strong evidence exists for the substantial benefits of rhythmic stimuli in rehabilitation training with motor disorders.

  19. Teaching Rhythmic Gymnastics: A Developmentally Appropriate Approach.

    ERIC Educational Resources Information Center

    Palmer, Heather C.

    This book is designed to guide teachers through the process of creating a developmentally appropriate rhythmic gymnastics program for children age 5-11. Rhythmic gymnastics programs develop fitness, inspire creativity, and allow all children to work at their own level. The book features 10 chapters in two parts. Part 1, "Getting Started on a…

  20. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    PubMed Central

    te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. PMID:26509117

  1. Effects of Gravity on Insect Circadian Rhythmicity

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, Tana M.

    2000-01-01

    Circadian rhythms - endogenous daily rhythmic fluctuations in virtually all characteristics of life - are generated and coordinated by the circadian timing system (CTS). The CTS is synchronized to the external 24-hour day by time cues such as the light/dark cycle. In an environment without time cues, the length of an animal's day is determined by the period of its internal pacemaker (tau) and the animal is said to be free-running. All life on earth evolved under the solar day; the CTS exists as an adaptation that allows organisms to anticipate and to prepare for rhythmic environmental fluctuations. All life on earth also evolved under the force of earth's gravitational environment. While it is therefore not surprising that changes in the lighting environment affect the CTS, it is surprising that changes in the gravitational environment would do so. However, recent data from one of our laboratories using the brn-3.1 knockout mouse revealed that this model, which lacks the sensory receptor hair cells within the neurovestibular system, does not respond to exposure to a hyperdynamic environment in the same fashion as normal mice. The brn-3.1 mice did not show the expected suppression of circadian rhythmicity shown by control mice exposed to 2G. Exposure to altered ambient force environments affects the amplitude, mean and timing of circadian rhythms in species from unicellular organisms to man. In addition, there is a circadian influence on the homeostatic response to acute 2G acceleration and pulses of 2G can act as a time cue, synchronizing the CTS. This is of significance because maintenance of internal and external temporal coordination is critical for normal physiological and psychological function. Typically, during adaptation to an increased gravitational environment (+G), an initial acute reaction is followed by adaptation and, eventually, a new steady state (14-16), which can take weeks to months to establish. Until the development of space stations, exposure

  2. Coordinated Rhythmic Motion by Uncoupled Neuronal Oscillators with Sensory Feedback

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tetsuya

    This paper explores the potential of biological oscillators as a basic unit for feedback control to achieve rhythmic motion of locomotory systems. Among those properties of biological control systems that are useful for engineering applications, we focus on decentralized coordination, that is, the ability of uncoupled neuronal oscillators to coordinate rhythmic body movements to achieve locomotion with the aid of local sensory feedback. We will consider the reciprocal inhibition oscillator (RIO) as a candidate for the basic control unit, and show that uncoupled RIOs can achieve decentralized coordination of a prototype mechanical rectifier (PMR) that captures essential dynamics underlying animal locomotion by a simple arm-disk configuration. Optimality of the induced locomotion is studied in comparison with analytical results we derive for statically optimal PMR locomotion.

  3. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

    PubMed Central

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  4. Spectral mixing of rhythmic neuronal signals in sensory cortex

    PubMed Central

    Ahrens, Kurt F.; Levine, Herbert; Suhl, Harry; Kleinfeld, David

    2002-01-01

    The ability to compute the difference between two frequencies depends on a nonlinear operation that mixes two periodic signals. Behavioral and psychophysical evidence suggest that such mixing is likely to occur in the mammalian nervous system as a means to compare two rhythmic sensory signals, such as occurs in human audition, and as a means to lock an intrinsic rhythm to a sensory input. However, a neurological substrate for mixing has not been identified. Here we address the issue of nonlinear mixing of neuronal activity in the vibrissa primary sensory cortex of rat, a region that receives intrinsic as well as sensory-driven rhythmic input during natural whisking. In our preparation, the intrinsic signal originates from cortical oscillations that were induced by anesthetics, and the extrinsic input is introduced by periodic stimulation of vibrissae. We observed that the local extracellular current in vibrissa primary sensory cortex contained oscillatory components at the sum and difference of the intrinsic and extrinsic frequencies. In complementary experiments, we observed that the simultaneous stimulation of contralateral and ipsilateral vibrissae at different frequencies also led to current flow at the sum and difference frequencies. We show theoretically that the relative amplitudes of the observed mixture terms can be accounted for by a threshold nonlinearity in the input–output relation of the underlying neurons. In general, our results provide a neurological substrate for the modulation and demodulation of rhythmic neuronal signals for sensory coding and feedback stabilization of motor output. PMID:12403828

  5. Rhythmic engagement with music in infancy

    PubMed Central

    Zentner, Marcel; Eerola, Tuomas

    2010-01-01

    Humans have a unique ability to coordinate their motor movements to an external auditory stimulus, as in music-induced foot tapping or dancing. This behavior currently engages the attention of scholars across a number of disciplines. However, very little is known about its earliest manifestations. The aim of the current research was to examine whether preverbal infants engage in rhythmic behavior to music. To this end, we carried out two experiments in which we tested 120 infants (aged 5–24 months). Infants were exposed to various excerpts of musical and rhythmic stimuli, including isochronous drumbeats. Control stimuli consisted of adult- and infant-directed speech. Infants’ rhythmic movements were assessed by multiple methods involving manual coding from video excerpts and innovative 3D motion-capture technology. The results show that (i) infants engage in significantly more rhythmic movement to music and other rhythmically regular sounds than to speech; (ii) infants exhibit tempo flexibility to some extent (e.g., faster auditory tempo is associated with faster movement tempo); and (iii) the degree of rhythmic coordination with music is positively related to displays of positive affect. The findings are suggestive of a predisposition for rhythmic movement in response to music and other metrically regular sounds. PMID:20231438

  6. Rhythmic engagement with music in infancy.

    PubMed

    Zentner, Marcel; Eerola, Tuomas

    2010-03-30

    Humans have a unique ability to coordinate their motor movements to an external auditory stimulus, as in music-induced foot tapping or dancing. This behavior currently engages the attention of scholars across a number of disciplines. However, very little is known about its earliest manifestations. The aim of the current research was to examine whether preverbal infants engage in rhythmic behavior to music. To this end, we carried out two experiments in which we tested 120 infants (aged 5-24 months). Infants were exposed to various excerpts of musical and rhythmic stimuli, including isochronous drumbeats. Control stimuli consisted of adult- and infant-directed speech. Infants' rhythmic movements were assessed by multiple methods involving manual coding from video excerpts and innovative 3D motion-capture technology. The results show that (i) infants engage in significantly more rhythmic movement to music and other rhythmically regular sounds than to speech; (ii) infants exhibit tempo flexibility to some extent (e.g., faster auditory tempo is associated with faster movement tempo); and (iii) the degree of rhythmic coordination with music is positively related to displays of positive affect. The findings are suggestive of a predisposition for rhythmic movement in response to music and other metrically regular sounds.

  7. A versatile and economic whole-body counter based on liquid scintillation detector modules.

    PubMed

    Smith, T; Cronquist, A G

    1977-05-01

    A whole-body counter comprising rectangular liquid scintillator detector modules is described. Photomultipliers are used economically and the use of local shielding leads to a further reduction in cost. In conjunction with a moving bed, the modular arrangement provides a versatile system which allows high sensitivity static counting using all detectors, or scan counting using selected combinations of detectors. The total body potassium content of a standard man (140 g K) can be estimated with a statistical counting error of 2.2% in a counting time of 1000 seconds. Methods of using the counter for total body potassium and gastro-intestinal absorption measurements are presented.

  8. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (p<0.05). The artistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all p<0.05). The artistic gymnasts had higher lean mass (p<0.05) in the whole body and the extremities than both the rhythmic gymnasts and the controls. Body fat mass was 87.5 and 61.5 % higher in the controls than in the artistic and the rhythmic gymnasts (p<0.05). The upper extremity BMD was higher (p<0.05) in the artistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, p<0.001), and multiple regression analysis showed that total lean mass explained 64 % of the variability in whole body bone mineral content, but only 20 % in whole body bone mineral density. Therefore, recreational artistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  9. Illusory Changes in Body Size Modulate Body Satisfaction in a Way That Is Related to Non-Clinical Eating Disorder Psychopathology

    PubMed Central

    Preston, Catherine; Ehrsson, H. Henrik

    2014-01-01

    Historically, body size overestimation has been linked to abnormal levels of body dissatisfaction found in eating disorders. However, recently this relationship has been called into question. Indeed, despite a link between how we perceive and how we feel about our body seeming intuitive, until now lack of an experimental method to manipulate body size has meant that a causal link, even in healthy participants, has remained elusive. Recent developments in body perception research demonstrate that the perceptual experience of the body can be readily manipulated using multisensory illusions. The current study exploits such illusions to modulate perceived body size in an attempt to influence body satisfaction. Participants were presented with stereoscopic video images of slimmer and wider mannequin bodies viewed through head-mounted displays from first person perspective. Illusory ownership was induced by synchronously stroking the seen mannequin body with the unseen real body. Pre and post-illusion affective and perceptual measures captured changes in perceived body size and body satisfaction. Illusory ownership of a slimmer body resulted in participants perceiving their actual body as slimmer and giving higher ratings of body satisfaction demonstrating a direct link between perceptual and affective body representations. Change in body satisfaction following illusory ownership of a wider body, however, was related to degree of (non-clinical) eating disorder psychopathology, which can be linked to fluctuating body representations found in clinical samples. The results suggest that body perception is linked to body satisfaction and may be of importance for eating disorder symptomology. PMID:24465698

  10. Circadian regulation of pineal gland rhythmicity.

    PubMed

    Borjigin, Jimo; Zhang, L Samantha; Calinescu, Anda-Alexandra

    2012-02-05

    The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity.

  11. Seeing the body produces limb-specific modulation of skin temperature.

    PubMed

    Sadibolova, Renata; Longo, Matthew R

    2014-01-01

    Vision of the body, even when non-informative about stimulation, affects somatosensory processing. We investigated whether seeing the body also modulates autonomic control in the periphery by measuring skin temperature while manipulating vision. Using a mirror box, the skin temperature was measured from left hand dorsum while participants: (i) had the illusion of seeing their left hand, (ii) had the illusion of seeing an object at the same location or (iii) looked directly at their contralateral right hand. Skin temperature of the left hand increased when participants had the illusion of directly seeing that hand but not in the other two view conditions. In experiment 2, participants viewed directly their left or right hand, or the box while we recorded both hand dorsum temperatures. Temperature increased in the viewed hand but not the contralateral hand. These results show that seeing the body produces limb-specific modulation of thermal regulation.

  12. Neural control of rhythmic arm cycling after stroke

    PubMed Central

    Loadman, Pamela M.; Hundza, Sandra R.

    2012-01-01

    Disordered reflex activity and alterations in the neural control of walking have been observed after stroke. In addition to impairments in leg movement that affect locomotor ability after stroke, significant impairments are also seen in the arms. Altered neural control in the upper limb can often lead to altered tone and spasticity resulting in impaired coordination and flexion contractures. We sought to address the extent to which the neural control of movement is disordered after stroke by examining the modulation pattern of cutaneous reflexes in arm muscles during arm cycling. Twenty-five stroke participants who were at least 6 mo postinfarction and clinically stable, performed rhythmic arm cycling while cutaneous reflexes were evoked with trains (5 × 1.0-ms pulses at 300 Hz) of constant-current electrical stimulation to the superficial radial (SR) nerve at the wrist. Both the more (MA) and less affected (LA) arms were stimulated in separate trials. Bilateral electromyography (EMG) activity was recorded from muscles acting at the shoulder, elbow, and wrist. Analysis was conducted on averaged reflexes in 12 equidistant phases of the movement cycle. Phase-modulated cutaneous reflexes were present, but altered, in both MA and LA arms after stroke. Notably, the pattern was “blunted” in the MA arm in stroke compared with control participants. Differences between stroke and control were progressively more evident moving from shoulder to wrist. The results suggest that a reduced pattern of cutaneous reflex modulation persists during rhythmic arm movement after stroke. The overall implication of this result is that the putative spinal contributions to rhythmic human arm movement remain accessible after stroke, which has translational implications for rehabilitation. PMID:22572949

  13. Predictors of attainment in rhythmic sportive gymnastics.

    PubMed

    Hume, P A; Hopkins, W G; Robinson, D M; Robinson, S M; Hollings, S C

    1993-12-01

    Correlates of attainment in rhythmic sportive gymnastics (RSG) were investigated in a cross-sectional study of 106 female gymnasts aged 7-27 years. Physical attributes were obtained by anthropometry and from tests of flexibility, leg power, maximum oxygen uptake and visuo-motor proficiency. Training and psychological measures were derived from self-administered questionnaires that included the Leadership Scale for Sport, Psychological Skills Inventory for Sport, General Health Questionnaire, Sport Competition Anxiety Test, and several questions on sport motivation and enjoyment. Attainment was expressed as competition grade level and mean performance score in 4 competitions. The best correlates of attainment were cumulative and current training time (r = 0.84-0.53). Age, lean body mass and composite measures of flexibility, leg power and visuo-motor proficiency were also significant correlates of attainment (r = 0.69-0.29), as were coach democratic and coach social behaviours (r = 0.41-0.28). The significant positive psychometric correlates of attainment were mental preparation, motivation by creativity, and several dimensions of enjoyment (r = 0.35-0.26); significant negative correlates were recent anxiety-depression and enjoyment of training (r = -0.34-(-)0.32). No previous study has identified the relative contributions of such a comprehensive range of physical, psychological and training measures to performance of a sport.

  14. Impact of nutrients on circadian rhythmicity.

    PubMed

    Oosterman, Johanneke E; Kalsbeek, Andries; la Fleur, Susanne E; Belsham, Denise D

    2015-03-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock.

  15. Impact of nutrients on circadian rhythmicity

    PubMed Central

    Oosterman, Johanneke E.; Kalsbeek, Andries; la Fleur, Susanne E.

    2014-01-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock. PMID:25519730

  16. Rhythmic Gymnastics: A Challenge with Balls and Ropes.

    ERIC Educational Resources Information Center

    Bennett, John P.

    Rhythmic gymnastics is an outgrowth of rhythmic and dance gymnastics and promotes good posture, strength, flexibility, balance, and coordination, along with appreciation of music and movement together. The current status of rhythmic gymnastics and its historical development are briefly discussed. Descriptions are given of rhythmic gymnastic…

  17. Modulation of the gut microbiota with antibiotic treatment suppresses whole body urea production in neonatal pigs.

    PubMed

    Puiman, Patrycja; Stoll, Barbara; Mølbak, Lars; de Bruijn, Adrianus; Schierbeek, Henk; Boye, Mette; Boehm, Günther; Renes, Ingrid; van Goudoever, Johannes; Burrin, Douglas

    2013-02-01

    We examined whether changes in the gut microbiota induced by clinically relevant interventions would impact the bioavailability of dietary amino acids in neonates. We tested the hypothesis that modulation of the gut microbiota in neonatal pigs receiving no treatment (control), intravenously administered antibiotics, or probiotics affects whole body nitrogen and amino acid turnover. We quantified whole body urea kinetics, threonine fluxes, and threonine disposal into protein, oxidation, and tissue protein synthesis with stable isotope techniques. Compared with controls, antibiotics reduced the number and diversity of bacterial species in the distal small intestine (SI) and colon. Antibiotics decreased plasma urea concentrations via decreased urea synthesis. Antibiotics elevated threonine plasma concentrations and turnover, as well as whole body protein synthesis and proteolysis. Antibiotics decreased protein synthesis rate in the proximal SI and liver but did not affect the distal SI, colon, or muscle. Probiotics induced a bifidogenic microbiota and decreased plasma urea concentrations but did not affect whole body threonine or protein metabolism. Probiotics decreased protein synthesis in the proximal SI but not in other tissues. In conclusion, modulation of the gut microbiota by antibiotics and probiotics reduced hepatic ureagenesis and intestinal protein synthesis, but neither altered whole body net threonine balance. These findings suggest that changes in amino acid and nitrogen metabolism resulting from antibiotic- or probiotic-induced shifts in the microbiota are localized to the gut and liver and have limited impact on whole body growth and anabolism in neonatal piglets.

  18. Modulation of the gut microbiota with antibiotic treatment suppresses whole body urea production in neonatal pigs

    PubMed Central

    Puiman, Patrycja; Stoll, Barbara; Mølbak, Lars; de Bruijn, Adrianus; Schierbeek, Henk; Boye, Mette; Boehm, Günther; Renes, Ingrid; Burrin, Douglas

    2013-01-01

    We examined whether changes in the gut microbiota induced by clinically relevant interventions would impact the bioavailability of dietary amino acids in neonates. We tested the hypothesis that modulation of the gut microbiota in neonatal pigs receiving no treatment (control), intravenously administered antibiotics, or probiotics affects whole body nitrogen and amino acid turnover. We quantified whole body urea kinetics, threonine fluxes, and threonine disposal into protein, oxidation, and tissue protein synthesis with stable isotope techniques. Compared with controls, antibiotics reduced the number and diversity of bacterial species in the distal small intestine (SI) and colon. Antibiotics decreased plasma urea concentrations via decreased urea synthesis. Antibiotics elevated threonine plasma concentrations and turnover, as well as whole body protein synthesis and proteolysis. Antibiotics decreased protein synthesis rate in the proximal SI and liver but did not affect the distal SI, colon, or muscle. Probiotics induced a bifidogenic microbiota and decreased plasma urea concentrations but did not affect whole body threonine or protein metabolism. Probiotics decreased protein synthesis in the proximal SI but not in other tissues. In conclusion, modulation of the gut microbiota by antibiotics and probiotics reduced hepatic ureagenesis and intestinal protein synthesis, but neither altered whole body net threonine balance. These findings suggest that changes in amino acid and nitrogen metabolism resulting from antibiotic- or probiotic-induced shifts in the microbiota are localized to the gut and liver and have limited impact on whole body growth and anabolism in neonatal piglets. PMID:23139222

  19. Rhythmic patterning in mother-newborn interaction.

    PubMed

    Censullo, M; Lester, B; Hoffman, J

    1985-01-01

    Face-to-face, dyadic interaction in term and preterm mother-newborn pairs was examined for a rhythmic pattern at 40 weeks gestational age. Three-minute interaction episodes for each mother-infant pair were recorded on videotape and scored with a dyadic code graded along a dimension of disengagement-engagement. Spectral analysis was used to analyze the data for rhythmicity. A reliable rhythmic structure was found in all dyadic interactions. No significant difference was evident between term and preterm dyads. The findings provide quantitative evidence of rhythmic patterning in dyadic interaction from birth for term pairs and as early as 40 weeks gestation for preterm pairs, which is much earlier than previously reported in the literature. The Dyadic Interaction Code, a new tool for studying the interaction process over time, is described, and a recently reported method of analysis (spectral analysis) for interaction data is applied to mother-newborn behavioral data.

  20. Rhythmic Layering in Danielson Crater on Mars

    NASA Image and Video Library

    2011-11-21

    Rhythmic patterns of sedimentary layering in Danielson Crater on Mars result from periodic changes in climate related to changes in tilt of the planet in this image was taken by NASA Mars Reconnaissance Orbiter.

  1. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  2. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    PubMed

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change

    PubMed Central

    Carey, Nicholas; Sigwart, Julia D.

    2014-01-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH (‘ocean acidification’). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. PMID:25122741

  4. Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals.

    PubMed

    Iturriaga, Rodrigo; Alcayaga, Julio

    2004-12-01

    The carotid body (CB) is the main arterial chemoreceptor. The most accepted model of arterial chemoreception postulates that carotid body glomus (type I) cells are the primary receptors, which are synaptically connected to the nerve terminals of petrosal ganglion (PG) neurons. In response to natural stimuli, glomus cells are expected to release one (or more) transmitter(s) which, acting on the peripheral nerve terminals of processes from chemosensory petrosal neurons, increases the sensory discharge. Among several molecules present in glomus cells, acetylcholine and adenosine nucleotides and dopamine are considered as excitatory transmitter candidates. In this review, we will examine recent evidence supporting the notion that acetylcholine and adenosine 5'-triphosphate are the main excitatory transmitters in the cat and rat carotid bodies. On the other hand, dopamine may act as a modulator of the chemoreception process in the cat, but as an excitatory transmitter in the rabbit carotid body.

  5. Body Fat and Physical Activity Modulate the Association Between Sarcopenia and Osteoporosis in Elderly Korean Women

    PubMed Central

    Lee, Inhwan; Cho, Jinkyung; Jin, Youngyun; Ha, Changduk; Kim, Taehee; Kang, Hyunsik

    2016-01-01

    This study examined whether modifiable lifestyle factors, such as body fatness and physical activity, modulate the association between sarcopenia and osteoporosis. In a cross-sectional design, 269 postmenopausal women, aged 65 years and older, underwent dual-energy X-ray absorptiometry (DEXA) scans to measure their body fat percentage, total fat mass, total fat-free mass, appendicular lean mass, bone mineral density (BMD) and bone mineral content. The participants wore a uniaxial accelerometer for seven consecutive days to quantify daily physical activity. The collected data were analyzed using descriptive statistics, Pearson correlation, and a binary logistic regression. Pearson correlation analyses showed that total neck/femur BMD was positively associated with weight-adjusted appendicular skeletal muscle mass (ASM) and objectively-measured physical activities. ASM was positively associated with body fatness. Binary logistic regression analyses showed that the odds ratio (OR) of sarcopenia for osteopenia and/or osteoporosis was substantially attenuated but remained marginally significant when adjusted for age and postmenopausal period (OR = 2.370 and p = 0.050). However, the OR was no longer significant when additionally adjusted for body fatness (OR = 2.218 and p = 0.117) and physical activity (OR = 1.240 and p = 0.448). The findings of the study showed that, in this sample of elderly Korean women, modifiable lifestyle risk factors such as body fatness and physical inactivity played an important role in determining the association between sarcopenia and osteopenia/osteoporosis. Key points Osteoporosis and sarcopenia are major health conditions responsible for an increased risk of bone fractures and reduced functional capacity, respectively, in older adults. We investigated whether lifestyle-related risk factors modulate the association between sarcopenia and osteoporosis in older Korean adults. The current findings of the study suggest that physical activity and

  6. Body mass and clutch size may modulate prolactin and corticosterone levels in eiders.

    PubMed

    Criscuolo, Francois; Bertile, Fabrice; Durant, Joel M; Raclot, Thierry; Gabrielsen, Geir Wing; Massemin, Sylvie; Chastel, Olivier

    2006-01-01

    Altered body condition, increased incubation costs, and egg loss are important proximate factors modulating bird parental behavior, since they inform the adult about its remaining chances of survival or about the expected current reproductive success. Hormonal changes should reflect internal or external stimuli, since corticosterone levels (inducing nest abandonment) are known to increase while body condition deteriorates, and prolactin levels (stimulating incubation) decrease following egg predation. However, in a capital incubator that based its investment on available body reserves and naturally lost about half of its body mass during incubation, corticosterone should be maintained at a low threshold to avoid protein mobilization for energy supply. This study focused on the regulation of corticosterone and prolactin release in such birds during incubation, when facing egg manipulation (control, reduced, or increased) or a stressful event. Blood samples were taken before and after clutch manipulation and at hatching. Corticosterone levels were determined before and after 30 min of captivity. Female eiders exhibited a high hypothalamic-pituitary-adrenal sensitivity, plasma concentration of corticosterone being increased by four- to fivefold following 30 min of captivity. The adrenocortical response was not modified by body mass loss but was higher in birds for which clutch size was increased. In the same way, females did not show different prolactin levels among the experimental groups. However, when incubation started, prolactin levels were correlated to body mass, suggesting that nest attendance is programmed in relation to the female initial body condition. Moreover, due to an artifactual impact of bird manipulation, increased baseline corticosterone was associated with a prolactin decrease in the control group. These data suggest that, in eiders, body mass and clutch size modification can modulate prolactin and corticosterone levels, which cross-regulate each

  7. Feeling numb: temperature, but not thermal pain, modulates feeling of body ownership.

    PubMed

    Kammers, Marjolein P M; Rose, Katy; Haggard, Patrick

    2011-04-01

    There is an important link between pain, regulation of body temperature, and body ownership. For example, an altered feeling of body ownership - due to either chronic pain or "rubber-hand illusions" (RHI) - is associated with reduced temperature of the affected limb. However, the causal relationships within this triad are not well understood. We therefore investigated whether external manipulation of body temperature can influence body ownership. We used a thermode to make the right hand of healthy participants either painfully cold, cool, neutral, warm or painfully hot. Next, we induced the RHI and investigated its effects on the perceived position of the hand, on the subjective feeling of body ownership, and on physical changes in hand temperature. We replicate previous reports that inducing the RHI produces a decrease in limb temperature. Importantly, we demonstrate for the first time a causal effect in the opposite direction. Cooling down the participant's hand increased the strength of the RHI, while warming the hand externally decreased the strength of the RHI. Finally, we show that the painful extremes of these temperatures do not modulate the RHI. Hence, while thermosensation is an important driver of body ownership, pain seems to bypass the multisensory mechanisms of embodiment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Motor control of rhythmic dance from a dynamical systems perspective: a review.

    PubMed

    Miura, Akito; Fujii, Shinya; Yamamoto, Yuji; Kudo, Kazutoshi

    2015-03-01

    While dancers and dance educators express great interest in motor control as it relates to rhythmic dance, the subject remains largely uninvestigated. In order to advance our understanding of motor control, a theoretical framework called the dynamical systems approach (DSA) has been used. The DSA was originally developed to describe mathematically the principle of synchronization patterns in nature and their change over time. In recent decades, researchers studying human motor control have attempted to describe the synchronization of rhythmic movement using a DSA. More recently, this approach has been applied specifically to rhythmic dance movements. A series of studies that used the DSA revealed that when people synchronize rhythmic movement of a body part 1. with a different body part, 2. with other people's movement, or 3. with an auditory beat with some phase differences, unintentional and autonomous entrainment to a specific synchronization pattern occurs. However, through practice dancers are able to overcome such entrainment and dance freely. These findings provide practical suggestions for effective ways of training in dance education. The DSA can potentially be an effective tool for furthering our understanding of the motor control utilized in rhythmic dance.

  9. Does Human Milk Modulate Body Composition in Late Preterm Infants at Term-Corrected Age?

    PubMed

    Giannì, Maria Lorella; Consonni, Dario; Liotto, Nadia; Roggero, Paola; Morlacchi, Laura; Piemontese, Pasqua; Menis, Camilla; Mosca, Fabio

    2016-10-23

    (1) Background: Late preterm infants account for the majority of preterm births and are at risk of altered body composition. Because body composition modulates later health outcomes and human milk is recommended as the normal method for infant feeding, we sought to investigate whether human milk feeding in early life can modulate body composition development in late preterm infants; (2) Methods: Neonatal, anthropometric and feeding data of 284 late preterm infants were collected. Body composition was evaluated at term-corrected age by air displacement plethysmography. The effect of human milk feeding on fat-free mass and fat mass content was evaluated using multiple linear regression analysis; (3) Results: Human milk was fed to 68% of the infants. According to multiple regression analysis, being fed any human milk at discharge and at  term-corrected and being fed exclusively human milk at term-corrected age were positively associated with fat-free mass content(β = -47.9, 95% confidence interval (CI) = -95.7; -0.18; p = 0.049; β = -89.6, 95% CI = -131.5; -47.7; p < 0.0001; β = -104.1, 95% CI = -151.4; -56.7, p < 0.0001); (4) Conclusion: Human milk feeding appears to be associated with fat-free mass deposition in late preterm infants. Healthcare professionals should direct efforts toward promoting and supporting breastfeeding in these vulnerable infants.

  10. Does Human Milk Modulate Body Composition in Late Preterm Infants at Term-Corrected Age?

    PubMed Central

    Giannì, Maria Lorella; Consonni, Dario; Liotto, Nadia; Roggero, Paola; Morlacchi, Laura; Piemontese, Pasqua; Menis, Camilla; Mosca, Fabio

    2016-01-01

    (1) Background: Late preterm infants account for the majority of preterm births and are at risk of altered body composition. Because body composition modulates later health outcomes and human milk is recommended as the normal method for infant feeding, we sought to investigate whether human milk feeding in early life can modulate body composition development in late preterm infants; (2) Methods: Neonatal, anthropometric and feeding data of 284 late preterm infants were collected. Body composition was evaluated at term-corrected age by air displacement plethysmography. The effect of human milk feeding on fat-free mass and fat mass content was evaluated using multiple linear regression analysis; (3) Results: Human milk was fed to 68% of the infants. According to multiple regression analysis, being fed any human milk at discharge and at  term-corrected and being fed exclusively human milk at term-corrected age were positively associated with fat-free mass content(β = −47.9, 95% confidence interval (CI) = −95.7; −0.18; p = 0.049; β = −89.6, 95% CI = −131.5; −47.7; p < 0.0001; β = −104.1, 95% CI = −151.4; −56.7, p < 0.0001); (4) Conclusion: Human milk feeding appears to be associated with fat-free mass deposition in late preterm infants. Healthcare professionals should direct efforts toward promoting and supporting breastfeeding in these vulnerable infants. PMID:27782098

  11. Task-dependent modulation of medial geniculate body is behaviorally relevant for speech recognition.

    PubMed

    von Kriegstein, Katharina; Patterson, Roy D; Griffiths, T D

    2008-12-09

    Recent work has shown that responses in first-order sensory thalamic nuclei are modulated by cortical areas. However, the functional role of such corticothalamic modulation and its relevance for human perception is still unclear. Here, we show in two functional magnetic resonance imaging (fMRI) studies that the neuronal response in the first-order auditory thalamus, the medial geniculate body (MGB), is increased when rapidly varying spectrotemporal features of speech sounds are processed, as compared to processing slowly varying spectrotemporal features of the same sounds. The strength of this task-dependent modulation is positively correlated with the speech recognition scores of individual subjects. These results show that task-dependent modulation of the MGB serves the processing of specific features of speech sounds and is behaviorally relevant for speech recognition. Our findings suggest that the first-order auditory thalamus is not simply a nonspecific gatekeeper controlled by attention. Together with studies in nonhuman mammals, our findings imply a mechanism in which the first-order auditory thalamus, possibly by corticothalamic modulation, reacts adaptively to features of sensory input.

  12. Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspective.

    PubMed

    Pfeiffer, Christian; Schmutz, Valentin; Blanke, Olaf

    2014-12-01

    Self-consciousness is based on multisensory signals from the body. In full-body illusion (FBI) experiments, multisensory conflict was used to induce changes in three key aspects of bodily self-consciousness (BSC): self-identification (which body 'I' identify with), self-location (where 'I' am located), and first-person perspective (from where 'I' experience the world; 1PP). Here, we adapted a previous FBI protocol in which visuotactile stroking was administered by a robotic device (tactile stroking) and simultaneously rendered on the back of a virtual body (visual stroking) that participants viewed on a head-mounted display as if filmed from a posterior viewpoint of a camera. We compared the effects of two different visuospatial viewpoints on the FBI and thereby on these key aspects of BSC. During control manipulations, participants saw a no-body object instead of a virtual body (first experiment) or received asynchronous versus synchronous visuotactile stroking (second experiment). Results showed that within-subjects visuospatial viewpoint manipulations affected the subjective 1PP ratings if a virtual body was seen but had no effect for viewing a non-body object. However, visuospatial viewpoint had no effect on self-identification, but depended on the viewed object and visuotactile synchrony. Self-location depended on visuospatial viewpoint (first experiment) and visuotactile synchrony (second experiment). Our results show that the visuospatial viewpoint from which the virtual body is seen during FBIs modulates the subjective 1PP and that such viewpoint manipulations contribute to spatial aspects of BSC. We compare the present data with recent data revealing vestibular contributions to the subjective 1PP and discuss the multisensory nature of BSC and the subjective 1PP.

  13. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice

    PubMed Central

    Svensson, Kristoffer; Albert, Verena; Cardel, Bettina; Salatino, Silvia; Handschin, Christoph

    2016-01-01

    Ketone bodies are crucial energy substrates during states of low carbohydrate availability. However, an aberrant regulation of ketone body homeostasis can lead to complications such as diabetic ketoacidosis. Exercise and diabetes affect systemic ketone body homeostasis, but the regulation of ketone body metabolism is still enigmatic. Using mice with either a knockout or overexpression of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle, we show that PGC-1α regulates ketolytic gene transcription in muscle. Furthermore, ketone body homeostasis of these mice was investigated during fasting, exercise, ketogenic diet feeding and after streptozotocin injection. In response to these ketogenic stimuli, we show that modulation of PGC-1α levels in muscle affects systemic ketone body homeostasis. Moreover, our data demonstrate that skeletal muscle PGC-1α is necessary for the enhanced ketolytic capacity in response to exercise training and overexpression of PGC-1α in muscle enhances systemic ketolytic capacity and is sufficient to ameliorate diabetic hyperketonemia in mice. Using cultured myotubes, we also show that the transcription factor estrogen related receptor α (ERRα) is a partner of PGC-1α in the regulation of ketolytic gene transcription. Collectively, these results demonstrate a central role of skeletal muscle PGC-1α in the transcriptional regulation of systemic ketolytic capacity. PMID:26849960

  14. The processing of body expressions during emotional scenes: the modulation role of attachment styles.

    PubMed

    Ma, Yuanxiao; Chen, Xu; Ran, Guangming; Ma, Haijing; Zhang, Xing; Liu, Guangzeng

    2017-03-17

    There is broad evidence indicating that contextual information influence the processing of emotional stimuli. However, attachment theory suggests that attachment styles contribute to the ways in which people perceive emotional events. To shed light on whether the processing of body expressions during different emotional scenes is modulated by attachment styles, attachment-related electrophysiological differences were measured using event-related potentials. For avoidantly attached group, our results suggested that larger N170 amplitudes were educed by neutral bodies than angry bodies, which was found only in neutral scene. Moreover, significant differences were found in P300 amplitudes in response to angry bodies compared with neutral ones only during angry scene. However, securely and anxiously attached individuals were associated with larger P300 amplitudes in response to angry bodies versus neutral ones in both emotional scenes. The current study highlights the characteristics of cognitive processing of attachment styles on body expressions during different emotional scenes, with the variation of N170 and P300 amplitude in different emotional scenes as the best example.

  15. The processing of body expressions during emotional scenes: the modulation role of attachment styles

    PubMed Central

    Ma, Yuanxiao; Chen, Xu; Ran, Guangming; Ma, Haijing; Zhang, Xing; Liu, Guangzeng

    2017-01-01

    There is broad evidence indicating that contextual information influence the processing of emotional stimuli. However, attachment theory suggests that attachment styles contribute to the ways in which people perceive emotional events. To shed light on whether the processing of body expressions during different emotional scenes is modulated by attachment styles, attachment-related electrophysiological differences were measured using event-related potentials. For avoidantly attached group, our results suggested that larger N170 amplitudes were educed by neutral bodies than angry bodies, which was found only in neutral scene. Moreover, significant differences were found in P300 amplitudes in response to angry bodies compared with neutral ones only during angry scene. However, securely and anxiously attached individuals were associated with larger P300 amplitudes in response to angry bodies versus neutral ones in both emotional scenes. The current study highlights the characteristics of cognitive processing of attachment styles on body expressions during different emotional scenes, with the variation of N170 and P300 amplitude in different emotional scenes as the best example. PMID:28303949

  16. Modulation of anticipatory postural activity for multiple conditions of a whole-body pointing task.

    PubMed

    Tolambiya, A; Chiovetto, E; Pozzo, T; Thomas, E

    2012-05-17

    This is a study on associated postural activities during the anticipatory segments of a multijoint movement. Several previous studies have shown that they are task dependant. The previous studies, however, have mostly been limited in demonstrating the presence of modulation for one task condition, that is, one aspect such as the distance of the target or the direction of reaching. Real-life activities like whole-body pointing, however, can vary in several ways. How specific is the adaptation of the postural activities for the diverse possibilities of a whole-body pointing task? We used a classification paradigm to answer this question. We examined the anticipatory postural electromyograms for four different types of whole-body pointing tasks. The presence of task-dependent modulations in these signals was probed by performing four-way classification tests using a support vector machine (SVM). The SVM was able to achieve significantly higher than chance performance in correctly predicting the movements at hand (Chance performance 25%). Using only anticipatory postural muscle activity, the correct movement at hand was predicted with a mean rate of 62%. Because this is 37% above chance performance, it suggests the presence of postural modulation for diverse conditions. The anticipatory activities consisted of both activations and deactivations. Movement prediction with the use of the activating muscles was significantly better than that obtained with the deactivating muscles. This suggests that more specific modulations for the movement at hand take place through activation, whereas the deactivation is more general. The study introduces a new method for investigating adaptations in motor control. It also sheds new light on the quantity and quality of information available in the feedforward segments of a voluntary multijoint motor activity.

  17. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    SciTech Connect

    Kay, Steve A.

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  18. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect.

    PubMed

    Llinás, Rodolfo; Urbano, Francisco J; Leznik, Elena; Ramírez, Rey R; van Marle, Hein J F

    2005-06-01

    Brain function is fundamentally related in the most general sense to the richness of thalamocortical interconnectivity, and in particular to the rhythmic oscillatory properties of thalamocortical loops. Such rhythmicity is involved in the genesis of cognition, in the sleep-wake cycle, and in several neurological and psychiatric disorders. The role of GABA-mediated transmission in regulating these functional states is addressed here. At the cortical level, inhibition determines the spread of cortical activation by sculpting the precise activity patterns that underlie the details of cognition and motor control. At the thalamic level, GABA-mediated inhibition modulates and resets distribution of the ongoing thalamocortical rhythmic oscillations that bind multisensory inputs into a single cognitive experience and regulate arousal levels.

  19. Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy.

    PubMed

    Cho, Chang-Hoon

    2012-01-01

    The circadian pattern of seizures in people with epilepsy (PWE) was first described two millennia ago. However, these phenomena have not received enough scientific attention, possibly due to the lack of promising hypotheses to address the interaction between seizure generation and a physiological clock. To propose testable hypotheses at the molecular level, interactions between circadian rhythm, especially transcription factors governing clock genes expression, and the mTOR (mammalian target of rapamycin) signaling pathway, the major signaling pathway in epilepsy, will be reviewed. Then, two closely related hypotheses will be proposed: (1) Rhythmic activity of hyperactivated mTOR signaling molecules results in rhythmic increases in neuronal excitability. These rhythmic increases in excitability periodically exceed the seizure threshold, displaying the behavioral seizures. (2) Oscillation of neuronal excitability in SCN modulates the rhythmic excitability in the hippocampus through subiculum via long-range projections. Findings from published results, their implications, and proposals for new experiments will be discussed. These attempts may ignite further discussion on what we still need to learn about the rhythmicity of spontaneous seizures.

  20. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    PubMed

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  1. Postural trials: expertise in rhythmic gymnastics increases control in lateral directions.

    PubMed

    Calavalle, A R; Sisti, D; Rocchi, M B L; Panebianco, R; Del Sal, M; Stocchi, V

    2008-11-01

    The first aim of this paper was to investigate if expertise in rhythmic gymnastics influences postural performance even in an easy non-specific task such as bipedal posture. Rhythmic gymnastics is a unique female sport which encompasses aspects of both artistic gymnastics and ballet and includes the use of a small apparatus (rope, hoop, ball, clubs and ribbon). Most previous studies have shown that expertise achieved by artistic gymnasts and dancers improves postural steadiness only in the situations for which those athletes are trained. Literature has not yet compared rhythmic gymnasts to other athletes in terms of their postural strategies. Hence, the study presented herein tested a group of high level rhythmic gymnasts and a group of female university students, trained in other sports, in the bipedal posture under eyes open and closed conditions. A force platform was used to record body sway. (1) Distance from the centre of sway, (2) lateral and (3) antero-posterior displacements were analyzed in time and frequency domains. Comparing the two groups, it was found that rhythmic gymnasts had better strategies than students in simple postural tasks, especially in lateral directions and in the period from 0.05 to 2 s. The most interesting finding in this study is that rhythmic gymnastics training seems to have a direct effect on the ability to maintain bipedal posture, which may confirm the "transfer" hypothesis of rhythmic gymnastics expertise to bipedal postural sway, especially in medio-lateral displacements. This finding has never been reported in previous studies on artistic gymnasts and ballet dancers. Furthermore, the present study confirmed the visual dependence of all the athletes, irrespective of their disciplines, in their postural trials.

  2. [Role of rhythmicity in infant development].

    PubMed

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the

  3. Rhythmic patterning in Malaysian and Singapore English.

    PubMed

    Tan, Rachel Siew Kuang; Low, Ee-Ling

    2014-06-01

    Previous work on the rhythm of Malaysian English has been based on impressionistic observations. This paper utilizes acoustic analysis to measure the rhythmic patterns of Malaysian English. Recordings of the read speech and spontaneous speech of 10 Malaysian English speakers were analyzed and compared with recordings of an equivalent sample of Singaporean English speakers. Analysis was done using two rhythmic indexes, the PVI and VarcoV. It was found that although the rhythm of read speech of the Singaporean speakers was syllable-based as described by previous studies, the rhythm of the Malaysian speakers was even more syllable-based. Analysis of the syllables in specific utterances showed that Malaysian speakers did not reduce vowels as much as Singaporean speakers in cases of syllables in utterances. Results of the spontaneous speech confirmed the findings for the read speech; that is, the same rhythmic patterning was found which normally triggers vowel reductions.

  4. An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants.

    PubMed

    Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry

    2016-01-01

    Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias-called the Iambic-Trochaic Law (ITL)-has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants' grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition.

  5. An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants

    PubMed Central

    Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry

    2016-01-01

    Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)–has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants’ grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition. PMID:27378887

  6. Bilateral Reflex Fluctuations during Rhythmic Movement of Remote Limb Pairs

    PubMed Central

    Mezzarane, Rinaldo A.; Nakajima, Tsuyoshi; Zehr, E. Paul

    2017-01-01

    The modulation of spinal cord excitability during rhythmic limb movement reflects the neuronal coordination underlying actions of the arms and legs. Integration of network activity in the spinal cord can be assessed by reflex variability between the limbs, an approach so far very little studied. The present work addresses this question by eliciting Hoffmann (H-) reflexes in both limbs to assess if common drive onto bilateral pools of motoneurons influence spinal cord excitability simultaneously or with a delay between sides. A cross-covariance (CCV) sequence between reflexes in both arms or legs was evaluated under conditions providing common drive bilaterally through voluntary muscle contraction and/or rhythmic movement of the remote limbs. For H-reflexes in the flexor carpi radialis (FCR) muscle, either contraction of the FCR or leg cycling induced significant reduction in the amplitude of the peak at the zero lag in the CCV sequence, indicating independent variations in spinal excitability between both sides. In contrast, for H-reflexes in the soleus (SO) muscle, arm cycling revealed no reduction in the amplitude of the peak in the CCV sequence at the zero lag. This suggests a more independent control of the arms compared with the legs. These results provide new insights into the organization of human limb control in rhythmic activity and the behavior of bilateral reflex fluctuations under different motor tasks. From a functional standpoint, changes in the co-variability might reflect dynamic adjustments in reflex excitability that are subsumed under more global control features during locomotion. PMID:28725191

  7. An unusual case of rhythmic movement disorder.

    PubMed

    Kaneda, R; Furuta, H; Kazuto, K; Arayama, K; Sano, J; Koshino, Y

    2000-06-01

    Rhythmic movement disorder is one of the sleep-wake transition disorders listed in the International Classification of Sleep Disorders. According to this classification, the condition commonly occurs in infants and toddlers, and persistence beyond 4 years of age is unusual. Recently, we encountered a case in which rhythmic movement disorder persisted up until the age of 12 years with spikes registering on the sleep electroencephalogram. Epileptic seizure was ruled out because of the characteristic rolling movement, absence of any other epileptic symptoms (e.g. vocalization and tonic-clonic seizure) and cessation as a result of removal of the blanket.

  8. Modulation of adipose tissue lipolysis and body weight by high-density lipoproteins in mice

    PubMed Central

    Wei, H; Averill, M M; McMillen, T S; Dastvan, F; Mitra, P; Subramanian, S; Tang, C; Chait, A; LeBoeuf, R C

    2014-01-01

    Background: Obesity is associated with reduced levels of circulating high-density lipoproteins (HDLs) and its major protein, apolipoprotein (apo) A-I. As a result of the role of HDL and apoA-I in cellular lipid transport, low HDL and apoA-I may contribute directly to establishing or maintaining the obese condition. Methods: To test this, male C57BL/6 wild-type (WT), apoA-I deficient (apoA-I−/−) and apoA-I transgenic (apoA-Itg/tg) mice were fed obesogenic diets (ODs) and monitored for several clinical parameters. We also performed cell culture studies. Results: ApoA-I−/− mice gained significantly more body weight and body fat than WT mice over 20 weeks despite their reduced food intake. During a caloric restriction regime imposed on OD-fed mice, apoA-I deficiency significantly inhibited the loss of body fat as compared with WT mice. Reduced body fat loss with caloric restriction in apoA-I−/− mice was associated with blunted stimulated adipose tissue lipolysis as verified by decreased levels of phosphorylated hormone-sensitive lipase (p-HSL) and lipolytic enzyme mRNA. In contrast to apoA-I−/− mice, apoA-Itg/tg mice gained relatively less weight than WT mice, consistent with other reports. ApoA-Itg/tg mice showed increased adipose tissue lipolysis, verified by increased levels of p-HSL and lipolytic enzyme mRNA. In cell culture studies, HDL and apoA-I specifically increased catecholamine-induced lipolysis possibly through modulating the adipocyte plasma membrane cholesterol content. Conclusions: Thus, apoA-I and HDL contribute to modulating body fat content by controlling the extent of lipolysis. ApoA-I and HDL are key components of lipid metabolism in adipose tissue and constitute new therapeutic targets in obesity. PMID:24567123

  9. When your arm becomes mine: pathological embodiment of alien limbs using tools modulates own body representation.

    PubMed

    Garbarini, Francesca; Fossataro, Carlotta; Berti, Anna; Gindri, Patrizia; Romano, Daniele; Pia, Lorenzo; della Gatta, Francesco; Maravita, Angelo; Neppi-Modona, Marco

    2015-04-01

    Previous evidence has shown that active tool-use can reshape one's own body schema, extend peripersonal space and modulate the representation of related body parts. Here we investigate the effect of tool-use training on length representation of the contralesional forearm in brain-damaged hemiplegic patients who manifested a pathological embodiment of other people body parts. Four patients and 20 aged-matched healthy-controls were asked to estimate the mid-point of their contralesional forearm before and after 15 min of tool-use training (i.e. retrieving targets with a garbage plier). In the case of patients, training was always performed by the examiner's (alien) arm acting in two different positions, aligned (where the pathological embodiment occurs; E+ condition) or misaligned (where the pathological embodiment does not occur; E- condition) relative to the patients' shoulder. Healthy controls performed tool-use training either with their own arm (action condition) or observing the examiner's arm performing the task (observation condition), handling (observation with-tool condition) or not (observation without-tool condition) a similar tool. Crucially, in the E+ condition, when patients were convinced to perform the tool-use training with their own paralyzed arm, a significant overestimation effect was found (as in the Action condition with normal subjects): patients mislocated their forearm midpoint more proximally to the hand in the post- than in the pre-training phase. Conversely, in the E- condition, they did not show any overestimation effect, similarly to healthy subjects in the observation condition (neither in the with-tool nor in the without-tool condition significant overestimation effects were found). These findings show the existence of a tight link between spatial, motor and bodily representations and provide strong evidence that a pathological sense of body ownership can extend to intentional motor processes and modulate the sensory map of action

  10. An invisible touch: Body-related multisensory conflicts modulate visual consciousness.

    PubMed

    Salomon, Roy; Galli, Giulia; Łukowska, Marta; Faivre, Nathan; Ruiz, Javier Bello; Blanke, Olaf

    2016-07-29

    The majority of scientific studies on consciousness have focused on vision, exploring the cognitive and neural mechanisms of conscious access to visual stimuli. In parallel, studies on bodily consciousness have revealed that bodily (i.e. tactile, proprioceptive, visceral, vestibular) signals are the basis for the sense of self. However, the role of bodily signals in the formation of visual consciousness is not well understood. Here we investigated how body-related visuo-tactile stimulation modulates conscious access to visual stimuli. We used a robotic platform to apply controlled tactile stimulation to the participants' back while they viewed a dot moving either in synchrony or asynchrony with the touch on their back. Critically, the dot was rendered invisible through continuous flash suppression. Manipulating the visual context by presenting the dot moving on either a body form, or a non-bodily object we show that: (i) conflict induced by synchronous visuo-tactile stimulation in a body context is associated with a delayed conscious access compared to asynchronous visuo-tactile stimulation, (ii) this effect occurs only in the context of a visual body form, and (iii) is not due to detection or response biases. The results indicate that body-related visuo-tactile conflicts impact visual consciousness by facilitating access of non-conflicting visual information to awareness, and that these are sensitive to the visual context in which they are presented, highlighting the interplay between bodily signals and visual experience.

  11. Selective Androgen Receptor Modulator (SARM) Treatment Prevents Bone Loss and Reduces Body Fat in Ovariectomized Rats

    PubMed Central

    Kearbey, Jeffrey D.; Gao, Wenqing; Narayanan, Ramesh; Fisher, Scott J.; Wu, Di; Miller, Duane D.; Dalton, James T.

    2007-01-01

    Purpose This study was conducted to examine the bone and body composition effects of S-4, an arylpropionamide derived Selective Androgen Receptor Modulator (SARM) in an ovariectomy induced model of accelerated bone loss. Methods One hundred twenty female Sprague-Dawley rats aged to twenty-three weeks were randomly assigned to twelve treatment groups. Drug treatment was initiated immediately following ovariectomy and continued for one hundred twenty days. Whole body bone mineral density (BMD), body composition, and lumbar vertebrae BMD were measured by dual energy x-ray absorptiometry. More stringent regional pQCT and biomechanical strength testing was performed on excised femurs. Results We found that S-4 treatment maintained whole body and trabecular BMD, cortical content, and increased bone strength while decreasing body fat in these animals. Conclusions The data presented herein show the protective skeletal effects of S-4. Our previous reports have shown the tissue selectivity and muscle anabolic activity of S-4. Together these data suggest that S-4 could reduce the incidence of fracture via two different mechanisms (i.e., via direct effects in bone and reducing the incidence of falls through increased muscle strength). This approach to fracture reduction would be advantageous over current therapies in these patients which are primarily antiresorptive in nature. PMID:17063395

  12. Rhythmic movement disorder (head banging) in an adult during rapid eye movement sleep.

    PubMed

    Anderson, Kirstie N; Smith, Ian E; Shneerson, John M

    2006-06-01

    Sleep-related rhythmic movements (head banging or body rocking) are extremely common in normal infants and young children, but less than 5% of children over the age of 5 years old exhibit these stereotyped motor behaviors. They characteristically occur during drowsiness or sleep onset rather than in deep sleep or rapid eye movement (REM) sleep. We present a 27-year-old man with typical rhythmic movement disorder that had persisted into adult life and was restricted to REM sleep. This man is the oldest subject with this presentation reported to date and highlights the importance of recognizing this nocturnal movement disorder when it does occur in adults.

  13. Mean body temperature does not modulate eccrine sweat rate during upright tilt.

    PubMed

    Wilson, Thad E; Cui, Jian; Crandall, Craig G

    2005-04-01

    Conflicting reports exist about the role of baroreflexes in efferent control of eccrine sweat rate. These conflicting reports may be due to differing mean body temperatures between studies. The purpose of this project was to test the hypothesis that mean body temperature modulates the effect of head-up tilt on sweat rate and skin sympathetic nerve activity (SSNA). To address this question, mean body temperature (0.9.internal temperature + 0.1.mean skin temperature), SSNA (microneurography of peroneal nerve, n = 8), and sweat rate (from an area innervated by the peroneal nerve and from two forearm sites, one perfused with neostigmine to augment sweating at lower mean body temperatures and the second with the vehicle, n = 12) were measured in 13 subjects during multiple 30 degrees head-up tilts during whole body heating. At the end of the heat stress, mean body temperature (36.8 +/- 0.1 to 38.0 +/- 0.1 degrees C) and sweat rate at all sites were significantly elevated. No significant correlations were observed between mean body temperature and the change in SSNA during head-up tilt (r = 0.07; P = 0.62), sweating within the innervated area (r = 0.06; P = 0.56), sweating at the neostigmine treated site (r = 0.04; P = 0.69), or sweating at the control site (r = 0.01; P = 0.94). Also, for each tilt throughout the heat stress, there were no significant differences in sweat rate (final tilt sweat rates were 0.69 +/- 0.11 and 0.68 +/- 0.11 mg.cm(-2).min(-1) within the innervated area; 1.04 +/- 0.16 and 1.06 +/- 0.16 mg.cm(-2).min(-1) at the neostigmine-treated site; and 0.85 +/- 0.15 and 0.85 +/- 0.15 mg.cm(-2).min(-1) at the control site, for supine and tilt, respectively). Hence, these data indicate that mean body temperature does not modulate eccrine sweat rate during baroreceptor unloading induced via 30 degrees head-up tilt.

  14. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  15. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  16. Basal body reorientation mediated by a Ca2+-modulated contractile protein

    PubMed Central

    1987-01-01

    A rapid, Ca2+-dependent change in the angle between basal bodies (up to 180 degrees) is associated with light-induced reversal of swimming direction (the "photophobic" response) in a number of flagellated green algae. In isolated, detergent-extracted, reactivated flagellar apparatus complexes of Spermatozopsis similis, axonemal beat form conversion to the symmetrical/undulating flagellar pattern and basal body reorientation (from the antiparallel to the parallel configuration) are simultaneously induced at greater than or equal to 10(-7) M Ca2+. Basal body reorientation, however, is independent of flagellar beating since it is induced at greater than or equal to 10(- 7) M Ca2+ when flagellar beating is inhibited (i.e., in the presence of 1 microM orthovanadate in reactivation solutions; in the absence of ATP or dithiothreitol in isolation and reactivation solutions), or when axonemes are mechanically removed from flagellar apparatuses. Although frequent axonemal beat form reversals were induced by varying the Ca2+ concentration, antiparallel basal body configuration could not be restored in isolated flagellar apparatuses. Observations of the photophobic response in vivo indicate that even though the flagella resume the asymmetric, breaststroke beat form 1-2 s after photostimulation, antiparallel basal body configuration is not restored until a few minutes later. Using an antibody generated against the 20- kD Ca2+-modulated contractile protein of striated flagellar roots of Tetraselmis striata (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, 1984, J. Cell Biol., 99:962-970), we have found the distal connecting fiber of Spermatozopsis similis to be immunoreactive by indirect immunofluorescence and immunogold electron microscopy. Electrophoretic and immunoblot analysis indicates that the antigen of S. similis flagellar apparatuses consists, like the Tetraselmis protein, of two acidic isoforms of 20 kD. We conclude that the distal basal body connecting fiber is

  17. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.

    PubMed

    McDearmid, Jonathan R; Drapeau, Pierre

    2006-01-01

    We have examined the localization and activity of the neural circuitry that generates swimming behavior in developing zebrafish that were spinalized to isolate the spinal cord from descending brain inputs. We found that addition of the excitatory amino acid agonist N-methyl-d-aspartate (NMDA) to spinalized zebrafish at 3 days in development induced repeating episodes of rhythmic tail beating activity reminiscent of slow swimming behavior. The neural correlate of this activity, monitored by extracellular recording comprised repeating episodes of rhythmic, rostrocaudally progressing peripheral nerve discharges that alternated between the two sides of the body. Motoneuron recordings revealed an activity pattern comprising a slow oscillatory and a fast synaptic component that was consistent with fictive swimming behavior. Pharmacological and voltage-clamp analysis implicated glycine and glutamate in generation of motoneuron activity. Contralateral alternation of motor activity was disrupted with strychnine, indicating a role for glycine in coordinating left-right alternation during NMDA-induced locomotion. At embryonic stages, while rhythmic synaptic activity patterns could still be evoked in motoneurons, they were typically lower in frequency. Kinematic recordings revealed that prior to 3 days in development, NMDA was unable to reliably generate rhythmic tail beating behavior. We conclude that NMDA induces episodes of rhythmic motor activity in spinalized developing zebrafish that can be monitored physiologically in paralyzed preparations. Therefore as for other vertebrates, the zebrafish central pattern generator is intrinsic to the spinal cord and can operate in isolation provided a tonic source of excitation is given.

  18. Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions.

    PubMed

    Kart Gür, Mutlu; Refinetti, Roberto; Gür, Hakan

    2009-02-01

    We studied daily rhythmicity of body temperature (T(b)) before and during hibernation in Anatolian ground squirrels (Spermophilus xanthoprymnus) under natural and laboratory conditions using surgically implanted temperature loggers. Under both conditions, robust daily T(b) rhythmicity with parameters comparable to those of other ground squirrel species was observed before but not during hibernation. Euthermic animals had robust daily T(b) rhythms with a mean of 37.0 degrees C and a range of excursion of approximately 4 degrees C. No T(b) rhythm was detected during torpor bouts, either because T(b) rhythmicity was absent or because the daily range of excursion was smaller than 0.2 degrees C. The general patterns of hibernation that we observed in Anatolian ground squirrels were similar to those previously observed by other investigators in other species of ground squirrels.

  19. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    SciTech Connect

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S.; Damen, Eugene M.F.

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  20. An Update on the Rhythmic Arts Project

    ERIC Educational Resources Information Center

    Tuduri, Eddie

    2008-01-01

    The Rhythmic Arts Project (TRAP) is touching the lives of typical children and adults with various disabilities all over the world and now has programs in two Bulgarian orphanages, day programs in Australia, and, most recently, in the general hospital in Johannesburg, South Africa. TRAP is also currently approaching facilities in more than 20…

  1. Encoding and Retrieval During Bimanual Rhythmic Coordination

    ERIC Educational Resources Information Center

    Shockley, Kevin; Turvey, Michael T.

    2005-01-01

    In 2 experiments, bimanual 1:1 rhythmic coordination was performed concurrently with encoding or retrieval of word lists. Effects of divided attention (DA) on coordination were indexed by changes in mean relative phase and recurrence measures of shared activity between the 2 limbs. Effects of DA on memory were indexed by deficits in recall…

  2. Rhythmic Characteristics of Colloquial and Formal Tamil

    ERIC Educational Resources Information Center

    Keane, Elinor

    2006-01-01

    Application of recently developed rhythmic measures to passages of read speech in colloquial and formal Tamil revealed some significant differences between the two varieties, which are in diglossic distribution. Both were also distinguished from a set of control data from British English speakers reading an equivalent passage. The findings have…

  3. Entrainment and the cranial rhythmic impulse.

    PubMed

    McPartland, J M; Mein, E A

    1997-01-01

    Entrainment is the integration or harmonization of oscillators. All organisms pulsate with myriad electrical and mechanical rhythms. Many of these rhythms emanate from synchronized pulsating cells (eg, pacemaker cells, cortical neurons). The cranial rhythmic impulse is an oscillation recognized by many bodywork practitioners, but the functional origin of this impulse remains uncertain. We propose that the cranial rhythmic impulse is the palpable perception of entrainment, a harmonic frequency that incorporates the rhythms of multiple biological oscillators. It is derived primarily from signals between the sympathetic and parasympathetic nervous systems. Entrainment also arises between organisms. The harmonizing of coupled oscillators into a single, dominant frequency is called frequency-selective entrainment. We propose that this phenomenon is the modus operandi of practitioners who use the cranial rhythmic impulse in craniosacral treatment. Dominant entrainment is enhanced by "centering," a technique practiced by many healers, for example, practitioners of Chinese, Tibetan, and Ayurvedic medicine. We explore the connections between centering, the cranial rhythmic impulse, and craniosacral treatment.

  4. An Update on the Rhythmic Arts Project

    ERIC Educational Resources Information Center

    Tuduri, Eddie

    2008-01-01

    The Rhythmic Arts Project (TRAP) is touching the lives of typical children and adults with various disabilities all over the world and now has programs in two Bulgarian orphanages, day programs in Australia, and, most recently, in the general hospital in Johannesburg, South Africa. TRAP is also currently approaching facilities in more than 20…

  5. Rhythmic Characteristics of Colloquial and Formal Tamil

    ERIC Educational Resources Information Center

    Keane, Elinor

    2006-01-01

    Application of recently developed rhythmic measures to passages of read speech in colloquial and formal Tamil revealed some significant differences between the two varieties, which are in diglossic distribution. Both were also distinguished from a set of control data from British English speakers reading an equivalent passage. The findings have…

  6. Dance expertise modulates behavioral and psychophysiological responses to affective body movement.

    PubMed

    Christensen, Julia F; Gomila, Antoni; Gaigg, Sebastian B; Sivarajah, Nithura; Calvo-Merino, Beatriz

    2016-08-01

    The present study shows how motor expertise increases individuals' sensitivity to others' affective body movement. This enhanced sensitivity is evident in the experts' behavior and physiology. Nineteen affective movement experts (professional ballet dancers) and 24 controls watched 96 video clips of emotionally expressive body movements while they performed an affect rating task (subjective response), and their galvanic skin response was recorded (physiological response). The movements in the clips were either sad or happy, and in half of the trials, movements were played in the order in which they are learned (forward presentation), and in the other half, movements were played backward (control condition). Results showed that motor expertise in affective body movement specifically modulated both behavioral and physiological sensitivity to others' affective body movement, and that this sensitivity is particularly strong when movements are shown in the way they are learnt (forward presentation). The evidence is discussed within current theories of proprioceptive arousal feedback and motor simulation accounts. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia.

    PubMed

    Murase, Takatoshi; Yokoi, Yuka; Misawa, Koichi; Ominami, Hideo; Suzuki, Yasuto; Shibuya, Yusuke; Hase, Tadashi

    2012-06-01

    Postprandial energy metabolism, including postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia, is related to the risk for developing obesity and CVD. In the present study, we examined the effects of polyphenols purified from coffee (coffee polyphenols (CPP)) on postprandial carbohydrate and lipid metabolism, and whole-body substrate oxidation in C57BL/6J mice. In mice that co-ingested CPP with a lipid-carbohydrate (sucrose or starch)-mixed emulsion, the respiratory quotient determined by indirect calorimetry was significantly lower than that in control mice, whereas there was no difference in VO2 (energy expenditure), indicating that CPP modulates postprandial energy partitioning. CPP also suppressed postprandial increases in plasma glucose, insulin, glucose-dependent insulinotropic polypeptide and TAG levels. Inhibition experiments on digestive enzymes revealed that CPP inhibits maltase and sucrase, and, to a lesser extent, pancreatic lipase in a concentration-dependent manner. Among the nine kinds of polyphenols (caffeoyl quinic acids (CQA), di-CQA, feruloyl quinic acids (FQA)) contained in CPP, di-CQA showed more potent inhibitory activity than CQA or FQA on these digestive enzymes, suggesting a predominant role of di-CQA in the regulation of postprandial energy metabolism. These results suggest that CPP modulates whole-body substrate oxidation by suppressing postprandial hyperglycaemia and hyperinsulinaemia, and these effects are mediated by inhibiting digestive enzymes.

  8. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion

    NASA Astrophysics Data System (ADS)

    Astley, Henry; Gong, Chaohui; Travers, Matt; Serrano, Miguel; Vela, Patricio; Choset, Howie; Mendelson, Joseph, III; Hu, David; Goldman, Daniel

    2015-03-01

    To simplify control of high degree of freedom bodies, organisms may target a set of simple shape changes (a ``template''). Recent work has revealed that the locomotion of sidewinder rattlesnakes can be described by a combination of horizontal and vertical body waves with a phase difference of +/- π/2, representing a possible control template. These animals display high maneuverability which we hypothesize emerges from their ability to independently modulate these waves. Snakes used two distinct turning methods which we term differential turning (24° turn per cycle) and reversal turning (80°). Kinematic data suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave while in reversal turning they shifted the phase of the vertical wave by π. We tested these mechanisms in the robot, generating differential and reversal turning. Further manipulations of the two-wave system revealed a third turning mode, ``frequency turning,'' not observed in biological snakes which allowed the robot to execute large (127°) in-place turns. The two-wave system enables unprecedented maneuverability of high degree-of-freedom systems, revealing a practical benefits of the search for control templates. Zoo Atlanta

  9. Color of hot soup modulates postprandial satiety, thermal sensation, and body temperature in young women.

    PubMed

    Suzuki, Maki; Kimura, Rie; Kido, Yasue; Inoue, Tomoko; Moritani, Toshio; Nagai, Narumi

    2017-04-01

    The color of food is known to modulate not only consumers' motivation to eat, but also thermal perception. Here we investigated whether the colors of hot soup can influence thermal sensations and body temperature, in addition to the food acceptability and appetite. Twelve young female participants consumed commercial white potage soup, modified to yellow or blue by adding food dyes, at 9 a.m. on 3 separated days. During the test, visual impression (willingness to eat, palatability, comfort, warmth, and anxiety) and thermal sensations were self-reported using visual analog scales. Core (intra-aural) and peripheral (toe) temperatures were continuously recorded 10 min before and 60 min after ingestion. Blue soup significantly decreased willingness to eat, palatability, comfort, and warmth ratings, and significantly increased anxiety feelings compared to the white and yellow soups. After ingestion, the blue soup showed significantly smaller satiety ratings and the tendency of lower thermal sensation scores of the whole body compared to the white and yellow soups. Moreover, a significantly greater increase in toe temperature was found with the yellow soup than the white or blue soup. In conclusion, this study provides new evidence that the colors of hot food may modulate postprandial satiety, thermal sensations and peripheral temperature. Such effects of color may be useful for dietary strategies for individuals who need to control their appetite.

  10. Chemosensory danger detection in the human brain: Body odor communicating aggression modulates limbic system activation.

    PubMed

    Mutic, Smiljana; Brünner, Yvonne F; Rodriguez-Raecke, Rea; Wiesmann, Martin; Freiherr, Jessica

    2017-02-28

    Although the sense of smell is involved in numerous survival functions, the processing of body odor emitted by dangerous individuals is far from understood. The aim of the study was to explore how human fight chemosignals communicating aggression can alter brain activation related to an attentional bias and danger detection. While the anterior cingulate cortex (ACC) was seen involved in processing threat-related emotional information, danger detection and error evaluation, it still remains unknown whether human chemosignals communicating aggression can potentially modulate this activation. In the fMRI experiment, healthy male and female normosmic odor recipients (n=18) completed a higher-order processing task (emotional Stroop task with the word categories anger, anxiety, happiness and neutral) while exposed to aggression and exercise chemosignals (collected from a different group of healthy male donors; n=16). Our results provide first evidence that aggression chemosignals induce a time-sensitive attentional bias in chemosensory danger detection and modulate limbic system activation. During exposure to aggression chemosignals compared to exercise chemosignals, functional imaging data indicates an enhancement of thalamus, hypothalamus and insula activation (p<.05, FWE-corrected). Together with the thalamus, the ACC was seen activated in response to threat-related words (p<.001). Chemosensory priming and habituation to body odor signals are discussed.

  11. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing.

    PubMed

    Leong, Victoria; Goswami, Usha

    2014-02-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words

  12. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion

    PubMed Central

    Astley, Henry C.; Gong, Chaohui; Dai, Jin; Travers, Matthew; Serrano, Miguel M.; Vela, Patricio A.; Choset, Howie; Mendelson, Joseph R.; Hu, David L.; Goldman, Daniel I.

    2015-01-01

    Many organisms move using traveling waves of body undulation, and most work has focused on single-plane undulations in fluids. Less attention has been paid to multiplane undulations, which are particularly important in terrestrial environments where vertical undulations can regulate substrate contact. A seemingly complex mode of snake locomotion, sidewinding, can be described by the superposition of two waves: horizontal and vertical body waves with a phase difference of ±90°. We demonstrate that the high maneuverability displayed by sidewinder rattlesnakes (Crotalus cerastes) emerges from the animal’s ability to independently modulate these waves. Sidewinder rattlesnakes used two distinct turning methods, which we term differential turning (26° change in orientation per wave cycle) and reversal turning (89°). Observations of the snakes suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave whereas in reversal turning they shifted the phase of the vertical wave by 180°. We tested these mechanisms using a multimodule snake robot as a physical model, successfully generating differential and reversal turning with performance comparable to that of the organisms. Further manipulations of the two-wave system revealed a third turning mode, frequency turning, not observed in biological snakes, which produced large (127°) in-place turns. The two-wave system thus functions as a template (a targeted motor pattern) that enables complex behaviors in a high-degree-of-freedom system to emerge from relatively simple modulations to a basic pattern. Our study reveals the utility of templates in understanding the control of biological movement as well as in developing control schemes for limbless robots. PMID:25831489

  13. Apelin-36 Modulates Blood Glucose and Body Weight Independently of Canonical APJ Receptor Signaling.

    PubMed

    Galon-Tilleman, Hadas; Yang, Hong; Bednarek, Maria A; Spurlock, Sandra M; Paavola, Kevin J; Ko, Brian; To, Carmen; Luo, Jian; Tian, Hui; Jermutus, Lutz; Grimsby, Joseph; Rondinone, Cristina M; Konkar, Anish; Kaplan, Daniel D

    2017-02-03

    Apelin-36 was discovered as the endogenous ligand for the previously orphan receptor APJ. Apelin-36 has been linked to two major types of biological activities: cardiovascular (stimulation of cardiac contractility and suppression of blood pressure) and metabolic (improving glucose homeostasis and lowering body weight). It has been assumed that both of these activities are modulated through APJ. Here, we demonstrate that the metabolic activity of apelin-36 can be separated from canonical APJ activation. We developed a series of apelin-36 variants in which evolutionarily conserved residues were mutated, and evaluated their ability to modulate glucose homeostasis and body weight in chronic mouse models. We found that apelin-36(L28A) retains full metabolic activity, but is 100-fold impaired in its ability to activate APJ. In contrast to its full metabolic activity, apelin-36(L28A) lost the ability to suppress blood pressure in spontaneously hypertensive rats (SHR). We took advantage of these findings to develop a longer-acting variant of apelin-36 that could modulate glucose homeostasis without impacting blood pressure (or activating APJ). Apelin-36-[L28C(30kDa-PEG)] is 10,000-fold less potent than apelin-36 at activating the APJ receptor but retains its ability to significantly lower blood glucose and improve glucose tolerance in diet-induced obese mice. Apelin-36-[L28C(30kDa-PEG)] provides a starting point for the development of diabetes therapeutics that are devoid of the blood pressure effects associated with canonical APJ activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Automatic recognition and scoring of olympic rhythmic gymnastic movements.

    PubMed

    Díaz-Pereira, M Pino; Gómez-Conde, Iván; Escalona, Merly; Olivieri, David N

    2014-04-01

    We describe a conceptually simple algorithm for assigning judgement scores to rhythmic gymnastic movements, which could improve scoring objectivity and reduce judgemental bias during competitions. Our method, implemented as a real-time computer vision software, takes a video shot or a live performance video stream as input and extracts detailed velocity field information from body movements, transforming them into specialized spatio-temporal image templates. The collection of such images over time, when projected into a velocity covariance eigenspace, trace out unique but similar trajectories for a particular gymnastic movement type. By comparing separate executions of the same atomic gymnastic routine, our method assigns a quality judgement score that is related to the distance between the respective spatio-temporal trajectories. For several standard gymnastic movements, the method accurately assigns scores that are comparable to those assigned by expert judges. We also describe our rhythmic gymnastic video shot database, which we have made freely available to the human movement research community. The database can be obtained at http://www.milegroup.net/apps/gymdb/.

  15. Rhythmic movements during sleep: a physiological and pathological profile.

    PubMed

    Manni, R; Terzaghi, M

    2005-12-01

    Rhythmic movement disorder (RMD) consists of rhythmic movements (RMs) that occur on falling asleep or during sleep, can involve any part of the body and have a reported frequency ranging from 0.5 to 2 Hz. RMs have been reported to occur in a high proportion of normal children as a self-limiting phenomenon starting and remitting within early infancy. However, there have also been descriptions of forms of RMD occurring against a background of mental retardation or persisting beyond childhood, or having onset in adulthood. So, the occurrence of RMs can be regarded as both a physiological and a pathological phenomenon. The few polysomnographic studies conducted in this field have shown that, in some forms of RMD, RMs are highly linked to arousal fluctuations. However, the mechanisms that underlie the genesis of RMs and are capable of leading to both physiological and pathological patterns of RMs are not fully understood. Here we emphasise the possibility that the central motor pattern generator, recently hypothesised to play a role in the genesis of motor phenomena during sleep in the cases of parasomnia and epileptic seizures, might account for the occurrence of RMs in both physiological and pathological conditions.

  16. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory

    PubMed Central

    Tendler, Alex; Wagner, Shlomo

    2015-01-01

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7–10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3–7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes. DOI: http://dx.doi.org/10.7554/eLife.03614.001 PMID:25686218

  17. Rhythmic control of endocannabinoids in the rat pineal gland.

    PubMed

    Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner

    2015-01-01

    Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.

  18. Modulation of Gut Microbiota of Overweight Mice by Agavins and Their Association with Body Weight Loss.

    PubMed

    Huazano-García, Alicia; Shin, Hakdong; López, Mercedes G

    2017-08-23

    Agavins consumption has led to accelerated body weight loss in mice. We investigated the changes on cecal microbiota and short-chain fatty acids (SCFA) associated with body weight loss in overweight mice. Firstly, mice were fed with standard (ST5) or high-fat (HF5) diet for five weeks. Secondly, overweight mice were shifted to standard diet alone (HF-ST10) or supplemented with agavins (HF-ST + A10) or oligofructose (HF-ST + O10), for five more weeks. Cecal contents were collected before and after supplementation to determine microbiota and SCFA concentrations. At the end of first phase, HF5 mice showed a significant increase of body weight, which was associated with reduction of cecal microbiota diversity (PD whole tree; non-parametric t test, p < 0.05), increased Firmicutes/Bacteroidetes ratio and reduced SCFA concentrations (t test, p < 0.05). After diet shifting, HF-ST10 normalized its microbiota, increased its diversity, and SCFA levels, whereas agavins (HF-ST + A10) or oligofructose (HF-ST + O10) led to partial microbiota restoration, with normalization of the Firmicutes/Bacteroides ratio, as well as higher SCFA levels (p < 0.1). Moreover, agavins noticeably enriched Klebsiella and Citrobacter (LDA > 3.0); this enrichment has not been reported previously under a prebiotic treatment. In conclusion, agavins or oligofructose modulated cecal microbiota composition, reduced the extent of diversity, and increased SCFA. Furthermore, identification of bacteria enriched by agavins opens opportunities to explore new probiotics.

  19. Volumetric Arc Intensity-Modulated Therapy for Spine Body Radiotherapy: Comparison With Static Intensity-Modulated Treatment

    SciTech Connect

    Wu, Q. Jackie; Yoo, Sua; Kirkpatrick, John P.; Thongphiew, Danthai; Yin Fangfang

    2009-12-01

    Purpose: This clinical study evaluates the feasibility of using volumetric arc-modulated treatment (VMAT) for spine stereotactic body radiotherapy (SBRT) to achieve highly conformal dose distributions that spare adjacent organs at risk (OAR) with reduced treatment time. Methods and Materials: Ten spine SBRT patients were studied retrospectively. The intensity-modulated radiotherapy (IMRT) and VMAT plans were generated using either one or two arcs. Planning target volume (PTV) dose coverage, OAR dose sparing, and normal tissue integral dose were measured and compared. Differences in treatment delivery were also analyzed. Results: The PTV DVHs were comparable between VMAT and IMRT plans in the shoulder (D{sub 99%}-D{sub 90%}), slope (D{sub 90%}-D{sub 10%}), and tail (D{sub 10%}-D{sub 1%}) regions. Only VMAT{sub 2arc} had a better conformity index than IMRT (1.09 vs. 1.15, p = 0.007). For cord sparing, IMRT was the best, and VMAT{sub 1arc} was the worst. Use of IMRT achieved greater than 10% more D{sub 1%} sparing for six of 10 cases and 7% to 15% more D{sub 10%} sparing over the VAMT{sub 1arc}. The differences between IMRT and VAMT{sub 2arc} were smaller and statistically nonsignificant at all dose levels. The differences were also small and statistically nonsignificant for other OAR sparing. The mean monitor units (MUs) were 8711, 7730, and 6317 for IMRT, VMAT{sub 1arc}, and VMAT{sub 2arc} plans, respectively, with a 26% reduction from IMRT to VMAT{sub 2arc}. The mean treatment time was 15.86, 8.56, and 7.88 min for IMRT, VMAT{sub 1arc,} and VMAT{sub 2arc}. The difference in integral dose was statistically nonsignificant. Conclusions: Although VMAT provided comparable PTV coverage for spine SBRT, 1arc showed significantly worse spinal cord sparing compared with IMRT, whereas 2arc was comparable to IMRT. Treatment efficiency is substantially improved with the VMAT.

  20. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?

    PubMed Central

    Stevens, Richard G.; Zhu, Yong

    2015-01-01

    Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution. PMID:25780233

  1. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?

    PubMed

    Stevens, Richard G; Zhu, Yong

    2015-05-05

    Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution.

  2. The awareness of body orientation modulates the perception of visual vertical.

    PubMed

    Barra, Julien; Pérennou, Dominic; Thilo, Kail V; Gresty, Michael A; Bronstein, Adolfo M

    2012-08-01

    It is established that the body position influences verticality perception. In contrast, the possible influence of the awareness of the body orientation on verticality perception has never been investigated. This hypothesis, explored in the present study, is supported by the role played by the parietal cortex and the insula in both body position awareness and verticality perception. Nine subjects were asked to estimate the direction of the visual vertical (VV) by 12 adjustments of a luminous line in three conditions: (1) a control condition (subjects were upright and aware of their position), (2) a condition of congruence between the lateral body tilt and the awareness of this tilt, and (3) a condition of dissociation of subjective and objective orientations (tilted subjects who felt upright). The dissociation between objective and subjective orientations was obtained by inducing experimentally a postural vertical (PV) bias through 5 min of lateral body tilt at 30° in darkness in a motorized flight simulator (mean 8.8° ± 4; min 6.2°; max 17.4°). VV orientation and variability were measured (expressed below in this order). As compared to the upright condition (0.3° ± 0.2; 0.8° ± 0.5), subjects showed similar VV orientation (0.1° ± 0.6; p=0.82) but an increased variability (1.4°±0.5; p<0.001) when tilted and aware of their tilt. In contrast, when they were tilted but felt upright, VV was biased in the direction of body tilt (2°±0.5; p<0.005) without increase of variability (0.9° ± 0.5; p=0.7). Our study reveals that the awareness of body orientation modulates verticality representation, which means that in addition to sensory integration, mental processes play also a role in the sense of verticality. We propose a novel model of verticality representation, based both on bottom-up and top-down processes.

  3. Harmonic Analysis for Optically Modulating Bodies Using the Harmonic Structure Function

    NASA Astrophysics Data System (ADS)

    Dikeman, R. D.; Lin, S.; Kim, C.

    Lockheed Martin Hawaii presents a novel signal processing algorithm for focal plane array processing. We introduce the Harmonic Structure Function (HSF) and demonstrate its capability in detecting, classifying and counting rotating bodies in a single pixel. The HSF has a powerful use in dynamical situations occurring on scales less than the single pixel solid angle. The work presented here is making a major impact in the Missile Defense Agency's Project Hercules Forward Based Sensor (FBS) group but the results presented here is shown in an unclassified form. First, the HSF algorithm is detailed. The origin of the HSF is in the ASW (AntiSubmarine Warfare) acoustic processing domain and the analogy to the focal plane is given. Next, the mathematical definition of the HSF and the natural extension from integral to discrete form is detailed. Thereafter, additional harmonic processing techniques such as the so-called 'sidelobe' reduction are explained. These techniques are powerful methods to determine the fundamental frequency of a given rotating body that can have various harmonically related narrow band tonal structures. Simulations of rotating bodies and modulating reflectance used for analysis are then discussed. These simulations result in the construction of time series data for rotating bodies with fundamental frequencies in noisy backgrounds. The HSF is then used to analyze these fidelity simulations. It is shown that the HSF is capable of detecting, classifying and countingobjects on a single pixel. Finally, the robustness of the algorithm is analyzed and it is shown that the number of detectable objects is dependent on sample rate, target temporal extent, and other factors. This analysis yield important considerations for sensor developers and operators.

  4. Rhythmic leptin is required for weight gain from circadian desynchronized feeding in the mouse.

    PubMed

    Arble, Deanna Marie; Vitaterna, Martha Hotz; Turek, Fred W

    2011-01-01

    The neuroendocrine and metabolic effects of leptin have been extensively researched since the discovery, and the later identification, of the leptin gene mutated within the ob/ob mouse. Leptin is required for optimal health in a number of physiological systems (e.g. fertility, bone density, body weight regulation). Despite the extensive leptin literature and many observations of leptin's cyclical pattern over the 24-hour day, few studies have specifically examined how the circadian rhythm of leptin may be essential to leptin signaling and health. Here we present data indicating that a rhythmic leptin profile (e.g. 1 peak every 24 hours) leads to excessive weight gain during desynchronized feeding whereas non-rhythmic leptin provided in a continuous manner does not lead to excessive body weight gain under similar feeding conditions. This study suggests that feeding time can interact with leptin's endogenous rhythm to influence metabolic signals, specifically leading to excessive body weight gains during 'wrongly' timed feeding.

  5. Exercise modality modulates body temperature regulation during exercise in uncompensable heat stress.

    PubMed

    Schlader, Zachary J; Raman, Aaron; Morton, R Hugh; Stannard, Stephen R; Mündel, Toby

    2011-05-01

    This study evaluated exercise modality [i.e. self-paced (SP) or fixed-intensity (FI) exercise] as a modulator of body temperature regulation under uncompensable heat stress. Eight well-trained male cyclists completed (work-matched) FI and SP cycling exercise bouts in a hot (40.6 ± 0.2°C) and dry (relative humidity 23 ± 3%) environment estimated to elicit 70% of [Formula: see text]O(2)max. Exercise intensity (i.e. power output) decreased over time in SP, which resulted in longer exercise duration (FI 20.3 ± 3.4 min, SP 23.2 ± 4.1 min). According to the heat strain index, the modification of exercise intensity in SP improved the compensability of the thermal environment which, relative to FI, was likely a result of the reductions in metabolic heat production (i.e. [Formula: see text]O(2)). Consequently, the rate of rise in core body temperature was higher in FI (0.108 ± 0.020°C/min) than in SP (0.082 ± 0.016°C/min). Interestingly, cardiac output, stroke volume, and heart rate during exercise were independent of exercise modality. However, core body temperature (FI 39.4 ± 0.3°C, SP 39.1 ± 0.4°C), blood lactate (FI 2.9 ± 0.8 mmol/L, SP 2.3 ± 0.7 mmol/L), perceived exertion (FI 18 ± 2, SP 16 ± 2), and physiological strain (FI 9.1 ± 0.9, SP 8.3 ± 1.1) were all higher in FI compared to SP at exhaustion/completion. These findings indicate that, when exercise is SP, behavioral modification of metabolic heat production improves the compensability of the thermal environment and reduces thermoregulatory strain. Therefore, under uncompensable heat stress, exercise modality modulates body temperature regulation.

  6. Dosimetric aspects of inverse-planned modulated-arc total-body irradiation

    SciTech Connect

    Held, Mareike; Kirby, Neil; Morin, Olivier; Pouliot, Jean

    2012-08-15

    Purpose: To develop optimal beam parameters and to verify the dosimetric aspects of the recently developed modulated-arc total-body irradiation (MATBI) technique, which delivers an inverse-planned dose to the entire body using gantry rotation. Methods: The patient is positioned prone and supine underneath the gantry at about 2 m source-to-surface distance (SSD). Then, up to 28 beams irradiate the patient from different gantry angles. Based on full-body computed-tomography (CT) images of the patient, the weight of each beam is optimized, using inverse planning, to create a uniform body dose. This study investigates how to best simulate patients and the ideal beam setup parameters, such as field size, number of beams, and beam geometry, for treatment time and dose homogeneity. In addition, three anthropomorphic water phantoms were constructed and utilized to verify the accuracy of dose delivery, with both diode array and ion chamber measurements. Furthermore, to improve the accuracy of the new technique, a beam model is created specifically for the extended-SSD positioning for MATBI. Results: Low dose CT scans can be utilized for dose calculations without affecting the accuracy. The largest field size of 40 Multiplication-Sign 40 cm{sup 2} was found to deliver the most uniform dose in the least amount of time. Moreover, a higher number of beams improves dose homogeneity. The average dose discrepancy between ion chamber measurements and extended-SSD beam model calculations was 1.2%, with the largest discrepancy being 3.2%. This average dose discrepancy was 1.4% with the standard beam model for delivery at isocenter. Conclusions: The optimum beam setup parameters, regarding dose uniformity and treatment duration, are laid out for modulated-arc TBI. In addition, the presented dose measurements show that these treatments can be delivered accurately. These measurements also indicated that a new beam model did not significantly improve the accuracy of dose calculations

  7. Respiratory modulation of carotid and aortic body reflex left ventricular inotropic responses in the cat.

    PubMed

    Daly, M D; Jones, J F

    1998-06-15

    their abolition as a result of intravenous injections of the beta-adrenoceptor blocking agent, propranolol. 6. It is concluded that the carotid bodies exert a small variable effect on left ventricular dP/dt max, the predominant positive inotropic response being due to the concomitant neurogenic effects of the increase in respiration. In contrast, the positive inotropic response to excitation of the aortic chemoreceptors is not respiratory modulated.

  8. The medial amygdala modulates body weight but not neuroendocrine responses to chronic stress.

    PubMed

    Solomon, M B; Jones, K; Packard, B A; Herman, J P

    2010-01-01

    Stress pathologies such as depression and eating disorders (i.e. anorexia nervosa) are associated with amygdalar dysfunction, which are linked with hypothalamic-pituitary-adrenal axis (HPA) axis hyperactivity. The medial amygdaloid nucleus (MeA), a key output nucleus of the amygdaloid complex, promotes HPA axis activation to acute psychogenic stress and is in a prime position to mediate the deleterious effects of chronic stress on physiology and behaviour. The present study tests the hypothesis that the MeA is necessary for the development of maladaptive physiological changes caused by prolonged stress exposure. Male rats received bilateral ibotenate or sham lesions targeting the MeA and one half underwent 2 weeks of chronic variable stress (CVS) or served as home cage controls. Sixteen hours post CVS, all animals were exposed to an acute restraint challenge. CVS induced thymic involution, adrenal hypertrophy, and attenuated body weight gain and up-regulation of hypothalamic corticotrophin-releasing hormone mRNA expression. Consistent with previous literature, lesions of the MeA dampened stress-induced increases in corticosterone after 30 min of exposure to acute restraint stress. However, this effect was independent of CVS exposure, suggesting that the MeA may not be critical for modulating neuroendocrine responses after chronic HPA axis drive. Interestingly, lesion of the MeA modestly exaggerated the stress-induced attenuation of weight gain. Overall, the data obtained suggest that the MeA modulates the neuroendocrine responses to acute but not chronic stress. In addition, the data suggest that the MeA may be an important neural component for the control of body weight in the face of chronic stress.

  9. Practical skills of rhythmic gymnastics judges.

    PubMed

    Fernandez-Villarino, Maria A; Bobo-Arce, Marta; Sierra-Palmeiro, Elena

    2013-12-18

    The aim of this study was to analyze the practical skills of rhythmic gymnastics judges and to identify how their degree and experience influence the assessment of these skills. Sixty one rhythmic gymnastics judges participated in the study. A questionnaire was used for data collection. This tool was composed of 28 questions and divided into six categories: identification, experience, initial training, continuing education, skills and training needs. The results suggest that the most valued skills are those related to the sport's technical parameters and the ability to adapt to any level of competition with self-confidence and self-assuredness. Significant differences were found regarding the variables for: the ability to communicate (p = 0.002) and for the ability to observe, identify and register performance (p = 0.005). The results showed that experience was not a decisive factor in assessing skills. This study thus presents evidence that rhythmic gymnastics judges must implement and optimise a set of skills that contribute to the effectiveness of the assessment process. These findings might help in the design of programs and training models that contribute to effective professional development.

  10. Group rhythmic synchrony and attention in children

    PubMed Central

    Khalil, Alexander K.; Minces, Victor; McLoughlin, Grainne; Chiba, Andrea

    2013-01-01

    Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD). Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child's attentional behavior. PMID:24032021

  11. Rhythmic structure of Hindi and English: new insights from a computational analysis.

    PubMed

    Das, Tanusree; Singh, Latika; Singh, Nandini C

    2008-01-01

    Much information about speech rhythm is believed to be embedded in low frequency temporal modulations of the speech envelope. Using novel methods of spectral analysis we construct a spectro-temporal modulation spectrum and extract low frequency temporal modulations of spoken utterances to study the rhythmic structure of English and Hindi. The results of our spectral analysis reveal a narrower temporal bandwidth for Hindi as compared to English. We also calculate variability in syllable durations and find that variability in English is greater than Hindi. We relate temporal bandwidth of the modulation spectrum to variability in syllable duration and suggest that narrow bandwidth in the modulation spectrum implies less variability, whereas broad bandwidth implies greater variability in syllable duration. Our results also demonstrate that syllabic information is contained in low frequency temporal modulations of the speech envelope. Our results suggest that the modulation spectrum can be explored as a promising tool to study the temporal structure of language.

  12. The Enhanced Musical Rhythmic Perception in Second Language Learners

    PubMed Central

    Roncaglia-Denissen, M. Paula; Roor, Drikus A.; Chen, Ao; Sadakata, Makiko

    2016-01-01

    Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants’ phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals’ enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain. PMID:27375469

  13. The Enhanced Musical Rhythmic Perception in Second Language Learners.

    PubMed

    Roncaglia-Denissen, M Paula; Roor, Drikus A; Chen, Ao; Sadakata, Makiko

    2016-01-01

    Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants' phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals' enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain.

  14. Two clusters of GABAergic ellipsoid body neurons modulate olfactory labile memory in Drosophila.

    PubMed

    Zhang, Zhiping; Li, Xiaoting; Guo, Jing; Li, Yan; Guo, Aike

    2013-03-20

    In Drosophila, aversive olfactory memory is believed to be stored in a prominent brain structure, the mushroom body (MB), and two pairs of MB intrinsic neurons, the dorsal paired medial (DPM) and the anterior paired lateral (APL) neurons, are found to regulate the consolidation of middle-term memory (MTM). Here we report that another prominent brain structure, the ellipsoid body (EB), is also involved in the modulation of olfactory MTM. Activating EB R2/R4m neurons does not affect the learning index, but specifically eliminates anesthesia-sensitive memory (ASM), the labile component of olfactory MTM. We further demonstrate that approximately two-thirds of these EB neurons are GABAergic and are responsible for the suppression of ASM. Using GRASP (GFP reconstitution across synaptic partners), we reveal potential synaptic connections between the EB and MB in regions covering both the presynaptic and postsynaptic sites of EB neurons, suggesting the presence of bidirectional connections between these two important brain structures. These findings suggest the existence of direct connections between the MB and EB, and provide new insights into the neural circuit basis for olfactory labile memory in Drosophila.

  15. Kv4.2 Mediates Histamine Modulation of Preoptic Neuron Activity and Body Temperature

    PubMed Central

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V.

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K+ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2−/− preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  16. Evidence for histamine as a new modulator of carotid body chemoreception.

    PubMed

    Rio, R Del; Moya, E A; Alcayaga, J; Iturriaga, R

    2009-01-01

    It has been proposed that histamine is an excitatory transmitter between the glomus cells of the carotid body (CB) and the nerve endings of the petrosal ganglion (PG) neurons. The histamine biosynthetic pathway and the presence of histamine H1, H2 and H3 receptors have been reported in the CB. Thus, histamine meets some of the criteria to be regarded as a transmitter. However, there is no evidence that glomus cells contain histamine, or whether its application produces chemosensory excitation. Therefore, we studied its immunocytochemical localization on cat CB and its effects on chemosensory activity. Using perfused and superfused in vitro CB and PG preparations, we assessed the effects of histamine hydrochloride on chemosensory discharges and of histamine H1, H2 and H3 receptor blockers. We found the presence of histamine immunoreactivity in dense-core vesicles in glomus cells. In an in vitro CB preparation we performed pharmacological experiments to characterize histamine effects. The application of histamine hydrochloride (0.5-1,000 microg) to the CB produces a dose-dependent increase in the carotid sinus nerve activity. The H1 receptor blockade with pyrilamine 500 nM produces partial decrease of the histamine-induced response, whereas the H2 receptor blockade (ranitidine 100microM) fail to abolish the histamine excitatory effects. Antagonism of the H3 receptor results in an increase in carotid body chemosensory activity. On the other hand, application of histamine to the isolated PG had no effect on the carotid nerve discharge. Our results suggest that histamine is a modulator of the carotid body chemoreception through H1 and H3 receptor activation.

  17. Prazosin modulates rapid eye movement sleep deprivation-induced changes in body temperature in rats.

    PubMed

    Jaiswal, Manoj K; Mallick, Birendra N

    2009-09-01

    Prolonged rapid eye movement sleep deprivation (REMSD) causes hypothermia and death; however, the effect of deprivation within 24 h and its mechanism(s) of action were unknown. Based on existing reports we argued that REMSD should, at least initially, induce hyperthermia and the death upon prolonged deprivation could be due to persistent hypothermia. We proposed that noradrenaline (NA), which modulates body temperature and is increased upon REMSD, may be involved in REMSD- associated body temperature changes. Adult male Wistar rats were REM sleep deprived for 6-9 days by the classical flower pot method; suitable free moving, large platform and recovery controls were carried out. The rectal temperature (Trec) was recorded every minute for 1 h, or once daily, or before and after i.p. injection of prazosin, an alpha-1 adrenergic antagonist. The Trec was indeed elevated within 24 h of REMSD which decreased steadily, despite continuation of deprivation. Prazosin injection into the deprived rats reduced the Trec within 30 min, and the duration of effect was comparable to its pharmacological half life. The findings have been explained on the basis of REMSD-induced elevated NA level, which has opposite actions on the peripheral and the central nervous systems. We propose that REMSD-associated immediate increase in Trec is due to increased Na-K ATPase as well as metabolic activities and peripheral vasoconstriction. However, upon prolonged deprivation, probably the persistent effect of NA on the central thermoregulatory sites induced sustained hypothermia, which if remained uncontrolled, results in death. Thus, our findings suggest that peripheral prazosin injection in REMSD would not bring the body temperature to normal, rather might become counterproductive.

  18. 24-hour rhythmicity of seizures in refractory focal epilepsy.

    PubMed

    Nzwalo, Hipólito; Menezes Cordeiro, Inês; Santos, Ana Catarina; Peralta, Rita; Paiva, Teresa; Bentes, Carla

    2016-02-01

    The occurrence of seizures in specific types of epilepsies can follow a 24-hour nonuniform or nonrandom pattern. We described the 24-hour pattern of clinical seizures in patients with focal refractory epilepsy who underwent video-electroencephalography monitoring. Only patients who were candidates for epilepsy surgery with an unequivocal seizure focus were included in the study. A total of 544 seizures from 123 consecutive patients were analyzed. Specific time of seizures were distributed along 3- or 4-hour time blocks or bins throughout the 24-hour period. The mean age of the subjects was 37.7 years, with standard deviation of 11.5 years, median of 37. The majority were females (70/56%). The majority of patients had a seizure focus located in the mesial temporal lobe (102/83%) and in the neocortical temporal lobe (13/11%). The remaining patients had a seizure focus located in the extratemporal lobe (8/6%). The most common etiology was mesial temporal sclerosis (86/69.9%). Nonuniform seizure distribution was observed in seizures arising from the temporal lobe (mesial temporal lobe and neocortical temporal lobe), with two peaks found in both 3- and 4-hour bins: 10:00-13:00/16:00-19:00 and 08:00-12:00/16:00-20:00 respectively (p=0.004). No specific 24-hour pattern was identified in seizures from extratemporal location. The 24-hour rhythmicity of seizure distribution is recognized in certain types of epilepsy, but studies on the topic are scarce. Their replication and validation is therefore needed. Our study confirms the bimodal pattern of temporal lobe epilepsy independently of the nature of the lesion. However, peak times differ between different studies, suggesting that the ambient, rhythmic exogenous factors or environmental/social zeitgebers, may modulate the 24-hour rhythmicity of seizures. Characterization of these 24-hour patterns of seizure occurrence can influence diagnosis and treatment in selected types of epilepsy, such as the case of temporal lobe

  19. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music.

    PubMed

    Vuust, Peter; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard ("rhythm") and the brain's anticipatory structuring of music ("meter"). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain's general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  20. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements.

    PubMed

    Solopova, I A; Selionov, V A; Zhvansky, D S; Gurfinkel, V S; Ivanenko, Y

    2016-02-01

    The coordination between arms and legs during human locomotion shares many features with that in quadrupeds, yet there is limited evidence for the central pattern generator for the upper limbs in humans. Here we investigated whether different types of tonic stimulation, previously used for eliciting stepping-like leg movements, may evoke nonvoluntary rhythmic arm movements. Twenty healthy subjects participated in this study. The subject was lying on the side, the trunk was fixed, and all four limbs were suspended in a gravity neutral position, allowing unrestricted low-friction limb movements in the horizontal plane. The results showed that peripheral sensory stimulation (continuous muscle vibration) and central tonic activation (postcontraction state of neuronal networks following a long-lasting isometric voluntary effort, Kohnstamm phenomenon) could evoke nonvoluntary rhythmic arm movements in most subjects. In ∼40% of subjects, tonic stimulation elicited nonvoluntary rhythmic arm movements together with rhythmic movements of suspended legs. The fact that not all participants exhibited nonvoluntary limb oscillations may reflect interindividual differences in responsiveness of spinal pattern generation circuitry to its activation. The occurrence and the characteristics of induced movements highlight the rhythmogenesis capacity of cervical neuronal circuitries, complementing the growing body of work on the quadrupedal nature of human gait.

  1. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    SciTech Connect

    Sapkaroski, Daniel Osborne, Catherine; Knight, Kellie A

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  2. Volumetric-modulated arc therapy using multicriteria optimization for body and extremity sarcoma.

    PubMed

    Young, Michael R; Craft, David L; Colbert, Caroline M; Remillard, Kyla; Vanbenthuysen, Liam; Wang, Yi

    2016-11-08

    This study evaluates the implementation of volumetric-modulated arc therapy (VMAT) using multicriteria optimization (MCO) in the RayStation treatment planning system (TPS) for complex sites, namely extremity and body sarcoma. The VMAT-MCO algorithm implemented in RayStation is newly developed and requires an integrated, comprehensive analysis of plan generation, delivery, and treatment efficiency. Ten patients previously treated by intensity-modulated radiation therapy (IMRT) with MCO were randomly selected and replanned using VMAT-MCO. The plan quality was compared using homogeneity index (HI) and conformity index (CI) of the planning target volume (PTV) and dose sparing of organs at risk (OARs). Given the diversity of the tumor location, the 10 plans did not have a common OAR except for skin. The skin D50 and Dmean was directly compared between VMAT-MCO and IMRT-MCO. Additional OAR dose points were compared on a plan-by-plan basis. The treatment efficiency was compared using plan monitor units (MU) and net beam-on time. Plan quality assurance was performed using the Sun Nuclear ArcCHECK phantom and a gamma criteria of 3%/3 mm. No statistically significant differences were found between VMAT- and IMRT-MCO for HI and CI of the PTV or D50 and Dmean to the skin. The VMAT-MCO plans showed general improvements in sparing to OARs. The VMAT-MCO plan set showed statistically significant improvements over the IMRT-MCO set in treatment efficiency per plan MU (p < 0.05) and net beam-on time (p < 0.01). The VMAT-MCO plan deliverability was validated. Similar gamma passing rates were observed for the two modalities. This study verifies the suitability of VMAT-MCO for sarcoma cancer and highlighted the comparability in plan quality and improve-ment in treatment efficiency offered by VMAT-MCO as compared to IMRT-MCO.

  3. Order restricted inference for oscillatory systems for detecting rhythmic signals

    PubMed Central

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.

    2016-01-01

    Motivation: Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. Availability and Implementation: A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm. Contact: peddada@niehs.nih.gov PMID:27596593

  4. Influence of segment width on plan quality for volumetric modulated arc based stereotactic body radiotherapy.

    PubMed

    Nithiyanantham, Karthikeyan; Kadirampatti Mani, Ganesh; Subramani, Vikraman; Karukkupalayam Palaniappan, Karrthick; Uthiran, Mohanraj; Vellengiri, Sennniandavar; Raju, Sambasivaselli; Supe, Sanjay S; Kataria, Tejinder

    2014-09-01

    To study the influence of segment width on plan quality for volumetric modulated arc based stereotactic body radiotherapy. The redundancy of modulation for regularly shaped small volume tumors results in creation of many small segments and an increase of monitor units, with a consequent prolongation of treatment and uncertainty in treatment delivery. Six cases each in lung, abdomen and liver were taken for the study. For each case, three VMAT SBRT plans were generated with different penalties on minimum segment width of 0.5, 1.0 and 1.5 cm. A comparison was made on the metrics of dose volume histogram, dosimetric indices, monitor units (MUs) and delivery accuracy. The mean reduction of total MUs when compared with 0.5 cm plan was observed as 12.7 ± 6.0% and 17.5 ± 7.2% for 1.0 cm and 1.5 cm of minimum segment width, respectively. The p value showed a significant degradation in dosimetric indices for 1.5 cm plans when compared with 0.5 cm and 1.0 cm plans. The average deviation of measured dose with TPS calculated was 3.0 ± 1.1%, 2.1 ± 0.84% and 1.8 ± 0.9% for 0.5, 1.0 and 1.5 cm, respectively. The calculated gamma index with pass criteria of 2% dose difference and 2 mm distance to agreement was 95.9 ± 2.8%, 96.5 ± 2.6% and 97.8 ± 1.6% as calculated for 0.5, 1.0 and 1.5 cm of penalties, respectively. In view of the trade off between delivery efficiency and plan quality, 1 cm minimum segment width plans showed an improvement. VMAT SBRT plans with increased optimal value of minimum segment width showed better plan quality and delivery efficiency for stereotactic body radiotherapy.

  5. Low back pain in elite rhythmic gymnasts.

    PubMed

    Hutchinson, M R

    1999-11-01

    Rhythmic gymnastics is a sport that blends the athleticism of a gymnast with the grace of a ballerina. The sport demands both the coordination of handling various apparatus and the flexibility to attain positions not seen in any other sport. To attain perfection and reproducibility of their routines, the athletes must practice and repeat the basic elements of their routines thousands of times. In so doing, the athlete places herself at risk of a myriad of overuse injuries, the most common being low back pain. To document the presence and severity of low back pain in elite rhythmic gymnasts, a prospective study of seven national team members was undertaken that documented injuries and complaints with daily medical reports over a 7-wk period. These findings were correlated with a retrospective review of 11 elite level gymnasts followed over a 10-month period whose complaints ultimately required evaluation by a physician. Eighty-six percent of the gymnasts in the prospective study complained of back pain at some point over the course of the study. The only injury recorded that required a time loss from sport was a low back injury. The most common complaint requiring a physician's evaluation was low back pain with the diagnoses varying from muscle strains to bony stress reaction or complete fracture of the pars inter-articularis (spondylolysis). No athlete had a spondylolisthesis or ruptured disk. Two had mild scolioses which did not appear to be associated with their low back pain. It would appear that rhythmic gymnasts are at relative increased risk of suffering low back complaints secondary to their sport.

  6. Rhythmicity, Recurrence, and Recovery of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty Y.; Goldstein, Raymond E.

    2014-12-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga C. reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating.

  7. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats.

    PubMed

    Yamaoka, Ippei; Nakayama, Mitsuo; Miki, Takanori; Yokoyama, Toshifumi; Takeuchi, Yoshiki

    2008-02-01

    We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.

  8. Modulation of Stress Granules and P Bodies during Dicistrovirus Infection ▿

    PubMed Central

    Khong, Anthony; Jan, Eric

    2011-01-01

    Stress granules (SGs) are dynamic cytosolic aggregates composed of ribonucleoproteins that are induced during cellular stress when protein synthesis is inhibited. The function of SGs is poorly understood, but they are thought to be sites for reorganizing mRNA and protein. Several viruses can modulate SG formation, suggesting that SGs have an impact on virus infection. In this study, we have investigated the relationship of SG formation in Drosophila S2 cells infected by cricket paralysis virus (CrPV), a member of the Dicistroviridae family. Despite a rapid shutoff of host translation during CrPV infection, several hallmark SG markers such as the Drosophila TIA-1 and G3BP (RasGAP-SH3-binding protein) homologs, Rox8 and Rin, respectively, do not aggregate in CrPV-infected cells, even when challenged with potent SG inducers such as heat shock, oxidative stress, and pateamine A treatment. Furthermore, we demonstrate that a subset of P body markers become moderately dispersed at late times of infection. In contrast, as shown by fluorescent in situ hybridization, poly(A)+ RNA granules still form at late times of infection. These poly(A)+ RNA granules do not contain viral RNA nor do they colocalize with P body markers. Finally, our results demonstrate that the CrPV viral 3C protease is sequestered to SGs under cellular stress but not during virus infection. In summary, we propose that dicistrovirus infection leads to the selective inhibition of distinct SGs so that viral proteins are available for viral processing. PMID:21106737

  9. Body-part compatibility effects are modulated by the tendency for women to experience negative social comparative emotions and the body-type of the model

    PubMed Central

    Jovanov, Kimberely; Welsh, Timothy N.; Sabiston, Catherine M.

    2017-01-01

    Although exposure to physique-salient media images of women’s bodies has been consistently linked with negative psychological consequences, little is known about the cognitive processes that lead to these negative effects. The present study employed a novel adaptation of a computerized response time (RT) task to (i) assess implicit cognitive processing when exposed to the body of another individual, and (ii) examine individual differences in social comparative emotions that may influence the cognitive processing of human bodies. Adult females with low (n = 44) or high (n = 23) tendencies for comparative emotions completed a task in which they executed responses to coloured targets presented on the hands or feet of images of ultra-thin, average-size, and above average-size female models. Although the colour of the target is the only relevant target feature, it is typically found that the to-be-ignored location of the target on the body of the model influences RTs such that RTs are shorter when the target is on a body-part that is compatible with the responding limb (e.g., hand response when target was on hand) than on a body-part that is incompatible with the responding limb (e.g., hand response when target was on foot). Findings from the present study revealed that the magnitude of the body-part compatibility effect (i.e., the index of the cognitive processing of the model) was modulated by tendencies for affective body-related comparisons. Specifically, women who were prone to experiencing social comparative emotions demonstrated stronger and more consistent body-part compatibility effects across models. Therefore, women with higher social comparison tendencies have heightened processing of bodies at a neurocognitive level and may be at higher risk of the negative outcomes linked with physique-salient media exposure. PMID:28632746

  10. Body-part compatibility effects are modulated by the tendency for women to experience negative social comparative emotions and the body-type of the model.

    PubMed

    Pila, Eva; Jovanov, Kimberely; Welsh, Timothy N; Sabiston, Catherine M

    2017-01-01

    Although exposure to physique-salient media images of women's bodies has been consistently linked with negative psychological consequences, little is known about the cognitive processes that lead to these negative effects. The present study employed a novel adaptation of a computerized response time (RT) task to (i) assess implicit cognitive processing when exposed to the body of another individual, and (ii) examine individual differences in social comparative emotions that may influence the cognitive processing of human bodies. Adult females with low (n = 44) or high (n = 23) tendencies for comparative emotions completed a task in which they executed responses to coloured targets presented on the hands or feet of images of ultra-thin, average-size, and above average-size female models. Although the colour of the target is the only relevant target feature, it is typically found that the to-be-ignored location of the target on the body of the model influences RTs such that RTs are shorter when the target is on a body-part that is compatible with the responding limb (e.g., hand response when target was on hand) than on a body-part that is incompatible with the responding limb (e.g., hand response when target was on foot). Findings from the present study revealed that the magnitude of the body-part compatibility effect (i.e., the index of the cognitive processing of the model) was modulated by tendencies for affective body-related comparisons. Specifically, women who were prone to experiencing social comparative emotions demonstrated stronger and more consistent body-part compatibility effects across models. Therefore, women with higher social comparison tendencies have heightened processing of bodies at a neurocognitive level and may be at higher risk of the negative outcomes linked with physique-salient media exposure.

  11. Is menstrual delay a serious problem for elite rhythmic gymnasts?

    PubMed

    Di Cagno, A; Marchetti, M; Battaglia, C; Giombini, A; Calcagno, G; Fiorilli, G; Piazza, M; Pigozzi, F; Borrione, P

    2012-12-01

    The aim of this study was to identify the influence of training workloads and dietary habits on the menstrual status of elite rhythmic gymnasts. In many sports disciplines, it has long been assumed that menstrual disorders among elite female athletes are related to intense physical effort and insufficient energy intake. Potential consequences of this condition include reduced fertility and decreased bone density. Eighty-one female gymnasts (age 15.9±3.1) completed two self-administered questionnaires: the Menstrual History Questionnaire (MHQ), and the Semiquantitative Food Frequency Questionnaire (FFQ). Eighty female athletes (age 16.3±3.7), who participated in basketball, volleyball, tae kwon do and fitness activity served as a control group. Physical characteristics, menstrual cycles, training workloads and dietary habits were compared and the relationship between physical training and menstrual cycle characteristics was assessed for the two groups. Fifty percent of the gymnasts declared themselves amenorrheic. Age was significantly and positively correlated (P<0.01) with menarche and menstrual irregularities, and negatively correlated with amenorrhea. The percentage of variance for age at menarche, explained by training hours/week and body mass, was 43%, (P<0.01). The present study, which examined and compared different age groups of gymnasts, showed that young rhythmic gymnasts who trained intensively, had a delayed onset of menarche of more than two years, thus favouring secondary amenorrhea. Nonetheless, almost all athletes, even though with significant delay, reached cycle regularity, thus minimizing the effect of menstrual disorders on fertility and bone density.

  12. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging

    PubMed Central

    Caplan, Jeremy B.; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A.

    2015-01-01

    Rhythmic brain activity at low frequencies (<12 Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. PMID:25769279

  13. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.

    PubMed

    Ryu, Hyunryul; Oh, Soojung; Lee, Hyun Jae; Lee, Jin Young; Lee, Hae Kwang; Jeon, Noo Li

    2015-06-01

    The blood circulatory system links all organs from one to another to support and maintain each organ's functions consistently. Therefore, blood vessels have been considered as a vital unit. Engineering perfusable functional blood vessels in vitro has been challenging due to difficulties in designing the connection between rigid macroscale tubes and fragile microscale ones. Here, we propose a generalizable method to engineer a "long" perfusable blood vessel network. To form millimeter-scale vessels, fibroblasts were co-cultured with human umbilical vein endothelial cells (HUVECs) in close proximity. In contrast to previous works, in which all cells were permanently placed within the device, we developed a novel method to culture paracrine factor secreting fibroblasts on an O-ring-shaped guide that can be transferred in and out. This approach affords flexibility in co-culture, where the effects of secreted factors can be decoupled. Using this, blood vessels with length up to 2 mm were successfully produced in a reproducible manner (>90%). Because the vessels form a perfusable network within the channel, simple links to inlets and outlets of the device allowed connections to the outside world. The robust and reproducible formation of in vitro engineered vessels can be used as a module to link various organ components as parts of future body-on-a-chip applications. © 2014 Society for Laboratory Automation and Screening.

  14. Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.

    2017-02-01

    To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.

  15. Novel modulators for body weight changes induced by fasting and re-feeding in mice.

    PubMed

    Nonogaki, Katsunori; Ohba, Yukie; Sumii, Makiko; Wakameda, Mamoru; Tamari, Tomohiro

    2009-01-09

    Catch-up weight gain after malnutrition is a risk factor for metabolic syndrome. Here we show that social isolation enhanced fasting-induced weight loss and suppressed weight gain induced by re-feeding for 6 days following a 24-h fast in prepubertal wild-type mice. These effects of social isolation on weight gain were not associated with significant changes in daily average food consumption. Under the same housing condition, genetic deletion of beta-endorphin reduced the fasting-induced weight loss and enhanced the re-feeding-induced weight gain in prepubertal mice. These effects of social isolation or genetic deletion of beta-endorphin on these weight changes were attenuated and reversed in postpubertal mice. Moreover, genetic deletion of beta-endorphin attenuated these effects of social isolation on the catch-up weight gain in prepubertal mice and reversed them in postpubertal mice. Thus, social isolation, endogenous beta-endorphin, and age can be novel modulators for body weight changes induced by fasting and re-feeding in mice.

  16. Fibroblast PER2 Circadian Rhythmicity Depends on Cell Density

    PubMed Central

    Noguchi, Takako; Wang, Lexie L.; Welsh, David K.

    2013-01-01

    Like neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in the brain, single fibroblasts can function as independent oscillators. In the SCN, synaptic and paracrine signaling among cells creates a robust, synchronized circadian oscillation, whereas there is no evidence for such integration in fibroblast cultures. However, interactions among single-cell fibroblast oscillators cannot be completely excluded, because fibroblasts were not isolated in previous work. In this study, we tested the autonomy of fibroblasts as single-cell circadian oscillators in high and low density culture, by single-cell imaging of cells from PER2::LUC circadian reporter mice. We found greatly reduced PER2::LUC rhythmicity in low density cultures, which could result from lack of either constitutive or rhythmic paracrine signals from neighboring fibroblasts. To discriminate between these two possibilities, we mixed PER2::LUC wild type (WT) cells with non-luminescent, non-rhythmic Bmal1−/− cells, so that density of rhythmic cells was low but overall cell density remained high. In this condition, WT cells showed clear rhythmicity similar to high density cultures. We also mixed PER2::LUC WT cells with non-luminescent, long period Cry2−/− cells. In this condition, WT cells showed a period no different from cells cultured with rhythmic WT cells or non-rhythmic Bmal1−/− cells. In previous work, we found that low K+ suppresses fibroblast rhythmicity, and we and others have found that either low K+ or low Ca2+ suppresses SCN rhythmicity. Therefore, we attempted to rescue rhythmicity of low density fibroblasts with high K+ (21 mM), high Ca2+ (3.6 mM), or conditioned medium. Conditioned medium from high density fibroblast cultures rescued rhythmicity of low density cultures, whereas high K+ or Ca2+ medium did not consistently rescue rhythmicity. These data suggest that fibroblasts require paracrine signals from adjacent cells for normal expression of rhythmicity

  17. Rhythmic movement disorder in sleep persisting into childhood and adulthood.

    PubMed

    Stepanova, Iva; Nevsimalova, Sona; Hanusova, Jaroslava

    2005-07-01

    To evaluate the type, duration, and distribution of rhythmic movements in sleep stages in school-aged children and young adults; to find out if cases of rhythmic movement disorder persisting beyond infancy are associated with any daytime symptoms or psychopathology. All participants underwent neurologic examination, biochemical screening, electroencephalography, neuroimaging, overnight videopolysomnography, and psychologic examination. Department of Neurology and Sleep Laboratory, 1st Medical Faculty, Charles University, Prague. Ten subjects referred to the sleep disorders center because of rhythmic movement disorder. Five males, 5 females; age range, 7-24 years; mean age 14.7 +/- 5.69 years. None. Biochemical screening, electroencephalogram, and neuroimaging were unremarkable in all cases. According to duration, 2 types of rhythmic movements were observed on polysomnography: longer episodes appeared in wakefulness and in non-rapid eye movement stage 1 sleep, while shorter episodes (2-80 seconds) occurred during non-rapid eye movement stage 2, non-rapid eye movement stage 3-4, and rapid eye movement sleep. According to sleep-stage distribution, we defined (a) rhythmic movements prevailing in the first half of the night and in the morning hours, usually associated with wakefulness or superficial sleep; (b) rhythmic movements occurring throughout the night in all sleep stages; (c) rhythmic movements prevailing in the second half of the night and mainly associated with rapid eye movement sleep. Psychologic examination showed symptoms of the attention-deficit/hyperactivity disorder in 6 cases. According to our study, rhythmic movement disorder persisting beyond infancy may be connected with various daytime symptoms; a strong association between rhythmic movement disorder and attention-deficit/hyperactivity disorder was found in school-aged children. We speculate that pathogenetic mechanisms similar to those in attention-deficit/hyperactivity disorder are involved in

  18. Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies.

    PubMed

    Heydeck, Westley; Stemm-Wolf, Alexander J; Knop, Janin; Poh, Christina C; Winey, Mark

    2016-01-01

    Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the

  19. Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies

    PubMed Central

    Heydeck, Westley; Stemm-Wolf, Alexander J.; Knop, Janin; Poh, Christina C.

    2016-01-01

    ABSTRACT Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood

  20. Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics

    PubMed Central

    Pulver, Stefan R.

    2009-01-01

    The output of a neural circuit results from an interaction between the intrinsic properties of neurons within the circuit and the features of the synaptic connections between them. The plasticity of intrinsic properties has been primarily attributed to modification of ion channel function and/or number. In this study, we demonstrate a mechanism for intrinsic plasticity in rhythmically active Drosophila neurons that is not conductance-based. Larval motor neurons show a long lasting sodium-dependent afterhyperpolarization (AHP) following bursts of action potentials that is mediated by the electrogenic activity of Na+/K+ ATPase. This AHP persists for multiple seconds following volleys of action potentials and is able to function as a pattern-insensitive integrator of spike number that is independent of external calcium. This current also interacts with endogenous Shal K+ conductances to modulate spike timing for multiple seconds following rhythmic activity, providing a cellular memory of network activity on a behaviorally relevant time scale. PMID:19966842

  1. Model of rhythmic ball bouncing using a visually controlled neural oscillator.

    PubMed

    Avrin, Guillaume; Siegler, Isabelle Anne; Makarov, Maria; Rodriguez-Ayerbe, Pedro

    2017-08-09

    The present paper investigates the sensory-driven modulations of Central Pattern Generators dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator parametrically controlled by a sensorimotor controller and coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved on-line. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system and the environment. Copyright © 2017, Journal of Neurophysiology.

  2. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. III. Rhythmic control of the pyloric CPG.

    PubMed

    Cardi, P; Nagy, F

    1994-06-01

    1. Two modulatory neurons, P and commissural pyloric (CP), known to be involved in the long-term maintenance of pyloric central pattern generator operation in the rock lobster Homarus gammarus, are members of the commissural pyloric oscillator (CPO), a higher-order oscillator influencing the pyloric network. 2. The CP neuron was endogenously oscillating in approximately 30% of the preparations in which its cell body was impaled. Rhythmic inhibitory feedback from the pyloric pacemaker anterior burster (AB) neuron stabilized the CP neuron's endogenous rhythm. 3. The organization of the CPO is described. Follower commissural neurons, the F cells, and the CP neuron receive a common excitatory postsynaptic potential from another commissural neuron, the large exciter (LE). When in oscillatory state, CP in turn excites the LE neuron. This positive feedback may maintain long episodes of CP oscillations. 4. The pyloric pacemaker neurons follow the CPO rhythm with variable coordination modes (i.e., 1:1, 1:2) and switch among these modes when their membrane potential is modified. The CPO inputs strongly constrain the pyloric period, which as a result may adopt only a few discrete values. This effect is based on mechanisms of entrainment between the CPO and the pyloric oscillator. 5. Pyloric constrictor neurons show differential sensitivity from the pyloric pacemaker neurons with respect to the CPO inputs. Consequently, their bursting period can be a shorter harmonic of the bursting period of the pyloric pacemakers neurons. 6. The CPO neurons seem to be the first example of modulatory gating neurons that also give timing cues to a rhythmic pattern generating network.

  3. Effects of a rhythmic and choreographic program in obese and overweight participants.

    PubMed

    Monleón, Cristina; Pablos, Ana; Carnide, Filomena; Martín, Marta; Pablos, Carlos

    2014-09-01

    Currently there is a growing trend in the prevalence of overweight and obesity. This increased prevalence trend leads to an increase in the costs of health care. The aim of the present study was to analyze the effects on physical fitness and bone mineral density through an intervention program of physical activity based on rhythmic and choreographic activities in an overweight and obese population. An 8-month physical activity based on rhythmic and choreographic activities was conducted in overweight and obese people. Thirty-four participants aged 50.43 ± 10.57 with a body mass index (BMI) 38.37 ± 4.82 took part in the physical activity program. This study assesses the effects of fitness, percentage of body fat and bone mineral density (BMD). After an 8-month physical activity intervention program based on rhythmic and choreographic activities, significant differences were found in: percentage of body fat (p = 0.004), aerobic capacity (p = 0.023), flexibility of the lower limbs (flexibility in the right leg p = 0.029 and left leg p = 0.002), balance (p < 0.001), strength in lower limbs (p = 0..003) and strength in upper limbs (p < 0.001). Besides that, significant differences were found in parameters related with BMD such as T-Score (p = 0.025) and Z-Score (p = 0.012), Bone Quality Index (BQI) (p = 0.026) and an increase in Broadband Ultrasound Attenuation (BUA) although not a statistically significant one (p = 0.939). These findings suggest that a physical activity program based on rhythmic and choreographic activities can act as a preventive method of mobility and fragility, as well as preventing bone loss. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. The Rhythmic Group, Liaison, Nouns and Verbs of French

    ERIC Educational Resources Information Center

    Ashby, William J.

    1975-01-01

    The "rhythmic group" in French (noun group or verb group) is described with examples. The aim is to find some relation between the morphophonological phenomena such as "liaison" occurring within such rhythmic groups and the syntactic structure of French. Available from Liber Laeromedel, Box 1205, S-22105 Lund, Sweden. (TL)

  5. Connecting Phrasal and Rhythmic Events: Evidence from Second Language Speech

    ERIC Educational Resources Information Center

    Nava, Emily Anne

    2010-01-01

    This dissertation investigates the relation between prosodic events at the phrasal level and component events at the rhythmic level. The overarching hypothesis is that the interaction among component rhythmic events gives rise to prosodic patterns at the phrasal level, while at the same time being constrained by the latter, and that in the case of…

  6. The Impact of Rhythmic Entrainment on a Person with Autism.

    ERIC Educational Resources Information Center

    Orr, Tracy Jo; Myles, Brenda Smith; Carlson, Judith K.

    1998-01-01

    A study investigated the impact of rhythmic entrainment on an 11-year-old girl with autism who engaged in head jerking and screaming. Rhythmic entrainment intervention was more effective when she exhibited behavior that resulted from a moderate level of stress and less effective when stressors were more severe. (CR)

  7. Effects of task complexity on rhythmic reproduction performance in adults.

    PubMed

    Iannarilli, Flora; Vannozzi, Giuseppe; Iosa, Marco; Pesce, Caterina; Capranica, Laura

    2013-02-01

    The aim of the present study was to investigate the effect of task complexity on the capability to reproduce rhythmic patterns. Sedentary musically illiterate individuals (age: 34.8±4.2 yrs; M±SD) were administered a rhythmic test including three rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. For the quantification of subjects' ability in the reproduction of rhythmic patterns, qualitative and quantitative parameters were submitted to analysis. A stereophotogrammetric system was used to reconstruct and evaluate individual performances. The findings indicated a good internal stability of the rhythmic reproduction, suggesting that the present experimental design is suitable to discriminate the participants' rhythmic ability. Qualitative aspects of rhythmic reproduction (i.e., speed of execution and temporal ratios between events) varied as a function of the perceptual-motor requirements of the rhythmic reproduction task, with larger reproduction deviations in the walking task. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Connecting Phrasal and Rhythmic Events: Evidence from Second Language Speech

    ERIC Educational Resources Information Center

    Nava, Emily Anne

    2010-01-01

    This dissertation investigates the relation between prosodic events at the phrasal level and component events at the rhythmic level. The overarching hypothesis is that the interaction among component rhythmic events gives rise to prosodic patterns at the phrasal level, while at the same time being constrained by the latter, and that in the case of…

  9. The Rhythmic Group, Liaison, Nouns and Verbs of French

    ERIC Educational Resources Information Center

    Ashby, William J.

    1975-01-01

    The "rhythmic group" in French (noun group or verb group) is described with examples. The aim is to find some relation between the morphophonological phenomena such as "liaison" occurring within such rhythmic groups and the syntactic structure of French. Available from Liber Laeromedel, Box 1205, S-22105 Lund, Sweden. (TL)

  10. Rhythmic Characteristics of Improvisational Drumming among Preschool Children

    ERIC Educational Resources Information Center

    Whitcomb, Rachel

    2010-01-01

    A call-and-response drumming activity was carried out to determine the rhythmic characteristics of improvised patterns created by preschool children. Specific goals of the study were to: (1) determine the durations, start and stop times, and rhythmic patterns of improvised responses to a simple given call using drums; (2) determine the presence or…

  11. The Impact of Rhythmic Entrainment on a Person with Autism.

    ERIC Educational Resources Information Center

    Orr, Tracy Jo; Myles, Brenda Smith; Carlson, Judith K.

    1998-01-01

    A study investigated the impact of rhythmic entrainment on an 11-year-old girl with autism who engaged in head jerking and screaming. Rhythmic entrainment intervention was more effective when she exhibited behavior that resulted from a moderate level of stress and less effective when stressors were more severe. (CR)

  12. Volumetric-modulated arc therapy using multicriteria optimization for body and extremity sarcoma.

    PubMed

    Young, Michael R; Craft, David L; Colbert, Caroline M; Remillard, Kyla; Vanbenthuysen, Liam; Wang, Yi

    2016-11-01

    This study evaluates the implementation of volumetric-modulated arc therapy (VMAT) using multicriteria optimization (MCO) in the RayStation treatment planning system (TPS) for complex sites, namely extremity and body sarcoma. The VMAT-MCO algorithm implemented in RayStation is newly developed and requires an integrated, comprehensive analysis of plan generation, delivery, and treatment efficiency. Ten patients previously treated by intensity-modulated radiation therapy (IMRT) with MCO were randomly selected and replanned using VMAT-MCO. The plan quality was compared using homogeneity index (HI) and conformity index (CI) of the planning target volume (PTV) and dose sparing of organs at risk (OARs). Given the diversity of the tumor location, the 10 plans did not have a common OAR except for skin. The skin D50 and Dmean was directly compared between VMAT-MCO and IMRT-MCO. Additional OAR dose points were compared on a plan-by-plan basis. The treatment efficiency was compared using plan monitor units (MU) and net beam-on time. Plan quality assurance was performed using the Sun Nuclear ArcCHECK phantom and a gamma criteria of 3%/3 mm. No statistically significant differences were found between VMAT- and IMRT-MCO for HI and CI of the PTV or D50 and Dmean to the skin. The VMAT-MCO plans showed general improvements in sparing to OARs. The VMAT-MCO plan set showed statistically significant improvements over the IMRT-MCO set in treatment efficiency per plan MU (p<0.05) and net beam-on time (p<0.01). The VMAT-MCO plan deliverability was validated. Similar gamma passing rates were observed for the two modalities. This study verifies the suitability of VMAT-MCO for sarcoma cancer and highlighted the comparability in plan quality and improvement in treatment efficiency offered by VMAT-MCO as compared to IMRT-MCO. PACS number(s): separated by commas 87.55.D, 87.55.de, 87.55.Qr.

  13. My Body Looks Like That Girl's: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women.

    PubMed

    Gao, Xiao; Deng, Xiao; Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong

    2016-01-01

    Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress

  14. My Body Looks Like That Girl’s: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women

    PubMed Central

    Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong

    2016-01-01

    Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress

  15. Environmental Coupling Modulates the Attractors of Rhythmic Coordination

    ERIC Educational Resources Information Center

    Kudo, Kazutoshi; Park, Hyeonsaeng; Kay, Bruce A.; Turvey, M. T.

    2006-01-01

    A simple instance of coupling behavior to the environment is oscillating the hands in pace with metronome beats. This environmental coupling can be weaker (1 beat per cycle) or stronger (2 beats per cycle). The authors examined whether strength of environmental coupling enhanced the stability of in-phase bimanual coordination. Detuning by…

  16. Environmental Coupling Modulates the Attractors of Rhythmic Coordination

    ERIC Educational Resources Information Center

    Kudo, Kazutoshi; Park, Hyeonsaeng; Kay, Bruce A.; Turvey, M. T.

    2006-01-01

    A simple instance of coupling behavior to the environment is oscillating the hands in pace with metronome beats. This environmental coupling can be weaker (1 beat per cycle) or stronger (2 beats per cycle). The authors examined whether strength of environmental coupling enhanced the stability of in-phase bimanual coordination. Detuning by…

  17. Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans

    PubMed Central

    Huffman, Jennifer E.; Albrecht, Eva; Teumer, Alexander; Mangino, Massimo; Kapur, Karen; Johnson, Toby; Kutalik, Zoltán; Pirastu, Nicola; Pistis, Giorgio; Lopez, Lorna M.; Haller, Toomas; Salo, Perttu; Goel, Anuj; Li, Man; Tanaka, Toshiko; Dehghan, Abbas; Ruggiero, Daniela; Malerba, Giovanni; Smith, Albert V.; Nolte, Ilja M.; Portas, Laura; Phipps-Green, Amanda; Boteva, Lora; Navarro, Pau; Johansson, Asa; Hicks, Andrew A.; Polasek, Ozren; Esko, Tõnu; Peden, John F.; Harris, Sarah E.; Murgia, Federico; Wild, Sarah H.; Tenesa, Albert; Tin, Adrienne; Mihailov, Evelin; Grotevendt, Anne; Gislason, Gauti K.; Coresh, Josef; D'Adamo, Pio; Ulivi, Sheila; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Kolcic, Ivana; Fisher, Krista; Viigimaa, Margus; Metter, Jeffrey E.; Masciullo, Corrado; Trabetti, Elisabetta; Bombieri, Cristina; Sorice, Rossella; Döring, Angela; Reischl, Eva; Strauch, Konstantin; Hofman, Albert; Uitterlinden, Andre G.; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J.; Dalbeth, Nicola; Stamp, Lisa; Smit, Johannes H.; Kirin, Mirna; Nagaraja, Ramaiah; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Farrington, Susan M.; Theodoratou, Evropi; Jula, Antti; Salomaa, Veikko; Sala, Cinzia; Hengstenberg, Christian; Burnier, Michel; Mägi, Reedik; Klopp, Norman; Kloiber, Stefan; Schipf, Sabine; Ripatti, Samuli; Cabras, Stefano; Soranzo, Nicole; Homuth, Georg; Nutile, Teresa; Munroe, Patricia B.; Hastie, Nicholas; Campbell, Harry; Rudan, Igor; Cabrera, Claudia; Haley, Chris; Franco, Oscar H.; Merriman, Tony R.; Gudnason, Vilmundur; Pirastu, Mario; Penninx, Brenda W.; Snieder, Harold; Metspalu, Andres; Ciullo, Marina; Pramstaller, Peter P.; van Duijn, Cornelia M.; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J.; Dunlop, Malcolm G.; Wilson, James F.; Gasparini, Paolo; Gyllensten, Ulf; Spector, Tim D.; Wright, Alan F.; Hayward, Caroline; Watkins, Hugh; Perola, Markus; Bochud, Murielle; Kao, W. H. Linda; Caulfield, Mark; Toniolo, Daniela; Völzke, Henry; Gieger, Christian; Köttgen, Anna; Vitart, Veronique

    2015-01-01

    We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment. PMID:25811787

  18. Body mass index modulates blood pressure heritability: the Family Blood Pressure Program.

    PubMed

    Simino, Jeannette; Shi, Gang; Weder, Alan; Boerwinkle, Eric; Hunt, Steven C; Rao, Dabeeru C

    2014-04-01

    Candidate gene and twin studies suggest that interactions between body mass index (BMI) and genes contribute to the variability of blood pressure (BP). To determine whether there is evidence for gene-BMI interactions, we investigated the modulation of BP heritability by BMI using 4,153 blacks, 1,538 Asians, 4,013 whites, and 2,199 Hispanic Americans from the Family Blood Pressure Program. To capture the BP heritability dependence on BMI, we employed a generalized variance components model incorporating linear and Gaussian interactions between BMI and the genetic component. Within each race and network subgroup, we used the Akaike information criterion and likelihood ratio test to select the appropriate interaction function for each BP trait (systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP)) and determine interaction significance, respectively. BP heritabilities were significantly modified by BMI in the GenNet and SAPPHIRe Networks, which contained the youngest and least-obese participants, respectively. GenNet Whites had unimodal SBP, MAP, and PP heritabilities that peaked between BMI values of 33 and 37kg/m(2). The SBP and MAP heritabilities in GenNet Hispanic Americans, as well as the PP heritability in GenNet blacks, were increasing functions of BMI. The DBP and SBP heritabilities in the SAPPHIRe Chinese and Japanese, respectively, were decreasing functions of BMI. BP heritability differed by BMI in the youngest and least-obese networks, although the shape of this dependence differed by race. Use of nonlinear gene-BMI interactions may enhance BP gene discovery efforts in individuals of European ancestry.

  19. Modulation of genetic associations with serum urate levels by body-mass-index in humans.

    PubMed

    Huffman, Jennifer E; Albrecht, Eva; Teumer, Alexander; Mangino, Massimo; Kapur, Karen; Johnson, Toby; Kutalik, Zoltán; Pirastu, Nicola; Pistis, Giorgio; Lopez, Lorna M; Haller, Toomas; Salo, Perttu; Goel, Anuj; Li, Man; Tanaka, Toshiko; Dehghan, Abbas; Ruggiero, Daniela; Malerba, Giovanni; Smith, Albert V; Nolte, Ilja M; Portas, Laura; Phipps-Green, Amanda; Boteva, Lora; Navarro, Pau; Johansson, Asa; Hicks, Andrew A; Polasek, Ozren; Esko, Tõnu; Peden, John F; Harris, Sarah E; Murgia, Federico; Wild, Sarah H; Tenesa, Albert; Tin, Adrienne; Mihailov, Evelin; Grotevendt, Anne; Gislason, Gauti K; Coresh, Josef; D'Adamo, Pio; Ulivi, Sheila; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Kolcic, Ivana; Fisher, Krista; Viigimaa, Margus; Metter, Jeffrey E; Masciullo, Corrado; Trabetti, Elisabetta; Bombieri, Cristina; Sorice, Rossella; Döring, Angela; Reischl, Eva; Strauch, Konstantin; Hofman, Albert; Uitterlinden, Andre G; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J; Dalbeth, Nicola; Stamp, Lisa; Smit, Johannes H; Kirin, Mirna; Nagaraja, Ramaiah; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Farrington, Susan M; Theodoratou, Evropi; Jula, Antti; Salomaa, Veikko; Sala, Cinzia; Hengstenberg, Christian; Burnier, Michel; Mägi, Reedik; Klopp, Norman; Kloiber, Stefan; Schipf, Sabine; Ripatti, Samuli; Cabras, Stefano; Soranzo, Nicole; Homuth, Georg; Nutile, Teresa; Munroe, Patricia B; Hastie, Nicholas; Campbell, Harry; Rudan, Igor; Cabrera, Claudia; Haley, Chris; Franco, Oscar H; Merriman, Tony R; Gudnason, Vilmundur; Pirastu, Mario; Penninx, Brenda W; Snieder, Harold; Metspalu, Andres; Ciullo, Marina; Pramstaller, Peter P; van Duijn, Cornelia M; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J; Dunlop, Malcolm G; Wilson, James F; Gasparini, Paolo; Gyllensten, Ulf; Spector, Tim D; Wright, Alan F; Hayward, Caroline; Watkins, Hugh; Perola, Markus; Bochud, Murielle; Kao, W H Linda; Caulfield, Mark; Toniolo, Daniela; Völzke, Henry; Gieger, Christian; Köttgen, Anna; Vitart, Veronique

    2015-01-01

    We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.

  20. Virtual lesion of right posterior superior temporal sulcus modulates conscious visual perception of fearful expressions in faces and bodies.

    PubMed

    Candidi, Matteo; Stienen, Bernard M C; Aglioti, Salvatore M; de Gelder, Beatrice

    2015-04-01

    The posterior Superior Temporal Suclus (pSTS) represents a central hub in the complex cerebral network for person perception and emotion recognition as also suggested by its heavy connections with face- and body-specific cortical (e.g., the fusiform face area, FFA and the extrastriate body area, EBA) and subcortical structures (e.g., amygdala). Information on whether pSTS is causatively involved in sustaining conscious visual perception of emotions expressed by faces and bodies is lacking. We explored this issue by combining a binocular rivalry procedure (where emotional and neutral face and body postures rivaled with house images) with off-line, 1-Hz repetitive transcranial magnetic stimulation (rTMS). We found that temporary inhibition of the right pSTS reduced perceptual dominance of fearful faces and increased perceptual dominance of fearful bodies, while leaving unaffected the perception of neutral face and body images. Inhibition of the vertex had no effect on conscious visual perception of neutral or emotional face or body stimuli. Thus, the right pSTS plays a causal role in shortening conscious vision of fearful faces and in prolonging conscious vision of fearful bodies. These results suggest that pSTS selectively modulates the activity of segregated networks involved in the conscious visual perception of emotional faces or bodies. We speculate that the opposite role of the right pSTS for conscious perception of fearful face and body may be explained by the different connections that this region entertains with face- and body-selective visual areas as well as with amygdalae and premotor regions.

  1. WOMEN IN CANCER THEMATIC REVIEW: Circadian rhythmicity and the influence of 'clock' genes on prostate cancer.

    PubMed

    Kiss, Zsofia; Ghosh, Paramita M

    2016-11-01

    The androgen receptor (AR) plays a key role in the development and progression of prostate cancer (CaP). Since the mid-1990s, reports in the literature pointed out higher incidences of CaP in some select groups, such as airline pilots and night shift workers in comparison with those working regular hours. The common finding in these 'high-risk' groups was that they all experienced a deregulation of the body's internal circadian rhythm. Here, we discuss how the circadian rhythm affects androgen levels and modulates CaP development and progression. Circadian rhythmicity of androgen production is lost in CaP patients, with the clock genes Per1 and Per2 decreasing, and Bmal1 increasing, in these individuals. Periodic expression of the clock genes was restored upon administration of the neurohormone melatonin, thereby suppressing CaP progression. Activation of the melatonin receptors and the AR antagonized each other, and therefore the tumour-suppressive effects of melatonin and the clock genes were most clearly observed in the absence of androgens, that is, in conjunction with androgen deprivation therapy (ADT). In addition, a large-scale study found that high-dose radiation was more effective in CaP patients when it was delivered before 17:00 h, compared with those delivered after 17:00 h, suggesting that the therapy was more effective when delivered in synchrony with the patient's circadian clock. As CaP patients are shown to become easily resistant to new therapies, perhaps circadian delivery of these therapeutic agents or delivery in conjunction with melatonin and its novel analogs should be tested to see if they prevent this resistance. © 2016 Society for Endocrinology.

  2. Rhythmic biological systems under microgravity conditions.

    PubMed

    Johnsson, A; Eidesmo, T

    1989-01-01

    Rhythmic phenomena in biology cover a wide frequency spectrum. In Space, the rhythms will encounter microgravity conditions which can, therefore, be a valuable tool for their understanding. A review and discussion of important effects of gravity/absence of gravity on biological systems will be given. Convection will be emphasized as a mechanism which is drastically reduced in Space. Microgravity might also affect the coupling between individual oscillators in a multi-oscillatory system. The environmental interference with rhythms will be discussed with a simple feedback as a starting point. Model simulations will be presented and clinostat and microgravity-conditions will be discussed in a specific case, viz. the gravitropical system of plants which can show sustained oscillations.

  3. Rhythmicity, recurrence, and recovery of flagellar beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty; Goldstein, Raymond

    2015-03-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the unicellular alga Chlamydomonas reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating. Financial support is acknowledged from the EPSRC, ERC Advanced Investigator Grant No. 247333, and a Senior Investigator Award from the Wellcome Trust.

  4. Requirement of mammalian Timeless for circadian rhythmicity.

    PubMed

    Barnes, Jessica W; Tischkau, Shelley A; Barnes, Jeffrey A; Mitchell, Jennifer W; Burgoon, Penny W; Hickok, Jason R; Gillette, Martha U

    2003-10-17

    Despite a central circadian role in Drosophila for the transcriptional regulator Timeless (dTim), the relevance of mammalian Timeless (mTim) remains equivocal. Conditional knockdown of mTim protein expression in the rat suprachiasmatic nucleus (SCN) disrupted SCN neuronal activity rhythms, and altered levels of known core clock elements. Full-length mTim protein (mTIM-fl) exhibited a 24-hour oscillation, where as a truncated isoform (mTIM-s) was constitutively expressed. mTIM-fl associated with the mammalian clock Period proteins (mPERs) in oscillating SCN cells. These data suggest that mTim is required for rhythmicity and is a functional homolog of dTim on the negative-feedback arm of the mammalian molecular clockwork.

  5. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    NASA Technical Reports Server (NTRS)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  6. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.

    PubMed

    Cohen, Michael X; Gulbinaite, Rasa

    2017-02-15

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differential projection of neural activity to multiple electrodes or sensors. Our approach is a combination and extension of existing multivariate source separation methods. We demonstrate that RESS performs well on both simulated and empirical data, and outperforms conventional SSEP analysis methods based on selecting electrodes with the strongest SSEP response, as well as several other linear spatial filters. We also discuss the potential confound of overfitting, whereby the filter captures noise in absence of a signal. Matlab scripts are available to replicate and extend our simulations and methods. We conclude with some practical advice for optimizing SSEP data analyses and interpreting the results.

  7. Systematic modulation of negative-differential transconductance effects for gated p+-i-n+ silicon ultra-thin body transistor

    NASA Astrophysics Data System (ADS)

    Kim, Changmin; Lee, Youngmin; Lee, Sejoon

    2017-03-01

    We demonstrate the precise control of the negative-differential transconductance (NDT) effects on a gated p+-i-n+ Si ultra-thin body transistor. The device clearly displays the N-shape transfer characteristic (i.e., NDT effect) at room temperature, and the NDT behavior is fully based on the gate-modulation of the electrostatic junction characteristics. The position and the current level of the peak in the NDT region are systematically controllable when modulating the potential profile at the channel-source junction. Namely, the NDT effect can be systematically modulated through modifying the band-to-band tunneling condition by controlling both gate- and drain-bias voltages. In-depth analyses on the transport characteristics and transport mechanisms are discussed.

  8. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  9. SU-E-T-540: Volumetric Modulated Total Body Irradiation Using a Rotational Lazy Susan-Like Immobilization System

    SciTech Connect

    Gu, X; Hrycushko, B; Lee, H; Lamphier, R; Jiang, S; Abdulrahman, R; Timmerman, R

    2014-06-01

    Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The two scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.

  10. Estradiol: a rhythmic, inhibitory, indirect control of meal size.

    PubMed

    Eckel, Lisa A

    2004-08-01

    The classic analyses of the inhibitory effects of cholecystokinin (CCK) on meal size, conducted by Professor Gerard P. Smith and his colleagues at the Bourne Laboratory, inspired my initial interest in this field. My current research, which investigates the role of estradiol in the control of meal size, continues to be guided by Gerry's thoughtful, scientific approach to the study of ingestive behavior. In 1996, the year I arrived as a Postdoctoral Fellow at the Bourne Laboratory, Gerry published a new theory of the controls of meal size. In this important paper, Gerry proposed that the controls of meal size can be either direct or indirect. He argued that direct controls of meal size interact with peripheral, preabsorptive receptors that are sensitive to the chemical, mechanical, and colligative properties of ingested food and that indirect controls of meal size function to modulate the activity of direct controls. The purpose of this review is to illustrate how Gerry's theory has guided much of what is known about the mechanism by which estradiol inhibits food intake in female rats. I will provide evidence, primarily from behavioral studies of gonadally intact and ovariectomized rats, that estradiol exerts phasic and tonic inhibitory effects on food intake by acting as a rhythmic, inhibitory, indirect control of meal size.

  11. Getting Down to Business: Auto Body Shop, Module 31. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    McFarlane, Carolyn

    This module on owning and operating an auto repair shop is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…

  12. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs.

    PubMed

    Chacolla-Huaringa, Rafael; Moreno-Cuevas, Jorge; Trevino, Victor; Scott, Sean-Patrick

    2017-07-12

    Circadian rhythms are essential for temporal (~24 h) regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs) have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h) expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.

  13. Music Games: Potential Application and Considerations for Rhythmic Training

    PubMed Central

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson’s disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future. PMID:28611610

  14. Music Games: Potential Application and Considerations for Rhythmic Training.

    PubMed

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson's disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  15. Situational influences on rhythmicity in speech, music, and their interaction.

    PubMed

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Situational influences on rhythmicity in speech, music, and their interaction

    PubMed Central

    Hawkins, Sarah

    2014-01-01

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  17. Order restricted inference for oscillatory systems for detecting rhythmic signals.

    PubMed

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2016-12-15

    Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm CONTACT: peddada@niehs.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Serotonin Receptors Expressed in Drosophila Mushroom Bodies Differentially Modulate Larval Locomotion

    PubMed Central

    Silva, Bryon; Goles, Nicolás I.; Varas, Rodrigo; Campusano, Jorge M.

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3rd-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae. PMID:24586928

  19. The neuromuscular transform constrains the production of functional rhythmic behaviors.

    PubMed

    Brezina, V; Weiss, K R

    2000-01-01

    We continue our study of the properties and the functional role of the neuromuscular transform (NMT). The NMT is an input-output relation that formalizes the processes by which patterns of motor neuron firing are transformed to muscle contractions. Because the NMT acts as a dynamic, nonlinear, and modifiable filter, the transformation is complex. In the preceding paper we developed a framework for analysis of the NMT and identified with it principles by which the NMT transforms different firing patterns to contractions. The ultimate question is functional, however. In sending different firing patterns through the NMT, the nervous system is seeking to command different functional behaviors, with specific contraction requirements. To what extent do the contractions that emerge from the NMT actually satisfy those requirements? In this paper we extend our analysis to address this issue. We define representative behavioral tasks and corresponding measures of performance, for a single neuromuscular unit, for two antagonistic units, and, in a real illustration, for the accessory radula closer (ARC)-opener neuromuscular system of Aplysia. We focus on cyclical, rhythmic behaviors which reveal the underlying principles particularly clearly. We find that, although every pattern of motor neuron firing produces some state of muscle contraction, only a few patterns produce functional behavior, and even fewer produce efficient functional behavior. The functional requirements thus dictate certain patterns to the nervous system. But many desirable functional behaviors are not possible with any pattern. We examine, in particular, how rhythmic behaviors degrade and disintegrate as the nervous system attempts to speed up their cycle frequency. This happens because, with fixed properties, the NMT produces only a limited range of contraction shapes that are kinetically well matched to the firing pattern only on certain time scales. Thus the properties of the NMT constrain and restrict

  20. Rhythmic motion of colloidal particles driven by optical force

    NASA Astrophysics Data System (ADS)

    Saito, Keita; Kimura, Yasuyuki

    2017-04-01

    We observed the collective motion of colloidal particles moving along a circular path in water as a model system of artificial active matter. The particles were driven by optical vortex using holographic optical tweezer. They exhibit rhythmic motion with spontaneous formation of clusters and their dissociation by hydrodynamic interaction. The hydrodynamic interaction in spatially confined system alter their rhythmic motion dramatically. For example, we found that the relative magnitude of the angular velocity for a doublet to a singlet reversed in free space and in strongly confined system. The transition of rhythmic motions was observed by varying spatial confinement.

  1. Contactless mapping of rhythmical phenomena in tissue perfusion using PPGI

    NASA Astrophysics Data System (ADS)

    Huelsbusch, Markus; Blazek, Vladimir

    2002-04-01

    This paper presents the experimental setup and preliminary results of a near infrared CCD camera based Photoplethysmography Imaging (PPGI) system, which has been shown to be suitable for contactless and spatially resolved assessment of rhythmical blood volume changes in the skin. To visualize the complex rhythmical patterns in the dermal perfusion the Wavelet Transform is utilized. It is able to jointly assess time and frequency behavior of signals and thus allows to analyze instationary oscillations and variabilities in the different human rhythmics. The presented system is expected to provide new insights into the functional sequences of physiological tissue perfusion as well as of the perfusion status in ulcer formation and wound healing.

  2. Paired Synchronous Rhythmic Finger Tapping without an External Timing Cue Shows Greater Speed Increases Relative to Those for Solo Tapping

    PubMed Central

    Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi

    2017-01-01

    In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners’ tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing. PMID:28276461

  3. Paired Synchronous Rhythmic Finger Tapping without an External Timing Cue Shows Greater Speed Increases Relative to Those for Solo Tapping.

    PubMed

    Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi

    2017-03-09

    In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners' tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing.

  4. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.

    PubMed

    Joukov, Vladimir; Bonnet, Vincent; Karg, Michelle; Venture, Gentiane; Kulic, Dana

    2017-01-26

    This work proposes a method to enable the use of non-intrusive, small, wearable, wireless sensors to estimate the pose of the lower body during gait and other periodic motions and to extract objective performance measures useful for physiotherapy. The Rhythmic Extended Kalman Filter (Rhythmic- EKF) algorithm is developed to estimate the pose, learn an individualized model of periodic movement over time, and use the learned model to improve pose estimation. The proposed approach learns a canonical dynamical system model of the movement during online observation, which is used to accurately model the acceleration during pose estimation. The canonical dynamical system models the motion as a periodic signal. The estimated phase and frequency of the motion also allow the proposed approach to segment the motion into repetitions and extract useful features such as gait symmetry, step length, and mean joint movement and variance. The algorithm is shown to outperform the extended Kalman filter in simulation, on healthy participant data, and stroke patient data. For the healthy participant marching dataset, the Rhythmic-EKF improves joint acceleration and velocity estimates over regular EKF by 40% and 37% respectively, estimates joint angles with 2.4° RMSE, and segments the motion into repetitions with 96% accuracy.

  5. A multigenerational family with persistent sleep related rhythmic movement disorder (RMD) and insomnia.

    PubMed

    Attarian, Hrayr; Ward, Norman; Schuman, Catherine

    2009-12-15

    In the International Classification of Sleep Disorders 2nd Edition (ICSD-2), sleep related rhythmic movement disorder (RMD) is classified as a disorder characterized by rhythmic movements of large muscle groups in different parts of the body. These are repetitive, stereotyped, rhythmic motor behaviors that occur predominantly during drowsiness or sleep,and are typically seen in infants and children. Episodes often occur at sleep onset, at any time during the night, and during quiet wakeful activities at a frequency of 0.5-2 sec), lasting <15 min. The prevalence is high in infants (59%), dropping to 5% at the age of 5 years. When persisting to older childhood or beyond, association with mental retardation, autism, or other significant pathology is reported. Few cases in adults of normal intelligence have been reported in the literature. There is a strong association with attention deficit hyperactivity disorder, suggesting a similar pathogenetic mechanism. There is also one adult case report occurring during strictly REM sleep. Mayer et al reported 24 subjects with RMD that persisted into adolescence and adulthood. Twenty of the subjects were adults, and 16 of them had the condition since childhood. Of these 20, 16 had no other sleep disorders (but 2 had a family history of RMD), and 4 had obstructive sleep apnea. This was the first ever report of familial RMD.

  6. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics.

    PubMed

    Donti, Olyvia; Bogdanis, Gregory C; Kritikou, Maria; Donti, Anastasia; Theodorakou, Kalliopi

    2016-06-01

    This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years) were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22) based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0), shoulder flexion (p=0.01, d=0.8), straight leg raise (p=0.004, d=0.9), sideways leg extension (p=0.002, d=0.9) and body fat (p=.021, d=0.7), but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, p<0.05), sideways leg extension (r=0.687, p<0.01), push ups (r=0.437, p<0.05) and body fat (r=0.642, p<0.01), while there was only one significant correlation with sideways leg extension (r=0.467, p<0.05) for the qualifiers. Multiple regression analysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9%) of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers), physical fitness seems to have a greater effect on the technical execution score.

  7. The relative contribution of physical fitness to the technical execution score in youth rhythmic gymnastics

    PubMed Central

    Donti, Olyvia; Kritikou, Maria; Donti, Anastasia; Theodorakou, Kalliopi

    2016-01-01

    Abstract This study examined the association between physical fitness and a technical execution score in rhythmic gymnasts varying in the performance level. Forty-six young rhythmic gymnasts (age: 9.9 ±1.3 years) were divided into two groups (qualifiers, n=24 and non-qualifiers, n=22) based on the results of the National Championships. Gymnasts underwent a series of physical fitness tests and technical execution was evaluated in a routine without apparatus. There were significant differences between qualifiers and non-qualifiers in the technical execution score (p=0.01, d=1.0), shoulder flexion (p=0.01, d=0.8), straight leg raise (p=0.004, d=0.9), sideways leg extension (p=0.002, d=0.9) and body fat (p=.021, d=0.7), but no differences were found in muscular endurance and jumping performance. The technical execution score for the non-qualifiers was significantly correlated with shoulder extension (r=0.423, p<0.05), sideways leg extension (r=0.687, p<0.01), push ups (r=0.437, p<0.05) and body fat (r=0.642, p<0.01), while there was only one significant correlation with sideways leg extension (r=0.467, p<0.05) for the qualifiers. Multiple regression analysis revealed that sideways leg extension, body fat, and push ups accounted for a large part (62.9%) of the variance in the technical execution score for the non-qualifiers, while for the qualifiers, only 37.3% of the variance in the technical execution score was accounted for by sideways leg extension and spine flexibility. In conclusion, flexibility and body composition can effectively discriminate between qualifiers and non-qualifiers in youth rhythmic gymnastics. At the lower level of performance (non-qualifiers), physical fitness seems to have a greater effect on the technical execution score. PMID:28149377

  8. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    PubMed Central

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  9. Circadian rhythmicity as a predictor of weight-loss effectiveness

    USDA-ARS?s Scientific Manuscript database

    Some of the major challenges associated with successful dietary weight management include the identification of individuals not responsive to specific interventions. The aim was to investigate the potential relationship between weight loss and circadian rhythmicity, using wrist temperature and actim...

  10. Monotonic and rhythmic influences: a challenge for sleep deprivation research.

    PubMed

    Babkoff, H; Caspy, T; Mikulincer, M; Sing, H C

    1991-05-01

    There are both monotonic and rhythmic factors in the patterns of change seen in physiological, psychological, and performance variables during sleep deprivation. These monotonic and rhythmic factors can be orthogonal, or they may interact with each other, with various task variables, or both. The importance of separating the rhythmic from the monotonic factors and of elucidating their interactions is discussed. Experimental methods and types of analysis appropriate to evaluating these factors are examined, with special emphasis on the complex demodulation time series analysis applied to group or individual subject data. The discussion is accompanied by data illustrations. It is suggested that sleep deprivation research should be designed so as to generate physiological and behavioral data that include information on both monotonic and rhythmic factors, the nature and extent of their interaction, and how they interrelate with systematically manipulated independent variables.

  11. Some effects of rhythmic context on melody recognition.

    PubMed

    Kidd, G; Boltz, M; Jones, M R

    1984-01-01

    The effects of rhythmic context on the ability of listeners to recognize slightly altered versions of 10-tone melodies were examined in three experiments. Listeners judged the melodic equivalence of two auditory patterns when their rhythms were either the same or different. Rhythmic variations produced large effects on a bias measure, indicating that listeners judged melodies to be alike if their rhythms were identical. However, neither rhythm nor pattern rate affected discriminability measures in the first study, in which rhythm was treated as a within subjects variable. The other two studies examined rhythmic context as a between subjects variable. In these, significant effects of temporal uncertainty due to the number and type of rhythms involved in a block of trials, as well as their assignment to standard and comparison melodies on a given trial, were apparent on both discriminability and bias measures. Results were interpreted in terms of the effect of temporal context on the rhythmic targeting of attention.

  12. Rhythmic Behavior in the Hierarchy of Responses of Preschool Children

    ERIC Educational Resources Information Center

    Zern, David; Taylor, Amie Lou

    1973-01-01

    Data shows that the nursery school child will resort to rhythmic behavior more often in a situation with significant environmental constraints''; such behavior has an analgesic or a general soothing influence.'' (Author/SP)

  13. Guided Saccades Modulate Face- and Body-Sensitive Activation in the Occipitotemporal Cortex during Social Perception

    ERIC Educational Resources Information Center

    Morris, James P.; Green, Steven R.; Marion, Brian; McCarthy, Gregory

    2008-01-01

    Functional magnetic resonance imaging (fMRI) has identified distinct brain regions in ventral occipitotemporal cortex (VOTC) and lateral occipitotemporal cortex (LOTC) that are differentially activated by pictures of faces and bodies. Recent work from our laboratory has shown that the strong LOTC activation evoked by bodies in which the face is…

  14. Guided Saccades Modulate Face- and Body-Sensitive Activation in the Occipitotemporal Cortex during Social Perception

    ERIC Educational Resources Information Center

    Morris, James P.; Green, Steven R.; Marion, Brian; McCarthy, Gregory

    2008-01-01

    Functional magnetic resonance imaging (fMRI) has identified distinct brain regions in ventral occipitotemporal cortex (VOTC) and lateral occipitotemporal cortex (LOTC) that are differentially activated by pictures of faces and bodies. Recent work from our laboratory has shown that the strong LOTC activation evoked by bodies in which the face is…

  15. Interoceptive signals impact visual processing: Cardiac modulation of visual body perception.

    PubMed

    Ronchi, Roberta; Bernasconi, Fosco; Pfeiffer, Christian; Bello-Ruiz, Javier; Kaliuzhna, Mariia; Blanke, Olaf

    2017-09-01

    Multisensory perception research has largely focused on exteroceptive signals, but recent evidence has revealed the integration of interoceptive signals with exteroceptive information. Such research revealed that heartbeat signals affect sensory (e.g., visual) processing: however, it is unknown how they impact the perception of body images. Here we linked our participants' heartbeat to visual stimuli and investigated the spatio-temporal brain dynamics of cardio-visual stimulation on the processing of human body images. We recorded visual evoked potentials with 64-channel electroencephalography while showing a body or a scrambled-body (control) that appeared at the frequency of the on-line recorded participants' heartbeat or not (not-synchronous, control). Extending earlier studies, we found a body-independent effect, with cardiac signals enhancing visual processing during two time periods (77-130 ms and 145-246 ms). Within the second (later) time-window we detected a second effect characterised by enhanced activity in parietal, temporo-occipital, inferior frontal, and right basal ganglia-insula regions, but only when non-scrambled body images were flashed synchronously with the heartbeat (208-224 ms). In conclusion, our results highlight the role of interoceptive information for the visual processing of human body pictures within a network integrating cardio-visual signals of relevance for perceptual and cognitive aspects of visual body processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Rhythmic and non-rhythmic attractors in asynchronous random Boolean networks.

    PubMed

    Di Paolo, E A

    2001-03-01

    In multi-component, discrete systems, such as Boolean networks and cellular automata, the scheme of updating of the individual elements plays a crucial role in determining their dynamic properties and their suitability as models of complex phenomena. Many interesting properties of these systems rely heavily on the use of synchronous updating of the individual elements. Considerations of parsimony have motivated the claim that, if the natural systems being modelled lack any clear evidence of synchronously driven elements, then random asynchronous updating should be used by default. The introduction of a random element precludes the possibility of strictly cyclic behaviour. In principle, this poses the question of whether asynchronously driven Boolean networks, cellular automata, etc., are inherently bad choices at the time of modelling rhythmic phenomena. This paper focuses on this subsidiary issue for the case of Asynchronous Random Boolean Networks (ARBNs). It defines measures of pseudo-periodicity between states and sufficiently relaxed statistical constraints. These measures are used to guide a genetic algorithm to find appropriate examples. Success in this search for a number of cases, and the subsequent statistical analysis lead to the conclusion that ARBNs can indeed be used as models of co-ordinated rhythmic phenomena, which may be stronger precisely because of their in-built asynchrony. The same technique is used to find non-stationary attractors that show no rhythm. Evidence suggests that the latter are more abundant than rhythmic attractor. The methodology is flexible, and allows for more demanding statistical conditions for defining pseudo-periodicity, and constraining the evolutionary search.

  17. Rhythmic pulsations in inferior vena cava in pericardial constriction.

    PubMed

    Mittal, S R

    2016-09-01

    A case of pericardial constriction with rhythmic, nonrespiratory pulsations in inferior vena cava is presented. Hepatic vein flow showed wave form classical of pericardial constriction. Backward transmission of changes in right atrial pressure resulted in rhythmic, nonrespiratory pulsations in inferior vena cava. This echocardiographic finding could help in diagnosis of pericardial constriction. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  18. Interaction between total body gamma-irradiation and choline deficiency triggers immediate modulation of choline and choline-containing moieties.

    PubMed

    Batra, Vipen; Kislay, Binita; Devasagayam, Thomas Paul Asir

    2011-12-01

    The objective of this study was to examine the effect of 60Co-gamma (γ) radiation on acute phase modulation, if any, of choline and choline-containing moieties in choline-deficient subjects. Corresponding results could provide information that might be useful in the management of adverse effects of γ-radiation. Male Swiss mice maintained on a choline-sufficient diet (CSD) and choline-free diet (CFD) based on AIN-93M formula, were subjected to whole body γ-irradiation (2-6 Gy). Liver, serum and brain samples from each group were then tested for: (i) Alterations in choline and choline-containing moieties such as phosphatidylcholine (PC) and sphingomyeline (SM); and (ii) modulation of choline profile modulating enzymes such as phospholipase D (PLD) and total sphingomyelinase (t-SMase). Liver and brain samples were also subjected to histo-pathological examinations. No significant changes were observed in folate, choline, choline-containing moieties and choline-modulating enzymes in choline-sufficient mice. In contrast, interaction between cytotoxic effects of γ-radiation and choline deficiency modulated choline and choline-containing moieties. Feeding CFD reduced hepatic concentrations of choline, PC and SM whereas PLD and t-SMase activities were significantly raised. The decrease in liver choline and choline-containing moieties was accompanied by an increase in blood choline concentration. Despite choline deficiency, the level of choline and acetylcholine synthesizing enzyme choline acetyltransfease (ChAT) significantly increased in the brain. We propose that choline deprivation and γ-radiation interact to modulate choline reserves of hepatic tissue, which might release choline to blood. Our studies also clearly showed that interaction between choline deficiency and γ-radiation might substantially enhance liver adipogenesis.

  19. Clear signals or mixed messages: inter-individual emotion congruency modulates brain activity underlying affective body perception.

    PubMed

    de Borst, A W; de Gelder, B

    2016-08-01

    The neural basis of emotion perception has mostly been investigated with single face or body stimuli. However, in daily life one may also encounter affective expressions by groups, e.g. an angry mob or an exhilarated concert crowd. In what way is brain activity modulated when several individuals express similar rather than different emotions? We investigated this question using an experimental design in which we presented two stimuli simultaneously, with same or different emotional expressions. We hypothesized that, in the case of two same-emotion stimuli, brain activity would be enhanced, while in the case of two different emotions, one emotion would interfere with the effect of the other. The results showed that the simultaneous perception of different affective body expressions leads to a deactivation of the amygdala and a reduction of cortical activity. It was revealed that the processing of fearful bodies, compared with different-emotion bodies, relied more strongly on saliency and action triggering regions in inferior parietal lobe and insula, while happy bodies drove the occipito-temporal cortex more strongly. We showed that this design could be used to uncover important differences between brain networks underlying fearful and happy emotions. The enhancement of brain activity for unambiguous affective signals expressed by several people simultaneously supports adaptive behaviour in critical situations. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Clear signals or mixed messages: inter-individual emotion congruency modulates brain activity underlying affective body perception

    PubMed Central

    de Gelder, B.

    2016-01-01

    The neural basis of emotion perception has mostly been investigated with single face or body stimuli. However, in daily life one may also encounter affective expressions by groups, e.g. an angry mob or an exhilarated concert crowd. In what way is brain activity modulated when several individuals express similar rather than different emotions? We investigated this question using an experimental design in which we presented two stimuli simultaneously, with same or different emotional expressions. We hypothesized that, in the case of two same-emotion stimuli, brain activity would be enhanced, while in the case of two different emotions, one emotion would interfere with the effect of the other. The results showed that the simultaneous perception of different affective body expressions leads to a deactivation of the amygdala and a reduction of cortical activity. It was revealed that the processing of fearful bodies, compared with different-emotion bodies, relied more strongly on saliency and action triggering regions in inferior parietal lobe and insula, while happy bodies drove the occipito-temporal cortex more strongly. We showed that this design could be used to uncover important differences between brain networks underlying fearful and happy emotions. The enhancement of brain activity for unambiguous affective signals expressed by several people simultaneously supports adaptive behaviour in critical situations. PMID:27025242

  1. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor.

    PubMed

    Jacono, F J; Peng, Y-J; Kumar, G K; Prabhakar, N R

    2005-02-15

    Previous studies have shown that glomus cells of the carotid body express 5-hydroxytryptamine (5-HT). The aim of this study was to elucidate the role of 5-HT on the hypoxic sensory response (HSR) of the carotid body. Sensory activity was recorded from multi-fiber (n=16) and single-fiber (n=8) preparations of ex vivo carotid bodies harvested from anesthetized, adult rats. 5-HT (3 microM) had no significant effect on the magnitude or on the onset of the HSR. However, 5-HT consistently prolonged the time necessary for the sensory activity to return to baseline following the termination of the hypoxic challenge. Ketanserin (40 microM), a 5-HT2 receptor antagonist completely prevented 5-HT-induced prolongation of the HSR, whereas had no effect on the control HSR (onset, magnitude, and time for decay without 5-HT). Carotid bodies expressed 5-HT, but hypoxia did not facilitate 5-HT release. These observations suggest that 5-HT is not critical for the HSR of the rat carotid body, but it modulates the dynamics of the HSR via its action on 5-HT2 receptors.

  2. Modelling rhythmic function in a musician post-stroke.

    PubMed

    Wilson, Sarah J; Pressing, Jeffrey L; Wales, Roger J

    2002-01-01

    The aim of this study was to model the components of rhythmic function in a case (H.J.) of acquired rhythmic disturbance. H.J. is a right-handed, amateur male musician who acquired arrhythmia in the context of a global amusia after sustaining a right temporoparietal infarct. His rhythmic disturbance was analysed in relation to three independent components using an autoregressive extension of Wing and Kristofferson's model of rhythmic timing. This revealed preserved error-correction and motor implementation capacities, but a gross disturbance of H.J.'s central timing system ("cognitive clock"). It rendered him unable to generate a steady pulse, prevented adequate discrimination and reproduction of novel metrical rhythms, and partly contributed to bi-manual co-ordination difficulties in his instrumental performance. The findings are considered in relation to the essential components of the cognitive architecture of rhythmic function, and their respective cerebral lateralisation and localisation. Overall, the data suggested that the functioning of the right temporal auditory cortex is fundamental to 'keeping the beat' in music. The approach is presented as a new paradigm for future neuropsychological research examining rhythmic disturbances.

  3. Statistics concerning the Apollo command module water landing, including the probability of occurrence of various impact conditions, sucessful impact, and body X-axis loads

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1971-01-01

    Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.

  4. Procedure of rectal temperature measurement affects brain, muscle, skin, and body temperatures and modulates the effects of intravenous cocaine.

    PubMed

    Bae, David D; Brown, P Leon; Kiyatkin, Eugene A

    2007-06-18

    Rectal probe thermometry is commonly used to measure body core temperature in rodents because of its ease of use. Although previous studies suggest that rectal measurement is stressful and results in long-lasting elevations in body temperatures, we evaluated how this procedure affects brain, muscle, skin, and core temperatures measured with chronically implanted thermocouple electrodes in rats. Our data suggest that the procedure of rectal measurement results in powerful locomotor activation, rapid and strong increases in brain, muscle, and deep body temperatures, as well as a biphasic, down-up fluctuation in skin temperature, matching the response pattern observed during tail-pinch, a representative stressful procedure. This response, moreover, did not habituate after repeated day-to-day testing. Repeated rectal probe insertions also modified temperature responses induced by intravenous cocaine. Under quiet resting conditions, cocaine moderately increased brain, muscle, and deep body temperatures. However, during repeated rectal measurements, which increased temperatures, cocaine induced both hyperthermic and hypothermic responses. Direct comparisons revealed that body temperatures measured by a rectal probe are typically lower (approximately 0.6 degrees C) and more variable than body temperatures recorded by chronically implanted electrodes; the difference is smaller at low and greater at high basal temperatures. Because of this difference and temperature increases induced by the rectal probe per se, cocaine had no significant effect on rectal temperatures compared to control animals exposed to repeated rectal probes. Therefore, although rectal temperature measurements provide a decent correlation with directly measured deep body temperatures, the arousing influence of this procedure may drastically modulate the effects of other arousing stimuli and drugs.

  5. Increased salt consumption induces body water conservation and decreases fluid intake.

    PubMed

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  6. Increased salt consumption induces body water conservation and decreases fluid intake

    PubMed Central

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.

    2017-01-01

    BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology

  7. Octopamine promotes rhythmicity but not synchrony in a bilateral pair of bursting motor neurons in the feeding circuit of Aplysia

    PubMed Central

    Martínez-Rubio, C.; Serrano, G. E.; Miller, M. W.

    2010-01-01

    Octopamine-like immunoreactivity was localized to a limited number (<40) of neurons in the Aplysia central nervous system, including three neurons in the paired buccal ganglia (BG) that control feeding movements. Application of octopamine (OA) to the BG circuit produced concentration-dependent (10−8–10−4 mol l−1) modulatory actions on the spontaneous burst activity of the bilaterally paired B67 pharyngeal motor neurons (MNs). OA increased B67's burst duration and the number of impulses per burst. These effects reflected actions of OA on the intrinsic tetrodotoxin-resistant driver potential (DP) that underlies B67 bursting. In addition to its effects on B67's burst parameters, OA also increased the rate and regularity of burst timing. Although the bilaterally paired B67 MNs both exhibited rhythmic bursting in the presence of OA, they did not become synchronized. In this respect, the response to OA differed from that of dopamine, another modulator of the feeding motor network, which produces both rhythmicity and synchrony of bursting in the paired B67 neurons. It is proposed that modulators can regulate burst synchrony of MNs by exerting a dual control over their intrinsic rhythmicity and their reciprocal capacity to generate membrane potential perturbations. In this simple system, dopaminergic and octopaminergic modulation could influence whether pharyngeal contractions occur in a bilaterally synchronous or asynchronous fashion. PMID:20228355

  8. [Intensity-modulated radiation therapy and stereotactic body radiation therapy for head and neck tumors: evidence-based medicine].

    PubMed

    Lapierre, A; Martin, F; Lapeyre, M

    2014-10-01

    Over the last decade, there have been many technical advances in radiation therapy, such as the spread of intensity-modulated conformal radiotherapy, and the rise of stereotactic body radiation therapy. By allowing better dose-to-target conformation and thus better organs at risk-sparing, these techniques seem very promising, particularly in the field of head and neck tumors. The present work aims at analyzing the level of evidence and recommendation supporting the use of high-technology radiotherapy in head and neck neoplasms, by reviewing the available literature.

  9. Modulation of Motor Area Activity during Observation of Unnatural Body Movements

    ERIC Educational Resources Information Center

    Shimada, Sotaro; Oki, Kazuma

    2012-01-01

    The mirror neuron system (MNS) is activated when observing the actions of others. However, it remains unclear whether the MNS responds more strongly to natural bodily actions in the observer's motor repertoire than to unnatural actions. We investigated whether MNS activity is modulated by the unnaturalness of an observed action by inserting short…

  10. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    PubMed Central

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D.; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca2+ chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  11. Rhythmic crowd bobbing on a grandstand simulator

    NASA Astrophysics Data System (ADS)

    Comer, A. J.; Blakeborough, A.; Williams, M. S.

    2013-01-01

    It is widely accepted that concerted human activity such as bouncing or bobbing can excite cantilever grandstands. Crowd coordination can be unwitting and may be exacerbated by structural motion caused by resonant structural response. This is an area of uncertainty in the design and analysis of modern grandstands. This paper presents experimental measurement and analysis of rhythmic crowd bobbing loads obtained from tests on a grandstand simulator with two distinct support conditions; (a) rigid, and; (b) flexible. It was found that significant structural vibration at the bobbing frequency did not increase the effective bobbing load. Structural motion at the bobbing frequency caused a reduction in the dynamic load factor (DLF) at the frequency of the second harmonic while those at the first and third harmonics were unaffected. Two plausible reasons for this are: (a) the bobbing group were unable to supply significant energy to the system at the frequency of the second harmonic; (b) the bobbing group altered their bobbing style to reduce the response of the grandstand simulator. It was deduced that the bobbing group did not absorb energy from the dynamic system. Furthermore, dynamic load factors for groups of test subjects bobbing on a rigid structure were typically greater than those of synthesised groups derived from individuals bobbing alone, possibly due to group effects such as audio and visual stimuli from neighbouring test subjects. Last, the vibration levels experienced by the test subjects appear to be below levels likely to cause discomfort. This is to be expected as the test subjects were themselves controlling the magnitude and duration of vibration for the bobbing tests considered.

  12. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation.

    PubMed

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C ± 1.3°C and -8.3 ± 0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ± 0.11°C), while it only decreased at P20 (-0.14 ± 0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than

  13. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC

  14. Galvanic vestibular stimulation modulates voluntary movement of the human upper body

    PubMed Central

    Cauquil, Alexandra Séverac; Day, Brian L

    1998-01-01

    We have investigated whether vestibular information plays a role in the control of voluntary movement of the upper body. Movement consisted of a lateral tilt of the upper body in the frontal plane through an angle of about 8 deg. The influence of vestibular input was assessed from the effect of long duration (3–6 s), low-intensity (0.7 mA) galvanic vestibular stimulation (GVS) applied at different times relative to the movement.GVS always produced a tilt of the body in the frontal plane but the response was larger and more prolonged when the onset of stimulation coincided with the cue to start moving compared with when it was applied some seconds after movement onset (i.e. while the subject was stationary in a tilted posture).When the stimulus began 2 s before the voluntary movement the response consisted of two distinct components separated in time, one that was linked to the onset of GVS and another that was linked to onset of the voluntary movement. The large response observed when GVS onset coincided with the movement cue resembled the sum (after realignment in time) of these two separate components.We suggest that these two components of the response to GVS relate to two different uses of vestibular information for whole-body control: first, to help maintain balance of the body, and second, to help guide and improve the accuracy of voluntary movements involving motion of the head in space. PMID:9807008

  15. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans.

    PubMed

    Stephens, Francis B; Wall, Benjamin T; Marimuthu, Kanagaraj; Shannon, Chris E; Constantin-Teodosiu, Dumitru; Macdonald, Ian A; Greenhaff, Paul L

    2013-09-15

      Twelve weeks of daily l-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of L-carnitine and carbohydrate feeding on energy metabolism, body fat mass and muscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohydrate (Control, n=6) or 1.36 g L-carnitine + 80 g carbohydrate (Carnitine, n=6). Maximal carnitine palmitolytransferase 1 (CPT1) activity remained similar in both groups over 12 weeks. However, whereas muscle total carnitine, long-chain acyl-CoA and whole-body energy expenditure did not change over 12 weeks in Control, they increased in Carnitine by 20%, 200% and 6%, respectively (P<0.05). Moreover, body mass and whole-body fat mass (dual-energy X-ray absorptiometry) increased over 12 weeks in Control by 1.9 and 1.8 kg, respectively (P<0.05), but did not change in Carnitine. Seventy-three of 187 genes relating to fuel metabolism were upregulated in Carnitine vs. Control after 12 weeks, with 'insulin signalling', 'peroxisome proliferator-activated receptor signalling' and 'fatty acid metabolism' as the three most enriched pathways in gene functional analysis. In conclusion, increasing muscle total carnitine in healthy humans can modulate muscle metabolism, energy expenditure and body composition over a prolonged period, which is entirely consistent with a carnitine-mediated increase in muscle long-chain acyl-group translocation via CPT1. Implications to health warrant further investigation, particularly in obese individuals who have a reduced reliance on muscle fat oxidation during low-intensity exercise.

  16. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect

    PubMed Central

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants’ behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.’s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  17. Rhythmic Leptin Is Required for Weight Gain from Circadian Desynchronized Feeding in the Mouse

    PubMed Central

    Arble, Deanna Marie; Vitaterna, Martha Hotz; Turek, Fred W.

    2011-01-01

    The neuroendocrine and metabolic effects of leptin have been extensively researched since the discovery, and the later identification, of the leptin gene mutated within the ob/ob mouse. Leptin is required for optimal health in a number of physiological systems (e.g. fertility, bone density, body weight regulation). Despite the extensive leptin literature and many observations of leptin’s cyclical pattern over the 24-hour day, few studies have specifically examined how the circadian rhythm of leptin may be essential to leptin signaling and health. Here we present data indicating that a rhythmic leptin profile (e.g. 1 peak every 24 hours) leads to excessive weight gain during desynchronized feeding whereas non-rhythmic leptin provided in a continuous manner does not lead to excessive body weight gain under similar feeding conditions. This study suggests that feeding time can interact with leptin’s endogenous rhythm to influence metabolic signals, specifically leading to excessive body weight gains during ‘wrongly’ timed feeding. PMID:21949859

  18. BMI Not WHR Modulates BOLD fMRI Responses in a Sub-Cortical Reward Network When Participants Judge the Attractiveness of Human Female Bodies

    PubMed Central

    Holliday, Ian E.; Longe, Olivia A.; Thai, N. Jade; Hancock, Peter J. B.; Tovée, Martin J.

    2011-01-01

    In perceptual terms, the human body is a complex 3d shape which has to be interpreted by the observer to judge its attractiveness. Both body mass and shape have been suggested as strong predictors of female attractiveness. Normally body mass and shape co-vary, and it is difficult to differentiate their separate effects. A recent study suggested that altering body mass does not modulate activity in the reward mechanisms of the brain, but shape does. However, using computer generated female body-shaped greyscale images, based on a Principal Component Analysis of female bodies, we were able to construct images which covary with real female body mass (indexed with BMI) and not with body shape (indexed with WHR), and vice versa. Twelve observers (6 male and 6 female) rated these images for attractiveness during an fMRI study. The attractiveness ratings were correlated with changes in BMI and not WHR. Our primary fMRI results demonstrated that in addition to activation in higher visual areas (such as the extrastriate body area), changing BMI also modulated activity in the caudate nucleus, and other parts of the brain reward system. This shows that BMI, not WHR, modulates reward mechanisms in the brain and we infer that this may have important implications for judgements of ideal body size in eating disordered individuals. PMID:22102883

  19. A high-resolution thermoelectric module-based calorimeter for measuring the energetics of isolated ventricular trabeculae at body temperature.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2015-07-15

    Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isolated, contracting, ventricular trabeculae at body temperature. This development was largely motivated by the need to better understand cardiac energetics by performing such measurements at body temperature to relate tissue performance to whole heart behavior in vivo. Our approach uses solid-state thermoelectric modules, tailored for both temperature sensing and temperature control. The thermoelectric modules have high sensitivity and low noise, which, when coupled with a multilevel temperature control system, enable an exceptionally high temperature resolution with a noise-equivalent power an order of magnitude greater than those of other existing muscle calorimeters. Our system allows us to rapidly and easily change the experimental temperature without disturbing the state of the muscle. Our calorimeter is useful in many experiments that explore the energetics of normal physiology as well as pathophysiology of cardiac muscle. Copyright © 2015 the American Physiological Society.

  20. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    PubMed

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-07

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.

  1. Eye movement instructions modulate motion illusion and body sway with Op Art

    PubMed Central

    Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul

    2015-01-01

    Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth—Bridget Riley’s Movements in Squares and Akiyoshi Kitaoka’s Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka’s image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway. PMID:25859197

  2. Stereotactic body radiation therapy (SBRT) for adrenal metastases : a feasibility study of advanced techniques with modulated photons and protons.

    PubMed

    Scorsetti, Marta; Mancosu, Pietro; Navarria, Piera; Tozzi, Angelo; Castiglioni, Simona; Clerici, Elena; Reggiori, Giacomo; Lobefalo, Francesca; Fogliata, Antonella; Cozzi, Luca

    2011-04-01

    To compare advanced treatment techniques with photons and protons as a stereotactic body radiation therapy (SBRT) for adrenal glands metastases. Planning computer tomographic (CT) scans of 10 patients were selected. A total dose of 45 Gy in 7.5 Gy fractions was prescribed. Organs at risk (OAR) were liver and kidneys. Dose-volume metrics were defined to quantify quality of plans assessing target coverage and sparing of organs at risk. Plans for RapidArc, intensity-modulated radiotherapy (IMRT), dynamic conformal arcs, 3D conformal static fields, and intensity modulated protons were compared. The main planning objective for the clinical target volume (CTV) was to cover 100% of the volume with 95% (V(95%) = 100%) and to keep the maximum dose below 107% of the prescribed dose (V(107%) = 0%). Planning objective for planning target volume (PTV) was V(95%) > 80%. For kidneys, the general planning objective was V(15Gy) < 35% and for liver V(15Gy) < (liver volume-700 cm(3)). All techniques achieved the minimum and maximum dose objective for CTV and PTV, D(5-95%) ranged from 1 Gy (protons) to 1.6 Gy (conformal static fields) on CTV. Maximal organ at risk sparing was achieved by protons. RapidArc presented the second lowest dose bath (V(10Gy) and integral dose) after protons and the best conformality together with IMRT. Stereotactic body radiation therapy (SBRT) to adrenal glands metastases is achievable with several advanced techniques with either photons or protons. The intensity modulated approaches using either static fields, dynamic arcs or protons are superior to the other conformal solutions. For their simplicity, IMRT or RapidArc should be considered as the first option radiation treatment for those patients not eligible for proton treatment.

  3. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  4. Implementation of a volumetric modulated arc therapy treatment planning solution for kidney and adrenal stereotactic body radiation therapy.

    PubMed

    Sonier, Marcus; Chu, William; Lalani, Nafisha; Erler, Darby; Cheung, Patrick; Korol, Renee

    2016-01-01

    To develop a volumetric modulated arc therapy (VMAT) treatment planning solution in the treatment of primary renal cell carcinoma and oligometastatic adrenal lesions with stereotactic body radiation therapy. Single-arc VMAT plans (n = 5) were compared with clinically delivered step-and-shoot intensity-modulated radiotherapy (IMRT) with planning target volume coverage normalized between techniques. Target volume conformity, organ-at-risk (OAR) dose, treatment time, and monitor units were compared. A VMAT planning solution, created from a combination of arc settings and optimization constraints, auto-generated treatment plans in a single optimization. The treatment planning solution was evaluated on 15 consecutive patients receiving kidney and adrenal stereotactic body radiation therapy. Treatment time was reduced from 13.0 ± 2.6 to 4.0 ± 0.9 minutes for IMRT and VMAT, respectively. The VMAT planning solution generated treatment plans with increased target homogeneity, improved 95% conformity index, and a reduced maximum point dose to nearby OARs but with increased intermediate dose to distant OARs. The conformity of the 95% isodose improved from 1.32 ± 0.39 to 1.12 ± 0.05 for IMRT and VMAT treatment plans, respectively. Evaluation of the planning solution showed clinically acceptable dose distributions for 13 of 15 cases with tight conformity of the prescription isodose to the planning target volume of 1.07 ± 0.04, delivering minimal dose to OARs. The introduction of a stereotactic body radiation therapy VMAT treatment planning solution improves the efficiency of planning and delivery time, producing treatment plans of comparable or superior quality to IMRT in the case of primary renal cell carcinoma and oligometastatic adrenal lesions.

  5. TH-C-12A-04: Dosimetric Evaluation of a Modulated Arc Technique for Total Body Irradiation

    SciTech Connect

    Tsiamas, P; Czerminska, M; Makrigiorgos, G; Karen, M; Zygmanski, P

    2014-06-15

    Purpose: A simplified Total Body Irradiation (TBI) was developed to work with minimal requirements in a compact linac room without custom motorized TBI couch. Results were compared to our existing fixed-gantry double 4 MV linac TBI system with prone patient and simultaneous AP/PA irradiation. Methods: Modulated arc irradiates patient positioned in prone/supine positions along the craniocaudal axis. A simplified inverse planning method developed to optimize dose rate as a function of gantry angle for various patient sizes without the need of graphical 3D treatment planning system. This method can be easily adapted and used with minimal resources. Fixed maximum field size (40×40 cm2) is used to decrease radiation delivery time. Dose rate as a function of gantry angle is optimized to result in uniform dose inside rectangular phantoms of various sizes and a custom VMAT DICOM plans were generated using a DICOM editor tool. Monte Carlo simulations, film and ionization chamber dosimetry for various setups were used to derive and test an extended SSD beam model based on PDD/OAR profiles for Varian 6EX/ TX. Measurements were obtained using solid water phantoms. Dose rate modulation function was determined for various size patients (100cm − 200cm). Depending on the size of the patient arc range varied from 100° to 120°. Results: A PDD/OAR based beam model for modulated arc TBI therapy was developed. Lateral dose profiles produced were similar to profiles of our existing TBI facility. Calculated delivery time and full arc depended on the size of the patient (∼8min/ 100° − 10min/ 120°, 100 cGy). Dose heterogeneity varied by about ±5% − ±10% depending on the patient size and distance to the surface (buildup region). Conclusion: TBI using simplified modulated arc along craniocaudal axis of different size patients positioned on the floor can be achieved without graphical / inverse 3D planning.

  6. Body temperature modulates the antioxidant and acute immune responses to exercise.

    PubMed

    Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni

    2012-06-01

    The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.

  7. Growth retardation in artistic compared with rhythmic elite female gymnasts.

    PubMed

    Georgopoulos, Neoklis A; Markou, Kostas B; Theodoropoulou, Anastasia; Benardot, Dan; Leglise, Michel; Vagenakis, Apostolos G

    2002-07-01

    We studied 129 female rhythmic gymnasts (RG) and 142 female artistic gymnasts (AG) who participated in the 1999 Gymnastics World Championship for RG in Osaka, Japan, and the 1999 and 2001 Gymnastics World Championships for AG in Tianjin, China (n = 48), and Ghent, Belgium (n = 94), respectively. RG were taller than average, with a mean height SD score above the 50th percentile, whereas AG were relatively short, with a mean height SD score below the 50th percentile. Both RG and AG followed their respective reported target height SD score, which was above the 50th percentile for the RG and below the 50th percentile for the AG. The RG followed a growth pattern that was higher than their reported target height, whereas AG exhibited a negative growth pattern. RG and AG weighed less than the population mean, with the mean weight for age below the 50th percentile for both groups. RG were taller than AG (t = 17.15; P < 0.001), with a higher reported target height SD score (t = 6.44; P < 0.001), a greater Delta height-reported target height (t = 2.74; P < 0.001), and a lower mean body fat (t = -11.83; P < 0.001) and body mass index (t = -10.73; P < 0.001) than AG. AG started their training at an earlier age than RG (t = 4.13; P < 0.001). Using multiple regression analysis, actual height SD score was independently influenced positively by weight SD score for both RG (b = 0.421; t = 4.317; P < 0.001) and AG (b = 1.404; t = 16.514; P = <0.001), and by reported target height only for RG (b = 0.299; t = 3.139; P = 0.002), and negatively by body mass index only for AG (b = -0.80; t = -9.88; P < 0.001). In conclusion, in elite female AG, a deterioration of growth potential was observed, whereas in RG the genetic predisposition to growth was preserved.

  8. Regular exercise modulates obesity factors and body composition in sturdy men

    PubMed Central

    Ko, Il-Gyu; Choi, Pil-Byung

    2013-01-01

    The purpose of this study was to find the change and correlation between obesity factors and body composition according to regular exercise. Thirty-six sturdy men at twenty years old in ‘K’ university students were participated in this study. The subjects were randomly divided into two groups (n= 18 in each group): control group and regular exercise group. Exercise program composed of three programs: warm-up (10 min), work-out (30–60 min), cool-down (10 min), and categorized by five days per week for eight weeks. Aerobic exercise using a treadmill at 60% of heart rate reserve was performed, and weight training was composed of nine different exercises for the large muscles. Before the performing regular exercise, there was no significant difference between control and regular exercise groups. In the present results, 8 weeks regular exercise significantly decreased leptin, weight, fat mass, % fat, waist to hip ratio (WHR), and body mass index (BMI) more than compared to before performing regular exercise, whereas significantly enhanced lean mass more than compared to before performing regular exercise. Furthermore, regular exercise group reduced leptin, weight, fat mass, % fat, WHR, and BMI compared to control group in the post test. In the correlation of obesity-related factors and body composition, tumor necrosis factor-α (TNF-α) showed correlation with weight, lean mass, and fat mass after performing regular exercise. Here in this study, we suggest that regular exercise is a valuable tool for the improvement of health in the sturdy men, because regular exercise suppresses body fat and obesity-related factors. PMID:24278869

  9. Is there evidence for nonthermal modulation of whole body heat loss during intermittent exercise?

    PubMed

    Kenny, Glen P; Gagnon, Daniel

    2010-07-01

    This study compared the effect of active, passive, and inactive recoveries on whole body evaporative and dry heat loss responses during intermittent exercise at an air temperature of 30 degrees C and a relative humidity of 20%. Nine males performed three 15-min bouts of upright seated cycling at a fixed external workload of 150 W. The exercise bouts were separated by three 15-min recoveries during which participants 1) performed loadless pedaling (active recovery), 2) had their lower limbs passively compressed with inflatable sleeves (passive recovery), or 3) remained upright seated on the cycle ergometer (inactive recovery). Combined direct and indirect calorimetry was employed to measure rates of whole body evaporative heat loss (EHL) and metabolic heat production (M-W). Mean body temperature (T(b)) was calculated from esophageal and mean skin temperatures, and mean arterial pressure (MAP) was measured continuously. Active and passive recoveries both reversed the reduction in MAP associated with inactive recovery (P body

  10. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment

    PubMed Central

    Wang, Lin; Li, Peicheng; Tang, Zhaosheng; Yan, Xinfeng; Feng, Bo

    2016-01-01

    The mechanisms underlying the weight-loss effect of GLP-1 receptor agonists need further elucidation. The present study was performed to explore the effects of liraglutide and saxagliptin on the composition of the gut microbiota. Mice were randomly treated with saxagliptin or liraglutide for eight weeks. Their metabolic profiles were assessed, and 454 pyrosequencing of 16s rRNA of faeces was performed. Liraglutide induced a smaller body weight gain in mice. The pyrosequencing showed that liraglutide, but not saxagliptin, substantially changed the overall structure of the gut microbiota as well as the relative abundance of weight-relevant phylotypes. Subsequent ridge regression analyses indicated that, in addition to food intake (β = −0.182, p = 0.043 in phylotypes inversely correlated with body weight) and blood glucose level (β = −0.240, p = 0.039 in phylotypes positively correlated with body weight), the administration of liraglutide was another independent factor associated with the abundance of weight-relevant phylotypes (β = 0.389, p = 6.24e-5 in inversely correlated ones; β = −0.508, p = 2.25e-5 in positively correlated ones). These results evidenced that GLP-1 receptor agonist liraglutide could modulate the composition of the gut microbiota, leading to a more lean-related profile that was consistent with its weight-losing effect. PMID:27633081

  11. Validation of the body fluid module on the new Sysmex XN-1000 for counting blood cells in cerebrospinal fluid and other body fluids.

    PubMed

    Fleming, Chérina; Brouwer, Rob; Lindemans, Jan; de Jonge, Robert

    2012-10-01

    We evaluated the body fluid (BF) module on the new Sysmex XN-1000 for counting blood cells. One hundred and eighty-seven BF samples [73 cerebrospinal fluid (CSF), 48 continuous ambulatory peritoneal dialysis (CAPD), 46 ascites, and 20 pleural fluid] were used for method comparison between the XN-1000 and manual microscopy (Fuchs-Rosenthal chamber and stained cytospin slides) for counting red blood cells (RBCs) and white blood cells (WBCs) (differential). Good agreement was found for counting WBCs (y=1.06x+0.09, n=67, R2=0.96) and mononuclear cells (MNs) (y=1.04x-0.01, n=40, R2=0.93) in CSF. However, the XN-1000 systematically counted more polymorphonuclear cells (PMNs) (y=1.48x+0.18, n=40, R2=0.99) compared to manual microscopy. Excellent correlation for RBCs >1×109/L (y=0.99x+116.56, n=26, R2=0.99) in CSF was found. For other fluids (CAPD, ascites and pleural fluid) excellent agreement was found for counting WBCs (y=1.06x+0.26, n=109, R2=0.98), MNs (y=1.06x-0.41, n=93, R2=0.96), PMNs (y=1.06x+0.81, n=93, R2=0.98) and RBCs (y=1.04x+110.04, n=43, R2=0.98). By using BF XN-check, the lower limit of quantitation (LLoQ) for WBC was defined at 5×106/L. Linearity was excellent for both the WBCs (R2=0.99) and RBCs (R2=0.99) and carry-over never exceeded 0.05%. The BF module on the XN-1000 is a suitable tool for fast and accurate quantification of WBC (differential) and RBC counts in CSF and other BFs in a diagnostic setting.

  12. Simple neural substrate predicts complex rhythmic structure in duetting birds

    NASA Astrophysics Data System (ADS)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  13. Motor imagery modulation of body sway is task-dependent and relies on imagery ability

    PubMed Central

    Lemos, Thiago; Souza, Nélio S.; Horsczaruk, Carlos H. R.; Nogueira-Campos, Anaelli A.; de Oliveira, Laura A. S.; Vargas, Claudia D.; Rodrigues, Erika C.

    2014-01-01

    In this study we investigate to what extent the effects of motor imagery on postural sway are constrained by movement features and the subject's imagery ability. Twenty-three subjects were asked to imagine three movements using the kinesthetic modality: rising on tiptoes, whole-body forward reaching, and whole-body lateral reaching. After each task, subjects reported the level of imagery vividness and were subsequently grouped into a HIGH group (scores ≥3, “moderately intense” imagery) or a LOW group (scores ≤2, “mildly intense” imagery). An eyes closed trial was used as a control task. Center of gravity (COG) coordinates were collected, along with surface EMG of the deltoid (medial and anterior portion) and lateral gastrocnemius muscles. COG variability was quantified as the amount of fluctuations in position and velocity in the forward-backward and lateral directions. Changes in COG variability during motor imagery were observed only for the HIGH group. COG variability in the forward-backward direction was increased during the rising on tiptoes imagery, compared with the control task (p = 0.01) and the lateral reaching imagery (p = 0.02). Conversely, COG variability in the lateral direction was higher in rising on tiptoes and lateral reaching imagery than during the control task (p < 0.01); in addition, COG variability was higher during the lateral reaching imagery than in the forward reaching imagery (p = 0.02). EMG analysis revealed no effects of group (p > 0.08) or task (p > 0.46) for any of the tested muscles. In summary, motor imagery influences body sway dynamics in a task-dependent manner, and relies on the subject' imagery ability. PMID:24847241

  14. Motor imagery modulation of body sway is task-dependent and relies on imagery ability.

    PubMed

    Lemos, Thiago; Souza, Nélio S; Horsczaruk, Carlos H R; Nogueira-Campos, Anaelli A; de Oliveira, Laura A S; Vargas, Claudia D; Rodrigues, Erika C

    2014-01-01

    In this study we investigate to what extent the effects of motor imagery on postural sway are constrained by movement features and the subject's imagery ability. Twenty-three subjects were asked to imagine three movements using the kinesthetic modality: rising on tiptoes, whole-body forward reaching, and whole-body lateral reaching. After each task, subjects reported the level of imagery vividness and were subsequently grouped into a HIGH group (scores ≥3, "moderately intense" imagery) or a LOW group (scores ≤2, "mildly intense" imagery). An eyes closed trial was used as a control task. Center of gravity (COG) coordinates were collected, along with surface EMG of the deltoid (medial and anterior portion) and lateral gastrocnemius muscles. COG variability was quantified as the amount of fluctuations in position and velocity in the forward-backward and lateral directions. Changes in COG variability during motor imagery were observed only for the HIGH group. COG variability in the forward-backward direction was increased during the rising on tiptoes imagery, compared with the control task (p = 0.01) and the lateral reaching imagery (p = 0.02). Conversely, COG variability in the lateral direction was higher in rising on tiptoes and lateral reaching imagery than during the control task (p < 0.01); in addition, COG variability was higher during the lateral reaching imagery than in the forward reaching imagery (p = 0.02). EMG analysis revealed no effects of group (p > 0.08) or task (p > 0.46) for any of the tested muscles. In summary, motor imagery influences body sway dynamics in a task-dependent manner, and relies on the subject' imagery ability.

  15. Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation.

    PubMed

    Hernández, Alfredo I; Le Rolle, Virginie; Ojeda, David; Baconnier, Pierre; Fontecave-Jallon, Julie; Guillaud, François; Grosse, Thibault; Moss, Robert G; Hannaert, Patrick; Thomas, S Randall

    2011-10-01

    This paper presents a contribution to the definition of the interfaces required to perform heterogeneous model integration in the context of integrative physiology. A formalization of the model integration problem is proposed and a coupling method is presented. The extension of the classic Guyton model, a multi-organ, integrated systems model of blood pressure regulation, is used as an example of the application of the proposed method. To this end, the Guyton model has been restructured, extensive sensitivity analyses have been performed, and appropriate transformations have been applied to replace a subset of its constituting modules by integrating a pulsatile heart and an updated representation of the renin-angiotensin system. Simulation results of the extended integrated model are presented and the impacts of their integration within the original model are evaluated.

  16. Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children

    PubMed Central

    Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2012-01-01

    Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal

  17. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    PubMed Central

    Chacolla-Huaringa, Rafael; Trevino, Victor; Scott, Sean-Patrick

    2017-01-01

    Circadian rhythms are essential for temporal (~24 h) regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs) have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h) expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection. PMID:28704935

  18. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum.

    PubMed

    Varga, Viktor; Hangya, Balázs; Kránitz, Kinga; Ludányi, Anikó; Zemankovics, Rita; Katona, István; Shigemoto, Ryuichi; Freund, Tamás F; Borhegyi, Zsolt

    2008-08-15

    The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.

  19. Can dancers suppress the haptically mediated interpersonal entrainment during rhythmic sway?

    PubMed

    Sofianidis, George; Elliott, Mark T; Wing, Alan M; Hatzitaki, Vassilia

    2014-07-01

    Interpersonal entrainment emerges spontaneously when partners performing rhythmic movements together exchange sensory feedback about the other's movements. In this study, we asked whether couples of expert dancers, non-dancers and mixed couples can suppress the spontaneous haptically mediated inter-personal entrainment when their rhythmic sway is paced by differing metronome tempos. Fifty-four young participants formed three types of couples: nine dancer couples, consisting of individuals with at least eight years systematic practice in traditional Greek dance; nine non-dancer couples, consisting of individuals with no prior experience in dance and nine mixed couples, consisting of one dancer and one novice partner. Partners swayed rhythmically for 60 s, at different pacing frequencies (one at 0.25 Hz and the other at 0.35 Hz) under three haptic contact conditions: no contact between them; light fingertip touch established in the 2nd trial segment (30 s); and light fingertip touch released in the 2nd trial segment (30 s). Spectral analysis of the antero-posterior center of pressure displacement revealed that light touch increased the deviation of the dominant from the target (pacing) sway frequency, decreased the proportion of the signal's power at the target frequency and increased the coherence between the partners' sway signals (inter-personal coherence). These effects were specific to the mixed group whereas touch interference was weaker in non-dancers and absent in dancers. In addition, the coherence between the trial segments (intra-personal coherence) significantly decreased with touch only for the non-dancer while it remained unchanged for the dancer partner of the mixed group suggesting that the dancer was leading the non-dancer partner. It is concluded that systematic practice with traditional dance can modulate the spontaneous tendency towards haptically mediated interpersonal entrainment.

  20. Targeted Mutation of the Calbindin D28K Gene Disrupts Circadian Rhythmicity and Entrainment

    PubMed Central

    Kriegsfeld, Lance J; Mei, Dan Feng; Yan, Lily; Witkovsky, Paul; LeSauter, Joseph; Hamada, Toshiyuki; Silver, Rae

    2009-01-01

    The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker in mammals. A salient feature of the SCN is that cells of a particular phenotype are topographically organized; this organization defines functionally distinct subregions that interact to generate coherent rhythmicity. In Syrian hamsters (Mesocricetus auratus), a dense population of directly retinorecipient calbindinD28K (CalB) neurons in the caudal SCN marks a subregion critical for circadian rhythmicity. In mouse SCN, a dense cluster of CalB neurons occurs during early postnatal development but in the adult, CalB neurons are dispersed through the SCN. In the adult retina CalB colocalizes with melanopsin-expressing ganglion cells. In the present study, we explored the role of CalB in modulating circadian function and photic entrainment by investigating mice with a targeted mutation of the CalB gene (CalB-/- mice). In constant darkness (DD), CalB-/- animals either become arrhythmic (40%) or exhibit low-amplitude locomotor rhythms with marked activity during subjective day (60%). Rhythmic clock gene expression is blunted in these latter animals. Importantly, CalB-/- mice exhibit anomalies in entrainment revealed following transfer from a light:dark cycle to DD. Paradoxically, responses to acute light pulses measured by behavioral phase shifts, SCN FOS protein and Period1 mRNA expression are normal. Together, the developmental pattern of CalB expression in mouse SCN, the presence of CalB in photoresponsive ganglion cells, and the abnormalities seen in CalB-/- mice suggest an important role for CalB in mouse circadian function. PMID:18588531

  1. ARN Integrated Retail Module (IRM) & 3D Whole Body Scanner System at Fort Carson, Colorado

    DTIC Science & Technology

    2006-12-01

    DCU yes 02164 COAT CAMO ABDU DSRT no 02362 PARKA W/W (RAINSUIT) yes 02363 TROUSER W/W (RAINSUIT) yes 02637 PARKA ECWCS DSRT yes 02665 SHIRT C/W BLK...implementation of the VITUS/Smart 3D Whole Body Scanner and its integration with ARN-IRM at the CIF, Ft. Carson using techniques that were successful at the...Row1=M R,60 [Garments\\PGC 02164 COAT CAMO ABDU DSRT] Name=PGC 02164 COAT CAMO ABDU DSRT Table=PGC 02164 COAT CAMO ABDU DSRT Gender=m

  2. Rhythmic Effects of Syntax Processing in Music and Language.

    PubMed

    Jung, Harim; Sontag, Samuel; Park, YeBin S; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated-linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical

  3. Rhythmic Effects of Syntax Processing in Music and Language

    PubMed Central

    Jung, Harim; Sontag, Samuel; Park, YeBin S.; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated—linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical

  4. Effects of sympathetic stimulation on the rhythmical jaw movements produced by electrical stimulation of the cortical masticatory areas of rabbits.

    PubMed

    Roatta, S; Windhorst, U; Djupsjöbacka, M; Lytvynenko, S; Passatore, M

    2005-03-01

    The somatomotor and sympathetic nervous systems are intimately linked. One example is the influence of peripheral sympathetic fibers on the discharge characteristics of muscle spindles. Since muscle spindles play important roles in various motor behaviors, including rhythmic movements, the working hypothesis of this research was that changes in sympathetic outflow to muscle spindles can change rhythmic movement patterns. We tested this hypothesis in the masticatory system of rabbits. Rhythmic jaw movements and EMG activity induced by long-lasting electrical cortical stimulation were powerfully modulated by electrical stimulation of the peripheral stump of the cervical sympathetic nerve (CSN). This modulation manifested itself as a consistent and marked reduction in the excursion of the mandibular movements (often preceded by a transient modest enhancement), which could be attributed mainly to corresponding changes in masseter muscle activity. These changes outlasted the duration of CSN stimulation. In some of the cortically evoked rhythmic jaw movements (CRJMs) changes in masticatory frequency were also observed. When the jaw-closing muscles were subjected to repetitive ramp-and-hold force pulses, the CRMJs changed characteristics. Masseter EMG activity was strongly enhanced and digastric EMG slightly decreased. This change was considerably depressed during CSN stimulation. These effects of CSN stimulation are similar in sign and time course to the depression exerted by sympathetic activity on the jaw-closing muscle spindle discharge. It is suggested that the change in proprioceptive information induced by an increase in sympathetic outflow (a) has important implications even under normal conditions for the control of motor function in states of high sympathetic activity, and (b) is one of the mechanisms responsible for motor impairment under certain pathological conditions such as chronic musculoskeletal head-neck disorders, associated with stress conditions.

  5. E2FBP1/hDril1 modulates cell growth through downregulation of promyelocytic leukemia bodies.

    PubMed

    Fukuyo, Y; Mogi, K; Tsunematsu, Y; Nakajima, T

    2004-07-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) comprise multiple regulatory factors and play crucial roles in the maintenance of cellular integrity, while unregulated activation of PML-NBs induces death and premature senescence. Hence, the function of PML-NBs must be directed properly; however, the mechanism that regulates PML-NBs remains unclear. In this paper, we show that PML-NBs are disintegrated by an AT-rich interaction domain family protein E2FBP1/hDril1 through specific desumoylation of promyelocytic leukemia protein (PML) in vivo and in vitro. RNA interference-mediated downregulation of E2FBP1/hDril1 results in hyperplasis of PML-NBs and consequent commitment to PML-dependent premature senescence. Thus, the function of E2FBP1/hDril1 is required for maintenance of survival potential of the cells. Our data suggest a novel mechanism to govern cellular integrity through the modulation of nuclear depots.

  6. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    PubMed

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator

  7. RESEMBLANCES BETWEEN THE ELECTROMOTOR VARIATIONS OF RHYTHMICALLY REACTING LIVING AND NON-LIVING SYSTEMS.

    PubMed

    Lillie, R S

    1929-09-20

    1. The electromotor variations of pure iron wires, arranged to react rhythmically with nitric acid, are recorded and described. 2. Resemblances between these variations and those of rhythmically reacting living tissues (especially the heart) are pointed out and discussed.

  8. Strength training with superimposed whole body vibration does not preferentially modulate cortical plasticity.

    PubMed

    Weier, Ashleigh T; Kidgell, Dawson J

    2012-01-01

    Paired-pulse transcranial magnetic stimulation (TMS) was used to investigate 4 wks of leg strength training with and without whole body vibration (WBV) on corticospinal excitability and short-latency intracortical inhibition (SICI). Participants (n = 12) were randomly allocated to either a control or experimental (WBV) group. All participants completed 12 squat training sessions either with (WBV group) or without (control group) exposure to WBV (f = 35 Hz, A = 2.5 mm). There were significant (P < 0.05) increases in squat strength and corticospinal excitability and significant (P < 0.05) reductions in SICI for both groups following the 4 wk intervention. There were no differences detected between groups for any dependant variable (P > 0.05). It appears that WBV training does not augment the increase in strength or corticospinal excitability induced by strength training alone.

  9. Chemotransduction in the Carotid Body: K+ Current Modulated by Po2 in Type I Chemoreceptor Cells

    NASA Astrophysics Data System (ADS)

    Lopez-Barneo, Jose; Lopez-Lopez, Jose R.; Urena, Juan; Gonzalez, Constancio

    1988-07-01

    The ionic currents of carotid body type I cells and their possible involvement in the detection of oxygen tension (Po2) in arterial blood are unknown. The electrical properties of these cells were studied with the whole-cell patch clamp technique, and the hypothesis that ionic conductances can be altered by changes in Po2 was tested. The results show that type I cells have voltage-dependent sodium, calcium, and potassium channels. Sodium and calcium currents were unaffected by a decrease in Po2 from 150 to 10 millimeters of mercury, whereas, with the same experimental protocol, potassium currents were reversibly reduced by 25 to 50 percent. The effect of hypoxia was independent of internal adenosine triphosphate and calcium. Thus, ionic conductances, and particularly the O2-sensitive potassium current, play a key role in the transduction mechanism of arterial chemoreceptors.

  10. Strength Training with Superimposed Whole Body Vibration Does Not Preferentially Modulate Cortical Plasticity

    PubMed Central

    Weier, Ashleigh T.; Kidgell, Dawson J.

    2012-01-01

    Paired-pulse transcranial magnetic stimulation (TMS) was used to investigate 4 wks of leg strength training with and without whole body vibration (WBV) on corticospinal excitability and short-latency intracortical inhibition (SICI). Participants (n = 12) were randomly allocated to either a control or experimental (WBV) group. All participants completed 12 squat training sessions either with (WBV group) or without (control group) exposure to WBV (f = 35 Hz, A = 2.5 mm). There were significant (P < 0.05) increases in squat strength and corticospinal excitability and significant (P < 0.05) reductions in SICI for both groups following the 4 wk intervention. There were no differences detected between groups for any dependant variable (P > 0.05). It appears that WBV training does not augment the increase in strength or corticospinal excitability induced by strength training alone. PMID:22654645

  11. Low-dose total-body γ irradiation modulates immune response to acute proton radiation.

    PubMed

    Luo-Owen, Xian; Pecaut, Michael J; Rizvi, Asma; Gridley, Daila S

    2012-03-01

    Health risks due to exposure to low-dose/low-dose-rate radiation alone or when combined with acute irradiation are not yet clearly defined. This study quantified the effects of protracted exposure to low-dose/low-dose-rate γ rays with and without acute exposure to protons on the response of immune and other cell populations. C57BL/6 mice were irradiated with ⁵⁷Co (0.05 Gy at 0.025 cGy/h); subsets were subsequently exposed to high-dose/high-dose-rate proton radiation (250 MeV; 2 or 3 Gy at 0.5 Gy/min). Analyses were performed at 4 and 17 days postexposure. Spleen and thymus masses relative to body mass were decreased on day 4 after proton irradiation with or without pre-exposure to γ rays; by day 17, however, the decrease was attenuated by the priming dose. Proton dose-dependent decreases, either with or without pre-exposure to γ rays, occurred in white blood cell, lymphocyte and granulocyte counts in blood but not in spleen. A similar pattern was found for lymphocyte subpopulations, including CD3+ T, CD19+ B, CD4+ T, CD8+ T and NK1.1+ natural killer (NK) cells. Spontaneous DNA synthesis by leukocytes after proton irradiation was high in blood on day 4 and high in spleen on day 17; priming with γ radiation attenuated the effect of 3 Gy in both body compartments. Some differences were also noted among groups in erythrocyte and thrombocyte characteristics. Analysis of splenocytes activated with anti-CD3/anti-CD28 antibodies showed changes in T-helper 1 (Th1) and Th2 cytokines. Overall, the data demonstrate that pre-exposure of an intact mammal to low-dose/low-dose-rate γ rays can attenuate the response to acute exposure to proton radiation with respect to at least some cell populations.

  12. Dosimetric evaluation of compensator intensity modulation-based stereotactic body radiotherapy for Stage I non-small-cell lung cancer.

    PubMed

    Tajima, Y; Nakayama, H; Itonaga, T; Shiraishi, S; Okubo, M; Mikami, R; Sugahara, S; Tokuuye, K

    2015-08-01

    To evaluate the dosimetry of compensator intensity modulation-based stereotactic body radiotherapy (SBRT) [non-coplanar intensity-modulated radiotherapy (ncIMRT)], its use was compared with that of three-dimensional conformation-based SBRT, for patients with Stage I non-small-cell lung cancer (NSCLC). 21 consecutive patients with Stage I NSCLC were treated with ncIMRT or SBRT at Tokyo Medical University. To compare the two techniques, ncIMRT and SBRT plans for each patient were generated, where the planning target volume (PTV) coverages were adjusted to be equivalent to each other. The prescribed dose was set as 75 Gy in 30 fractions. PTV coverage, conformity index, conformation number (CN) and homogeneity index (HI) were used to compare the two strategies. There was no statistically significant difference between PTV coverage for the 100%, 95% and 90% dose levels in the SBRT plan and those in the ncIMRT plan. The CN values were 0.53 ± 0.13 in the SBRT plan and 0.72 ± 0.10 in the ncIMRT plan. These values were significantly better than those of the SBRT plan (p < 0.001). The HI in the ncIMRT plan was 1.04 ± 0.03%, which was also significantly better than that of SBRT. The ncIMRT plan provided superior conformity and reduced the doses to the lung for patients with Stage I NSCLC. The delivery technique with compensator intensity modulation-based SBRT was evaluated. Concerning target motion, this is thought to be more robust and safer than SBRT for early-stage NSCLC.

  13. The origin of rhythmic layering in the Cape Neddick Plutonic Complex, Maine

    SciTech Connect

    Shipley, J. . Dept. of Geology)

    1993-03-01

    The Cape Neddick Plutonic Complex located along the southwestern coast of Maine is a small layered gabbroic body. It contains four concentric gabbros of differing composition, From the center to the exterior these are Cortlandtitic, Anorthositic, Normal, and Pegmatitic gabbros. They vary slightly in the proportion of essential minerals; plagioclase, clinopyroxene, hornblende, and biotite [+-] opaques and olivine. Rhythmic layering is seen in all four gabbros. This layering is also concentric around the center of the complex. The best exposure of the layering is along the coast where non-graded and graded rhythmic layering is seen extensively in the Normal gabbro. Only non-graded layering is seen in the Anorthositic gabbro. Non-graded layers were sampled at two localities. One locality is on Cape Nubble Island in the Normal gabbro. The second locality is in the Anorthositic gabbro along the northern coast. The layers are roughly 5--8 cm in width and are continuous around the complex. They are identified on weathered surfaces as alternating bands of felsic and mafic minerals. Layers are not obvious in hand sample. Approximately 15--20 layers were sampled perpendicular to layering. Petrographic and geochemical studies will help constrain the origin of rhythmic layering in the Cape Neddick Complex. Crystal settling or structural processes seem highly unlikely due to the small distance between the layers and the fact that they are not graded. Possible models include multiple pulses of magma within the same magma chamber, density currents, or in situ fractionation by a nucleation-diffusion process. Modal and chemical analysis of mineral phases within individual layers will allow comparison of the bulk composition of each layer. Analysis of coexisting pyroxene and plagioclase can be used to estimate compositional variations in the parent liquid.

  14. Long-Term Outcome After Static Intensity-Modulated Total Body Radiotherapy Using Compensators Stratified by Pediatric and Adult Cohorts

    SciTech Connect

    Schneider, Ralf A. Schultze, Juergen; Jensen, J. Martin; Hebbinghaus, Dieter; Galalae, Razvan M.

    2008-01-01

    Purpose: To report the long-term outcome after total body irradiation with intensity-modulating compensators and allogeneic/autologous transplantation, especially in terms of therapy-related toxicity in pediatric and adult cohorts. Methods and Materials: A total of 257 consecutive patients (40 children and 217 adults) have been treated since 1983 with TBI using static intensity-modulated radiotherapy for hematologic malignancies. The total dose of 12 Gy was applied in six fractions within 3 days before allogeneic (n = 174) or autologous (n = 83) transplantation. The median follow-up was 9.2 years. Results: The 5-year overall survival rate was 47.9% (49.8% for the adults and 37.5% for the children, p = 0.171). The 5-year tumor-related mortality rate was 23%, and the 5-year treatment-related mortality rate 29.2% (29.5% in the adults and 27.5% in the pediatric patients). Interstitial pneumonitis developed in 28 (10.9%) of 257 patients and in 12.5% of the pediatric cohort. The interstitial pneumonitis rate was 25% in pediatric patients treated with a 12-Gy lung dose compared with 4.2% for those treated to an 11-Gy lung dose. The overall survival rate stratified by lung dose was 26.7% for 12 Gy and 52.4% for 11 Gy (p = 0.001). The incidence of veno-occlusive disease and cataract was 5.8% and 6.6% in all patients and 12.5% and 15% in the pediatric patients, respectively (p < 0.05). Secondary malignancies were found in 4.3% of all patients, all in the adult cohort at transplantation. Conclusion: Static intensity-modulated total body irradiation with a total dose of 12 Gy before allogeneic/autologous transplantation is a successful treatment with good long-term outcome and acceptable therapy-related toxicities. Constraining the lung dose to 11 Gy substantially lowered the actuarial treatment-related mortality. This effect was especially striking in the pediatric patients.

  15. Salvage image-guided intensity modulated or stereotactic body reirradiation of local recurrence of prostate cancer

    PubMed Central

    Jereczek-Fossa, B A; Fodor, C; Bazzani, F; Maucieri, A; Ronchi, S; Ferrario, S; Colangione, S P; Gerardi, M A; Caputo, M; Cecconi, A; Gherardi, F; Vavassori, A; Comi, S; Cambria, R; Garibaldi, C; Cattani, F; De Cobelli, O; Orecchia, R

    2015-01-01

    Objective: To retrospectively evaluate external beam reirradiation (re-EBRT) delivered to the prostate/prostatic bed for local recurrence, after radical or adjuvant/salvage radiotherapy (RT). Methods: 32 patients received re-EBRT between February 2008 and October 2013. All patients had clinical/radiological local relapse in the prostate or prostatic bed and no distant metastasis. re-EBRT was delivered with selective RT technologies [stereotactic RT including CyberKnifeTM (Accuray, Sunnyvale, CA); image-guidance and intensity-modulated RT etc.]. Toxicity was evaluated using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Biochemical control was assessed according to the Phoenix definition (NADIR + 2 ng ml−1). Results: Acute urinary toxicity: G0, 24 patients; G1, 6 patients; G2, 2 patients. Acute rectal toxicity: G0, 28 patients; G1, 2 patients; and G2, 1 patient. Late urinary toxicity (evaluated in 30 cases): G0, 23 patients; G1, 6 patients; G2, 1 patient. Late renal toxicity: G0, 25 patients; G1, 5 patients. A mean follow-up of 21.3 months after re-EBRT showed that 13 patients were free of cancer, 3 were alive with biochemical relapse and 12 patients were alive with clinically evident disease. Four patients had died: two of disease progression and two of other causes. Conclusion: re-EBRT using modern technology is a feasible approach for local prostate cancer recurrence offering 2-year tumour control in about half of the patients. Toxicity of re-EBRT is low. Future studies are needed to identify the patients who would benefit most from this treatment. Advances in knowledge: Our series, based on experience in one hospital alone, shows that re-EBRT for local relapse of prostate cancer is feasible and offers a 2-year cure in about half of the patients. PMID:26055506

  16. What is orgasm? A model of sexual trance and climax via rhythmic entrainment.

    PubMed

    Safron, Adam

    2016-01-01

    Orgasm is one of the most intense pleasures attainable to an organism, yet its underlying mechanisms remain poorly understood. On the basis of existing literatures, this article introduces a novel mechanistic model of sexual stimulation and orgasm. In doing so, it characterizes the neurophenomenology of sexual trance and climax, describes parallels in dynamics between orgasms and seizures, speculates on possible evolutionary origins of sex differences in orgasmic responding, and proposes avenues for future experimentation. Here, a model is introduced wherein sexual stimulation induces entrainment of coupling mechanical and neuronal oscillatory systems, thus creating synchronized functional networks within which multiple positive feedback processes intersect synergistically to contribute to sexual experience. These processes generate states of deepening sensory absorption and trance, potentially culminating in climax if critical thresholds are surpassed. The centrality of rhythmic stimulation (and its modulation by salience) for surpassing these thresholds suggests ways in which differential orgasmic responding between individuals-or with different partners-may serve as a mechanism for ensuring adaptive mate choice. Because the production of rhythmic stimulation combines honest indicators of fitness with cues relating to potential for investment, differential orgasmic response may serve to influence the probability of continued sexual encounters with specific mates.

  17. The PXDLS linear motif regulates circadian rhythmicity through protein–protein interactions

    PubMed Central

    Shalev, Moran; Aviram, Rona; Adamovich, Yaarit; Kraut-Cohen, Judith; Shamia, Tal; Ben-Dor, Shifra; Golik, Marina; Asher, Gad

    2014-01-01

    The circadian core clock circuitry relies on interlocked transcription-translation feedback loops that largely count on multiple protein interactions. The molecular mechanisms implicated in the assembly of these protein complexes are relatively unknown. Our bioinformatics analysis of short linear motifs, implicated in protein interactions, reveals an enrichment of the Pro-X-Asp-Leu-Ser (PXDLS) motif within circadian transcripts. We show that the PXDLS motif can bind to BMAL1/CLOCK and disrupt circadian oscillations in a cell-autonomous manner. Remarkably, the motif is evolutionary conserved in the core clock protein REV-ERBα, and additional proteins implicated in the clock's function (NRIP1, CBP). In this conjuncture, we uncover a novel cross talk between the two principal core clock feedback loops and show that BMAL/CLOCK and REV-ERBα interact and that the PXDLS motif of REV-ERBα participates in their binding. Furthermore, we demonstrate that the PXDLS motifs of NRIP1 and CBP are involved in circadian rhythmicity. Our findings suggest that the PXDLS motif plays an important role in circadian rhythmicity through regulation of protein interactions within the clock circuitry and that short linear motifs can be employed to modulate circadian oscillations. PMID:25260595

  18. What is orgasm? A model of sexual trance and climax via rhythmic entrainment

    PubMed Central

    Safron, Adam

    2016-01-01

    Orgasm is one of the most intense pleasures attainable to an organism, yet its underlying mechanisms remain poorly understood. On the basis of existing literatures, this article introduces a novel mechanistic model of sexual stimulation and orgasm. In doing so, it characterizes the neurophenomenology of sexual trance and climax, describes parallels in dynamics between orgasms and seizures, speculates on possible evolutionary origins of sex differences in orgasmic responding, and proposes avenues for future experimentation. Here, a model is introduced wherein sexual stimulation induces entrainment of coupling mechanical and neuronal oscillatory systems, thus creating synchronized functional networks within which multiple positive feedback processes intersect synergistically to contribute to sexual experience. These processes generate states of deepening sensory absorption and trance, potentially culminating in climax if critical thresholds are surpassed. The centrality of rhythmic stimulation (and its modulation by salience) for surpassing these thresholds suggests ways in which differential orgasmic responding between individuals—or with different partners—may serve as a mechanism for ensuring adaptive mate choice. Because the production of rhythmic stimulation combines honest indicators of fitness with cues relating to potential for investment, differential orgasmic response may serve to influence the probability of continued sexual encounters with specific mates. PMID:27799079

  19. Influence of Ionic Conductances on Spike Timing Reliability of Cortical Neurons for Suprathreshold Rhythmic Inputs

    PubMed Central

    Schreiber, Susanne; Fellous, Jean-Marc; Tiesinga, Paul; Sejnowski, Terrence J.

    2010-01-01

    Spike timing reliability of neuronal responses depends on the frequency content of the input. We investigate how intrinsic properties of cortical neurons affect spike timing reliability in response to rhythmic inputs of suprathreshold mean. Analyzing reliability of conductance-based cortical model neurons on the basis of a correlation measure, we show two aspects of how ionic conductances influence spike timing reliability. First, they set the preferred frequency for spike timing reliability, which in accordance with the resonance effect of spike timing reliability is well approximated by the firing rate of a neuron in response to the DC component in the input. We demonstrate that a slow potassium current can modulate the spike timing frequency preference over a broad range of frequencies. This result is confirmed experimentally by dynamic-clamp recordings from rat prefrontal cortical neurons in vitro. Second, we provide evidence that ionic conductances also influence spike timing beyond changes in preferred frequency. Cells with the same DC firing rate exhibit more reliable spike timing at the preferred frequency and its harmonics if the slow potassium current is larger and its kinetics are faster, whereas a larger persistent sodium current impairs reliability. We predict that potassium channels are an efficient target for neuromodulators that can tune spike timing reliability to a given rhythmic input. PMID:14507985

  20. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis

    PubMed Central

    Williams, Corey L.; Kida, Katarzyna; Inglis, Peter N.; Mohan, Swetha; Semenec, Lucie; Bialas, Nathan J.; Stupay, Rachel M.; Chen, Nansheng

    2011-01-01

    Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and related ciliopathies present with overlapping phenotypes and display considerable allelism between at least twelve different genes of largely unexplained function. We demonstrate that the conserved C. elegans B9 domain (MKS-1, MKSR-1, and MKSR-2), MKS-3/TMEM67, MKS-5/RPGRIP1L, MKS-6/CC2D2A, NPHP-1, and NPHP-4 proteins exhibit essential, collective functions at the transition zone (TZ), an underappreciated region at the base of all cilia characterized by Y-shaped assemblages that link axoneme microtubules to surrounding membrane. These TZ proteins functionally interact as members of two distinct modules, which together contribute to an early ciliogenic event. Specifically, MKS/MKSR/NPHP proteins establish basal body/TZ membrane attachments before or coinciding with intraflagellar transport–dependent axoneme extension and subsequently restrict accumulation of nonciliary components within the ciliary compartment. Together, our findings uncover a unified role for eight TZ-localized proteins in basal body anchoring and establishing a ciliary gate during ciliogenesis, and suggest that disrupting ciliary gate function contributes to phenotypic features of the MKS/NPHP disease spectrum. PMID:21422230

  1. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis.

    PubMed

    Williams, Corey L; Li, Chunmei; Kida, Katarzyna; Inglis, Peter N; Mohan, Swetha; Semenec, Lucie; Bialas, Nathan J; Stupay, Rachel M; Chen, Nansheng; Blacque, Oliver E; Yoder, Bradley K; Leroux, Michel R

    2011-03-21

    Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and related ciliopathies present with overlapping phenotypes and display considerable allelism between at least twelve different genes of largely unexplained function. We demonstrate that the conserved C. elegans B9 domain (MKS-1, MKSR-1, and MKSR-2), MKS-3/TMEM67, MKS-5/RPGRIP1L, MKS-6/CC2D2A, NPHP-1, and NPHP-4 proteins exhibit essential, collective functions at the transition zone (TZ), an underappreciated region at the base of all cilia characterized by Y-shaped assemblages that link axoneme microtubules to surrounding membrane. These TZ proteins functionally interact as members of two distinct modules, which together contribute to an early ciliogenic event. Specifically, MKS/MKSR/NPHP proteins establish basal body/TZ membrane attachments before or coinciding with intraflagellar transport-dependent axoneme extension and subsequently restrict accumulation of nonciliary components within the ciliary compartment. Together, our findings uncover a unified role for eight TZ-localized proteins in basal body anchoring and establishing a ciliary gate during ciliogenesis, and suggest that disrupting ciliary gate function contributes to phenotypic features of the MKS/NPHP disease spectrum.

  2. Effects of Kindermusik Training on Infants' Rhythmic Enculturation

    ERIC Educational Resources Information Center

    Gerry, David W.; Faux, Ashley L.; Trainor, Laurel J.

    2010-01-01

    Phillips-Silver and Trainor (2005) demonstrated a link between movement and the metrical interpretation of rhythm patterns in 7-month-old infants. Infants bounced on every second beat of a rhythmic pattern with no auditory accents later preferred to listen to an accented version of the pattern with accents every second beat (duple or march meter),…

  3. Rhythmic Priming Enhances the Phonological Processing of Speech

    ERIC Educational Resources Information Center

    Cason, Nia; Schon, Daniele

    2012-01-01

    While natural speech does not possess the same degree of temporal regularity found in music, there is recent evidence to suggest that temporal regularity enhances speech processing. The aim of this experiment was to examine whether speech processing would be enhanced by the prior presentation of a rhythmical prime. We recorded electrophysiological…

  4. Evolution of central pattern generators and rhythmic behaviours

    PubMed Central

    Katz, Paul S.

    2016-01-01

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. PMID:26598733

  5. Perceptual Tests of Rhythmic Similarity: II. Syllable Rhythm

    ERIC Educational Resources Information Center

    Kim, Jeesun; Davis, Chris; Cutler, Anne

    2008-01-01

    To segment continuous speech into its component words, listeners make use of language rhythm; because rhythm differs across languages, so do the segmentation procedures which listeners use. For each of stress-, syllable-and mora-based rhythmic structure, perceptual experiments have led to the discovery of corresponding segmentation procedures. In…

  6. Perceptual Tests of Rhythmic Similarity: I. Mora Rhythm

    ERIC Educational Resources Information Center

    Murty, Lalita; Otake, Takashi; Cutler, Anne

    2007-01-01

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. The rhythmic similarity hypothesis holds that where two languages have similar rhythm, listeners of each language should segment their own and the other language similarly. Such similarity in listening was…

  7. Attentional Loads Associated with Interlimb Interactions Underlying Rhythmic Bimanual Coordination

    ERIC Educational Resources Information Center

    Ridderikhoff, Arne; Peper, C. E.; Beek, Peter J.

    2008-01-01

    Studies of rhythmic bimanual coordination under dual-task conditions revealed (1) a dependence of secondary task performance on the stability of coordinative tasks, in that secondary task performance was better during in-phase than antiphase coordination, and (2) a shift in the mean relative phasing between the limbs compared to single-task…

  8. Perceptual Tests of Rhythmic Similarity: I. Mora Rhythm

    ERIC Educational Resources Information Center

    Murty, Lalita; Otake, Takashi; Cutler, Anne

    2007-01-01

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. The rhythmic similarity hypothesis holds that where two languages have similar rhythm, listeners of each language should segment their own and the other language similarly. Such similarity in listening was…

  9. Precompetition warm-up in elite and subelite rhythmic gymnastics.

    PubMed

    Guidetti, Laura; Di Cagno, Alessandra; Gallotta, Maria Chiara; Battaglia, Claudia; Piazza, Marina; Baldari, Carlo

    2009-09-01

    The aim of this study was to investigate which precompetition warm-up methodologies resulted in the best overall performance in rhythmic gymnastics. The coaches of national and international clubs (60 elite and 90 subelite) were interviewed. The relationship between sport performance and precompetition warm-up routines was examined. A total of 49% of the coaches interviewed spent more than 1 hour to prepare their athletes for the competition, including 45 minutes dedicated to warm-up exercises. In spite of previous studies' suggestions, the time between the end of warm-up and the beginning of competition was more than 5 minutes for 68% of those interviewed. A slow run was the activity of choice used to begin the warm-up (96%). Significant differences between elite and subelite gymnasts were found concerning the total duration of warm-up, duration of slow running, utilization of rhythmic steps and leaps during the warm-up, the use of dynamic flexibility exercises, competition performances repetition (p < 0.01), and utilization of imagery (p < 0.05). A precompetition warm-up in rhythmic gymnastics would include static stretching exercises at least 60 minutes prior to the competition starting time and the active stretching exercises alternated with analytic muscle strengthening aimed at increasing muscle temperature. Rhythmic gymnastics coaches at all levels can use this data as a review of precompetition warm-up practices and a possible source of new ideas.

  10. Cross-Linguistic Comparison of Rhythmic and Phonotactic Similarity

    ERIC Educational Resources Information Center

    Stojanovic, Diana

    2013-01-01

    Literature on speech rhythm has been focused on three major questions: whether languages have rhythms that can be classified into a small number of types, what the criteria are for the membership in each class, and whether the perceived rhythmic similarity between languages can be quantified based on properties found in the speech signal. Claims…

  11. Individualized Instruction and the Rhythmic Claims of Freedom and Discipline.

    ERIC Educational Resources Information Center

    Brown, Lee H.

    Three of the postulates elaborated and developed in "The Rhythmic Claims of Freedom and Discipline" by A.N. Whitehead contain implications for individualized learning. The first postulate states that the process of education envelopes three major periods--the stages of romance, precision, and generalization; the second postulate states that the…

  12. Rhythmic entrainment as a musical affect induction mechanism.

    PubMed

    J Trost, W; Labbé, C; Grandjean, D

    2017-02-01

    One especially important feature of metrical music is that it contains periodicities that listeners' bodily rhythms can adapt to. Recent psychological frameworks have introduced the notion of rhythmic entrainment, among other mechanisms, as an emotion induction principle. In this review paper, we discuss rhythmic entrainment as an affect induction mechanism by differentiating four levels of entrainment in humans-perceptual, autonomic physiological, motor, and social-all of which could contribute to a subjective feeling component. We review the theoretical and empirical literature on rhythmic entrainment to music that supports the existence of these different levels of entrainment by describing the phenomena and characterizing the associated underlying brain processes. The goal of this review is to present the theoretical implications and empirical findings about rhythmic entrainment as an important principle at the basis of affect induction via music, since it rests upon the temporal dimension of music, which is a specificity of music as an affective stimulus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Making Music Mine: The Development of Rhythmic Literacy

    ERIC Educational Resources Information Center

    Burton, Suzanne L.

    2017-01-01

    In this study, I explored children's development of rhythmic music literacy using a language acquisition paradigm. An emergent, constructivist curriculum was implemented over one academic year with 39 children, 5-8 years old. Children were involved in audiation-based active listening, singing, moving, chanting, and playing instruments and engaged…

  14. Rhythmicity and cross-modal temporal cues facilitate detection

    PubMed Central

    ten Oever, Sanne; Schroeder, Charles E.; Poeppel, David; van Atteveldt, Nienke; Zion-Golumbic, Elana

    2014-01-01

    Temporal structure in the environment often has predictive value for anticipating the occurrence of forthcoming events. In this study we investigated the influence of two types of predictive temporal information on the perception of near-threshold auditory stimuli: 1) intrinsic temporal rhythmicity within an auditory stimulus stream and 2) temporally-predictive visual cues. We hypothesized that combining predictive temporal information within- and across-modality should decrease the threshold at which sounds are detected, beyond the advantage provided by each information source alone. Two experiments were conducted in which participants had to detect tones in noise. Tones were presented in either rhythmic or random sequences and were preceded by a temporally predictive visual signal in half of the trials. We show that detection intensities are lower for rhythmic (vs. random) and audiovisual (vs. auditory-only) presentation, independent from response bias, and that this effect is even greater for rhythmic audiovisual presentation. These results suggest that both types of temporal information are used to optimally process sounds that occur at expected points in time (resulting in enhanced detection), and that multiple temporal cues are combined to improve temporal estimates. Our findings underscore the flexibility and proactivity of the perceptual system which uses within- and across-modality temporal cues to anticipate upcoming events and process them optimally. PMID:25128589

  15. Rhythmicity and cross-modal temporal cues facilitate detection.

    PubMed

    ten Oever, Sanne; Schroeder, Charles E; Poeppel, David; van Atteveldt, Nienke; Zion-Golumbic, Elana

    2014-10-01

    Temporal structure in the environment often has predictive value for anticipating the occurrence of forthcoming events. In this study we investigated the influence of two types of predictive temporal information on the perception of near-threshold auditory stimuli: 1) intrinsic temporal rhythmicity within an auditory stimulus stream and 2) temporally-predictive visual cues. We hypothesized that combining predictive temporal information within- and across-modality should decrease the threshold at which sounds are detected, beyond the advantage provided by each information source alone. Two experiments were conducted in which participants had to detect tones in noise. Tones were presented in either rhythmic or random sequences and were preceded by a temporally predictive visual signal in half of the trials. We show that detection intensities are lower for rhythmic (vs. random) and audiovisual (vs. auditory-only) presentation, independent from response bias, and that this effect is even greater for rhythmic audiovisual presentation. These results suggest that both types of temporal information are used to optimally process sounds that occur at expected points in time (resulting in enhanced detection), and that multiple temporal cues are combined to improve temporal estimates. Our findings underscore the flexibility and proactivity of the perceptual system which uses within- and across-modality temporal cues to anticipate upcoming events and process them optimally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Cross-Linguistic Comparison of Rhythmic and Phonotactic Similarity

    ERIC Educational Resources Information Center

    Stojanovic, Diana

    2013-01-01

    Literature on speech rhythm has been focused on three major questions: whether languages have rhythms that can be classified into a small number of types, what the criteria are for the membership in each class, and whether the perceived rhythmic similarity between languages can be quantified based on properties found in the speech signal. Claims…

  17. The Acoustic Reality of the Kachruvian Circles: A Rhythmic Perspective

    ERIC Educational Resources Information Center

    Low, Ee Ling

    2010-01-01

    This paper investigates whether the rhythmic properties of varieties of English found in each of the concentric circles of Kachru's model can, in any way, be elucidated by the "Three Circles" model. A measurement and comparison of the rhythm of three varieties of English: British English (from the Inner Circle), Singapore English (from…

  18. Perceptual Tests of Rhythmic Similarity: II. Syllable Rhythm

    ERIC Educational Resources Information Center

    Kim, Jeesun; Davis, Chris; Cutler, Anne

    2008-01-01

    To segment continuous speech into its component words, listeners make use of language rhythm; because rhythm differs across languages, so do the segmentation procedures which listeners use. For each of stress-, syllable-and mora-based rhythmic structure, perceptual experiments have led to the discovery of corresponding segmentation procedures. In…

  19. Evolution of central pattern generators and rhythmic behaviours.

    PubMed

    Katz, Paul S

    2016-01-05

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. © 2015 The Author(s).

  20. Rhythmic Priming Enhances the Phonological Processing of Speech

    ERIC Educational Resources Information Center

    Cason, Nia; Schon, Daniele

    2012-01-01

    While natural speech does not possess the same degree of temporal regularity found in music, there is recent evidence to suggest that temporal regularity enhances speech processing. The aim of this experiment was to examine whether speech processing would be enhanced by the prior presentation of a rhythmical prime. We recorded electrophysiological…

  1. Effects of Kindermusik Training on Infants' Rhythmic Enculturation

    ERIC Educational Resources Information Center

    Gerry, David W.; Faux, Ashley L.; Trainor, Laurel J.

    2010-01-01

    Phillips-Silver and Trainor (2005) demonstrated a link between movement and the metrical interpretation of rhythm patterns in 7-month-old infants. Infants bounced on every second beat of a rhythmic pattern with no auditory accents later preferred to listen to an accented version of the pattern with accents every second beat (duple or march meter),…

  2. Affect differentially modulates brain activation in uni- and multisensory body-voice perception.

    PubMed

    Jessen, Sarah; Kotz, Sonja A

    2015-01-01

    Emotion perception naturally entails multisensory integration. It is also assumed that multisensory emotion perception is characterized by enhanced activation of brain areas implied in multisensory integration, such as the superior temporal gyrus and sulcus (STG/STS). However, most previous studies have employed designs and stimuli that preclude other forms of multisensory interaction, such as crossmodal prediction, leaving open the question whether classical integration is the only relevant process in multisensory emotion perception. Here, we used video clips containing emotional and neutral body and vocal expressions to investigate the role of crossmodal prediction in multisensory emotion perception. While emotional multisensory expressions increased activation in the bilateral fusiform gyrus (FFG), neutral expressions compared to emotional ones enhanced activation in the bilateral middle temporal gyrus (MTG) and posterior STS. Hence, while neutral stimuli activate classical multisensory areas, emotional stimuli invoke areas linked to unisensory visual processing. Emotional stimuli may therefore trigger a prediction of upcoming auditory information based on prior visual information. Such prediction may be stronger for highly salient emotional compared to less salient neutral information. Therefore, we suggest that multisensory emotion perception involves at least two distinct mechanisms; classical multisensory integration, as shown for neutral expressions, and crossmodal prediction, as evident for emotional expressions.

  3. The role of enteral fat as a modulator of body composition after small bowel resection.

    PubMed

    Choi, Pamela M; Sun, Raphael C; Sommovilla, Joshua; Diaz-Miron, Jose; Khil, Jaclyn; Erwin, Christopher R; Guo, Jun; Warner, Brad W

    2014-08-01

    After massive small bowel resection (SBR), a postoperative diet high in fat is associated with enhanced villus growth. The purpose of this study was to further elucidate the quantity and composition of enteral fat in structural and metabolic changes after SBR. C57/Bl6 mice underwent a 50% proximal SBR. Mice were then randomized to receive a low-fat diet (12% kcal fat), medium-fat diet (44% kcal fat), or high-fat diet (HFD; 71% kcal fat) ad libitum. In a separate experiment, mice underwent 50% proximal SBR and then were randomized to liquid diets of 42% kcal of fat in which the fat was composed of menhaden oil, milk fat, or olive oil. After 2 weeks, mice underwent body composition analysis and the small intestine was harvested. Mice that ingested the greatest amount of enteral fat (HFD) had the greatest percent lean mass. When the effects of the different kinds of enteral fat were analyzed, mice that consumed menhaden oil had the greatest percent lean mass with the greatest overall retention of preoperative weight. These findings suggest that enteral fat enriched in omega-3 fatty acids may offer clinically relevant metabolic advantages for patients with short gut syndrome. Copyright © 2014 Mosby, Inc. All rights reserved.

  4. Alpha-lipoic acid impairs body weight gain of young broiler chicks via modulating peripheral AMPK.

    PubMed

    Wang, Yufeng; Everaert, Nadia; Song, Zhigang; Decuypere, Eddy; Vermeulen, Daniel; Buyse, Johan

    2017-09-01

    In mammals, the AMP-activated protein kinase (AMPK) pathways in the central and peripheral tissues coordinately integrate inputs from multiple sources to regulate energy balance. The present study was aimed to explore the potential role of hepatic AMPK in the energy homeostasis of broiler chickens. Diets with 0, 0.05% or 0.1% alpha-lipoic acid (α-LA), a known AMPK inhibitor were provided to broiler chicks for 7days. As a result, α-LA supplementation decreased the relative growth rate of broiler chicks. Hepatic AMPKα2 mRNA levels were significantly upregulated by dietary α-LA, in concert with the increased phosphorylated AMPKα protein levels. In addition, hepatic FAS mRNA levels together with the malonyl-CoA to total CoA ester ratio were reduced by α-LA supplementation. Moreover, the hepatic phosphorylated glycogen synthase levels were increased resulting in a markedly decreased hepatic glycogen content. In conclusion, dietary α-LA supplementation decreased the in vivo hepatic glycogenesis and lipogenesis via stimulating hepatic AMPKα mRNA levels and the phosphorylated gene product. The stimulatory effect of α-LA on hepatic AMPK mRNA and pAMPKα protein levels together with our previous observations regarding its inhibitory effect on hypothalamic AMPK may have altered the energy balance and hence impaired body weight gain of broiler chicks. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Rhythmic Engagement with Music in Early Childhood: A Replication and Extension

    ERIC Educational Resources Information Center

    Ilari, Beatriz

    2015-01-01

    The purpose of this study was to replicate and extend previous findings on spontaneous movement and rhythmic engagement with music in infancy. Using the identical stimuli and procedures from the original study, I investigated spontaneous rhythmic movements in response to music, infant-directed speech, and contrasting rhythmic patterns in 30…

  6. Rhythmic Engagement with Music in Early Childhood: A Replication and Extension

    ERIC Educational Resources Information Center

    Ilari, Beatriz

    2015-01-01

    The purpose of this study was to replicate and extend previous findings on spontaneous movement and rhythmic engagement with music in infancy. Using the identical stimuli and procedures from the original study, I investigated spontaneous rhythmic movements in response to music, infant-directed speech, and contrasting rhythmic patterns in 30…

  7. CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells.

    PubMed

    Summers, Beth A; Overholt, Jeffrey L; Prabhakar, Nanduri R

    2002-08-01

    The carotid bodies respond to changes in arterial O(2), CO(2), and pH, and Ca(2+) influx via voltage-gated Ca(2+) channels is an important step in the chemoreception process. The objectives of the present study were as follows: 1) to determine whether hypercapnia modulates Ca(2+) current in glomus cells, and if so, to determine if this modulation is secondary to changes in pH; 2) to examine the mechanism of CO(2) modulation of the Ca(2+) current; and 3) to determine whether the effects of hypercapnia and hypoxia on Ca(2+) channel activity in glomus cells are synergistic. The effects of CO(2) on Ca(2+) current were monitored in glomus cells isolated from rabbit carotid bodies using both perforated and conventional patch-clamp techniques. Raising CO(2) in the extracellular solution from 5 to 10% (hypercapnia) reversibly augmented the whole-cell Ca(2+) current. This augmentation was rapid and increased the whole-cell Ca(2+) current similarly in both the perforated and the conventional patch configurations by 16 +/- 2% (n = 5) and 15 +/- 1% (n = 32), respectively. The following observations suggest that the effects of CO(2) are not secondary to changes in pH: 1) isohydric hypercapnia (pH maintained at 7.4) augmented the Ca(2+) current by 24 +/- 2% (n = 6); 2) decreasing the pH of the extra- or intracellular solutions decreased the Ca(2+) current by 43 +/- 4% (n = 8) and 13 +/- 1% (n = 5), respectively; and 3) hypercapnia did not shift the half-maximal activation voltage (V(1/2)), whereas intracellular and extracellular acidosis alone caused shifts in V(1/2). Furthermore, 100 nM of a membrane-permeable protein kinase A inhibitor prevented the augmentation by CO(2), and 500 microM 8-Br-cAMP mimicked the effect of CO(2) by augmenting the Ca(2+) current by 10 +/- 2% (n = 6). Also, cyclic AMP levels in carotid bodies increased from 1.98 +/- 0.6 to 9.0 +/- 2 pmol/microg protein in response to hypercapnia. In contrast, decreasing pH in the nominal absence of CO(2) did not

  8. Gait improvement via rhythmic stimulation in Parkinson's disease is linked to rhythmic skills.

    PubMed

    Bella, Simone Dalla; Benoit, Charles-Etienne; Farrugia, Nicolas; Keller, Peter E; Obrig, Hellmuth; Mainka, Stefan; Kotz, Sonja A

    2017-02-24

    Training based on rhythmic auditory stimulation (RAS) can improve gait in patients with idiopathic Parkinson's disease (IPD). Patients typically walk faster and exhibit greater stride length after RAS. However, this effect is highly variable among patients, with some exhibiting little or no response to the intervention. These individual differences may depend on patients' ability to synchronize their movements to a beat. To test this possibility, 14 IPD patients were submitted to RAS for four weeks, in which they walked to music with an embedded metronome. Before and after the training, patients' synchronization was assessed with auditory paced hand tapping and walking to auditory cues. Patients increased gait speed and stride length in non-cued gait after training. However, individual differences were apparent as some patients showed a positive response to RAS and others, either no response, or a negative response. A positive response to RAS was predicted by the synchronization performance in hand tapping and gait tasks. More severe gait impairment, low synchronization variability, and a prompt response to a stimulation change foster a positive response to RAS training. Thus, sensorimotor timing skills underpinning the synchronization of steps to an auditory cue may allow predicting the success of RAS in IPD.

  9. Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills

    PubMed Central

    Bella, Simone Dalla; Benoit, Charles-Etienne; Farrugia, Nicolas; Keller, Peter E.; Obrig, Hellmuth; Mainka, Stefan; Kotz, Sonja A.

    2017-01-01

    Training based on rhythmic auditory stimulation (RAS) can improve gait in patients with idiopathic Parkinson’s disease (IPD). Patients typically walk faster and exhibit greater stride length after RAS. However, this effect is highly variable among patients, with some exhibiting little or no response to the intervention. These individual differences may depend on patients’ ability to synchronize their movements to a beat. To test this possibility, 14 IPD patients were submitted to RAS for four weeks, in which they walked to music with an embedded metronome. Before and after the training, patients’ synchronization was assessed with auditory paced hand tapping and walking to auditory cues. Patients increased gait speed and stride length in non-cued gait after training. However, individual differences were apparent as some patients showed a positive response to RAS and others, either no response, or a negative response. A positive response to RAS was predicted by the synchronization performance in hand tapping and gait tasks. More severe gait impairment, low synchronization variability, and a prompt response to a stimulation change foster a positive response to RAS training. Thus, sensorimotor timing skills underpinning the synchronization of steps to an auditory cue may allow predicting the success of RAS in IPD. PMID:28233776

  10. Assessment of rhythmic entrainment at multiple timescales in dyslexia: Evidence for disruption to syllable timing☆

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9–2.5 Hz, prosodic stress; 2.5–12 Hz, syllables; 12–40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for

  11. Blood pressure rhythmicity and visceral fat in children with hypertension.

    PubMed

    Niemirska, Anna; Litwin, Mieczysław; Feber, Janusz; Jurkiewicz, Elżbieta

    2013-10-01

    Primary hypertension is associated with disturbed activity of the sympathetic nervous system and altered blood pressure rhythmicity. We analyzed changes in cardiovascular rhythmicity and its relation with target organ damage during 12 months of antihypertensive treatment in 50 boys with hypertension (median, 15.0 years). The following parameters were obtained before and after 12 months of antihypertensive treatment: 24-hour ambulatory blood pressure, left ventricular mass, carotid intima-media thickness, and MRI for visceral and subcutaneous adipose tissue. Amplitudes and acrophases of mean arterial pressure and heart rate rhythms were obtained for 24-, 12-, and 8-hour periods. After 1 year of treatment, 68% of patients were normotensive, and left ventricular mass and carotid intima-media thickness decreased in 60% and 62% of patients, respectively. Blood pressure and heart rate rhythmicity patterns did not change. Changes in blood pressure amplitude correlated with the decrease of waist circumference (P=0.035). Moreover, the decrease of visceral fat correlated with the decrease of 24-hour mean arterial pressure and heart rate acrophases (both P<0.05). There were no differences in changes of blood pressure and heart rate rhythms between patients who achieved or did not achieve normotension and regression of left ventricular mass and carotid intima-media thickness. It was concluded that abnormal cardiovascular rhythmicity persists in children with primary hypertension despite effective antihypertensive treatment, which suggests that it may be the primary abnormality. The correlation between changes in cardiovascular rhythmicity and visceral obesity may indicate that the visceral fat plays an important role in the sympathetic activity of adolescents with hypertension.

  12. Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2016-01-20

    Human perception fluctuates with the phase of neural oscillations in the presence of environmental rhythmic structure by which neural oscillations become entrained. However, in the absence of predictability afforded by rhythmic structure, we hypothesize that the neural dynamical states associated with optimal psychophysical performance are more complex than what has been described previously for rhythmic stimuli. The current electroencephalography study characterized the brain dynamics associated with optimal detection of gaps embedded in narrow-band acoustic noise stimuli lacking low-frequency rhythmic structure. Optimal gap detection was associated with three spectrotemporally distinct delta-governed neural microstates. Individual microstates were characterized by unique instantaneous combinations of neural phase in the delta, theta, and alpha frequency bands. Critically, gap detection was not predictable from local fluctuations in stimulus acoustics. The current results suggest that, in the absence of rhythmic structure to entrain neural oscillations, good performance hinges on complex neural states that vary from moment to moment. Significance statement: Our ability to hear faint sounds fluctuates together with slow brain activity that synchronizes with environmental rhythms. However, it is so far not known how brain activity at different time scales might interact to influence perception when there is no rhythm with which brain activity can synchronize. Here, we used electroencephalography to measure brain activity while participants listened for short silences that interrupted ongoing noise. We examined brain activity in three different frequency bands: delta, theta, and alpha. Participants' ability to detect gaps depended on different numbers of frequency bands--sometimes one, sometimes two, and sometimes three--at different times. Changes in the number of frequency bands that predict perception are a hallmark of a complex neural system.

  13. Transitions between discrete and rhythmic primitives in a unimanual task

    PubMed Central

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  14. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    SciTech Connect

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M.; Tryggestad, Erik; Ford, Eric; Herman, Joseph M.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  15. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism

    PubMed Central

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-01-01

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape. PMID:27097688

  16. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    PubMed

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  17. Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling

    PubMed Central

    Burton, Katherine J.; Li, Xiaohan; Li, Jia-Da; Hu, Wang-Ping

    2015-01-01

    The mammalian circadian clock is composed of single-cell oscillators. Neurochemical and electrical signaling among these oscillators is important for the normal expression of circadian rhythms. Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the suprachiasmatic nucleus (SCN) is highly rhythmic, peaking during the day and being essentially absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced rhythmicity of broad circadian parameters such as locomotor activity, body temperature and sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms. PMID:27103928

  18. Growth velocity and final height in elite female rhythmic and artistic gymnasts.

    PubMed

    Georgopoulos, Neoklis A; Theodoropoulou, Anastasia; Roupas, Nikolaos A; Rottstein, Loredana; Tsekouras, Athanasios; Mylonas, Panagiotis; Vagenakis, George A; Koukkou, Eftychia; Armeni, Anastasia K; Sakellaropoulos, George; Leglise, Michel; Vagenakis, Apostolos G; Markou, Kostas B

    2012-01-01

    The aim of this study was to determine the impact of intensive training on adult final height in elite female rhythmic and artistic gymnasts. The study included 215 rhythmic gymnasts (RG) and 113 artistic gymnasts (AG). AG were below the 50th percentile, while RG were taller than average. Final adult height was lower than target height in AG, while in RG, it exceeded target height. AG started training earlier than RG (p<0.001) and reported lower intensity of training (p<0.001). RG were taller than AG, with higher target height, greater Δ final height-target height and lower body fat and BMI (p<0.001). Using multiple regression analysis, the main factors influencing final height were weight SDS (p<0.001), target height SDS (p<0.001) and age of menarche (p<0.001) for RG, and weight SDS (p<0.001) and target height SDS (p<0.001) for AG. In both elite female RG and AG, genetic predisposition to final height was not disrupted and remained the main force of growth. Although in elite RG genetic predisposition for growth was fully preserved, in elite female AG final adult height falls shorter than genetically determined target height, though within the standard error of prediction.

  19. Circadian clock genes are rhythmically expressed in specific segments of the hen oviduct.

    PubMed

    Zhang, Z C; Wang, Y G; Li, L; Yin, H D; Li, D Y; Wang, Y; Zhao, X L; Liu, Y P; Zhu, Q

    2016-07-01

    In animals, core clock genes are expressed in many peripheral tissues throughout the body that contribute to tissue specific temporal regulation including those that comprise the reproductive system. The chicken ovulatory cycle seems to provide an example of a system in which circadian and interval timing mechanisms operate during ovulation-oviposition. However, little is known about the possible role of circadian regulation during egg formation and laying. To this end, we determined the rhythmic expression of several known canonical clock genes and clock controlled genes in the 4 segments of the chicken oviduct (infundibulum, magnum, isthmus, and uterus) taken from the same biological state (laying sequence and oviposition time) using real time RT-PCR. Except for Cry1, the other genes we analyzed were expressed in all 4 segments of the oviduct. Intriguingly, in a daily light-dark cycle, Bmal1, Clock, Per2, Per3, Cry2, and Rev-erbβ have highly significant rhythmic expression in the infundibulum and uterus but not in the magnum and isthmus. These results show that there is spatial specificity in the localization of clock cells in the hen reproductive tract and that peripheral clocks might have a direct role in the infundibulum and uterus where yolk is captured and the eggshell is formed, respectively. © 2016 Poultry Science Association Inc.

  20. Meal replacement based on Human Ration modulates metabolic risk factors during body weight loss: a randomized controlled trial.

    PubMed

    Alves, Natalia Elizabeth Galdino; Enes, Bárbara Nery; Martino, Hércia Stampini Duarte; Alfenas, Rita de Cássia Gonçalves; Ribeiro, Sônia Machado Rocha

    2014-04-01

    A meal replacement may be an effective strategy in the management of obesity to increase antioxidant intake, attenuating oxidative stress and inflammation. In the present study, we investigated the efficacy of a new nutritional supplement to reduce metabolic risk parameters in obese women. In a randomized controlled crossover study (2 × 2), 22 women (percentage body fat 40.52 ± 3.75%; body mass index-BMI 28.72 ± 2.87 kg/m²; 35.04 ± 5.6 years old) were allocated into two treatments: hypocaloric diet and drink containing "Human Ration" (HR) consumption (CRHR), and hypocaloric diet and control drink consumption (CR). The study consisted of 2 periods of 5 weeks with 1 week of washout in two orders (CR → CRHR and CRHR → CR). Caloric restriction was 15%, based on estimated energy requirement. Anthropometric, clinical and metabolic risk parameters were assessed at baseline and at the end of each period. Some metabolic risk factors were favorably modulated in both interventions: reduction in body weight (CR -0.74 ± 1.27 kg; p = 0.01; CRHR -0.77 ± 1.3 kg; p = 0.02), body mass index (BMI) (CR -0.27 ± 0.51 kg/m²; p = 0.02; CRHR -0.30 ± 0.52 kg/m²; p = 0.01) and HOMA-IR (CR -0.35 ± 0.82; p = 0.02, CRHR -0.41 ± 0.83; p = 0.03). However, CRHR reduced waist circumference (-2.54 ± 2.74 cm; p < 0.01) and gynoid fat (-0.264 ± 0.28 g; p < 0.01), and increased HDL-c levels (0.08 ± 0.15 mmol/l; p = 0.04). Associated with hypocaloric diet, the intake of a nutritional supplement rich in phytochemicals as a breakfast substitute for 5 weeks had no additional effect on weight reduction than caloric restriction alone, but increased central lipolysis and improved the lipoprotein profile.

  1. Evidence for daily and weekly rhythmicity but not lunar or seasonal rhythmicity of physical activity in a large cohort of individuals from five different countries

    PubMed Central

    Refinetti, Roberto; Sani, Mamane; Jean-Louis, Girardin; Pandi-Perumal, Seithikurippu R.; Durazo-Arvizu, Ramon A.; Dugas, Lara R.; Kafensztok, Ruth; Bovet, Pascal; Forrester, Terrence E.; Lambert, Estelle V.; Plange-Rhule, Jacob; Luke, Amy

    2015-01-01

    Background Biological rhythmicity has been extensively studied in animals for many decades. Although temporal patterns of physical activity have been identified in humans, no large scale, multi-national study has been published, and no comparison has been attempted of the ubiquity of activity rhythms at different time scales (such as daily, weekly, monthly, and annual). Methods Using individually-worn actigraphy devices, physical activity of 2,328 individuals from five different countries (adults of African descent from Ghana, South Africa, Jamaica, Seychelles, and the United States) was measured for seven consecutive days at different times of the year. Results Analysis for rhythmic patterns identified daily rhythmicity of physical activity in all five of the represented nationalities. Weekly rhythmicity was found in some, but not all, of the nationalities. No significant evidence of lunar rhythmicity or seasonal rhythmicity was found in any of the groups. Conclusions These findings extend previous small-scale observations of daily rhythmicity to a large cohort of individuals from around the world. The findings also confirm the existence of modest weekly rhythmicity but not lunar or seasonal rhythmicity in human activity. These differences in rhythm strength have implications for the management of health hazards of rhythm misalignment. PMID:26402449

  2. Effects of Electroacupuncture on the Daily Rhythmicity of Intestinal Movement and Circadian Rhythmicity of Colonic Per2 Expression in Rats with Spinal Cord Injury

    PubMed Central

    Wang, Xueqiang; Zhang, Wenyi; Xie, Bin; Zhu, Zhaojin; Lu, Yuemei

    2016-01-01

    Background. Spinal cord injury (SCI) leads to bowel dysfunction. Electroacupuncture (EA) may improve bowel function. Objective. To assess EA on daily rhythmicity of intestinal movement and circadian rhythmicity of colonic Per2 expression in rats with SCI. Methods. Rats were randomized to the sham, SCI, and SCI+EA groups. EA was performed at bilateral Zusanli point (ST36) during daytime (11:00–11:30) for 14 days following SCI. Intestinal transit and daily rhythmicity of intestinal movement were assessed. Circadian rhythmicity of colonic Per2 expression was assessed by real-time RT-PCR. Results. EA shortened the stool efflux time and increased the dry fecal weight within 24 h in SCI rats. Daily rhythmicity of intestinal movements was unaffected by SCI. The expression of colonic Per2 peaked at 20:00 and the nadir was observed at 8:00 in the SCI and sham groups. In the SCI+EA group, colonic Per2 expression peaked at 12:00 and 20:00, and the nadir was observed at 8:00. Conclusion. SCI did not change the circadian rhythmicity of colonic Per2 expression in rats, and daily intestinal movement rhythmicity was retained. EA changed the daily rhythmicity of intestinal movement and the circadian rhythmicity of colonic Per2 expression in rats with SCI, increasing Per2 expression shortly after EA treatment. PMID:27999821

  3. Use of chi square periodogram in the analysis of estrous rhythmicity.

    PubMed

    Refinetti, R

    1991-02-01

    The usefulness of the chi square periodogram procedure for the analysis of estrous rhythmicity was investigated. Sokolove-Bushell's Q statistic was found to have a chi square distribution at the small degrees of freedom involved in estrous rhythmicity in rodents (i.e., rhythmicity with periods of 2-7 days). Consequently, the significance of the peaks in the periodogram can be effectively evaluated. The effects of multiple-period rhythmicity and of random noise added to periodical data were also investigated. Overall, the analysis of simulated as well as empirical data indicated that the chi square periodogram is an excellent tool for the evaluation of estrous rhythmicity.

  4. Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during whole-body heating in humans

    NASA Technical Reports Server (NTRS)

    Wilson, T. E.; Cui, J.; Crandall, C. G.

    2001-01-01

    1. Prior findings suggest that baroreflexes are capable of modulating skin blood flow, but the effects of baroreceptor loading/unloading on sweating are less clear. Therefore, this project tested the hypothesis that pharmacologically induced alterations in arterial blood pressure in heated humans would lead to baroreflex-mediated changes in both skin sympathetic nerve activity (SSNA) and sweat rate. 2. In seven subjects mean arterial blood pressure was lowered (approximately 8 mmHg) and then raised (approximately 13 mmHg) by bolus injections of sodium nitroprusside and phenylephrine, respectively. Moreover, in a separate protocol, arterial blood pressure was reduced via steady-state administration of sodium nitroprusside. In both normothermia and heat-stress conditions the following responses were monitored: sublingual and mean skin temperatures, heart rate, beat-by-beat blood pressure, skin blood flow (laser-Doppler flowmetry), local sweat rate and SSNA (microneurography from peroneal nerve). 3. Whole-body heating increased skin and sublingual temperatures, heart rate, cutaneous blood flow, sweat rate and SSNA, but did not change arterial blood pressure. Heart rate was significantly elevated (from 74 +/- 3 to 92 +/- 4 beats x min(-1); P < 0.001) during bolus sodium nitroprusside-induced reductions in blood pressure, and significantly reduced (from 92 +/- 4 to 68 +/- 4 beats x min(-1); P < 0.001) during bolus phenylephrine-induced elevations in blood pressure, thereby demonstrating normal baroreflex function in these subjects. 4. Neither SSNA nor sweat rate was altered by rapid (bolus infusion) or sustained (steady-state infusion) changes in blood pressure regardless of the thermal condition. 5. These data suggest that SSNA and sweat rate are not modulated by arterial baroreflexes in normothermic or moderately heated individuals.

  5. Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during whole-body heating in humans

    PubMed Central

    Wilson, Thad E; Cui, Jian; Crandall, Craig G

    2001-01-01

    Prior findings suggest that baroreflexes are capable of modulating skin blood flow, but the effects of baroreceptor loading/unloading on sweating are less clear. Therefore, this project tested the hypothesis that pharmacologically induced alterations in arterial blood pressure in heated humans would lead to baroreflex-mediated changes in both skin sympathetic nerve activity (SSNA) and sweat rate. In seven subjects mean arterial blood pressure was lowered (≈8 mmHg) and then raised (≈13 mmHg) by bolus injections of sodium nitroprusside and phenylephrine, respectively. Moreover, in a separate protocol, arterial blood pressure was reduced via steady-state administration of sodium nitroprusside. In both normothermia and heat-stress conditions the following responses were monitored: sublingual and mean skin temperatures, heart rate, beat-by-beat blood pressure, skin blood flow (laser-Doppler flowmetry), local sweat rate and SSNA (microneurography from peroneal nerve). Whole-body heating increased skin and sublingual temperatures, heart rate, cutaneous blood flow, sweat rate and SSNA, but did not change arterial blood pressure. Heart rate was significantly elevated (from 74 ± 3 to 92 ± 4 beats min−1; P < 0.001) during bolus sodium nitroprusside-induced reductions in blood pressure, and significantly reduced (from 92 ± 4 to 68 ± 4 beats min−1; P < 0.001) during bolus phenylephrine-induced elevations in blood pressure, thereby demonstrating normal baroreflex function in these subjects. Neither SSNA nor sweat rate was altered by rapid (bolus infusion) or sustained (steady-state infusion) changes in blood pressure regardless of the thermal condition. These data suggest that SSNA and sweat rate are not modulated by arterial baroreflexes in normothermic or moderately heated individuals. PMID:11600694

  6. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells.

    PubMed

    Leyton, V; Goles, N I; Fuenzalida-Uribe, N; Campusano, J M

    2014-02-07

    In Drosophila associative olfactory learning, an odor, the conditioned stimulus (CS), is paired to an unconditioned stimulus (US). The CS and US information arrive at the Mushroom Bodies (MB), a Drosophila brain region that processes the information to generate new memories. It has been shown that olfactory information is conveyed through cholinergic inputs that activate nicotinic acetylcholine receptors (nAChRs) in the MB, while the US is coded by biogenic amine (BA) systems that innervate the MB. In this regard, the MB acts as a coincidence detector. A better understanding of the properties of the responses gated by nicotinic and BA receptors is required to get insights on the cellular and molecular mechanisms responsible for memory formation. In recent years, information has become available on the properties of the responses induced by nAChR activation in Kenyon Cells (KCs), the main neuronal MB population. However, very little information exists on the responses induced by aminergic systems in fly MB. Here we have evaluated some of the properties of the calcium responses gated by Dopamine (DA) and Octopamine (Oct) in identified KCs in culture. We report that exposure to BAs induces a fast but rather modest increase in intracellular calcium levels in cultured KCs. The responses to Oct and DA are fully blocked by a VGCC blocker, while they are differentially modulated by cAMP. Moreover, co-application of BAs and nicotine has different effects on intracellular calcium levels: while DA and nicotine effects are additive, Oct and nicotine induce a synergistic increase in calcium levels. These results suggest that a differential modulation of nicotine-induced calcium increase by DA and Oct could contribute to the events leading to learning and memory in flies.

  7. Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during whole-body heating in humans

    NASA Technical Reports Server (NTRS)

    Wilson, T. E.; Cui, J.; Crandall, C. G.

    2001-01-01

    1. Prior findings suggest that baroreflexes are capable of modulating skin blood flow, but the effects of baroreceptor loading/unloading on sweating are less clear. Therefore, this project tested the hypothesis that pharmacologically induced alterations in arterial blood pressure in heated humans would lead to baroreflex-mediated changes in both skin sympathetic nerve activity (SSNA) and sweat rate. 2. In seven subjects mean arterial blood pressure was lowered (approximately 8 mmHg) and then raised (approximately 13 mmHg) by bolus injections of sodium nitroprusside and phenylephrine, respectively. Moreover, in a separate protocol, arterial blood pressure was reduced via steady-state administration of sodium nitroprusside. In both normothermia and heat-stress conditions the following responses were monitored: sublingual and mean skin temperatures, heart rate, beat-by-beat blood pressure, skin blood flow (laser-Doppler flowmetry), local sweat rate and SSNA (microneurography from peroneal nerve). 3. Whole-body heating increased skin and sublingual temperatures, heart rate, cutaneous blood flow, sweat rate and SSNA, but did not change arterial blood pressure. Heart rate was significantly elevated (from 74 +/- 3 to 92 +/- 4 beats x min(-1); P < 0.001) during bolus sodium nitroprusside-induced reductions in blood pressure, and significantly reduced (from 92 +/- 4 to 68 +/- 4 beats x min(-1); P < 0.001) during bolus phenylephrine-induced elevations in blood pressure, thereby demonstrating normal baroreflex function in these subjects. 4. Neither SSNA nor sweat rate was altered by rapid (bolus infusion) or sustained (steady-state infusion) changes in blood pressure regardless of the thermal condition. 5. These data suggest that SSNA and sweat rate are not modulated by arterial baroreflexes in normothermic or moderately heated individuals.

  8. Improving Delivery Accuracy of Stereotactic Body Radiotherapy to a Moving Tumor Using Simplified Volumetric Modulated Arc Therapy

    PubMed Central

    Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong

    2016-01-01

    Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199

  9. Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements.

    PubMed

    Varlet, Manuel; Wade, Alanna; Novembre, Giacomo; Keller, Peter E

    2017-03-18

    Human rhythmic movements spontaneously entrain to external rhythmic stimuli. Such sensory-motor entrainment can attract movements to different tempi and enhance their efficiency, with potential clinical applications for motor rehabilitation. Here we investigate whether entrainment of self-paced rhythmic movements can be induced via transcranial alternating current stimulation (tACS), which uses alternating currents to entrain spontaneous brain oscillations at specific frequencies. Participants swung a handheld pendulum at their preferred tempo with the right hand while tACS was applied over their left or right primary motor cortex at frequencies equal to their preferred tempo (Experiment 1) or in the alpha (10Hz) and beta (20Hz) ranges (Experiment 2). Given that entrainment generally occurs only if the frequency difference between two rhythms is small, stimulations were delivered at frequencies equal to participants' preferred movement tempo (≈1Hz) and ±12.5% in Experiment 1, and at 10Hz and 20Hz, and ±12.5% in Experiment 2. The comparison of participants' movement frequency, amplitude, variability, and phase synchrony with and without tACS failed to reveal entrainment or movement modifications across the two experiments. However, significant differences in stimulation-related side effects reported by participants were found between the two experiments, with phosphenes and burning sensations principally occurring in Experiment 2, and metallic tastes reported marginally more often in Experiment 1. Although other stimulation protocols may be effective, our results suggest that rhythmic movements such as pendulum swinging or locomotion that are low in goal-directedness and/or strongly driven by peripheral and mechanical constraints may not be susceptible to modulation by tACS.

  10. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    SciTech Connect

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  11. The role of subvocalization in rehearsal and maintenance of rhythmic patterns.

    PubMed

    Pich, J

    2000-05-01

    This experiment analyzed the influence of subvocal activity in retention of rhythmical auditory patterns. Retention of sixteen percussion sequences was studied. Each sequence (a 4-s "door-knocking" pattern) was followed by one of the following six retention conditions: silence, unattended music (blocking the inner ear, i.e., Gregorian chanting), unattended music (blocking the inner ear, i.e., rock-and-roll), articulatory suppression (blocking the inner voice), tracing circles on the table with index finger (spatial task), and tapping (motor control). After silence, unattended music (chanting), or the spatial task, participants successfully reproduced most patterns. Errors increased with unattended music (rock-and-roll), but significant disruptions only occurred with tapping and articulatory suppression. Whereas the latter case supports the role of an articulatory loop in retention, the production of successive taps or syllables in both interference conditions probably relies on a general rhythm module, which disrupted retention of the patterns.

  12. Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature

    PubMed Central

    Mittelman-Smith, Melinda A.; Williams, Hemalini; Krajewski-Hall, Sally J.; McMullen, Nathaniel T.; Rance, Naomi E.

    2012-01-01

    Estrogen withdrawal in menopausal women leads to hot flushes, a syndrome characterized by the episodic activation of heat dissipation effectors. Despite the extraordinary number of individuals affected, the etiology of flushes remains an enigma. Because menopause is accompanied by marked alterations in hypothalamic kisspeptin/neurokinin B/dynorphin (KNDy) neurons, we hypothesized that these neurons could contribute to the generation of flushes. To determine if KNDy neurons participate in the regulation of body temperature, we evaluated the thermoregulatory effects of ablating KNDy neurons by injecting a selective toxin for neurokinin-3 expressing neurons [NK3-saporin (SAP)] into the rat arcuate nucleus. Remarkably, KNDy neuron ablation consistently reduced tail-skin temperature (TSKIN), indicating that KNDy neurons facilitate cutaneous vasodilatation, an important heat dissipation effector. Moreover, KNDy ablation blocked the reduction of TSKIN by 17β-estradiol (E2), which occurred in the environmental chamber during the light phase, but did not affect the E2 suppression of TSKIN during the dark phase. At the high ambient temperature of 33 °C, the average core temperature (TCORE) of ovariectomized (OVX) control rats was significantly elevated, and this value was reduced by E2 replacement. In contrast, the average TCORE of OVX, KNDy-ablated rats was lower than OVX control rats at 33 °C, and not altered by E2 replacement. These data provide unique evidence that KNDy neurons promote cutaneous vasodilatation and participate in the E2 modulation of body temperature. Because cutaneous vasodilatation is a cardinal sign of a hot flush, these results support the hypothesis that KNDy neurons could play a role in the generation of flushes. PMID:23150555

  13. Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature.

    PubMed

    Mittelman-Smith, Melinda A; Williams, Hemalini; Krajewski-Hall, Sally J; McMullen, Nathaniel T; Rance, Naomi E

    2012-11-27

    Estrogen withdrawal in menopausal women leads to hot flushes, a syndrome characterized by the episodic activation of heat dissipation effectors. Despite the extraordinary number of individuals affected, the etiology of flushes remains an enigma. Because menopause is accompanied by marked alterations in hypothalamic kisspeptin/neurokinin B/dynorphin (KNDy) neurons, we hypothesized that these neurons could contribute to the generation of flushes. To determine if KNDy neurons participate in the regulation of body temperature, we evaluated the thermoregulatory effects of ablating KNDy neurons by injecting a selective toxin for neurokinin-3 expressing neurons [NK(3)-saporin (SAP)] into the rat arcuate nucleus. Remarkably, KNDy neuron ablation consistently reduced tail-skin temperature (T(SKIN)), indicating that KNDy neurons facilitate cutaneous vasodilatation, an important heat dissipation effector. Moreover, KNDy ablation blocked the reduction of T(SKIN) by 17β-estradiol (E(2)), which occurred in the environmental chamber during the light phase, but did not affect the E(2) suppression of T(SKIN) during the dark phase. At the high ambient temperature of 33 °C, the average core temperature (T(CORE)) of ovariectomized (OVX) control rats was significantly elevated, and this value was reduced by E(2) replacement. In contrast, the average T(CORE) of OVX, KNDy-ablated rats was lower than OVX control rats at 33 °C, and not altered by E(2) replacement. These data provide unique evidence that KNDy neurons promote cutaneous vasodilatation and participate in the E(2) modulation of body temperature. Because cutaneous vasodilatation is a cardinal sign of a hot flush, these results support the hypothesis that KNDy neurons could play a role in the generation of flushes.

  14. Selective Androgen Receptor Modulator Treatment Improves Muscle Strength and Body Composition and Prevents Bone Loss in Orchidectomized Rats

    PubMed Central

    Gao, Wenqing; Reiser, Peter J.; Coss, Christopher C.; Phelps, Mitch A.; Kearbey, Jeffrey D.; Miller, Duane D.; Dalton, James T.

    2007-01-01

    The partial agonist activity of a selective androgen receptor modulator (SARM) in the prostate was demonstrated in orchidectomized rats. In the current study, we characterized the full agonist activity of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide (a structurally related SARM referred to in other publications and hereafter as S-4) in skeletal muscle, bone, and pituitary of castrated male rats. Twelve weeks after castration, animals were treated with S-4 (3 or 10 mg/kg), dihydrotestosterone (DHT) (3 mg/kg), or vehicle for 8 wk. S-4 (3 and 10 mg/kg) restored soleus muscle mass and strength and levator ani muscle mass to that seen in intact animals. Similar changes were also observed in DHT-treated (3 mg/kg) animals. Compared with the anabolic effects observed in muscle, DHT (3 mg/kg) stimulated prostate and seminal vesicle weights moire than 2-fold greater than that observed in intact controls, whereas S-4 (3 mg/kg) returned these androgenic organs to only 16 and 17%, respectively, of the control levels. S-4 (3 and 10 mg/kg) and DHT (3 mg/kg) restored castration-induced loss in lean body mass. Furthermore, S-4 treatment caused a significantly larger increase in total body bone mineral density than DHT. S-4 (3 and 10 mg/kg) also demonstrated agonist activity in the pituitary and significantly decreased plasma LH and FSH levels in castrated animals in a dose-dependent manner. In summary, the strong anabolic effects of S-4 in skeletal muscle, bone, and pituitary were achieved with minimal pharmacologic effect in the prostate. The tissue-selective pharmacologic activity of SARMs provides obvious advantages over steroidal androgen therapy and demonstrates the promising therapeutic utility that this new class of drugs may hold. PMID:16099859

  15. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet.

    PubMed

    Lucas, Edralin A; Li, Wenjia; Peterson, Sandra K; Brown, Angela; Kuvibidila, Solo; Perkins-Veazie, Penny; Clarke, Stephen L; Smith, Brenda J

    2011-11-01

    Consumption of fruits and vegetables has been investigated for their role in the prevention of many chronic conditions. Among the fruits, mango provides numerous bioactive compounds such as carotenoids, vitamin C and phenolic compounds, which have been shown to have antioxidant and anti-inflammatory properties. The present study examined the effects of dietary supplementation of freeze-dried mango pulp, in comparison with the hypolipidaemic drug, fenofibrate, and the hypoglycaemic drug, rosiglitazone, in reducing adiposity and alterations in glucose metabolism and lipid profile in mice fed a high-fat (HF) diet. Male C57BL/6J mice were randomly divided into six treatment groups (eight to nine/group): control (10 % energy from fat); HF (60 % energy from fat); HF+1 or 10 % freeze-dried mango (w/w); HF+fenofibrate (500 mg/kg diet); HF+rosiglitazone (50 mg/kg diet). After 8 weeks of treatment, mice receiving the HF diet had a higher percentage body fat (P = 0·0205) and epididymal fat mass (P = 0·0037) compared with the other treatment groups. Both doses of freeze-dried mango, similar to fenofibrate and rosiglitazone, prevented the increase in epididymal fat mass and the percentage of body fat. Freeze-dried mango supplementation at the 1 % dose improved glucose tolerance as shown by approximately 35 % lower blood glucose area under the curve compared with the HF group. Moreover, freeze-dried mango lowered insulin resistance, as indicated by the homeostasis model assessment of insulin resistance, to a similar extent as rosiglitazone and modulated NEFA. The present findings demonstrate that incorporation of freeze-dried mango in the diet of mice improved glucose tolerance and lipid profile and reduced adiposity associated with a HF diet.

  16. Motor activity and imagery modulate the body-selective region in the occipital-temporal area: a near-infrared spectroscopy study.

    PubMed

    Ishizu, Tomohiro; Noguchi, Asuka; Ito, Yoshie; Ayabe, Tomoaki; Kojima, Shozo

    2009-11-06

    The extrastriate body area (EBA) lies in the occipital-temporal cortex and has been described as a "body-selective" region that responds when viewing other people's bodies. Recently, several studies have reported that EBA is also modulated when the subject moves or imagines moving their own body, even without visual feedback. The present study involved 3 experiments, wherein the first experiment was conducted to examine whether near-infrared spectroscopy (NIRS) could capture any activity in the EBA when viewing images of bodies. The second experiment was designed to elucidate whether this region also responds when the subjects move their own body, and the third to observe whether imagining carrying out a movement would activate EBA. Images of human bodies and chairs were used as the stimuli for the first experiment, simple hand movements carried out by the subject were used for the second and the act of imagining hand movements for the third. Our results confirmed that the region we defined as EBA was clearly activated when the subject viewed images of human bodies, carried out movements of their own body and imagined moving parts of their own body, thus demonstrating the usefulness of NIRS as a new brain imaging method. Moreover, we found a gender-based difference when imagining movement; male subjects showed a greater response than female subjects. This may reflect a gender difference in imagery skills; however, further research is needed to verify this hypothesis.

  17. Effects of manipulating slowpoke calcium-dependent potassium channel expression on rhythmic locomotor activity in Drosophila larvae

    PubMed Central

    2013-01-01

    Rhythmic motor behaviors are generated by networks of neurons. The sequence and timing of muscle contractions depends on both synaptic connections between neurons and the neurons’ intrinsic properties. In particular, motor neuron ion currents may contribute significantly to motor output. Large conductance Ca2+-dependent K+ (BK) currents play a role in action potential repolarization, interspike interval, repetitive and burst firing, burst termination and interburst interval in neurons. Mutations in slowpoke (slo) genes encoding BK channels result in motor disturbances. This study examined the effects of manipulating slo channel expression on rhythmic motor activity using Drosophila larva as a model system. Dual intracellular recordings from adjacent body wall muscles were made during spontaneous crawling-related activity in larvae expressing a slo mutation or a slo RNA interference construct. The incidence and duration of rhythmic activity in slo mutants were similar to wild-type control animals, while the timing of the motor pattern was altered. slo mutants showed decreased burst durations, cycle durations, and quiescence intervals, and increased duty cycles, relative to wild-type. Expressing slo RNAi in identified motor neurons phenocopied many of the effects observed in the mutant, including decreases in quiescence interval and cycle duration. Overall, these results show that altering slo expression in the whole larva, and specifically in motor neurons, changes the frequency of crawling activity. These results suggest an important role for motor neuron intrinsic properties in shaping the timing of motor output. PMID:23638395

  18. Quantum confinement modulation on the performance of nanometer thin body GaSb/InAs tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Wang, Liwei; En, Yunfei; Jiang, Xiang-Wei

    2017-06-01

    In this paper, we have presented an atomistic quantum simulation study to investigate the device performances of GaSb/InAs heterojunction tunnel field-effect transistors (TFETs) with nanometer body thicknesses. It is revealed that the thin junction induced quantum confinement effect results in a heterojunction type transition from type-III to type-II as the junction thickness reduces, which can be used as an effective modulation of the TFET device performance. It is found that as the channel thickness decreases, both the ON current and OFF current of the device decrease significantly due to the quantum confinement induced effective band gap enlargement. In addition, the OFF current of the heterojunction GaSb/InAs TFET is always larger than that of the homojunction InAs TFET, which is possibly caused by the GaSb/InAs interfacial state assisted tunneling. It is also revealed that the subthreshold swing of the heterojunction TFET does not change much as the channel thickness is reduced.

  19. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion.

    PubMed

    Loh, Nellie Y; Neville, Matt J; Marinou, Kyriakoula; Hardcastle, Sarah A; Fielding, Barbara A; Duncan, Emma L; McCarthy, Mark I; Tobias, Jonathan H; Gregson, Celia L; Karpe, Fredrik; Christodoulides, Constantinos

    2015-02-03

    Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion

    PubMed Central

    Loh, Nellie Y.; Neville, Matt J.; Marinou, Kyriakoula; Hardcastle, Sarah A.; Fielding, Barbara A.; Duncan, Emma L.; McCarthy, Mark I.; Tobias, Jonathan H.; Gregson, Celia L.; Karpe, Fredrik; Christodoulides, Constantinos

    2015-01-01

    Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. PMID:25651180

  1. Phase I dose-escalation study of helical intensity-modulated radiotherapy-based stereotactic body radiotherapy for hepatocellular carcinoma

    PubMed Central

    Kim, Jun Won; Seong, Jinsil; Lee, Ik Jae; Woo, Joong Yeol; Han, Kwang-Hyub

    2016-01-01

    Background Phase I trial was conducted to determine feasibility and toxicity of helical intensity-modulated radiotherapy (IMRT)-based stereotactic body radiotherapy (SBRT) for hepatocellular carcinoma (HCC). Results Eighteen patients (22 lesions) were enrolled. With no DLT at 52 Gy (13 Gy/fraction), protocol was amended for further escalation to 60 Gy (15 Gy/fraction). Radiologic complete response rate was 88.9%. Two outfield intrahepatic, 2 distant, 4 concurrent local and outfield, and 1 concurrent local, outfield and distant failures (no local failure at dose levels 3–4) occurred. The worst toxicity was grade 3 hematologic in five patients, with no gastrointestinal toxicity > grade 1. At median follow-up of 28 months for living patients, 2-year local control, progression-free (PFS), and overall survival rates were 71.3%, 49.4% and 69.3%, respectively. Multi-segmental recurrences prior to SBRT was independent prognostic factor for PFS (p = 0.033). Materials and Methods Eligible patients had Child-Pugh's class A or B, unresectable HCC, ≤ 3 lesions, and cumulative tumor diameter ≤ 6 cm. Starting at 36 Gy in four fractions, dose was escalated with 2 Gy/fraction per dose-level. CTCAE v 3.0 ≥ grade 3 gastrointestinal toxicity and radiation induced liver disease defined dose-limiting toxicity (DLT). Conclusions Helical IMRT-based SBRT was tolerable and showed encouraging results. Confirmatory phase II trial is underway. PMID:27213593

  2. Body Sodium Overload Modulates the Firing Rate and Fos Immunoreactivity of Serotonergic Cells of Dorsal Raphe Nucleus

    PubMed Central

    Godino, Andrea; Pitra, Soledad; Carrer, Hugo F.; Vivas, Laura

    2013-01-01

    In order to determine whether serotonergic (5HT) dorsal raphe nucleus (DRN) cells are involved in body sodium status regulation, the effect of a s.c. infusion of either 2 M or 0.15 M NaCl on 5HT DRN neuron firing was studied using single unit extracellular recordings. In separate groups of 2 M and 0.15 M NaCl-infused rats, water intake, oxytocin (OT) plasma concentration, urine and plasma sodium and protein concentrations were also measured. Also, to determine the involvement of particular brain nuclei and neurochemical systems in body sodium overload (SO), animals from both groups were perfused for brain immunohistochemical detection of Fos, Fos-OT and Fos-5HT expression. SO produced a significant increase in serotonergic DRN neuron firing rate compared to baseline and 0.15 M NaCl-infused rats. As expected, 2 M NaCl s.c. infusion also induced a significant increase of water intake, diuresis and natriuresis, plasma sodium concentration and osmolality, even though plasma volume did not increase as indicated by changes in plasma protein concentration. The distribution of neurons along the forebrain and brainstem expressing Fos after SO showed the participation of the lamina terminalis, extended amygdala, supraoptic and paraventricular hypothalamic nuclei in the neural network that controls osmoregulatory responses. Both Fos-OT immunoreactive and plasma OT concentration increased after s.c. hypertonic sodium infusion. Finally, matching the “in vivo” electrophysiological study, SO doubled the number of Fos-5HT immunolabeled cells within the DRN. In summary, the results characterize the behavioral, renal and endocrine responses after body sodium overload without volume expansion and specify the cerebral nuclei that participate at different CNS levels in the control of these responses. The electrophysiological approach also allows us to determine in an “in vivo" model that DRN 5HT neurons increase their firing frequency during an increase in systemic sodium

  3. Body sodium overload modulates the firing rate and fos immunoreactivity of serotonergic cells of dorsal raphe nucleus.

    PubMed

    Godino, Andrea; Pitra, Soledad; Carrer, Hugo F; Vivas, Laura

    2013-01-01

    In order to determine whether serotonergic (5HT) dorsal raphe nucleus (DRN) cells are involved in body sodium status regulation, the effect of a s.c. infusion of either 2 M or 0.15 M NaCl on 5HT DRN neuron firing was studied using single unit extracellular recordings. In separate groups of 2 M and 0.15 M NaCl-infused rats, water intake, oxytocin (OT) plasma concentration, urine and plasma sodium and protein concentrations were also measured. Also, to determine the involvement of particular brain nuclei and neurochemical systems in body sodium overload (SO), animals from both groups were perfused for brain immunohistochemical detection of Fos, Fos-OT and Fos-5HT expression. SO produced a significant increase in serotonergic DRN neuron firing rate compared to baseline and 0.15 M NaCl-infused rats. As expected, 2 M NaCl s.c. infusion also induced a significant increase of water intake, diuresis and natriuresis, plasma sodium concentration and osmolality, even though plasma volume did not increase as indicated by changes in plasma protein concentration. The distribution of neurons along the forebrain and brainstem expressing Fos after SO showed the participation of the lamina terminalis, extended amygdala, supraoptic and paraventricular hypothalamic nuclei in the neural network that controls osmoregulatory responses. Both Fos-OT immunoreactive and plasma OT concentration increased after s.c. hypertonic sodium infusion. Finally, matching the "in vivo" electrophysiological study, SO doubled the number of Fos-5HT immunolabeled cells within the DRN. In summary, the results characterize the behavioral, renal and endocrine responses after body sodium overload without volume expansion and specify the cerebral nuclei that participate at different CNS levels in the control of these responses. The electrophysiological approach also allows us to determine in an "in vivo" model that DRN 5HT neurons increase their firing frequency during an increase in systemic sodium concentration

  4. Daily Rhythmic Behaviors and Thermoregulatory Patterns Are Disrupted in Adult Female MeCP2-Deficient Mice

    PubMed Central

    Wu, Chiping; Bardakjian, Berj L.; Zhang, Liang; Eubanks, James H.

    2012-01-01

    Mutations in the X-linked gene encoding Methyl-CpG-binding protein 2 (MECP2) have been associated with neurodevelopmental and neuropsychiatric disorders including Rett Syndrome, X-linked mental retardation syndrome, severe neonatal encephalopathy, and Angelman syndrome. Although alterations in the performance of MeCP2-deficient mice in specific behavioral tasks have been documented, it remains unclear whether or not MeCP2 dysfunction affects patterns of periodic behavioral and electroencephalographic (EEG) activity. The aim of the current study was therefore to determine whether a deficiency in MeCP2 is sufficient to alter the normal daily rhythmic patterns of core body temperature, gross motor activity and cortical delta power. To address this, we monitored individual wild-type and MeCP2-deficient mice in their home cage environment via telemetric recording over 24 hour cycles. Our results show that the normal daily rhythmic behavioral patterning of cortical delta wave activity, core body temperature and mobility are disrupted in one-year old female MeCP2-deficient mice. Moreover, female MeCP2-deficient mice display diminished overall motor activity, lower average core body temperature, and significantly greater body temperature fluctuation than wild-type mice in their home-cage environment. Finally, we show that the epileptiform discharge activity in female MeCP2-deficient mice is more predominant during times of behavioral activity compared to inactivity. Collectively, these results indicate that MeCP2 deficiency is sufficient to disrupt the normal patterning of daily biological rhythmic activities. PMID:22523589

  5. Rhythmic coordination of hippocampal neurons during associative memory processing.

    PubMed

    Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard

    2016-01-11

    Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4-12 Hz), beta (15-35 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus.

  6. Study Modules for Calculus-Based General Physics. [Includes Modules 11-14: Collisions; Equilibrium of Rigid Bodies; Rotational Dynamics; and Fluid Mechanics].

    ERIC Educational Resources Information Center

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  7. Peripheral circadian oscillators and their rhythmic regulation.

    PubMed

    Fukuhara, Chiaki; Tosini, Gianluca

    2003-05-01

    Most of the organisms living on earth show 24 hour (circadian) rhythms that are endogenously controlled by biological clocks. In mammals, these rhythms are generated by the circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. However, recent studies have demonstrated that circadian oscillators can be found in many organs and tissues, and it appears that the circadian oscillators in the periphery are not self-sustained, since, in vitro, the oscillation disappears after a few cycles. Although analysis of the clockwork mechanism indicates that the molecular composition of the clock in the SCN and in the peripheral tissues is very similar, the mechanism responsible for the damping of the circadian oscillation in the periphery is unknown. Recent studies have also indicated that the mammalian circadian system is hierarchically organized in that the SCN (i.e., the master circadian pacemaker) controls the peripheral oscillators in order to coordinate the physiological events in an entire body. The mechanisms by which the SCN controls peripheral oscillators are just starting to be elucidated. The aim of this review is to summarize the most recent findings on functioning of these extra-SCN oscillators and the mechanisms the SCN controls peripheral oscillators.

  8. Perceptual tests of rhythmic similarity: I. Mora rhythm.

    PubMed

    Murty, Lalita; Otake, Takashi; Cutler, Anne

    2007-01-01

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. The rhythmic similarity hypothesis holds that where two languages have similar rhythm, listeners of each language should segment their own and the other language similarly. Such similarity in listening was previously observed only for related languages (English-Dutch; French-Spanish). We now report three experiments in which speakers of Telugu, a Dravidian language unrelated to Japanese but similar to it in crucial aspects of rhythmic structure, heard speech in Japanese and in their own language, and Japanese listeners heard Telugu. For the Telugu listeners, detection of target sequences in Japanese speech was harder when target boundaries mismatched mora boundaries, exactly the pattern that Japanese listeners earlier exhibited with Japanese and other languages. The same results appeared when Japanese listeners heard Telugu speech containing only codas permissible in Japanese. Telugu listeners' results with Telugu speech were mixed, but the overall pattern revealed correspondences between the response patterns of the two listener groups, as predicted by the rhythmic similarity hypothesis. Telugu and Japanese listeners appear to command similar procedures for speech segmentation, further bolstering the proposal that aspects of language phonological structure affect listeners' speech segmentation.

  9. ACE and AGTR1 polymorphisms in elite rhythmic gymnastics.

    PubMed

    Di Cagno, Alessandra; Sapere, Nadia; Piazza, Marina; Aquino, Giovanna; Iuliano, Enzo; Intrieri, Mariano; Calcagno, Giuseppe

    2013-02-01

    In the angiotensin-converting enzyme (ACE) gene, Alu deletion, in intron 16, is associated with higher concentrations of ACE serum activity and this may be associated with elite sprint and power performance. The Alu insertion is associated with lower ACE levels and this could lead to endurance performance. Moreover, recent studies have identified a single-nucleotide polymorphism of the angiotensin type 1 receptor gene AGTR1, which seems to be related to ACE activity. The aim of this study was to examine the involvement of the ACE and the AGTR1 gene polymorphisms in 28 Italian elite rhythmic gymnasts (age range 21 ± 7.6 years), and compare them to 23 middle level rhythmic gymnasts (age range 17 ± 10.9 years). The ACE D allele was significantly more frequent in elite athletes than in the control population (χ(2)=4.07, p=0.04). Comparisons between the middle level and elite athletes revealed significant differences (p<0.0001) for the ACE DD genotype (OR=6.48, 95% confidence interval=1.48-28.34), which was more frequent in elite athletes. There were no significant differences in the AGTR1 A/C genotype or allele distributions between the middle level and elite athletes. In conclusion, the ACE D allele genotype could be a contributing factor to high-performance rhythmic gymnastics that should be considered in athlete development and could help to identify which skills should be trained for talent promotion.

  10. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms.

    PubMed

    Schaefer, Rebecca S

    2014-12-19

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Auditory evoked responses to rhythmic sound pulses in dolphins.

    PubMed

    Popov, V V; Supin, A Y

    1998-10-01

    The ability of auditory evoked potentials to follow sound pulse (click or pip) rate was studied in bottlenosed dolphins. Sound pulses were presented in 20-ms rhythmic trains separated by 80-ms pauses. Rhythmic click or pip trains evoked a quasi-sustained response consisting of a sequence of auditory brainstem responses. This was designated as the rate-following response. Rate following response peak-to-peak amplitude dependence on sound pulse rate was almost flat up to 200 s-1, then displayed a few peaks and valleys superimposed on a low-pass filtering function with a cut-off frequency of 1700 s-1 at a 0.1-amplitude level. Peaks and valleys of the function corresponded to the pattern of the single auditory brain stem response spectrum; the low-pass cut-off frequency was below the auditory brain stem response spectrum bandwidth. Rate-following response frequency composition (magnitudes of the fundamental and harmonics) corresponded to the auditory brain stem response frequency spectrum except for lower fundamental magnitudes at frequencies above 1700 Hz. These regularities were similar for both click and pip trains. The rate-following response to steady-state rhythmic stimulation was similar to the rate-following response evoked by short trains except for a slight amplitude decrease with the rate increase above 10 s-1. The latter effect is attributed to a long-term rate-dependent adaptation in conditions of the steady-state pulse stimulation.

  12. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  13. Beats produced between a rhythmic applied force and the resting tremor of Parkinsonism.

    PubMed

    Walsh, E G

    1979-01-01

    Rhythmic forces have been applied to the wrist of patients with Parkinsonism tremor by means of a printed motor. The tremor rate was not altered to that of the applied force. On the contrary, beats were established, the rate of which depended on the difference in rate between the tremor and the applied rhythm. Most of the observations have been for horizontal motion of the hand but similar phenomena have been seen for vertical movements, and for other parts of the body--for example, foot, elbow, finger joint, and head. The observations are regarded as supporting the view that the tremorgenic mechanism is central. There was no electromyographic evidence of servo driving or servo assistance in the genesis of the tremor.

  14. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.

    PubMed

    Feillet, Céline A; Mendoza, Jorge; Pévet, Paul; Challet, Etienne

    2008-12-01

    In mammals, the rhythmic synthesis of melatonin by the pineal gland is tightly controlled by the master clock located in the suprachiasmatic nuclei (SCN). In behaviourally arrhythmic SCN-lesioned rats, we investigated the effects of daily restricted feeding (RF) on pineal melatonin synthesis. RF restored not only a rhythmic transcription of the rate-limiting enzyme for melatonin biosynthesis [arylalkylamine-N-acetyltransferase (AANAT)] and a rhythmic expression of c-FOS but also a rhythmic synthesis of melatonin in the pineal gland. In control rats without functional SCN and fed ad libitum, a daily immobilization stress did not restore any rhythmicity in the pineal gland. Interestingly, a combination of RF and daily stress prior to the time of food access did not markedly impair AaNat mRNA and c-FOS rhythmicity but did abolish the restoration of rhythmic pineal melatonin. These data indicate that the synchronizing effects of RF on the pineal rhythmicity are not due to, and cannot be mimicked by, high levels of circulating glucocorticoids. In keeping with the multi-oscillatory nature of the circadian system, the rhythmicity of pineal melatonin in mammals, until now an exclusive output of the SCN, can also be controlled by daily feeding cues when the SCN clock is lacking. Thus, the present study demonstrates that daily RF in SCN-lesioned rats provides, probably via sympathetic fibres, synchronizing stimuli strong enough to drive rhythmicity in the pineal gland.

  15. The effect of density variation on photon dose calculation and its impact on intensity modulated radiotherapy and stereotactic body radiotherapy.

    PubMed

    Liu, Qiang; Liang, Jian; Stanhope, Carl W; Yan, Di

    2016-10-01

    Inaccurate density information may introduce dose calculation errors when inhomogeneity correction is applied. The aim of the present study was to examine the effect of density variation on photon dose calculation accuracy using the convolution/superposition (CS) algorithm with the focus on newer treatment technologies including intensity modulated radiotherapy, volumetric modulated arc radiotherapy, and stereotactic body radiotherapy (SBRT). Calculations were first performed using simple inhomogeneity phantoms in order to determine clinically relevant tolerance levels for different tissue types. The clinical validity of these tolerance levels was then demonstrated by evaluating their dosimetric impact on clinical treatment plans. The dose difference was examined by comparing the dose-volume histogram statistics and the spatial distribution of dose errors calculated on a voxel-by-voxel basis. In order to gain some insight into this issue for the Monte Carlo (MC) algorithm, the authors also performed additional validation using a MC dose calculation system. For soft tissue and bone, the tolerance levels determined from this study appear to be consistent with the values previously calculated using simpler inhomogeneity correction methods. However, the tolerance level for low density lung tissue has been found to be much smaller than what previous studies had reported. The results from this study also suggest that if density variation is restricted within ±0.02, ±0.03, and ±0.10 g/cm(3) for lung, soft tissue, and bone, respectively, the resulting dose error in target volumes can be limited to <2% for most clinical cases and <3% for more challenging lung SBRT cases. When the same amount of density variation is introduced, MC algorithm yields ∼0.3%-0.9% and ∼0.0%-1.2% smaller dose errors for the target and organs-at-risk as compared to CS. It is important to include lung substitute material into the periodic quality assurance of CT simulators and treatment

  16. Effects of rhythmical and extra-rhythmical qualities of music on heart rate during stationary bike activities.

    PubMed

    DI Cagno, Alessandra; Iuliano, Enzo; Fiorilli, Giovanni; Aquino, Giovanna; Giombini, Arrigo; Menotti, Federica; Tsopani, Despina; Calcagno, Giuseppe

    2016-10-01

    The aim of this study was to evaluate the effects of rhythmical and extra-rhythmical qualities of music on the heart rate (HR) and rates of perceived exertion (RPE), during sub-maximal stationary bike activity. HR of 28 female adult participants was monitored during 3 session of physical activity, performed under 3 different conditions: Hi-BPM (music with 150-170 BPM), RHYTHM (rhythmical qualities only of Hi-BPM condition) and control condition without music (CONTROL). Four parameters were analyzed: the highest HR value (High-HR), High-HR minus starting HR (∆HR), time to reach the 75% of Maximal HR (MHR) (TimeTo75%) and time over 75% MHR (TimeOver75%). HR trend analysis was performed to evaluate differences among the three conditions. OMNI-Cycle Scale was administered to evaluate RPE. MANOVA showed significant differences between the three conditions in TimeTo75%, ∆HR (P<0.01) and TimeOver75% (P<0.05). In RHYTHM and CONTROL conditions after reaching 75% MHR, the HR increase were significantly lower than Hi-BPM (P<0.01). No significant differences were found in OMNI-Cycle Scale scores of Hi-BPM and RHYTHM whereas RPE was significantly higher in CONTROL condition (P<0.05). Hi-BPM and RHYTHM music allowed a faster reaching of the aerobic training zone compared to CONTROL conditions. Nevertheless, after 75% MHR, extra-rhythmical qualities are necessary to maintain or to increase the working HR levels.

  17. Intensity-Modulated Radiotherapy-Based Stereotactic Body Radiotherapy for Medically Inoperable Early-Stage Lung Cancer: Excellent Local Control

    SciTech Connect

    Videtic, Gregory M.M.; Stephans, Kevin; Reddy, Chandana; Gajdos, Stephen; Kolar, Matthew; Clouser, Edward; Djemil, Toufik

    2010-06-01

    Purpose: To validate the use of stereotactic body radiotherapy (SBRT) using intensity-modulated radiotherapy (IMRT) beams for medically inoperable Stage I lung cancer. Methods and Materials: From February 2004 to November 2006, a total of 26 patients with 28 lesions received SBRT using a Novalis/BrainLAB system. Immobilization involved a Bodyfix vacuum cushion. A weighted abdominal belt limited respiratory excursion. Computed tomographic simulation images were acquired at rest, full inhalation, and full exhalation and were merged to generate an internal gross tumor volume (ITV). Dose was prescribed to cover the planning target volume (PTV), defined as PTV = ITV + 3-5 mm set-up margin. Heterogeneity corrections were used. Delivery of 50 Gy in five sequential fractions typically used seven nonopposing, noncoplanar beams. Image-guided target verification was provided by BrainLAB-ExacTrac. Results: Among the 26 patients, the mean age was 74 years (range, 49-88 years). Of the patients, 50% were male and 50% female. The median Karnofsky performance status was 70 (range, 40-100). The median follow-up was 30.9 months (range, 10.4-51.4 months). Tissue diagnosis was contraindicated in seven patients (26.9%). There were 22 T1 (78.6%) and six T2 (21.4%) tumors. The median conformality index was 1.38 (range, 1.12-1.8). The median heterogeneity index was 1.08 (range, 1.04-1.2). One patient (3.6%) developed acute Grade 3 dyspnea and one patient developed late Grade 2 chest wall pain. Actuarial local control and overall survival at 3 years were 94.4% and 52%, respectively. Conclusions: Use of IMRT-based delivery of SBRT using restriction of tumor motion in medically inoperable lung cancer demonstrates excellent local control and favorable survival.

  18. Saturated fat intake modulates the association between an obesity genetic risk score and body mass index in two US populations.

    PubMed

    Casas-Agustench, Patricia; Arnett, Donna K; Smith, Caren E; Lai, Chao-Qiang; Parnell, Laurence D; Borecki, Ingrid B; Frazier-Wood, Alexis C; Allison, Matthew; Chen, Yii-Der Ida; Taylor, Kent D; Rich, Stephen S; Rotter, Jerome I; Lee, Yu-Chi; Ordovás, José M

    2014-12-01

    Combining multiple genetic variants related to obesity into a genetic risk score (GRS) might improve identification of individuals at risk of developing obesity. Moreover, characterizing gene-diet interactions is a research challenge to establish dietary recommendations to individuals with higher predisposition to obesity. Our objective was to analyze the association between an obesity GRS and body mass index (BMI) in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) population, focusing on gene-diet interactions with total fat and saturated fatty acid (SFA) intake, and to replicate findings in the Multi-Ethnic Study of Atherosclerosis (MESA) population. Cross-sectional analyses included 783 white US participants from GOLDN and 2,035 from MESA. Dietary intakes were estimated with validated food frequency questionnaires. Height and weight were measured. A weighted GRS was calculated on the basis of 63 obesity-associated variants. Multiple linear regression models adjusted by potential confounders were used to examine gene-diet interactions between dietary intake (total fat and SFA) and the obesity GRS in determining BMI. Significant interactions were found between total fat intake and the obesity GRS using these variables as continuous for BMI (P for interaction=0.010, 0.046, and 0.002 in GOLDN, MESA, and meta-analysis, respectively). These association terms were stronger when assessing interactions between SFA intake and GRS for BMI (P for interaction=0.005, 0.018, and <0.001 in GOLDN, MESA, and meta-analysis, respectively). SFA intake interacts with an obesity GRS in modulating BMI in two US populations. Although determining the causal direction requires further investigation, these findings suggest that potential dietary recommendations to reduce BMI effectively in populations with high obesity GRS would be to reduce total fat intake mainly by limiting SFAs.

  19. Optimal planning strategy among various arc arrangements for prostate stereotactic body radiotherapy with volumetric modulated arc therapy technique

    PubMed Central

    Kang, Sang Won; Kim, Jae Sung; Kim, In Ah; Eom, Keun Yong; Song, Changhoon; Lee, Jeong Woo; Kim, Jin Young

    2017-01-01

    Abstract Background The aim of this study was to determine the optimal strategy among various arc arrangements in prostate plans of stereotactic body radiotherapy with volumetric modulated arc therapy (SBRT-VMAT). Patients and methods To investigate how arc arrangements affect dosimetric and biological metrics, SBRT-VMAT plans for eighteen patients were generated with arrangements of single-full arc (1FA), single-partial arc (1PA), double-full arc (2FA), and double-partial arc (2PA). All plans were calculated by the Acuros XB calculation algorithm. Dosimetric and radiobiological metrics for target volumes and organs at risk (OARs) were evaluated from dosevolume histograms. Results All plans were highly conformal (CI<1.05, CN=0.91) and homogeneous (HI=0.09-0.12) for target volumes. For OARs, there was no difference in the bladder dose, while there was a significant difference in the rectum and both femoral head doses. Plans using 1PA and 2PA showed a strong reduction to the mean rectum dose compared to plans using 1FA and 2FA. Contrastively, the D2% and mean dose in both femoral heads were always lower in plans using 1FA and 2FA. The average tumor control probability and normal tissue complication probability were comparable in plans using all arc arrangements. Conclusions The use of 1PA had a more effective delivery time and produced equivalent target coverage with better rectal sparing, although all plans using four arc arrangements showed generally similar for dosimetric and biological metrics. However, the D2% and mean dose in femoral heads increased slightly and remained within the tolerance. Therefore, this study suggests that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT. PMID:28265240

  20. Postsynaptic action of GABA in modulating sensory transmission in co-cultures of rat carotid body via GABAA receptors

    PubMed Central

    Zhang, Min; Clarke, Katherine; Zhong, Huijun; Vollmer, Cathy; Nurse, Colin A

    2009-01-01

    GABA is expressed in carotid body (CB) chemoreceptor type I cells and has previously been reported to modulate sensory transmission via presynaptic GABAB receptors. Because low doses of clinically important GABAA receptor (GABAAR) agonists, e.g. benzodiazepines, have been reported to depress afferent CB responses to hypoxia, we investigated the potential contribution of GABAAR in co-cultures of rat type I cells and sensory petrosal neurones (PNs). During gramicidin perforated-patch recordings (to preserve intracellular Cl−), GABA and/or the GABAA agonist muscimol (50 μm) induced a bicuculline-sensitive membrane depolarization in isolated PNs. GABA-induced whole-cell currents reversed at ∼−38 mV and had an EC50 of ∼10 μm (Hill coefficient =∼1) at −60 mV. During simultaneous PN and type I cell recordings at functional chemosensory units in co-culture, bicuculline reversibly potentiated the PN, but not type I cell, depolarizing response to hypoxia. Application of the CB excitatory neurotransmitter ATP (1 μm) over the soma of functional PN induced a spike discharge that was markedly suppressed during co-application with GABA (2 μm), even though GABA alone was excitatory. RT-PCR analysis detected expression of GABAergic markers including mRNA for α1, α2, β2, γ2S, γ2L and γ3 GABAAR subunits in petrosal ganglia extracts. Also, CB extracts contained mRNAs for GABA biosynthetic markers, i.e. glutamate decarboxylase (GAD) isoforms GAD 67A,E, and GABA transporter isoforms GAT 2,3 and BGT-1. In CB sections, sensory nerve endings apposed to type I cells were immunopositive for the GABAAR β subunit. These data suggest that GABA, released from the CB during hypoxia, inhibits sensory discharge postsynaptically via a shunting mechanism involving GABAA receptors. PMID:19029183

  1. Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging

    PubMed Central

    Kuintzle, Rachael C.; Chow, Eileen S.; Westby, Tara N.; Gvakharia, Barbara O.; Giebultowicz, Jadwiga M.; Hendrix, David A

    2017-01-01

    Disruption of the circadian clock, which directs rhythmic expression of numerous output genes, accelerates aging. To enquire how the circadian system protects aging organisms, here we compare circadian transcriptomes in heads of young and old Drosophila melanogaster. The core clock and most output genes remained robustly rhythmic in old flies, while others lost rhythmicity with age, resulting in constitutive over- or under-expression. Unexpectedly, we identify a subset of genes that adopted increased or de novo rhythmicity during aging, enriched for stress-response functions. These genes, termed late-life cyclers, were also rhythmically induced in young flies by constant exposure to exogenous oxidative stress, and this upregulation is CLOCK-dependent. We also identify age-onset rhythmicity in several putative primary piRNA transcripts overlapping antisense transposons. Our results suggest that, as organisms age, the circadian system shifts greater regulatory priority to the mitigation of accumulating cellular stress. PMID:28221375

  2. Cardiac and respiratory rhythmicities in cutaneous and muscle vasoconstrictor neurones to the cat's hindlimb.

    PubMed

    Gregor, M; Jänig, W; Wiprich, L

    1977-09-16

    Cardiac and respiratory rhythmicities have been investigated quantitatively in postganglionic vasoconstrictor neurones supplying skeletal muscle and skin of the hindlimb in chloralose anesthetized, immobilized cats. Both rhythmicities are largest in muscle vasoconstrictor neurones, smaller in vasoconstrictor neurones supplying hariy skin, and smallest in vasoconstrictor neurones supplying hairless skin. The magnitude of the cardiac rhythmicity in the vasoconstrictor neurones is positively correlated with the quantitative reaction to systemic hypoxia.

  3. Sex Differences in Rhythmic Preferences in the Budgerigar (Melopsittacus undulatus): A Comparative Study with Humans.

    PubMed

    Hoeschele, Marisa; Bowling, Daniel L

    2016-01-01

    A variety of parrot species have recently gained attention as members of a small group of non-human animals that are capable of coordinating their movements in time with a rhythmic pulse. This capacity is highly developed in humans, who display unparalleled sensitivity to musical beats and appear to prefer rhythmically organized sounds in their music. Do parrots also exhibit a preference for rhythmic over arrhythmic sounds? Here, we presented humans and budgerigars (Melopsittacus undulatus) - a small parrot species that have been shown to be able to align movements with a beat - with rhythmic and arrhythmic sound patterns in an acoustic place preference paradigm. Both species were allowed to explore an environment for 5 min. We quantified how much time they spent in proximity to rhythmic vs. arrhythmic stimuli. The results show that humans spent more time with rhythmic stimuli, and also preferred rhythmic stimuli when directly asked in a post-test survey. Budgerigars did not show any such overall preferences. However, further examination of the budgerigar results showed an effect of sex, such that male budgerigars spent more time with arrthymic stimuli, and female budgerigars spent more time with rhythmic stimuli. Our results support the idea that rhythmic information is interesting to budgerigars. We suggest that future investigations into the temporal characteristics of naturalistic social behaviors in budgerigars, such as courtship vocalizations and head-bobbing displays, may help explain the sex difference we observed.

  4. Sex Differences in Rhythmic Preferences in the Budgerigar (Melopsittacus undulatus): A Comparative Study with Humans

    PubMed Central

    Hoeschele, Marisa; Bowling, Daniel L.

    2016-01-01

    A variety of parrot species have recently gained attention as members of a small group of non-human animals that are capable of coordinating their movements in time with a rhythmic pulse. This capacity is highly developed in humans, who display unparalleled sensitivity to musical beats and appear to prefer rhythmically organized sounds in their music. Do parrots also exhibit a preference for rhythmic over arrhythmic sounds? Here, we presented humans and budgerigars (Melopsittacus undulatus) – a small parrot species that have been shown to be able to align movements with a beat – with rhythmic and arrhythmic sound patterns in an acoustic place preference paradigm. Both species were allowed to explore an environment for 5 min. We quantified how much time they spent in proximity to rhythmic vs. arrhythmic stimuli. The results show that humans spent more time with rhythmic stimuli, and also preferred rhythmic stimuli when directly asked in a post-test survey. Budgerigars did not show any such overall preferences. However, further examination of the budgerigar results showed an effect of sex, such that male budgerigars spent more time with arrthymic stimuli, and female budgerigars spent more time with rhythmic stimuli. Our results support the idea that rhythmic information is interesting to budgerigars. We suggest that future investigations into the temporal characteristics of naturalistic social behaviors in budgerigars, such as courtship vocalizations and head-bobbing displays, may help explain the sex difference we observed. PMID:27757099

  5. Differential discharge patterns of rhythmical activity in trigeminal motoneurons during fictive mastication and respiration in vitro.

    PubMed

    Koizumi, Hidehiko; Ishihama, Kohji; Nomura, Kimiko; Yamanishi, Tadashi; Kogo, Mikihiko; Matsuya, Tokuzo

    2002-05-01

    Rhythmical activity in trigeminal motoneurons (TMNs) was studied in an in vitro neonatal rat brainstem preparation that retains functionally active circuits for oral-motor behaviors. Whole-cell current-clamp recording from TMNs demonstrated rhythmical activities during both spontaneously generated respiratory activity and neurochemically induced rhythmical oral-motor activity. TMNs showed spontaneous rhythmical (0.08 +/- 0.04 Hz) activities of burst-firing pattern during inspiration synchronized with inspiratory activities recorded in hypoglossal nerves. During rhythmical oral-motor activity induced by bath application of N-methyl-d,l-aspartic acid and the GABA(A) receptor antagonist bicuculline methiodide, TMNs showed only a rhythmical (5.6 +/- 0.8 Hz) pattern of single-spike discharge. TMNs never showed a burst-firing pattern during rhythmical oral-motor activity even when membrane potentials were shifted either to depolarized or hyperpolarized levels. Rhythmical activity in TMNs exhibited different discharge patterns between rhythmical oral-motor activity and respiratory activity generated in vitro. Copyright 2002 Elsevier Science Inc.

  6. A Central Role for C1q/TNF-Related Protein 13 (CTRP13) in Modulating Food Intake and Body Weight

    PubMed Central

    Byerly, Mardi S.; Swanson, Roy; Wei, Zhikui; Seldin, Marcus M.; McCulloh, Patrick S.; Wong, G. William

    2013-01-01

    C1q/TNF-related protein 13 (CTRP13), a hormone secreted by adipose tissue (adipokines), helps regulate glucose metabolism in peripheral tissues. We previously reported that CTRP13 expression is increased in obese and hyperphagic leptin-deficient mice, suggesting that it may modulate food intake and body weight. CTRP13 is also expressed in the brain, although its role in modulating whole-body energy balance remains unknown. Here, we show that CTRP13 is a novel anorexigenic factor in the mouse brain. Quantitative PCR demonstrated that food restriction downregulates Ctrp13 expression in mouse hypothalamus, while high-fat feeding upregulates expression. Central administration of recombinant CTRP13 suppressed food intake and reduced body weight in mice. Further, CTRP13 and the orexigenic neuropeptide agouti-related protein (AgRP) reciprocally regulate each other’s expression in the hypothalamus: central delivery of CTRP13 suppressed Agrp expression, while delivery of AgRP increased Ctrp13 expression. Food restriction alone reduced Ctrp13 and increased orexigenic neuropeptide gene (Npy and Agrp) expression in the hypothalamus; in contrast, when food restriction was coupled to enhanced physical activity in an activity-based anorexia (ABA) mouse model, hypothalamic expression of both Ctrp13 and Agrp were upregulated. Taken together, these results suggest that CTRP13 and AgRP form a hypothalamic feedback loop to modulate food intake and that this neural circuit may be disrupted in an anorexic-like condition. PMID:23638159

  7. Linear and nonlinear stiffness and friction in biological rhythmic movements.

    PubMed

    Beek, P J; Schmidt, R C; Morris, A W; Sim, M Y; Turvey, M T

    1995-11-01

    Biological rhythmic movements can be viewed as instances of self-sustained oscillators. Auto-oscillatory phenomena must involve a nonlinear friction function, and usually involve a nonlinear elastic function. With respect to rhythmic movements, the question is: What kinds of nonlinear friction and elastic functions are involved? The nonlinear friction functions of the kind identified by Rayleigh (involving terms such as theta3) and van der Pol (involving terms such as theta2theta), and the nonlinear elastic functions identified by Duffing (involving terms such as theta3), constitute elementary nonlinear components for the assembling of self-sustained oscillators, Recently, additional elementary nonlinear friction and stiffness functions expressed, respectively, through terms such as theta2theta3 and thetatheta2, and a methodology for evaluating the contribution of the elementary components to any given cyclic activity have been identified. The methodology uses a quantification of the continuous deviation of oscillatory motion from ideal (harmonic) motion. Multiple regression of this quantity on the elementary linear and nonlinear terms reveals the individual contribution of each term to the oscillator's non-harmonic behavior. In the present article the methodology was applied to the data from three experiments in which human subjects produced pendular rhythmic movements under manipulations of rotational inertia (experiment 1), rotational inertia and frequency (experiment 2), and rotational inertia and amplitude (experiment 3). The analysis revealed that the pendular oscillators assembled in the three experiments were compositionally rich, braiding linear and nonlinear friction and elastic functions in a manner that depended on the nature of the task.

  8. Primordial rhythmic bursting in embryonic cochlear ganglion cells.

    PubMed

    Jones, T A; Jones, S M; Paggett, K C

    2001-10-15

    This study examined the nature of spontaneous discharge patterns in cochlear ganglion cells in embryonic day 13 (E13) to early E17 chicken embryos (stages 39-43). Neural recordings were made with glass micropipettes. No sound-driven activity was seen for the youngest embryos (maximum intensity 107 dB sound pressure level). Ganglion cells were labeled with biotinylated dextran amine in four embryos. In two animals, primary afferents projected to hair cells in the middle region along the length of the basilar papilla in which, in one cell, the terminals occupied a neural transverse position and, in the other, a more abneural location. Statoacoustic ganglion cells showing no spontaneous activity were seen for the first time in the chicken. The proportion of "silent" cells was largest at the youngest stages (stage 39, 67%). In active cells, mean spontaneous discharge rates [9.4 +/- 10.4 spikes (Sp)/sec; n = 44] were lower than rates for older embryos (19 +/- 17 Sp/sec) (Jones and Jones, 2000). Embryos at stages 39-41 evidenced even lower rates (4.2 +/- 5.0 Sp/sec). The most salient feature of spontaneous activity for stages 39-43 was a bursting discharge pattern in >75% of active neurons (33 of 44). Moreover, in 55% of these cells, there was a clear, slow, rhythmic bursting pattern. The proportion of cells showing rhythmic bursting was greatest at the youngest stages (39-42) and decreased to <30% at stage 43. Rate of bursting ranged from 1 to 54 bursts per minute. The presence of rhythmic bursting in cochlear ganglion cells at E13-E17 provides an explanation for the existence of such patterns in central auditory relays. The bursting patterns may serve as a patterning signal for central synaptic refinements in the auditory system during development.

  9. Champagne experiences various rhythmical bubbling regimes in a flute.

    PubMed

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  10. The role of clock genes and rhythmicity in the liver.

    PubMed

    Schmutz, I; Albrecht, U; Ripperger, J A

    2012-02-05

    The liver is the important organ to maintain energy homeostasis of an organism. To achieve this, many biochemical reactions run in this organ in a rhythmic fashion. An elegant way to coordinate the temporal expression of genes for metabolic enzymes relies in the link to the circadian timing system. In this fashion not only a maximum of synchronization is achieved, but also anticipation of daily recurring events is possible. Here we will focus on the input and output pathways of the hepatic circadian oscillator and discuss the recently found flexibility of its circadian transcriptional networks.

  11. Sodium Leak Channels in Neuronal Excitability and Rhythmic Behaviors

    PubMed Central

    Ren, Dejian

    2011-01-01

    Extracellular K+, Na+, and Ca2+ ions all influence the resting membrane potential of the neuron. However, the mechanisms by which extracellular Na+ and Ca2+ regulate basal neuronal excitability are not well understood. Recent findings suggest that NALCN, in association with UNC79 and UNC80, contributes a basal Na+ leak conductance in neurons. Mutations in Nalcn, Unc79, or Unc80 lead to severe phenotypes that include neonatal lethality and disruption in rhythmic behaviors. This review discusses the properties of the NALCN complex, its regulation, and its contribution to neuronal function and animal behavior. PMID:22196327

  12. Finding the dimension of slow dynamics in a rhythmic system

    PubMed Central

    Revzen, Shai; Guckenheimer, John M.

    2012-01-01

    Dynamical systems with asymptotically stable periodic orbits are generic models for rhythmic processes in dissipative physical systems. This paper presents a method for reconstructing the dynamics near a periodic orbit from multivariate time-series data. It is used to test theories about the control of legged locomotion, a context in which time series are short when compared with previous work in nonlinear time-series analysis. The method presented here identifies appropriate dimensions of reduced order models for the deterministic portion of the dynamics. The paper also addresses challenges inherent in identifying dynamical models with data from different individuals. PMID:21937489

  13. Effect of rhythmic attention on the segregation of interleaved melodies.

    PubMed

    Devergie, Aymeric; Grimault, Nicolas; Tillmann, Barbara; Berthommier, Frédéric

    2010-07-01

    As previously suggested, attention may increase segregation via enhancement and suppression sensory mechanisms. To test this hypothesis, we proposed an interleaved melody paradigm with two rhythm conditions applied to familiar target melodies and unfamiliar distractor melodies sharing pitch and timbre properties. When rhythms of both target and distractor were irregular, target melodies were identified above chance level. A sensory enhancement mechanism guided by listeners' knowledge may have helped to extract targets from the interleaved sequence. When the distractor was rhythmically regular, performance was increased, suggesting that the distractor may have been suppressed by a sensory suppression mechanism.

  14. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    NASA Technical Reports Server (NTRS)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  15. Performance-based robotic assistance during rhythmic arm exercises.

    PubMed

    Leconte, Patricia; Ronsse, Renaud

    2016-09-13

    Rhythmic and discrete upper-limb movements are two fundamental motor primitives controlled by different neural pathways, at least partially. After stroke, both primitives can be impaired. Both conventional and robot-assisted therapies mainly train discrete functional movements like reaching and grasping. However, if the movements form two distinct neural and functional primitives, both should be trained to recover the complete motor repertoire. Recent studies show that rhythmic movements tend to be less impaired than discrete ones, so combining both movement types in therapy could support the execution of movements with a higher degree of impairment by movements that are performed more stably. A new performance-based assistance method was developed to train rhythmic movements with a rehabilitation robot. The algorithm uses the assist-as-needed paradigm by independently assessing and assisting movement features of smoothness, velocity, and amplitude. The method relies on different building blocks: (i) an adaptive oscillator captures the main movement harmonic in state variables, (ii) custom metrics measure the movement performance regarding the three features, and (iii) adaptive forces assist the patient. The patient is encouraged to improve performance regarding these three features with assistance forces computed in parallel to each other. The method was tested with simulated jerky signals and a pilot experiment with two stroke patients, who were instructed to make circular movements with an end-effector robot with assistance during half of the trials. Simulation data reveal sensitivity of the metrics for assessing the features while limiting interference between them. The assistance's effectiveness with stroke patients is established since it (i) adapts to the patient's real-time performance, (ii) improves patient motor performance, and (iii) does not lead the patient to slack. The smoothness assistance was by far the most used by both patients, while it provided

  16. Feasibility of stereotactic body radiation therapy with volumetric modulated arc therapy and high intensity photon beams for hepatocellular carcinoma patients.

    PubMed

    Wang, Po-Ming; Hsu, Wei-Chung; Chung, Na-Na; Chang, Feng-Ling; Jang, Chin-Jyh; Fogliata, Antonella; Scorsetti, Marta; Cozzi, Luca

    2014-01-10

    To report technical features, early outcome and toxicity of stereotactic body radiation therapy (SBRT) treatments with volumetric modulated arc therapy (RapidArc) for patients with hepatocellular carcinoma (HCC). Twenty patients (22 lesions) were prospectively enrolled in a feasibility study. Dose prescription was 50 Gy in 10 fractions. Seven patients (35%) were classified as AJCC stage I-II while 13 (65%) were stages III-IV. Eighteen patients (90%) were Child-Pugh stage A, the remaining were stage B. All patients were treated with RapidArc technique with flattening filter free (FFF) photon beams of 10 MV from a TrueBeam linear accelerator. Technical, dosimetric and early clinical assessment was performed to characterize treatment and its potential outcome. Median age was 68 years, median initial tumor volume was 124 cm3 (range: 6-848). Median follow-up time was 7.4 months (range: 3-13). All patients completed treatment without interruption. Mean actuarial overall survival was of 9.6 ± 0.9 months (95%C.L. 7.8-11.4), median survival was not reached; complete response was observed in 8/22 (36.4%) lesions; partial response in 7/22 (31.8%), stable disease in 6/22 (27.3%), 1/22 (4.4%) showed progression. Toxicity was mild with only 1 case of grade 3 RILD and all other types were not greater than grade 2. Concerning dosimetric data, Paddick conformity index was 0.98 ± 0.02; gradient index was 3.82 ± 0.93; V95% to the clinical target volume was 93.6 ± 7.7%. Mean dose to kidneys resulted lower than 3.0 Gy; mean dose to stomach 4.5 ± 3.0 Gy; D(3) 1(cm) to spinal cord was 8.2 ± 4.5 Gy; D1% to the esophagus was 10.2 ± 9.7 Gy. Average beam on time resulted 0.7 ± 0.2 minutes (range: 0.4-1.4) with the delivery of an average of 4.4 partial arcs (range: 3-6) of those 86% non-coplanar. Clinical results could suggest to introduce VMAT-RapidArc as an appropriate SBRT technique for patients with HCC in view of a prospective dose escalation trial.

  17. Critical Appraisal of Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Metastases to Abdominal Lymph Nodes

    SciTech Connect

    Bignardi, Mario; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Mancosu, Pietro; Navarria, Piera; Urso, Gaetano; Vigorito, Sabrina; Scorsetti, Marta

    2009-12-01

    Purpose: A planning study was performed comparing volumetric modulated arcs, RapidArc (RA), fixed beam IMRT (IM), and conformal radiotherapy (CRT) with multiple static fields or short conformal arcs in a series of patients treated with hypofractionated stereotactic body radiation therapy (SBRT) for solitary or oligo-metastases from different tumors to abdominal lymph nodes. Methods and Materials: Fourteen patients were included in the study. Dose prescription was set to 45 Gy (mean dose to clinical target volume [CTV]) in six fractions of 7.5 Gy. Objectives for CTV and planning target volume (PTV) were as follows: Dose{sub min} >95%, Dose{sub max} <107%. For organs at risk the following objectives were used: Maximum dose to spine <18 Gy; V{sub 15Gy} <35% for both kidneys, V{sub 36Gy} <1% for duodenum, V{sub 36Gy} <3% for stomach and small bowel, V{sub 15Gy} <(total liver volume - 700 cm{sup 3}) for liver. Dose-volume histograms were evaluated to assess plan quality. Results: Planning objectives on CTV and PTV were achieved by all techniques. Use of RA improved PTV coverage (V{sub 95%} = 90.2% +- 5.2% for RA compared with 82.5% +- 9.6% and 84.5% +- 8.2% for CRT and IM, respectively). Most planning objectives for organs at risk were met by all techniques except for the duodenum, small bowel, and stomach, in which the CRT plans exceeded the dose/volume constraints in some patients. The MU/fraction values were as follows: 2186 +- 211 for RA, 2583 +- 699 for IM, and 1554 +- 153 for CRT. Effective treatment time resulted as follows: 3.7 +- 0.4 min for RA, 10.6 +- 1.2 min for IM, and 6.3 +- 0.5 min for CRT. Conclusions: Delivery of SBRT by RA showed improvements in conformal avoidance with respect to standard conformal irradiation. Delivery parameters confirmed logistical advantages of RA, particularly compared with IM.

  18. Intensity-Modulated Radiation Therapy with Stereotactic Body Radiation Therapy Boost for Unfavorable Prostate Cancer: The Georgetown University Experience.

    PubMed

    Mercado, Catherine; Kress, Marie-Adele; Cyr, Robyn A; Chen, Leonard N; Yung, Thomas M; Bullock, Elizabeth G; Lei, Siyuan; Collins, Brian T; Satinsky, Andrew N; Harter, K William; Suy, Simeng; Dritschilo, Anatoly; Lynch, John H; Collins, Sean P

    2016-01-01

    Stereotactic body radiation therapy (SBRT) is emerging as a minimally invasive alternative to brachytherapy to deliver highly conformal, dose--escalated radiation therapy (RT) to the prostate. SBRT alone may not adequately cover the tumor extensions outside the prostate commonly seen in unfavorable prostate cancer. External beam radiation therapy (EBRT) with high dose rate brachytherapy boost is a proven effective therapy for unfavorable prostate cancer. This study reports on early prostate-specific antigen and prostate cancer-specific quality of life (QOL) outcomes in a cohort of unfavorable patients treated with intensity-modulated radiation therapy (IMRT) and SBRT boost. Prostate cancer patients treated with SBRT (19.5 Gy in three fractions) followed by fiducial-guided IMRT (45-50.4 Gy) from March 2008 to September 2012 were included in this retrospective review of prospectively collected data. Biochemical failure was assessed using the Phoenix definition. Patients completed the expanded prostate cancer index composite (EPIC)-26 at baseline, 1 month after the completion of RT, every 3 months for the first year, then every 6 months for a minimum of 2 years. One hundred eight patients (4 low-, 45 intermediate-, and 59 high-risk) with median age of 74 years completed treatment, with median follow-up of 4.4 years. Sixty-four percent of the patients received androgen deprivation therapy prior to the initiation of RT. The 3-year actuarial biochemical control rates were 100 and 89.8% for intermediate- and high-risk patients, respectively. At the initiation of RT, 9 and 5% of men felt their urinary and bowel function was a moderate to big problem, respectively. Mean EPIC urinary and bowel function and bother scores exhibited transient declines, with subsequent return to near baseline. At 2 years posttreatment, 13.7 and 5% of men felt their urinary and bowel function was a moderate to big problem, respectively. At 3-year follow-up, biochemical control

  19. Ultradian Rhythmicity in Sleep-Wakefulness Is Related to Color in Nestling Barn Owls.

    PubMed

    Scriba, Madeleine F; Henry, Isabelle; Vyssotski, Alexei L; Mueller, Jakob C; Rattenborg, Niels C; Roulin, Alexandre

    2017-08-01

    The possession of a rhythm is usually described as an important adaptation to regular changing environmental conditions such as the light-dark cycle. However, recent studies have suggested plasticity in the expression of a rhythm depending on life history and environmental factors. Barn owl ( Tyto alba) nestlings show variations in behavior and physiology in relation to the size of black feather spots, a trait associated with many behavioral and physiological phenotypes including the circadian expression of corticosterone and the regulation of body mass. This raises the possibility that individual spottiness could be associated with rhythmicity in sleep-wakefulness. Owlets showed ultradian rhythms in sleep-wakefulness, with a period length of 4.5 to 4.9 h. The period length of wakefulness and non-REM sleep was shorter in heavily compared to lightly spotted female nestlings, whereas in males, the opposite result was found. Furthermore, male and female nestlings displaying small black spots showed strong rhythmicity levels in wakefulness and REM sleep. This might be an advantage in a stable environment with predictable periodic changes in light, temperature, or social interactions. Heavily spotted nestlings displayed weak rhythms in wakefulness and REM sleep, which might enable them to be more flexible in reactions to unexpected events such as predation or might be a mechanism to save energy. These findings are consistent with previous findings showing that large-spotted nestlings switch more frequently between wakefulness and sleep, resulting in higher levels of vigilance compared to small-spotted conspecifics. Thus, nestlings with larger black feather spots might differently handle the trade-off between wakefulness and sleep, attention, and social interactions compared to nestlings with smaller black spots.

  20. Prior experience does not alter modulation of cutaneous reflexes during manual wheeling and symmetrical arm cycling.

    PubMed

    MacGillivray, Megan K; Klimstra, Marc; Sawatzky, Bonita; Zehr, E Paul; Lam, Tania

    2013-05-01

    Previous research has reported that training and experience influence H-reflex amplitude during rhythmic activity; however, little research has yet examined the influence of training on cutaneous reflexes. Manual wheelchair users (MWUs) depend on their arms for locomotion. We postulated that the daily dependence and high amount of use of the arms for mobility in MWUs would show differences in cutaneous reflex modulation during upper limb cyclic movements compared with able-bodied control subjects. We hypothesized that MWUs would demonstrate increased reflex response amplitudes for both manual wheeling and symmetrical arm cycling tasks. The superficial radial nerve was stimulated randomly at different points of the movement cycle of manual wheeling and symmetrical arm cycling in MWUs and able-bodied subjects naive to wheeling. Our results showed that there were no differences in amplitude modulation of early- or middle-latency cutaneous reflexes between the able-bodied group and the MWU group. However, there were several differences in amplitude modulation of cutaneous reflexes between tasks (manual wheeling and symmetrical arm cycling). Specifically, differences were observed in early-latency responses in the anterior and posterior deltoid muscles and biceps and triceps brachii as well as in middle-latency responses in the anterior and posterior deltoid. These data suggest that manual wheeling experience does not modify the pattern of cutaneous reflex amplitude modulation during manual wheeling. The differences in amplitude modulation of cutaneous reflexes between tasks may be a result of mechanical differences (i.e., hand contact) between tasks.

  1. The hepatic circadian clock modulates xenobiotic metabolism in mice.

    PubMed

    DeBruyne, Jason P; Weaver, David R; Dallmann, Robert

    2014-08-01

    The circadian clock generates daily cycles of gene expression that regulate physiological processes. The liver plays an important role in xenobiotic metabolism and also has been shown to possess its own cell-based clock. The liver clock is synchronized by the master clock in the brain, and a portion of rhythmic gene expression can be driven by behavior of the organism as a whole even when the hepatic clock is suppressed. So far, however, there is relatively little evidence indicating whether the liver clock is functionally important in modulating xenobiotic metabolism. Thus, mice lacking circadian clock function in the whole body or specifically in liver were challenged with pentobarbital and acetaminophen, and pentobarbital sleep time (PBST) and acetaminophen toxicity, respectively, was assessed at different times of day in mutant and control mice. The results suggest that the liver clock is essential for rhythmic changes in xenobiotic detoxification. Surprisingly, it seems that the way in which the clock is disrupted determines the rate of xenobiotic metabolism in the liver. CLOCK-deficient mice are remarkably resistant to acetaminophen and exhibit a longer PBST, while PERIOD-deficient mice have a short PBST. These results indicate an essential role of the tissue-intrinsic peripheral circadian oscillator in the liver in regulating xenobiotic metabolism.

  2. Estrogen-related receptor β deletion modulates whole-body energy balance via estrogen-related receptor γ and attenuates neuropeptide Y gene expression.

    PubMed

    Byerly, Mardi S; Al Salayta, Muhannad; Swanson, Roy D; Kwon, Kiwook; Peterson, Jonathan M; Wei, Zhikui; Aja, Susan; Moran, Timothy H; Blackshaw, Seth; Wong, G William

    2013-04-01

    Estrogen-related receptors (ERRs) α, β and γ are orphan nuclear hormone receptors with no known ligands. Little is known concerning the role of ERRβ in energy homeostasis, as complete ERRβ-null mice die mid-gestation. We generated two viable conditional ERRβ-null mouse models to address its metabolic function. Whole-body deletion of ERRβ in Sox2-Cre:ERRβ(lox/lox) mice resulted in major alterations in body composition, metabolic rate, meal patterns and voluntary physical activity levels. Nestin-Cre:ERRβ(lox/lox) mice exhibited decreased expression of ERRβ in hindbrain neurons, the predominant site of expression, decreased neuropeptide Y (NPY) gene expression in the hindbrain, increased lean body mass, insulin sensitivity, increased energy expenditure, decreased satiety and decreased time between meals. In the absence of ERRβ, increased ERRγ signaling decreased satiety and the duration of time between meals, similar to meal patterns observed for both the Sox2-Cre:ERRβ(lox/lox) and Nestin-Cre:ERRβ(lox/lox) strains of mice. Central and/or peripheral ERRγ signaling may modulate these phenotypes by decreasing NPY gene expression. Overall, the relative expression ratio between ERRβ and ERRγ may be important in modulating ingestive behavior, specifically satiety, gene expression, as well as whole-body energy balance. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Bodily ownership modulation in defensive responses: physiological evidence in brain-damaged patients with pathological embodiment of other’s body parts

    PubMed Central

    Fossataro, C.; Gindri, P.; Mezzanato, T.; Pia, L.; Garbarini, F.

    2016-01-01

    Do conscious beliefs about the body affect defensive mechanisms within the body? To answer this question we took advantage from a monothematic delusion of bodily ownership, in which brain-damaged patients misidentify alien limbs as their own. We investigated whether the delusional belief that an alien hand is their own hand modulates a subcortical defensive response, such as the hand-blink reflex. The blink, dramatically increases when the threated hand is inside the defensive peripersonal-space of the face. In our between-subjects design, including patients and controls, the threat was brought near the face either by the own hand or by another person’s hand. Our results show an ownership-dependent modulation of the defensive response. In controls, as well as in the patients’ intact-side, the response enhancement is significantly greater when the threat was brought near the face by the own than by the alien hand. Crucially, in the patients’ affected-side (where the pathological embodiment occurs), the alien (embodied) hand elicited a response enhancement comparable to that found when the threat is brought near the face by the real hand. These findings suggest the existence of a mutual interaction between our conscious beliefs about the body and the physiological mechanisms within the body. PMID:27292285

  4. Tectonic tremor on Vancouver Island, Cascadia, modulated by the body and surface waves of the Mw 8.6 and 8.2, 2012 East Indian Ocean earthquakes

    NASA Astrophysics Da