Science.gov

Sample records for modulate rhythmic body

  1. Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera)

    PubMed Central

    Ellwanger, Kornelia; Nickel, Michael

    2006-01-01

    Background Sponges (Porifera) are nerve- and muscleless metazoa, but display coordinated motor reactions. Therefore, they represent a valuable phylum to investigate coordination systems, which evolved in a hypothetical Urmetazoon prior to the central nervous system (CNS) of later metazoa. We have chosen the contractile and locomotive species Tethya wilhelma (Demospongiae, Hadromerida) as a model system for our research, using quantitative analysis based on digital time lapse imaging. In order to evaluate candidate coordination pathways, we extracorporeally tested a number of chemical messengers, agonists and antagonists known from chemical signalling pathways in animals with CNS. Results Sponge body contraction of T. wilhelma was induced by caffeine, glycine, serotonine, nitric oxide (NO) and extracellular cyclic adenosine monophosphate (cAMP). The induction by glycine and cAMP followed patterns varying from other substances. Induction by cAMP was delayed, while glycine lead to a bi-phasic contraction response. The frequency of the endogenous contraction rhythm of T. wilhelma was significantly decreased by adrenaline and NO, with the same tendency for cAMP and acetylcholine. In contrast, caffeine and glycine increased the contraction frequency. The endogenous rhythm appeared irregular during application of caffeine, adrenaline, NO and cAMP. Caffeine, glycine and NO attenuated the contraction amplitude. All effects on the endogenous rhythm were neutralised by the washout of the substances from the experimental reactor system. Conclusion Our study demonstrates that a number of chemical messengers, agonists and antagonists induce contraction and/or modulate the endogenous contraction rhythm and amplitude of our nerveless model metazoon T. wilhelma. We conclude that a relatively complex system of chemical messengers regulates the contraction behaviour through auto- and paracrine signalling, which is presented in a hypothetical model. We assume that adrenergic

  2. Leptin modulates the daily rhythmicity of blood glucose.

    PubMed

    Grosbellet, Edith; Dumont, Stephanie; Schuster-Klein, Carole; Guardiola-Lemaitre, Beatrice; Pevet, Paul; Criscuolo, François; Challet, Etienne

    2015-06-01

    Leptin may affect central and/or peripheral timing, in addition to its well-known regulatory effects on metabolism. Here, we investigated whether leptin can impact rhythmicity of blood glucose and lipids. For that purpose, daily variations of blood glucose and lipids were compared between mice lacking functional leptin receptor (db/db) or deficient for leptin (ob/ob) and controls (db/+ and ob/+, respectively). Next, we investigated whether timed treatment with exogenous leptin in ob/ob mice could modulate blood glucose rhythm. Mice with defective leptin signaling (db/db and ob/ob) have the same phase-opposed timing in glycemia (11 and 9 h shift, respectively) compared to respective controls. By contrast, the phase of plasma lipids rhythms (e.g. triglycerides, non-esterified fatty acid - NEFA, high density lipoprotein - HDL, low density lipoprotein - LDL) remained essentially unchanged, whatever the genotype. Daily injections of leptin (1 mg/kg) in ob/ob mice during nighttime or daytime led to 1-2 h phase-advances of blood glucose rhythm and glucose arrhythmicity, respectively. These injections induced additional phase-dependent shifts of feeding rhythm (ranging from 2.6 h phase-delays to 2.6 h advances). The present study reveals a chronomodulatory role of leptin, and highlights that rhythmic leptin can be a determinant of daily variations of blood glucose and food intake, though not for lipids. PMID:26035479

  3. Growth and body composition in Brazilian female rhythmic gymnastics athletes.

    PubMed

    Camargo, Cristiane Teixeira Amaral; Gomez-Campos, Rossana Anelice; Cossio-Bolaños, Marco Antonio; Barbeta, Vinicius Justino De Oliveira; Arruda, Miguel; Guerra-Junior, Gil

    2014-01-01

    The aim was to analyse the physical growth and body composition of rhythmic gymnastics athletes relative to their level of somatic maturation. This was a cross-sectional study of 136 athletes on 23 teams from Brazil. Mass, standing height and sitting height were measured. Fat-free and fat masses, body fat percentages and ages of the predicted peak height velocity (PHV) were calculated. The z scores for mass were negative during all ages according to both WHO and Brazilian references, and that for standing height were also negative for all ages according to WHO reference but only until 12 years old according to Brazilian reference. The mean age of the predicted PHV was 12.1 years. The mean mass, standing and sitting heights, body fat percentage, fat-free mass and fat mass increased significantly until 4 to 5 years after the age of the PHV. Menarche was reached in only 26% of these athletes and mean age was 13.2 years. The mass was below the national reference standards, and the standing height was below only for the international reference, but they also had late recovery of mass and standing height during puberty. In conclusion, these athletes had a potential to gain mass and standing height several years after PHV, indicating late maturation. PMID:24936888

  4. Modulation of rhythmic function in the posterior midbrain.

    PubMed

    Garcia-Rill, E; Skinner, R D

    1988-11-01

    Recordings of single unit activity in the posterior midbrain of the cat were carried out in the "fictive spontaneous locomotion" preparation. Neuronal activity was studied in relation to the onset, alternation and termination of cyclic hindlimb neurographic activity in the precollicular-postmammillary transected animal. Histochemical identification of pedunculopontine (nicotinamide adenine dinuceotide phosphate-diaphorase positive) neurons allowed the localization of recording sites in relation to this nucleus. Neurons located in the area of the cuneiform nucleus dorsal to the pedunculopontine nucleus were found to be related preferentially to cyclic (bursting) neurographic activity, while neurons in the area of the pedunculopontine were found to be related preferentially to the onset ("on") or termination ("off") of cycling episodes. Different populations of cells in the area appeared to be related to the frequency of alternation (bursting) compared with the duration of the cyclic episodes (on/off). While the area of the cuneiform-pedunculopontine nucleus has been found to be equivalent to the mesencephalic locomotor region, the same area has been found to be related to other rhythmic activities (e.g. respiratory, masticatory, sleep cycle, pressor, vesico-motor, etc.). A hypothesis is proposed to account for the weight of evidence implicating the same region in a host of distinct rhythmic activities. This hypothesis suggest that an oscillatory reverberation between cholinergic (pedunculopontine, laterodorsal tegmental nuclei) and aminergic (locus coeruleus, substantia nigra) centers is responsible for generating the various function-related "frequencies" (bursting) or "states" (on/off) of activity.

  5. Hearing What the Body Feels: Auditory Encoding of Rhythmic Movement

    ERIC Educational Resources Information Center

    Phillips-Silver, Jessica; Trainor, Laurel J.

    2007-01-01

    Phillips-Silver and Trainor (Phillips-Silver, J., Trainor, L.J., (2005). Feeling the beat: movement influences infants' rhythm perception. "Science", 308, 1430) demonstrated an early cross-modal interaction between body movement and auditory encoding of musical rhythm in infants. Here we show that the way adults move their bodies to music…

  6. Local modulation of human brain responses by circadian rhythmicity and sleep debt.

    PubMed

    Muto, Vincenzo; Jaspar, Mathieu; Meyer, Christelle; Kussé, Caroline; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Shaffii-Le Bourdiec, Anahita; Luxen, André; Middleton, Benita; Archer, Simon N; Phillips, Christophe; Collette, Fabienne; Vandewalle, Gilles; Dijk, Derk-Jan; Maquet, Pierre

    2016-08-12

    Human performance is modulated by circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level has not been established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging sessions scheduled across the circadian cycle, during 42 hours of wakefulness and after recovery sleep, in 33 healthy participants. Cortical responses showed significant circadian rhythmicity, the phase of which varied across brain regions. Cortical responses also significantly decreased with accrued sleep debt. Subcortical areas exhibited primarily a circadian modulation that closely followed the melatonin profile. These findings expand our understanding of the mechanisms involved in maintaining cognition during the day and its deterioration during sleep deprivation and circadian misalignment. PMID:27516598

  7. Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.

    PubMed

    Chen, J; Friesen, W O; Iwasaki, T

    2011-02-15

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body-fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail.

  8. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence.

    PubMed

    Chang, Andrew; Bosnyak, Dan J; Trainor, Laurel J

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15-25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15-20 Hz) was larger around 200-300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both "when" (timing) upcoming sounds will occur as well as the prediction precision error of "what" (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception. PMID:27014138

  9. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence

    PubMed Central

    Chang, Andrew; Bosnyak, Dan J.; Trainor, Laurel J.

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15–25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15–20 Hz) was larger around 200–300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both “when” (timing) upcoming sounds will occur as well as the prediction precision error of “what” (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception. PMID:27014138

  10. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence.

    PubMed

    Chang, Andrew; Bosnyak, Dan J; Trainor, Laurel J

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15-25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15-20 Hz) was larger around 200-300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both "when" (timing) upcoming sounds will occur as well as the prediction precision error of "what" (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception.

  11. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes

    PubMed Central

    Zehr, E Paul; Kido, Aiko

    2001-01-01

    The organization and pattern of cutaneous reflex modulation during rhythmic cyclical movements of the human upper limbs has received much less attention than that afforded the lower limb. Our working hypothesis is that control mechanisms underlying the modulation of cutaneous reflex amplitude during rhythmic arm movement are similar to those that control reflex modulation in the leg. Thus, we hypothesized that cutaneous reflexes would show task dependency and nerve specificity in the upper limb during rhythmic cyclical arm movement as has been demonstrated in the human lower limb. EMG was recorded from 10 muscles crossing the human shoulder, elbow and wrist joints while bilateral whole arm rhythmic cyclical movements were performed on a custom-made, hydraulic apparatus. Cutaneous reflexes were evoked with trains (5× 1.0 ms pulses at 300 Hz) of electrical stimulation delivered at non-noxious intensities (∼2× threshold for radiating parasthesia) to the superficial radial, median and ulnar nerves innervating the hand. Cutaneous reflexes were typically modulated with the movement cycle (i.e. phase dependency was observed). There was evidence for nerve specificity of cutaneous reflexes during rhythmic movement of the upper limbs. Task-dependent modulation was also seen as cutaneous reflexes were of larger amplitude or inhibitory (reflex reversal) during arm cycling as compared to static contraction. While there are some differences in the patterns of cutaneous reflex modulation seen between the arms and legs, it is concluded that cutaneous reflexes are modulated similarly in the upper and lower limbs implicating similar motor control mechanisms. PMID:11744775

  12. Movement Coordination or Movement Interference: Visual Tracking and Spontaneous Coordination Modulate Rhythmic Movement Interference

    PubMed Central

    Romero, Veronica; Coey, Charles; Schmidt, R. C.; Richardson, Michael J.

    2012-01-01

    When an actor performs a rhythmic limb movement while observing a spatially incongruent movement he or she exhibits increased movement orthogonal to the instructed motion. Known as rhythmic movement interference, this phenomenon has been interpreted as a motor contagion effect, whereby observing the incongruent movement interferes with the intended movement and results in a motor production error. Here we test the hypothesis that rhythmic movement interference is an emergent property of rhythmic coordination. Participants performed rhythmic limb movements at a self-selected tempo while observing a computer stimulus moving in a congruent or incongruent manner. The degree to which participants visually tracked the stimulus was manipulated to influence whether participants became spontaneously entrained to the stimulus or not. Consistent with the rhythmic coordination hypothesis, participants only exhibited the rhythmic movement interference effect when they became spontaneously entrained to the incongruent stimulus. PMID:23028607

  13. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    PubMed Central

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli. PMID:25538576

  14. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  15. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2015-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the

  16. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration.

    PubMed

    Halgren, Eric; Kaestner, Erik; Marinkovic, Ksenija; Cash, Sydney S; Wang, Chunmao; Schomer, Donald L; Madsen, Joseph R; Ulbert, Istvan

    2015-09-01

    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context. PMID:25801916

  17. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration.

    PubMed

    Halgren, Eric; Kaestner, Erik; Marinkovic, Ksenija; Cash, Sydney S; Wang, Chunmao; Schomer, Donald L; Madsen, Joseph R; Ulbert, Istvan

    2015-09-01

    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context.

  18. Diel rhythmicity of lipid-body formation in a coral- Symbiodinium endosymbiosis

    NASA Astrophysics Data System (ADS)

    Chen, W.-N. U.; Kang, H.-J.; Weis, V. M.; Mayfield, A. B.; Jiang, P.-L.; Fang, L.-S.; Chen, C.-S.

    2012-06-01

    The biogenesis of intracellular lipid bodies (LBs) is dependent upon the symbiotic status between host corals and their intracellular dinoflagellates (genus Symbiodinium), though aside from this observation, little is known about LB behavior and function in this globally important endosymbiosis. The present research aimed to understand how LB formation and density are regulated in the gastrodermal tissue layer of the reef-building coral Euphyllia glabrescens. After tissue fixation and labeling with osmium tetroxide, LB distribution and density were quantified by imaging analysis of serial cryo-sections, and a diel rhythmicity was observed; the onset of solar irradiation at sunrise initiated an increase in LB density and size, which peaked at sunset. Both LB density and size then decreased to basal levels at night. On a seasonal timescale, LB density was found to be significantly positively correlated with seasonal irradiation, with highest densities found in the summer and lowest in the fall. In terms of LB lipid composition, only the concentration of wax esters, and not triglycerides or sterols, exhibited diel variability. This suggests that the metabolism and accumulation of lipids in LBs is at least partially light dependent. Ultrastructural examinations revealed that the LB wax ester concentration correlated with the number of electron-transparent inclusion bodies. Finally, there was a directional redistribution of the LB population across the gastroderm over the diel cycle. Collectively, these data reveal that coral gastrodermal LBs vary in composition and intracellular location over diel cycles, features which may shed light on their function within this coral-dinoflagellate mutualism.

  19. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  20. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions

  1. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M.; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions

  2. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.

    PubMed

    Zehr, E Paul; Collins, David F; Frigon, Alain; Hoogenboom, Nienke

    2003-01-01

    Although we move our arms rhythmically during walking, running, and swimming, we know little about the neural control of such movements. Our working hypothesis is that neural mechanisms controlling rhythmic movements are similar in the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that seen during leg movement. Our main experimental hypotheses were that the amplitude of H-reflexes in the forearm muscles would be modulated during arm movement (i.e., phase-dependent) and would be inhibited during cycling compared with static contraction (i.e., task-dependent). Furthermore, to determine the locus of any modulation, we tested the effect that active and passive movement of the ipsilateral (relative to stimulated arm) and contralateral arm had on H-reflex amplitude. Subjects performed rhythmic arm cycling on a custom-made hydraulic ergometer in which the two arms could be constrained to move together (180 degrees out of phase) or could rotate independently. Position of the stimulated limb in the movement cycle is described with respect to the clock face. H-reflexes were evoked at 12, 3, 6, and 9 o'clock positions during static contraction as well as during rhythmic arm movements. Reflex amplitudes were compared between tasks at equal M wave amplitudes and similar levels of electromyographic (EMG) activity in the target muscle. Surface EMG recordings were obtained bilaterally from flexor carpi radialis as well as from other muscles controlling the wrist, elbow, and shoulder. Compared with reflexes evoked during static contractions, movement of the stimulated limb attenuated H-reflexes by 50.8% (P < 0.005), 65.3% (P < 0.001), and 52.6% (P < 0.001) for bilateral, active ipsilateral, and passive ipsilateral movements, respectively. In contrast, movement of the contralateral limb did not significantly alter H-reflex amplitude. H-reflexes were also modulated by limb position (P < 0.005). Thus task- and phase

  3. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

    PubMed Central

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J.; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance. PMID:25309355

  4. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    PubMed

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. PMID:26961103

  5. The Beat Goes on: Rhythmic Modulation of Cortical Potentials by Imagined Tapping

    ERIC Educational Resources Information Center

    Osman, Allen; Albert, Robert; Ridderinkhof, K. Richard; Band, Guido; van der Molen, Maurits

    2006-01-01

    A frequency analysis was used to tag cortical activity from imagined rhythmic movements. Participants synchronized overt and imagined taps with brief visual stimuli presented at a constant rate, alternating between left and right index fingers. Brain potentials were recorded from across the scalp and topographic maps made of their power at the…

  6. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    PubMed

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  7. Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns.

    PubMed

    Calabrese, R L; Nadim, F; Olsen, O H

    1995-07-01

    We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillators interneurons, form an eight-cell timing oscillator network for heartbeat. Still other interneurons, along with the oscillator interneurons, inhibit heart motor neurons, sculpting their activity into rhythmic bursts. Critical switch interneurons interface between the oscillator interneurons and the other premotor interneurons to produce two alternating coordination states of the motor neurons. The periods of the oscillator interneurons are modulated by endogenous RFamide neuropeptides. We have explored the ionic currents and graded and spike-mediated synaptic transmission that promote oscillation in the oscillator interneurons and have incorporated these data into a conductance-based computer model. This model has been of considerable predictive value and has led to new insights into how reciprocally inhibitory neurons produce oscillation. We are now in a strong position to expand this model upward, to encompass the entire heartbeat network, horizontally, to elucidate the mechanisms of FMRFamide modulation, and downward, to incorporate cellular morphology. By studying the mechanisms of motor pattern formation in the leech, using modeling studies in conjunction with parallel physiological experiments, we can contribute to a deeper understanding of how rhythmic motor acts are generated, coordinated, modulated, and reconfigured at the level of networks, cells, ionic currents, and synapses.

  8. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    PubMed

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN.

  9. Rhythmic Meter Munchies

    ERIC Educational Resources Information Center

    Quinn, Ashley

    2005-01-01

    In this article, the author presents an activity which allows students to construct various rhythm patterns in 2/4, 3/4, and 4/4 meter by using M&Ms and pretzels as an extrinsic motivation. Rhythmic notation is a foundation for learning music concepts. Engaging students in representative modules helps them to learn and recognize note values and…

  10. Arterial CO2 Fluctuations Modulate Neuronal Rhythmicity: Implications for MEG and fMRI Studies of Resting-State Networks

    PubMed Central

    Whittaker, Joseph R.; Bright, Molly G.; Muthukumaraswamy, Suresh D.; Murphy, Kevin

    2016-01-01

    A fast emerging technique for studying human resting state networks (RSNs) is based on spontaneous temporal fluctuations in neuronal oscillatory power, as measured by magnetoencephalography. However, it has been demonstrated recently that this power is sensitive to modulations in arterial CO2 concentration. Arterial CO2 can be modulated by natural fluctuations in breathing pattern, as might typically occur during the acquisition of an RSN experiment. Here, we demonstrate for the first time the fine-scale dependence of neuronal oscillatory power on arterial CO2 concentration, showing that reductions in alpha, beta, and gamma power are observed with even very mild levels of hypercapnia (increased arterial CO2). We use a graded hypercapnia paradigm and participant feedback to rule out a sensory cause, suggesting a predominantly physiological origin. Furthermore, we demonstrate that natural fluctuations in arterial CO2, without administration of inspired CO2, are of a sufficient level to influence neuronal oscillatory power significantly in the delta-, alpha-, beta-, and gamma-frequency bands. A more thorough understanding of the relationship between physiological factors and cortical rhythmicity is required. In light of these findings, existing results, paradigms, and analysis techniques for the study of resting-state brain data should be revisited. SIGNIFICANCE STATEMENT In this study, we show for the first time that neuronal oscillatory power is intimately linked to arterial CO2 concentration down to the fine-scale modulations that occur during spontaneous breathing. We extend these results to demonstrate a correlation between neuronal oscillatory power and spontaneous arterial CO2 fluctuations in awake humans at rest. This work identifies a need for studies investigating resting-state networks in the human brain to measure and account for the impact of spontaneous changes in arterial CO2 on the neuronal signals of interest. Changes in breathing pattern that are

  11. [Effect of rhythmical light flickering on the stability of the human body].

    PubMed

    Petrenko, E T

    1986-01-01

    Influence of photostimulation upon the man's movements biomechanics (stabilogram, goniogram, electromiogram etc) according to the one-leg toe balance model was investigated on 500 persons. Lowering of the exercise biomechanical efficiency at the background of light gleams was established. Light gleams with the frequency of 8-12 Hz which violated movement control processes (the correction of the body GWC) had maximal confusing effect.

  12. Loss of circadian rhythmicity in body temperature and locomotor activity following suprachiasmatic lesions in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Haro, P. J.; Winget, C. M.

    1977-01-01

    In experiments on male and female ambulatory rats, the effect of bilateral suprachiasmatic lesions on deep body temperature and locomotor activity circadian rhythms was investigated. A L/D:12/12 cycle and 23 C ambient temperature were maintained. One-half of the rats received radiofrequency lesions in the suprachiasmic nucleus (SCN) while the second group were sham operated by lowering the radiofrequency electrode to the SCN without producing electrolytic lesions. Four weeks were allowed for recuperation. Autopsies were conducted to make sure that the lesions were restricted to SCN. The results show the complete disappearance of circadian rhythm in the SCN lesioned rats and only a slight diminution for the sham operated rats.

  13. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity

    PubMed Central

    van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  14. Short-term effect of whole-body vibration training on balance, flexibility and lower limb explosive strength in elite rhythmic gymnasts.

    PubMed

    Despina, Tsopani; George, Dallas; George, Tsiganos; Sotiris, Papouliakos; Alessandra, Di Cagno; George, Korres; Maria, Riga; Stavros, Korres

    2014-02-01

    The purpose of this study was to examine whether whole-body vibration (WBV) training results in short-term performance improvements in flexibility, strength and balance tests in comparison to an equivalent exercise program performed without vibration. Eleven elite rhythmic gymnasts completed a WBV trial, and a control, resistance training trial without vibration (NWBV). The vibration trial consisted of eccentric and concentric squatting exercises on a vibration platform that was turned on, whereas the NWBV involved the same training protocol with the platform turned off. Balance was assessed using the Rhythmic Weight Shift (RWS) based on the EquiTest Dynamic Posturography system; flexibility was measured using the sit & reach test, and lower limb explosive strength was evaluated using standard exercises (squat jump, counter movement jump, single leg squat). All measurements were performed before (pre) immediately after the training program (post 1), and 15 minutes after the end of the program (post 15). Data were analyzed using repeated measures ANOVA was used with condition (WBV-NWBV) as the primary factor and time (pre, post 1, post 15) as the nested within subjects factor, followed by post-hoc pairwise comparison with Bonferroni corrections. Results confirmed the hypothesis of the superiority of WBV training, especially in the post 15 measurement, in all flexibility and strength measures, as well as in a number of balance tests. PMID:24055361

  15. Short-term effect of whole-body vibration training on balance, flexibility and lower limb explosive strength in elite rhythmic gymnasts.

    PubMed

    Despina, Tsopani; George, Dallas; George, Tsiganos; Sotiris, Papouliakos; Alessandra, Di Cagno; George, Korres; Maria, Riga; Stavros, Korres

    2014-02-01

    The purpose of this study was to examine whether whole-body vibration (WBV) training results in short-term performance improvements in flexibility, strength and balance tests in comparison to an equivalent exercise program performed without vibration. Eleven elite rhythmic gymnasts completed a WBV trial, and a control, resistance training trial without vibration (NWBV). The vibration trial consisted of eccentric and concentric squatting exercises on a vibration platform that was turned on, whereas the NWBV involved the same training protocol with the platform turned off. Balance was assessed using the Rhythmic Weight Shift (RWS) based on the EquiTest Dynamic Posturography system; flexibility was measured using the sit & reach test, and lower limb explosive strength was evaluated using standard exercises (squat jump, counter movement jump, single leg squat). All measurements were performed before (pre) immediately after the training program (post 1), and 15 minutes after the end of the program (post 15). Data were analyzed using repeated measures ANOVA was used with condition (WBV-NWBV) as the primary factor and time (pre, post 1, post 15) as the nested within subjects factor, followed by post-hoc pairwise comparison with Bonferroni corrections. Results confirmed the hypothesis of the superiority of WBV training, especially in the post 15 measurement, in all flexibility and strength measures, as well as in a number of balance tests.

  16. Aperture modulated, translating bed total body irradiation

    SciTech Connect

    Hussain, Amjad; Villarreal-Barajas, Jose Eduardo; Dunscombe, Peter; Brown, Derek W.

    2011-02-15

    Purpose: Total body irradiation (TBI) techniques aim to deliver a uniform radiation dose to a patient with an irregular body contour and a heterogeneous density distribution to within {+-}10% of the prescribed dose. In the current article, the authors present a novel, aperture modulated, translating bed TBI (AMTBI) technique that produces a high degree of dose uniformity throughout the entire patient. Methods: The radiation beam is dynamically shaped in two dimensions using a multileaf collimator (MLC). The irregular surface compensation algorithm in the Eclipse treatment planning system is used for fluence optimization, which is performed based on penetration depth and internal inhomogeneities. Two optimal fluence maps (AP and PA) are generated and beam apertures are created to deliver these optimal fluences. During treatment, the patient/phantom is translated on a motorized bed close to the floor (source to bed distance: 204.5 cm) under a stationary radiation beam with 0 deg. gantry angle. The bed motion and dynamic beam apertures are synchronized. Results: The AMTBI technique produces a more homogeneous dose distribution than fixed open beam translating bed TBI. In phantom studies, the dose deviation along the midline is reduced from 10% to less than 5% of the prescribed dose in the longitudinal direction. Dose to the lung is reduced by more than 15% compared to the unshielded fixed open beam technique. At the lateral body edges, the dose received from the open beam technique was 20% higher than that prescribed at umbilicus midplane. With AMTBI the dose deviation in this same region is reduced to less than 3% of the prescribed dose. Validation of the technique was performed using thermoluminescent dosimeters in a Rando phantom. Agreement between calculation and measurement was better than 3% in all cases. Conclusions: A novel, translating bed, aperture modulated TBI technique that employs dynamically shaped MLC defined beams is shown to improve dose uniformity

  17. Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain

    PubMed Central

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang; Groh, Claudia

    2016-01-01

    Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies. PMID:27147994

  18. Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain.

    PubMed

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang; Groh, Claudia

    2016-01-01

    Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies. PMID:27147994

  19. Daily Thermal Fluctuations Experienced by Pupae via Rhythmic Nursing Behavior Increase Numbers of Mushroom Body Microglomeruli in the Adult Ant Brain.

    PubMed

    Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang; Groh, Claudia

    2016-01-01

    Social insects control brood development by using different thermoregulatory strategies. Camponotus mus ants expose their brood to daily temperature fluctuations by translocating them inside the nest following a circadian rhythm of thermal preferences. At the middle of the photophase brood is moved to locations at 30.8°C; 8 h later, during the night, the brood is transferred back to locations at 27.5°C. We investigated whether daily thermal fluctuations experienced by developing pupae affect the neuroarchitecture in the adult brain, in particular in sensory input regions of the mushroom bodies (MB calyces). The complexity of synaptic microcircuits was estimated by quantifying MB-calyx volumes together with densities of presynaptic boutons of microglomeruli (MG) in the olfactory lip and visual collar regions. We compared young adult workers that were reared either under controlled daily thermal fluctuations of different amplitudes, or at different constant temperatures. Thermal regimes significantly affected the large (non-dense) olfactory lip region of the adult MB calyx, while changes in the dense lip and the visual collar were less evident. Thermal fluctuations mimicking the amplitudes of natural temperature fluctuations via circadian rhythmic translocation of pupae by nurses (amplitude 3.3°C) lead to higher numbers of MG in the MB calyces compared to those in pupae reared at smaller or larger thermal amplitudes (0.0, 1.5, 9.6°C), or at constant temperatures (25.4, 35.0°C). We conclude that rhythmic control of brood temperature by nursing ants optimizes brain development by increasing MG densities and numbers in specific brain areas. Resulting differences in synaptic microcircuits are expected to affect sensory processing and learning abilities in adult ants, and may also promote interindividual behavioral variability within colonies.

  20. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.

    PubMed

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents.

  1. Rhythmic 24 h Variation of Core Body Temperature and Locomotor Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  2. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis

    PubMed Central

    Pekovic-Vaughan, Vanja; Gibbs, Julie; Yoshitane, Hikari; Yang, Nan; Pathiranage, Dharshika; Guo, Baoqiang; Sagami, Aya; Taguchi, Keiko; Bechtold, David; Loudon, Andrew; Yamamoto, Masayuki; Chan, Jefferson; van der Horst, Gijsbertus T.J.; Fukada, Yoshitaka; Meng, Qing-Jun

    2014-01-01

    The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-box-mediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock “gated” pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic ClockΔ19 mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis. PMID:24637114

  3. Rhythmic neuronal activity in the lateral cerebellum of the cat during visually guided stepping.

    PubMed

    Marple-Horvat, D E; Criado, J M

    1999-07-15

    1. The discharge patterns of 117 lateral cerebellar neurones were studied in cats during visually guided stepping on a horizontal circular ladder. Ninety per cent of both nuclear cells (53/59) and Purkinje cells (53/58) showed step-related rhythmic modulations of their discharge frequency (one or more periods of 'raised activity' per step cycle of the ipsilateral forelimb). 2. For 31% of nuclear cells (18/59) and 34% of Purkinje cells (20/58) the difference between the highest and lowest discharge rates in different parts of the step cycle was > 50 impulses s-1. 3. Individual neurones differed widely in the phasing of their discharges relative to the step cycle. Nevertheless, for both Purkinje cells and nuclear cells population activity was significantly greater in swing than in stance; the difference was more marked for the nuclear population. 4. Some cells exhibited both step-related rhythmicity and visual responsiveness (28 of 67 tested, 42%), whilst others were rhythmically active during locomotion and increased their discharge rate ahead of saccadic eye movements (11 of 54 tested, 20%). The rhythmicity of cells that were visually responsive was typical of the rhythmicity seen in the whole locomotor-related population. The step-related rhythmicity of cells that also discharged in relation to saccades was generally below average strength compared with the cortical and nuclear populations as a whole. 5. The possibility is discussed that the rhythmicity of dentate neurones acts as a powerful source of excitatory locomotor drive to motor cortex, and may thereby contribute to establishing the step-related rhythmicity of motor cortical (including pyramidal tract) neurones. More generally, the activity patterns of lateral cerebellar neurones provide for a role in the production of visually guided, co-ordinated eye and body movements.

  4. Bilingual Vocational Training Program. Auto Body Repair. Module 4.0: Auto Body Welding.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on auto body welding is the fourth of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students to…

  5. Bilingual Vocational Training Program. Auto Body Repair. Module 1.0: Beginning Auto Body.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on beginning auto body is the first of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students…

  6. Multiple forms of rhythmic movements in an adolescent boy with rhythmic movement disorder.

    PubMed

    Su, Changjun; Miao, Jianting; Liu, Yu; Liu, Rui; Lei, Gesheng; Zhang, Wei; Yang, Ting; Li, Zhuyi

    2009-12-01

    Rhythmic movement disorder (RMD) refers to a group of stereotyped, repetitive movements involving large muscles, usually occurring prior to the onset of sleep and persisting into sleep. RMD more commonly exhibits only one or two forms of rhythmic movements (RM) in most reported cases. However, multiple RM forms of RMD occurring in a patient in the same night have rarely been reported. In this report, we present the unique case of a 15-year-old boy with RMD affected by multiple forms of RM in the same night, including four known forms (i.e., body rocking, head banging, leg rolling, and rhythmic feet movements) and two new kinds of RM (bilateral rhythmic arm rocking and rhythmic hands movements). Two video-polysomnographic recordings were performed in this patient before starting pharmacologic treatment and after long-term oral clonazepam treatment (1.0mg nightly for 3 months). The characteristics of RMD with multiple RM forms and the effectiveness of clonazepam on the RM episodes and polysomnographic findings observed in our patient are discussed. This report raises the fact that a patient with RMD may present with multiple complex rhythmic movements disrupting sleep, which emphasizes that better understanding of the clinical features of complex rhythmic movements during sleep in primary care settings is essential for early clinical diagnosis and optimal management.

  7. Teaching Rhythmic Movement to Children: "Chock-Let Pie"

    ERIC Educational Resources Information Center

    Hastie, Peter A.; Martin, Ellen H.; Gibson, Gary S.

    2005-01-01

    It is doubtful that any teacher would question the value of rhythmic movement in a physical education program. The benefits of being able to move rhythmically and to keep a beat are numerous. First, children with rhythm have an increased kinesthetic awareness of their body in motion and stillness. As most physical activities have an inherent…

  8. Emotional and movement-related body postures modulate visual processing.

    PubMed

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213

  9. Emotional and movement-related body postures modulate visual processing.

    PubMed

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures.

  10. Phantom Tactile Sensations Modulated by Body Position

    PubMed Central

    Medina, Jared; Rapp, Brenda

    2009-01-01

    Summary Various lines of evidence reveal bilateral activation of somatosensory areas after unilateral stimulation [1-6] assumed to be mediated by cross-hemispheric connections [7-11]. Despite evidence of bilateral activity in response to unilateral stimulation, neurologically intact humans do not experience bilateral percepts when stimulated on one side of the body. This may be due to active suppression of ipsilateral neural activity [12, 13] by inhibitory mechanisms whose functioning is poorly understood. We describe an individual with left fronto-parietal damage who experiences bilateral sensations in response to unilateral tactile stimulation—a rarely reported condition known as synchiria (previously described in visual [14], auditory [15] and somatosensory modalities [16-19]). Presumably the phantom sensations result from normal bilateral cross-hemispheric activation, combined with a failure of inhibitory mechanisms to prevent bilateral perceptual experiences. The disruption of these mechanisms provides a valuable opportunity to examine their internal functioning. We find that the synchiria rate is affected by hand position relative to multiple reference frames. Specifically, synchiria decreases as the hands move from right (contralesional) to left (ipsilesional) space in trunk- and head-centered reference frames and disappears when the hands are crossed. These findings provide, for the first time, evidence that the mechanisms that inhibit bilateral percepts operate in multiple reference frames [20-27]. PMID:19062276

  11. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    PubMed Central

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, −421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant. PMID:25983739

  12. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    PubMed

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant. PMID:25983739

  13. Cyclic modulation of the H-reflex in a wrist flexor during rhythmic flexion-extension movements of the ipsilateral foot.

    PubMed

    Baldissera, F; Cavallari, P; Leocani, L

    1998-02-01

    In 12 subjects, each sitting on an armchair with the right forearm prone, the H-reflex elicited in the resting flexor carpi radialis muscle underwent cyclic excitability changes correlated with rhythmic flexion-extension movements of the ipsilateral foot (frequency of oscillations between 1.5 and 2.5 Hz). During foot plantar flexion, the H-reflex underwent a clear-cut increase, the maximum facilitation falling, in most subjects, within the second half of that phase; then, a gradual reduction in size led the reflex amplitude back to the initial value at the end of foot dorsal extension. If present also when the wrist and the ankle are moved together, this facilitation should favour the in-phase (isodirectional) association between movements and, conversely, hinder the anti-phase coupling.

  14. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  15. RNA transcription modulates phase transition-driven nuclear body assembly

    PubMed Central

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P.

    2015-01-01

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  16. RNA transcription modulates phase transition-driven nuclear body assembly.

    PubMed

    Berry, Joel; Weber, Stephanie C; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P

    2015-09-22

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid-liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of "extranucleolar droplets" (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  17. Rhythmic changes in colonic motility are regulated by period genes.

    PubMed

    Hoogerwerf, Willemijntje A; Shahinian, Vahakn B; Cornélissen, Germaine; Halberg, Franz; Bostwick, Jonathon; Timm, John; Bartell, Paul A; Cassone, Vincent M

    2010-02-01

    Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of N(omega)-nitro-L-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms.

  18. Rhythmic changes in colonic motility are regulated by period genes.

    PubMed

    Hoogerwerf, Willemijntje A; Shahinian, Vahakn B; Cornélissen, Germaine; Halberg, Franz; Bostwick, Jonathon; Timm, John; Bartell, Paul A; Cassone, Vincent M

    2010-02-01

    Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of N(omega)-nitro-L-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms. PMID:19926812

  19. Rhythmic changes in colonic motility are regulated by period genes

    PubMed Central

    Shahinian, Vahakn B.; Cornélissen, Germaine; Halberg, Franz; Bostwick, Jonathon; Timm, John; Bartell, Paul A.; Cassone, Vincent M.

    2010-01-01

    Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of Nω-nitro-l-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms. PMID:19926812

  20. Social exclusion modulates pre-reflective interpersonal body representation.

    PubMed

    Ambrosini, Ettore; Blomberg, Olle; Mandrigin, Alisa; Costantini, Marcello

    2014-01-01

    Perception of affordance is enhanced not only when that object is located in one's own peripersonal space, as compared to when it is located within extrapersonal space, but also when the object is located in another person's peripersonal space [as measured by a spatial alignment effect (SAE)]. It has been suggested that this reflects the existence of an interpersonal body representation (IBR) that allows us to represent the perceptual states and action possibilities of others. Here, we address the question of whether IBR can be modulated by higher level/reflective social cognition, such as judgments about one's own social status. Participants responded with either the right or the left hand as soon as a go signal appeared. The go signal screen contained a task-irrelevant stimulus consisting of a 3D scene in which a mug with a left- or right-facing handle was positioned on a table. The mug was positioned either inside or outside the reaching space of the participants. In a third of the trials, the mug was positioned within the reaching space of an avatar seated at the table. Prior to this task we induced an experience of social ostracism in half of the participants by means of a standardized social exclusion condition. The results were that the SAE that normally occurs when the mug is in the avatar's reaching space is extinguished by the induced social exclusion. This indicates that judgments about one's own social status modulate the effect of IBR. PMID:23307152

  1. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning.

    PubMed

    Vitiello, Giuseppe

    2015-04-01

    The problem of the transition from the molecular and cellular level to the macroscopic level of observed assemblies of myriads of neurons is the subject addressed in this report. The great amount of detailed information available at molecular and cellular level seems not sufficient to account for the high effectiveness and reliability observed in the brain macroscopic functioning. It is suggested that the dissipative many-body model and thermodynamics might offer the dynamical frame underlying the rich phenomenology observed at microscopic and macroscopic level and help in the understanding on how to fill the gap between the bio-molecular and cellular level and the one of brain macroscopic functioning. PMID:25079054

  2. The use of many-body physics and thermodynamics to describe the dynamics of rhythmic generators in sensory cortices engaged in memory and learning.

    PubMed

    Vitiello, Giuseppe

    2015-04-01

    The problem of the transition from the molecular and cellular level to the macroscopic level of observed assemblies of myriads of neurons is the subject addressed in this report. The great amount of detailed information available at molecular and cellular level seems not sufficient to account for the high effectiveness and reliability observed in the brain macroscopic functioning. It is suggested that the dissipative many-body model and thermodynamics might offer the dynamical frame underlying the rich phenomenology observed at microscopic and macroscopic level and help in the understanding on how to fill the gap between the bio-molecular and cellular level and the one of brain macroscopic functioning.

  3. Self-Attributed Body-Shadows Modulate Tactile Attention

    ERIC Educational Resources Information Center

    Pavani, Francesco; Galfano, Giovanni

    2007-01-01

    Our body-shadows are special stimuli in the visual world. They often have anatomical resemblance with our own body-parts and move as our body moves, with spatio-temporal correlation. Here, we show that self-attributed body-shadows cue attention to the body-part they refer to, rather than the location they occupy. Using speeded spatial…

  4. Matrix Rigidity-Modulated Cardiovascular Organoid Formation from Embryoid Bodies

    PubMed Central

    Shkumatov, Artem; Baek, Kwanghyun; Kong, Hyunjoon

    2014-01-01

    Stem cell clusters, such as embryoid bodies (EBs) derived from embryonic stem cells, are extensively studied for creation of multicellular clusters and complex functional tissues. It is common to control phenotypes of ES cells with varying molecular compounds; however, there is still a need to improve the controllability of cell differentiation, and thus, the quality of created tissue. This study demonstrates a simple but effective strategy to promote formation of vascularized cardiac muscle - like tissue in EBs and form contracting cardiovascular organoids by modulating the stiffness of a cell adherent hydrogel. Using collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we discovered that cellular organization in a form of vascularized cardiac muscle sheet was maximal on the gel with the stiffness similar to cardiac muscle. We envisage that the results of this study will greatly contribute to better understanding of emergent behavior of stem cells in developmental and regeneration process and will also expedite translation of EB studies to drug-screening device assembly and clinical treatments. PMID:24732893

  5. Hypocretin deficiency in narcolepsy with cataplexy is associated with a normal body core temperature modulation.

    PubMed

    Grimaldi, Daniela; Agati, Patrizia; Pierangeli, Giulia; Franceschini, Christian; Guaraldi, Pietro; Barletta, Giorgio; Vandi, Stefano; Cevoli, Sabina; Plazzi, Giuseppe; Montagna, Pasquale; Cortelli, Pietro

    2010-09-01

    Narcolepsy with cataplexy (NC) is a sleep disorder caused by the loss of the hypothalamic neurons producing hypocretin. The clinical hallmarks of the disease are excessive daytime sleepiness, cataplexy, other rapid eye movement (REM) sleep phenomena, and a fragmented wake-sleep cycle. Experimental data suggest that the hypocretin system is involved primarily in the circadian timing of sleep and wakefulness but also in the control of other biological functions such as thermoregulation. The object of this study was to determine the effects of the hypocretin deficit and of the wake-sleep cycle fragmentation on body core temperature (BcT) modulation in a sample of drug-free NC patients under controlled conditions. Ten adult NC patients with low cerebrospinal fluid (CSF) hypocretin levels (9 men; age: 38 ± 12 yrs) were compared with 10 healthy control subjects (7 men; age: 44.9 ± 12 yrs). BcT and sleep-wake cycle were continuously monitored for 44 h from 12:00 h. During the study, subjects were allowed to sleep ad libitum, living in a temperature- and humidity-controlled room, lying in bed except when eating, in a light-dark schedule (dark [D] period: 23:00-07:00 h). Sleep structure was analyzed over the 24-h period, the light (L) and the D periods. The wake-sleep cycle fragmentation was determined by calculating the frame-shift index (number of 30-s sleep stage shifts occurring every 15 min) throughout the 44-h study. The analysis of BcT circadian rhythmicity was performed according to the single cosinor method. The time-course changes in BcT and in frame-shift index were compared between narcoleptics and controls by testing the time × group (controls versus NC subjects) interaction effect. The state-dependent analysis of BcT during D was performed by fitting a mixed model where the factors were wake-sleep phases (wake, NREM stages 1 and 2, slow-wave sleep, and REM sleep) and group. The results showed that NC patients slept significantly more than

  6. Effects of rhythmic precursors on perception of stress/syllabicity

    NASA Astrophysics Data System (ADS)

    Stilp, Christian E.; Kluender, Keith R.

    2005-09-01

    Rhythmic structure is a common property of many environmental sounds including speech. Here, perceptual effects of preceding rhythmic context are assessed in experiments employing edited words for which perceived stress/syllabicity are assessed. A series of edited naturally spoken words varying perceptually from ``polite'' to ``plight,'' was created by deleting initial-vowel glottal pulses from a recording of ``polite.'' Words were identified following nonspeech precursor sequences having either trochaic (strong-weak) or iambic (weak-strong) rhythmic patterns. Precursors consisted of a harmonic spectrum (-6-dB/octave slope) filtered by four sinusoidally modulated single-pole filters. Trochaic (strong-weak) and iambic (weak-strong) rhythmic patterns were created by varying amplitude, pitch, and duration in successive segments (akin to beats) of the precursors. Precursors were comprised of two to six repetitions of these patterns. Following trochaic precursors, listeners were more likely to report hearing ``polite'' (iambic). This pattern of results indicates that perception did not assimilate to precursor pattern, consistent with rhythmic expectancy. Instead, perception shifted in a way that contrasts with precursor temporal pattern. Additional results with precursors that are more and less like speech are being conducted to further understand how auditory perception adjusts for temporal and spectral regularities. [Work supported by NIDCD.

  7. Some anthropologic factors of performance in rhythmic gymnastics novices.

    PubMed

    Miletić, Durdica; Katić, Ratko; Males, Boris

    2004-12-01

    The aim of the study was to determine motor and morphological factors, and to assess their impact on specific motor skill performance in rhythmic gymnastics (RG). Experimental training process aimed at learning and improving basic movement structures of rhythmic gymnastics was performed for nine months in a sample of 50 female rhythmic gymnastics novices (mean age 7.1 +/- 0.3 years). Seven dimensions in total were isolated by factorial analysis of 13 motor, 11 morphological, and 20 specific rhythmic gymnastics tests. The factors of flexibility (Beta = 0.26; p < 0.05), explosive strength (Beta = 0.25; p < 0.05) and adipose voluminosity (Beta = -0.42; p < 0.001) explains 41% of the success in performing RG basic body elements--jumps, rotations, balance and flexibility (R = 0.64), while the frequency of movement (Beta = 0.44; p < 0.001) and non-adipose voluminosity (Beta = 0.26; p < 0.05) explains 26% of RG-specific manipulations with the apparatus--club, ribbon and ball wrist manipulation (R = 0.52; p < 0.01). According to study results, the RG-training process intended for rhythmic gymnastics novices should be programmed, with preset objectives for the development of flexibility and explosive strength, speed and peripheral joint strength and adipose tissue reduction.

  8. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson's disease.

    PubMed

    te Woerd, Erik S; Oostenveld, Robert; Bloem, Bastiaan R; de Lange, Floris P; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson's disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. PMID:26509117

  9. Evidence for Multiple Rhythmic Skills

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  10. Evidence for Multiple Rhythmic Skills.

    PubMed

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  11. Age Modulates Attitudes to Whole Body Donation among Medical Students

    ERIC Educational Resources Information Center

    Perry, Gary F.; Ettarh, Raj R.

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…

  12. Glial Cell Regulation of Rhythmic Behavior

    PubMed Central

    Jackson, F. Rob; Ng, Fanny S.; Sengupta, Sukanya; You, Samantha; Huang, Yanmei

    2015-01-01

    Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia–glia or glia–neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia–neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia–neuron communication contributes to the regulation of rhythmic behavior. PMID:25707272

  13. Differences between the sexes in technical mastery of rhythmic gymnastics.

    PubMed

    Bozanic, Ana; Miletic, Durdica

    2011-02-01

    The aims of this study were to determine possible differences between the sexes in specific rhythmic gymnastics techniques, and to examine the influence of various aspects of technique on rhythmic composition performance. Seventy-five students aged 21 ± 2 years (45 males, 30 female) undertook four test sessions to determine: coefficients of asymmetry, stability, versatility, and the two rhythmic compositions (without apparatus and with rope). An independent-sample t-test revealed sex-based differences in technique acquisition: stability for ball (P < 0.05; effect size = 0.65) and club (P < 0.05; effect size = 0.79) performance and rhythmic composition without apparatus (P < 0.05; effect size = 0.66). Multiple regression analysis revealed that the variables for assessing stability (beta = 0.44; P < 0.05) and versatility (beta = 0.61; P < 0.05) explained 61% of the variance in the rhythmic composition performance of females, and the variables for assessing asymmetry (beta = -0.38; P < 0.05), versatility (beta = 0.32; P < 0.05), and stability (beta = 0.29; P < 0.05) explained 52% of the variance in the rhythmic composition performance of males. The results suggest that female students dominate in body skill technique, while male students have the advantage with apparatus. There was a lack of an expressive aesthetic component in performance for males. The need for ambidexterity should be considered in the planning of training programmes. PMID:21259154

  14. The Rhythm of Perception: Acoustic Rhythmic Entrainment Induces Subsequent Perceptual Oscillation

    PubMed Central

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-01-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Evidence for neural codes representing periodic information has recently emerged, which seem a likely neural basis for the ability to detect rhythm and rhythmic information has been found to modulate auditory system excitability, providing a potential mechanism for parsing the acoustic stream. Here we explore the effects of a previous rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz) amplitute modulated signal induces a subsequent oscillation of perceptual detectability of a brief non-periodic acoustic stimulus (1 kHz tone); the frequency but not phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory system design that predates the development of explicit human enjoyment of rhythm in music or poetry. PMID:25968248

  15. Anatomy and Physiology. Module Set II: Major Body Systems. Teacher Edition [and] Student Edition. Surgical Technology.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…

  16. Bilingual Vocational Training Program. Auto Body Repair. Module 2.0: Tools and Equipment.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on tools and equipment is the second of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students…

  17. Bilingual Skills Training Program. Auto Body Repair. Module 3.0: Basic Metal Repair.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on basic metal repair is the third of four (CE 028 303-306) in the auto body repair course of a bilingual vocational training program. The course is designed to furnish theoretical and laboratory experience in welding, metal straightening, metal finishing, painting, and use of power and hand tools. Module objectives are for students to…

  18. Metabolic control of neuronal pacemaker activity and the rhythmic organization of central nervous functions.

    PubMed

    Chaplain, R A

    1979-08-01

    The endogenous rhythmic activity of isolated pacemaker neurones of Aplysia californica appears to be controlled by the operation of a substrate cycle. The recycling of fructose-6-phosphate is mediated by two membrane-bound enzymes: phosphofructokinase (PFK) and fructose-1,6-diphosphatase (FDPase). Allosteric effectors which promote the PFK-FDPase system either increase the regular beating activity or induce bursting discharges, while inhibitory effectors reduce pacemaker activity. Associated with the PFK-FDPase cycle are slow oscillations in membrane potential, the postulate being that changes in amplitude and time period of the waves are brought about by the cyclic fluctuations of H+ ions and ATP in the immediate vicinity of the membrane. Other enzyme reactions which affect the concentrations of gluconeogenic substrates or PFK effectors can modulate the oscillatory driving input, a good example being the neurogenic amino acid glutamate. Modifiers of FDPase and PFK are equally effective in changing pacemaker activity within the intact neuronal network and, hence, the rhythmic body function connected to this network. This has been demonstrated with pacemaker neurones governing cardiovascular activity in Apylsia, blood pressure or heart beat in the cat, and respiration or thermoregulation in the rabbit. Nature appears to have achieved a functional differentiation between different pacemaker neurones by altering their response to at least one or two of the PFK and FDPase effectors. New periodicities can be entrained by current stimuli on the pre-existing rhythms of isolated Aplysia pacemaker neurones. Stimulus-induced resetting of the discharges is in fact accompanied by a redistribution between two kinetically distinct forms of PRK, and modifiers of this enzyme can stabilize the new periodicities or facilitate the conditioning effect of a stimulus. Memory facilitation and consolidation under PFK modifiers could also be demonstrated in avoidance and discrimination

  19. Proprioceptive body illusions modulate the visual perception of reaching distance.

    PubMed

    Petroni, Agustin; Carbajal, M Julia; Sigman, Mariano

    2015-01-01

    The neurobiology of reaching has been extensively studied in human and non-human primates. However, the mechanisms that allow a subject to decide-without engaging in explicit action-whether an object is reachable are not fully understood. Some studies conclude that decisions near the reach limit depend on motor simulations of the reaching movement. Others have shown that the body schema plays a role in explicit and implicit distance estimation, especially after motor practice with a tool. In this study we evaluate the causal role of multisensory body representations in the perception of reachable space. We reasoned that if body schema is used to estimate reach, an illusion of the finger size induced by proprioceptive stimulation should propagate to the perception of reaching distances. To test this hypothesis we induced a proprioceptive illusion of extension or shrinkage of the right index finger while participants judged a series of LEDs as reachable or non-reachable without actual movement. Our results show that reach distance estimation depends on the illusory perceived size of the finger: illusory elongation produced a shift of reaching distance away from the body whereas illusory shrinkage produced the opposite effect. Combining these results with previous findings, we suggest that deciding if a target is reachable requires an integration of body inputs in high order multisensory parietal areas that engage in movement simulations through connections with frontal premotor areas.

  20. Proprioceptive body illusions modulate the visual perception of reaching distance.

    PubMed

    Petroni, Agustin; Carbajal, M Julia; Sigman, Mariano

    2015-01-01

    The neurobiology of reaching has been extensively studied in human and non-human primates. However, the mechanisms that allow a subject to decide-without engaging in explicit action-whether an object is reachable are not fully understood. Some studies conclude that decisions near the reach limit depend on motor simulations of the reaching movement. Others have shown that the body schema plays a role in explicit and implicit distance estimation, especially after motor practice with a tool. In this study we evaluate the causal role of multisensory body representations in the perception of reachable space. We reasoned that if body schema is used to estimate reach, an illusion of the finger size induced by proprioceptive stimulation should propagate to the perception of reaching distances. To test this hypothesis we induced a proprioceptive illusion of extension or shrinkage of the right index finger while participants judged a series of LEDs as reachable or non-reachable without actual movement. Our results show that reach distance estimation depends on the illusory perceived size of the finger: illusory elongation produced a shift of reaching distance away from the body whereas illusory shrinkage produced the opposite effect. Combining these results with previous findings, we suggest that deciding if a target is reachable requires an integration of body inputs in high order multisensory parietal areas that engage in movement simulations through connections with frontal premotor areas. PMID:26110274

  1. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb

    PubMed Central

    Carson, R G; Riek, S; Mackey, D C; Meichenbaum, D P; Willms, K; Forner, M; Byblow, W D

    2004-01-01

    Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas. PMID:15331684

  2. Somatotype of top-level serbian rhythmic gymnasts.

    PubMed

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-03-27

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies. PMID:25031686

  3. Somatotype of Top-Level Serbian Rhythmic Gymnasts

    PubMed Central

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-01-01

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies. PMID:25031686

  4. Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.

    PubMed

    Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E

    2013-08-01

    Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process.

  5. Visual detail about the body modulates tactile localisation biases.

    PubMed

    Margolis, Aaron N; Longo, Matthew R

    2015-02-01

    The localisation of tactile stimuli requires the integration of visual and somatosensory inputs within an internal representation of the body surface and is prone to consistent bias. Joints may play a role in segmenting such internal body representations, and may therefore influence tactile localisation biases, although the nature of this influence remains unclear. Here, we investigate the relationship between conceptual knowledge of joint locations and tactile localisation biases on the hand. In one task, participants localised tactile stimuli applied to the dorsum of their hand. A distal localisation bias was observed in all participants, consistent with previous results. We also manipulated the availability of visual information during this task, to determine whether the absence of this information could account for the distal bias observed here and by Mancini et al. (Neuropsychologia 49:1194-1201, 2011). The observed distal bias increased in magnitude when visual information was restricted, without a corresponding decrease in precision. In a separate task, the same participants indicated, from memory, knuckle locations on a silhouette image of their hand. Analogous distal biases were also seen in the knuckle localisation task. The accuracy of conceptual joint knowledge was not correlated with tactile localisation bias magnitude, although a similarity in observed bias direction suggests that both tasks may rely on a common, higher-order body representation. These results also suggest that distortions of conceptual body representation may be more common in healthy individuals than previously thought.

  6. Molecular bases of circadian rhythmicity in renal physiology and pathology

    PubMed Central

    Bonny, Olivier; Vinciguerra, Manlio; Gumz, Michelle L.; Mazzoccoli, Gianluigi

    2013-01-01

    The physiological processes that maintain body homeostasis oscillate during the day. Diurnal changes characterize kidney functions, comprising regulation of hydro-electrolytic and acid-base balance, reabsorption of small solutes and hormone production. Renal physiology is characterized by 24-h periodicity and contributes to circadian variability of blood pressure levels, related as well to nychthemeral changes of sodium sensitivity, physical activity, vascular tone, autonomic function and neurotransmitter release from sympathetic innervations. The circadian rhythmicity of body physiology is driven by central and peripheral biological clockworks and entrained by the geophysical light/dark cycle. Chronodisruption, defined as the mismatch between environmental–social cues and physiological–behavioral patterns, causes internal desynchronization of periodic functions, leading to pathophysiological mechanisms underlying degenerative, immune related, metabolic and neoplastic diseases. In this review we will address the genetic, molecular and anatomical elements that hardwire circadian rhythmicity in renal physiology and subtend disarray of time–dependent changes in renal pathology. PMID:23901050

  7. Romantic love modulates women's identification of men's body odors.

    PubMed

    Lundström, Johan N; Jones-Gotman, Marilyn

    2009-02-01

    Romantic love is one of our most potent and powerful emotions, but very little is known with respect to the hormonal and psychological mechanisms in play. Romantic love is thought to help intimate partners stay committed to each other and two mechanisms have been proposed to mediate this commitment: increased attention towards one's partner or deflected attention away from other potential partners. Both mechanisms find support in the literature. We explored the potential influence of each of these mechanisms by assessing women's ability to identify (ID) body odors originating from their boyfriend, a same-sex friend, and an opposite-sex friend and the relationship between this ability and the degree of romantic love expressed towards their boyfriend. We hypothesized that an increase in attention towards one's partner would render a positive correlation between ID of a boyfriend's body odor and degree of romantic love; conversely, we hypothesized that attention deflected away from other potential partners would render a negative correlation between ID of an opposite-sex friend's body odor and degree of romantic love for the boyfriend. Our results supported the deflection theory as we found a negative correlation between the degree of romantic love for the subjects' boyfriends and their ability to ID the body odor of an opposite-sex friend but not of their boyfriend or same-sex friend. Our results indicate that romantic love deflects attention away from potential new partners rather than towards the present partner. These changes are likely mediated by circulating neuropeptides and a testable model is suggested.

  8. Volitional exaggeration of body size through fundamental and formant frequency modulation in humans

    PubMed Central

    Pisanski, Katarzyna; Mora, Emanuel C.; Pisanski, Annette; Reby, David; Sorokowski, Piotr; Frackowiak, Tomasz; Feinberg, David R.

    2016-01-01

    Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans’ rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size. Modulation of F0, formant spacing (∆F), and apparent vocal tract length (VTL) were measured using Praat. Our results indicate that men and women spontaneously and systemically increased VTL and decreased F0 to imitate a large body size, and reduced VTL and increased F0 to imitate small size. These voice modulations did not differ substantially across cultures, indicating potentially universal sound-size correspondences or anatomical and biomechanical constraints on voice modulation. In each culture, men generally modulated their voices (particularly formants) more than did women. This latter finding could help to explain sexual dimorphism in F0 and formants that is currently unaccounted for by sexual dimorphism in human vocal anatomy and body size. PMID:27687571

  9. Physics of the rhythmic applause.

    PubMed

    Néda, Z; Ravasz, E; Vicsek, T; Brechet, Y; Barabási, A L

    2000-06-01

    We report on a series of measurements aimed to characterize the development and the dynamics of the rhythmic applause in concert halls. Our results demonstrate that while this process shares many characteristics of other systems that are known to synchronize, it also has features that are unexpected and unaccounted for in many other systems. In particular, we find that the mechanism lying at the heart of the synchronization process is the period doubling of the clapping rhythm. The characteristic interplay between synchronized and unsynchronized regimes during the applause is the result of a frustration in the system. All results are understandable in the framework of the Kuramoto model.

  10. Neural basis of rhythmic timing networks in the human brain.

    PubMed

    Thaut, Michael H

    2003-11-01

    The study of rhythmicity provides insights into the understanding of temporal coding of music and temporal information processing in the human brain. Auditory rhythms rapidly entrain motor responses into stable steady synchronization states below and above conscious perception thresholds. Studying the neural dynamics of entrainment by measuring brain wave responses (MEG) we found nonlinear scaling of M100 amplitudes generated in primary auditory cortex relative to changes in the period of the rhythmic interval during subliminal and supraliminal tempo modulations. In recent brain imaging studies we have described the neural networks involved in motor synchronization to auditory rhythm. Activated regions include primary sensorimotor and cingulate areas, bilateral opercular premotor areas, bilateral SII, ventral prefrontal cortex, and, subcortically, anterior insula, putamen, and thalamus. Within the cerebellum, vermal regions and anterior hemispheres ipsilateral to the movement became significantly activated. Tracking temporal modulations additionally activated predominantly right prefrontal, anterior cingulate, and intraparietal regions as well as posterior cerebellar hemispheres. Furthermore, strong evidence exists for the substantial benefits of rhythmic stimuli in rehabilitation training with motor disorders. PMID:14681157

  11. Risk for eating disorders modulates startle-responses to body words.

    PubMed

    Herbert, Cornelia; Kübler, Andrea; Vögele, Claus

    2013-01-01

    Body image disturbances are core symptoms of eating disorders (EDs). Recent evidence suggests that changes in body image may occur prior to ED onset and are not restricted to in-vivo exposure (e.g. mirror image), but also evident during presentation of abstract cues such as body shape and weight-related words. In the present study startle modulation, heart rate and subjective evaluations were examined during reading of body words and neutral words in 41 student female volunteers screened for risk of EDs. The aim was to determine if responses to body words are attributable to a general negativity bias regardless of ED risk or if activated, ED relevant negative body schemas facilitate priming of defensive responses. Heart rate and word ratings differed between body words and neutral words in the whole female sample, supporting a general processing bias for body weight and shape-related concepts in young women regardless of ED risk. Startle modulation was specifically related to eating disorder symptoms, as was indicated by significant positive correlations with self-reported body dissatisfaction. These results emphasize the relevance of examining body schema representations as a function of ED risk across different levels of responding. Peripheral-physiological measures such as the startle reflex could possibly be used as predictors of females' risk for developing EDs in the future.

  12. Teaching Rhythmic Gymnastics: A Developmentally Appropriate Approach.

    ERIC Educational Resources Information Center

    Palmer, Heather C.

    This book is designed to guide teachers through the process of creating a developmentally appropriate rhythmic gymnastics program for children age 5-11. Rhythmic gymnastics programs develop fitness, inspire creativity, and allow all children to work at their own level. The book features 10 chapters in two parts. Part 1, "Getting Started on a…

  13. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    PubMed Central

    te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. PMID:26509117

  14. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

    PubMed Central

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  15. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  16. Effects of Gravity on Insect Circadian Rhythmicity

    NASA Technical Reports Server (NTRS)

    Hoban-Higgins, Tana M.

    2000-01-01

    Circadian rhythms - endogenous daily rhythmic fluctuations in virtually all characteristics of life - are generated and coordinated by the circadian timing system (CTS). The CTS is synchronized to the external 24-hour day by time cues such as the light/dark cycle. In an environment without time cues, the length of an animal's day is determined by the period of its internal pacemaker (tau) and the animal is said to be free-running. All life on earth evolved under the solar day; the CTS exists as an adaptation that allows organisms to anticipate and to prepare for rhythmic environmental fluctuations. All life on earth also evolved under the force of earth's gravitational environment. While it is therefore not surprising that changes in the lighting environment affect the CTS, it is surprising that changes in the gravitational environment would do so. However, recent data from one of our laboratories using the brn-3.1 knockout mouse revealed that this model, which lacks the sensory receptor hair cells within the neurovestibular system, does not respond to exposure to a hyperdynamic environment in the same fashion as normal mice. The brn-3.1 mice did not show the expected suppression of circadian rhythmicity shown by control mice exposed to 2G. Exposure to altered ambient force environments affects the amplitude, mean and timing of circadian rhythms in species from unicellular organisms to man. In addition, there is a circadian influence on the homeostatic response to acute 2G acceleration and pulses of 2G can act as a time cue, synchronizing the CTS. This is of significance because maintenance of internal and external temporal coordination is critical for normal physiological and psychological function. Typically, during adaptation to an increased gravitational environment (+G), an initial acute reaction is followed by adaptation and, eventually, a new steady state (14-16), which can take weeks to months to establish. Until the development of space stations, exposure

  17. Effect of tube current modulation for dose estimation using a simulation tool on body CT examination.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Kobayashi, Masanao; Suzuki, Shoichi; Matsubara, Kosuke; Chida, Koichi

    2015-12-01

    The purpose of this study was to evaluate the effect of tube current modulation for dose estimation of a body computed tomography (CT) examination using a simulation tool. The authors also compared longitudinal variations in tube current values between iterative reconstruction (IR) and filtered back-projection (FBP) reconstruction algorithms. One hundred patients underwent body CT examinations. The tube current values around 10 organ regions were recorded longitudinally from tube current information. The organ and effective doses were simulated by average tube current values and longitudinal modulated tube current values. The organ doses for the bladder and breast estimated by longitudinal modulated tube current values were 20 % higher and 25 % lower than those estimated using the average tube current values, respectively. The differences in effective doses were small (mean, 0.7 mSv). The longitudinal variations in tube current values were almost the same for the IR and FBP algorithms.

  18. Illusory Changes in Body Size Modulate Body Satisfaction in a Way That Is Related to Non-Clinical Eating Disorder Psychopathology

    PubMed Central

    Preston, Catherine; Ehrsson, H. Henrik

    2014-01-01

    Historically, body size overestimation has been linked to abnormal levels of body dissatisfaction found in eating disorders. However, recently this relationship has been called into question. Indeed, despite a link between how we perceive and how we feel about our body seeming intuitive, until now lack of an experimental method to manipulate body size has meant that a causal link, even in healthy participants, has remained elusive. Recent developments in body perception research demonstrate that the perceptual experience of the body can be readily manipulated using multisensory illusions. The current study exploits such illusions to modulate perceived body size in an attempt to influence body satisfaction. Participants were presented with stereoscopic video images of slimmer and wider mannequin bodies viewed through head-mounted displays from first person perspective. Illusory ownership was induced by synchronously stroking the seen mannequin body with the unseen real body. Pre and post-illusion affective and perceptual measures captured changes in perceived body size and body satisfaction. Illusory ownership of a slimmer body resulted in participants perceiving their actual body as slimmer and giving higher ratings of body satisfaction demonstrating a direct link between perceptual and affective body representations. Change in body satisfaction following illusory ownership of a wider body, however, was related to degree of (non-clinical) eating disorder psychopathology, which can be linked to fluctuating body representations found in clinical samples. The results suggest that body perception is linked to body satisfaction and may be of importance for eating disorder symptomology. PMID:24465698

  19. Rhythmic engagement with music in infancy

    PubMed Central

    Zentner, Marcel; Eerola, Tuomas

    2010-01-01

    Humans have a unique ability to coordinate their motor movements to an external auditory stimulus, as in music-induced foot tapping or dancing. This behavior currently engages the attention of scholars across a number of disciplines. However, very little is known about its earliest manifestations. The aim of the current research was to examine whether preverbal infants engage in rhythmic behavior to music. To this end, we carried out two experiments in which we tested 120 infants (aged 5–24 months). Infants were exposed to various excerpts of musical and rhythmic stimuli, including isochronous drumbeats. Control stimuli consisted of adult- and infant-directed speech. Infants’ rhythmic movements were assessed by multiple methods involving manual coding from video excerpts and innovative 3D motion-capture technology. The results show that (i) infants engage in significantly more rhythmic movement to music and other rhythmically regular sounds than to speech; (ii) infants exhibit tempo flexibility to some extent (e.g., faster auditory tempo is associated with faster movement tempo); and (iii) the degree of rhythmic coordination with music is positively related to displays of positive affect. The findings are suggestive of a predisposition for rhythmic movement in response to music and other metrically regular sounds. PMID:20231438

  20. Seeing the body produces limb-specific modulation of skin temperature.

    PubMed

    Sadibolova, Renata; Longo, Matthew R

    2014-01-01

    Vision of the body, even when non-informative about stimulation, affects somatosensory processing. We investigated whether seeing the body also modulates autonomic control in the periphery by measuring skin temperature while manipulating vision. Using a mirror box, the skin temperature was measured from left hand dorsum while participants: (i) had the illusion of seeing their left hand, (ii) had the illusion of seeing an object at the same location or (iii) looked directly at their contralateral right hand. Skin temperature of the left hand increased when participants had the illusion of directly seeing that hand but not in the other two view conditions. In experiment 2, participants viewed directly their left or right hand, or the box while we recorded both hand dorsum temperatures. Temperature increased in the viewed hand but not the contralateral hand. These results show that seeing the body produces limb-specific modulation of thermal regulation.

  1. Circadian regulation of pineal gland rhythmicity.

    PubMed

    Borjigin, Jimo; Zhang, L Samantha; Calinescu, Anda-Alexandra

    2012-02-01

    The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity.

  2. Impact of nutrients on circadian rhythmicity

    PubMed Central

    Oosterman, Johanneke E.; Kalsbeek, Andries; la Fleur, Susanne E.

    2014-01-01

    The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock. PMID:25519730

  3. Predictors of attainment in rhythmic sportive gymnastics.

    PubMed

    Hume, P A; Hopkins, W G; Robinson, D M; Robinson, S M; Hollings, S C

    1993-12-01

    Correlates of attainment in rhythmic sportive gymnastics (RSG) were investigated in a cross-sectional study of 106 female gymnasts aged 7-27 years. Physical attributes were obtained by anthropometry and from tests of flexibility, leg power, maximum oxygen uptake and visuo-motor proficiency. Training and psychological measures were derived from self-administered questionnaires that included the Leadership Scale for Sport, Psychological Skills Inventory for Sport, General Health Questionnaire, Sport Competition Anxiety Test, and several questions on sport motivation and enjoyment. Attainment was expressed as competition grade level and mean performance score in 4 competitions. The best correlates of attainment were cumulative and current training time (r = 0.84-0.53). Age, lean body mass and composite measures of flexibility, leg power and visuo-motor proficiency were also significant correlates of attainment (r = 0.69-0.29), as were coach democratic and coach social behaviours (r = 0.41-0.28). The significant positive psychometric correlates of attainment were mental preparation, motivation by creativity, and several dimensions of enjoyment (r = 0.35-0.26); significant negative correlates were recent anxiety-depression and enjoyment of training (r = -0.34-(-)0.32). No previous study has identified the relative contributions of such a comprehensive range of physical, psychological and training measures to performance of a sport.

  4. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    PubMed

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

  5. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change

    PubMed Central

    Carey, Nicholas; Sigwart, Julia D.

    2014-01-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH (‘ocean acidification’). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. PMID:25122741

  6. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    PubMed

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. PMID:25122741

  7. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  8. Body Fat and Physical Activity Modulate the Association Between Sarcopenia and Osteoporosis in Elderly Korean Women

    PubMed Central

    Lee, Inhwan; Cho, Jinkyung; Jin, Youngyun; Ha, Changduk; Kim, Taehee; Kang, Hyunsik

    2016-01-01

    This study examined whether modifiable lifestyle factors, such as body fatness and physical activity, modulate the association between sarcopenia and osteoporosis. In a cross-sectional design, 269 postmenopausal women, aged 65 years and older, underwent dual-energy X-ray absorptiometry (DEXA) scans to measure their body fat percentage, total fat mass, total fat-free mass, appendicular lean mass, bone mineral density (BMD) and bone mineral content. The participants wore a uniaxial accelerometer for seven consecutive days to quantify daily physical activity. The collected data were analyzed using descriptive statistics, Pearson correlation, and a binary logistic regression. Pearson correlation analyses showed that total neck/femur BMD was positively associated with weight-adjusted appendicular skeletal muscle mass (ASM) and objectively-measured physical activities. ASM was positively associated with body fatness. Binary logistic regression analyses showed that the odds ratio (OR) of sarcopenia for osteopenia and/or osteoporosis was substantially attenuated but remained marginally significant when adjusted for age and postmenopausal period (OR = 2.370 and p = 0.050). However, the OR was no longer significant when additionally adjusted for body fatness (OR = 2.218 and p = 0.117) and physical activity (OR = 1.240 and p = 0.448). The findings of the study showed that, in this sample of elderly Korean women, modifiable lifestyle risk factors such as body fatness and physical inactivity played an important role in determining the association between sarcopenia and osteopenia/osteoporosis. Key points Osteoporosis and sarcopenia are major health conditions responsible for an increased risk of bone fractures and reduced functional capacity, respectively, in older adults. We investigated whether lifestyle-related risk factors modulate the association between sarcopenia and osteoporosis in older Korean adults. The current findings of the study suggest that physical activity and

  9. Feeling numb: temperature, but not thermal pain, modulates feeling of body ownership.

    PubMed

    Kammers, Marjolein P M; Rose, Katy; Haggard, Patrick

    2011-04-01

    There is an important link between pain, regulation of body temperature, and body ownership. For example, an altered feeling of body ownership - due to either chronic pain or "rubber-hand illusions" (RHI) - is associated with reduced temperature of the affected limb. However, the causal relationships within this triad are not well understood. We therefore investigated whether external manipulation of body temperature can influence body ownership. We used a thermode to make the right hand of healthy participants either painfully cold, cool, neutral, warm or painfully hot. Next, we induced the RHI and investigated its effects on the perceived position of the hand, on the subjective feeling of body ownership, and on physical changes in hand temperature. We replicate previous reports that inducing the RHI produces a decrease in limb temperature. Importantly, we demonstrate for the first time a causal effect in the opposite direction. Cooling down the participant's hand increased the strength of the RHI, while warming the hand externally decreased the strength of the RHI. Finally, we show that the painful extremes of these temperatures do not modulate the RHI. Hence, while thermosensation is an important driver of body ownership, pain seems to bypass the multisensory mechanisms of embodiment.

  10. Factors associated with the modulation of pain by visual distortion of body size

    PubMed Central

    Osumi, Michihiro; Imai, Ryota; Ueta, Kozo; Nakano, Hideki; Nobusako, Satoshi; Morioka, Shu

    2014-01-01

    Modulation of pain using visual distortion of body size (VDBS) has been the subject of various reports. However, the mechanism underlying the effect of VDBS on pain has been less often studied. In the present study, factors associated with modulation of pain threshold by VDBS were investigated. Visual feedback in the form of a magnified image of the hand was provided to 44 healthy adults to examine changes in pain. In participants with a higher pain threshold when visual feedback of a magnified image of the hand was provided, the two-point discrimination threshold decreased. In contrast, participants with a lower pain threshold with visual feedback of a magnified image of the hand experienced unpleasant emotions toward the magnified image of the hand. Interestingly, this emotional reaction was strongly associated with negative body consciousness in several subjects. These data suggested an analgesic effect of visual feedback in the form of a magnified image of the hand is only when tactile perception is vivid and the emotional reaction toward the magnified image is moderate. The results also suggested that negative body consciousness is important for the modulation of pain using VDBS. PMID:24688463

  11. Motor control of rhythmic dance from a dynamical systems perspective: a review.

    PubMed

    Miura, Akito; Fujii, Shinya; Yamamoto, Yuji; Kudo, Kazutoshi

    2015-03-01

    While dancers and dance educators express great interest in motor control as it relates to rhythmic dance, the subject remains largely uninvestigated. In order to advance our understanding of motor control, a theoretical framework called the dynamical systems approach (DSA) has been used. The DSA was originally developed to describe mathematically the principle of synchronization patterns in nature and their change over time. In recent decades, researchers studying human motor control have attempted to describe the synchronization of rhythmic movement using a DSA. More recently, this approach has been applied specifically to rhythmic dance movements. A series of studies that used the DSA revealed that when people synchronize rhythmic movement of a body part 1. with a different body part, 2. with other people's movement, or 3. with an auditory beat with some phase differences, unintentional and autonomous entrainment to a specific synchronization pattern occurs. However, through practice dancers are able to overcome such entrainment and dance freely. These findings provide practical suggestions for effective ways of training in dance education. The DSA can potentially be an effective tool for furthering our understanding of the motor control utilized in rhythmic dance. PMID:25741780

  12. Motor control of rhythmic dance from a dynamical systems perspective: a review.

    PubMed

    Miura, Akito; Fujii, Shinya; Yamamoto, Yuji; Kudo, Kazutoshi

    2015-03-01

    While dancers and dance educators express great interest in motor control as it relates to rhythmic dance, the subject remains largely uninvestigated. In order to advance our understanding of motor control, a theoretical framework called the dynamical systems approach (DSA) has been used. The DSA was originally developed to describe mathematically the principle of synchronization patterns in nature and their change over time. In recent decades, researchers studying human motor control have attempted to describe the synchronization of rhythmic movement using a DSA. More recently, this approach has been applied specifically to rhythmic dance movements. A series of studies that used the DSA revealed that when people synchronize rhythmic movement of a body part 1. with a different body part, 2. with other people's movement, or 3. with an auditory beat with some phase differences, unintentional and autonomous entrainment to a specific synchronization pattern occurs. However, through practice dancers are able to overcome such entrainment and dance freely. These findings provide practical suggestions for effective ways of training in dance education. The DSA can potentially be an effective tool for furthering our understanding of the motor control utilized in rhythmic dance.

  13. Does Human Milk Modulate Body Composition in Late Preterm Infants at Term-Corrected Age?

    PubMed Central

    Giannì, Maria Lorella; Consonni, Dario; Liotto, Nadia; Roggero, Paola; Morlacchi, Laura; Piemontese, Pasqua; Menis, Camilla; Mosca, Fabio

    2016-01-01

    (1) Background: Late preterm infants account for the majority of preterm births and are at risk of altered body composition. Because body composition modulates later health outcomes and human milk is recommended as the normal method for infant feeding, we sought to investigate whether human milk feeding in early life can modulate body composition development in late preterm infants; (2) Methods: Neonatal, anthropometric and feeding data of 284 late preterm infants were collected. Body composition was evaluated at term-corrected age by air displacement plethysmography. The effect of human milk feeding on fat-free mass and fat mass content was evaluated using multiple linear regression analysis; (3) Results: Human milk was fed to 68% of the infants. According to multiple regression analysis, being fed any human milk at discharge and at  term-corrected and being fed exclusively human milk at term-corrected age were positively associated with fat-free mass content(β = −47.9, 95% confidence interval (CI) = −95.7; −0.18; p = 0.049; β = −89.6, 95% CI = −131.5; −47.7; p < 0.0001; β = −104.1, 95% CI = −151.4; −56.7, p < 0.0001); (4) Conclusion: Human milk feeding appears to be associated with fat-free mass deposition in late preterm infants. Healthcare professionals should direct efforts toward promoting and supporting breastfeeding in these vulnerable infants. PMID:27782098

  14. Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspective.

    PubMed

    Pfeiffer, Christian; Schmutz, Valentin; Blanke, Olaf

    2014-12-01

    Self-consciousness is based on multisensory signals from the body. In full-body illusion (FBI) experiments, multisensory conflict was used to induce changes in three key aspects of bodily self-consciousness (BSC): self-identification (which body 'I' identify with), self-location (where 'I' am located), and first-person perspective (from where 'I' experience the world; 1PP). Here, we adapted a previous FBI protocol in which visuotactile stroking was administered by a robotic device (tactile stroking) and simultaneously rendered on the back of a virtual body (visual stroking) that participants viewed on a head-mounted display as if filmed from a posterior viewpoint of a camera. We compared the effects of two different visuospatial viewpoints on the FBI and thereby on these key aspects of BSC. During control manipulations, participants saw a no-body object instead of a virtual body (first experiment) or received asynchronous versus synchronous visuotactile stroking (second experiment). Results showed that within-subjects visuospatial viewpoint manipulations affected the subjective 1PP ratings if a virtual body was seen but had no effect for viewing a non-body object. However, visuospatial viewpoint had no effect on self-identification, but depended on the viewed object and visuotactile synchrony. Self-location depended on visuospatial viewpoint (first experiment) and visuotactile synchrony (second experiment). Our results show that the visuospatial viewpoint from which the virtual body is seen during FBIs modulates the subjective 1PP and that such viewpoint manipulations contribute to spatial aspects of BSC. We compare the present data with recent data revealing vestibular contributions to the subjective 1PP and discuss the multisensory nature of BSC and the subjective 1PP. PMID:25200173

  15. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice

    PubMed Central

    Svensson, Kristoffer; Albert, Verena; Cardel, Bettina; Salatino, Silvia; Handschin, Christoph

    2016-01-01

    Ketone bodies are crucial energy substrates during states of low carbohydrate availability. However, an aberrant regulation of ketone body homeostasis can lead to complications such as diabetic ketoacidosis. Exercise and diabetes affect systemic ketone body homeostasis, but the regulation of ketone body metabolism is still enigmatic. Using mice with either a knockout or overexpression of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle, we show that PGC-1α regulates ketolytic gene transcription in muscle. Furthermore, ketone body homeostasis of these mice was investigated during fasting, exercise, ketogenic diet feeding and after streptozotocin injection. In response to these ketogenic stimuli, we show that modulation of PGC-1α levels in muscle affects systemic ketone body homeostasis. Moreover, our data demonstrate that skeletal muscle PGC-1α is necessary for the enhanced ketolytic capacity in response to exercise training and overexpression of PGC-1α in muscle enhances systemic ketolytic capacity and is sufficient to ameliorate diabetic hyperketonemia in mice. Using cultured myotubes, we also show that the transcription factor estrogen related receptor α (ERRα) is a partner of PGC-1α in the regulation of ketolytic gene transcription. Collectively, these results demonstrate a central role of skeletal muscle PGC-1α in the transcriptional regulation of systemic ketolytic capacity. PMID:26849960

  16. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    SciTech Connect

    Kay, Steve A.

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  17. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect.

    PubMed

    Llinás, Rodolfo; Urbano, Francisco J; Leznik, Elena; Ramírez, Rey R; van Marle, Hein J F

    2005-06-01

    Brain function is fundamentally related in the most general sense to the richness of thalamocortical interconnectivity, and in particular to the rhythmic oscillatory properties of thalamocortical loops. Such rhythmicity is involved in the genesis of cognition, in the sleep-wake cycle, and in several neurological and psychiatric disorders. The role of GABA-mediated transmission in regulating these functional states is addressed here. At the cortical level, inhibition determines the spread of cortical activation by sculpting the precise activity patterns that underlie the details of cognition and motor control. At the thalamic level, GABA-mediated inhibition modulates and resets distribution of the ongoing thalamocortical rhythmic oscillations that bind multisensory inputs into a single cognitive experience and regulate arousal levels.

  18. An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants.

    PubMed

    Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry

    2016-01-01

    Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias-called the Iambic-Trochaic Law (ITL)-has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants' grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition. PMID:27378887

  19. An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants

    PubMed Central

    Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry

    2016-01-01

    Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)–has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants’ grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition. PMID:27378887

  20. Orexinergic neuron numbers in three species of African mole rats with rhythmic and arrhythmic chronotypes.

    PubMed

    Bhagwandin, A; Gravett, N; Hemingway, J; Oosthuizen, M K; Bennett, N C; Siegel, J M; Manger, P R

    2011-12-29

    In the present study, orexinergic cell bodies within the brains of rhythmic and arrhythmic circadian chronotypes from three species of African mole rat (Highveld mole rat-Cryptomys hottentotus pretoriae, Ansell's mole rat--Fukomys anselli and the Damaraland mole rat--Fukomys damarensis) were identified using immunohistochemistry for orexin-A. Immunopositive orexinergic (Orx+) cell bodies were stereologically assessed and absolute numbers of orexinergic cell bodies were determined for the distinct circadian chronotypes of each species of mole rat examined. The aim of the study was to investigate whether the absolute numbers of identified orexinergic neurons differs between distinct circadian chronotypes with the hypothesis of elevated hypothalamic orexinergic neurons in the arrhythmic chronotypes compared with the rhythmic chronotypes. We found statistically significant differences between the circadian chronotypes ofF. anselli, where the arrhythmic group had higher mean numbers of hypothalamic orexin neurons compared with the rhythmic group. These differences were observed when the raw data was compared and when the raw data was corrected for body mass (M(b)) and brain mass (M(br)). For the two other species investigated, no significant differences were noted between the chronotypes, although a statistically significant difference was noted between all rhythmic and arrhythmic individuals of the current study when the counts of orexin neurons were corrected for M(b)--the arrhythmic individuals had larger numbers of orexin cells.

  1. [Role of rhythmicity in infant development].

    PubMed

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the

  2. [Role of rhythmicity in infant development].

    PubMed

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the

  3. Eye-movement rhythmicity and reading comprehension.

    PubMed

    Fletcher, J

    1993-12-01

    The purpose of these two studies was to examine the rhythmical patterns displayed by subjects with and without reading disabilities while they were reading (Study 1), and to vary rhythmicity through priming and observe the effects on parsing ability using eye-movement and comprehension measures (Study 2). Rhythmicity during silent reading was operationalized by transcribing eye-movement measures into pitch, rhythm, and rests. In Study 1, 17 subjects with reading disabilities and 15 control subjects (M age = 15, male = 60%) parsed 20 flawed and control sentences. In Study 2, 35 control subjects (M age = 21, male = 43%) parsed 9 phrases from familiar songs under one of three rhythm-priming conditions. Results (Study 1) indicated significant differences in rhythm patterns. Subjects with reading disabilities exhibited rhythm variability, unpredictability, and lethargic tempos. In Study 2, significant differences across priming conditions were found, with primed subjects exhibiting improved parsing and comprehension. Rhythm may be an organizational substrate for syntax.

  4. When your arm becomes mine: pathological embodiment of alien limbs using tools modulates own body representation.

    PubMed

    Garbarini, Francesca; Fossataro, Carlotta; Berti, Anna; Gindri, Patrizia; Romano, Daniele; Pia, Lorenzo; della Gatta, Francesco; Maravita, Angelo; Neppi-Modona, Marco

    2015-04-01

    Previous evidence has shown that active tool-use can reshape one's own body schema, extend peripersonal space and modulate the representation of related body parts. Here we investigate the effect of tool-use training on length representation of the contralesional forearm in brain-damaged hemiplegic patients who manifested a pathological embodiment of other people body parts. Four patients and 20 aged-matched healthy-controls were asked to estimate the mid-point of their contralesional forearm before and after 15 min of tool-use training (i.e. retrieving targets with a garbage plier). In the case of patients, training was always performed by the examiner's (alien) arm acting in two different positions, aligned (where the pathological embodiment occurs; E+ condition) or misaligned (where the pathological embodiment does not occur; E- condition) relative to the patients' shoulder. Healthy controls performed tool-use training either with their own arm (action condition) or observing the examiner's arm performing the task (observation condition), handling (observation with-tool condition) or not (observation without-tool condition) a similar tool. Crucially, in the E+ condition, when patients were convinced to perform the tool-use training with their own paralyzed arm, a significant overestimation effect was found (as in the Action condition with normal subjects): patients mislocated their forearm midpoint more proximally to the hand in the post- than in the pre-training phase. Conversely, in the E- condition, they did not show any overestimation effect, similarly to healthy subjects in the observation condition (neither in the with-tool nor in the without-tool condition significant overestimation effects were found). These findings show the existence of a tight link between spatial, motor and bodily representations and provide strong evidence that a pathological sense of body ownership can extend to intentional motor processes and modulate the sensory map of action

  5. When your arm becomes mine: pathological embodiment of alien limbs using tools modulates own body representation.

    PubMed

    Garbarini, Francesca; Fossataro, Carlotta; Berti, Anna; Gindri, Patrizia; Romano, Daniele; Pia, Lorenzo; della Gatta, Francesco; Maravita, Angelo; Neppi-Modona, Marco

    2015-04-01

    Previous evidence has shown that active tool-use can reshape one's own body schema, extend peripersonal space and modulate the representation of related body parts. Here we investigate the effect of tool-use training on length representation of the contralesional forearm in brain-damaged hemiplegic patients who manifested a pathological embodiment of other people body parts. Four patients and 20 aged-matched healthy-controls were asked to estimate the mid-point of their contralesional forearm before and after 15 min of tool-use training (i.e. retrieving targets with a garbage plier). In the case of patients, training was always performed by the examiner's (alien) arm acting in two different positions, aligned (where the pathological embodiment occurs; E+ condition) or misaligned (where the pathological embodiment does not occur; E- condition) relative to the patients' shoulder. Healthy controls performed tool-use training either with their own arm (action condition) or observing the examiner's arm performing the task (observation condition), handling (observation with-tool condition) or not (observation without-tool condition) a similar tool. Crucially, in the E+ condition, when patients were convinced to perform the tool-use training with their own paralyzed arm, a significant overestimation effect was found (as in the Action condition with normal subjects): patients mislocated their forearm midpoint more proximally to the hand in the post- than in the pre-training phase. Conversely, in the E- condition, they did not show any overestimation effect, similarly to healthy subjects in the observation condition (neither in the with-tool nor in the without-tool condition significant overestimation effects were found). These findings show the existence of a tight link between spatial, motor and bodily representations and provide strong evidence that a pathological sense of body ownership can extend to intentional motor processes and modulate the sensory map of action

  6. Rhythmic movement disorder (head banging) in an adult during rapid eye movement sleep.

    PubMed

    Anderson, Kirstie N; Smith, Ian E; Shneerson, John M

    2006-06-01

    Sleep-related rhythmic movements (head banging or body rocking) are extremely common in normal infants and young children, but less than 5% of children over the age of 5 years old exhibit these stereotyped motor behaviors. They characteristically occur during drowsiness or sleep onset rather than in deep sleep or rapid eye movement (REM) sleep. We present a 27-year-old man with typical rhythmic movement disorder that had persisted into adult life and was restricted to REM sleep. This man is the oldest subject with this presentation reported to date and highlights the importance of recognizing this nocturnal movement disorder when it does occur in adults.

  7. Neural adaptation in the generation of rhythmic behavior.

    PubMed

    Pearson, K G

    2000-01-01

    Motor systems can adapt rapidly to changes in external conditions and to switching of internal goals. They can also adapt slowly in response to training, alterations in the mechanics of the system, and any changes in the system resulting from injury. This article reviews the mechanisms underlying short- and long-term adaptation in rhythmic motor systems. The neuronal networks underlying the generation of rhythmic motor patterns (central pattern generators; CPGs) are extremely flexible. Neuromodulators, central commands, and afferent signals all influence the pattern produced by a CPG by altering the cellular and synaptic properties of individual neurons and the coupling between different populations of neurons. This flexibility allows the generation of a variety of motor patterns appropriate for the mechanical requirements of different forms of a behavior. The matching of motor output to mechanical requirements depends on the capacity of pattern-generating networks to adapt to slow changes in body mechanics and persistent errors in performance. Afferent feedback from body and limb proprioceptors likely plays an important role in driving these long-term adaptive processes.

  8. An unusual case of rhythmic movement disorder.

    PubMed

    Kaneda, R; Furuta, H; Kazuto, K; Arayama, K; Sano, J; Koshino, Y

    2000-06-01

    Rhythmic movement disorder is one of the sleep-wake transition disorders listed in the International Classification of Sleep Disorders. According to this classification, the condition commonly occurs in infants and toddlers, and persistence beyond 4 years of age is unusual. Recently, we encountered a case in which rhythmic movement disorder persisted up until the age of 12 years with spikes registering on the sleep electroencephalogram. Epileptic seizure was ruled out because of the characteristic rolling movement, absence of any other epileptic symptoms (e.g. vocalization and tonic-clonic seizure) and cessation as a result of removal of the blanket.

  9. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  10. Daily rhythmicity and hibernation in the Anatolian ground squirrel under natural and laboratory conditions.

    PubMed

    Kart Gür, Mutlu; Refinetti, Roberto; Gür, Hakan

    2009-02-01

    We studied daily rhythmicity of body temperature (T(b)) before and during hibernation in Anatolian ground squirrels (Spermophilus xanthoprymnus) under natural and laboratory conditions using surgically implanted temperature loggers. Under both conditions, robust daily T(b) rhythmicity with parameters comparable to those of other ground squirrel species was observed before but not during hibernation. Euthermic animals had robust daily T(b) rhythms with a mean of 37.0 degrees C and a range of excursion of approximately 4 degrees C. No T(b) rhythm was detected during torpor bouts, either because T(b) rhythmicity was absent or because the daily range of excursion was smaller than 0.2 degrees C. The general patterns of hibernation that we observed in Anatolian ground squirrels were similar to those previously observed by other investigators in other species of ground squirrels.

  11. Volumetric-Modulated Arc Therapy for Stereotactic Body Radiotherapy of Lung Tumors: A Comparison With Intensity-Modulated Radiotherapy Techniques

    SciTech Connect

    Holt, Andrea; Vliet-Vroegindeweij, Corine van; Mans, Anton; Belderbos, Jose S.; Damen, Eugene M.F.

    2011-12-01

    Purpose: To demonstrate the potential of volumetric-modulated arc therapy (VMAT) compared with intensity-modulated radiotherapy (IMRT) techniques with a limited number of segments for stereotactic body radiotherapy (SBRT) for early-stage lung cancer. Methods and Materials: For a random selection of 27 patients eligible for SBRT, coplanar and noncoplanar IMRT and coplanar VMAT (using SmartArc) treatment plans were generated in Pinnacle{sup 3} and compared. In addition, film measurements were performed using an anthropomorphic phantom to evaluate the skin dose for the different treatment techniques. Results: Using VMAT, the delivery times could be reduced to an average of 6.6 min compared with 23.7 min with noncoplanar IMRT. The mean dose to the healthy lung was 4.1 Gy for VMAT and noncoplanar IMRT and 4.2 Gy for coplanar IMRT. The volume of healthy lung receiving >5 Gy and >20 Gy was 18.0% and 5.4% for VMAT, 18.5% and 5.0% for noncoplanar IMRT, and 19.4% and 5.7% for coplanar IMRT, respectively. The dose conformity at 100% and 50% of the prescribed dose of 54 Gy was 1.13 and 5.17 for VMAT, 1.11 and 4.80 for noncoplanar IMRT and 1.12 and 5.31 for coplanar IMRT, respectively. The measured skin doses were comparable for VMAT and noncoplanar IMRT and slightly greater for coplanar IMRT. Conclusions: Coplanar VMAT for SBRT for early-stage lung cancer achieved plan quality and skin dose levels comparable to those using noncoplanar IMRT and slightly better than those with coplanar IMRT. In addition, the delivery time could be reduced by {<=}70% with VMAT.

  12. Encoding and Retrieval During Bimanual Rhythmic Coordination

    ERIC Educational Resources Information Center

    Shockley, Kevin; Turvey, Michael T.

    2005-01-01

    In 2 experiments, bimanual 1:1 rhythmic coordination was performed concurrently with encoding or retrieval of word lists. Effects of divided attention (DA) on coordination were indexed by changes in mean relative phase and recurrence measures of shared activity between the 2 limbs. Effects of DA on memory were indexed by deficits in recall…

  13. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia.

    PubMed

    Murase, Takatoshi; Yokoi, Yuka; Misawa, Koichi; Ominami, Hideo; Suzuki, Yasuto; Shibuya, Yusuke; Hase, Tadashi

    2012-06-01

    Postprandial energy metabolism, including postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia, is related to the risk for developing obesity and CVD. In the present study, we examined the effects of polyphenols purified from coffee (coffee polyphenols (CPP)) on postprandial carbohydrate and lipid metabolism, and whole-body substrate oxidation in C57BL/6J mice. In mice that co-ingested CPP with a lipid-carbohydrate (sucrose or starch)-mixed emulsion, the respiratory quotient determined by indirect calorimetry was significantly lower than that in control mice, whereas there was no difference in VO2 (energy expenditure), indicating that CPP modulates postprandial energy partitioning. CPP also suppressed postprandial increases in plasma glucose, insulin, glucose-dependent insulinotropic polypeptide and TAG levels. Inhibition experiments on digestive enzymes revealed that CPP inhibits maltase and sucrase, and, to a lesser extent, pancreatic lipase in a concentration-dependent manner. Among the nine kinds of polyphenols (caffeoyl quinic acids (CQA), di-CQA, feruloyl quinic acids (FQA)) contained in CPP, di-CQA showed more potent inhibitory activity than CQA or FQA on these digestive enzymes, suggesting a predominant role of di-CQA in the regulation of postprandial energy metabolism. These results suggest that CPP modulates whole-body substrate oxidation by suppressing postprandial hyperglycaemia and hyperinsulinaemia, and these effects are mediated by inhibiting digestive enzymes.

  14. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion

    NASA Astrophysics Data System (ADS)

    Astley, Henry; Gong, Chaohui; Travers, Matt; Serrano, Miguel; Vela, Patricio; Choset, Howie; Mendelson, Joseph, III; Hu, David; Goldman, Daniel

    2015-03-01

    To simplify control of high degree of freedom bodies, organisms may target a set of simple shape changes (a ``template''). Recent work has revealed that the locomotion of sidewinder rattlesnakes can be described by a combination of horizontal and vertical body waves with a phase difference of +/- π/2, representing a possible control template. These animals display high maneuverability which we hypothesize emerges from their ability to independently modulate these waves. Snakes used two distinct turning methods which we term differential turning (24° turn per cycle) and reversal turning (80°). Kinematic data suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave while in reversal turning they shifted the phase of the vertical wave by π. We tested these mechanisms in the robot, generating differential and reversal turning. Further manipulations of the two-wave system revealed a third turning mode, ``frequency turning,'' not observed in biological snakes which allowed the robot to execute large (127°) in-place turns. The two-wave system enables unprecedented maneuverability of high degree-of-freedom systems, revealing a practical benefits of the search for control templates. Zoo Atlanta

  15. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing.

    PubMed

    Leong, Victoria; Goswami, Usha

    2014-02-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words

  16. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion

    PubMed Central

    Astley, Henry C.; Gong, Chaohui; Dai, Jin; Travers, Matthew; Serrano, Miguel M.; Vela, Patricio A.; Choset, Howie; Mendelson, Joseph R.; Hu, David L.; Goldman, Daniel I.

    2015-01-01

    Many organisms move using traveling waves of body undulation, and most work has focused on single-plane undulations in fluids. Less attention has been paid to multiplane undulations, which are particularly important in terrestrial environments where vertical undulations can regulate substrate contact. A seemingly complex mode of snake locomotion, sidewinding, can be described by the superposition of two waves: horizontal and vertical body waves with a phase difference of ±90°. We demonstrate that the high maneuverability displayed by sidewinder rattlesnakes (Crotalus cerastes) emerges from the animal’s ability to independently modulate these waves. Sidewinder rattlesnakes used two distinct turning methods, which we term differential turning (26° change in orientation per wave cycle) and reversal turning (89°). Observations of the snakes suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave whereas in reversal turning they shifted the phase of the vertical wave by 180°. We tested these mechanisms using a multimodule snake robot as a physical model, successfully generating differential and reversal turning with performance comparable to that of the organisms. Further manipulations of the two-wave system revealed a third turning mode, frequency turning, not observed in biological snakes, which produced large (127°) in-place turns. The two-wave system thus functions as a template (a targeted motor pattern) that enables complex behaviors in a high-degree-of-freedom system to emerge from relatively simple modulations to a basic pattern. Our study reveals the utility of templates in understanding the control of biological movement as well as in developing control schemes for limbless robots. PMID:25831489

  17. Automatic recognition and scoring of olympic rhythmic gymnastic movements.

    PubMed

    Díaz-Pereira, M Pino; Gómez-Conde, Iván; Escalona, Merly; Olivieri, David N

    2014-04-01

    We describe a conceptually simple algorithm for assigning judgement scores to rhythmic gymnastic movements, which could improve scoring objectivity and reduce judgemental bias during competitions. Our method, implemented as a real-time computer vision software, takes a video shot or a live performance video stream as input and extracts detailed velocity field information from body movements, transforming them into specialized spatio-temporal image templates. The collection of such images over time, when projected into a velocity covariance eigenspace, trace out unique but similar trajectories for a particular gymnastic movement type. By comparing separate executions of the same atomic gymnastic routine, our method assigns a quality judgement score that is related to the distance between the respective spatio-temporal trajectories. For several standard gymnastic movements, the method accurately assigns scores that are comparable to those assigned by expert judges. We also describe our rhythmic gymnastic video shot database, which we have made freely available to the human movement research community. The database can be obtained at http://www.milegroup.net/apps/gymdb/. PMID:24502991

  18. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory

    PubMed Central

    Tendler, Alex; Wagner, Shlomo

    2015-01-01

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7–10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3–7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes. DOI: http://dx.doi.org/10.7554/eLife.03614.001 PMID:25686218

  19. Modulation of the face- and body-selective visual regions by the motion and emotion of point-light face and body stimuli.

    PubMed

    Atkinson, Anthony P; Vuong, Quoc C; Smithson, Hannah E

    2012-01-16

    Neural regions selective for facial or bodily form also respond to facial or bodily motion in highly form-degraded point-light displays. Yet it is unknown whether these face-selective and body-selective regions are sensitive to human motion regardless of stimulus type (faces and bodies) or to the specific motion-related cues characteristic of their proprietary stimulus categories. Using fMRI, we show that facial and bodily motions activate selectively those populations of neurons that code for the static structure of faces and bodies. Bodily (vs. facial) motion activated body-selective EBA bilaterally and right but not left FBA, irrespective of whether observers judged the emotion or color-change in point-light angry, happy and neutral stimuli. Facial (vs. bodily) motion activated face-selective right and left FFA, but only during emotion judgments for right FFA. Moreover, the strength of responses to point-light bodies vs. faces positively correlated with voxelwise selectivity for static bodies but not faces, whereas the strength of responses to point-light faces positively correlated with voxelwise selectivity for static faces but not bodies. Emotional content carried by point-light form-from-motion cues was sufficient to enhance the activity of several regions, including bilateral EBA and right FFA and FBA. However, although the strength of emotional modulation in right and left EBA by point-light body movements was related to the degree of voxelwise selectivity to static bodies but not static faces, there was no evidence that emotional modulation in fusiform cortex occurred in a similarly stimulus category-selective manner. This latter finding strongly constrains the claim that emotionally expressive movements modulate precisely those neuronal populations that code for the viewed stimulus category. PMID:21924368

  20. Volumetric Arc Intensity-Modulated Therapy for Spine Body Radiotherapy: Comparison With Static Intensity-Modulated Treatment

    SciTech Connect

    Wu, Q. Jackie; Yoo, Sua; Kirkpatrick, John P.; Thongphiew, Danthai; Yin Fangfang

    2009-12-01

    Purpose: This clinical study evaluates the feasibility of using volumetric arc-modulated treatment (VMAT) for spine stereotactic body radiotherapy (SBRT) to achieve highly conformal dose distributions that spare adjacent organs at risk (OAR) with reduced treatment time. Methods and Materials: Ten spine SBRT patients were studied retrospectively. The intensity-modulated radiotherapy (IMRT) and VMAT plans were generated using either one or two arcs. Planning target volume (PTV) dose coverage, OAR dose sparing, and normal tissue integral dose were measured and compared. Differences in treatment delivery were also analyzed. Results: The PTV DVHs were comparable between VMAT and IMRT plans in the shoulder (D{sub 99%}-D{sub 90%}), slope (D{sub 90%}-D{sub 10%}), and tail (D{sub 10%}-D{sub 1%}) regions. Only VMAT{sub 2arc} had a better conformity index than IMRT (1.09 vs. 1.15, p = 0.007). For cord sparing, IMRT was the best, and VMAT{sub 1arc} was the worst. Use of IMRT achieved greater than 10% more D{sub 1%} sparing for six of 10 cases and 7% to 15% more D{sub 10%} sparing over the VAMT{sub 1arc}. The differences between IMRT and VAMT{sub 2arc} were smaller and statistically nonsignificant at all dose levels. The differences were also small and statistically nonsignificant for other OAR sparing. The mean monitor units (MUs) were 8711, 7730, and 6317 for IMRT, VMAT{sub 1arc}, and VMAT{sub 2arc} plans, respectively, with a 26% reduction from IMRT to VMAT{sub 2arc}. The mean treatment time was 15.86, 8.56, and 7.88 min for IMRT, VMAT{sub 1arc,} and VMAT{sub 2arc}. The difference in integral dose was statistically nonsignificant. Conclusions: Although VMAT provided comparable PTV coverage for spine SBRT, 1arc showed significantly worse spinal cord sparing compared with IMRT, whereas 2arc was comparable to IMRT. Treatment efficiency is substantially improved with the VMAT.

  1. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?

    PubMed

    Stevens, Richard G; Zhu, Yong

    2015-05-01

    Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution. PMID:25780233

  2. Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem?

    PubMed Central

    Stevens, Richard G.; Zhu, Yong

    2015-01-01

    Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution. PMID:25780233

  3. Rhythmic control of endocannabinoids in the rat pineal gland.

    PubMed

    Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner

    2015-01-01

    Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.

  4. The awareness of body orientation modulates the perception of visual vertical.

    PubMed

    Barra, Julien; Pérennou, Dominic; Thilo, Kail V; Gresty, Michael A; Bronstein, Adolfo M

    2012-08-01

    It is established that the body position influences verticality perception. In contrast, the possible influence of the awareness of the body orientation on verticality perception has never been investigated. This hypothesis, explored in the present study, is supported by the role played by the parietal cortex and the insula in both body position awareness and verticality perception. Nine subjects were asked to estimate the direction of the visual vertical (VV) by 12 adjustments of a luminous line in three conditions: (1) a control condition (subjects were upright and aware of their position), (2) a condition of congruence between the lateral body tilt and the awareness of this tilt, and (3) a condition of dissociation of subjective and objective orientations (tilted subjects who felt upright). The dissociation between objective and subjective orientations was obtained by inducing experimentally a postural vertical (PV) bias through 5 min of lateral body tilt at 30° in darkness in a motorized flight simulator (mean 8.8° ± 4; min 6.2°; max 17.4°). VV orientation and variability were measured (expressed below in this order). As compared to the upright condition (0.3° ± 0.2; 0.8° ± 0.5), subjects showed similar VV orientation (0.1° ± 0.6; p=0.82) but an increased variability (1.4°±0.5; p<0.001) when tilted and aware of their tilt. In contrast, when they were tilted but felt upright, VV was biased in the direction of body tilt (2°±0.5; p<0.005) without increase of variability (0.9° ± 0.5; p=0.7). Our study reveals that the awareness of body orientation modulates verticality representation, which means that in addition to sensory integration, mental processes play also a role in the sense of verticality. We propose a novel model of verticality representation, based both on bottom-up and top-down processes.

  5. Dosimetric aspects of inverse-planned modulated-arc total-body irradiation

    SciTech Connect

    Held, Mareike; Kirby, Neil; Morin, Olivier; Pouliot, Jean

    2012-08-15

    Purpose: To develop optimal beam parameters and to verify the dosimetric aspects of the recently developed modulated-arc total-body irradiation (MATBI) technique, which delivers an inverse-planned dose to the entire body using gantry rotation. Methods: The patient is positioned prone and supine underneath the gantry at about 2 m source-to-surface distance (SSD). Then, up to 28 beams irradiate the patient from different gantry angles. Based on full-body computed-tomography (CT) images of the patient, the weight of each beam is optimized, using inverse planning, to create a uniform body dose. This study investigates how to best simulate patients and the ideal beam setup parameters, such as field size, number of beams, and beam geometry, for treatment time and dose homogeneity. In addition, three anthropomorphic water phantoms were constructed and utilized to verify the accuracy of dose delivery, with both diode array and ion chamber measurements. Furthermore, to improve the accuracy of the new technique, a beam model is created specifically for the extended-SSD positioning for MATBI. Results: Low dose CT scans can be utilized for dose calculations without affecting the accuracy. The largest field size of 40 Multiplication-Sign 40 cm{sup 2} was found to deliver the most uniform dose in the least amount of time. Moreover, a higher number of beams improves dose homogeneity. The average dose discrepancy between ion chamber measurements and extended-SSD beam model calculations was 1.2%, with the largest discrepancy being 3.2%. This average dose discrepancy was 1.4% with the standard beam model for delivery at isocenter. Conclusions: The optimum beam setup parameters, regarding dose uniformity and treatment duration, are laid out for modulated-arc TBI. In addition, the presented dose measurements show that these treatments can be delivered accurately. These measurements also indicated that a new beam model did not significantly improve the accuracy of dose calculations

  6. C. elegans serine-threonine kinase KIN-29 modulates TGFβ signaling and regulates body size formation

    PubMed Central

    Maduzia, Lisa L; Roberts, Andrew F; Wang, Huang; Lin, Xia; Chin, Lena J; Zimmerman, Cole M; Cohen, Stephen; Feng, Xin-Hua; Padgett, Richard W

    2005-01-01

    Background In C. elegans there are two well-defined TGFβ-like signaling pathways. The Sma/Mab pathway affects body size morphogenesis, male tail development and spicule formation while the Daf pathway regulates entry into and exit out of the dauer state. To identify additional factors that modulate TGFβ signaling in the Sma/Mab pathway, we have undertaken a genetic screen for small animals and have identified kin-29. Results kin-29 encodes a protein with a cytoplasmic serine-threonine kinase and a novel C-terminal domain. The kinase domain is a distantly related member of the EMK (ELKL motif kinase) family, which interacts with microtubules. We show that the serine-threonine kinase domain has in vitro activity. kin-29 mutations result in small animals, but do not affect male tail morphology as do several of the Sma/Mab signal transducers. Adult worms are smaller than the wild-type, but also develop more slowly. Rescue by kin-29 is achieved by expression in neurons or in the hypodermis. Interaction with the dauer pathway is observed in double mutant combinations, which have been seen with Sma/Mab pathway mutants. We show that kin-29 is epistatic to the ligand dbl-1, and lies upstream of the Sma/Mab pathway target gene, lon-1. Conclusion kin-29 is a new modulator of the Sma/Mab pathway. It functions in neurons and in the hypodermis to regulate body size, but does not affect all TGFβ outputs, such as tail morphogenesis. PMID:15840165

  7. Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones.

    PubMed

    Gan, Earn-Hui; Quinton, Richard

    2010-01-01

    The various hypothalamic-pituitary-end-organ/gland axes are central to the regulation of mammalian homeostasis. These have a core role in integrating the response of both endocrine and nervous systems to external and internal stimuli, by means of multi-level signalling through negative and positive feedback loops. The content of these hormonal signals is overwhelmingly conveyed in a rhythmic secretory pattern (frequency modulation of signal) that is energetically more efficient in transmitting neuroendocrine signals than the alternatives (modulation of signal by amplitude or by total area-under-curve). These rhythmic neuroendocrine secretions are individually distinct but the majority display a common feature of low-level basal secretion with superimposed pulsatile rhythms. The underlying mechanisms contributing to this unique rhythmic secretion are complicated and incompletely understood, but are beginning to be better defined as a result of several elegant studies performed in recent years. In some cases, signal transduction in the target tissue is critically dependent upon a pulsatile input, but in others the observed pulsatility is a downstream echo of obligate pulsatility exhibited by a higher-level control hormone. Thus, the gonads are presented with a pulsatile gonadotrophin signal, not because this is essential to gonadotrophin action (the same level of stimulation can be elicited by a continuous input), but as a downstream consequence of pulsatile GnRH-mediated stimulation of pituitary gonadotrophs. By contrast, rhythmicity of signal is embedded at all levels of the hypothalamo-pituitary-adrenal axis. Hypothalamic-pituitary rhythmic secretions are influenced by various internal and external inputs such as age, gender, sleep and wakefulness, food intake, light (photoperiod) or exposure to stress. Understanding the physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones has the potential to provide insights into disease

  8. Practical skills of rhythmic gymnastics judges.

    PubMed

    Fernandez-Villarino, Maria A; Bobo-Arce, Marta; Sierra-Palmeiro, Elena

    2013-12-18

    The aim of this study was to analyze the practical skills of rhythmic gymnastics judges and to identify how their degree and experience influence the assessment of these skills. Sixty one rhythmic gymnastics judges participated in the study. A questionnaire was used for data collection. This tool was composed of 28 questions and divided into six categories: identification, experience, initial training, continuing education, skills and training needs. The results suggest that the most valued skills are those related to the sport's technical parameters and the ability to adapt to any level of competition with self-confidence and self-assuredness. Significant differences were found regarding the variables for: the ability to communicate (p = 0.002) and for the ability to observe, identify and register performance (p = 0.005). The results showed that experience was not a decisive factor in assessing skills. This study thus presents evidence that rhythmic gymnastics judges must implement and optimise a set of skills that contribute to the effectiveness of the assessment process. These findings might help in the design of programs and training models that contribute to effective professional development. PMID:24511360

  9. Practical Skills of Rhythmic Gymnastics Judges

    PubMed Central

    Fernandez-Villarino, Maria A.; Bobo-Arce, Marta; Sierra-Palmeiro, Elena

    2013-01-01

    The aim of this study was to analyze the practical skills of rhythmic gymnastics judges and to identify how their degree and experience influence the assessment of these skills. Sixty one rhythmic gymnastics judges participated in the study. A questionnaire was used for data collection. This tool was composed of 28 questions and divided into six categories: identification, experience, initial training, continuing education, skills and training needs. The results suggest that the most valued skills are those related to the sport’s technical parameters and the ability to adapt to any level of competition with self-confidence and self-assuredness. Significant differences were found regarding the variables for: the ability to communicate (p = 0.002) and for the ability to observe, identify and register performance (p = 0.005). The results showed that experience was not a decisive factor in assessing skills. This study thus presents evidence that rhythmic gymnastics judges must implement and optimise a set of skills that contribute to the effectiveness of the assessment process. These findings might help in the design of programs and training models that contribute to effective professional development. PMID:24511360

  10. Zinc-α2-glycoprotein: an adipokine modulator of body fat mass?

    PubMed

    Bing, C; Mracek, T; Gao, D; Trayhurn, P

    2010-11-01

    The importance of white adipose tissue in the control of energy balance is now firmly recognized. In addition to fuel storage, adipocytes secrete an array of proteins factors (adipokines), which regulate multiple physiological and metabolic processes as well as influence body fat accumulation. Zinc-α2-glycoprotein (ZAG), a lipid mobilizing factor initially characterized as a tumor product associated with cachexia, has recently been identified as a novel adipokine. Although the exact role of ZAG in adipose tissue remains to be clarified, there is evidence that ZAG expression appears to be inversely related to adiposity, being upregulated in cachexia whereas reduced in obesity. Investigations on the regulation of ZAG give insights into its potential function in adipose tissue with a link to lipid mobilization and an anti-inflammatory action. Recent work shows that ZAG stimulates adiponectin secretion by human adipocytes. Data from genetic studies suggest that ZAG may be a candidate gene for body weight regulation; this is supported by the demonstration that ZAG-knockout mice are susceptible to weight gain, whereas transgenic mice overexpressing ZAG exhibit weight loss. The present review summarizes these new perspectives of ZAG and the potential mechanisms by which it might modulate adipose tissue mass and function.

  11. Kv4.2 Mediates Histamine Modulation of Preoptic Neuron Activity and Body Temperature

    PubMed Central

    Sethi, Jasmine; Sanchez-Alavez, Manuel; Tabarean, Iustin V.

    2011-01-01

    Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K+ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2−/− preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle. PMID:22220205

  12. The Enhanced Musical Rhythmic Perception in Second Language Learners.

    PubMed

    Roncaglia-Denissen, M Paula; Roor, Drikus A; Chen, Ao; Sadakata, Makiko

    2016-01-01

    Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants' phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals' enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain. PMID:27375469

  13. The Enhanced Musical Rhythmic Perception in Second Language Learners

    PubMed Central

    Roncaglia-Denissen, M. Paula; Roor, Drikus A.; Chen, Ao; Sadakata, Makiko

    2016-01-01

    Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants’ phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals’ enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain. PMID:27375469

  14. The Enhanced Musical Rhythmic Perception in Second Language Learners.

    PubMed

    Roncaglia-Denissen, M Paula; Roor, Drikus A; Chen, Ao; Sadakata, Makiko

    2016-01-01

    Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants' phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals' enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain.

  15. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music.

    PubMed

    Vuust, Peter; Witek, Maria A G

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain's Bayesian minimization of the error between the input to the brain and the brain's prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard ("rhythm") and the brain's anticipatory structuring of music ("meter"). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain's general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms.

  16. Mechanisms of circadian rhythmicity of carbon tetrachloride hepatotoxicity.

    PubMed

    Bruckner, James V; Ramanathan, Raghupathy; Lee, K Monica; Muralidhara, Srinivasa

    2002-01-01

    The toxicity of carbon tetrachloride (CCl(4)) and certain other chemicals varies over a 24-h period. Because the metabolism of some drugs follows a diurnal rhythm, it was decided to investigate whether the hepatic metabolic activation of CCl(4) was rhythmic and coincided in time with maximum susceptibility to CCl(4) hepatotoxicity. A related objective was to test the hypothesis that abstinence from food during the sleep cycle results in lipolysis and formation of acetone, which participates in induction of liver microsomal cytochrome P450IIE1 (CYP2E1), resulting in a diurnal increase in CCl(4) metabolic activation and acute liver injury. Groups of fed and fasted male Sprague-Dawley rats were given a single oral dose of 800 mg of CCl(4)/kg at 2- to 4-h intervals over a 24-h period. Serum enzyme activities, measured 24 h post dosing as indices of acute liver injury, exhibited distinct maxima in both fed and fasted animals dosed with CCl(4) near the beginning of their dark/active cycle. Blood acetone, hepatic CYP2E1 activity, and covalent binding of (14)CCl(4)/metabolites to hepatic microsomal proteins in untreated rats fed ad libitum followed circadian rhythms similar to that of susceptibility to CCl(4). Parallel fluctuations of greater amplitude were seen in rats fasted for 24 h. Hepatic glutathione levels were lowest at the time of greatest susceptibility to CCl(4). Acetone dose-response experiments showed high correlations between blood acetone levels, CYP2E1 induction, and CCl(4)-induced liver injury. Pretreatment with diallyl sulfide suppressed CYP2E1 and abolished the circadian rhythmicity of susceptibility to CCl(4). These findings provide additional support for acetone's physiological role in CYP2E1 induction and for CYP2E1's role in modulating CCl(4) chronotoxicity in rats. PMID:11752126

  17. Elite premenarcheal rhythmic gymnasts demonstrate energy and dietary intake deficiencies during periods of intense training.

    PubMed

    Michopoulou, Eleni; Avloniti, Alexandra; Kambas, Antonios; Leontsini, Diamanda; Michalopoulou, Maria; Tournis, Symeon; Fatouros, Ioannis G

    2011-11-01

    This study determined dietary intake and energy balance of elite premenarcheal rhythmic gymnasts during their preseason training. Forty rhythmic gymnasts and 40 sedentary age-matched females (10-12 yrs) participated in the study. Anthropometric profile and skeletal ages were determined. Dietary intake and physical activity were assessed to estimate daily energy intake, daily energy expenditure, and resting metabolic rate. Groups demonstrated comparable height, bone age, pubertal development, resting metabolic rate. Gymnasts had lower body mass, BMI, body fat than age-matched controls. Although groups demonstrated comparable daily energy intake, gymnasts exhibited a higher daily energy expenditure resulting in a daily energy deficit. Gymnasts also had higher carbohydrate intake but lower fat and calcium intake. Both groups were below the recommended dietary allowances for fiber, water, calcium, phosphorus and vitamin intake. Gymnasts may need to raise their daily energy intake to avoid the energy deficit during periods of intense training. PMID:22109784

  18. Intensity-modulated stereotactic body radiotherapy for stage I non-small cell lung cancer.

    PubMed

    Kim, Min-Jeong; Yeo, Seung-Gu; Kim, Eun Seok; Min, Chul Kee; Se An, Pyung

    2013-03-01

    This study aimed to investigate the clinical outcomes of intensity-modulated radiotherapy (IMRT)-based stereotactic body radiotherapy (SBRT) for patients with stage I non-small cell lung cancer (NSCLC). A prospective database of 16 consecutive patients receiving SBRT for pathologically-proven and peripherally-located stage I NSCLC was reviewed. Fifteen patients were medically inoperable and one patient refused to undergo surgery. The median age of the patients was 76 years (range, 69-86). Treatment planning used four-dimensional computed tomography and fixed-field IMRT (n=11) or volumetric-modulated arc therapy (VMAT; n=5). The SBRT scheme was 48 Gy in four fractions (n=9) or 55 Gy in five fractions (n=7), delivered on consecutive days. The overall response rate at 6 months was 78.6%, including a complete response in three (21.4%) patients and a partial response in eight (57.1%). Three patients (21.4%) demonstrated a stable disease status. The median follow-up time was 14 months (range, 6-20) for the surviving patients. One patient developed local failure at 11 months, while another suffered from regional failure in a subcarinal lymph node at 4 months. Two patients did not survive within the first 6 months; one patient died during salvage chemotherapy for mediastinal lymph node metastasis and the other succumbed to a cause unrelated to lung cancer. The Kaplan-Meier estimates of local failure-free, progression-free and overall survival rates at 18 months were 91.0, 85.2 and 87.5%, respectively. The toxicity was mild; no severe (grade ≥3) toxicity was identified. IMRT-based (including VMAT) delivery of SBRT for patients with stage I NSCLC demonstrated favorable responses and local control without severe toxicity.

  19. A review of stereotactic body radiotherapy – is volumetric modulated arc therapy the answer?

    SciTech Connect

    Sapkaroski, Daniel Osborne, Catherine; Knight, Kellie A

    2015-06-15

    Stereotactic body radiotherapy (SBRT) is a high precision radiotherapy technique used for the treatment of small to moderate extra-cranial tumours. Early studies utilising SBRT have shown favourable outcomes. However, major disadvantages of static field SBRT include long treatment times and toxicity complications. Volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) may potentially mitigate these disadvantages. This review aims to assess the feasibility of emerging VMAT and IMRT-based SBRT treatment techniques and qualify which offers the best outcome for patients, whilst identifying any emerging and advantageous SBRT planning trends. A review and synthesis of data from current literature up to September 2013 was conducted on EMBASE, Medline, PubMed, Science Direct, Proquest central, Google Scholar and the Cochrane Database of Systematic reviews. Only full text papers comparing VMAT and or IMRT and or Static SBRT were included. Ten papers were identified that evaluated the results of VMAT/IMRT SBRT. Five related to medically inoperable stage 1 and 2 non-small-cell lung cancer (NSCLC), three to spinal metastasis, one related to abdominal lymph node malignancies, with the final one looking at pancreatic adenocarcinoma. Overall treatment times with VMAT were reduced by 66–70% for lung, 46–58% for spine, 42% and 21% for lymph node and pancreatic metastasis respectively, planning constraints were met with several studies showing improved organs at risk sparing with IMRT/VMAT to static SBRT. Both IMRT and VMAT were able to meet all planning constraints in the studies reviewed, with VMAT offering the greatest treatment efficiency. Early clinical outcomes with VMAT and IMRT SBRT have demonstrated excellent local control and favourable survival outcomes.

  20. Aerobic fitness level does not modulate changes in whole-body protein turnover produced by unaccustomed increases in energy expenditure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of a sudden increase in energy expenditure (EE) on whole-body protein turnover vary between studies, and the possibility that fitness level modulates those responses has not been fully investigated. We hypothesized that aerobically trained individuals may exhibit adaptations that protec...

  1. Modulation of Stress Granules and P Bodies during Dicistrovirus Infection ▿

    PubMed Central

    Khong, Anthony; Jan, Eric

    2011-01-01

    Stress granules (SGs) are dynamic cytosolic aggregates composed of ribonucleoproteins that are induced during cellular stress when protein synthesis is inhibited. The function of SGs is poorly understood, but they are thought to be sites for reorganizing mRNA and protein. Several viruses can modulate SG formation, suggesting that SGs have an impact on virus infection. In this study, we have investigated the relationship of SG formation in Drosophila S2 cells infected by cricket paralysis virus (CrPV), a member of the Dicistroviridae family. Despite a rapid shutoff of host translation during CrPV infection, several hallmark SG markers such as the Drosophila TIA-1 and G3BP (RasGAP-SH3-binding protein) homologs, Rox8 and Rin, respectively, do not aggregate in CrPV-infected cells, even when challenged with potent SG inducers such as heat shock, oxidative stress, and pateamine A treatment. Furthermore, we demonstrate that a subset of P body markers become moderately dispersed at late times of infection. In contrast, as shown by fluorescent in situ hybridization, poly(A)+ RNA granules still form at late times of infection. These poly(A)+ RNA granules do not contain viral RNA nor do they colocalize with P body markers. Finally, our results demonstrate that the CrPV viral 3C protease is sequestered to SGs under cellular stress but not during virus infection. In summary, we propose that dicistrovirus infection leads to the selective inhibition of distinct SGs so that viral proteins are available for viral processing. PMID:21106737

  2. Rhythmicity, Recurrence, and Recovery of Flagellar Beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty Y.; Goldstein, Raymond E.

    2014-12-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga C. reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating.

  3. Rhythmicity, recurrence, and recovery of flagellar beating.

    PubMed

    Wan, Kirsty Y; Goldstein, Raymond E

    2014-12-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga C. reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating.

  4. The regulation of body fat distribution and the modulation of insulin action.

    PubMed

    Cases, J A; Barzilai, N

    2000-11-01

    Body fat distribution may determine insulin resistance and its metabolic syndrome in humans, independent of obesity. Surgical removal of visceral fat (VF) in obese rats was associated with decreased leptin plasma levels and its gene expression in subcutaneous fat (SC). Chronic leptin treatment to rats decreased VF specifically supporting the role of leptin in determining fat distribution. Surgical removal of selected VF provided direct evidence of improved in vivo insulin action on hepatic glucose production (HGP) by over 2-fold vs sham-operated control. The impact of decreased VF on improved in vivo insulin action was further supported by obtaining similar decreases in VF by treating rats with leptin (Lep), beta3-aderenoreceptor agonist, or by severe caloric restriction (CR). All these three interventions improved insulin action on the modulation of HGP and were mostly attributed to preservation of hepatic glycogen stores. Because free fatty acids (FFA) plasma levels were unchanged, this effect may not be mediated portally by substrates. Improved peripheral insulin sensitivity and glycogen synthesis was demonstrated only in Lep. These data suggest that VF is a major determinant of hepatic insulin action. In obese rats, the ability of leptin to prevent visceral adiposity and its own expression is attenuated. Thus, the failure of leptin to regulate fat distribution and its own secretion suggest that 'leptin resistance' may be a pathologic feature in obesity.

  5. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.

    PubMed

    Ryu, Hyunryul; Oh, Soojung; Lee, Hyun Jae; Lee, Jin Young; Lee, Hae Kwang; Jeon, Noo Li

    2015-06-01

    The blood circulatory system links all organs from one to another to support and maintain each organ's functions consistently. Therefore, blood vessels have been considered as a vital unit. Engineering perfusable functional blood vessels in vitro has been challenging due to difficulties in designing the connection between rigid macroscale tubes and fragile microscale ones. Here, we propose a generalizable method to engineer a "long" perfusable blood vessel network. To form millimeter-scale vessels, fibroblasts were co-cultured with human umbilical vein endothelial cells (HUVECs) in close proximity. In contrast to previous works, in which all cells were permanently placed within the device, we developed a novel method to culture paracrine factor secreting fibroblasts on an O-ring-shaped guide that can be transferred in and out. This approach affords flexibility in co-culture, where the effects of secreted factors can be decoupled. Using this, blood vessels with length up to 2 mm were successfully produced in a reproducible manner (>90%). Because the vessels form a perfusable network within the channel, simple links to inlets and outlets of the device allowed connections to the outside world. The robust and reproducible formation of in vitro engineered vessels can be used as a module to link various organ components as parts of future body-on-a-chip applications. PMID:25532526

  6. The Microenvironment of Embryoid Bodies Modulated the Commitment to Neural Lineage Postcryopreservation

    PubMed Central

    Sart, Sébastien; Yan, Yuanwei

    2015-01-01

    Neural progenitor cells are usually derived from pluripotent stem cells (PSCs) through the formation of embryoid bodies (EBs), the three-dimensional (3D) aggregate-like structure mimicking embryonic development. Cryo-banking of EBs is a critical step for sample storage, process monitoring, and preservation of intermediate cell populations during the lengthy differentiation procedure of PSCs. However, the impact of microenvironment (including 3D cell organization and biochemical factors) of EBs on neural lineage commitment postcryopreservation has not been well understood. In this study, intact EBs (I-E) and dissociated EBs (D-E) were compared for the recovery and neural differentiation after cryopreservation. I-E group showed the enhanced viability and recovery upon thaw compared with D-E group due to the preservation of extracellular matrix, cell–cell contacts, and F-actin organization. Moreover, both I-E and D-E groups showed the increased neuronal differentiation and D-E group also showed the enhanced astrocyte differentiation after thaw, probably due to the modulation of cellular redox state indicated by the expression of reactive oxygen species. In addition, mesenchymal stem cell secretome, known to bear a broad spectrum of protective factors, enhanced EB recovery. Taken together, EB microenvironment plays a critical role in the recovery and neural differentiation postcryopreservation. PMID:25187378

  7. The microenvironment of embryoid bodies modulated the commitment to neural lineage postcryopreservation.

    PubMed

    Sart, Sébastien; Yan, Yuanwei; Li, Yan

    2015-04-01

    Neural progenitor cells are usually derived from pluripotent stem cells (PSCs) through the formation of embryoid bodies (EBs), the three-dimensional (3D) aggregate-like structure mimicking embryonic development. Cryo-banking of EBs is a critical step for sample storage, process monitoring, and preservation of intermediate cell populations during the lengthy differentiation procedure of PSCs. However, the impact of microenvironment (including 3D cell organization and biochemical factors) of EBs on neural lineage commitment postcryopreservation has not been well understood. In this study, intact EBs (I-E) and dissociated EBs (D-E) were compared for the recovery and neural differentiation after cryopreservation. I-E group showed the enhanced viability and recovery upon thaw compared with D-E group due to the preservation of extracellular matrix, cell-cell contacts, and F-actin organization. Moreover, both I-E and D-E groups showed the increased neuronal differentiation and D-E group also showed the enhanced astrocyte differentiation after thaw, probably due to the modulation of cellular redox state indicated by the expression of reactive oxygen species. In addition, mesenchymal stem cell secretome, known to bear a broad spectrum of protective factors, enhanced EB recovery. Taken together, EB microenvironment plays a critical role in the recovery and neural differentiation postcryopreservation. PMID:25187378

  8. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.

    PubMed

    Ryu, Hyunryul; Oh, Soojung; Lee, Hyun Jae; Lee, Jin Young; Lee, Hae Kwang; Jeon, Noo Li

    2015-06-01

    The blood circulatory system links all organs from one to another to support and maintain each organ's functions consistently. Therefore, blood vessels have been considered as a vital unit. Engineering perfusable functional blood vessels in vitro has been challenging due to difficulties in designing the connection between rigid macroscale tubes and fragile microscale ones. Here, we propose a generalizable method to engineer a "long" perfusable blood vessel network. To form millimeter-scale vessels, fibroblasts were co-cultured with human umbilical vein endothelial cells (HUVECs) in close proximity. In contrast to previous works, in which all cells were permanently placed within the device, we developed a novel method to culture paracrine factor secreting fibroblasts on an O-ring-shaped guide that can be transferred in and out. This approach affords flexibility in co-culture, where the effects of secreted factors can be decoupled. Using this, blood vessels with length up to 2 mm were successfully produced in a reproducible manner (>90%). Because the vessels form a perfusable network within the channel, simple links to inlets and outlets of the device allowed connections to the outside world. The robust and reproducible formation of in vitro engineered vessels can be used as a module to link various organ components as parts of future body-on-a-chip applications.

  9. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging

    PubMed Central

    Caplan, Jeremy B.; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A.

    2015-01-01

    Rhythmic brain activity at low frequencies (<12 Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. PMID:25769279

  10. My Body Looks Like That Girl’s: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women

    PubMed Central

    Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong

    2016-01-01

    Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress

  11. Rhythmic Characteristics of Improvisational Drumming among Preschool Children

    ERIC Educational Resources Information Center

    Whitcomb, Rachel

    2010-01-01

    A call-and-response drumming activity was carried out to determine the rhythmic characteristics of improvised patterns created by preschool children. Specific goals of the study were to: (1) determine the durations, start and stop times, and rhythmic patterns of improvised responses to a simple given call using drums; (2) determine the presence or…

  12. Connecting Phrasal and Rhythmic Events: Evidence from Second Language Speech

    ERIC Educational Resources Information Center

    Nava, Emily Anne

    2010-01-01

    This dissertation investigates the relation between prosodic events at the phrasal level and component events at the rhythmic level. The overarching hypothesis is that the interaction among component rhythmic events gives rise to prosodic patterns at the phrasal level, while at the same time being constrained by the latter, and that in the case of…

  13. The Rhythmic Group, Liaison, Nouns and Verbs of French

    ERIC Educational Resources Information Center

    Ashby, William J.

    1975-01-01

    The "rhythmic group" in French (noun group or verb group) is described with examples. The aim is to find some relation between the morphophonological phenomena such as "liaison" occurring within such rhythmic groups and the syntactic structure of French. Available from Liber Laeromedel, Box 1205, S-22105 Lund, Sweden. (TL)

  14. Stereotactic Body Radiation Therapy Versus Intensity-Modulated Radiation Therapy for Prostate Cancer: Comparison of Toxicity

    PubMed Central

    Yu, James B.; Cramer, Laura D.; Herrin, Jeph; Soulos, Pamela R.; Potosky, Arnold L.; Gross, Cary P.

    2014-01-01

    Purpose Stereotactic body radiation therapy (SBRT) is a technically demanding prostate cancer treatment that may be less expensive than intensity-modulated radiation therapy (IMRT). Because SBRT may deliver a greater biologic dose of radiation than IMRT, toxicity could be increased. Studies comparing treatment cost to the Medicare program and toxicity are needed. Methods We performed a retrospective study by using a national sample of Medicare beneficiaries age ≥ 66 years who received SBRT or IMRT as primary treatment for prostate cancer from 2008 to 2011. Each SBRT patient was matched to two IMRT patients with similar follow-up (6, 12, or 24 months). We calculated the cost of radiation therapy treatment to the Medicare program and toxicity as measured by Medicare claims; we used a random effects model to compare genitourinary (GU), GI, and other toxicity between matched patients. Results The study sample consisted of 1,335 SBRT patients matched to 2,670 IMRT patients. The mean treatment cost was $13,645 for SBRT versus $21,023 for IMRT. In the 6 months after treatment initiation, 15.6% of SBRT versus 12.6% of IMRT patients experienced GU toxicity (odds ratio [OR], 1.29; 95% CI, 1.05 to 1.53; P = .009). At 24 months after treatment initiation, 43.9% of SBRT versus 36.3% of IMRT patients had GU toxicity (OR, 1.38; 95% CI, 1.12 to 1.63; P = .001). The increase in GU toxicity was due to claims indicative of urethritis, urinary incontinence, and/or obstruction. Conclusion Although SBRT was associated with lower treatment costs, there appears to be a greater rate of GU toxicity for patients undergoing SBRT compared with IMRT, and prospective correlation with randomized trials is needed. PMID:24616315

  15. Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans

    PubMed Central

    Huffman, Jennifer E.; Albrecht, Eva; Teumer, Alexander; Mangino, Massimo; Kapur, Karen; Johnson, Toby; Kutalik, Zoltán; Pirastu, Nicola; Pistis, Giorgio; Lopez, Lorna M.; Haller, Toomas; Salo, Perttu; Goel, Anuj; Li, Man; Tanaka, Toshiko; Dehghan, Abbas; Ruggiero, Daniela; Malerba, Giovanni; Smith, Albert V.; Nolte, Ilja M.; Portas, Laura; Phipps-Green, Amanda; Boteva, Lora; Navarro, Pau; Johansson, Asa; Hicks, Andrew A.; Polasek, Ozren; Esko, Tõnu; Peden, John F.; Harris, Sarah E.; Murgia, Federico; Wild, Sarah H.; Tenesa, Albert; Tin, Adrienne; Mihailov, Evelin; Grotevendt, Anne; Gislason, Gauti K.; Coresh, Josef; D'Adamo, Pio; Ulivi, Sheila; Vollenweider, Peter; Waeber, Gerard; Campbell, Susan; Kolcic, Ivana; Fisher, Krista; Viigimaa, Margus; Metter, Jeffrey E.; Masciullo, Corrado; Trabetti, Elisabetta; Bombieri, Cristina; Sorice, Rossella; Döring, Angela; Reischl, Eva; Strauch, Konstantin; Hofman, Albert; Uitterlinden, Andre G.; Waldenberger, Melanie; Wichmann, H-Erich; Davies, Gail; Gow, Alan J.; Dalbeth, Nicola; Stamp, Lisa; Smit, Johannes H.; Kirin, Mirna; Nagaraja, Ramaiah; Nauck, Matthias; Schurmann, Claudia; Budde, Kathrin; Farrington, Susan M.; Theodoratou, Evropi; Jula, Antti; Salomaa, Veikko; Sala, Cinzia; Hengstenberg, Christian; Burnier, Michel; Mägi, Reedik; Klopp, Norman; Kloiber, Stefan; Schipf, Sabine; Ripatti, Samuli; Cabras, Stefano; Soranzo, Nicole; Homuth, Georg; Nutile, Teresa; Munroe, Patricia B.; Hastie, Nicholas; Campbell, Harry; Rudan, Igor; Cabrera, Claudia; Haley, Chris; Franco, Oscar H.; Merriman, Tony R.; Gudnason, Vilmundur; Pirastu, Mario; Penninx, Brenda W.; Snieder, Harold; Metspalu, Andres; Ciullo, Marina; Pramstaller, Peter P.; van Duijn, Cornelia M.; Ferrucci, Luigi; Gambaro, Giovanni; Deary, Ian J.; Dunlop, Malcolm G.; Wilson, James F.; Gasparini, Paolo; Gyllensten, Ulf; Spector, Tim D.; Wright, Alan F.; Hayward, Caroline; Watkins, Hugh; Perola, Markus; Bochud, Murielle; Kao, W. H. Linda; Caulfield, Mark; Toniolo, Daniela; Völzke, Henry; Gieger, Christian; Köttgen, Anna; Vitart, Veronique

    2015-01-01

    We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment. PMID:25811787

  16. Mechanisms underlying rhythmic locomotion: dynamics of muscle activation

    PubMed Central

    Chen, Jun; Tian, Jianghong; Iwasaki, Tetsuya; Friesen, W. Otto

    2011-01-01

    SUMMARY We have studied the dynamical properties of tension development in leech longitudinal muscle during swimming. A new method is proposed for modeling muscle properties under functionally relevant conditions where the muscle is subjected to both periodic activation and rhythmic length changes. The ‘dual-sinusoid’ experiments were conducted on preparations of leech nerve cord and body wall. The longitudinal muscle was activated periodically by injection of sinusoidal currents into an identified motoneuron. Simultaneously, sinusoidal length changes were imposed on the body wall with prescribed phase differences (12 values equally spaced over 2π radians) with respect to the current injection. Through the singular value decomposition of appropriately constructed tension data matrices, the leech muscle was found to have a multiplicative structure in which the tension was expressed as the product of activation and length factors. The time courses of activation and length factors were determined from the tension data and were used to develop component models. The proposed modeling method is a general one and is applicable to contractile elements for which the effects of series elasticity are negligible. PMID:21562183

  17. Environmental Coupling Modulates the Attractors of Rhythmic Coordination

    ERIC Educational Resources Information Center

    Kudo, Kazutoshi; Park, Hyeonsaeng; Kay, Bruce A.; Turvey, M. T.

    2006-01-01

    A simple instance of coupling behavior to the environment is oscillating the hands in pace with metronome beats. This environmental coupling can be weaker (1 beat per cycle) or stronger (2 beats per cycle). The authors examined whether strength of environmental coupling enhanced the stability of in-phase bimanual coordination. Detuning by…

  18. Virtual lesion of right posterior superior temporal sulcus modulates conscious visual perception of fearful expressions in faces and bodies.

    PubMed

    Candidi, Matteo; Stienen, Bernard M C; Aglioti, Salvatore M; de Gelder, Beatrice

    2015-04-01

    The posterior Superior Temporal Suclus (pSTS) represents a central hub in the complex cerebral network for person perception and emotion recognition as also suggested by its heavy connections with face- and body-specific cortical (e.g., the fusiform face area, FFA and the extrastriate body area, EBA) and subcortical structures (e.g., amygdala). Information on whether pSTS is causatively involved in sustaining conscious visual perception of emotions expressed by faces and bodies is lacking. We explored this issue by combining a binocular rivalry procedure (where emotional and neutral face and body postures rivaled with house images) with off-line, 1-Hz repetitive transcranial magnetic stimulation (rTMS). We found that temporary inhibition of the right pSTS reduced perceptual dominance of fearful faces and increased perceptual dominance of fearful bodies, while leaving unaffected the perception of neutral face and body images. Inhibition of the vertex had no effect on conscious visual perception of neutral or emotional face or body stimuli. Thus, the right pSTS plays a causal role in shortening conscious vision of fearful faces and in prolonging conscious vision of fearful bodies. These results suggest that pSTS selectively modulates the activity of segregated networks involved in the conscious visual perception of emotional faces or bodies. We speculate that the opposite role of the right pSTS for conscious perception of fearful face and body may be explained by the different connections that this region entertains with face- and body-selective visual areas as well as with amygdalae and premotor regions. PMID:25835522

  19. Rhythmicity, recurrence, and recovery of flagellar beating

    NASA Astrophysics Data System (ADS)

    Wan, Kirsty; Goldstein, Raymond

    2015-03-01

    The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the unicellular alga Chlamydomonas reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. These results will help constrain microscopic theories on the origins and regulation of flagellar beating. Financial support is acknowledged from the EPSRC, ERC Advanced Investigator Grant No. 247333, and a Senior Investigator Award from the Wellcome Trust.

  20. SU-E-T-540: Volumetric Modulated Total Body Irradiation Using a Rotational Lazy Susan-Like Immobilization System

    SciTech Connect

    Gu, X; Hrycushko, B; Lee, H; Lamphier, R; Jiang, S; Abdulrahman, R; Timmerman, R

    2014-06-01

    Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The two scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.

  1. Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice.

    PubMed

    Sun, Linjie; Wang, Yan; Song, Yu; Cheng, Xiang-Rong; Xia, Shufang; Rahman, Md Ramim Tanver; Shi, Yonghui; Le, Guowei

    2015-02-27

    Circadian rhythmic disorders induced by high-fat diet are associated with metabolic diseases. Resveratrol could improve metabolic disorder, but few reports focused on its effects on circadian rhythm disorders in a variety of studies. The aim of the present study was to analyze the potential effects of resveratrol on high-fat diet-induced disorders about the rhythmic expression of clock genes and clock-controlled lipid metabolism. Male C57BL/6 mice were divided into three groups: a standard diet control group (CON), a high-fat diet (HFD) group and HFD supplemented with 0.1% (w/w) resveratrol (RES). The body weight, fasting blood glucose and insulin, plasma lipids and leptin, whole body metabolic status and the expression of clock genes and clock-controlled lipogenic genes were analyzed at four different time points throughout a 24-h cycle (8:00, 14:00, 20:00, 2:00). Resveratrol, being associated with rhythmic restoration of fasting blood glucose and plasma insulin, significantly decreased the body weight in HFD mice after 11 weeks of feeding, as well as ameliorated the rhythmities of plasma leptin, lipid profiles and whole body metabolic status (respiratory exchange ratio, locomotor activity, and heat production). Meanwhile, resveratrol modified the rhythmic expression of clock genes (Clock, Bmal1 and Per2) and clock-controlled lipid metabolism related genes (Sirt1, Pparα, Srebp-1c, Acc1 and Fas). The response pattern of mRNA expression for Acc1 was similar to the plasma triglyceride. All these results indicated that resveratrol reduced lipogenesis and ultimately normalized rhythmic expression of plasma lipids, possibly via its action on clock machinery.

  2. Getting Down to Business: Auto Body Shop, Module 31. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    McFarlane, Carolyn

    This module on owning and operating an auto repair shop is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning activities are divided…

  3. Autonomous Rhythmic Drug Delivery Systems Based on Chemical and Biochemomechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Siegel, Ronald A.

    While many drug delivery systems target constant, or zero-order drug release, certain drugs and hormones must be delivered in rhythmic pulses in order to achieve their optimal effect. Here we describe studies with two model autonomous rhythmic delivery systems. The first system is driven by a pH oscillator that modulates the ionization state of a model drug, benzoic acid, which can permeate through a lipophilic membrane when the drug is uncharged. The second system is based on a nonlinear negative feedback instability that arises from coupling of swelling of a hydrogel membrane to an enzymatic reaction, with the hydrogel controlling access of substrate to the enzyme, and the enzyme's product controlling the hydrogel's swelling state. The latter system, whose autonomous oscillations are driven by glucose at constant external activity, is shown to deliver gonadotropin releasing hormone (GnRH) in rhythmic pulses, with periodicity of the same order as observed in sexually mature adult humans. Relevant experimental results and some mathematical models are reviewed.

  4. Estradiol: a rhythmic, inhibitory, indirect control of meal size.

    PubMed

    Eckel, Lisa A

    2004-08-01

    The classic analyses of the inhibitory effects of cholecystokinin (CCK) on meal size, conducted by Professor Gerard P. Smith and his colleagues at the Bourne Laboratory, inspired my initial interest in this field. My current research, which investigates the role of estradiol in the control of meal size, continues to be guided by Gerry's thoughtful, scientific approach to the study of ingestive behavior. In 1996, the year I arrived as a Postdoctoral Fellow at the Bourne Laboratory, Gerry published a new theory of the controls of meal size. In this important paper, Gerry proposed that the controls of meal size can be either direct or indirect. He argued that direct controls of meal size interact with peripheral, preabsorptive receptors that are sensitive to the chemical, mechanical, and colligative properties of ingested food and that indirect controls of meal size function to modulate the activity of direct controls. The purpose of this review is to illustrate how Gerry's theory has guided much of what is known about the mechanism by which estradiol inhibits food intake in female rats. I will provide evidence, primarily from behavioral studies of gonadally intact and ovariectomized rats, that estradiol exerts phasic and tonic inhibitory effects on food intake by acting as a rhythmic, inhibitory, indirect control of meal size.

  5. Situational influences on rhythmicity in speech, music, and their interaction.

    PubMed

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  6. Situational influences on rhythmicity in speech, music, and their interaction

    PubMed Central

    Hawkins, Sarah

    2014-01-01

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  7. Situational influences on rhythmicity in speech, music, and their interaction.

    PubMed

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action.

  8. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  9. Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy

    SciTech Connect

    Diot, Quentin; Kavanagh, Brian; Timmerman, Robert; Miften, Moyed

    2012-01-15

    Purpose: To describe biological-based optimization and Monte Carlo (MC) dose calculation-based treatment planning for volumetric modulated arc therapy (VMAT) delivery of stereotactic body radiation therapy (SBRT) in lung, liver, and prostate patients. Methods: Optimization strategies and VMAT planning parameters using a biological-based optimization MC planning system were analyzed for 24 SBRT patients. Patients received a median dose of 45 Gy [range, 34-54 Gy] for lung tumors in 1-5 fxs and a median dose of 52 Gy [range, 48-60 Gy] for liver tumors in 3-6 fxs. Prostate patients received a fractional dose of 10 Gy in 5 fxs. Biological-cost functions were used for plan optimization, and its dosimetric quality was evaluated using the conformity index (CI), the conformation number (CN), the ratio of the volume receiving 50% of the prescription dose over the planning target volume (Rx/PTV50). The quality and efficiency of the delivery were assessed according to measured quality assurance (QA) passing rates and delivery times. For each disease site, one patient was replanned using physical cost function and compared to the corresponding biological plan. Results: Median CI, CN, and Rx/PTV50 for all 24 patients were 1.13 (1.02-1.28), 0.79 (0.70-0.88), and 5.3 (3.1-10.8), respectively. The median delivery rate for all patients was 410 MU/min with a maximum possible rate of 480 MU/min (85%). Median QA passing rate was 96.7%, and it did not significantly vary with the tumor site. Conclusions: VMAT delivery of SBRT plans optimized using biological-motivated cost-functions result in highly conformal dose distributions. Plans offer shorter treatment-time benefits and provide efficient dose delivery without compromising the plan conformity for tumors in the prostate, lung, and liver, thereby improving patient comfort and clinical throughput. The short delivery times minimize the risk of patient setup and intrafraction motion errors often associated with long SBRT treatment

  10. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    PubMed

    Silva, Bryon; Goles, Nicolás I; Varas, Rodrigo; Campusano, Jorge M

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd)-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  11. Serotonin Receptors Expressed in Drosophila Mushroom Bodies Differentially Modulate Larval Locomotion

    PubMed Central

    Silva, Bryon; Goles, Nicolás I.; Varas, Rodrigo; Campusano, Jorge M.

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3rd-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae. PMID:24586928

  12. Bodily ownership modulation in defensive responses: physiological evidence in brain-damaged patients with pathological embodiment of other's body parts.

    PubMed

    Fossataro, C; Gindri, P; Mezzanato, T; Pia, L; Garbarini, F

    2016-01-01

    Do conscious beliefs about the body affect defensive mechanisms within the body? To answer this question we took advantage from a monothematic delusion of bodily ownership, in which brain-damaged patients misidentify alien limbs as their own. We investigated whether the delusional belief that an alien hand is their own hand modulates a subcortical defensive response, such as the hand-blink reflex. The blink, dramatically increases when the threated hand is inside the defensive peripersonal-space of the face. In our between-subjects design, including patients and controls, the threat was brought near the face either by the own hand or by another person's hand. Our results show an ownership-dependent modulation of the defensive response. In controls, as well as in the patients' intact-side, the response enhancement is significantly greater when the threat was brought near the face by the own than by the alien hand. Crucially, in the patients' affected-side (where the pathological embodiment occurs), the alien (embodied) hand elicited a response enhancement comparable to that found when the threat is brought near the face by the real hand. These findings suggest the existence of a mutual interaction between our conscious beliefs about the body and the physiological mechanisms within the body. PMID:27292285

  13. Multiple types of control by identified interneurons in a sensory-activated rhythmic motor pattern.

    PubMed

    Kemenes, G; Staras, K; Benjamin, P R

    2001-04-15

    Modulatory interneurons that can drive central pattern generators (CPGs) are considered as good candidates for decision-making roles in rhythmic behaviors. Although the mechanisms by which such neurons activate their target CPGs are known in detail in many systems, their role in the sensory activation of CPG-driven behaviors is poorly understood. In the feeding system of the mollusc Lymnaea, one of the best-studied rhythmical networks, intracellular stimulation of either of two types of neuron, the cerebral ventral 1a (CV1a) and the slow oscillator (SO) cells, leads to robust CPG-driven fictive feeding patterns, suggesting that they might make an important contribution to natural food-activated behavior. In this paper we investigated this contribution using a lip-CNS preparation in which feeding was elicited with a natural chemostimulant rather than intracellular stimulation. We found that despite their CPG-driving capabilities, neither CV1a nor SO were involved in the initial activation of sucrose-evoked fictive feeding, whereas a CPG interneuron, N1M, was active first in almost all preparations. Instead, the two interneurons play important and distinct roles in determining the characteristics of the rhythmic motor output; CV1a by modulating motoneuron burst duration and SO by setting the frequency of the ongoing rhythm. This is an example of a distributed system in which (1) interneurons that drive similar motor patterns when activated artificially contribute differently to the shaping of the motor output when it is evoked by the relevant sensory input, and (2) a CPG rather than a modulatory interneuron type plays the most critical role in initiation of sensory-evoked rhythmic activity.

  14. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    PubMed Central

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  15. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland.

    PubMed

    Stehle, J H; Foulkes, N S; Molina, C A; Simonneaux, V; Pévet, P; Sassone-Corsi, P

    1993-09-23

    Transcription factor CREM appears to play a key physiological and developmental role within the hypothalamic-pituitary-gonadal axis. This axis is modulated by the pineal hormone melatonin, whose production is in turn driven by the endogenous clock. There is striking circadian fluctuation of a novel CREM isoform, ICER, which is expressed at high levels during the night. ICER is generated from an alternative, intronic promoter and functions as a powerful repressor of cyclic AMP-induced transcription. Rhythmic adrenergic signals originated by the clock direct ICER expression by stimulation of the cAMP signal transduction pathway.

  16. The ecology of entrainment: Foundations of coordinated rhythmic movement

    PubMed Central

    Phillips-Silver, Jessica; Aktipis, C. Athena; Bryant, Gregory A.

    2011-01-01

    Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species. PMID:21776183

  17. Circadian rhythmicity as a predictor of weight-loss effectiveness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some of the major challenges associated with successful dietary weight management include the identification of individuals not responsive to specific interventions. The aim was to investigate the potential relationship between weight loss and circadian rhythmicity, using wrist temperature and actim...

  18. Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation

    PubMed Central

    Day, Trevor A; Wilson, Richard J A

    2007-01-01

    Inputs from central (brainstem) and peripheral (carotid body) respiratory chemoreceptors are coordinated to protect blood gases against potentially deleterious fluctuations. However, the mathematics of the steady-state interaction between chemoreceptors has been difficult to ascertain. Further, how this interaction affects time-dependent phenomena (in which chemoresponses depend upon previous experience) is largely unknown. To determine how central PCO2 modulates the response to peripheral chemostimulation in the rat, we utilized an in situ arterially perfused, vagotomized, decerebrate preparation, in which central and peripheral chemoreceptors were perfused separately (i.e. dual perfused preparation (DPP)). We carried out two sets of experiments: in Experiment 1, we alternated steady-state brainstem PCO2 between 25 and 50 Torr in each preparation, and applied specific carotid body hypoxia (60 Torr PO2 and 40 Torr PCO2) under both conditions; in Experiment 2, we applied four 5 min bouts (separated by 5 min) of specific carotid body hypoxia (60 Torr PO2 and 40 Torr PCO2) while holding the brainstem at either 30 Torr or 50 Torr PCO2. We demonstrate that the level of brainstem PCO2 modulates (a) the magnitude of the phrenic responses to a single step of specific carotid body hypoxia and (b) the magnitude of time-dependent phenomena. We report that the interaction between chemoreceptors is negative (i.e. hypo-additive), whereby a lower brainstem PCO2 augments phrenic responses resulting from specific carotid body hypoxia. A negative interaction may underlie the pathophysiology of central sleep apnoea in populations that are chronically hypocapnic. PMID:17082232

  19. Gender differences in vestibular modulation of body mass in altered force environments

    NASA Astrophysics Data System (ADS)

    Fuller, Charles; Fuller, Patrick; Hoban-Higgins, Tana; Fuller, Charles

    Body mass regulation is affected by the gravitational environment. Gravitational and linear acceleration information is transduced by the vestibular macular receptors. In addition, there are gender differences in the regulation of body mass and composition. This study therefore investigated the role of the vestibular system in the regulation of body mass in age-matched male and female rats. Four groups of male and female rats were established. A 1G and a 2G labyrinthectomized experimental group (Labx) and a 1G and 2G control group (Con). Labyrinthectomies were accomplished by trans-tympanic injection of sodium arsanilate to remove vestibular input. Control groups experienced the same surgical procedures, but with a saline control injection. Body mass and food and water consumption data were collected twice weekly. Baseline data were collected prior to surgery. There was a decrease in body mass following chemical labyrinthectomy in both male and female rats. A recovery period followed surgery to allow for the re-establishment of stable growth curves. Body mass of female experimental rats returned to the same levels as the female controls while male labyrinthectomized rats continued to regulate body mass at a lower level. All 2G groups were exposed to 8 weeks of 2G produced via centrifugation while all control groups remained at 1G. All 2G groups decreased body mass at the onset of centrifugation, with experimental groups having a smaller response than the controls. Males continued to maintain body mass at a lower level under 2G, while, again body mass of the females returned to levels similar to controls. At the conclusion of the eight week centrifugation period, all four female groups had a similar body mass while differences were evident between male groups. Overall, 1G males had a higher body mass than did males exposed to 2G. Within G levels, 1G controls were heavier than 1G Labx and, in contrast, at 2G Labx had a larger body mass than controls. (Supported by

  20. Mis-expression of the BK K(+) channel disrupts suprachiasmatic nucleus circuit rhythmicity and alters clock-controlled behavior.

    PubMed

    Montgomery, Jenna R; Whitt, Joshua P; Wright, Breanne N; Lai, Michael H; Meredith, Andrea L

    2013-02-15

    In mammals, almost all aspects of circadian rhythmicity are attributed to activity in a discrete neural circuit of the hypothalamus, the suprachiasmatic nucleus (SCN). A 24-h rhythm in spontaneous firing is the fundamental neural intermediary to circadian behavior, but the ionic mechanisms that pattern circuit rhythmicity, and the integrated impact on behavior, are not well studied. Here, we demonstrate that daily modulation of a major component of the nighttime-phased suppressive K(+) current, encoded by the BK Ca(2+)-activated K(+) current channel (K(Ca)1.1 or Kcnma1), is a critical arbiter of circadian rhythmicity in the SCN circuit. Aberrant induction of BK current during the day in transgenic mice using a Per1 promoter (Tg-BK(R207Q)) reduced SCN firing or silenced neurons, decreasing the circadian amplitude of the ensemble circuit rhythm. Changes in cellular and circuit excitability in Tg-BK(R207Q) SCNs were correlated with elongated behavioral active periods and enhanced responses to phase-shifting stimuli. Unexpectedly, despite the severe reduction in circuit amplitude, circadian behavioral amplitudes in Tg-BK(R207Q) mice were relatively normal. These data demonstrate that downregulation of the BK current during the day is essential for the high amplitude neural activity pattern in the SCN that restricts locomotor activity to the appropriate phase and maintains the clock's robustness against perturbation. However, a residually rhythmic subset prevails over the ensemble circuit to drive the fundamental circadian behavioral rhythm.

  1. Statistics concerning the Apollo command module water landing, including the probability of occurrence of various impact conditions, sucessful impact, and body X-axis loads

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1971-01-01

    Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.

  2. Inhibition, Not Excitation, Drives Rhythmic Whisking.

    PubMed

    Deschênes, Martin; Takatoh, Jun; Kurnikova, Anastasia; Moore, Jeffrey D; Demers, Maxime; Elbaz, Michael; Furuta, Takahiro; Wang, Fan; Kleinfeld, David

    2016-04-20

    Sniffing and whisking typify the exploratory behavior of rodents. These actions involve separate oscillators in the medulla, located respectively in the pre-Bötzinger complex (preBötC) and the vibrissa-related region of the intermediate reticular formation (vIRt). We examine how these oscillators synergize to control sniffing and whisking. We find that the vIRt contains glycinergic/GABAergic cells that rhythmically inhibit vibrissa facial motoneurons. As a basis for the entrainment of whisking by breathing, but not vice versa, we provide evidence for unidirectional connections from the preBötC to the vIRt. The preBötC further contributes to the control of the mystacial pad. Lastly, we show that bilateral synchrony of whisking relies on the respiratory rhythm, consistent with commissural connections between preBötC cells. These data yield a putative circuit in which the preBötC acts as a master clock for the synchronization of vibrissa, pad, and snout movements, as well as for the bilateral synchronization of whisking. PMID:27041498

  3. Modulation of Motor Area Activity during Observation of Unnatural Body Movements

    ERIC Educational Resources Information Center

    Shimada, Sotaro; Oki, Kazuma

    2012-01-01

    The mirror neuron system (MNS) is activated when observing the actions of others. However, it remains unclear whether the MNS responds more strongly to natural bodily actions in the observer's motor repertoire than to unnatural actions. We investigated whether MNS activity is modulated by the unnaturalness of an observed action by inserting short…

  4. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation.

    PubMed

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C ± 1.3°C and -8.3 ± 0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ± 0.11°C), while it only decreased at P20 (-0.14 ± 0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than

  5. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC

  6. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans

    PubMed Central

    Stephens, Francis B; Wall, Benjamin T; Marimuthu, Kanagaraj; Shannon, Chris E; Constantin-Teodosiu, Dumitru; Macdonald, Ian A; Greenhaff, Paul L

    2013-01-01

    Twelve weeks of daily l-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of l-carnitine and carbohydrate feeding on energy metabolism, body fat mass and muscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohydrate (Control, n= 6) or 1.36 g l-carnitine + 80 g carbohydrate (Carnitine, n= 6). Maximal carnitine palmitolytransferase 1 (CPT1) activity remained similar in both groups over 12 weeks. However, whereas muscle total carnitine, long-chain acyl-CoA and whole-body energy expenditure did not change over 12 weeks in Control, they increased in Carnitine by 20%, 200% and 6%, respectively (P < 0.05). Moreover, body mass and whole-body fat mass (dual-energy X-ray absorptiometry) increased over 12 weeks in Control by 1.9 and 1.8 kg, respectively (P < 0.05), but did not change in Carnitine. Seventy-three of 187 genes relating to fuel metabolism were upregulated in Carnitine vs. Control after 12 weeks, with ‘insulin signalling’, ‘peroxisome proliferator-activated receptor signalling’ and ‘fatty acid metabolism’ as the three most enriched pathways in gene functional analysis. In conclusion, increasing muscle total carnitine in healthy humans can modulate muscle metabolism, energy expenditure and body composition over a prolonged period, which is entirely consistent with a carnitine-mediated increase in muscle long-chain acyl-group translocation via CPT1. Implications to health warrant further investigation, particularly in obese individuals who have a reduced reliance on muscle fat oxidation during low-intensity exercise. PMID:23818692

  7. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect

    PubMed Central

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants’ behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.’s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  8. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect.

    PubMed

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants' behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out.

  9. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect.

    PubMed

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants' behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.'s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  10. BMI not WHR modulates BOLD fMRI responses in a sub-cortical reward network when participants judge the attractiveness of human female bodies.

    PubMed

    Holliday, Ian E; Longe, Olivia A; Thai, N Jade; Hancock, Peter J B; Tovée, Martin J

    2011-01-01

    In perceptual terms, the human body is a complex 3d shape which has to be interpreted by the observer to judge its attractiveness. Both body mass and shape have been suggested as strong predictors of female attractiveness. Normally body mass and shape co-vary, and it is difficult to differentiate their separate effects. A recent study suggested that altering body mass does not modulate activity in the reward mechanisms of the brain, but shape does. However, using computer generated female body-shaped greyscale images, based on a Principal Component Analysis of female bodies, we were able to construct images which covary with real female body mass (indexed with BMI) and not with body shape (indexed with WHR), and vice versa. Twelve observers (6 male and 6 female) rated these images for attractiveness during an fMRI study. The attractiveness ratings were correlated with changes in BMI and not WHR. Our primary fMRI results demonstrated that in addition to activation in higher visual areas (such as the extrastriate body area), changing BMI also modulated activity in the caudate nucleus, and other parts of the brain reward system. This shows that BMI, not WHR, modulates reward mechanisms in the brain and we infer that this may have important implications for judgements of ideal body size in eating disordered individuals. PMID:22102883

  11. Ultradian rhythmicity and induced changes in salivary testosterone.

    PubMed

    Beaven, C Martyn; Ingram, John R; Gill, Nicholas D; Hopkins, Will G

    2010-09-01

    Testosterone and cortisol respond to exercise stimuli and modulate adaptation. Episodic basal secretion of these hormones may modify the responsiveness of these hormones. We sought to identify episodic steroid secretion via frequent salivary sampling and investigate any interaction between ultradian rhythmicity and induced changes in testosterone. Salivary testosterone and cortisol concentrations of seven males (age 20-40 years) were measured every 10 min between 0800 and 1600 h on three consecutive days. On either the second or third day, three interventions designed to elicit a hormonal response were randomly assigned: sprint exercise (two 30-s maximal efforts on a cycle ergometer); boxing (two 30-s maximal punching efforts); and a violent video game (10 min of player vs. player combat). On the other days subjects were inactive. Testosterone data on non-intervention days suggested pulsatile secretion with a pulse interval of 47 +/- 9 min (mean +/- SD). The sprint intervention substantially affected hormones: it elicited a small transient elevation in testosterone (by a factor of 1.21; factor 90% confidence limits x/ divided by 1.21) 10 min after exercise, and a moderate elevation in cortisol peaking 50 min post-exercise (factor 2.3; x/ divided by 2.6). The testosterone response correlated with the change in testosterone concentration in the 10 min prior to the sprint (r = 0.78; 90% CL 0.22-0.95) and with a measure of randomness in testosterone fluctuations (r = 0.83; 0.35-0.96). Thus, the salivary testosterone response to exercise may be dependent on the underlying ultradian rhythm and aspects of its regulation. This interaction may have important implications for adaptation to exercise. PMID:20512500

  12. Human body frequency modulation by 0.9% sodium chloride solutions: a new paradigm and perspective for human health.

    PubMed

    Sudan, B J

    2000-08-01

    This case study demonstrates that the normal human body frequency, which can be disturbed by electromagnetic influences of the environment, can be modulated by 0.9% sodium chloride solutions (physiological saline) and that occurrence of allergic reactions have subsequently been suppressed as a result of this modulation. The use of distilled water as control showed no effect on occurrence of allergic reactions. Further observations on the growth of various plants in a greenhouse exposed to various geomagnetic fields support the previous observations on humans. The neutralization of electromagnetic influences on humans using 0.9% sodium chloride solution or by enclosure of plants within a copper wire Faraday cage resulting in a normal and uniform growth of plants as compared with disturbed and irregular growth in unenclosed controls, is demonstrated. These original observations propose a new strategy to suppress or prevent allergic reactions and possibly other effects observed in various human pathologies in relation to a disturbance of human body frequencies. It is hypothesized that the double helix structure of desoxyribonucleic acid (DNA) could be modified by environmental electromagnetic fields and that disresonance between the two chains of DNA could lead to the expression of specific pathology. PMID:10904434

  13. A high-resolution thermoelectric module-based calorimeter for measuring the energetics of isolated ventricular trabeculae at body temperature.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2015-07-15

    Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isolated, contracting, ventricular trabeculae at body temperature. This development was largely motivated by the need to better understand cardiac energetics by performing such measurements at body temperature to relate tissue performance to whole heart behavior in vivo. Our approach uses solid-state thermoelectric modules, tailored for both temperature sensing and temperature control. The thermoelectric modules have high sensitivity and low noise, which, when coupled with a multilevel temperature control system, enable an exceptionally high temperature resolution with a noise-equivalent power an order of magnitude greater than those of other existing muscle calorimeters. Our system allows us to rapidly and easily change the experimental temperature without disturbing the state of the muscle. Our calorimeter is useful in many experiments that explore the energetics of normal physiology as well as pathophysiology of cardiac muscle.

  14. Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation.

    PubMed

    Kerr, Catherine E; Sacchet, Matthew D; Lazar, Sara W; Moore, Christopher I; Jones, Stephanie R

    2013-01-01

    Using a common set of mindfulness exercises, mindfulness based stress reduction (MBSR) and mindfulness based cognitive therapy (MBCT) have been shown to reduce distress in chronic pain and decrease risk of depression relapse. These standardized mindfulness (ST-Mindfulness) practices predominantly require attending to breath and body sensations. Here, we offer a novel view of ST-Mindfulness's somatic focus as a form of training for optimizing attentional modulation of 7-14 Hz alpha rhythms that play a key role in filtering inputs to primary sensory neocortex and organizing the flow of sensory information in the brain. In support of the framework, we describe our previous finding that ST-Mindfulness enhanced attentional regulation of alpha in primary somatosensory cortex (SI). The framework allows us to make several predictions. In chronic pain, we predict somatic attention in ST-Mindfulness "de-biases" alpha in SI, freeing up pain-focused attentional resources. In depression relapse, we predict ST-Mindfulness's somatic attention competes with internally focused rumination, as internally focused cognitive processes (including working memory) rely on alpha filtering of sensory input. Our computational model predicts ST-Mindfulness enhances top-down modulation of alpha by facilitating precise alterations in timing and efficacy of SI thalamocortical inputs. We conclude by considering how the framework aligns with Buddhist teachings that mindfulness starts with "mindfulness of the body." Translating this theory into neurophysiology, we hypothesize that with its somatic focus, mindfulness' top-down alpha rhythm modulation in SI enhances gain control which, in turn, sensitizes practitioners to better detect and regulate when the mind wanders from its somatic focus. This enhanced regulation of somatic mind-wandering may be an important early stage of mindfulness training that leads to enhanced cognitive regulation and metacognition.

  15. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  16. The formation of rhythmic categories and metric priming.

    PubMed

    Desain, Peter; Honing, Henkjan

    2003-01-01

    Two experiments on categorical rhythm perception are reported, the object of which was to investigate how listeners perceive discrete rhythmic categories while listening to rhythms performed on a continuous time scale. This is studied by considering the space of all temporal patterns (all possible rhythms made up of three intervals) and how they, in perception, are partitioned into categories, ie where the boundaries of these categories are located. This process of categorisation is formalised as the mapping from the continuous space of a series of time intervals to a discrete, symbolic domain of integer-ratio sequences. The methodological framework uses concepts from mathematics and psychology (eg convexity and entropy) that allow precise characterisations of the empirical results. In the first experiment, twenty-nine participants performed an identification task with 66 rhythmic stimuli (a systematic sampling of the performance space). The results show that listeners do not just perceive the time intervals between onsets of sounds as placed in a homogeneous continuum. Instead, they can reliably identify rhythmic categories, as a chronotopic time clumping map reveals. In a second experiment, the effect of metric priming was studied by presenting the same stimuli but preceded with a duple or triple metre subdivision. It is shown that presenting patterns in the context of a metre has a large effect on rhythmic categorisation: the presence of a specific musical metre primes the perception of specific rhythmic patterns. PMID:12729384

  17. TH-C-12A-04: Dosimetric Evaluation of a Modulated Arc Technique for Total Body Irradiation

    SciTech Connect

    Tsiamas, P; Czerminska, M; Makrigiorgos, G; Karen, M; Zygmanski, P

    2014-06-15

    Purpose: A simplified Total Body Irradiation (TBI) was developed to work with minimal requirements in a compact linac room without custom motorized TBI couch. Results were compared to our existing fixed-gantry double 4 MV linac TBI system with prone patient and simultaneous AP/PA irradiation. Methods: Modulated arc irradiates patient positioned in prone/supine positions along the craniocaudal axis. A simplified inverse planning method developed to optimize dose rate as a function of gantry angle for various patient sizes without the need of graphical 3D treatment planning system. This method can be easily adapted and used with minimal resources. Fixed maximum field size (40×40 cm2) is used to decrease radiation delivery time. Dose rate as a function of gantry angle is optimized to result in uniform dose inside rectangular phantoms of various sizes and a custom VMAT DICOM plans were generated using a DICOM editor tool. Monte Carlo simulations, film and ionization chamber dosimetry for various setups were used to derive and test an extended SSD beam model based on PDD/OAR profiles for Varian 6EX/ TX. Measurements were obtained using solid water phantoms. Dose rate modulation function was determined for various size patients (100cm − 200cm). Depending on the size of the patient arc range varied from 100° to 120°. Results: A PDD/OAR based beam model for modulated arc TBI therapy was developed. Lateral dose profiles produced were similar to profiles of our existing TBI facility. Calculated delivery time and full arc depended on the size of the patient (∼8min/ 100° − 10min/ 120°, 100 cGy). Dose heterogeneity varied by about ±5% − ±10% depending on the patient size and distance to the surface (buildup region). Conclusion: TBI using simplified modulated arc along craniocaudal axis of different size patients positioned on the floor can be achieved without graphical / inverse 3D planning.

  18. Is there evidence for nonthermal modulation of whole body heat loss during intermittent exercise?

    PubMed

    Kenny, Glen P; Gagnon, Daniel

    2010-07-01

    This study compared the effect of active, passive, and inactive recoveries on whole body evaporative and dry heat loss responses during intermittent exercise at an air temperature of 30 degrees C and a relative humidity of 20%. Nine males performed three 15-min bouts of upright seated cycling at a fixed external workload of 150 W. The exercise bouts were separated by three 15-min recoveries during which participants 1) performed loadless pedaling (active recovery), 2) had their lower limbs passively compressed with inflatable sleeves (passive recovery), or 3) remained upright seated on the cycle ergometer (inactive recovery). Combined direct and indirect calorimetry was employed to measure rates of whole body evaporative heat loss (EHL) and metabolic heat production (M-W). Mean body temperature (T(b)) was calculated from esophageal and mean skin temperatures, and mean arterial pressure (MAP) was measured continuously. Active and passive recoveries both reversed the reduction in MAP associated with inactive recovery (P body

  19. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment.

    PubMed

    Wang, Lin; Li, Peicheng; Tang, Zhaosheng; Yan, Xinfeng; Feng, Bo

    2016-01-01

    The mechanisms underlying the weight-loss effect of GLP-1 receptor agonists need further elucidation. The present study was performed to explore the effects of liraglutide and saxagliptin on the composition of the gut microbiota. Mice were randomly treated with saxagliptin or liraglutide for eight weeks. Their metabolic profiles were assessed, and 454 pyrosequencing of 16s rRNA of faeces was performed. Liraglutide induced a smaller body weight gain in mice. The pyrosequencing showed that liraglutide, but not saxagliptin, substantially changed the overall structure of the gut microbiota as well as the relative abundance of weight-relevant phylotypes. Subsequent ridge regression analyses indicated that, in addition to food intake (β = -0.182, p = 0.043 in phylotypes inversely correlated with body weight) and blood glucose level (β = -0.240, p = 0.039 in phylotypes positively correlated with body weight), the administration of liraglutide was another independent factor associated with the abundance of weight-relevant phylotypes (β = 0.389, p = 6.24e-5 in inversely correlated ones; β = -0.508, p = 2.25e-5 in positively correlated ones). These results evidenced that GLP-1 receptor agonist liraglutide could modulate the composition of the gut microbiota, leading to a more lean-related profile that was consistent with its weight-losing effect. PMID:27633081

  20. A selective androgen receptor modulator with minimal prostate hypertrophic activity restores lean body mass in aged orchidectomized male rats.

    PubMed

    Allan, George; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Ng, Raymond; Sui, Zhihua; Lundeen, Scott

    2008-06-01

    Androgens are required for the maintenance of normal sexual activity in adulthood and for enhancing muscle growth and lean body mass in adolescents and adults. Androgen receptor (AR) ligands with tissue selectivity (selective androgen receptor modulators, or SARMs) have potential for treating muscle wasting, hypogonadism of aging, osteoporosis, female sexual dysfunction, and other indications. JNJ-37654032 is a nonsteroidal AR ligand with mixed agonist and antagonist activity in androgen-responsive cell-based assays. It is an orally active SARM with muscle selectivity in orchidectomized rat models. It stimulated growth of the levator ani muscle with ED(50) 0.8 mg/kg, stimulating maximal growth at a dose of 3mg/kg. In contrast, it stimulated ventral prostate growth to 21% of its full size at 3mg/kg. At the same time, JNJ-37654032 reduced prostate weight in intact rats by 47% at 3mg/kg, while having no inhibitory effect on muscle. Using magnetic resonance imaging to monitor body composition, JNJ-37654032 restored about 20% of the lean body mass lost following orchidectomy in aged rats. JNJ-37654032 reduced follicle-stimulating hormone levels in orchidectomized rats and reduced testis size in intact rats. JNJ-37654032 is a potent prostate-sparing SARM with the potential for clinical benefit in muscle-wasting diseases.

  1. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment

    PubMed Central

    Wang, Lin; Li, Peicheng; Tang, Zhaosheng; Yan, Xinfeng; Feng, Bo

    2016-01-01

    The mechanisms underlying the weight-loss effect of GLP-1 receptor agonists need further elucidation. The present study was performed to explore the effects of liraglutide and saxagliptin on the composition of the gut microbiota. Mice were randomly treated with saxagliptin or liraglutide for eight weeks. Their metabolic profiles were assessed, and 454 pyrosequencing of 16s rRNA of faeces was performed. Liraglutide induced a smaller body weight gain in mice. The pyrosequencing showed that liraglutide, but not saxagliptin, substantially changed the overall structure of the gut microbiota as well as the relative abundance of weight-relevant phylotypes. Subsequent ridge regression analyses indicated that, in addition to food intake (β = −0.182, p = 0.043 in phylotypes inversely correlated with body weight) and blood glucose level (β = −0.240, p = 0.039 in phylotypes positively correlated with body weight), the administration of liraglutide was another independent factor associated with the abundance of weight-relevant phylotypes (β = 0.389, p = 6.24e-5 in inversely correlated ones; β = −0.508, p = 2.25e-5 in positively correlated ones). These results evidenced that GLP-1 receptor agonist liraglutide could modulate the composition of the gut microbiota, leading to a more lean-related profile that was consistent with its weight-losing effect. PMID:27633081

  2. The connection between rhythmicity and brain function.

    PubMed

    Thaut, M H; Kenyon, G P; Schauer, M L; McIntosh, G C

    1999-01-01

    Although rhythm and music are not entirely synonymous terms, rhythm constitutes one of the most essential structural and organizational elements of music. When considering the effect of music on human adaptation, the profound effect of rhythm on the motor system strongly suggests that the time structure of music is the essential element relating music specifically to motor behavior. Why the motor system appears so sensitive to auditory priming and timing stimulation can only be partially answered so far. The high-performance function of the auditory system regarding processing of time information makes good functional sense within the constraints of auditory sensory processing. Thus, the motor system sensitivity to auditory entrainment may simply be an evolutionary useful function of taking advantage of the specific and unique aspects of auditory information processing for enhanced control and organization of motor behavior; e.g, in the time domain. Unlike processes in the motor system, many other physiological processes cannot be effectively entrained by external sensory stimuli. For example, there is probably a very good protective reason why other cyclical physiological processes (e.g., autonomic processes such as heart rate) have only very limited entrainment capacity to external rhythmic cues. Some of the basic auditory-motor arousal connections may also have their basis in adaptive evolutionary processes related to survival behavior; e.g., in fight or flight reactions. Much of the "why" in auditory-motor interactions, however, remains unknown heuristically. In the absence of this knowledge, great care should be taken to not compensate for this lack of understanding of specific cause and effect processes by assigning anthropomorphic descriptions to the behavior of biological and physical systems. The unraveling of the perceptual, physiological, and neuroanatomical basis of the interaction between rhythm and movement has been, and continues to be, a fascinating

  3. The connection between rhythmicity and brain function.

    PubMed

    Thaut, M H; Kenyon, G P; Schauer, M L; McIntosh, G C

    1999-01-01

    Although rhythm and music are not entirely synonymous terms, rhythm constitutes one of the most essential structural and organizational elements of music. When considering the effect of music on human adaptation, the profound effect of rhythm on the motor system strongly suggests that the time structure of music is the essential element relating music specifically to motor behavior. Why the motor system appears so sensitive to auditory priming and timing stimulation can only be partially answered so far. The high-performance function of the auditory system regarding processing of time information makes good functional sense within the constraints of auditory sensory processing. Thus, the motor system sensitivity to auditory entrainment may simply be an evolutionary useful function of taking advantage of the specific and unique aspects of auditory information processing for enhanced control and organization of motor behavior; e.g, in the time domain. Unlike processes in the motor system, many other physiological processes cannot be effectively entrained by external sensory stimuli. For example, there is probably a very good protective reason why other cyclical physiological processes (e.g., autonomic processes such as heart rate) have only very limited entrainment capacity to external rhythmic cues. Some of the basic auditory-motor arousal connections may also have their basis in adaptive evolutionary processes related to survival behavior; e.g., in fight or flight reactions. Much of the "why" in auditory-motor interactions, however, remains unknown heuristically. In the absence of this knowledge, great care should be taken to not compensate for this lack of understanding of specific cause and effect processes by assigning anthropomorphic descriptions to the behavior of biological and physical systems. The unraveling of the perceptual, physiological, and neuroanatomical basis of the interaction between rhythm and movement has been, and continues to be, a fascinating

  4. Time-frequency analysis of rhythmic masticatory muscle activity.

    PubMed

    Farella, Mauro; Palla, Sandro; Gallo, Luigi Maria

    2009-06-01

    The aim of this study was to develop and validate under laboratory conditions an algorithm for a time-frequency analysis of rhythmic masticatory muscle activity (RMMA). The algorithm baseband demodulated the electromyographic (EMG) signal to provide a frequency versus time representation. Using appropriate thresholds for frequency and power parameters, it was possible to automatically assess the features of RMMA without examiner interaction. The algorithm was first tested using synthetic EMG signals and then using real EMG signals obtained from the masticatory muscles of 11 human subjects who underwent well-defined rhythmic, static, and possible confounding oral tasks. The accuracy of detection was quantified by receiver operating characteristics (ROC) curves. Sensitivity and specificity values were > or =90% and > or =96%, respectively. The areas under the ROC curves were > or =95% (standard error +/-0.1%). The proposed approach represents a promising tool to effectively investigate rhythmical contractions of the masticatory muscles.

  5. Distractibility during infants' examining and repetitive rhythmic activity.

    PubMed

    Doolittle, E J; Ruff, H A

    1998-05-01

    The goal of this study was to assess the role of examining and repetitive rhythmic activity in infants' exploration of novel objects. Sixteen 8-month-old infants played with novel toys as auditory-visual slide distractors occurred on one side at random intervals. The results showed that examining, but not repetitive activities, declined with exposure to the objects. They also showed that infants had different patterns of distractibility during examining and repetitive rhythmic activities. The infants were slower to turn to the distractor if they were examining the toy than if they were engaged in other activity, but the probability of a response did not differ. In contrast, when engaged in repetitive rhythmic activity, infants were less likely to respond to the distractor than when engaged in other activities, including examining; the speed with which they responded, however, did not differ. The results suggest that, during these two activities, the mechanisms for resisting distraction are quite different. PMID:9589216

  6. Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation.

    PubMed

    Hernández, Alfredo I; Le Rolle, Virginie; Ojeda, David; Baconnier, Pierre; Fontecave-Jallon, Julie; Guillaud, François; Grosse, Thibault; Moss, Robert G; Hannaert, Patrick; Thomas, S Randall

    2011-10-01

    This paper presents a contribution to the definition of the interfaces required to perform heterogeneous model integration in the context of integrative physiology. A formalization of the model integration problem is proposed and a coupling method is presented. The extension of the classic Guyton model, a multi-organ, integrated systems model of blood pressure regulation, is used as an example of the application of the proposed method. To this end, the Guyton model has been restructured, extensive sensitivity analyses have been performed, and appropriate transformations have been applied to replace a subset of its constituting modules by integrating a pulsatile heart and an updated representation of the renin-angiotensin system. Simulation results of the extended integrated model are presented and the impacts of their integration within the original model are evaluated.

  7. Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children

    PubMed Central

    Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2012-01-01

    Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal

  8. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum

    PubMed Central

    Varga, Viktor; Hangya, Balázs; Kránitz, Kinga; Ludányi, Anikó; Zemankovics, Rita; Katona, István; Shigemoto, Ryuichi; Freund, Tamás F; Borhegyi, Zsolt

    2008-01-01

    The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone. PMID:18565991

  9. Dosimetric Impact of Breathing Motion in Lung Stereotactic Body Radiotherapy Treatment Using Image-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    SciTech Connect

    Rao Min; Wu Jianzhou; Cao Daliang; Wong, Tony; Mehta, Vivek; Shepard, David; Ye Jinsong

    2012-06-01

    Purpose: The objective of this study was to investigate the influence of tumor motion on dose delivery in stereotactic body radiotherapy (SBRT) for lung cancer, using fixed field intensity- modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Methods and Materials: For each of 10 patients with stage I/II non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was carried out. The internal target volume was delineated on the maximum intensity projection CT, which was reconstructed from the 4DCT dataset. A 5-mm margin was used for generation of the planning target volume. VMAT and five-field IMRT plans were generated using Pinnacle{sup 3} SmartArc and direct machine parameter optimization, respectively. All plans were generated for an Elekta Synergy linear accelerator using 6-MV photons. Simulation was performed to study the interplay between multileaf collimator (MLC) sequences and target movement during the delivery of VMAT and IMRT. For each plan, 4D dose was calculated using deformable image registration of the 4DCT images. Target volume coverage and doses to critical structures calculated using 4D methodology were compared with those calculated using 3D methodology. Results: For all patients included in this study, the interplay effect was found to present limited impact (less than 1% of prescription) on the target dose distribution, especially for SBRT, in which fewer fractions (three fractions) are delivered. Dose to the gross tumor volume (GTV) was, on average, slightly decreased (1% of prescription) in the 4D calculation compared with the 3D calculation. The motion impact on target dose homogeneity was patient-dependent and relatively small. Conclusions: Both VMAT and IMRT plans experienced negligible interplay effects between MLC sequence and tumor motion. For the most part, the 3D doses to the GTV and critical structures provided good approximations of the 4D dose calculations.

  10. Rhythmic Effects of Syntax Processing in Music and Language.

    PubMed

    Jung, Harim; Sontag, Samuel; Park, YeBin S; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated-linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical

  11. Rhythmic Effects of Syntax Processing in Music and Language

    PubMed Central

    Jung, Harim; Sontag, Samuel; Park, YeBin S.; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated—linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical

  12. Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes

    PubMed Central

    Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin

    2012-01-01

    Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats. PMID:22715380

  13. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    PubMed

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator

  14. Green tea polyphenols reduce body weight in rats by modulating obesity-related genes.

    PubMed

    Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin

    2012-01-01

    Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats.

  15. Chemotransduction in the Carotid Body: K+ Current Modulated by Po2 in Type I Chemoreceptor Cells

    NASA Astrophysics Data System (ADS)

    Lopez-Barneo, Jose; Lopez-Lopez, Jose R.; Urena, Juan; Gonzalez, Constancio

    1988-07-01

    The ionic currents of carotid body type I cells and their possible involvement in the detection of oxygen tension (Po2) in arterial blood are unknown. The electrical properties of these cells were studied with the whole-cell patch clamp technique, and the hypothesis that ionic conductances can be altered by changes in Po2 was tested. The results show that type I cells have voltage-dependent sodium, calcium, and potassium channels. Sodium and calcium currents were unaffected by a decrease in Po2 from 150 to 10 millimeters of mercury, whereas, with the same experimental protocol, potassium currents were reversibly reduced by 25 to 50 percent. The effect of hypoxia was independent of internal adenosine triphosphate and calcium. Thus, ionic conductances, and particularly the O2-sensitive potassium current, play a key role in the transduction mechanism of arterial chemoreceptors.

  16. The origin of rhythmic layering in the Cape Neddick Plutonic Complex, Maine

    SciTech Connect

    Shipley, J. . Dept. of Geology)

    1993-03-01

    The Cape Neddick Plutonic Complex located along the southwestern coast of Maine is a small layered gabbroic body. It contains four concentric gabbros of differing composition, From the center to the exterior these are Cortlandtitic, Anorthositic, Normal, and Pegmatitic gabbros. They vary slightly in the proportion of essential minerals; plagioclase, clinopyroxene, hornblende, and biotite [+-] opaques and olivine. Rhythmic layering is seen in all four gabbros. This layering is also concentric around the center of the complex. The best exposure of the layering is along the coast where non-graded and graded rhythmic layering is seen extensively in the Normal gabbro. Only non-graded layering is seen in the Anorthositic gabbro. Non-graded layers were sampled at two localities. One locality is on Cape Nubble Island in the Normal gabbro. The second locality is in the Anorthositic gabbro along the northern coast. The layers are roughly 5--8 cm in width and are continuous around the complex. They are identified on weathered surfaces as alternating bands of felsic and mafic minerals. Layers are not obvious in hand sample. Approximately 15--20 layers were sampled perpendicular to layering. Petrographic and geochemical studies will help constrain the origin of rhythmic layering in the Cape Neddick Complex. Crystal settling or structural processes seem highly unlikely due to the small distance between the layers and the fact that they are not graded. Possible models include multiple pulses of magma within the same magma chamber, density currents, or in situ fractionation by a nucleation-diffusion process. Modal and chemical analysis of mineral phases within individual layers will allow comparison of the bulk composition of each layer. Analysis of coexisting pyroxene and plagioclase can be used to estimate compositional variations in the parent liquid.

  17. Long-Term Outcome After Static Intensity-Modulated Total Body Radiotherapy Using Compensators Stratified by Pediatric and Adult Cohorts

    SciTech Connect

    Schneider, Ralf A. Schultze, Juergen; Jensen, J. Martin; Hebbinghaus, Dieter; Galalae, Razvan M.

    2008-01-01

    Purpose: To report the long-term outcome after total body irradiation with intensity-modulating compensators and allogeneic/autologous transplantation, especially in terms of therapy-related toxicity in pediatric and adult cohorts. Methods and Materials: A total of 257 consecutive patients (40 children and 217 adults) have been treated since 1983 with TBI using static intensity-modulated radiotherapy for hematologic malignancies. The total dose of 12 Gy was applied in six fractions within 3 days before allogeneic (n = 174) or autologous (n = 83) transplantation. The median follow-up was 9.2 years. Results: The 5-year overall survival rate was 47.9% (49.8% for the adults and 37.5% for the children, p = 0.171). The 5-year tumor-related mortality rate was 23%, and the 5-year treatment-related mortality rate 29.2% (29.5% in the adults and 27.5% in the pediatric patients). Interstitial pneumonitis developed in 28 (10.9%) of 257 patients and in 12.5% of the pediatric cohort. The interstitial pneumonitis rate was 25% in pediatric patients treated with a 12-Gy lung dose compared with 4.2% for those treated to an 11-Gy lung dose. The overall survival rate stratified by lung dose was 26.7% for 12 Gy and 52.4% for 11 Gy (p = 0.001). The incidence of veno-occlusive disease and cataract was 5.8% and 6.6% in all patients and 12.5% and 15% in the pediatric patients, respectively (p < 0.05). Secondary malignancies were found in 4.3% of all patients, all in the adult cohort at transplantation. Conclusion: Static intensity-modulated total body irradiation with a total dose of 12 Gy before allogeneic/autologous transplantation is a successful treatment with good long-term outcome and acceptable therapy-related toxicities. Constraining the lung dose to 11 Gy substantially lowered the actuarial treatment-related mortality. This effect was especially striking in the pediatric patients.

  18. The PXDLS linear motif regulates circadian rhythmicity through protein–protein interactions

    PubMed Central

    Shalev, Moran; Aviram, Rona; Adamovich, Yaarit; Kraut-Cohen, Judith; Shamia, Tal; Ben-Dor, Shifra; Golik, Marina; Asher, Gad

    2014-01-01

    The circadian core clock circuitry relies on interlocked transcription-translation feedback loops that largely count on multiple protein interactions. The molecular mechanisms implicated in the assembly of these protein complexes are relatively unknown. Our bioinformatics analysis of short linear motifs, implicated in protein interactions, reveals an enrichment of the Pro-X-Asp-Leu-Ser (PXDLS) motif within circadian transcripts. We show that the PXDLS motif can bind to BMAL1/CLOCK and disrupt circadian oscillations in a cell-autonomous manner. Remarkably, the motif is evolutionary conserved in the core clock protein REV-ERBα, and additional proteins implicated in the clock's function (NRIP1, CBP). In this conjuncture, we uncover a novel cross talk between the two principal core clock feedback loops and show that BMAL/CLOCK and REV-ERBα interact and that the PXDLS motif of REV-ERBα participates in their binding. Furthermore, we demonstrate that the PXDLS motifs of NRIP1 and CBP are involved in circadian rhythmicity. Our findings suggest that the PXDLS motif plays an important role in circadian rhythmicity through regulation of protein interactions within the clock circuitry and that short linear motifs can be employed to modulate circadian oscillations. PMID:25260595

  19. Rhythmic Engagement with Music in Early Childhood: A Replication and Extension

    ERIC Educational Resources Information Center

    Ilari, Beatriz

    2015-01-01

    The purpose of this study was to replicate and extend previous findings on spontaneous movement and rhythmic engagement with music in infancy. Using the identical stimuli and procedures from the original study, I investigated spontaneous rhythmic movements in response to music, infant-directed speech, and contrasting rhythmic patterns in 30…

  20. Rhythmic arm movements are less affected than discrete ones after a stroke.

    PubMed

    Leconte, Patricia; Orban de Xivry, Jean-Jacques; Stoquart, Gaëtan; Lejeune, Thierry; Ronsse, Renaud

    2016-06-01

    Recent reports indicate that rhythmic and discrete upper-limb movements are two different motor primitives which recruit, at least partially, distinct neural circuitries. In particular, rhythmic movements recruit a smaller cortical network than discrete movements. The goal of this paper is to compare the levels of disability in performing rhythmic and discrete movements after a stroke. More precisely, we tested the hypothesis that rhythmic movements should be less affected than discrete ones, because they recruit neural circuitries that are less likely to be damaged by the stroke. Eleven stroke patients and eleven age-matched control subjects performed discrete and rhythmic movements using an end-effector robot (REAplan). The rhythmic movement condition was performed with and without visual targets to further decrease cortical recruitment. Movement kinematics was analyzed through specific metrics, capturing the degree of smoothness and harmonicity. We reported three main observations: (1) the movement smoothness of the paretic arm was more severely degraded for discrete movements than rhythmic movements; (2) most of the patients performed rhythmic movements with a lower harmonicity than controls; and (3) visually guided rhythmic movements were more altered than non-visually guided rhythmic movements. These results suggest a hierarchy in the levels of impairment: Discrete movements are more affected than rhythmic ones, which are more affected if they are visually guided. These results are a new illustration that discrete and rhythmic movements are two fundamental primitives in upper-limb movements. Moreover, this hierarchy of impairment opens new post-stroke rehabilitation perspectives.

  1. Perceptual Tests of Rhythmic Similarity: I. Mora Rhythm

    ERIC Educational Resources Information Center

    Murty, Lalita; Otake, Takashi; Cutler, Anne

    2007-01-01

    Listeners rely on native-language rhythm in segmenting speech; in different languages, stress-, syllable- or mora-based rhythm is exploited. The rhythmic similarity hypothesis holds that where two languages have similar rhythm, listeners of each language should segment their own and the other language similarly. Such similarity in listening was…

  2. Cross-Linguistic Comparison of Rhythmic and Phonotactic Similarity

    ERIC Educational Resources Information Center

    Stojanovic, Diana

    2013-01-01

    Literature on speech rhythm has been focused on three major questions: whether languages have rhythms that can be classified into a small number of types, what the criteria are for the membership in each class, and whether the perceived rhythmic similarity between languages can be quantified based on properties found in the speech signal. Claims…

  3. Crosstalk between circadian rhythmicity, mitochondrial dynamics and macrophage bactericidal activity

    PubMed Central

    Oliva-Ramírez, Jacqueline; Moreno-Altamirano, María Maximina B; Pineda-Olvera, Benjamín; Cauich-Sánchez, Patricia; Sánchez-García, F Javier

    2014-01-01

    Biological functions show rhythmic fluctuations with 24-hr periodicity regulated by circadian proteins encoded by the so-called ‘clock’ genes. The absence or deregulation of circadian proteins in mice leads to metabolic disorders and in vitro models have shown that the synthesis of pro-inflammatory cytokines by macrophages follows a circadian rhythm so showing a link between circadian rhythmicity, metabolism and immunity. Recent evidence reveals that mitochondrial shape, position and size, collectively referred to as mitochondrial dynamics, are related to both cell metabolism and immune function. However, studies addressing the simultaneous crosstalk between circadian rhythm, mitochondrial dynamics and cell immune function are scarce. Here, by using an in vitro model of synchronized murine peritoneal macrophages, we present evidence that the mitochondrial dynamics and the mitochondrial membrane potential (Δψm) follow a circadian rhythmic pattern. In addition, it is shown that the fusion of mitochondria along with high Δψm, indicative of high mitochondrial activity, precede the highest phagocytic and bactericidal activity of macrophages on Salmonella typhimurium. Taken together, our results suggest a timely coordination between circadian rhythmicity, mitochondrial dynamics, and the bactericidal capacity of macrophages. PMID:24903615

  4. Effects of Kindermusik Training on Infants' Rhythmic Enculturation

    ERIC Educational Resources Information Center

    Gerry, David W.; Faux, Ashley L.; Trainor, Laurel J.

    2010-01-01

    Phillips-Silver and Trainor (2005) demonstrated a link between movement and the metrical interpretation of rhythm patterns in 7-month-old infants. Infants bounced on every second beat of a rhythmic pattern with no auditory accents later preferred to listen to an accented version of the pattern with accents every second beat (duple or march meter),…

  5. Rhythmic Priming Enhances the Phonological Processing of Speech

    ERIC Educational Resources Information Center

    Cason, Nia; Schon, Daniele

    2012-01-01

    While natural speech does not possess the same degree of temporal regularity found in music, there is recent evidence to suggest that temporal regularity enhances speech processing. The aim of this experiment was to examine whether speech processing would be enhanced by the prior presentation of a rhythmical prime. We recorded electrophysiological…

  6. Attentional Loads Associated with Interlimb Interactions Underlying Rhythmic Bimanual Coordination

    ERIC Educational Resources Information Center

    Ridderikhoff, Arne; Peper, C. E.; Beek, Peter J.

    2008-01-01

    Studies of rhythmic bimanual coordination under dual-task conditions revealed (1) a dependence of secondary task performance on the stability of coordinative tasks, in that secondary task performance was better during in-phase than antiphase coordination, and (2) a shift in the mean relative phasing between the limbs compared to single-task…

  7. On the origin of rhythmic layering in layered gabbros

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, J.

    2015-12-01

    Rhythmic layering of silicates (plagioclase, pyroxene and olivine), ilmenite and magnitite is a common feature in mafic-ultramafic intrusions. The origin of rhythmic layering has been hotly debated in the literatures. Proposed mechanisms include gravity differentiation, double-diffusive convection, oscillatory crystallization of magma, repeated injection and supplement of magma, etc. Here we provide detailed FTIR and EBSD studies on the water content and deformation microstructure of gabbros from the Panzhihua intrusion and experimentally deformed synthetic gabrros and magnetite aggregates with a volume ratio of 6:4. The FTIR analyses revealed a significant amount of hydroxyls in both clinopyroxene (411-775 ppm) and plagioclase (328-716 ppm), suggesting a high water content mantle plume source. The EBSD analyses show similar fabrics in constitutent minerals of natural and experimental specimens: a weak clinopyroxene fabric of (100) parallel to foliation and [001] parallel to lineation; a strong plagioclase fabric of (010) parallel to foliation and [100] parallel to lineation, a weak ilmenite fabric of (001) parallel to foliation and [hk0] parallel to lieantion; and a near random magnitite fabric. There is an obvious rhythmic layering in sheared gabrros and magnetite aggregates similar to natural observations. Our results revealed strong layer-parallel shearing deformation during the formation of the Panxi layered intructions. There is a significant strength contrast between gabbro and Fe-Ti oxides. We propose that the formation of the rhythmic layering in mafic-ultramafic intrusions is caused mainly by rheological stratification of Fe-Ti oxides and gabbros.

  8. Evolution of central pattern generators and rhythmic behaviours.

    PubMed

    Katz, Paul S

    2016-01-01

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.

  9. Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability

    PubMed Central

    Eckert, Nathanial R.; Poston, Brach; Riley, Zachary A.

    2016-01-01

    The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task. PMID:26981863

  10. Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability.

    PubMed

    Eckert, Nathanial R; Poston, Brach; Riley, Zachary A

    2016-01-01

    The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task. PMID:26981863

  11. Assessment of rhythmic entrainment at multiple timescales in dyslexia: Evidence for disruption to syllable timing☆

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9–2.5 Hz, prosodic stress; 2.5–12 Hz, syllables; 12–40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for

  12. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: A dosimetric analysis

    SciTech Connect

    Kumar, Rachit; Wild, Aaron T.; Ziegler, Mark A.; Hooker, Ted K.; Dah, Samson D.; Tran, Phuoc T.; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M.; Tryggestad, Erik; Ford, Eric; Herman, Joseph M.

    2013-10-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non–duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25 Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal D{sub max} of<30 Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal D{sub mean}, D{sub max}, D{sub 1cc}, D{sub 4%}, and V{sub 20} {sub Gy} compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V{sub 95%} (p = 0.01) and D{sub mean} (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at

  13. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: a dosimetric analysis.

    PubMed

    Kumar, Rachit; Wild, Aaron T; Ziegler, Mark A; Hooker, Ted K; Dah, Samson D; Tran, Phuoc T; Kang, Jun; Smith, Koren; Zeng, Jing; Pawlik, Timothy M; Tryggestad, Erik; Ford, Eric; Herman, Joseph M

    2013-01-01

    Stereotactic body radiation therapy (SBRT) achieves excellent local control for locally advanced pancreatic cancer (LAPC), but may increase late duodenal toxicity. Volumetric-modulated arc therapy (VMAT) delivers intensity-modulated radiation therapy (IMRT) with a rotating gantry rather than multiple fixed beams. This study dosimetrically evaluates the feasibility of implementing duodenal constraints for SBRT using VMAT vs IMRT. Non-duodenal sparing (NS) and duodenal-sparing (DS) VMAT and IMRT plans delivering 25Gy in 1 fraction were generated for 15 patients with LAPC. DS plans were constrained to duodenal Dmax of<30Gy at any point. VMAT used 1 360° coplanar arc with 4° spacing between control points, whereas IMRT used 9 coplanar beams with fixed gantry positions at 40° angles. Dosimetric parameters for target volumes and organs at risk were compared for DS planning vs NS planning and VMAT vs IMRT using paired-sample Wilcoxon signed rank tests. Both DS VMAT and DS IMRT achieved significantly reduced duodenal Dmean, Dmax, D1cc, D4%, and V20Gy compared with NS plans (all p≤0.002). DS constraints compromised target coverage for IMRT as demonstrated by reduced V95% (p = 0.01) and Dmean (p = 0.02), but not for VMAT. DS constraints resulted in increased dose to right kidney, spinal cord, stomach, and liver for VMAT. Direct comparison of DS VMAT and DS IMRT revealed that VMAT was superior in sparing the left kidney (p<0.001) and the spinal cord (p<0.001), whereas IMRT was superior in sparing the stomach (p = 0.05) and the liver (p = 0.003). DS VMAT required 21% fewer monitor units (p<0.001) and delivered treatment 2.4 minutes faster (p<0.001) than DS IMRT. Implementing DS constraints during SBRT planning for LAPC can significantly reduce duodenal point or volumetric dose parameters for both VMAT and IMRT. The primary consequence of implementing DS constraints for VMAT is increased dose to other organs at risk, whereas for IMRT it is compromised target coverage

  14. Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2016-01-20

    Human perception fluctuates with the phase of neural oscillations in the presence of environmental rhythmic structure by which neural oscillations become entrained. However, in the absence of predictability afforded by rhythmic structure, we hypothesize that the neural dynamical states associated with optimal psychophysical performance are more complex than what has been described previously for rhythmic stimuli. The current electroencephalography study characterized the brain dynamics associated with optimal detection of gaps embedded in narrow-band acoustic noise stimuli lacking low-frequency rhythmic structure. Optimal gap detection was associated with three spectrotemporally distinct delta-governed neural microstates. Individual microstates were characterized by unique instantaneous combinations of neural phase in the delta, theta, and alpha frequency bands. Critically, gap detection was not predictable from local fluctuations in stimulus acoustics. The current results suggest that, in the absence of rhythmic structure to entrain neural oscillations, good performance hinges on complex neural states that vary from moment to moment. Significance statement: Our ability to hear faint sounds fluctuates together with slow brain activity that synchronizes with environmental rhythms. However, it is so far not known how brain activity at different time scales might interact to influence perception when there is no rhythm with which brain activity can synchronize. Here, we used electroencephalography to measure brain activity while participants listened for short silences that interrupted ongoing noise. We examined brain activity in three different frequency bands: delta, theta, and alpha. Participants' ability to detect gaps depended on different numbers of frequency bands--sometimes one, sometimes two, and sometimes three--at different times. Changes in the number of frequency bands that predict perception are a hallmark of a complex neural system. PMID:26791216

  15. Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2016-01-20

    Human perception fluctuates with the phase of neural oscillations in the presence of environmental rhythmic structure by which neural oscillations become entrained. However, in the absence of predictability afforded by rhythmic structure, we hypothesize that the neural dynamical states associated with optimal psychophysical performance are more complex than what has been described previously for rhythmic stimuli. The current electroencephalography study characterized the brain dynamics associated with optimal detection of gaps embedded in narrow-band acoustic noise stimuli lacking low-frequency rhythmic structure. Optimal gap detection was associated with three spectrotemporally distinct delta-governed neural microstates. Individual microstates were characterized by unique instantaneous combinations of neural phase in the delta, theta, and alpha frequency bands. Critically, gap detection was not predictable from local fluctuations in stimulus acoustics. The current results suggest that, in the absence of rhythmic structure to entrain neural oscillations, good performance hinges on complex neural states that vary from moment to moment. Significance statement: Our ability to hear faint sounds fluctuates together with slow brain activity that synchronizes with environmental rhythms. However, it is so far not known how brain activity at different time scales might interact to influence perception when there is no rhythm with which brain activity can synchronize. Here, we used electroencephalography to measure brain activity while participants listened for short silences that interrupted ongoing noise. We examined brain activity in three different frequency bands: delta, theta, and alpha. Participants' ability to detect gaps depended on different numbers of frequency bands--sometimes one, sometimes two, and sometimes three--at different times. Changes in the number of frequency bands that predict perception are a hallmark of a complex neural system.

  16. Transitions between discrete and rhythmic primitives in a unimanual task

    PubMed Central

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  17. Blood pressure rhythmicity and visceral fat in children with hypertension.

    PubMed

    Niemirska, Anna; Litwin, Mieczysław; Feber, Janusz; Jurkiewicz, Elżbieta

    2013-10-01

    Primary hypertension is associated with disturbed activity of the sympathetic nervous system and altered blood pressure rhythmicity. We analyzed changes in cardiovascular rhythmicity and its relation with target organ damage during 12 months of antihypertensive treatment in 50 boys with hypertension (median, 15.0 years). The following parameters were obtained before and after 12 months of antihypertensive treatment: 24-hour ambulatory blood pressure, left ventricular mass, carotid intima-media thickness, and MRI for visceral and subcutaneous adipose tissue. Amplitudes and acrophases of mean arterial pressure and heart rate rhythms were obtained for 24-, 12-, and 8-hour periods. After 1 year of treatment, 68% of patients were normotensive, and left ventricular mass and carotid intima-media thickness decreased in 60% and 62% of patients, respectively. Blood pressure and heart rate rhythmicity patterns did not change. Changes in blood pressure amplitude correlated with the decrease of waist circumference (P=0.035). Moreover, the decrease of visceral fat correlated with the decrease of 24-hour mean arterial pressure and heart rate acrophases (both P<0.05). There were no differences in changes of blood pressure and heart rate rhythms between patients who achieved or did not achieve normotension and regression of left ventricular mass and carotid intima-media thickness. It was concluded that abnormal cardiovascular rhythmicity persists in children with primary hypertension despite effective antihypertensive treatment, which suggests that it may be the primary abnormality. The correlation between changes in cardiovascular rhythmicity and visceral obesity may indicate that the visceral fat plays an important role in the sympathetic activity of adolescents with hypertension.

  18. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism

    PubMed Central

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-01-01

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape. PMID:27097688

  19. Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling

    PubMed Central

    Burton, Katherine J.; Li, Xiaohan; Li, Jia-Da; Hu, Wang-Ping

    2015-01-01

    The mammalian circadian clock is composed of single-cell oscillators. Neurochemical and electrical signaling among these oscillators is important for the normal expression of circadian rhythms. Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the suprachiasmatic nucleus (SCN) is highly rhythmic, peaking during the day and being essentially absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced rhythmicity of broad circadian parameters such as locomotor activity, body temperature and sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms. PMID:27103928

  20. Improving Delivery Accuracy of Stereotactic Body Radiotherapy to a Moving Tumor Using Simplified Volumetric Modulated Arc Therapy

    PubMed Central

    Ko, Young Eun; Cho, Byungchul; Kim, Su Ssan; Song, Si Yeol; Choi, Eun Kyung; Ahn, Seung Do; Yi, Byongyong

    2016-01-01

    Purpose To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). Methods and Materials For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients’ respiratory signal; results were compared using film dosimetry with gamma analysis. Results The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. Conclusion We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty. PMID:27333199

  1. Absence of arterial baroreflex modulation of skin sympathetic activity and sweat rate during whole-body heating in humans

    NASA Technical Reports Server (NTRS)

    Wilson, T. E.; Cui, J.; Crandall, C. G.

    2001-01-01

    1. Prior findings suggest that baroreflexes are capable of modulating skin blood flow, but the effects of baroreceptor loading/unloading on sweating are less clear. Therefore, this project tested the hypothesis that pharmacologically induced alterations in arterial blood pressure in heated humans would lead to baroreflex-mediated changes in both skin sympathetic nerve activity (SSNA) and sweat rate. 2. In seven subjects mean arterial blood pressure was lowered (approximately 8 mmHg) and then raised (approximately 13 mmHg) by bolus injections of sodium nitroprusside and phenylephrine, respectively. Moreover, in a separate protocol, arterial blood pressure was reduced via steady-state administration of sodium nitroprusside. In both normothermia and heat-stress conditions the following responses were monitored: sublingual and mean skin temperatures, heart rate, beat-by-beat blood pressure, skin blood flow (laser-Doppler flowmetry), local sweat rate and SSNA (microneurography from peroneal nerve). 3. Whole-body heating increased skin and sublingual temperatures, heart rate, cutaneous blood flow, sweat rate and SSNA, but did not change arterial blood pressure. Heart rate was significantly elevated (from 74 +/- 3 to 92 +/- 4 beats x min(-1); P < 0.001) during bolus sodium nitroprusside-induced reductions in blood pressure, and significantly reduced (from 92 +/- 4 to 68 +/- 4 beats x min(-1); P < 0.001) during bolus phenylephrine-induced elevations in blood pressure, thereby demonstrating normal baroreflex function in these subjects. 4. Neither SSNA nor sweat rate was altered by rapid (bolus infusion) or sustained (steady-state infusion) changes in blood pressure regardless of the thermal condition. 5. These data suggest that SSNA and sweat rate are not modulated by arterial baroreflexes in normothermic or moderately heated individuals.

  2. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    SciTech Connect

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  3. Energy intake and the circadian rhythm of core body temperature in sheep

    PubMed Central

    Maloney, Shane K; Meyer, Leith C R; Blache, D; Fuller, A

    2013-01-01

    We tested the hypothesis that different levels of energy intake would alter the circadian rhythm of core body temperature (Tc) in ovariectomized sheep. We measured arterial blood temperature every 5 min while ten sheep were offered a maintenance diet, 70% of maintenance requirements, or 150% of maintenance requirements, for 12 days, and later fasted for 2 days. The rhythmicity of Tc was analyzed for its dominant period and then a least-squares cosine wave was fitted to the data that generated a mesor, amplitude, and acrophase for the rhythm. When energy intake was less than maintenance requirements we observed a significant decrease in the mesor and minimum, and a significant increase in the amplitude and goodness of fit, of the body temperature rhythm. Fasting also resulted in a decrease in the maximum of the body temperature rhythm. Feeding the sheep to excess did not affect the mesor or maximum of the rhythm, but did result in a decrease in the goodness of fit of the rhythm in those sheep that consumed more energy than when they were on the maintenance diet, indicating that circadian rhythmicity was decreased when energy intake increased. Our data indicate that modulation of the circadian rhythm of body temperature, characterized by inactive-phase hypothermia, occurs when energy intake is reduced. The response may be an adaptation to energy imbalance in large mammals. PMID:24303185

  4. Energy intake and the circadian rhythm of core body temperature in sheep.

    PubMed

    Maloney, Shane K; Meyer, Leith C R; Blache, D; Fuller, A

    2013-10-01

    We tested the hypothesis that different levels of energy intake would alter the circadian rhythm of core body temperature (Tc) in ovariectomized sheep. We measured arterial blood temperature every 5 min while ten sheep were offered a maintenance diet, 70% of maintenance requirements, or 150% of maintenance requirements, for 12 days, and later fasted for 2 days. The rhythmicity of Tc was analyzed for its dominant period and then a least-squares cosine wave was fitted to the data that generated a mesor, amplitude, and acrophase for the rhythm. When energy intake was less than maintenance requirements we observed a significant decrease in the mesor and minimum, and a significant increase in the amplitude and goodness of fit, of the body temperature rhythm. Fasting also resulted in a decrease in the maximum of the body temperature rhythm. Feeding the sheep to excess did not affect the mesor or maximum of the rhythm, but did result in a decrease in the goodness of fit of the rhythm in those sheep that consumed more energy than when they were on the maintenance diet, indicating that circadian rhythmicity was decreased when energy intake increased. Our data indicate that modulation of the circadian rhythm of body temperature, characterized by inactive-phase hypothermia, occurs when energy intake is reduced. The response may be an adaptation to energy imbalance in large mammals.

  5. The role of subvocalization in rehearsal and maintenance of rhythmic patterns.

    PubMed

    Pich, J

    2000-05-01

    This experiment analyzed the influence of subvocal activity in retention of rhythmical auditory patterns. Retention of sixteen percussion sequences was studied. Each sequence (a 4-s "door-knocking" pattern) was followed by one of the following six retention conditions: silence, unattended music (blocking the inner ear, i.e., Gregorian chanting), unattended music (blocking the inner ear, i.e., rock-and-roll), articulatory suppression (blocking the inner voice), tracing circles on the table with index finger (spatial task), and tapping (motor control). After silence, unattended music (chanting), or the spatial task, participants successfully reproduced most patterns. Errors increased with unattended music (rock-and-roll), but significant disruptions only occurred with tapping and articulatory suppression. Whereas the latter case supports the role of an articulatory loop in retention, the production of successive taps or syllables in both interference conditions probably relies on a general rhythm module, which disrupted retention of the patterns. PMID:11761742

  6. The role of subvocalization in rehearsal and maintenance of rhythmic patterns.

    PubMed

    Pich, J

    2000-05-01

    This experiment analyzed the influence of subvocal activity in retention of rhythmical auditory patterns. Retention of sixteen percussion sequences was studied. Each sequence (a 4-s "door-knocking" pattern) was followed by one of the following six retention conditions: silence, unattended music (blocking the inner ear, i.e., Gregorian chanting), unattended music (blocking the inner ear, i.e., rock-and-roll), articulatory suppression (blocking the inner voice), tracing circles on the table with index finger (spatial task), and tapping (motor control). After silence, unattended music (chanting), or the spatial task, participants successfully reproduced most patterns. Errors increased with unattended music (rock-and-roll), but significant disruptions only occurred with tapping and articulatory suppression. Whereas the latter case supports the role of an articulatory loop in retention, the production of successive taps or syllables in both interference conditions probably relies on a general rhythm module, which disrupted retention of the patterns.

  7. Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature.

    PubMed

    Mittelman-Smith, Melinda A; Williams, Hemalini; Krajewski-Hall, Sally J; McMullen, Nathaniel T; Rance, Naomi E

    2012-11-27

    Estrogen withdrawal in menopausal women leads to hot flushes, a syndrome characterized by the episodic activation of heat dissipation effectors. Despite the extraordinary number of individuals affected, the etiology of flushes remains an enigma. Because menopause is accompanied by marked alterations in hypothalamic kisspeptin/neurokinin B/dynorphin (KNDy) neurons, we hypothesized that these neurons could contribute to the generation of flushes. To determine if KNDy neurons participate in the regulation of body temperature, we evaluated the thermoregulatory effects of ablating KNDy neurons by injecting a selective toxin for neurokinin-3 expressing neurons [NK(3)-saporin (SAP)] into the rat arcuate nucleus. Remarkably, KNDy neuron ablation consistently reduced tail-skin temperature (T(SKIN)), indicating that KNDy neurons facilitate cutaneous vasodilatation, an important heat dissipation effector. Moreover, KNDy ablation blocked the reduction of T(SKIN) by 17β-estradiol (E(2)), which occurred in the environmental chamber during the light phase, but did not affect the E(2) suppression of T(SKIN) during the dark phase. At the high ambient temperature of 33 °C, the average core temperature (T(CORE)) of ovariectomized (OVX) control rats was significantly elevated, and this value was reduced by E(2) replacement. In contrast, the average T(CORE) of OVX, KNDy-ablated rats was lower than OVX control rats at 33 °C, and not altered by E(2) replacement. These data provide unique evidence that KNDy neurons promote cutaneous vasodilatation and participate in the E(2) modulation of body temperature. Because cutaneous vasodilatation is a cardinal sign of a hot flush, these results support the hypothesis that KNDy neurons could play a role in the generation of flushes.

  8. The relevance of rhythmical alternation in language processing: an ERP study on English compounds.

    PubMed

    Henrich, Karen; Alter, Kai; Wiese, Richard; Domahs, Ulrike

    2014-09-01

    This study investigates the influence of rhythmic expectancies on language processing. It is assumed that language rhythm involves an alternation of strong and weak beats within a linguistic domain. Hence, in some contexts rhythmically induced stress shifts occur in order to comply with the Rhythm Rule. In English, this rule operates to prevent clashes of stressed adjacent syllables or lapses of adjacent unstressed syllables. While previous studies investigated effects on speech production and perception, this study focuses on brain responses to structures either obeying or deviating from this rule. Event-related potentials show that rhythmic regularity is relevant for language processing: rhythmic deviations evoked different ERP components reflecting the deviance from rhythmic expectancies. An N400 effect found for shifted items reflects higher costs in lexical processing due to stress deviation. The overall results disentangle lexical and rhythmical influences on language processing and complement the findings of previous studies on rhythmical processing. PMID:25113242

  9. LRP5 Regulates Human Body Fat Distribution by Modulating Adipose Progenitor Biology in a Dose- and Depot-Specific Fashion

    PubMed Central

    Loh, Nellie Y.; Neville, Matt J.; Marinou, Kyriakoula; Hardcastle, Sarah A.; Fielding, Barbara A.; Duncan, Emma L.; McCarthy, Mark I.; Tobias, Jonathan H.; Gregson, Celia L.; Karpe, Fredrik; Christodoulides, Constantinos

    2015-01-01

    Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. PMID:25651180

  10. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion.

    PubMed

    Loh, Nellie Y; Neville, Matt J; Marinou, Kyriakoula; Hardcastle, Sarah A; Fielding, Barbara A; Duncan, Emma L; McCarthy, Mark I; Tobias, Jonathan H; Gregson, Celia L; Karpe, Fredrik; Christodoulides, Constantinos

    2015-02-01

    Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders.

  11. Dosimetric comparison of three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and helical tomotherapy for lung stereotactic body radiotherapy

    PubMed Central

    Kinhikar, Rajesh Ashok; Ghadi, Yogesh G.; Sahoo, Priyadarshini; Laskar, Sarbani Ghosh; Deshpande, Deepak D.; Shrivastava, Shyam K.; Agarwal, Jaiprakash

    2015-01-01

    To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity. PMID:26865754

  12. Study Modules for Calculus-Based General Physics. [Includes Modules 11-14: Collisions; Equilibrium of Rigid Bodies; Rotational Dynamics; and Fluid Mechanics].

    ERIC Educational Resources Information Center

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  13. Rhythmic coordination of hippocampal neurons during associative memory processing.

    PubMed

    Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard

    2016-01-11

    Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4-12 Hz), beta (15-35 Hz), low gamma (35-55 Hz), and high gamma (65-90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus.

  14. Genetic Dissection of Rhythmic Motor Networks in Mice

    PubMed Central

    Grossmann, Katja S.; Giraudin, Aurore; Britz, Olivier; Zhang, Jingming; Goulding, Martyn

    2011-01-01

    Simple motor behaviors such as locomotion and respiration involve rhythmic and coordinated muscle movements that are generated by central pattern generator (CPG) networks in the spinal cord and hindbrain. These CPG networks produce measurable behavioral outputs, and thus represent ideal model systems for studying the operational principles that the nervous system uses to produce specific behaviors. Recent advances in our understanding of the transcriptional code that controls neuronal development have provided an entry point into identifying and targeting distinct neuronal populations that make up locomotor CPG networks in the spinal cord. This has spurred the development of new genetic approaches to dissect and manipulate neuronal networks both in the spinal cord and hindbrain. Here we discuss how the advent of molecular genetics together with anatomical and physiological methods has begun to revolutionize studies of the neuronal networks controlling rhythmic motor behaviors in mice. PMID:21111198

  15. Rhythmic Midtemporal Discharge in a Youth During Light Sleep.

    PubMed

    Beiske, Kornelia Katalin; Kostov, Konstantin Hrisimirov; Kostov, Hrisimir

    2016-03-01

    Rhythmic midtemporal discharge (RMTD) is a rare, benign EEG pattern that may have epileptic morphology. Recognizing variations of RMTD is important in order to avoid over- or misinterpretation of EEG findings, which may lead to inappropriate treatment and negative consequences for the patient in question. We present a case report of RTMDs during light sleep where initial erroneous description necessitated repeat EEGs and additional diagnostic exams and led to the postponement of obtaining a drivers licence for this young patient. PMID:27180505

  16. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms.

    PubMed

    Schaefer, Rebecca S

    2014-12-19

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  17. ACE and AGTR1 polymorphisms in elite rhythmic gymnastics.

    PubMed

    Di Cagno, Alessandra; Sapere, Nadia; Piazza, Marina; Aquino, Giovanna; Iuliano, Enzo; Intrieri, Mariano; Calcagno, Giuseppe

    2013-02-01

    In the angiotensin-converting enzyme (ACE) gene, Alu deletion, in intron 16, is associated with higher concentrations of ACE serum activity and this may be associated with elite sprint and power performance. The Alu insertion is associated with lower ACE levels and this could lead to endurance performance. Moreover, recent studies have identified a single-nucleotide polymorphism of the angiotensin type 1 receptor gene AGTR1, which seems to be related to ACE activity. The aim of this study was to examine the involvement of the ACE and the AGTR1 gene polymorphisms in 28 Italian elite rhythmic gymnasts (age range 21 ± 7.6 years), and compare them to 23 middle level rhythmic gymnasts (age range 17 ± 10.9 years). The ACE D allele was significantly more frequent in elite athletes than in the control population (χ(2)=4.07, p=0.04). Comparisons between the middle level and elite athletes revealed significant differences (p<0.0001) for the ACE DD genotype (OR=6.48, 95% confidence interval=1.48-28.34), which was more frequent in elite athletes. There were no significant differences in the AGTR1 A/C genotype or allele distributions between the middle level and elite athletes. In conclusion, the ACE D allele genotype could be a contributing factor to high-performance rhythmic gymnastics that should be considered in athlete development and could help to identify which skills should be trained for talent promotion. PMID:23145508

  18. Heteronomous rhythmic activity of neurosecretory cells in the silkmoth.

    PubMed

    Ichikawa, Toshio; Kamimoto, Satoshi

    2003-08-21

    Electrical action potentials of neurosecretory cells producing pheromone biosynthesis-activating neuropeptide (PBAN) and electrocardiograms were recorded from female pupae of Bombyx mori and the correlation between firing activity of the cells and cardiac activity was analyzed. PBAN producing cells localized in the suboesophageal ganglion (SOG) generated clusters of action potentials at an interval of 30-60 min. The firing activity rhythm at a middle pupal period was closely related to heartbeat reversal rhythm: an active phase of the cells was usually apparent during anterograde pulse phases. Electrocardiograms at a late pupal period often revealed brief oscillatory potentials (15-25 Hz in frequency) of unknown origin. The firing activity rhythm of PBAN cells closely correlated with the rhythmic appearance of clustered oscillatory potentials. Transection of connectives between the brain and SOG abolished rhythmic activity of the cells. These results suggest that a rhythmic firing activity of the PBAN cell system is heteronomously generated by a cerebral neuronal mechanism and the cerebral mechanism relates the cell system to other neuronal mechanisms controlling cardiac activity and oscillatory potential rhythms. PMID:12873731

  19. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  20. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats.

    PubMed

    Feillet, Céline A; Mendoza, Jorge; Pévet, Paul; Challet, Etienne

    2008-12-01

    In mammals, the rhythmic synthesis of melatonin by the pineal gland is tightly controlled by the master clock located in the suprachiasmatic nuclei (SCN). In behaviourally arrhythmic SCN-lesioned rats, we investigated the effects of daily restricted feeding (RF) on pineal melatonin synthesis. RF restored not only a rhythmic transcription of the rate-limiting enzyme for melatonin biosynthesis [arylalkylamine-N-acetyltransferase (AANAT)] and a rhythmic expression of c-FOS but also a rhythmic synthesis of melatonin in the pineal gland. In control rats without functional SCN and fed ad libitum, a daily immobilization stress did not restore any rhythmicity in the pineal gland. Interestingly, a combination of RF and daily stress prior to the time of food access did not markedly impair AaNat mRNA and c-FOS rhythmicity but did abolish the restoration of rhythmic pineal melatonin. These data indicate that the synchronizing effects of RF on the pineal rhythmicity are not due to, and cannot be mimicked by, high levels of circulating glucocorticoids. In keeping with the multi-oscillatory nature of the circadian system, the rhythmicity of pineal melatonin in mammals, until now an exclusive output of the SCN, can also be controlled by daily feeding cues when the SCN clock is lacking. Thus, the present study demonstrates that daily RF in SCN-lesioned rats provides, probably via sympathetic fibres, synchronizing stimuli strong enough to drive rhythmicity in the pineal gland.

  1. DOSIMETRIC CONSEQUENCES OF USING CONTRAST-ENHANCED COMPUTED TOMOGRAPHIC IMAGES FOR INTENSITY-MODULATED STEREOTACTIC BODY RADIOTHERAPY PLANNING.

    PubMed

    Yoshikawa, Hiroto; Roback, Donald M; Larue, Susan M; Nolan, Michael W

    2015-01-01

    Potential benefits of planning radiation therapy on a contrast-enhanced computed tomography scan (ceCT) should be weighed against the possibility that this practice may be associated with an inadvertent risk of overdosing nearby normal tissues. This study investigated the influence of ceCT on intensity-modulated stereotactic body radiotherapy (IM-SBRT) planning. Dogs with head and neck, pelvic, or appendicular tumors were included in this retrospective cross-sectional study. All IM-SBRT plans were constructed on a pre- or ceCT. Contours for tumor and organs at risk (OAR) were manually constructed and copied onto both CT's; IM-SBRT plans were calculated on each CT in a manner that resulted in equal radiation fluence. The maximum and mean doses for OAR, and minimum, maximum, and mean doses for targets were compared. Data were collected from 40 dogs per anatomic site (head and neck, pelvis, and limbs). The average dose difference between minimum, maximum, and mean doses as calculated on pre- and ceCT plans for the gross tumor volume was less than 1% for all anatomic sites. Similarly, the differences between mean and maximum doses for OAR were less than 1%. The difference in dose distribution between plans made on CTs with and without contrast enhancement was tolerable at all treatment sites. Therefore, although caution would be recommended when planning IM-SBRT for tumors near "reservoirs" for contrast media (such as the heart and urinary bladder), findings supported the use of ceCT with this dose calculation algorithm for both target delineation and IM-SBRT treatment planning. PMID:26242716

  2. Intensity-Modulated Radiotherapy-Based Stereotactic Body Radiotherapy for Medically Inoperable Early-Stage Lung Cancer: Excellent Local Control

    SciTech Connect

    Videtic, Gregory M.M.; Stephans, Kevin; Reddy, Chandana; Gajdos, Stephen; Kolar, Matthew; Clouser, Edward; Djemil, Toufik

    2010-06-01

    Purpose: To validate the use of stereotactic body radiotherapy (SBRT) using intensity-modulated radiotherapy (IMRT) beams for medically inoperable Stage I lung cancer. Methods and Materials: From February 2004 to November 2006, a total of 26 patients with 28 lesions received SBRT using a Novalis/BrainLAB system. Immobilization involved a Bodyfix vacuum cushion. A weighted abdominal belt limited respiratory excursion. Computed tomographic simulation images were acquired at rest, full inhalation, and full exhalation and were merged to generate an internal gross tumor volume (ITV). Dose was prescribed to cover the planning target volume (PTV), defined as PTV = ITV + 3-5 mm set-up margin. Heterogeneity corrections were used. Delivery of 50 Gy in five sequential fractions typically used seven nonopposing, noncoplanar beams. Image-guided target verification was provided by BrainLAB-ExacTrac. Results: Among the 26 patients, the mean age was 74 years (range, 49-88 years). Of the patients, 50% were male and 50% female. The median Karnofsky performance status was 70 (range, 40-100). The median follow-up was 30.9 months (range, 10.4-51.4 months). Tissue diagnosis was contraindicated in seven patients (26.9%). There were 22 T1 (78.6%) and six T2 (21.4%) tumors. The median conformality index was 1.38 (range, 1.12-1.8). The median heterogeneity index was 1.08 (range, 1.04-1.2). One patient (3.6%) developed acute Grade 3 dyspnea and one patient developed late Grade 2 chest wall pain. Actuarial local control and overall survival at 3 years were 94.4% and 52%, respectively. Conclusions: Use of IMRT-based delivery of SBRT using restriction of tumor motion in medically inoperable lung cancer demonstrates excellent local control and favorable survival.

  3. Precise rhythmicity in activity of neocortical, thalamic and brain stem neurons in behaving cats and rabbits.

    PubMed

    Dunin-Barkowski, Witali L; Sirota, Mikhail G; Lovering, Andrew T; Orem, John M; Vidruk, Edward H; Beloozerova, Irina N

    2006-11-25

    Rhythmic discharges of neurons are believed to be involved in information processing in both sensory and motor systems. However their fine structure and functional role need further elucidation. We employed a pattern-based approach to search for episodes of precisely rhythmic activity of single neurons recorded in different brain structures in behaving cats and rabbits. We defined discharge patterns using an algorithmic description, which is different from the previously suggested template methods. We detected episodes of precisely rhythmic discharges, specifically, triads of constant (precision +/-2.5%) inter-spike intervals in the 10-70 ms range. In 54% (67/125) of neurons tested, these patterns could not be explained by random occurrences or by steady or slowly changing input. Rhythmic patterns occurred at a wide range of inter-spike intervals, and were imbedded in non-rhythmic activity. In many neurons, timing of these precisely rhythmic patterns was related to different locomotion tasks or to respiration.

  4. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat.

    PubMed

    Corriveau, Kathleen H; Goswami, Usha

    2009-01-01

    In prior work (Corriveau et al., 2007), we showed that children with speech and language impairments (SLI) were significantly less sensitive than controls to two auditory cues to rhythmic timing, amplitude envelope rise time and duration. Here we explore whether rhythmic problems extend to rhythmic motor entrainment. Tapping in synchrony with a beat has been described as the simplest rhythmic act that humans perform. We explored whether tapping to a beat would be impaired in children for whom auditory rhythmic timing is impaired. Children with SLI were indeed found to be impaired in a range of measures of paced rhythmic tapping, but were not equally impaired in tapping in an unpaced control condition requiring an internally-generated rhythm. The severity of impairment in paced tapping was linked to language and literacy outcomes. PMID:19046744

  5. EEG and behavioural correlates of different forms of motor imagery during action observation in rhythmical actions.

    PubMed

    Eaves, D L; Behmer, L P; Vogt, S

    2016-07-01

    Recent studies show that participants can engage in motor imagery (MI) and action observation (AO) simultaneously (AO+MI), indicating a capacity for dual action simulation. Here we studied the electrophysiological correlates and behavioural outcomes of two forms of AO+MI, along with pure MI and pure AO control conditions. In synchronised AO+MI, participants imagined performing a rhythmical action in synchrony with an observed distractor action. In contrast in static AO+MI, where the imagery served to conflict with AO, participants imagined holding a static hand posture during AO. Following synchronised AO+MI, rhythmical execution was strongly biased toward the cycle time of the previously observed rhythm ('imitation bias'), whereas a weaker bias was found following pure MI, and particularly for static AO+MI. In line with these findings, event-related desynchronisation (ERD) in primary sensorimotor and parietal regions was more pronounced in synchronised AO+MI compared to both pure AO and pure MI. These ERD amplitudes were, however, highly similar for static and synchronised AO+MI; suggesting that, regardless of co-represented content, both AO+MI states produced stronger motor activations than single action simulation. In contrast, synchronised AO+MI produced significantly stronger ERD in rostral prefrontal cortex compared to the other three conditions. This specific rostral prefrontal involvement most likely reflected additional cognitive processing for aligning dual action simulations. Together these results provide an important empirical validation of different AO+MI states, in that the imitation bias was strongly modulated by the content of the AO+MI instructions, and that synchronised AO+MI produced stronger behavioural and neurophysiological effects compared to pure AO or MI. PMID:27266395

  6. Rhythmic Cortical Neurons Increase their Oscillations and Sculpt Basal Ganglia Signaling During Motor Learning

    PubMed Central

    Day, Nancy F.; Nick, Teresa A.

    2014-01-01

    The function and modulation of neural circuits underlying motor skill may involve rhythmic oscillations (Feller, 1999; Marder and Goaillard, 2006; Churchland et al., 2012). In the proposed pattern generator for birdsong, the cortical nucleus HVC, the frequency and power of oscillatory bursting during singing increases with development (Crandall et al., 2007; Day et al., 2009). We examined the maturation of cellular activity patterns that underlie these changes. Single unit ensemble recording combined with antidromic identification (Day et al., 2011) was used to study network development in anesthetized zebra finches. Autocovariance quantified oscillations within single units. A subset of neurons oscillated in the theta/alpha/mu/beta range (8–20 Hz), with greater power in adults compared to juveniles. Across the network, the normalized oscillatory power in the 8–20 Hz range was greater in adults than juveniles. In addition, the correlated activity between rhythmic neuron pairs increased with development. We next examined the functional impact of the oscillators on the output neurons of HVC. We found that the firing of oscillatory neurons negatively correlated with the activity of cortico-basal ganglia neurons (HVCXs), which project to Area X (the song basal ganglia). If groups of oscillators work together to tonically inhibit and precisely control the spike timing of adult HVCXs with coordinated release from inhibition, then the activity of HVCXs in juveniles should be decreased relative to adults due to uncorrelated, tonic inhibition. Consistent with this hypothesis, HVCXs had lower activity in juveniles. These data reveal network changes that shape cortical-to-basal ganglia signaling during motor learning. PMID:23776169

  7. Oscillatory Sensory Selection Mechanisms during Intersensory Attention to Rhythmic Auditory and Visual Inputs: A Human Electro-Corticographic Investigation

    PubMed Central

    Gomez-Ramirez, Manuel; Kelly, Simon P.; Molholm, Sophie; Sehatpour, Pejman; Schwartz, Theodore H.; Foxe, John J.

    2012-01-01

    Oscillatory entrainment mechanisms are invoked during attentional processing of rhythmically occurring stimuli, whereby their phase-alignment regulates the excitability state of neurons coding for anticipated inputs. These mechanisms have been examined in the delta-band (1-3 Hz) where entrainment frequency matches the stimulation rate. Here, we investigated entrainment for sub-delta rhythmic stimulation, recording from intracranial electrodes over human auditory cortex during an intersensory audiovisual task. Audiovisual stimuli were presented at 0.67-Hz while participants detected targets within one sensory stream and ignored the other. It was found that entrainment operated at twice the stimulation rate (1.33Hz), and this was reflected by higher amplitude values in the FFT-spectrum, cyclic modulation of alpha-amplitude, and phase-amplitude coupling between delta-phase and alpha-power. In addition, we found that alpha-amplitude was relatively increased in auditory cortex coincident with to-be-ignored auditory stimuli during attention to vision. Thus, the data suggest that entrainment mechanisms operate within a delimited pass-band such that for sub-delta task rhythms, oscillatory harmonics are invoked. The phase of these delta-entrained oscillations modulates alpha-band power. This may in turn increase or decrease responsiveness to relevant and irrelevant stimuli, respectively. PMID:22171054

  8. Sex Differences in Rhythmic Preferences in the Budgerigar (Melopsittacus undulatus): A Comparative Study with Humans

    PubMed Central

    Hoeschele, Marisa; Bowling, Daniel L.

    2016-01-01

    A variety of parrot species have recently gained attention as members of a small group of non-human animals that are capable of coordinating their movements in time with a rhythmic pulse. This capacity is highly developed in humans, who display unparalleled sensitivity to musical beats and appear to prefer rhythmically organized sounds in their music. Do parrots also exhibit a preference for rhythmic over arrhythmic sounds? Here, we presented humans and budgerigars (Melopsittacus undulatus) – a small parrot species that have been shown to be able to align movements with a beat – with rhythmic and arrhythmic sound patterns in an acoustic place preference paradigm. Both species were allowed to explore an environment for 5 min. We quantified how much time they spent in proximity to rhythmic vs. arrhythmic stimuli. The results show that humans spent more time with rhythmic stimuli, and also preferred rhythmic stimuli when directly asked in a post-test survey. Budgerigars did not show any such overall preferences. However, further examination of the budgerigar results showed an effect of sex, such that male budgerigars spent more time with arrthymic stimuli, and female budgerigars spent more time with rhythmic stimuli. Our results support the idea that rhythmic information is interesting to budgerigars. We suggest that future investigations into the temporal characteristics of naturalistic social behaviors in budgerigars, such as courtship vocalizations and head-bobbing displays, may help explain the sex difference we observed. PMID:27757099

  9. Critical Appraisal of Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Metastases to Abdominal Lymph Nodes

    SciTech Connect

    Bignardi, Mario; Cozzi, Luca; Fogliata, Antonella; Lattuada, Paola; Mancosu, Pietro; Navarria, Piera; Urso, Gaetano; Vigorito, Sabrina; Scorsetti, Marta

    2009-12-01

    Purpose: A planning study was performed comparing volumetric modulated arcs, RapidArc (RA), fixed beam IMRT (IM), and conformal radiotherapy (CRT) with multiple static fields or short conformal arcs in a series of patients treated with hypofractionated stereotactic body radiation therapy (SBRT) for solitary or oligo-metastases from different tumors to abdominal lymph nodes. Methods and Materials: Fourteen patients were included in the study. Dose prescription was set to 45 Gy (mean dose to clinical target volume [CTV]) in six fractions of 7.5 Gy. Objectives for CTV and planning target volume (PTV) were as follows: Dose{sub min} >95%, Dose{sub max} <107%. For organs at risk the following objectives were used: Maximum dose to spine <18 Gy; V{sub 15Gy} <35% for both kidneys, V{sub 36Gy} <1% for duodenum, V{sub 36Gy} <3% for stomach and small bowel, V{sub 15Gy} <(total liver volume - 700 cm{sup 3}) for liver. Dose-volume histograms were evaluated to assess plan quality. Results: Planning objectives on CTV and PTV were achieved by all techniques. Use of RA improved PTV coverage (V{sub 95%} = 90.2% +- 5.2% for RA compared with 82.5% +- 9.6% and 84.5% +- 8.2% for CRT and IM, respectively). Most planning objectives for organs at risk were met by all techniques except for the duodenum, small bowel, and stomach, in which the CRT plans exceeded the dose/volume constraints in some patients. The MU/fraction values were as follows: 2186 +- 211 for RA, 2583 +- 699 for IM, and 1554 +- 153 for CRT. Effective treatment time resulted as follows: 3.7 +- 0.4 min for RA, 10.6 +- 1.2 min for IM, and 6.3 +- 0.5 min for CRT. Conclusions: Delivery of SBRT by RA showed improvements in conformal avoidance with respect to standard conformal irradiation. Delivery parameters confirmed logistical advantages of RA, particularly compared with IM.

  10. Effect of rhythmic attention on the segregation of interleaved melodies.

    PubMed

    Devergie, Aymeric; Grimault, Nicolas; Tillmann, Barbara; Berthommier, Frédéric

    2010-07-01

    As previously suggested, attention may increase segregation via enhancement and suppression sensory mechanisms. To test this hypothesis, we proposed an interleaved melody paradigm with two rhythm conditions applied to familiar target melodies and unfamiliar distractor melodies sharing pitch and timbre properties. When rhythms of both target and distractor were irregular, target melodies were identified above chance level. A sensory enhancement mechanism guided by listeners' knowledge may have helped to extract targets from the interleaved sequence. When the distractor was rhythmically regular, performance was increased, suggesting that the distractor may have been suppressed by a sensory suppression mechanism. PMID:20649182

  11. Champagne experiences various rhythmical bubbling regimes in a flute.

    PubMed

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  12. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    NASA Technical Reports Server (NTRS)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  13. Circadian Rhythmicity of Diazinon Susceptibility, Detoxifying Enzymes, and Energy Reserves in Aphis gossypii (Hemiptera: Aphididae).

    PubMed

    Bagheri, Faezeh; Talebi, Khalil; Hosseininaveh, Vahid; Allahyari, Hossein; Habibi-Rezaei, Mehran; Zare, Shahnaz

    2016-08-01

    The daily susceptibility rhythm of the cotton aphid, Aphis gossypii Glover, to diazinon and the corresponding changes in the activity of three xenobiotic detoxifying enzymes-cytochrome P450 monooxygenases (P450), glutathione S-transferases (GSTs), and esterases-were investigated. Bioassays were conducted to estimate the median lethal doses (LD50) of diazinon at six different zeitgeber times (ZT0, 4, 8, 12, 16, and 20) under constant light (LL) and lighting conditions of 16 h of light and 8 h of darkness (LD). The results showed that the highest susceptibility occurred at the onset of night (ZT16) and 4 h before this time point (ZT12) under the LD condition. The endogenous rhythmicity of susceptibility was ensured, as the highest susceptibility occurred at the same time under the LL condition. The circadian changes in susceptibility to diazinon were almost coincident with changes in esterase and GSTs activity, but not in P450 activity. We also found rhythmic changes in energy components of whole-body aphids, with similar patterns of circadian changes of proteins, lipids, and soluble carbohydrates, but not glycogen, under LL and LD conditions. These photoperiod conditions (LD and LL) showed different fluctuation in trends of energy resources and of course, different quantities. Our study represents the first report of circadian control of insecticide susceptibility in aphids and provides insights into more efficient control of these pests by unveiling the times of day during which aphids are more susceptible to insecticides with attention to endogenous physiological phenomena. PMID:27298427

  14. Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus)

    PubMed Central

    Schradera, Jessica A.; Walaszczykb, Erin J.; Smalea, Laura

    2009-01-01

    SCHRADER, J.A., E. J. WALASZCZYK, AND L. SMALE. Changing patterns of daily rhythmicity across reproductive states in diurnal female Nile grass rats (Arvicanthis niloticus). PHYSIOL BEHAV XX(X) XXX-XXX, XXXX. -- A suite of changes in circadian rhythms have been described in nocturnal rodents as females go through pregnancy and lactation, but there is no information on such patterns in diurnal species. As the challenges faced by these two groups of animals are somewhat different, we characterized changes in activity and core body temperature (Tb) in female diurnal Nile grass rats (Arvicanthis niloticus) as they went through a series of reproductive states: virgin, pregnant, pregnant and lactating, lactating only, and post-weaning. The phase of neither rhythm varied, but the amplitude did. Females increased their overall levels of daily activity from early to late pregnancy, regardless of whether they were also lactating. The pattern of activity was less rhythmic during early than mid-lactation, in both non-pregnant and pregnant females, as a consequence of a decrease in daytime relative to nighttime activity. The Tb rhythm amplitude dropped from mid-pregnancy through mid-lactation, and there were rises in Tb troughs during the mid-light and mid-dark phases of the day, though pregnancy and lactation affected Tb at these times in somewhat different ways. This study demonstrates that rhythms in diurnal grass rats change during pregnancy and lactation in different ways than those of nocturnal species that have been studied to date and that the effects of pregnancy and lactation are not additive in any simple way. PMID:19744504

  15. Bodily ownership modulation in defensive responses: physiological evidence in brain-damaged patients with pathological embodiment of other’s body parts

    PubMed Central

    Fossataro, C.; Gindri, P.; Mezzanato, T.; Pia, L.; Garbarini, F.

    2016-01-01

    Do conscious beliefs about the body affect defensive mechanisms within the body? To answer this question we took advantage from a monothematic delusion of bodily ownership, in which brain-damaged patients misidentify alien limbs as their own. We investigated whether the delusional belief that an alien hand is their own hand modulates a subcortical defensive response, such as the hand-blink reflex. The blink, dramatically increases when the threated hand is inside the defensive peripersonal-space of the face. In our between-subjects design, including patients and controls, the threat was brought near the face either by the own hand or by another person’s hand. Our results show an ownership-dependent modulation of the defensive response. In controls, as well as in the patients’ intact-side, the response enhancement is significantly greater when the threat was brought near the face by the own than by the alien hand. Crucially, in the patients’ affected-side (where the pathological embodiment occurs), the alien (embodied) hand elicited a response enhancement comparable to that found when the threat is brought near the face by the real hand. These findings suggest the existence of a mutual interaction between our conscious beliefs about the body and the physiological mechanisms within the body. PMID:27292285

  16. Tectonic tremor on Vancouver Island, Cascadia, modulated by the body and surface waves of the Mw 8.6 and 8.2, 2012 East Indian Ocean earthquakes

    NASA Astrophysics Data System (ADS)

    Kundu, Bhaskar; Ghosh, Abhijit; Mendoza, Manuel; Bürgmann, Roland; Gahalaut, V. K.; Saikia, Dipankar

    2016-09-01

    The 2012 East Indian Ocean earthquake (Mw 8.6), so far the largest intraoceanic plate strike-slip event ever recorded, modulated tectonic tremors in the Cascadia subduction zone. The rate of tremor activity near Vancouver Island increased by about 1.5 times from its background level during the passage of seismic waves of this earthquake. In most cases of dynamic modulation, large-amplitude and long-period surface waves stimulate tremors. However, in this case even the small stress change caused by body waves generated by the 2012 earthquake modulated tremor activity. The tremor modulation continued during the passage of the surface waves, subsequent to which the tremor activity returned to background rates. Similar tremor modulation is observed during the passage of the teleseismic waves from the Mw 8.2 event, which occurs about 2 h later near the Mw 8.6 event. We show that dynamic stresses from back-to-back large teleseismic events can strongly influence tremor sources.

  17. Mixed control for perception and action: timing and error correction in rhythmic ball-bouncing.

    PubMed

    Siegler, I A; Bazile, C; Warren, W H

    2013-05-01

    The task of bouncing a ball on a racket was adopted as a model system for investigating the behavioral dynamics of rhythmic movement, specifically how perceptual information modulates the dynamics of action. Two experiments, with sixteen participants each, were carried out to definitively answer the following questions: How are passive stability and active stabilization combined to produce stable behavior? What informational quantities are used to actively regulate the two main components of the action-the timing of racket oscillation and the correction of errors in bounce height? We used a virtual ball-bouncing setup to simultaneously perturb gravity (g) and ball launch velocity (v b) at impact. In Experiment 1, we tested the control of racket timing by varying the ball's upward half-period t up while holding its peak height h p constant. Conversely, in Experiment 2, we tested error correction by varying h p while holding t up constant. Participants adopted a mixed control mode in which information in the ball's trajectory is used to actively stabilize behavior on a cycle-by-cycle basis, in order to keep the system within or near the passively stable region. The results reveal how these adjustments are visually controlled: the period of racket oscillation is modulated by the half-period of the ball's upward flight, and the change in racket velocity from the previous impact (via a change in racket amplitude) is governed by the error to the target. PMID:23515627

  18. Rhythmic coordination of hippocampal neurons during associative memory processing

    PubMed Central

    Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard

    2016-01-01

    Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.09849.001 PMID:26751780

  19. Rhythmic brain activities related to singing in humans.

    PubMed

    Gunji, Atsuko; Ishii, Ryouhei; Chau, Wilkin; Kakigi, Ryusuke; Pantev, Christo

    2007-01-01

    To investigate the motor control related to sound production, we studied cortical rhythmic changes during continuous vocalization such as singing. Magnetoencephalographic (MEG) responses were recorded while subjects spoke in the usual way (speaking), sang (singing), hummed (humming) and imagined (imagining) a popular song. The power of alpha (8-15 Hz), beta (15-30 Hz) and low-gamma (30-60 Hz) frequency bands was changed during and after vocalization (singing, speaking and humming). In the alpha band, the oscillatory changes for singing were most pronounced in the right premotor, bilateral sensorimotor, right secondary somatosensory and bilateral superior parietal areas. The beta oscillation for the singing was also confirmed in the premotor, primary and secondary sensorimotor and superior parietal areas in the left and right hemispheres where were partly activated even for imagined a song (imaging). These regions have been traditionally described as vocalization-related sites. The cortical rhythmic changes were distinct in the singing condition compared with the other vocalizing conditions (speaking and humming) and thus we considered that more concentrated control of the vocal tract, diaphragm and abdominal muscles is responsible. Furthermore, characteristic oscillation in the high-gamma (60-200 Hz) frequency band was found in Broca's area only in the imaging condition and might occur singing rehearsal and storage process in Broca's area.

  20. Rhythmic Changes in Synapse Numbers in Drosophila melanogaster Motor Terminals

    PubMed Central

    Ruiz, Santiago; Ferreiro, Maria Jose; Menhert, Kerstin I.; Casanova, Gabriela; Olivera, Alvaro; Cantera, Rafael

    2013-01-01

    Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD) cycles and constant darkness (DD). We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses) in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons. PMID:23840613

  1. RHYTHMIC RESPONSE OF SERRATIA MARCESCENS TO ELEVATED TEMPERATURE.

    PubMed

    DIMMICK, R L

    1965-03-01

    Dimmick, Robert L. (University of California, Berkeley). Rhythmic response of Serratia marcescens to elevated temperature. J. Bacteriol. 89:791-798. 1965.-Populations of Serratia marcescens of varied ages and pretreatments, which had been grown in a chemically defined medium, were subjected to thermal stress at 50 to 56 C. The numbers of survivors were plotted vs. time to form survivor curves, and the curves were assembled to form three-dimensional models. The manner in which survivors varied as a function of age and time of heating was variable and often rhythmic. Different three-dimensional patterns were found when different inoculum for the test culture was used. Apparently some "dead" cells again produced colonies after extended heating periods (recuperation); this tendency varied with the age of the culture. Diminutive colony forms, which produced normal colonies upon transfer, appeared and disappeared during heating; this tendency fluctuated with age. It is suggested that survivor curves represent a distribution of resistant forms within the population, and that this distribution varies in a manner best described in terms of servomechanistic response within each cell and within a given culture. Difficulties of attempting to relate changes in specific molecular species to subsequent whole-cell responses are discussed.

  2. Age effects in discrimination of intervals within rhythmic tone sequences.

    PubMed

    Fitzgibbons, Peter J; Gordon-Salant, Sandra

    2015-01-01

    This study measured listener sensitivity to increments of a target inter-onset interval (IOI) embedded within tone sequences that featured different rhythmic patterns. The sequences consisted of six 50-ms 1000-Hz tone bursts separated by silent intervals that were adjusted to create different timing patterns. Control sequences were isochronous, with all tonal IOIs fixed at either 200 or 400 ms, while other patterns featured combinations of the two IOIs arranged to create different sequential tonal groupings. Duration difference limens in milliseconds for increments of a single sequence IOI were measured adaptively by adjusting the duration of an inter-tone silent interval. Specific target IOIs within sequences differed across discrimination conditions. Listeners included younger normal-hearing adults and groups of older adults with and without hearing loss. Discrimination performance measured for each of the older groups of listeners was observed to be equivalent, with each group exhibiting significantly poorer discrimination performance than the younger listeners in each sequence condition. Additionally, the specific influence of variable rhythmic grouping on temporal sensitivity was found to be greatest among older listeners. PMID:25618068

  3. Motor Performance and Rhythmic Perception of Children with Intellectual and Developmental Disability and Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Kartasidou, Lefkothea; Varsamis, Panagiotis; Sampsonidou, Anna

    2012-01-01

    Professionals who work with children presenting intellectual and developmental disability (IDD) and developmental coordination disorder (DCD) are concerned with their motor development and their rhythmic perception. The aim of this study is to investigate the correlation between a motor performance test and a music rhythmic test that measures…

  4. Effect of rhythmic photostimulation on monkeys with hyperkinesis of post-encephalitic genesis

    NASA Technical Reports Server (NTRS)

    Danilov, I. V.; Kudrayatseva, N. N.

    1979-01-01

    In hyperkinetic monkeys a response opposite to that of healthy monkeys was observed during rhythmic photostimulation (frequency 3, 9, 18, 20, and 25/sec), i.e., the hyperkinesis disappeared. The significance of rhythmic excitatory cycles for interconnections between different brain structures is discussed.

  5. Dietary Habits and Physical Self-Concept of Elite Rhythmic Gymnasts

    ERIC Educational Resources Information Center

    Boros, Szilvia

    2009-01-01

    Study aim: To identify main differences in nutrient patterns, food preferences and physical self-concept between the world's elite rhythmic gymnasts and untrained controls. Material and methods: A group of elite rhythmic gymnasts (n = 103) aged 15-21 years volunteered to participate in the study during the 2003 World Championships in Rhythmic…

  6. Effect of serotonin modulating pharmacotherapies on body mass index and dysglycaemia among children and adolescents: a systematic review and network meta-analysis protocol

    PubMed Central

    Al Khalifah, Reem A; De Long, Nicole E; Florez, Ivan D; Mbuagbaw, Lawrence; Morrison, Katherine M

    2016-01-01

    Introduction Serotonin-modulating medications are commonly prescribed for mental health issues. Currently, there is limited consensus on weight gain and dysglycaemia development among children using these medications. The objective of this study is to review and synthesise all the available evidence on serotonin-modulating medications and their effects on body mass index (BMI), weight and glycaemic control. Methods and analysis We will conduct a systematic review of all randomised controlled trials evaluating the use of serotonin-modulating medications in the treatment of children 2–17 years with mental health conditions. The outcome measures are BMI, weight and dysglycaemia. We will perform literature searches through Ovid Medline, Ovid Embase, PsycINFO and grey literature resources. Two reviewers from the team will independently screen titles and abstracts, assess the eligibility of full-text trials, extract information from eligible trials and assess the risk of bias and quality of the evidence. Results of this review will be summarised narratively and quantitatively as appropriate. We will perform a multiple treatment comparison using network meta-analysis to estimate the pooled direct, indirect and network estimate for all serotonin-modulating medications on outcomes if adequate data are available. Ethics and dissemination Serotonin-modulating medications are widely prescribed for children with mental health diseases and are also used off-label. This network meta-analysis will be the first to assess serotonin modulating antidepressants and their effects on weight and glycaemic control. We anticipate that our results will help physicians and patients make more informed choices while considering the side effect profile. We will disseminate the results of the systematic review and network meta-analysis through peer-reviewed journals. PROSPERO registration number CRD42015024367. PMID:26983945

  7. [The model of geometrical human body phantom for calculating tissue doses in the service module of the International Space Station].

    PubMed

    Bondarenko, V A; Mitrikas, V G

    2007-01-01

    The model of a geometrical human body phantom developed for calculating the shielding functions of representative points of the body organs and systems is similar to the anthropomorphic phantom. This form of phantom can be integrated with the shielding model of the ISS Russian orbital segment to make analysis of radiation loading of crewmembers in different compartments of the vehicle. Calculation of doses absorbed by the body systems in terms of the representative points makes it clear that doses essentially depend on the phantom spatial orientation (eye direction). It also enables the absorbed dose evaluation from the shielding functions as the mean of the representative points and phantom orientation.

  8. Influence of Tempo and Rhythmic Unit in Musical Emotion Regulation.

    PubMed

    Fernández-Sotos, Alicia; Fernández-Caballero, Antonio; Latorre, José M

    2016-01-01

    This article is based on the assumption of musical power to change the listener's mood. The paper studies the outcome of two experiments on the regulation of emotional states in a series of participants who listen to different auditions. The present research focuses on note value, an important musical cue related to rhythm. The influence of two concepts linked to note value is analyzed separately and discussed together. The two musical cues under investigation are tempo and rhythmic unit. The participants are asked to label music fragments by using opposite meaningful words belonging to four semantic scales, namely "Tension" (ranging from Relaxing to Stressing), "Expressiveness" (Expressionless to Expressive), "Amusement" (Boring to Amusing) and "Attractiveness" (Pleasant to Unpleasant). The participants also have to indicate how much they feel certain basic emotions while listening to each music excerpt. The rated emotions are "Happiness," "Surprise," and "Sadness." This study makes it possible to draw some interesting conclusions about the associations between note value and emotions.

  9. Functional connectivity arises from a slow rhythmic mechanism

    PubMed Central

    Li, Jingfeng M.; Bentley, William J.; Snyder, Lawrence H.

    2015-01-01

    The mechanism underlying temporal correlations among blood oxygen level-dependent signals is unclear. We used oxygen polarography to better characterize oxygen fluctuations and their correlation and to gain insight into the driving mechanism. The power spectrum of local oxygen fluctuations is inversely proportional to frequency raised to a power (1/f) raised to the beta, with an additional positive band-limited component centered at 0.06 Hz. In contrast, the power of the correlated oxygen signal is band limited from ∼0.01 Hz to 0.4 Hz with a peak at 0.06 Hz. These results suggest that there is a band-limited mechanism (or mechanisms) driving interregional oxygen correlation that is distinct from the mechanism(s) driving local (1/f) oxygen fluctuations. Candidates for driving interregional oxygen correlation include rhythmic or pseudo-oscillatory mechanisms. PMID:25918427

  10. [The bio-rhythmic problems of a space flight].

    PubMed

    Stepanova, S I; Galichiĭ, V A

    2003-03-01

    The influence of space-flight factors on the organism's circadian periodicity is discussed. It is shown that in mechanisms of such influence, the transformation of natural structure of Zeitgebers accompanying a space flight, can play the essential role. It is confirmed by the results of ground research carried out in conditions of isolation simulating the usual space flight transformation of Zeitgebers system. The data obtained in the ground researches with isolation, testify that the changes of circadian rhythms in these conditions are similar to those in space flights and frequently are interpreted as the result of influence of weightlessness. Special attention is paid to phenomenon of delay of the daily maximum and to possible connection of this phenomenon with the tendency to transition of rhythmic process in a free-running regime.

  11. Anchoring in rhythmic in-phase and antiphase visuomotor tracking.

    PubMed

    Roerdink, Melvyn; Bank, Paulina J M; Peper, C E; Beek, Peter J

    2013-04-01

    Rhythmic limb movements are often anchored at particular points in the movement cycle. Anchoring may reveal essential task-specific information for motor control. We examined the effect of tracking mode (in-phase, antiphase) and gaze direction (left, right) on anchoring in visuomotor tracking with and without concurrent visual feedback of the hand movement. For in-phase tracking, anchoring was observed at the foveated reversal point whereas for antiphase tracking anchoring was observed at both reversals, suggesting the presence of two reference points instead of one. Anchoring at the foveated reversal reflected gaze anchoring (i.e., coalignment of hand and gaze) while anchoring at the nonfoveated reversal reflected visuomotor synchronization (i.e., the hand was steered to the nonfoveated reversal coincident with a target reversal at the point of gaze). We propose that the number and location of anchor points play a crucial role in the underlying control by providing reference values for error correction processes.

  12. Sexual arousal and rhythmic synchronization: A possible effect of vasopressin.

    PubMed

    Miani, Alessandro

    2016-08-01

    Music is ubiquitous. Yet, its biological relevance is still an ongoing debate. Supporting the view that music had an ancestral role in courtship displays, a pilot study presented here provides preliminary evidence on the link between music and sexual selection. The underlying hypothesis is based on the fact that the sexually dimorphic neuropeptide vasopressin has its receptors in the part of the brain involved in music and dance performance (the basal ganglia), and its concentrations rise during sexual arousal in men. In addition, music, dance, and courtship phenotypes seem to be in part regulated by vasopressin and its genes. Hence, to test this hypothesis, a rhythmic synchronization task was employed here on one male subject during sexual arousal. Results revealed a significant effect of sexual arousal on rhythm synchronization. This is the first report that empirically supports the hypothesis on the role of music in sexual selection. Further studies are clearly required. PMID:27372870

  13. Functional connectivity arises from a slow rhythmic mechanism.

    PubMed

    Li, Jingfeng M; Bentley, William J; Snyder, Abraham Z; Raichle, Marcus E; Snyder, Lawrence H

    2015-05-12

    The mechanism underlying temporal correlations among blood oxygen level-dependent signals is unclear. We used oxygen polarography to better characterize oxygen fluctuations and their correlation and to gain insight into the driving mechanism. The power spectrum of local oxygen fluctuations is inversely proportional to frequency raised to a power (1/f) raised to the beta, with an additional positive band-limited component centered at 0.06 Hz. In contrast, the power of the correlated oxygen signal is band limited from ∼ 0.01 Hz to 0.4 Hz with a peak at 0.06 Hz. These results suggest that there is a band-limited mechanism (or mechanisms) driving interregional oxygen correlation that is distinct from the mechanism(s) driving local (1/f) oxygen fluctuations. Candidates for driving interregional oxygen correlation include rhythmic or pseudo-oscillatory mechanisms. PMID:25918427

  14. Perception of rhythmic grouping depends on auditory experience.

    PubMed

    Iversen, John R; Patel, Aniruddh D; Ohgushi, Kengo

    2008-10-01

    Many aspects of perception are known to be shaped by experience, but others are thought to be innate universal properties of the brain. A specific example comes from rhythm perception, where one of the fundamental perceptual operations is the grouping of successive events into higher-level patterns, an operation critical to the perception of language and music. Grouping has long been thought to be governed by innate perceptual principles established a century ago. The current work demonstrates instead that grouping can be strongly dependent on culture. Native English and Japanese speakers were tested for their perception of grouping of simple rhythmic sequences of tones. Members of the two cultures showed different patterns of perceptual grouping, demonstrating that these basic auditory processes are not universal but are shaped by experience. It is suggested that the observed perceptual differences reflect the rhythms of the two languages, and that native language can exert an influence on general auditory perception at a basic level.

  15. Sexual arousal and rhythmic synchronization: A possible effect of vasopressin.

    PubMed

    Miani, Alessandro

    2016-08-01

    Music is ubiquitous. Yet, its biological relevance is still an ongoing debate. Supporting the view that music had an ancestral role in courtship displays, a pilot study presented here provides preliminary evidence on the link between music and sexual selection. The underlying hypothesis is based on the fact that the sexually dimorphic neuropeptide vasopressin has its receptors in the part of the brain involved in music and dance performance (the basal ganglia), and its concentrations rise during sexual arousal in men. In addition, music, dance, and courtship phenotypes seem to be in part regulated by vasopressin and its genes. Hence, to test this hypothesis, a rhythmic synchronization task was employed here on one male subject during sexual arousal. Results revealed a significant effect of sexual arousal on rhythm synchronization. This is the first report that empirically supports the hypothesis on the role of music in sexual selection. Further studies are clearly required.

  16. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures

    PubMed Central

    Thut, Gregor; Veniero, Domenica; Romei, Vincenzo; Miniussi, Carlo; Schyns, Philippe; Gross, Joachim

    2011-01-01

    Summary Background Neuronal elements underlying perception, cognition, and action exhibit distinct oscillatory phenomena, measured in humans by electro- or magnetoencephalography (EEG/MEG). So far, the correlative or causal nature of the link between brain oscillations and functions has remained elusive. A compelling demonstration of causality would primarily generate oscillatory signatures that are known to correlate with particular cognitive functions and then assess the behavioral consequences. Here, we provide the first direct evidence for causal entrainment of brain oscillations by transcranial magnetic stimulation (TMS) using concurrent EEG. Results We used rhythmic TMS bursts to directly interact with an MEG-identified parietal α-oscillator, activated by attention and linked to perception. With TMS bursts tuned to its preferred α-frequency (α-TMS), we confirmed the three main predictions of entrainment of a natural oscillator: (1) that α-oscillations are induced during α-TMS (reproducing an oscillatory signature of the stimulated parietal cortex), (2) that there is progressive enhancement of this α-activity (synchronizing the targeted, α-generator to the α-TMS train), and (3) that this depends on the pre-TMS phase of the background α-rhythm (entrainment of natural, ongoing α-oscillations). Control conditions testing different TMS burst profiles and TMS-EEG in a phantom head confirmed specificity of α-boosting to the case of synchronization between TMS train and neural oscillator. Conclusions The periodic electromagnetic force that is generated during rhythmic TMS can cause local entrainment of natural brain oscillations, emulating oscillatory signatures activated by cognitive tasks. This reveals a new mechanism of online TMS action on brain activity and can account for frequency-specific behavioral TMS effects at the level of biologically relevant rhythms. PMID:21723129

  17. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns

    PubMed Central

    Shin, Yoon-Kyum; Chong, Hyun Ju

    2015-01-01

    Purpose The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Materials and Methods Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Results Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Conclusion Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function. PMID:26446657

  18. Estimation of excitatory and inhibitory synaptic conductance variations in motoneurons during locomotor-like rhythmic activity.

    PubMed

    Kobayashi, Ryota; Nishimaru, Hiroshi; Nishijo, Hisao

    2016-10-29

    The rhythmic activity of motoneurons (MNs) that underlies locomotion in mammals is generated by synaptic inputs from the locomotor network in the spinal cord. Thus, the quantitative estimation of excitatory and inhibitory synaptic conductances is essential to understand the mechanism by which the network generates the functional motor output. Conductance estimation is obtained from the voltage-current relationship measured by voltage-clamp- or current-clamp-recording with knowledge of the leak parameters of the recorded neuron. However, it is often difficult to obtain sufficient data to estimate synaptic conductances due to technical difficulties in electrophysiological experiments using in vivo or in vitro preparations. To address this problem, we estimated the average variations in excitatory and inhibitory synaptic conductance during a locomotion cycle from a single voltage trace without measuring the leak parameters. We found that the conductance variations can be accurately reconstructed from a voltage trace of 10 cycles by analyzing synthetic data generated from a computational model. Next, the conductance variations were estimated from mouse spinal MNs in vitro during drug-induced-locomotor-like activity. We found that the peak of excitatory conductance occurred during the depolarizing phase of the locomotor cycle, whereas the peak of inhibitory conductance occurred during the hyperpolarizing phase. These results suggest that the locomotor-like activity is generated by push-pull modulation via excitatory and inhibitory synaptic inputs. PMID:27561702

  19. Brain Bases of Working Memory for Time Intervals in Rhythmic Sequences.

    PubMed

    Teki, Sundeep; Griffiths, Timothy D

    2016-01-01

    Perception of auditory time intervals is critical for accurate comprehension of natural sounds like speech and music. However, the neural substrates and mechanisms underlying the representation of time intervals in working memory are poorly understood. In this study, we investigate the brain bases of working memory for time intervals in rhythmic sequences using functional magnetic resonance imaging. We used a novel behavioral paradigm to investigate time-interval representation in working memory as a function of the temporal jitter and memory load of the sequences containing those time intervals. Human participants were presented with a sequence of intervals and required to reproduce the duration of a particular probed interval. We found that perceptual timing areas including the cerebellum and the striatum were more or less active as a function of increasing and decreasing jitter of the intervals held in working memory respectively whilst the activity of the inferior parietal cortex is modulated as a function of memory load. Additionally, we also analyzed structural correlations between gray and white matter density and behavior and found significant correlations in the cerebellum and the striatum, mirroring the functional results. Our data demonstrate neural substrates of working memory for time intervals and suggest that the cerebellum and the striatum represent core areas for representing temporal information in working memory.

  20. Brain Bases of Working Memory for Time Intervals in Rhythmic Sequences

    PubMed Central

    Teki, Sundeep; Griffiths, Timothy D.

    2016-01-01

    Perception of auditory time intervals is critical for accurate comprehension of natural sounds like speech and music. However, the neural substrates and mechanisms underlying the representation of time intervals in working memory are poorly understood. In this study, we investigate the brain bases of working memory for time intervals in rhythmic sequences using functional magnetic resonance imaging. We used a novel behavioral paradigm to investigate time-interval representation in working memory as a function of the temporal jitter and memory load of the sequences containing those time intervals. Human participants were presented with a sequence of intervals and required to reproduce the duration of a particular probed interval. We found that perceptual timing areas including the cerebellum and the striatum were more or less active as a function of increasing and decreasing jitter of the intervals held in working memory respectively whilst the activity of the inferior parietal cortex is modulated as a function of memory load. Additionally, we also analyzed structural correlations between gray and white matter density and behavior and found significant correlations in the cerebellum and the striatum, mirroring the functional results. Our data demonstrate neural substrates of working memory for time intervals and suggest that the cerebellum and the striatum represent core areas for representing temporal information in working memory. PMID:27313506

  1. Brain Bases of Working Memory for Time Intervals in Rhythmic Sequences.

    PubMed

    Teki, Sundeep; Griffiths, Timothy D

    2016-01-01

    Perception of auditory time intervals is critical for accurate comprehension of natural sounds like speech and music. However, the neural substrates and mechanisms underlying the representation of time intervals in working memory are poorly understood. In this study, we investigate the brain bases of working memory for time intervals in rhythmic sequences using functional magnetic resonance imaging. We used a novel behavioral paradigm to investigate time-interval representation in working memory as a function of the temporal jitter and memory load of the sequences containing those time intervals. Human participants were presented with a sequence of intervals and required to reproduce the duration of a particular probed interval. We found that perceptual timing areas including the cerebellum and the striatum were more or less active as a function of increasing and decreasing jitter of the intervals held in working memory respectively whilst the activity of the inferior parietal cortex is modulated as a function of memory load. Additionally, we also analyzed structural correlations between gray and white matter density and behavior and found significant correlations in the cerebellum and the striatum, mirroring the functional results. Our data demonstrate neural substrates of working memory for time intervals and suggest that the cerebellum and the striatum represent core areas for representing temporal information in working memory. PMID:27313506

  2. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis

    PubMed Central

    Merchant, Hugo; Honing, Henkjan

    2014-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do. PMID:24478618

  3. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis.

    PubMed

    Merchant, Hugo; Honing, Henkjan

    2013-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do. PMID:24478618

  4. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis.

    PubMed

    Merchant, Hugo; Honing, Henkjan

    2013-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.

  5. Three-dimensional motion of the radial artery and the spatiality, rhythmicity, formability and intensity of TCM pulse diagnosis.

    PubMed

    Niu, Xin; Yang, Xuezhi; Fu, Congyuan

    2013-01-01

    Traditional Chinese medicine (TCM) pulse diagnosis can reflect the condition of human bodies. 44 young healthy human beings were involved in the investigation of the relationship between the three dimensional motion of the radial artery and the spatiality, rhythmicity, formability and intensity of TCM pulse diagnosis in TCM pulse diagnostics. The color Doppler vascular imaging, the self-designed cardioelectric phasic marking and non-pressure arm bath-tube were used in the study. Both the radial artery and other arm superficial arteries had three forms of motion, namely diametrical motion, axial motion and the displacement of the axial center. The three forms of motion changed periodically, which was identical with that found in pulsation. The displacement of the vascular axial center was a three-dimensional message of the overall vascular revolving motion observed on a two-e level. Systematically studying the rules of vascular motion and the relationship between the rules of vascular motion and the spatiality, rhythmicity, formability and intensity of TCM pulse patterns has great significance in revealing the specificity of the vascular motion and explaining the mechanisms in the formation of TCM pulse diagnosis. This research could make TCM pulse diagnosis more understandable.

  6. Perchlorate exposure does not modulate temporal variation of whole-body thyroid and androgen hormone content in threespine stickleback

    PubMed Central

    Gardell, Alison M.; Dillon, Danielle M.; Smayda, Lauren C.; von Hippel, Frank A.; Cresko, William A.; Postlethwait, John H.; Buck, C. Loren

    2015-01-01

    Previously we showed that exposure of threespine stickleback (Gasterosteus aculeatus) to the endocrine disruptor perchlorate results in pronounced structural changes in thyroid and gonad, while surprisingly, whole-body thyroid hormone concentrations remain unaffected. To test for hormone titer variations on a finer scale, we evaluated the interactive effects of time (diel and reproductive season) and perchlorate exposure on whole-body contents of triiodothyronine (T3), thyroxine (T4), and 11-ketotestosterone (11-KT) in captive stickleback. Adult stickleback were exposed to 100 ppm perchlorate or control water and sampled at four-hour intervals across the 24-hour day and at one time-point (1100 h) weekly across the reproductive season (May-July). Neither whole-body T3 nor T4 concentration significantly differed across the day in control or perchlorate treated stickleback. Across the reproductive season, whole-body T3 concentration remained stable while T4 significantly increased. However, neither hormone concentration was significantly affected by perchlorate, verifying our previous studies. The concentration of whole-body 11-KT, a major fish androgen, displayed significant diel variation and also steadily declined across the reproductive season in untreated males; perchlorate exposure did not influence the concentration of 11-KT in either diel or reproductive season schedules. Diel and reproductive season variations in 11-KT content in male stickleback are likely related to reproductive physiology and behavior. The observed increase in T4 content across the reproductive season may be reflective of increased energy investment in reproduction near the end of the life cycle. PMID:25733204

  7. Prenatal exposure of a novel antipsychotic aripiprazole: impact on maternal, fetal and postnatal body weight modulation in rats.

    PubMed

    Singh, K P; Tripathi, Nidhi

    2014-03-01

    Nearly all atypical antipsychotic drugs (AAPDs) of second- generation are associated with body weight gain in adults with prolonged exposure; but reports on third-generation AAPDs like Aripiprazole (ARI) and weight gain are scanty and ambiguous. This may be attributed to some unknown mechanism of action, the study of which is essential to investigate gestational exposure of equivalent therapeutic doses of ARI on maternal and fetal weight gain and its longlasting impact on postnatal development and growth of offspring in rodent model. 30 pregnant Wistar rats were exposed to selected doses (2mg, 3mg and 5mg/kg BW) of ARI from GD3-21 orally, with control subjects. Half of the pregnant subjects of each group were sacrificed at GD22 and rest dams were allowed to deliver normally and pups were reared postnatally up to 10 weeks of age. In ARI treated groups, there was no substantial alteration of body weight gain and food intake in pregnant subjects while significant reduction was found in fetal and postnatal (pre-and post weaning) body weight gain. ARI was found neutral for substantial weight gain in pregnant rats but may induce significant weight loss in fetuses, creating long-lasting negative impact on offspring growth (in weight) till PND70. Therefore, ARI could be a good alternative of second- generation AAPDs for adult females but may not be safe for developing fetuses and offspring.

  8. Characterization of K+ currents and the cAMP-dependent modulation in cultured Drosophila mushroom body neurons identified by lacZ expression.

    PubMed

    Wright, N J; Zhong, Y

    1995-02-01

    Electrophysiological analysis of cultured neurons provides a potential approach toward understanding the physiological defects that may contribute to abnormal behavior exhibited by mutants of the fruit fly Drosophila. However, its application has been restricted by an inability to identify a particular functional or anatomical subpopulation of neurons from the CNS. To study neurons composing the CNS mushroom body proposed as a center for insect olfactory learning, we utilized a Drosophila enhancer detector line that expresses a lacZ reporter gene in these neurons and identified them in acutely dissociated larval CNS cultures by vital fluorescent staining. The patch-clamp analysis suggests that whole-cell voltage-activated K+ currents can be classified into two types in identified mushroom body neurons. Type 1 current comprises a TEA-sensitive slowly inactivating current and noninactivating component while type 2 current contains a 4-AP-sensitive transient A-current and a noninactivating component. Application of cAMP analogs induced distinct modulation of type 1 and type 2 currents. Our results demonstrate that the expression of the lacZ gene and the subsequent staining do not significantly alter the different types of K+ currents. This initial characterization provides a basis for further analysis of mutations that impair learning and memory resulting from an abnormal cAMP cascade preferentially expressed in the mushroom body.

  9. Corticomuscular coherence is tuned to the spontaneous rhythmicity of speech at 2-3 Hz.

    PubMed

    Ruspantini, Irene; Saarinen, Timo; Belardinelli, Paolo; Jalava, Antti; Parviainen, Tiina; Kujala, Jan; Salmelin, Riitta

    2012-03-14

    Human speech features rhythmicity that frames distinctive, fine-grained speech patterns. Speech can thus be counted among rhythmic motor behaviors that generally manifest characteristic spontaneous rates. However, the critical neural evidence for tuning of articulatory control to a spontaneous rate of speech has not been uncovered. The present study examined the spontaneous rhythmicity in speech production and its relationship to cortex-muscle neurocommunication, which is essential for speech control. Our MEG results show that, during articulation, coherent oscillatory coupling between the mouth sensorimotor cortex and the mouth muscles is strongest at the frequency of spontaneous rhythmicity of speech at 2-3 Hz, which is also the typical rate of word production. Corticomuscular coherence, a measure of efficient cortex-muscle neurocommunication, thus reveals behaviorally relevant oscillatory tuning for spoken language.

  10. Sound Perception: Rhythmic Brain Activity Really Is Important for Auditory Segregation.

    PubMed

    Snyder, Joel S

    2015-12-21

    A new study suggests that rhythmic brain activity plays a causal role in the perceptual segregation of sound patterns, rather than such activity simply being a non-functional by-product of sensory processing.

  11. Influence of Tempo and Rhythmic Unit in Musical Emotion Regulation

    PubMed Central

    Fernández-Sotos, Alicia; Fernández-Caballero, Antonio; Latorre, José M.

    2016-01-01

    This article is based on the assumption of musical power to change the listener's mood. The paper studies the outcome of two experiments on the regulation of emotional states in a series of participants who listen to different auditions. The present research focuses on note value, an important musical cue related to rhythm. The influence of two concepts linked to note value is analyzed separately and discussed together. The two musical cues under investigation are tempo and rhythmic unit. The participants are asked to label music fragments by using opposite meaningful words belonging to four semantic scales, namely “Tension” (ranging from Relaxing to Stressing), “Expressiveness” (Expressionless to Expressive), “Amusement” (Boring to Amusing) and “Attractiveness” (Pleasant to Unpleasant). The participants also have to indicate how much they feel certain basic emotions while listening to each music excerpt. The rated emotions are “Happiness,” “Surprise,” and “Sadness.” This study makes it possible to draw some interesting conclusions about the associations between note value and emotions. PMID:27536232

  12. Influence of Tempo and Rhythmic Unit in Musical Emotion Regulation.

    PubMed

    Fernández-Sotos, Alicia; Fernández-Caballero, Antonio; Latorre, José M

    2016-01-01

    This article is based on the assumption of musical power to change the listener's mood. The paper studies the outcome of two experiments on the regulation of emotional states in a series of participants who listen to different auditions. The present research focuses on note value, an important musical cue related to rhythm. The influence of two concepts linked to note value is analyzed separately and discussed together. The two musical cues under investigation are tempo and rhythmic unit. The participants are asked to label music fragments by using opposite meaningful words belonging to four semantic scales, namely "Tension" (ranging from Relaxing to Stressing), "Expressiveness" (Expressionless to Expressive), "Amusement" (Boring to Amusing) and "Attractiveness" (Pleasant to Unpleasant). The participants also have to indicate how much they feel certain basic emotions while listening to each music excerpt. The rated emotions are "Happiness," "Surprise," and "Sadness." This study makes it possible to draw some interesting conclusions about the associations between note value and emotions. PMID:27536232

  13. Neural entrainment to the rhythmic structure of music.

    PubMed

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  14. Rhythmic oscillations of visual contrast sensitivity synchronized with action.

    PubMed

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2015-05-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ∼500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  15. Familiarity with music increases walking speed in rhythmic auditory cuing.

    PubMed

    Leow, Li-Ann; Rinchon, Cricia; Grahn, Jessica

    2015-03-01

    Rhythmic auditory stimulation (RAS) is a gait rehabilitation method in which patients synchronize footsteps to a metronome or musical beats. Although RAS with music can ameliorate gait abnormalities, outcomes vary, possibly because music properties, such as groove or familiarity, differ across interventions. To optimize future interventions, we assessed how initially familiar and unfamiliar low-groove and high-groove music affected synchronization accuracy and gait in healthy individuals. We also experimentally increased music familiarity using repeated exposure to initially unfamiliar songs. Overall, familiar music elicited faster stride velocity and less variable strides, as well as better synchronization performance (matching of step tempo to beat tempo). High-groove music, as reported previously, led to faster stride velocity than low-groove music. We propose two mechanisms for familiarity's effects. First, familiarity with the beat structure reduces cognitive demands of synchronizing, leading to better synchronization performance and faster, less variable gait. Second, familiarity might have elicited faster gait by increasing enjoyment of the music, as enjoyment was higher after repeated exposure to initially low-enjoyment songs. Future studies are necessary to dissociate the contribution of these mechanisms to the observed RAS effects of familiar music on gait.

  16. Evening physical activity alters wrist temperature circadian rhythmicity

    PubMed Central

    Rubio-Sastre, Patricia; Gómez-Abellán, Purificación; Martinez-Nicolas, Antonio; Ordovás, José María; Madrid, Juan Antonio; Garaulet, Marta

    2015-01-01

    The adequate time to perform physical activity (PA) to maintain optimal circadian system health has not been defined. We studied the influence of morning and evening PA on circadian rhythmicity in 16 women with wrist temperature (WT). Participants performed controlled PA (45 min continuous-running) during 7 days in the morning (MPA) and evening (EPA) and results were compared with a no-exercise-week (C). EPA was characterized by a lower amplitude (evening: 0.028 ± 0.01 °C versus control: 0.038 ± 0.016 °C; p<0.05) less pronounced second-harmonic (power) (evening: 0.41 ± 0.47 versus morning: 1.04 ± 0.59); and achrophase delay (evening: 06:35 ± 02:14 h versus morning: 04:51 ± 01:11 h; p>0.05) as compared to MPA and C. Performing PA in the late evening might not be as beneficial as in the morning. PMID:24517176

  17. Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae

    PubMed Central

    Sorek, Michal; Yacobi, Yosef Z.; Roopin, Modi; Berman-Frank, Ilana; Levy, Oren

    2013-01-01

    Biological clocks are self-sustained endogenous timers that enable organisms (from cyanobacteria to humans) to anticipate daily environmental rhythms, and adjust their physiology and behaviour accordingly. Symbiotic corals play a central role in the creation of biologically rich ecosystems based on mutualistic symbioses between the invertebrate coral and dinoflagellate protists from the genus Symbiodinium. In this study, we experimentally establish that Symbiodinium photosynthesis, both as a free-living unicellular algae and as part of the symbiotic association with the coral Stylophora pistillata, is ‘wired’ to the circadian clock mechanism with a ‘free-run’ cycle close to 24 h. Associated photosynthetic pigments also showed rhythmicity under light/dark conditions and under constant light conditions, while the expression of the oxygen-evolving enhancer 1 gene (within photosystem II) coincided with photosynthetically evolved oxygen in Symbiodinium cultures. Thus, circadian regulation of the Symbiodinium photosynthesis is, however, complicated as being linked to the coral/host that have probably profound physiochemical influence on the intracellular environment. The temporal patterns of photosynthesis demonstrated here highlight the physiological complexity and interdependence of the algae circadian clock associated in this symbiosis and the plasticity of algae regulatory mechanisms downstream of the circadian clock. PMID:23554392

  18. Rhythmic cognition in humans and animals: distinguishing meter and pulse perception.

    PubMed

    Fitch, W Tecumseh

    2013-01-01

    This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or "tactus" from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of "strength", or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g., to dance). Rhythms, from this metrical perspective, constitute "trees in time." Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques). The results from this animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

  19. Rhythmic cognition in humans and animals: distinguishing meter and pulse perception

    PubMed Central

    Fitch, W. Tecumseh

    2013-01-01

    This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or “tactus” from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of “strength”, or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g., to dance). Rhythms, from this metrical perspective, constitute “trees in time.” Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques). The results from this animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective. PMID:24198765

  20. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  1. Jazz drummers recruit language-specific areas for the processing of rhythmic structure.

    PubMed

    Herdener, Marcus; Humbel, Thierry; Esposito, Fabrizio; Habermeyer, Benedikt; Cattapan-Ludewig, Katja; Seifritz, Erich

    2014-03-01

    Rhythm is a central characteristic of music and speech, the most important domains of human communication using acoustic signals. Here, we investigated how rhythmical patterns in music are processed in the human brain, and, in addition, evaluated the impact of musical training on rhythm processing. Using fMRI, we found that deviations from a rule-based regular rhythmic structure activated the left planum temporale together with Broca's area and its right-hemispheric homolog across subjects, that is, a network also crucially involved in the processing of harmonic structure in music and the syntactic analysis of language. Comparing the BOLD responses to rhythmic variations between professional jazz drummers and musical laypersons, we found that only highly trained rhythmic experts show additional activity in left-hemispheric supramarginal gyrus, a higher-order region involved in processing of linguistic syntax. This suggests an additional functional recruitment of brain areas usually dedicated to complex linguistic syntax processing for the analysis of rhythmical patterns only in professional jazz drummers, who are especially trained to use rhythmical cues for communication.

  2. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames

    PubMed Central

    Janich, Peggy; Arpat, Alaaddin Bulak; Castelo-Szekely, Violeta; Lopes, Maykel; Gatfield, David

    2015-01-01

    Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ. PMID:26486724

  3. Modulation of the release of ( sup 3 H)norepinephrine from the base and body of the rat urinary bladder by endogenous adrenergic and cholinergic mechanisms

    SciTech Connect

    Somogyi, G.T.; de Groat, W.C. )

    1990-10-01

    Modulation of (3H)NE release was studied in rat urinary bladder strips prelabeled with (3H)NE. (3H)NE uptake occurred in strips from the bladder base and body, but was very prominent in the base where the noradrenergic innervation is most dense. Electrical field stimulation markedly increased (3H)NE outflow from the superfused tissue. The quantity of (3H)NE release was approximately equal during three consecutive periods of stimulation. Activation of presynaptic muscarinic receptors by 1.0 microM oxotremorine reduced (3H)NE release to 46% of the control. Atropine (1 microM) blocked the effect of oxotremorine and increased the release to 147% of predrug control levels. Activation of presynaptic alpha-2 adrenoceptors by 1 microM clonidine reduced (3H)NE release to 55% of control. Yohimbine blocked the action of clonidine and increased the release to 148% of control. The release of (3H)NE from the bladder base and body was increased by both 1 microM atropine (to 167% and 174% of control, respectively) and 1 microM yohimbine (to 286% and 425% of control, respectively). Atropine and yohimbine administered in combination had similar facilitatory effects as when administered alone. We conclude that the release of (3H)NE from adrenergic nerve endings in electrically stimulated bladder strips is modulated via endogenous transmitters acting on both muscarinic and alpha-2 adrenergic presynaptic receptors and that the latter provide the most prominent control.

  4. Inflammasome components ASC and AIM2 modulate the acute phase of biomaterial implant-induced foreign body responses

    PubMed Central

    Christo, Susan N.; Diener, Kerrilyn R.; Manavis, Jim; Grimbaldeston, Michele A.; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D.

    2016-01-01

    Detailing the inflammatory mechanisms of biomaterial-implant induced foreign body responses (FBR) has implications for revealing targetable pathways that may reduce leukocyte activation and fibrotic encapsulation of the implant. We have adapted a model of poly(methylmethacrylate) (PMMA) bead injection to perform an assessment of the mechanistic role of the ASC-dependent inflammasome in this process. We first demonstrate that ASC−/− mice subjected to PMMA bead injections had reduced cell infiltration and altered collagen deposition, suggesting a role for the inflammasome in the FBR. We next investigated the NLRP3 and AIM2 sensors because of their known contributions in recognising damaged and apoptotic cells. We found that NLRP3 was dispensable for the fibrotic encapsulation; however AIM2 expression influenced leukocyte infiltration and controlled collagen deposition, suggesting a previously unexplored link between AIM2 and biomaterial-induced FBR. PMID:26860464

  5. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats.

    PubMed

    Li, Jianzhong; Xu, Jing; Lu, Yiming; Qiu, Lei; Xu, Weiheng; Lu, Bin; Hu, Zhenlin; Chu, Zhiyong; Chai, Yifeng; Zhang, Junping

    2016-05-17

    Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.

  6. Developing a class solution for Prostate Stereotactic Ablative Body Radiotherapy (SABR) using Volumetric Modulated Arc Therapy (VMAT)

    PubMed Central

    Murray, Louise J.; Cosgrove, Vivian; Lilley, John; Sykes, Jonathan; Thompson, Christopher M.; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2014-01-01

    Background and purpose To develop a class solution for prostate Stereotactic Ablative Radiotherapy (SABR) using Volumetric Modulated Arc Therapy (VMAT). Materials and methods Seven datasets were used to compare plans using one 360° arc (1FA), one 210° arc (1PA), two full arcs and two partial arcs. Subsequently using 1PA, fifteen datasets were compared using (i) 6 mm CTV–PTV margins, (ii) 8 mm CTV–PTV margins and (iii) including the proximal SV within the CTV. Monaco™ 3.2 (Elekta™) was used for planning with the Agility™ MLC system (Elekta™). Results Highly conformal plans were produced using all four arc arrangements. Compared to 1FA, 1PA resulted in significantly reduced rectal doses, and monitor units and estimated delivery times were reduced in six of seven cases. Using 6 mm CTV–PTV margins, planning constraints were met for all fifteen datasets. Using 8 mm margins required relaxation of the uppermost bladder constraint in three cases to achieve adequate coverage, and, compared to 6 mm margins, rectal and bladder doses significantly increased. Including the proximal SV required relaxation of the uppermost bladder and rectal constraints in two cases, and rectal and bladder doses significantly increased. Conclusions Prostate SABR VMAT is optimal using 1PA. 6 mm CTV–PTV margins, compatible with daily fiducial-based IGRT, are consistently feasible in terms of target objectives and OAR constraints. PMID:24332021

  7. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix

    PubMed Central

    Damanik, Febriyani F. R.; Rothuizen, Tonia C.; van Blitterswijk, Clemens; Rotmans, Joris I.; Moroni, Lorenzo

    2014-01-01

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement. PMID:25234587

  8. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix

    NASA Astrophysics Data System (ADS)

    Damanik, Febriyani F. R.; Rothuizen, Tonia C.; van Blitterswijk, Clemens; Rotmans, Joris I.; Moroni, Lorenzo

    2014-09-01

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  9. Modulation of the Foreign Body Reaction for Implants in the Subcutaneous Space: Microdialysis Probes as Localized Drug Delivery/Sampling Devices

    PubMed Central

    Mou, Xiaodun; Lennartz, Michelle R; Loegering, Daniel J; Stenken, Julie A

    2011-01-01

    Modulation of the foreign body reaction is considered to be an important step toward creation of implanted sensors with reliable long-term performance. In this work, microdialysis probes were implanted into the subcutaneous space of Sprague-Dawley rats. The probe performance was evaluated by comparing collected endogenous glucose concentrations with internal standard calibration (2-deoxyglucose, antipyrine, and vitamin B12). Probes were tested until failure, which for this work was defined as loss of fluid flow. In order to determine the effect of fibrous capsule formation on probe function, monocyte chemoattractant protein-1/CC chemokine ligand 2 (MCP-1/CCL2) was delivered locally via the probe to increase capsule thickness and dexamethasone 21-phosphate was delivered to reduce capsule thickness. Probes delivering MCP-1 had a capsule that was twice the thickness (500–600 μm) of control probes (200–225 μm) and typically failed 2 days earlier than control probes. Probes delivering dexamethasone 21-phosphate had more fragile capsules and the probes typically failed 2 days later than controls. Unexpectedly, extraction efficiency and collected glucose concentrations exhibited minor differences between groups. This is an interesting result in that the foreign body capsule formation was related to the duration of probe function but did not consistently relate to probe calibration. PMID:21722577

  10. Interactions between dietary oil treatments and genetic variants modulate fatty acid ethanolamides in plasma and body weight composition.

    PubMed

    Pu, Shuaihua; Eck, Peter; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Jones, Peter J H

    2016-03-28

    Fatty acid ethanolamides (FAE), a group of lipid mediators derived from long-chain fatty acids (FA), mediate biological activities including activation of cannabinoid receptors, stimulation of fat oxidation and regulation of satiety. However, how circulating FAE levels are influenced by FA intake in humans remains unclear. The objective of the present study was to investigate the response of six major circulating FAE to various dietary oil treatments in a five-period, cross-over, randomised, double-blind, clinical study in volunteers with abdominal obesity. The treatment oils (60 g/12 552 kJ per d (60 g/3000 kcal per d)) provided for 30 d were as follows: conventional canola oil, high oleic canola oil, high oleic canola oil enriched with DHA, flax/safflower oil blend and corn/safflower oil blend. Two SNP associated with FAE degradation and synthesis were studied. Post-treatment results showed overall that plasma FAE levels were modulated by dietary FA and were positively correlated with corresponding plasma FA levels; minor allele (A) carriers of SNP rs324420 in gene fatty acid amide hydrolase produced higher circulating oleoylethanolamide (OEA) (P=0·0209) and docosahexaenoylethanolamide (DHEA) levels (P=0·0002). In addition, elevated plasma DHEA levels in response to DHA intake tended to be associated with lower plasma OEA levels and an increased gynoid fat mass. In summary, data suggest that the metabolic and physiological responses to dietary FA may be influenced via circulating FAE. Genetic analysis of rs324420 might help identify a sub-population that appears to benefit from increased consumption of DHA and oleic acid.

  11. Interactions between dietary oil treatments and genetic variants modulate fatty acid ethanolamides in plasma and body weight composition.

    PubMed

    Pu, Shuaihua; Eck, Peter; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Jones, Peter J H

    2016-03-28

    Fatty acid ethanolamides (FAE), a group of lipid mediators derived from long-chain fatty acids (FA), mediate biological activities including activation of cannabinoid receptors, stimulation of fat oxidation and regulation of satiety. However, how circulating FAE levels are influenced by FA intake in humans remains unclear. The objective of the present study was to investigate the response of six major circulating FAE to various dietary oil treatments in a five-period, cross-over, randomised, double-blind, clinical study in volunteers with abdominal obesity. The treatment oils (60 g/12 552 kJ per d (60 g/3000 kcal per d)) provided for 30 d were as follows: conventional canola oil, high oleic canola oil, high oleic canola oil enriched with DHA, flax/safflower oil blend and corn/safflower oil blend. Two SNP associated with FAE degradation and synthesis were studied. Post-treatment results showed overall that plasma FAE levels were modulated by dietary FA and were positively correlated with corresponding plasma FA levels; minor allele (A) carriers of SNP rs324420 in gene fatty acid amide hydrolase produced higher circulating oleoylethanolamide (OEA) (P=0·0209) and docosahexaenoylethanolamide (DHEA) levels (P=0·0002). In addition, elevated plasma DHEA levels in response to DHA intake tended to be associated with lower plasma OEA levels and an increased gynoid fat mass. In summary, data suggest that the metabolic and physiological responses to dietary FA may be influenced via circulating FAE. Genetic analysis of rs324420 might help identify a sub-population that appears to benefit from increased consumption of DHA and oleic acid. PMID:26806592

  12. Modulation of Total Body Irradiation Induced Life Shortening by Systemic Intravenous MnSOD-Plasmid Liposome Gene Therapy

    PubMed Central

    Epperly, Michael W.; Smith, Tracy; Wang, Hong; Schlesselman, James; Franicola, Darcy; Greenberger, Joel S.

    2008-01-01

    To determine whether systemic administration of MnSOD-PL protected mice from the acute hematopoietic syndrome as well as delayed death following total body irradiation (TBI), C57BL/6J mice received intravenously 100μl liposomes containing 100μg of human MnSOD-transgene plasmid 24 hours prior to 9.5 Gy or 1.0 Gy. The dose of 9.5 Gy was lethal to 42% of irradiated control female and 74% of irradiated control male mice respectively at 30 days with bone marrow hypocellularity consistent with the hematopoietic syndrome. A statistically significant increase in survival was detected in MnSOD-PL treated compared to 9.5 Gy irradiated control female mice out to 400 days, and in male mice out to 340 days. The incidence of tumors was similar between surviving groups. Between 350 to 600 days, outcome was similar for both MnSOD-PL treated and control irradiated groups consistent with aging with no difference in gross or microscopic pathologic evidence of tumors. Male and female mice receiving 1.0 Gy TBI showed irradiation induced life shortening after 120 days that was decreased by MnSOD-PL administration, and was associated with no increase in rate of tumor associated death. Therefore, systemic MnSOD-PL radioprotective gene therapy is not associated with a detectably higher incidence of late carcinogenesis. PMID:19024650

  13. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells.

    PubMed

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F

    2016-01-01

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall. PMID:27576551

  14. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells

    PubMed Central

    Ferraro, Francesco; Mafalda Lopes da, Silva; Grimes, William; Lee, Hwee Kuan; Ketteler, Robin; Kriston-Vizi, Janos; Cutler, Daniel F.

    2016-01-01

    Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall. PMID:27576551

  15. Body Position Modulates Gastric Emptying and Affects the Post-Prandial Rise in Plasma Amino Acid Concentrations Following Protein Ingestion in Humans

    PubMed Central

    Holwerda, Andrew M.; Lenaerts, Kaatje; Bierau, Jörgen; van Loon, Luc J. C.

    2016-01-01

    Dietary protein digestion and amino acid absorption kinetics determine the post-prandial muscle protein synthetic response. Body position may affect gastrointestinal function and modulate the post-prandial rise in plasma amino acid availability. We aimed to assess the impact of body position on gastric emptying rate and the post-prandial rise in plasma amino acid concentrations following ingestion of a single, meal-like amount of protein. In a randomized, cross-over design, eight healthy males (25 ± 2 years, 23.9 ± 0.8 kg·m−2) ingested 22 g protein and 1.5 g paracetamol (acetaminophen) in an upright seated position (control) and in a −20° head-down tilted position (inversion). Blood samples were collected during a 240-min post-prandial period and analyzed for paracetamol and plasma amino acid concentrations to assess gastric emptying rate and post-prandial amino acid availability, respectively. Peak plasma leucine concentrations were lower in the inversion compared with the control treatment (177 ± 15 vs. 236 ± 15 mmol·L−1, p < 0.05), which was accompanied by a lower plasma essential amino acid (EAA) response over 240 min (31,956 ± 6441 vs. 50,351 ± 4015 AU; p < 0.05). Peak plasma paracetamol concentrations were lower in the inversion vs. control treatment (5.8 ± 1.1 vs. 10.0 ± 0.6 mg·L−1, p < 0.05). Gastric emptying rate and post-prandial plasma amino acid availability are significantly decreased after protein ingestion in a head-down tilted position. Therefore, upright body positioning should be considered when aiming to augment post-prandial muscle protein accretion in both health and disease. PMID:27089362

  16. Language dominance shapes non-linguistic rhythmic grouping in bilinguals.

    PubMed

    Molnar, Monika; Carreiras, Manuel; Gervain, Judit

    2016-07-01

    To what degree non-linguistic auditory rhythm perception is governed by universal biases (e.g., Iambic-Trochaic Law; Hayes, 1995) or shaped by native language experience is debated. It has been proposed that rhythmic regularities in spoken language, such as phrasal prosody affect the grouping abilities of monolinguals (e.g., Iversen, Patel, & Ohgushi, 2008). Here, we assessed the non-linguistic tone grouping biases of Spanish monolinguals, and three groups of Basque-Spanish bilinguals with different levels of Basque experience. It is usually assumed in the literature that Basque and Spanish have different phrasal prosodies and even linguistic rhythms. To confirm this, first, we quantified Basque and Spanish phrasal prosody (Experiment 1a) and duration patterns used in the classification of languages into rhythm classes (Experiment 1b). The acoustic measurements revealed that regularities in phrasal prosody systematically differ across Basque and Spanish; by contrast, the rhythms of the two languages are only minimally dissimilar. In Experiment 2, participants' non-linguistic rhythm preferences were assessed in response to non-linguistic tones alternating in either intensity (Intensity condition) or in duration (Duration condition). In the Intensity condition, all groups showed a trochaic grouping bias, as predicted by the Iambic-Trochaic Law. In the Duration Condition the Spanish monolingual and the most Basque-dominant bilingual group exhibited opposite grouping preferences in line with the phrasal prosodies of their native/dominant languages, trochaic in Basque, iambic in Spanish. The two other bilingual groups showed no significant biases, however. Overall, results indicate that duration-based grouping mechanisms are biased toward the phrasal prosody of the native and dominant language; also, the presence of an L2 in the environment interacts with the auditory biases. PMID:27062227

  17. Extremely-low-frequency magnetic fields disrupt rhythmic slow activity in rat hippocampal slices.

    PubMed

    Bawin, S M; Satmary, W M; Jones, R A; Adey, W R; Zimmerman, G

    1996-01-01

    Several studies have indicated that weak, extremely-low-frequency (ELF; 1-100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7-15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 microT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 microT, with an angle of -66 degrees from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 microT, but not at 5.6 microT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space,was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. PMID:8915548

  18. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.

    PubMed

    Wagner, Johanna; Solis-Escalante, Teodoro; Grieshofer, Peter; Neuper, Christa; Müller-Putz, Gernot; Scherer, Reinhold

    2012-11-15

    In robot assisted gait training, a pattern of human locomotion is executed repetitively with the intention to restore the motor programs associated with walking. Several studies showed that active contribution to the movement is critical for the encoding of motor memory. We propose to use brain monitoring techniques during gait training to encourage active participation in the movement. We investigated the spectral patterns in the electroencephalogram (EEG) that are related to active and passive robot assisted gait. Fourteen healthy participants were considered. Infomax independent component analysis separated the EEG into independent components representing brain, muscle, and eye movement activity, as well as other artifacts. An equivalent current dipole was calculated for each independent component. Independent components were clustered across participants based on their anatomical position and frequency spectra. Four clusters were identified in the sensorimotor cortices that accounted for differences between active and passive walking or showed activity related to the gait cycle. We show that in central midline areas the mu (8-12 Hz) and beta (18-21 Hz) rhythms are suppressed during active compared to passive walking. These changes are statistically significant: mu (F(1, 13)=11.2 p ≤ 0.01) and beta (F(1, 13)=7.7, p ≤ 0.05). We also show that these differences depend on the gait cycle phases. We provide first evidence of modulations of the gamma rhythm in the band 25 to 40 Hz, localized in central midline areas related to the phases of the gait cycle. We observed a trend (F(1, 8)=11.03, p ≤ 0.06) for suppressed low gamma rhythm when comparing active and passive walking. Additionally we found significant suppressions of the mu (F(1, 11)=20.1 p ≤ 0.01), beta (F(1, 11)=11.3 p ≤ 0.05) and gamma (F(1, 11)=4.9 p ≤ 0.05) rhythms near C3 (in the right hand area of the primary motor cortex) during phases of active vs. passive robot assisted walking. To our

  19. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability

    PubMed Central

    Herrmann, S.; Recht, S.; Boenn, M.; Feldhahn, L.; Angay, O.; Fleischmann, F.; Tarkka, M T.; Grams, T.E.E.; Buscot, F.

    2015-01-01

    Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for 13C/15N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern. PMID:26320242

  20. The origin of rhythmic fast subthreshold depolarizations in thalamic relay cells of rats under urethane anaesthesia.

    PubMed

    Pinault, D; Deschênes, M

    1992-11-13

    Intracellular recordings were performed in relay neurons of the dorsal thalamus in rats under urethane anaesthesia. In 77 out of 127 neurons of the ventro-posterolateral and ventral lateral nuclei, but not in neurons of the ventro-posteromedial and posterior nuclei, a highly rhythmic pattern of subthreshold depolarizations was present at rest. The average frequency of these rhythmic depolarizations in ventro-posterolateral cells was 23.36 +/- 11.48 Hz (range: 6-60 Hz); in ventral lateral relay cells higher frequencies were observed (65.86 +/- 17.42 Hz; range: 17-95 Hz). The rhythmic subthreshold events were identified as excitatory postsynaptic potentials generated by the regular firing of prethalamic afferents located in dorsal column and deep cerebellar nuclei. Indeed, in cells of the ventro-posterolateral nucleus these spontaneous potentials had a waveform similar to that of synaptic potentials triggered by somatosensory stimulation. They increased in amplitude with membrane hyperpolarization and their rhythmic occurrence was not affected by the injection of large inward currents. Moreover, they persisted after capsular transection, but they could no more be recorded in ventro-posterolateral cells after lesion of dorsal column nuclei. Finally, it was found that prethalamic afferents within the deep cerebellar nuclei discharged spontaneously in a rhythmic manner within the same frequency band as that of the rhythmic synaptic potentials recorded in ventral lateral cells. On the basis of these results, it is concluded that the rhythmic subthreshold depolarizations observed in thalamic neurons of animals under urethane anaesthesia are not generated intrinsically but that they represent excitatory postsynaptic potentials of prethalamic origin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467972

  1. Interactive rhythmic cue facilitates gait relearning in patients with Parkinson's disease.

    PubMed

    Uchitomi, Hirotaka; Ota, Leo; Ogawa, Ken-ichiro; Orimo, Satoshi; Miyake, Yoshihiro

    2013-01-01

    To develop a method for cooperative human gait training, we investigated whether interactive rhythmic cues could improve the gait performance of Parkinson's disease patients. The interactive rhythmic cues ware generated based on the mutual entrainment between the patient's gait rhythms and the cue rhythms input to the patient while the patient walked. Previously, we found that the dynamic characteristics of stride interval fluctuation in Parkinson's disease patients were improved to a healthy 1/f fluctuation level using interactive rhythmic cues and that this effect was maintained in the short term. However, two problems remained in our previous study. First, it was not clear whether the key factor underpinning the effect was the mutual entrainment between the gait rhythms and the cue rhythms or the rhythmic cue fluctuation itself. Second, it was not clear whether or not the gait restoration was maintained longitudinally and was relearned after repeating the cue-based gait training. Thus, the present study clarified these issues using 32 patients who participated in a four-day experimental program. The patients were assigned randomly to one of four experimental groups with the following rhythmic cues: (a) interactive rhythmic cue, (b) fixed tempo cue, (c) 1/f fluctuating tempo cue, and (d) no cue. It has been reported that the 1/f fluctuation of stride interval in healthy gait is absent in Parkinson's disease patients. Therefore, we used this dynamic characteristic as an evaluation index to analyze gait relearning in the four different conditions. We observed a significant effect in condition (a) that the gait fluctuation of the patients gradually returned to a healthy 1/f fluctuation level, whereas this did not occur in the other conditions. This result suggests that the mutual entrainment can facilitate gait relearning effectively. It is expected that interactive rhythmic cues will be widely applicable in the fields of rehabilitation and assistive technology.

  2. How information structure influences the processing of rhythmic irregularities: ERP evidence from German phrases.

    PubMed

    Henrich, Karen; Wiese, Richard; Domahs, Ulrike

    2015-08-01

    This study explores the influence of focus and givenness on the cognitive processing of rhythmic irregularities occurring in natural speech. Previous ERP studies showed that even subtle rhythmic deviations are detected by the brain if attention is directed towards the rhythmic structure. By using question-answer pairs, it was investigated whether subtle rhythmic irregularities in form of stress clashes (two adjacent stressed syllables) and stress lapses (two adjacent unstressed syllables) are still perceived when presented in post-focus position in an answer sentence and attention is directed away from them, towards the meaning of the element in narrow focus position by the preceding wh-question. Moreover, by visually presenting the lexical-semantic input of the deviating structure in the question, the influence of rhythmical and lexical properties in these two forms of rhythmic deviations are disentangled. While words in the present stress clash condition do not deviate from lexical stress, stress lapses contain deviations from metrical and lexical stress. The data reveal an early negativity effect for stress clashes but not for stress lapses, supporting the assumption that they are processed differently. The absence of a negative component for stress lapses indicates that the metrical deviation alone is not salient enough to be registered in non-focus position. Moreover, the lack of a late positive component suggests that subtle rhythmic deviations are less perceivable and hence more acceptable when presented in non-focus position. Thus, these results show that attentional shift induced by information structure influences the degree of the processing of rhythm. PMID:26119922

  3. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    PubMed

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p < 0.001) time to navigate the maze over the three trials thereby showing an improvement with training. In both sound-stimulated groups, the total time taken to reach the target decreased significantly (p < 0.01) in comparison to the unstimulated control group, indicating the facilitation of spatial learning. However, this decline was more at 24 h than at later posthatch ages. When tested for memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p < 0.001) time to traverse the maze, suggesting a temporary impairment in their retention of the learnt task. In both sound-stimulated groups at 24 h, the plasma corticosterone levels were significantly decreased (p < 0.001) and increased thereafter at 72 h (p < 0.001) and 120 h which may contribute to the differential response in spatial learning. Thus, prenatal auditory stimulation with either species-specific or complex rhythmic music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory.

  4. Acute reversal of phospholamban inhibition facilitates the rhythmic whole-cell propagating calcium waves in isolated ventricular myocytes.

    PubMed

    Chan, Yi-Hsin; Tsai, Wei-Chung; Song, Zhen; Ko, Christopher Y; Qu, Zhilin; Weiss, James N; Lin, Shien-Fong; Chen, Peng-Sheng; Jones, Larry R; Chen, Zhenhui

    2015-03-01

    Phospholamban (PLB) inhibits the activity of cardiac sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a). Phosphorylation of PLB during sympathetic activation reverses SERCA2a inhibition, increasing SR Ca(2+) uptake. However, sympathetic activation also modulates multiple other intracellular targets in ventricular myocytes (VMs), making it impossible to determine the specific effects of the reversal of PLB inhibition on the spontaneous SR Ca(2+) release. Therefore, it remains unclear how PLB regulates rhythmic activity in VMs. Here, we used the Fab fragment of 2D12, a monoclonal anti-PLB antibody, to test how acute reversal of PLB inhibition affects the spontaneous SR Ca(2+) release in normal VMs. Ca(2+) sparks and spontaneous Ca(2+) waves (SCWs) were recorded in the line-scan mode of confocal microscopy using the Ca(2+) fluorescent dye Fluo-4 in isolated permeabilized mouse VMs. Fab, which reverses PLB inhibition, significantly increased the frequency, amplitude, and spatial/temporal spread of Ca(2+) sparks in VMs exposed to 50 nM free [Ca(2+)]. At physiological diastolic free [Ca(2+)] (100-200 nM), Fab facilitated the formation of whole-cell propagating SCWs. At higher free [Ca(2+)], Fab increased the frequency and velocity, but decreased the decay time of the SCWs. cAMP had little additional effect on the frequency or morphology of Ca(2+) sparks or SCWs after Fab addition. These findings were complemented by computer simulations. In conclusion, acute reversal of PLB inhibition alone significantly increased the spontaneous SR Ca(2+) release, leading to the facilitation and organization of whole-cell propagating SCWs in normal VMs. PLB thus plays a key role in subcellular Ca(2+) dynamics and rhythmic activity of VMs.

  5. Resetting of cortically induced rhythmical jaw movements by stimulation of the cerebellar interpositus nucleus in the guinea pig.

    PubMed

    Katayama, T; Kohase, H; Nakamura, Y

    1993-07-16

    Effects of stimulation of the cerebellar interpositus nucleus on fictive rhythmical jaw movements induced by stimulation of the cortical masticatory area were studied in ketamine-anesthetized, paralyzed guinea pigs. A short pulse-train applied to the interpositus nucleus caused a phase shift in cortically induced rhythmical jaw movements. A phase transition curve indicated that interpositus stimulation can reset the cortically induced rhythmical jaw movements.

  6. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility

    PubMed Central

    2013-01-01

    Background Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. Results Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. Conclusions Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs. PMID:23497261

  7. Triaxial modulation of the acceleration induced in the lower extremity during whole-body vibration training: a pilot study.

    PubMed

    Cook, David P; Mileva, Katya N; James, Darren C; Zaidell, Lisa N; Goss, Victor G; Bowtell, Joanna L

    2011-02-01

    The purpose of the present study was to quantify vibration transmissibility through the lower extremity during exercise on a whole-body vibration (WBV) platform. Six healthy adults completed 20 trials of 30-second static squat exercise at 30 or 40 degrees of knee flexion angle on a WBV platform working at combinations of 5 frequencies (VF: 20, 25, 30, 35, 40 Hz) and 2 amplitudes (VA: low, 1.5 mm or high, 3 mm). Accelerations induced by the platform were recorded simultaneously at the shank and the thigh using triaxial accelerometers positioned at the segmental center of mass. Root-mean-square (RMS) acceleration amplitude and transmission ratios between the platform and the leg segments were calculated and compared between the experimental conditions. An alpha level of 0.05 was set to establish significance. Shank vertical acceleration was greatest at the lower VF (p = 0.028), higher VA (p = 0.028), and deeper squat (p = 0.048). Thigh vertical acceleration was not affected by depth of squat (p = 0.25), but it was greatest at higher VA (p = 0.046) and lower VF (p = 0.028). Medial-lateral shank acceleration was greatest at higher VF and deeper squat (both p = 0.046) and at higher VA (p = 0.028). Medial-lateral thigh acceleration was positively related to both VF (p = 0.046) and VA (p = 0.028) but was not affected by knee angle (p = 0.46). Anterior-posterior shank acceleration was higher at deeper squat (p = 0.046) and at lower VF and higher VA (both p = 0.028). Anterior-posterior thigh acceleration was related positively to the VA (p = 0.028), inversely to the VF (p = 0.028), and not dependent on knee angle (p = 0.75). Identification of specific vibration parameters and posture, which underpin WBV training efficacy, will enable coaches and athletes to design WBV training programs to specifically target shank or thigh muscles for enhanced performance.

  8. Rhythmical bursts induced by NMDA in guinea-pig cholinergic nucleus basalis neurones in vitro.

    PubMed Central

    Khateb, A; Fort, P; Serafin, M; Jones, B E; Mühlethaler, M

    1995-01-01

    1. Intracellular recordings were performed in neurones within the basal forebrain of guinea-pig brain slices. Following injection of biocytin (or biotinamide), a subset of recorded neurones which displayed distinct intrinsic membrane properties were confirmed as being cholinergic by immunohistochemical staining for choline acetyltransferase (ChAT). They were all located within the nucleus basalis magnocellularis. The response of the cholinergic cells to NMDA and to the agonists of the other glutamate receptors was tested by bath application of NMDA, t-ACPD, AMPA and kainate. 2. When depolarized from a hyperpolarized level, cholinergic basalis neurones display the intrinsic ability to discharge in rhythmic bursts that are generated by low-threshold Ca2+ spikes. In control solution, these rhythmic bursts were not sustained for more than 5-6 cycles. However, in the presence of NMDA when the membrane was held at a hyperpolarized level, low-threshold bursting activity was sustained for prolonged periods of time. This activity could be reversibly eliminated by D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), showing that it depended upon specific activation of NMDA receptors. 3. NMDA-induced, voltage-dependent, rhythmic depolarizations persisted in the presence of tetrodotoxin (TTX), indicating that they did not depend upon a TTX-sensitive Na+ current and were generated postsynaptically. The rhythmic depolarizations were, however, eliminated by the partial replacement of Na+ with choline, demonstrating that they did depend upon Na+, the major carrier of the NMDA current. 4. In the presence of TTX, the NMDA-induced rhythmic depolarizations were also eliminated by removal of Ca2+ from or addition of Ni2+ to the bath, indicating that they also depended upon Ca2+, which is carried by both the NMDA current and the low-threshold Ca2+ current. The duration of the rhythmic depolarizations was increased in the presence of apamin, suggesting that the repolarization of the cells

  9. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study.

    PubMed

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the

  10. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study

    PubMed Central

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the

  11. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study.

    PubMed

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the

  12. The effects of rhythmic sensory cues on the temporal dynamics of human gait.

    PubMed

    Sejdić, Ervin; Fu, Yingying; Pak, Alison; Fairley, Jillian A; Chau, Tom

    2012-01-01

    Walking is a complex, rhythmic task performed by the locomotor system. However, natural gait rhythms can be influenced by metronomic auditory stimuli, a phenomenon of particular interest in neurological rehabilitation. In this paper, we examined the effects of aural, visual and tactile rhythmic cues on the temporal dynamics associated with human gait. Data were collected from fifteen healthy adults in two sessions. Each session consisted of five 15-minute trials. In the first trial of each session, participants walked at their preferred walking speed. In subsequent trials, participants were asked to walk to a metronomic beat, provided through visually, aurally, tactile or all three cues (simultaneously and in sync), the pace of which was set to the preferred walking speed of the first trial. Using the collected data, we extracted several parameters including: gait speed, mean stride interval, stride interval variability, scaling exponent and maximum Lyapunov exponent. The extracted parameters showed that rhythmic sensory cues affect the temporal dynamics of human gait. The auditory rhythmic cue had the greatest influence on the gait parameters, while the visual cue had no statistically significant effect on the scaling exponent. These results demonstrate that visual rhythmic cues could be considered as an alternative cueing modality in rehabilitation without concern of adversely altering the statistical persistence of walking.

  13. Electrophysiological analysis of rhythmic jaw movements in the freely moving mouse.

    PubMed

    Kobayashi, Masayuki; Masuda, Yuji; Fujimoto, Yoshiyuki; Matsuya, Tokuzo; Yamamura, Kensuke; Yamada, Yoshiaki; Maeda, Norihiko; Morimoto, Toshifumi

    2002-03-01

    Although rhythmic jaw movement in feeding has been studied in mammals, such as rats, rabbits and monkeys, the cellular and molecular mechanisms underlying it are not well understood. Transgenic and gene-targeting technologies enable direct control of the genetic makeup of the mouse, and have led to the development of a new category of reagents that have the potential to elucidate the cellular and molecular mechanisms of neural networks. The present study attempts to characterize rhythmic jaw movements in the mouse and to demonstrate its relevance to rhythmic jaw movements found in higher mammals using newly developed jaw-tracking systems and electromyograms of the masticatory muscles. The masticatory sequence of the mouse during feeding was classified into two stages, incision and chewing. Small and rapid (8 Hz) open-close jaw movements were observed during incision, while large and slow (5 Hz) open-close jaw movements were observed during chewing. Integrated electromyograms of the masseteric and digastric muscles were larger during chewing than those observed during incision. Licking behavior was associated with regular (8 Hz), small open-close jaw movements with smaller masseteric activity than those observed during mastication. Grooming showed variable patterns of jaw movement and electromyograms depending on the grooming site. These results suggest that there are neuronal mechanisms producing different frequencies of rhythmic jaw movements in the mouse, and we conclude that the mouse is useful for understanding rhythmic jaw movements in higher mammals.

  14. Enhanced musical rhythmic perception in Turkish early and late learners of German.

    PubMed

    Roncaglia-Denissen, M Paula; Schmidt-Kassow, Maren; Heine, Angela; Vuust, Peter; Kotz, Sonja A

    2013-01-01

    As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different rhythmic properties than a L1 affects musical rhythm aptitude. Turkish early (TELG) and late learners (TLLG) of German were compared to German late L2 learners of English (GLE) regarding their musical rhythmic aptitude. While Turkish and German present distinct linguistic rhythm and metric properties, German and English are rather similar in this regard. To account for inter-individual differences, we measured participants' short-term and working memory (WM) capacity, melodic aptitude, and time they spent listening to music. Both groups of Turkish L2 learners of German perceived rhythmic variations significantly better than German L2 learners of English. No differences were found between early and late learners' performance. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of shared cognitive resources between language and music.

  15. Enhanced musical rhythmic perception in Turkish early and late learners of German

    PubMed Central

    Roncaglia-Denissen, M. Paula; Schmidt-Kassow, Maren; Heine, Angela; Vuust, Peter; Kotz, Sonja A.

    2013-01-01

    As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different rhythmic properties than a L1 affects musical rhythm aptitude. Turkish early (TELG) and late learners (TLLG) of German were compared to German late L2 learners of English (GLE) regarding their musical rhythmic aptitude. While Turkish and German present distinct linguistic rhythm and metric properties, German and English are rather similar in this regard. To account for inter-individual differences, we measured participants' short-term and working memory (WM) capacity, melodic aptitude, and time they spent listening to music. Both groups of Turkish L2 learners of German perceived rhythmic variations significantly better than German L2 learners of English. No differences were found between early and late learners' performance. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of shared cognitive resources between language and music. PMID:24065946

  16. The design of a device for hearer and feeler differentiation, part A. [speech modulated hearing device

    NASA Technical Reports Server (NTRS)

    Creecy, R.

    1974-01-01

    A speech modulated white noise device is reported that gives the rhythmic characteristics of a speech signal for intelligible reception by deaf persons. The signal is composed of random amplitudes and frequencies as modulated by the speech envelope characteristics of rhythm and stress. Time intensity parameters of speech are conveyed through the vibro-tactile sensation stimuli.

  17. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.

    PubMed

    Charrier, V; Cabelguen, J-M

    2013-01-01

    Most investigations into the role of the body axis in vertebrate locomotion have focused on the trunk, although in most tetrapods, the tail also plays an active role. In salamanders, the tail contributes to propulsion during swimming and to dynamic balance and maneuverability during terrestrial locomotion. The aim of the present study was to obtain information concerning the neural mechanisms that produce tail muscle contractions during locomotion in the salamander Pleurodeles waltlii. We recorded the ventral root activities in in vitro spinal cord preparations in which locomotor-like activity was induced via bath application of N-methyl-d-aspartate (20μM) and d-serine (10μM). Recordings showed that the tail spinal cord is capable of producing propagated waves of motor activity that alternate between the left and right sides. Lesion experiments further revealed that the tail rhythmogenic network is composed of a double chain of identical hemisegmental oscillators. Finally, using spinal cord preparations bathed in a chamber partitioned into two pools, we revealed efficient short-distance coupling between the trunk and tail networks. Together, our results demonstrate the existence of a pattern generator for rhythmic tail movements in the salamander and show that the global architecture of the tail network is similar to that previously proposed for the mid-trunk locomotor network in the salamander. Our findings further support the view that salamanders can control their trunk and tail independently during stepping movements. The relevance of our results in relation to the generation of tail muscle contractions in freely moving salamanders is discussed.

  18. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.

    PubMed

    Yoon, Ji-Ae; Han, Dong-Hee; Noh, Jong-Yun; Kim, Mi-Hee; Son, Gi Hoon; Kim, Kyungjin; Kim, Chang-Ju; Pak, Youngmi Kim; Cho, Sehyung

    2012-01-01

    In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s) underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA), body temperature (BT), blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42%) of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR) as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers. PMID:22952870

  19. Salivary adiponectin levels are associated with training intensity but not with bone mass or reproductive function in elite Rhythmic Gymnasts.

    PubMed

    Roupas, Nikolaos D; Maïmoun, Laurent; Mamali, Irene; Coste, Olivier; Tsouka, Alexandra; Mahadea, Krishna Kunal; Mura, Thibault; Philibert, Pascal; Gaspari, Laura; Mariano-Goulart, Denis; Leglise, Michel; Sultan, Charles; Georgopoulos, Neoklis A

    2014-01-01

    Elite Rhythmic Gymnasts (RGs) constitute a unique metabolic model and they are prone to developing Anorexia Athletica. The aim of the present study was to evaluate the effect of training intensity on salivary adiponectin levels and assess a possible role of salivary adiponectin levels as a predictive factor of reproductive dysfunction and bone mass acquisition in elite RGs. The study included 80 elite female RGs participating in the World Rhythmic Gymnastics Championship tournament held in Montpellier, France on September 2011. Anthropometric values were assessed, training data and menstrual pattern were recorded, bone mass was measured with Broadband ultrasound attenuation (dB/Mhz) and baseline salivary adiponectin levels were determined. The athletes were classified as intensely and very intensely trained, considering the mean training intensity (40.84h/week). Moreover, considering their reproductive status, they were divided into RG's with normal menstruation, primary amenorrhea and oligomenorrhea. All comparisons were adjusted to age, BMI and body fat percentage differences. Very intensely trained RGs showed higher salivary adiponectin levels (p=0.05). Moreover, salivary adiponectin levels showed significant correlation with training intensity (r=0.409, p=0.003). On the other hand, no association of salivary adiponectin levels was documented with either reproductive function or bone mass acquisition. The results of the present study suggest that, in elite RGs, salivary adiponectin levels are associated with the intensity of training, possibly reflecting the deterioration of energy balance rather than the training stress. On the other hand, a predictive role of salivary adiponectin levels in reproductive dysfunction or bone mass acquisition could not be supported.

  20. Salivary adiponectin levels are associated with training intensity but not with bone mass or reproductive function in elite Rhythmic Gymnasts.

    PubMed

    Roupas, Nikolaos D; Maïmoun, Laurent; Mamali, Irene; Coste, Olivier; Tsouka, Alexandra; Mahadea, Krishna Kunal; Mura, Thibault; Philibert, Pascal; Gaspari, Laura; Mariano-Goulart, Denis; Leglise, Michel; Sultan, Charles; Georgopoulos, Neoklis A

    2014-01-01

    Elite Rhythmic Gymnasts (RGs) constitute a unique metabolic model and they are prone to developing Anorexia Athletica. The aim of the present study was to evaluate the effect of training intensity on salivary adiponectin levels and assess a possible role of salivary adiponectin levels as a predictive factor of reproductive dysfunction and bone mass acquisition in elite RGs. The study included 80 elite female RGs participating in the World Rhythmic Gymnastics Championship tournament held in Montpellier, France on September 2011. Anthropometric values were assessed, training data and menstrual pattern were recorded, bone mass was measured with Broadband ultrasound attenuation (dB/Mhz) and baseline salivary adiponectin levels were determined. The athletes were classified as intensely and very intensely trained, considering the mean training intensity (40.84h/week). Moreover, considering their reproductive status, they were divided into RG's with normal menstruation, primary amenorrhea and oligomenorrhea. All comparisons were adjusted to age, BMI and body fat percentage differences. Very intensely trained RGs showed higher salivary adiponectin levels (p=0.05). Moreover, salivary adiponectin levels showed significant correlation with training intensity (r=0.409, p=0.003). On the other hand, no association of salivary adiponectin levels was documented with either reproductive function or bone mass acquisition. The results of the present study suggest that, in elite RGs, salivary adiponectin levels are associated with the intensity of training, possibly reflecting the deterioration of energy balance rather than the training stress. On the other hand, a predictive role of salivary adiponectin levels in reproductive dysfunction or bone mass acquisition could not be supported. PMID:24240086

  1. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system. PMID:25102329

  2. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.

  3. Proton Arc Reduces Range Uncertainty Effects and Improves Conformality Compared With Photon Volumetric Modulated Arc Therapy in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer

    SciTech Connect

    Seco, Joao; Gu, Guan; Marcelos, Tiago; Kooy, Hanne; Willers, Henning

    2013-09-01

    Purpose: To describe, in a setting of non-small cell lung cancer (NSCLC), the theoretical dosimetric advantages of proton arc stereotactic body radiation therapy (SBRT) in which the beam penumbra of a rotating beam is used to reduce the impact of range uncertainties. Methods and Materials: Thirteen patients with early-stage NSCLC treated with proton SBRT underwent repeat planning with photon volumetric modulated arc therapy (Photon-VMAT) and an in-house-developed arc planning approach for both proton passive scattering (Passive-Arc) and intensity modulated proton therapy (IMPT-Arc). An arc was mimicked with a series of beams placed at 10° increments. Tumor and organ at risk doses were compared in the context of high- and low-dose regions, represented by volumes receiving >50% and <50% of the prescription dose, respectively. Results: In the high-dose region, conformality index values are 2.56, 1.91, 1.31, and 1.74, and homogeneity index values are 1.29, 1.22, 1.52, and 1.18, respectively, for 3 proton passive scattered beams, Passive-Arc, IMPT-Arc, and Photon-VMAT. Therefore, proton arc leads to a 30% reduction in the 95% isodose line volume to 3-beam proton plan, sparing surrounding organs, such as lung and chest wall. For chest wall, V30 is reduced from 21 cm{sup 3} (3 proton beams) to 11.5 cm{sup 3}, 12.9 cm{sup 3}, and 8.63 cm{sup 3} (P=.005) for Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. In the low-dose region, the mean lung dose and V20 of the ipsilateral lung are 5.01 Gy(relative biological effectiveness [RBE]), 4.38 Gy(RBE), 4.91 Gy(RBE), and 5.99 Gy(RBE) and 9.5%, 7.5%, 9.0%, and 10.0%, respectively, for 3-beam, Passive-Arc, IMPT-Arc, and Photon-VMAT, respectively. Conclusions: Stereotactic body radiation therapy with proton arc and Photon-VMAT generate significantly more conformal high-dose volumes than standard proton SBRT, without loss of coverage of the tumor and with significant sparing of nearby organs, such as chest wall. In addition

  4. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    PubMed Central

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill—even exceeding usually expected acoustic rhythmic effects on motor learning. PMID:27303255

  5. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    PubMed

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning. PMID:27303255

  6. GLP-1(32-36)amide, a novel pentapeptide cleavage product of GLP-1, modulates whole body glucose metabolism in dogs.

    PubMed

    Elahi, Dariush; Angeli, Franca S; Vakilipour, Amin; Carlson, Olga D; Tomas, Eva; Egan, Josephine M; Habener, Joel F; Shannon, Richard P

    2014-09-01

    We have previously demonstrated in human subjects who under euglycemic clamp conditions GLP-1(9-36)amide infusions inhibit endogenous glucose production without substantial insulinotropic effects. An earlier report indicates that GLP-1(9-36)amide is cleaved to a nonapeptide, GLP-1(28-36)amide and a pentapeptide GLP-1(32-36)amide (LVKGR amide). Here we study the effects of the pentapeptide on whole body glucose disposal during hyperglycemic clamp studies. Five dogs underwent indwelling catheterizations. Following recovery, the dogs underwent a 180 min hyperglycemic clamp (basal glucose +98 mg/dl) in a cross-over design. Saline or pentapeptide (30 pmol kg(-1) min(-1)) was infused during the last 120 min after commencement of the hyperglycemic clamp in a primed continuous manner. During the last 30 min of the pentapeptide infusion, glucose utilization (M) significantly increased to 21.4±2.9 mg kg(-1) min(-1)compared to M of 14.3±1.1 mg kg(-1)min(-1) during the saline infusion (P=0.026, paired t-test; P=0.062, Mann-Whitney U test). During this interval, no significant differences in insulin (26.6±3.2 vs. 23.7±2.5 μU/ml, P=NS) or glucagon secretion (34.0±2.1 vs. 31.7±1.8 pg/ml, P=NS) were observed. These findings demonstrate that under hyperglycemic clamp studies the pentapeptide modulates glucose metabolism by a stimulation of whole-body glucose disposal. Further, the findings suggest that the metabolic benefits previously observed during GLP-1(9-36)amide infusions in humans might be due, at least in part, to the metabolic effects of the pentapeptide that is cleaved from the pro-peptide, GLP-1(9-36)amide in the circulation.

  7. Rhythmic Inhibition Allows Neural Networks to Search for Maximally Consistent States.

    PubMed

    Mostafa, Hesham; Müller, Lorenz K; Indiveri, Giacomo

    2015-12-01

    Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits, yet its computational role remains elusive. We show that a model of gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multistability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework that can be used to model other perceptual inference phenomena.

  8. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock

    PubMed Central

    Liang, Xue; Bushman, Frederic D.; FitzGerald, Garret A.

    2015-01-01

    In mammals, multiple physiological, metabolic, and behavioral processes are subject to circadian rhythms, adapting to changing light in the environment. Here we analyzed circadian rhythms in the fecal microbiota of mice using deep sequencing, and found that the absolute amount of fecal bacteria and the abundance of Bacteroidetes exhibited circadian rhythmicity, which was more pronounced in female mice. Disruption of the host circadian clock by deletion of Bmal1, a gene encoding a core molecular clock component, abolished rhythmicity in the fecal microbiota composition in both genders. Bmal1 deletion also induced alterations in bacterial abundances in feces, with differential effects based on sex. Thus, although host behavior, such as time of feeding, is of recognized importance, here we show that sex interacts with the host circadian clock, and they collectively shape the circadian rhythmicity and composition of the fecal microbiota in mice. PMID:26240359

  9. Rhythmic processing in children with developmental dyslexia: auditory and motor rhythms link to reading and spelling.

    PubMed

    Thomson, Jennifer M; Goswami, Usha

    2008-01-01

    Potential links between the language and motor systems in the brain have long attracted the interest of developmental psychologists. In this paper, we investigate a link often observed (e.g., [Wolff, P.H., 2002. Timing precision and rhythm in developmental dyslexia. Reading and Writing, 15 (1), 179-206.] between motor tapping and written language skills. We measure rhythmic finger tapping (paced by a metronome beat versus unpaced) and motor dexterity, phonological and auditory processing in 10-year old children, some of whom had a diagnosis of developmental dyslexia. We report links between paced motor tapping, auditory rhythmic processing and written language development. Motor dexterity does not explain these relationships. In regression analyses, paced finger tapping explained unique variance in reading and spelling. An interpretation based on the importance of rhythmic timing for both motor skills and language development is proposed. PMID:18448317

  10. High post-movement parietal low-beta power during rhythmic tapping facilitates performance in a stop task

    PubMed Central

    Fischer, Petra; Tan, Huiling; Pogosyan, Alek; Brown, Peter

    2016-01-01

    Voluntary movements are followed by a post-movement electroencephalography (EEG) beta rebound, which increases with practice and confidence in a task. We hypothesized that greater beta modulation reflects less load on cognitive resources and may thus be associated with faster reactions to new stimuli. EEG was recorded in 17 healthy subjects during rhythmically paced index finger tapping. In a STOP condition, participants had to interrupt the upcoming tap in response to an auditory cue, which was timed such that stopping was successful only in ~ 50% of all trials. In a second condition, participants carried on tapping twice after the stop signal (CONTINUE condition). Thus the conditions were distinct in whether abrupt stopping was required as a second task. Modulation of 12–20 Hz power over motor and parietal areas developed with time on each trial and more so in the CONTINUE condition. Reduced modulation in the STOP condition went along with reduced negative mean asynchronies suggesting less confident anticipation of the timing of the next tap. Yet participants were more likely to stop when beta modulation prior to the stop cue was more pronounced. In the STOP condition, expectancy of the stop signal may have increased cognitive load during movement execution given that the task might have to be stopped abruptly. However, within this condition, stopping ability was increased if the preceding tap was followed by a relatively larger beta increase. Significant, albeit weak, correlations confirmed that increased post-movement beta power was associated with faster reactions to new stimuli, consistent with reduced cognitive load. PMID:27364852

  11. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    PubMed Central

    2014-01-01

    Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs—from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns—specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients. PMID:24910602

  12. Rhythmic expression of cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature.

    PubMed

    Carver, Koryn A; Lourim, David; Tryba, Andrew K; Harder, David R

    2014-12-01

    Mammals have circadian variation in blood pressure, heart rate, vascular tone, thrombotic tendency, and cerebral blood flow (CBF). These changes may be in part orchestrated by circadian variation in clock gene expression within cells comprising the vasculature that modulate blood flow (e.g., fibroblasts, cerebral vascular smooth muscle cells, astrocytes, and endothelial cells). However, the downstream mechanisms that underlie circadian changes in blood flow are unknown. Cytochrome P450 epoxygenases (Cyp4x1 and Cyp2c11) are expressed in the brain and vasculature and metabolize arachidonic acid (AA) to form epoxyeicosatrienoic acids (EETs). EETs are released from astrocytes, neurons, and vascular endothelial cells and act as potent vasodilators, increasing blood flow. EETs released in response to increases in neural activity evoke a corresponding increase in blood flow known as the functional hyperemic response. We examine the hypothesis that Cyp2c11 and Cyp4x1 expression and EETs production vary in a circadian manner in the rat brain and cerebral vasculature. RT-PCR revealed circadian/diurnal expression of clock and clock-controlled genes as well as Cyp4x1 and Cyp2c11, within the rat hippocampus, middle cerebral artery, inferior vena cava, hippocampal astrocytes and rat brain microvascular endothelial cells. Astrocyte and endothelial cell culture experiments revealed rhythmic variation in Cyp4x1 and Cyp2c11 gene and protein expression with a 12-h period and parallel rhythmic production of EETs. Our data suggest there is circadian regulation of Cyp4x1 and Cyp2c11 gene expression. Such rhythmic EETs production may contribute to circadian changes in blood flow and alter risk of adverse cardiovascular events throughout the day.

  13. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the

  14. Periodic Stresses in Gyroscopic Bodies, with Applications to Air Screws

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1918-01-01

    Report discusses periodic stresses in gyroscopic bodies with applications to air screws caused by particle mass. Report concludes that all modern air screws obey the laws found for plane groups of particles. In particular the two-bladers exert on the shaft a rhythmic gyroscopic torque; the multibladers a steady one; both easily calculable for any given conditions of motion and mass distribution.

  15. A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy

    PubMed Central

    Ishii, Kentaro; Okada, Wataru; Ogino, Ryo; Kubo, Kazuki; Kishimoto, Shun; Nakahara, Ryuta; Kawamorita, Ryu; Ishii, Yoshie; Tada, Takuhito; Nakajima, Toshifumi

    2016-01-01

    The purpose of this study was to determine appropriate beam arrangement for volumetric-modulated arc therapy (VMAT)-based stereotactic body radiation therapy (SBRT) in the treatment of patients with centrally located lung tumors. Fifteen consecutive patients with centrally located lung tumors treated at our institution were enrolled. For each patient, three VMAT plans were generated using two coplanar partial arcs (CP VMAT), two non-coplanar partial arcs (NCP VMAT), and one coplanar full arc (Full VMAT). All plans were designed to deliver 70 Gy in 10 fractions. Target coverage and sparing of organs at risk (OARs) were compared across techniques. PTV coverage was almost identical for all approaches. The whole lung V10Gy was significantly lower with CP VMAT plans than with NCP VMAT plans, whereas no significant differences in the mean lung dose, V5Gy, V20Gy or V40Gy were observed. Full VMAT increased mean contralateral lung V5Gy by 12.57% and 9.15% when compared with NCP VMAT and CP VMAT, respectively. Although NCP VMAT plans best achieved the dose–volume constraints for mediastinal OARs, the absolute differences in dose were small when compared with CP VMAT. These results suggest that partial-arc VMAT may be preferable to minimize unnecessary exposure to the contralateral lung, and use of NCP VMAT should be considered when the dose–volume constraints are not achieved by CP VMAT. PMID:26951076

  16. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    PubMed

    Litwak, Sara A; Loh, Kim; Stanley, William J; Pappas, Evan G; Wali, Jibran A; Selck, Claudia; Strasser, Andreas; Thomas, Helen E; Gurzov, Esteban N

    2016-04-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity.

  17. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    PubMed Central

    Litwak, Sara A.; Loh, Kim; Stanley, William J.; Pappas, Evan G.; Wali, Jibran A.; Selck, Claudia; Strasser, Andreas; Thomas, Helen E.; Gurzov, Esteban N.

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  18. Sensorized pacifier to quantify the rhythmicity of non-nutritive sucking: A preliminary study on newborns.

    PubMed

    Grassi, A; Cecchi, F; Guzzetta, A; Laschi, C

    2015-08-01

    Non-nutritive sucking (NNS) is one of the most significant spontaneous actions of infants. The suction/expression rhythmicity of NNS remains unknown. We developed a sensorized pacifier for an objective measurement of NNS. Two miniaturized digital pressure sensors are embedded into a commercial pacifier and they acquired suction and expression pressures simultaneously. Experimental tests with nine newborns confirmed that our device is suitable for the measurement of the natural NNS behavior and for the extrapolation of parameters related to the suction/expression rhythmicity. Preliminary results encourage future studies to evaluate the possibility to use these parameters as indicators of oral feeding readiness of premature infants. PMID:26738001

  19. A Rhythmic Musical Intervention for Poor Readers: A Comparison of Efficacy with a Letter-Based Intervention

    ERIC Educational Resources Information Center

    Bhide, Adeetee; Power, Alan; Goswami, Usha

    2013-01-01

    There is growing evidence that children with reading difficulties show impaired auditory rhythm perception and impairments in musical beat perception tasks. Rhythmic musical interventions with poorer readers may thus improve rhythmic entrainment and consequently improve reading and phonological skills. Here we compare the effects of a musical…

  20. Learning and Discrimination of Audiovisual Events in Human Infants: The Hierarchical Relation between Intersensory Temporal Synchrony and Rhythmic Pattern Cues.

    ERIC Educational Resources Information Center

    Lewkowicz, David J.

    2003-01-01

    Three experiments examined 4- to 10-month-olds' perception of audio-visual (A-V) temporal synchrony cues in the presence or absence of rhythmic pattern cues. Results established that infants of all ages could discriminate between two different audio-visual rhythmic events. Only 10-month-olds detected a desynchronization of the auditory and visual…

  1. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  2. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    PubMed Central

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-01-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis. PMID:27658585

  3. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets.

    PubMed

    Roa, Dante E; Schiffner, Daniel C; Zhang, Juying; Dietrich, Salam N; Kuo, Jeffrey V; Wong, Jason; Ramsinghani, Nilam S; Al-Ghazi, Muthana S A L

    2012-01-01

    Twenty-three targets in 16 patients treated with stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) were analyzed in terms of dosimetric homogeneity, target conformity, organ-at-risk (OAR) sparing, monitor unit (MU) usage, and beam-on time per fraction using RapidArc volumetric-modulated arc therapy (VMAT) vs. multifield sliding-window intensity-modulated radiation therapy (IMRT). Patients underwent computed tomography simulation with site-specific immobilization. Magnetic resonance imaging fusion and optical tracking were incorporated as clinically indicated. Treatment planning was performed using Eclipse v8.6 to generate sliding-window IMRT and 1-arc and 2-arc RapidArc plans. Dosimetric parameters used for target analysis were RTOG conformity index (CI(RTOG)), homogeneity index (HI(RTOG)), inverse Paddick Conformity Index (PCI), D(mean) and D5-D95. OAR sparing was analyzed in terms of D(max) and D(mean). Treatment delivery was evaluated based on measured beam-on times delivered on a Varian Trilogy linear accelerator and recorded MU values. Dosimetric conformity, homogeneity, and OAR sparing were comparable between IMRT, 1-arc RapidArc and 2-arc RapidArc plans. Mean beam-on times ± SD for IMRT and 1-arc and 2-arc treatments were 10.5 ± 7.3, 2.6 ± 1.6, and 3.0 ± 1.1 minutes, respectively. Mean MUs were 3041, 1774, and 1676 for IMRT, 1-, and 2-arc plans, respectively. Although dosimetric conformity, homogeneity, and OAR sparing were similar between these techniques, SRS and SBRT fractions treated with RapidArc were delivered with substantially less beam-on time and fewer MUs than IMRT. The rapid delivery of SRS and SBRT with RapidArc improved workflow on the linac with these otherwise time-consuming treatments and limited the potential for intrafraction organ and patient motion, which can cause significant dosimetric errors. These clinically important advantages make image-guided RapidArc useful in the delivery of SRS and SBRT to

  4. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets

    SciTech Connect

    Roa, Dante E.; Schiffner, Daniel C.; Zhang Juying; Dietrich, Salam N.; Kuo, Jeffrey V.; Wong, Jason; Ramsinghani, Nilam S.; Al-Ghazi, Muthana S.A.L.

    2012-10-01

    Twenty-three targets in 16 patients treated with stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) were analyzed in terms of dosimetric homogeneity, target conformity, organ-at-risk (OAR) sparing, monitor unit (MU) usage, and beam-on time per fraction using RapidArc volumetric-modulated arc therapy (VMAT) vs. multifield sliding-window intensity-modulated radiation therapy (IMRT). Patients underwent computed tomography simulation with site-specific immobilization. Magnetic resonance imaging fusion and optical tracking were incorporated as clinically indicated. Treatment planning was performed using Eclipse v8.6 to generate sliding-window IMRT and 1-arc and 2-arc RapidArc plans. Dosimetric parameters used for target analysis were RTOG conformity index (CI{sub RTOG}), homogeneity index (HI{sub RTOG}), inverse Paddick Conformity Index (PCI), D{sub mean} and D5-D95. OAR sparing was analyzed in terms of D{sub max} and D{sub mean}. Treatment delivery was evaluated based on measured beam-on times delivered on a Varian Trilogy linear accelerator and recorded MU values. Dosimetric conformity, homogeneity, and OAR sparing were comparable between IMRT, 1-arc RapidArc and 2-arc RapidArc plans. Mean beam-on times {+-} SD for IMRT and 1-arc and 2-arc treatments were 10.5 {+-} 7.3, 2.6 {+-} 1.6, and 3.0 {+-} 1.1 minutes, respectively. Mean MUs were 3041, 1774, and 1676 for IMRT, 1-, and 2-arc plans, respectively. Although dosimetric conformity, homogeneity, and OAR sparing were similar between these techniques, SRS and SBRT fractions treated with RapidArc were delivered with substantially less beam-on time and fewer MUs than IMRT. The rapid delivery of SRS and SBRT with RapidArc improved workflow on the linac with these otherwise time-consuming treatments and limited the potential for intrafraction organ and patient motion, which can cause significant dosimetric errors. These clinically important advantages make image-guided RapidArc useful in the delivery

  5. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    PubMed

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits. PMID:20861442

  6. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    PubMed Central

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  7. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources. PMID:25553343

  8. Influence of rhythmic grouping on duration perception: a novel auditory illusion.

    PubMed

    Geiser, Eveline; Gabrieli, John D E

    2013-01-01

    This study investigated a potential auditory illusion in duration perception induced by rhythmic temporal contexts. Listeners with or without musical training performed a duration discrimination task for a silent period in a rhythmic auditory sequence. The critical temporal interval was presented either within a perceptual group or between two perceptual groups. We report the just-noticeable difference (difference limen, DL) for temporal intervals and the point of subjective equality (PSE) derived from individual psychometric functions based on performance of a two-alternative forced choice task. In musically untrained individuals, equal temporal intervals were perceived as significantly longer when presented between perceptual groups than within a perceptual group (109.25% versus 102.5% of the standard duration). Only the perceived duration of the between-group interval was significantly longer than its objective duration. Musically trained individuals did not show this effect. However, in both musically trained and untrained individuals, the relative difference limens for discriminating the comparison interval from the standard interval were larger in the between-groups condition than in the within-group condition (7.3% vs. 5.6% of the standard duration). Thus, rhythmic grouping affected sensitivity to duration changes in all listeners, with duration differences being harder to detect at boundaries of rhythm groups than within rhythm groups. Our results show for the first time that temporal Gestalt induces auditory duration illusions in typical listeners, but that musical experts are not susceptible to this effect of rhythmic grouping. PMID:23349845

  9. Outcome of Children with Hyperventilation-Induced High-Amplitude Rhythmic Slow Activity with Altered Awareness

    ERIC Educational Resources Information Center

    Barker, Alexander; Ng, Joanne; Rittey, Christopher D. C.; Kandler, Rosalind H.; Mordekar, Santosh R.

    2012-01-01

    Hyperventilation-induced high-amplitude rhythmic slow activity with altered awareness (HIHARS) is increasingly being identified in children and is thought to be an age-related non-epileptic electrographic phenomenon. We retrospectively investigated the clinical outcome in 15 children (six males, nine females) with HIHARS (mean age 7y, SD 1y 11mo;…

  10. Rhythmic Bimanual Coordination Is Impaired in Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Isenhower, Robert W.; Marsh, Kerry L.; Richardson, Michael J.; Helt, Molly; Schmidt, R. C.; Fein, Deborah

    2012-01-01

    Impairments in motor coordination are a common behavioral manifestation of autism spectrum disorder (ASD). We, therefore, used a drumming methodology to examine rhythmic bimanual coordination in children diagnosed with ASD (M = 47.3 months) and age-matched typically developing (TD) children (M = 42.6 months). Both groups were instructed to drum on…

  11. A STRUCTURAL THEORY FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS.

    ERIC Educational Resources Information Center

    WISH, MYRON

    THE PRIMARY PURPOSE OF THIS DISSERTATION IS TO DEVELOP A STRUCTURAL THEORY, ALONG FACET-THEORETIC LINES, FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS. AS STEPS IN THE DEVELOPMENT OF THIS THEORY, MODELS FOR TWO SETS OF SIGNALS ARE PROPOSED AND TESTED. THE FIRST MODEL IS FOR A SET COMPRISED OF ALL SIGNALS OF THE…

  12. Strings Got Rhythm: A Guide to Developing Rhythmic Skills in Beginners

    ERIC Educational Resources Information Center

    Dell, Charlene

    2010-01-01

    String educators must find a way to strengthen the development of rhythmic abilities so that their students play with a steady beat and accurate rhythm. Perhaps it is not what they teach their students as much as the sequence of instruction they use to teach them. String educators teach rhythm only as it pertains to the instrument, either through…

  13. Selective Auditory Attention in Adults: Effects of Rhythmic Structure of the Competing Language

    ERIC Educational Resources Information Center

    Reel, Leigh Ann; Hicks, Candace Bourland

    2012-01-01

    Purpose: The authors assessed adult selective auditory attention to determine effects of (a) differences between the vocal/speaking characteristics of different mixed-gender pairs of masking talkers and (b) the rhythmic structure of the language of the competing speech. Method: Reception thresholds for English sentences were measured for 50…

  14. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources.

  15. Verification of Planning Target Volume Settings in Volumetric Modulated Arc Therapy for Stereotactic Body Radiation Therapy by Using In-Treatment 4-Dimensional Cone Beam Computed Tomography

    SciTech Connect

    Takahashi, Wataru; Yamashita, Hideomi; Kida, Satoshi; Masutani, Yoshitaka; Sakumi, Akira; Ohtomo, Kuni; Nakagawa, Keiichi; Haga, Akihiro

    2013-07-01

    Purpose: To evaluate setup error and tumor motion during beam delivery by using 4-dimensional cone beam computed tomography (4D CBCT) and to assess the adequacy of the planning target volume (PTV) margin for lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). Methods and Materials: Fifteen lung cancer patients treated by single-arc VMAT-SBRT were selected in this analysis. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on maximum inspiration and maximum expiration CT datasets from 4D CT respiratory sorting and merged into internal target volumes (ITVs). The PTV margin was isotropically taken as 5 mm. Registration was automatically performed using “pre-3D” CBCT. Treatment was performed with a D95 prescription of 50 Gy delivered in 4 fractions. The 4D tumor locations during beam delivery were determined using in-treatment 4D CBCT images acquired in each fraction. Then, the discrepancy between the actual tumor location and the ITV was evaluated in the lateral, vertical, and longitudinal directions. Results: Overall, 55 4D CBCT sets during VMAT-SBRT were successfully obtained. The amplitude of tumor motion was less than 10 mm in all directions. The average displacements between ITV and actual tumor location during treatment were 0.41 ± 0.93 mm, 0.15 ± 0.58 mm, and 0.60 ± 0.99 mm for the craniocaudal, left-right, and anteroposterior directions, respectively. The discrepancy in each phase did not exceed 5 mm in any direction. Conclusions: With in-treatment 4D CBCT, we confirmed the required PTV margins when the registration for moving target was performed using pre-3D CBCT. In-treatment 4D CBCT is a direct method for quantitatively assessing the intrafractional location of a moving target.

  16. Rhythmic bedding in prodeltaic deposits of the ancient Colorado River: Exploring genetic processes

    NASA Astrophysics Data System (ADS)

    Waresak, Sandra; Nalin, Ronald; Lucarelli, Andrea

    2016-04-01

    Prodeltaic deposits represent a valuable archive for the characterization of deltaic depositional systems, offering a distal, minimally reworked record of dominant processes active at the fluvial-marine interface. The Fish Creek Basin (CA, US) preserves a ~ 3-km thick, lower Pliocene, progradational deltaic succession formed when the ancestral Colorado River infiltrated a marine rift basin (the early Gulf of California). The unit in this succession interpreted as prodeltaic, corresponding to the upper Mud Hills Member of the Deguynos Formation, consists of ~ 300 m of muddy siltstones. A striking attribute of parts of this unit is the presence of rhythmic bedding, with consistently alternating silt- to fine sand-dominated and clay-dominated beds forming couplets with an average thickness of 12 cm. By performing a detailed sedimentological analysis of the rhythmites and investigating periodicities in bed thickness, our study aimed at reconstructing the mode of deposition of this enigmatic prodeltaic succession. We measured at high stratigraphic resolution 265 consecutive couplets, for a total thickness of 33 m. Individual beds have good lateral persistence of at least tens of meters and gradational to sharp, flat contacts. Observed sedimentary structures are concentrated on the coarser portion of the couplets and mostly consist of parallel and wavy lamination, with subordinate ripple cross-lamination and localized internal scours. Bioturbation appears low in intensity or absent. Most notably, grain size analysis performed with laser diffraction techniques on several couplets shows a consistent pattern of inverse grading transitioning to normal grading. The cumulative evidence of these sedimentological features indicates that deposition of the rhythmites was accomplished via hyperpycnal flows, each couplet most likely representing an individual event in a setting characterized by high overall depositional rates. We performed time series analysis on bed thickness of

  17. Rhesus Monkeys (Macaca mulatta) Detect Rhythmic Groups in Music, but Not the Beat

    PubMed Central

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P.; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the ‘downbeat’; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm). PMID:23251509

  18. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat.

    PubMed

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm). PMID:23251509

  19. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat.

    PubMed

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).

  20. Inhibition of midbrain-evoked tonic and rhythmic motor activity by cutaneous stimulation in decerebrate cats.

    PubMed

    Beyaert, C A; Haouzi, P; Marchal, F

    2003-03-01

    The effect of mechanical and electrical stimulation of cervical cutaneous afferents was analysed on both the centrally induced tonic and rhythmic activities in hindlimb antagonist muscle nerves of 16 decerebrate paralysed cats. Electrical stimulation of dorsal midbrain evoked in the nerve to the tibialis anterior muscle (TAn) either rhythmic discharges (n=14), associated with tonic discharges in ten cats, or only tonic discharges (n=4). Centrally induced activity in the ipsilateral nerve to gastrocnemius medialis (GMn) occurred in fewer cats (n=12) and displayed similar patterns as in TAn. Manual traction of the scruff of the neck reduced the TAn tonic and rhythmic discharges (n=6) by 73% (P<0.05) and 71% (P<0.05), respectively, and reduced only the tonic component of GMn discharges (by 41%, n=3). Electrical stimulation (impulses 0.1-0.5 ms, 50 Hz) of cervical nerves belonging to C5 or C6 dermatomes, the intensity (0.4-4 mA) of which induced minimal inhibition of both TAn and GMn discharges, reduced significantly the tonic component of TAn discharges (by 39%, n=4). At higher intensities of electrical cervical nerve stimulation (2-6 mA) inducing maximal inhibitory effect, both tonic and rhythmic activities in TAn and GMn were both significantly reduced by, respectively, 81% and 94% in TAn (n=7), and by 49% and 43% in GMn (n=7). Electrical cervical nerve stimulation consistently reduced the isolated tonic discharge in TAn by 66% (n=4, P<0.05) and in GMn by 23% (n=3) when present. Thus the tonic component was more sensitive to inhibition than the rhythmic component of hindlimb muscle nerve activity.

  1. Sensorimotor cortical influences on cuneate nucleus rhythmic activity in the anesthetized cat.

    PubMed

    Marino, J; Canedo, A; Aguilar, J

    2000-01-01

    This work aimed to study whether the sensorimotor cerebral cortex spreads down its rhythmic patterns of activity to the dorsal column nuclei. Extracellular and intracellular recordings were obtained from the cuneate nucleus of chloralose-anesthetized cats. From a total of 140 neurons tested (106 cuneolemniscal), 72 showed spontaneous rhythmic activity within the slow (< 1 Hz), delta (1-4 Hz), spindle (5-15 Hz) and higher frequencies, with seven cells having the delta rhythm coupled to slow oscillations. The spindle activity recorded in the cuneate was tightly coupled to the thalamo-cortico-thalamic spindle rhythmicity. Bilateral or contralateral removal of the frontoparietal cortex abolished the cuneate slow and spindle oscillations. Oscillatory paroxysmal activity generated by fast electrical stimulation (50-100 Hz/1-2 s) of the sensorimotor cortex induced burst firing synchronized with the paroxysmal cortical "spike" on all the non-lemniscal neurons, and inhibitory responses also coincident with the cortical paroxysmal "spike" in the majority (71%) of the cuneolemniscal cells. The remaining lemniscal-projecting neurons showed bursting activity (11%) or sequences of excitation-inhibition (18%) also time-locked to the cortical paroxysmal "spike". Additionally, the cerebral cortex induced coherent oscillatory activity between thalamic ventroposterolateral and cuneate neurons. Electrolytic lesion of the pyramidal tract abolished the cortically induced effects on the contralateral cuneate nucleus, as well as on the ipsilateral medial lemniscus. The results demonstrate that the sensorimotor cortex imposes its rhythmic patterns on the cuneate nucleus through the pyramidal tract, and that the corticocuneate network can generate normal and abnormal patterns of synchronized activity, such as delta waves, spindles and spike-and-wave complexes. The cuneate neurons, however, are able to generate oscillatory activity above 1 Hz in the absence of cortical input, which implies

  2. Rhythmic auditory stimulation using a portable smart device: short-term effects on gait in chronic hemiplegic stroke patients

    PubMed Central

    Ko, Byung-Woo; Lee, Hwi-Young; Song, Won-Kyung

    2016-01-01

    [Purpose] The effects of various rhythmic auditory stimulation tempos on stroke gait pattern changes when training patients with a smartphone-based rhythmic auditory stimulation application were investigated. [Subjects and Methods] Fifteen patients with chronic stroke were included. Cadence during comfortable walking was measured (baseline). After the baseline findings were recorded, rhythmic auditory stimulation with five different tempos (i.e., −10%, −5%, 0%, +5%, and +10% change from baseline) was randomly applied. Finally, comfortable walking without rhythmic auditory stimulation was initiated to evaluate gait pattern changes. [Results] As the tempo increased, the spatiotemporal gait parameters of the stroke patients changed significantly. Gait speed, cadence, and gait cycle duration showed the greatest improvement in the +10% rhythmic auditory stimulation condition compared to baseline. After gait training with rhythmic auditory stimulation, gait speed, cadence, stride length, gait cycle duration, and step length of the affected and unaffected sides improved significantly compared to baseline. [Conclusion] Significant changes in the gait pattern of stroke patients were noted for various tempos after training with rhythmic auditory stimulation. These findings could be used to customize rehabilitative gait training for patients who experience stroke with hemiplegia. PMID:27313366

  3. Physiological and pathological tremors and rhythmic central motor control.

    PubMed

    McAuley, J H; Marsden, C D

    2000-08-01

    In recent years there has been increasing interest in oscillatory neural activity in the CNS and in the role that such activity may have in motor control. It is thought that physiological tremor may be a manifestation in the periphery of such central oscillatory activity and that some pathological tremors are the result of derangement of these oscillators. This review re-evaluates both early and recent studies on physiological and pathological tremors and other peripheral oscillations in order to gain a new perspective on the nature and function of their central progenitors. This approach, namely using tremor as a 'window' into the function of central oscillations, is particularly suited to human investigations because of the obvious limitations of direct central recording. It is argued that physiological tremor is likely to be multifactorial in origin, with contributions not only from CNS 10-Hz range oscillatory activity, but also from motor unit firing properties, mechanical resonances and reflex loop resonances. Different origins are likely to dominate under different conditions. While some pathological tremors appear to arise as a distortion of central or peripheral components of physiological tremor, others arise de novo, such as the pathological oscillation of 3- to 6-Hz parkinsonian tremor. CNS oscillations outside the 10-Hz range are also found to modulate limb activity in normal individuals, and oscillatory activity exists in other motor systems such as eye movements. Finally, it is shown how studies of peripheral oscillations may help develop hypotheses on the role of CNS oscillations in motor control, including the proposed 'binding' function of synchronized oscillations and the possibility that motor signals could be coded by frequency of modulating oscillation as well as by synaptic connectivity. PMID:10908186

  4. Volumetric-modulated arc stereotactic body radiotherapy for prostate cancer: dosimetric impact of an increased near-maximum target dose and of a rectal spacer

    PubMed Central

    Naccarato, Stefania; Stavrev, Pavel; Stavreva, Nadejda; Fersino, Sergio; Giaj Levra, Niccolò; Mazzola, Rosario; Mancosu, Pietro; Scorsetti, Marta; Alongi, Filippo

    2015-01-01

    Objective: In volumetric-modulated arc therapy (VMAT) prostate stereotactic body radiotherapy (SBRT), dose coverage of the planning target volume (PTV) becomes challenging when the sparing of rectum, bladder and urethra is strictly pursued. Our current 35-Gy-in-five-fraction plans only assure 33.2 Gy to ≥95% PTV (V33.2PTV ≥ 95%). Looking for an improved V33.2PTV, increased near-maximum target dose (D2%) and prostate–rectum spacer insertion were tested. Methods: For 11 patients, two VMAT plans, with D2% ≤ 37.5 Gy (Hom) or D2% ≤ 40.2 Gy (Het), on each of two CT studies, before or after spacer insertion, were computed. All plans assured V33.2PTV ≥95%, and <1 cm3 of rectum, bladder and urethra receiving ≥35 Gy. By hypothesis testing, several dose–volume metrics for target coverage and rectal sparing were compared across the four groups of plans. The impact of spacer insertion on the fractions of rectum receiving more than 18, 28 and 32 Gy (VXr) was further tested by linear correlation analysis. Results: By hypothesis testing, the increased D2% was associated with improvements in target coverage, whereas spacer insertion was associated with improvements in both target coverage and rectal VXr. By linear correlation analysis, spacer insertion was related to the reductions in rectal VXr for X ≥ 28 Gy. Conclusion: A slightly increased D2% or the use of spacer insertion was each able to improve V33.2PTV. Their combined use assured V33.2PTV ≥ 98% to all our patients. Spacer insertion was further causative for improvements in rectal sparing. Advances in knowledge: For VMAT plans in prostate SBRT, the distinct dosimetric usefulness of increased D2% and of the use of spacer insertion were validated in terms of target coverage and rectal sparing. PMID:26235142

  5. Dosimetric evaluation of four-dimensional dose distributions of CyberKnife and volumetric-modulated arc radiotherapy in stereotactic body lung radiotherapy.

    PubMed

    Chan, Mark K H; Kwong, Dora L W; Law, Gilbert M L; Tam, Eric; Tong, Anthony; Lee, Venus; Ng, Sherry C Y

    2013-07-08

    Advanced image-guided stereotatic body lung radiotherapy techniques using volumetric-modulated arc radiotherapy (VMAT) with four-dimensional cone-beam computed tomography (4D CBCT) and CyberKnife with real-time target tracking have been clinically implemented by different authors. However, dosimetric comparisons between these techniques are lacking. In this study, 4D CT scans of 14 patients were used to create VMAT and CyberKnife treatment plans using 4D dose calculations. The GTV and the organs at risk (OARs) were defined on the end-exhale images for CyberKnife planning and were then deformed to the midventilation images (MidV) for VMAT optimization. Direct 4D Monte Carlo dose optimizations were performed for CyberKnife (4D(CK)). Four-dimensional dose calculations were also applied to VMAT plans to generate the 4D dose distributions (4D(VMAT)) on the exhale images for direct comparisons with the 4D(CK) plans. 4D(CK) and 4D(VMAT) showed comparable target conformity (1.31 ± 0.13 vs. 1.39 ± 0.24, p = 0.05). GTV mean doses were significantly higher with 4D(CK). Statistical differences of dose volume metrics were not observed in the majority of OARs studied, except for esophagus, with 4D(VMAT) yielding marginally higher D1% than 4D(CK). The normal tissue volumes receiving 80%, 50%, and 30% of the prescription dose (V80%, V50%, and V30%) were higher with 4D(VMAT), whereas 4D(CK) yielded slightly higher V10% in posterior lesions than 4D(VMAT). VMAT resulted in much less monitor units and therefore greater delivery efficiency than CyberKnife. In general, it was possible to produce dosimetrically acceptable plans with both techniques. The selection of treatment modality should consider the dosimetric results as well as the patient's tolerance of the treatment process specific to the SBRT technique.

  6. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  7. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1980-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  8. Rhythmic photostimulation and the number of alpha-rhythm dipoles in the human brain.

    PubMed

    Bark, E D; Tokareva, Yu A; Shevelev, I A

    2003-09-01

    The numbers of alpha-rhythm equivalent current dipoles (ECD) arising in the human brain before and during rhythmic photostimulation at the alpha-rhythm frequency was studied in six healthy adult subjects. Dipoles were calculated using a single-dipole model for the whole of the alpha-range and three subranges by solution of inverse equations in a three-layer model of the head obtained by simultaneous use of EEG data and MRI tomograms of the subjects' heads. The number of apparent ECD was significantly associated with rhythmic photostimulation and depended on the phase of the alpha-rhythm wave at which stimulation started and on the type of visual illusion (circle, spiral, grid) appearing during this time. The relationship between these data and the hypothetical wave process scanning the human visual cortex at the frequency of the alpha-rhythm is discussed.

  9. Decomposing rhythm processing: electroencephalography of perceived and self-imposed rhythmic patterns.

    PubMed

    Schaefer, Rebecca S; Vlek, Rutger J; Desain, Peter

    2011-03-01

    Perceiving musical rhythms can be considered a process of attentional chunking over time, driven by accent patterns. A rhythmic structure can also be generated internally, by placing a subjective accent pattern on an isochronous stimulus train. Here, we investigate the event-related potential (ERP) signature of actual and subjective accents, thus disentangling low-level perceptual processes from the cognitive aspects of rhythm processing. The results show differences between accented and unaccented events, but also show that different types of unaccented events can be distinguished, revealing additional structure within the rhythmic pattern. This structure is further investigated by decomposing the ERP into subcomponents, using principal component analysis. In this way, the processes that are common for perceiving a pattern and self-generating it are isolated, and can be visualized for the tasks separately. The results suggest that top-down processes have a substantial role in the cerebral mechanisms of rhythm processing, independent of an externally presented stimulus.

  10. Facial Muscle Coordination in Monkeys During Rhythmic Facial Expressions and Ingestive Movements

    PubMed Central

    Shepherd, Stephen V.; Lanzilotto, Marco; Ghazanfar, Asif A.

    2012-01-01

    Evolutionary hypotheses regarding the origins of communication signals generally, and primate orofacial communication signals in particular, suggest that these signals derive by ritualization of noncommunicative behaviors, notably including ingestive behaviors such as chewing and nursing. These theories are appealing in part because of the prominent periodicities in both types of behavior. Despite their intuitive appeal, however, there are little or no data with which to evaluate these theories because the coordination of muscles innervated by the facial nucleus has not been carefully compared between communicative and ingestive movements. Such data are especially crucial for reconciling neurophysiological assumptions regarding facial motor control in communication and ingestion. We here address this gap by contrasting the coordination of facial muscles during different types of rhythmic orofacial behavior in macaque monkeys, finding that the perioral muscles innervated by the facial nucleus are rhythmically coordinated during lipsmacks and that this coordination appears distinct from that observed during ingestion. PMID:22553017

  11. Rhythmic synchronization tapping to an audio-visual metronome in budgerigars.

    PubMed

    Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa

    2011-01-01

    In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio-visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans.

  12. Relations between female students' personality traits and reported handicaps to rhythmic gymnastics performance.

    PubMed

    Ferrand, Claude; Champely, Stephane; Brunel, Philippe C

    2005-04-01

    The present study evaluated the relative contributions of Self-esteem, Trait anxiety, and Public Self-consciousness to self-handicapping on a sex-typed task, within a specific academic sport context. Prior to the competitive examination used to recruit French Physical Education Teachers, female sport students (N = 74) were asked to list and rate on a 7-point scale handicaps which could be disruptive to their Rhythmic Gymnastics performance. Self-esteem did not account for significant variance in any category of handicaps. Trait Anxiety was negatively related to handicaps related to Rhythmic Gymnastics and to Social and Work Commitments. Public Self-consciousness was significantly related to endorsement of Friends and Family Commitments handicaps. These results were discussed in relation to the literature.

  13. Short- and long-term rhythmic interventions: perspectives for language rehabilitation.

    PubMed

    Schön, Daniele; Tillmann, Barbara

    2015-03-01

    This paper brings together different perspectives on the investigation and understanding of temporal processing and temporal expectations. We aim to bridge different temporal deficit hypotheses in dyslexia, dysphasia, or deafness in a larger framework, taking into account multiple nested temporal scales. We present data testing the hypothesis that temporal attention can be influenced by external rhythmic auditory stimulation (i.e., musical rhythm) and benefits subsequent language processing, including syntax processing and speech production. We also present data testing the hypothesis that phonological awareness can be influenced by several months of musical training and, more particularly, rhythmic training, which in turn improves reading skills. Together, our data support the hypothesis of a causal role of rhythm-based processing for language processing and acquisition. These results open new avenues for music-based remediation of language and hearing impairment. PMID:25773614

  14. Short- and long-term rhythmic interventions: perspectives for language rehabilitation.

    PubMed

    Schön, Daniele; Tillmann, Barbara

    2015-03-01

    This paper brings together different perspectives on the investigation and understanding of temporal processing and temporal expectations. We aim to bridge different temporal deficit hypotheses in dyslexia, dysphasia, or deafness in a larger framework, taking into account multiple nested temporal scales. We present data testing the hypothesis that temporal attention can be influenced by external rhythmic auditory stimulation (i.e., musical rhythm) and benefits subsequent language processing, including syntax processing and speech production. We also present data testing the hypothesis that phonological awareness can be influenced by several months of musical training and, more particularly, rhythmic training, which in turn improves reading skills. Together, our data support the hypothesis of a causal role of rhythm-based processing for language processing and acquisition. These results open new avenues for music-based remediation of language and hearing impairment.

  15. The Relationship between Reduplicated Babble Onset and Laterality Biases in Infant Rhythmic Arm Movements

    PubMed Central

    Iverson, Jana M.; Hall, Amanda J.; Nickel, Lindsay; Wozniak, Robert H.

    2007-01-01

    This study examined changes in rhythmic arm shaking and laterality biases in infants observed longitudinally at three points: just prior to, at, and just following reduplicated babble onset. Infants (ranging in age from 4 to 9 months at babble onset) were videotaped at home as they played with two visually identical audible and silent rattles presented at midline for 1.5 min each. Rate of rattle shaking increased sharply from the pre-babble to babble onset session; but there was no indication that this increase was specific to the right arm. This finding suggests that the link between babble onset and increased rhythmic arm activity may not be the product of language-specific mechanisms, but is rather part of a broader developmental process that is also perceptual and motor. PMID:17196644

  16. Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig.

    PubMed

    Nozaki, S; Iriki, A; Nakamura, Y

    1986-04-01

    The location of the central rhythm generator involved in the cortically induced rhythmical masticatory jaw-opening movement was studied in the ketamine-anesthetized guinea pig. These studies show that a population of neurons is activated by a nonrhythmical input from the cortical masticatory area (CMA) and produces a rhythmical output to the trigeminal motoneurons innervating the jaw-opening muscles. Repetitive stimulation (30 Hz) of the pyramidal tract (PT) rostral to the middle level of the medulla oblongata, in the animal with a precollicular transection as well as with an intact neuraxis, induced a rhythmical reciprocal EMG activity in the anterior digastric and masseter muscles. The rhythmical activity could be monitored by a rhythmical burst in the efferent discharge in the mylohyoid nerve innervating the anterior digastric muscle. Essentially the same pattern was observed when stimulating the PT as that induced by repetitive stimulation of the CMA. The rhythmical efferent burst in the mylohyoid nerve could still be induced after paralyzing the animal. Repetitive PT stimulation in the isolated brain stem after precollicular and bulbospinal transections induced a rhythmical pattern in the anterior digastric EMG and an efferent activity in the mylohyoid nerve. The rhythmical mylohyoid nerve burst could be induced after paralyzing the animal. After section of the medial part of the brain stem at the pontobulbar junction, including the PT, repetitive PT stimulation at the pontine level did not induce any masticatory activity either in the digastric EMG or in the efferent discharge in the mylohyoid nerve, while stimulation at the rostral bulbar level still induced a rhythmicity that was essentially the same pattern as before the section. By testing the effects of total and partial transections of the brain stem in coronal and sagittal planes at various locations, we found that the medial bulbar reticular formation, the lateral pons including the trigeminal motor

  17. Intermittent rhythmic delta activity (IRDA) in a patient with band heterotopia.

    PubMed

    Nakano, M; Abe, K; Ono, J; Yanagihara, T

    1998-07-01

    We report a patient with band heterotopia whose electroencephalogram (EEG) showed typical morphological features of intermittent rhythmic delta activity (IRDA). This 18-year-old woman had complex partial seizures. Neuropsychometry revealed mental dysfunction. Magnetic resonance imaging (MRI) showed bilaterally symmetrical layer of heterotopic gray matter in deep white matter over the frontal, parietal and occipital regions. This case is the first report of IRDA detected in band heterotopia.

  18. Polyrhythmic Tapping: Examining the Effectiveness of the Strategy of Organizing Rhythmic Structures through Synthesis

    ERIC Educational Resources Information Center

    Yokus, Hamit; Yokus, Tuba

    2015-01-01

    In this study the strategy of organizing rhythmic structures through synthesis is named, and defined, and its procedures are described. Its effectiveness for teaching the execution of 3:2, 4:3, 8:3, 5:4, and 3:5 polyrhythmic structures is examined and described. Pre-test and Post-test Control Group Design was employed to test the effectiveness of…

  19. The impact of the perception of rhythmic music on self-paced oscillatory movements

    PubMed Central

    Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel

    2014-01-01

    Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric

  20. Induction of rhythmic jaw movements by stimulation of the mesencephalic reticular formation in the guinea pig.

    PubMed

    Hashimoto, N; Katayama, T; Ishiwata, Y; Nakamura, Y

    1989-08-01

    This study was designed to investigate whether stimulation of the mesencephalic reticular formation (MRF) induces rhythmic jaw movements (RJMs) and, if it does so, to determine the RJM-inducing region in the MRF in ketamine-anesthetized guinea pigs. The results were as follows: (1) Repetitive electrical stimulation of the MRF at the level of the red nucleus induced rhythmic EMG bursts in the anterior digastric muscle (DIG). (2) The duration and cycle time of the rhythmic DIG EMG burst induced from the medial MRF were longer than those induced from the lateral MRF. (3) Repetitive MRF stimulation after paralysis still induced rhythmic multiple-unit activities in the anterior digastric motoneuron pool. (4) Neither precollicular decerebration nor cerebellectomy affected the MRF induction of RJMs. (5) Transverse hemisection at the rostral border of the pons abolished the RJMs induced from the contralateral, but not ipsilateral, MRF. Midline section of the midbrain abolished RJMs induced from the MRF on either side. (6) A lesion in the pontine pyramidal tract abolished the RJMs induced by stimulation of the ipsilateral cortical masticatory area (CMA), but not those induced from the contralateral MRF. (7) A unilateral lesion of the oral portion of the gigantocellular reticular nucleus, where the rhythm generator for the CMA-induced RJMs is located, abolished RJMs induced from not only the CMA, but also MRF on the contralateral side. (8) Microinjection of L-glutamate into the lateral, but not medial, MRF induced RJMs similar to those elicited by repetitive electrical stimulation of the same site.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2015-01-01

    Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing

  2. Circadian heart rate rhythmicity: comparison between an Eskimo and other population groups.

    PubMed

    Clench, J; Barton, S A; Schull, W J; Alexander, F; Thompson, D D; Laughlin, W

    1981-01-01

    This brief communication reports the results of 24-ambulatory cardiac monitoring of a Bering Strait Eskimo population and compares the findings with 3 other populations. Similar heart rate rhythmicity and almost identical acrophases are found in the Eskimo, Aymara Indian and French populations. However, the Alaskan Eskimo and Aymara Indian 24-h means vary by approximately 15 beats/min, with the American population between these two. The mesor displays most radical differences. PMID:7249871

  3. Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity.

    PubMed

    Karoly, Philippa J; Freestone, Dean R; Boston, Ray; Grayden, David B; Himes, David; Leyde, Kent; Seneviratne, Udaya; Berkovic, Samuel; O'Brien, Terence; Cook, Mark J

    2016-04-01

    We report on a quantitative analysis of electrocorticography data from a study that acquired continuous ambulatory recordings in humans over extended periods of time. The objectives were to examine patterns of seizures and spontaneous interictal spikes, their relationship to each other, and the nature of periodic variation. The recorded data were originally acquired for the purpose of seizure prediction, and were subsequently analysed in further detail. A detection algorithm identified potential seizure activity and a template matched filter was used to locate spikes. Seizure events were confirmed manually and classified as either clinically correlated, electroencephalographically identical but not clinically correlated, or subclinical. We found that spike rate was significantly altered prior to seizure in 9 out of 15 subjects. Increased pre-ictal spike rate was linked to improved predictability; however, spike rate was also shown to decrease before seizure (in 6 out of the 9 subjects). The probability distribution of spikes and seizures were notably similar, i.e. at times of high seizure likelihood the probability of epileptic spiking also increased. Both spikes and seizures showed clear evidence of circadian regulation and, for some subjects, there were also longer term patterns visible over weeks to months. Patterns of spike and seizure occurrence were highly subject-specific. The pre-ictal decrease in spike rate is not consistent with spikes promoting seizures. However, the fact that spikes and seizures demonstrate similar probability distributions suggests they are not wholly independent processes. It is possible spikes actively inhibit seizures, or that a decreased spike rate is a secondary symptom of the brain approaching seizure. If spike rate is modulated by common regulatory factors as seizures then spikes may be useful biomarkers of cortical excitability. PMID:26912639

  4. Effect of rhythmic gymnastics on the rhythm perception of children with deafness.

    PubMed

    Fotiadou, Eleni G; Tsimaras, Vasilios K; Giagazoglou, Paraskevi F; Sidiropoulou, Maria P; Karamouzi, Anna M; Angelopoulou, Nickoletta A

    2006-05-01

    This study was designed to examine the effect of a rhythmic gymnastics program on the rhythm perception of children with deafness. Two groups--control and experiment--of 12 and 17 children, respectively, coming from the same school for the deaf participated in this study. The duration of the program for the individuals in the experiment group was 16 weeks (at a frequency of 3 lessons per week, for 40 minutes each lesson), while children of both groups adhered to their regular school schedules. Five rhythmic patterns in 3 speeds (tempi) were reproduced both by a metronome and each child's performance and were recorded on a digital disk before and after the application of the program. The rate of time deviation (in seconds) between the 2 beats represented the score for each child. The average rate of the 5 rhythmic patterns in each tempo was calculated separately, giving 3 scores (one for every tempo) for each child. Significance was set at p < or = 0.05. The data revealed significant postexercise differences in favor of the experiment group, an improvement of the experiment group in all pre-post values, as well as an improved medium tempo with relation to the control group. The findings show the effectiveness of the specific program in terms of improving rhythm ability, thus indicating its use in educating children with deafness on rhythm instead of preferring the routine of the adapted school program. PMID:16686556

  5. Rhythm, movement, and autism: using rhythmic rehabilitation research as a model for autism

    PubMed Central

    Hardy, Michelle W.; LaGasse, A. Blythe

    2013-01-01

    Recently, there has been increased focus on movement and sensory abnormalities in autism spectrum disorders (ASD). This has come from research demonstrating cortical and cerebellar differences in autism, with suggestion of early cerebellar dysfunction. As evidence for an extended profile of ASD grows, there are vast implications for treatment and therapy for individuals with autism. Persons with autism are often provided behavioral or cognitive strategies for navigating their environment; however, these strategies do not consider differences in motor functioning. One accommodation that has not yet been explored in the literature is the use of auditory rhythmic cueing to improve motor functioning in ASD. The purpose of this paper is to illustrate the potential impact of auditory rhythmic cueing for motor functioning in persons with ASD. To this effect, we review research on rhythm in motor rehabilitation, draw parallels to motor dysfunction in ASD, and propose a rationale for how rhythmic input can improve sensorimotor functioning, thereby allowing individuals with autism to demonstrate their full cognitive, behavioral, social, and communicative potential. PMID:23543915

  6. Mechanistic studies of an autonomously pulsing hydrogel/enzyme system for rhythmic hormone delivery.

    PubMed

    Bhalla, Amardeep S; Siegel, Ronald A

    2014-12-28

    Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design. PMID:25450402

  7. Mechanistic studies of an autonomously pulsing hydrogel/enzyme system for rhythmic hormone delivery.

    PubMed

    Bhalla, Amardeep S; Siegel, Ronald A

    2014-12-28

    Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design.

  8. NIR spectroscopic measurement of local muscle metabolism during rhythmic, sustained, and intermittent handgrip exercise

    NASA Astrophysics Data System (ADS)

    van Beekvelt, Mireille C. P.; Orbon, Karin; van Engelen, Baziel G. M.; Wevers, Ron A.; Colier, Willy N. J. M.

    2003-10-01

    The aim of this study was to investigate local muscle oxygen consumption (mVO2) during various protocols of isometric handgrip exercise. mVO2was measured by near-infrared spectroscopy (NIRS) during sustained, rhythmic, and intermittent isometric handgrip exercise. Whereas rhythmic handgrip exercise has the advantage that local muscle metabolism can be measured over the full range from low- to high-intensity work, the advantage of sustained handgrip exercise is that it is less prone to movement artifacts. Intermittent isometric handgrip exercise enables calculation of mVO2 at short time intervals providing information about the time response of local oxygen consumption in relation to the onset of exercise. Ten healthy subjects participated in this study. The different protocols were performed on separate days and in random order. mVO2 during rhythmic exercise was significantly higher than that during sustained exercise at all work intensities tested (P <= 0.05). However, the highest oxygen consumption value for the three exercise protocols was measured during the steady state of intermittent exercise (P <= 0.05). These results show that the measurement of task-specific muscle metabolism during exercise can be measured noninvasively and with relative ease by near-infrared spectroscopy.

  9. Mechanistic Studies of an Autonomously Pulsing Hydrogel/Enzyme System for Rhythmic Hormone Delivery

    PubMed Central

    Bhalla, Amardeep S.; Siegel, Ronald A.

    2014-01-01

    Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design. PMID:25450402

  10. Extracting rhythmic brain activity for brain-computer interfacing through constrained independent component analysis.

    PubMed

    Wang, Suogang; James, Christopher J

    2007-01-01

    We propose a technique based on independent component analysis (ICA) with constraints, applied to the rhythmic electroencephalographic (EEG) data recorded from a brain-computer interfacing (BCI) system. ICA is a technique that can decompose the recorded EEG into its underlying independent components and in BCI involving motor imagery, the aim is to isolate rhythmic activity over the sensorimotor cortex. We demonstrate that, through the technique of spectrally constrained ICA, we can learn a spatial filter suited to each individual EEG recording. This can effectively extract discriminatory information from two types of single-trial EEG data. Through the use of the ICA algorithm, the classification accuracy is improved by about 25%, on average, compared to the performance on the unpreprocessed data. This implies that this ICA technique can be reliably used to identify and extract BCI-related rhythmic activity underlying the recordings where a particular filter is learned for each subject. The high classification rate and low computational cost make it a promising algorithm for application to an online BCI system.

  11. Effect of rhythmic gymnastics on the rhythm perception of children with deafness.

    PubMed

    Fotiadou, Eleni G; Tsimaras, Vasilios K; Giagazoglou, Paraskevi F; Sidiropoulou, Maria P; Karamouzi, Anna M; Angelopoulou, Nickoletta A

    2006-05-01

    This study was designed to examine the effect of a rhythmic gymnastics program on the rhythm perception of children with deafness. Two groups--control and experiment--of 12 and 17 children, respectively, coming from the same school for the deaf participated in this study. The duration of the program for the individuals in the experiment group was 16 weeks (at a frequency of 3 lessons per week, for 40 minutes each lesson), while children of both groups adhered to their regular school schedules. Five rhythmic patterns in 3 speeds (tempi) were reproduced both by a metronome and each child's performance and were recorded on a digital disk before and after the application of the program. The rate of time deviation (in seconds) between the 2 beats represented the score for each child. The average rate of the 5 rhythmic patterns in each tempo was calculated separately, giving 3 scores (one for every tempo) for each child. Significance was set at p < or = 0.05. The data revealed significant postexercise differences in favor of the experiment group, an improvement of the experiment group in all pre-post values, as well as an improved medium tempo with relation to the control group. The findings show the effectiveness of the specific program in terms of improving rhythm ability, thus indicating its use in educating children with deafness on rhythm instead of preferring the routine of the adapted school program.

  12. Intrinsic and synaptic dynamics interact to generate emergent patterns of rhythmic bursting in thalamocortical neurons.

    PubMed

    Sohal, Vikaas S; Pangratz-Fuehrer, Susanne; Rudolph, Uwe; Huguenard, John R

    2006-04-19

    Rhythmic inhibition entrains the firing of excitatory neurons during oscillations throughout the brain. Previous work has suggested that the strength and duration of inhibitory input determines the synchrony and period, respectively, of these oscillations. In particular, sleep spindles result from a cycle of events including rhythmic inhibition and rebound bursts in thalamocortical (TC) neurons, and slowing and strengthening this inhibitory input may transform spindles into spike-wave discharges characteristic of absence epilepsy. Here, we used dynamic clamp to inject TC neurons with spindle-like trains of IPSCs and studied how modest changes in the amplitude and/or duration of these IPSCs affected the responses of the TC neurons. Contrary to our expectations, we found that prolonging IPSCs accelerates postinhibitory rebound (PIR) in TC neurons, and that increasing either the amplitude or duration of IPSCs desynchronizes PIR activity in a population of TC cells. Tonic injection of hyperpolarizing or depolarizing current dramatically alters the timing and synchrony of PIR. These results demonstrate that rhythmic PIR activity is an emergent property of interactions between intrinsic and synaptic currents, not just a passive reflection of incoming synaptic inhibition.

  13. Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production.

    PubMed

    Kim, Tae-Don; Woo, Kyung-Chul; Cho, Sungchan; Ha, Dae-Cheong; Jang, Sung Key; Kim, Kyong-Tai

    2007-04-01

    The circadian rhythm of pineal melatonin requires the nocturnal increment of serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) protein. To date, only limited information is available in the critical issue of how AANAT protein expression is up-regulated exclusively at night regardless of its species-specific mRNA profiles. Here we show that the circadian timing of AANAT protein expression is regulated by rhythmic translation of AANAT mRNA. This rhythmic control is mediated by both a highly conserved IRES (internal ribosome entry site) element within the AANAT 5' untranslated region and its partner hnRNP Q (heterogeneous nuclear ribonucleoprotein Q) with a peak in the middle of the night. Consistent with the enhancing role of hnRNP Q in AANAT IRES activities, knockdown of the hnRNP Q level elicited a dramatic decrease of peak amplitude in the AANAT protein profile parallel to reduced melatonin production in pinealocytes. This translational regulation of AANAT mRNA provides a novel aspect for achieving the circadian rhythmicity of vertebrate melatonin.

  14. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    PubMed

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish.

  15. Altered Circadian Rhythmicity in Patients in the ICU

    PubMed Central

    Gazendam, Joost A. C.; Van Dongen, Hans P. A.; Grant, Devon A.; Freedman, Neil S.; Zwaveling, Jan H.

    2013-01-01

    Background: Patients in the ICU are thought to have abnormal circadian rhythms, but quantitative data are lacking. Methods: To investigate circadian rhythms in the ICU, we studied core body temperatures over a 48-h period in 21 patients (59 ± 11 years of age; eight men and 13 women). Results: The circadian phase position for 17 of the 21 patients fell outside the published range associated with morningness/eveningness, which determines the normative range for variability among healthy normal subjects. In 10 patients, the circadian phase position fell earlier than the normative range; in seven patients, the circadian phase position fell later than the normative range. The mean ± SD of circadian displacement in either direction (advance or delay) was 4.44 ± 3.54 h. There was no significant day-to-day variation of the 24-h temperature profile within each patient. Stepwise linear regression was performed to determine if age, sex, APACHE (Acute Physiology and Chronic Health Evaluation) III score, or day in the ICU could predict the patient-specific magnitude of circadian displacement. The APACHE III score was found to be significantly predictive of circadian displacement. Conclusions: The findings indicate that circadian rhythms are present but altered in patients in the ICU, with the degree of circadian abnormality correlating with severity of illness. PMID:23471224

  16. Somatostatin triggers rhythmic electrical firing in hypothalamic GHRH neurons

    PubMed Central

    Osterstock, Guillaume; Mitutsova, Violeta; Barre, Alexander; Granier, Manon; Fontanaud, Pierre; Chazalon, Marine; Carmignac, Danielle; Robinson, Iain C. A. F.; Low, Malcolm J.; Plesnila, Nikolaus; Hodson, David J.; Mollard, Patrice; Méry, Pierre-François

    2016-01-01

    Hypothalamic growth hormone-releasing hormone (GHRH) neurons orchestrate body growth/maturation and have been implicated in feeding responses and ageing. However, the electrical patterns that dictate GHRH neuron functions have remained elusive. Since the inhibitory neuropeptide somatostatin (SST) is considered to be a primary oscillator of the GH axis, we examined its acute effects on GHRH neurons in brain slices from male and female GHRH-GFP mice. At the cellular level, SST irregularly suppressed GHRH neuron electrical activity, leading to slow oscillations at the population level. This resulted from an initial inhibitory action at the GHRH neuron level via K+ channel activation, followed by a delayed, sst1/sst2 receptor-dependent unbalancing of glutamatergic and GABAergic synaptic inputs. The oscillation patterns induced by SST were sexually dimorphic, and could be explained by differential actions of SST on both GABAergic and glutamatergic currents. Thus, a tripartite neuronal circuit involving a fast hyperpolarization and a dual regulation of synaptic inputs appeared sufficient in pacing the activity of the GHRH neuronal population. These “feed-forward loops” may represent basic building blocks involved in the regulation of GHRH release and its downstream sexual specific functions. PMID:27072430

  17. Effects of Articulation Styles on Perception of Modulated Tempos in Violin Excerpts

    ERIC Educational Resources Information Center

    Geringer, John M.; Madsen, Clifford K.; Macleod, Rebecca B.

    2007-01-01

    We investigated effects of legato, staccato and pizzicato articulation styles on the perception of modulated tempos. Seventy-two music majors served as participants. Two solo violin excerpts were chosen with contrasting rhythmic rates and were recorded in all three articulation styles. Examples were presented to listeners in three conditions of…

  18. The suppressor of cytokine signalling 3, SOCS3, may be one critical modulator of seasonal body weight changes in the Siberian hamster, Phodopus sungorus.

    PubMed

    Tups, A; Barrett, P; Ross, A W; Morgan, P J; Klingenspor, M; Mercer, J G

    2006-02-01

    The Siberian hamster, Phodopus sungorus, exhibits a remarkable cycle of body weight, reproduction and leptin sensitivity in response to a seasonal change in photoperiod. In the present study, we investigated the hypothesis that the suppressor of cytokine signalling 3 (SOCS3) plays a critical role in the regulation of the seasonal body weight cycle. We analysed arcuate nucleus SOCS3 gene expression in short day length (SD; 8 : 16 h light/dark) acclimated Siberian hamsters that were transferred back to long day length (LD; 16 : 8 h light/dark) and in hamsters that spontaneously became photorefractory to SD induced by prolonged exposure. SD acclimated hamsters that were transferred back to LD for 1, 2, 3, 4 or 6 weeks, increased arcuate nucleus SOCS3 gene expression to the LD level within 2 weeks, and maintained this higher level thereafter. The early increase of SOCS3 gene expression preceded the LD-induced rise in body weight by approximately 3 weeks. Hamsters kept in SD for an extended period (25 weeks), began to become refractory to SD and to increase body weight. By this time, there was no difference in level of SOCS3 gene expression between LD and SD photoperiods, although body weight was still suppressed in SD hamsters. Finally, we addressed whether SOCS3 gene expression is related to SD-induced gonadal regression or to body weight decrease by comparing Siberian hamsters with Syrian hamsters. The latter exhibited substantial SD-induced gonadal regression but only limited seasonal changes in body weight. Acclimation to either LD or SD for 14 weeks had no effect on SOCS3 gene expression. This implies that arcuate nucleus SOCS3 gene expression is unlikely to be related to seasonal cycles in reproductive activity. Taken together, the findings further strengthen our hypothesis that SOCS3 may be one molecular trigger of seasonal cycles in body weight.

  19. Mechano-sensitivity of cardiac pacemaker function: Pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity

    PubMed Central

    Quinn, T. Alexander; Kohl, Peter

    2012-01-01

    Cardiac pacemaker cells exhibit spontaneous, rhythmic electrical excitation, termed automaticity. This automatic initiation of action potentials requires spontaneous diastolic depolarisation, whose rate determines normal rhythm generation in the heart. Pacemaker mechanisms have been split recently into: (i) cyclic changes in trans-sarcolemmal ion flows (termed the ‘membrane-clock’), and (ii) rhythmic intracellular calcium cycling (the ‘calcium-clock’). These two ‘clocks’ undoubtedly interact, as trans-sarcolemmal currents involved in pacemaking include calcium-carrying mechanisms, while intracellular calcium cycling requires trans-sarcolemmal ion flux as the mechanism by which it affects membrane potential. The split into separate ‘clocks’ is, therefore, somewhat arbitrary. Nonetheless, the ‘clock’ metaphor has been conceptually stimulating, in particular since there is evidence to support the view that either ‘clock’ could be sufficient in principle to set the rate of pacemaker activation. Of course, the same has also been shown for sub-sets of ‘membrane-clock’ ion currents, illustrating the redundancy of mechanisms involved in maintaining such basic functionality as the heartbeat, a theme that is common for vital physiological systems. Following the conceptual path of identifying individual groups of sub-mechanisms, it is important to remember that the heart is able to adapt pacemaker rate to changes in haemodynamic load, even after isolation or transplantation, and on a beat-by-beat basis. Neither the ‘membrane-’ nor the ‘calcium-clock’ do, as such, inherently account for this rapid adaptation to circulatory demand (cellular Ca2+ balance changes over multiple beats, while variation of sarcolemmal ion channel presence takes even longer). This suggests that a third set of mechanisms must be involved in setting the pace. These mechanisms are characterised by their sensitivity to the cyclically changing mechanical environment, and

  20. Development of aircraft lavatory compartments with improved fire resistance characteristics, phase 1: Fire containment test of a wide body aircraft lavatory module

    NASA Technical Reports Server (NTRS)

    Anderson, R. A.; Arnold, D. B.; Johnson, G. A.; Tustin, E. A.

    1978-01-01

    A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated.

  1. Treadmill walking is not equivalent to overground walking for the study of walking smoothness and rhythmicity in older adults.

    PubMed

    Row Lazzarini, Brandi S; Kataras, Theodore J

    2016-05-01

    Treadmills are appealing for gait studies, but some gait mechanics are disrupted during treadmill walking. The purpose of this study was to examine the effects of speed and treadmill walking on walking smoothness and rhythmicity of 40 men and women between the ages of 70-96 years. Gait smoothness was examined during overground (OG) and treadmill (TM) walking by calculating the harmonic ratio from linear accelerations measured at the level of the lumbar spine. Rhythmicity was quantified as the stride time standard deviation. TM walking was performed at two speeds: a speed matching the natural OG walk speed (TM-OG), and a preferred TM speed (PTM). A dual-task OG condition (OG-DT) was evaluated to determine if TM walking posed a similar cognitive challenge. Statistical analysis included a one-way Analysis of Variance with Bonferroni corrected post hoc comparisons and the Wilcoxon signed rank test for non-normally distributed variables. Average PTM speed was slower than OG. Compared to OG, those who could reach the TM-OG speed (74.3% of sample) exhibited improved ML smoothness and rhythmicity, and the slower PTM caused worsened vertical and AP smoothness, but did not affect rhythmicity. PTM disrupted smoothness and rhythmicity differently than the OG-DT condition, likely due to reduced speed. The use of treadmills for gait smoothness and rhythmicity studies in older adults is problematic; some participants will not achieve OG speed during TM walking, walking at the TM-OG speed artificially improves rhythmicity and ML smoothness, and walking at the slower PTM speed worsens vertical and AP gait smoothness.

  2. Melatonin induces gene-specific effects on rhythmic mRNA expression in the pars tuberalis of the Siberian hamster (Phodopus sungorus).

    PubMed

    Wagner, Gabriela C; Johnston, Jonathan D; Tournier, Benjamin B; Ebling, Francis J P; Hazlerigg, David G

    2007-01-01

    In mammals, circadian and photoperiodic information is encoded in the pineal melatonin signal. The pars tuberalis (PT) of the pituitary is a melatonin target tissue, which transduces photoperiodic changes and drives seasonal changes in prolactin secretion from distal lactotroph cells. Measurement of photoperiodic time in the PT is believed to occur through melatonin dependent changes in clock gene expression, although it is unclear whether the PT should be considered a melatonin sensitive peripheral oscillator. We tested this hypothesis in the Siberian hamster (Phodopus sungorus) firstly by investigating the effects of melatonin injection, and secondly by determining whether temporal variation in gene expression within the PT persists in the absence of a rhythmic melatonin signal. Hamsters preconditioned to long days were treated with melatonin during the late light phase, to advance the timing of the nocturnal melatonin peak, or placed in constant light for one 24 h cycle, thereby suppressing endogenous melatonin secretion. Gene expression in the PT was measured by in situ hybridization. We show that melatonin rapidly induces cry1 mRNA expression without the need for a prolonged melatonin-free interval, acutely inhibits mt1 expression, advances the timing of peak rev-erb alpha expression and modulates per1 expression. With the exception of cry1, these genes continue to show temporal changes in expression over a first cycle in the absence of a melatonin signal. Our data are consistent with the hypothesis that the hamster PT contains a damped endogenous circadian oscillator, which requires a rhythmic melatonin signal for long-term synchronization.

  3. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition. PMID:26824331

  4. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

    PubMed

    Hull, Michael J; Soffe, Stephen R; Willshaw, David J; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.

  5. "It's Always the Judge's Fault": Attention, Emotion Recognition, and Expertise in Rhythmic Gymnastics Assessment.

    PubMed

    van Bokhorst, Lindsey G; Knapová, Lenka; Majoranc, Kim; Szebeni, Zea K; Táborský, Adam; Tomić, Dragana; Cañadas, Elena

    2016-01-01

    In many sports, such as figure skating or gymnastics, the outcome of a performance does not rely exclusively on objective measurements, but on more subjective cues. Judges need high attentional capacities to process visual information and overcome fatigue. Also their emotion recognition abilities might have an effect in detecting errors and making a more accurate assessment. Moreover, the scoring given by judges could be also influenced by their level of expertise. This study aims to assess how rhythmic gymnastics judges' emotion recognition and attentional abilities influence accuracy of performance assessment. Data will be collected from rhythmic gymnastics judges and coaches at different international levels. This study will employ an online questionnaire consisting on an emotion recognition test and attentional test. Participants' task is to watch a set of videotaped rhythmic gymnastics performances and evaluate them on the artistic and execution components of performance. Their scoring will be compared with the official scores given at the competition the video was taken from to measure the accuracy of the participants' evaluations. The proposed research represents an interdisciplinary approach that integrates cognitive and sport psychology within experimental and applied contexts. The current study advances the theoretical understanding of how emotional and attentional aspects affect the evaluation of sport performance. The results will provide valuable evidence on the direction and strength of the relationship between the above-mentioned factors and the accuracy of sport performance evaluation. Importantly, practical implications might be drawn from this study. Intervention programs directed at improving the accuracy of judges could be created based on the understanding of how emotion recognition and attentional abilities are related to the accuracy of performance assessment. PMID:27458406

  6. Daily Rhythmicity of Clock Gene Transcripts in Atlantic Cod Fast Skeletal Muscle

    PubMed Central

    Lazado, Carlo C.; Kumaratunga, Hiruni P. S.; Nagasawa, Kazue; Babiak, Igor; Giannetto, Alessia; Fernandes, Jorge M. O.

    2014-01-01

    The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua) and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2), RAR-related orphan receptor A (rora) and timeless (tim) displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2), and period 2a and 2b (per2a and per2b). Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded) domain-containing protein (npas1) and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock), npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1), and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5) and muscleblind-like 1 (mbnl1) strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis. PMID:24921252

  7. Complementary fMRI and EEG evidence for more efficient neural processing of rhythmic vs. unpredictably timed sounds

    PubMed Central

    van Atteveldt, Nienke; Musacchia, Gabriella; Zion-Golumbic, Elana; Sehatpour, Pejman; Javitt, Daniel C.; Schroeder, Charles

    2015-01-01

    The brain’s fascinating ability to adapt its internal neural dynamics to the temporal structure of the sensory environment is becoming increasingly clear. It is thought to be metabolically beneficial to align ongoing oscillatory activity to the relevant inputs in a predictable stream, so that they will enter at optimal processing phases of the spontaneously occurring rhythmic excitability fluctuations. However, some contexts have a more predictable temporal structure than others. Here, we tested the hypothesis that the processing of rhythmic sounds is more efficient than the processing of irregularly timed sounds. To do this, we simultaneously measured functional magnetic resonance imaging (fMRI) and electro-encephalograms (EEG) while participants detected oddball target sounds in alternating blocks of rhythmic (e.g., with equal inter-stimulus intervals) or random (e.g., with randomly varied inter-stimulus intervals) tone sequences. Behaviorally, participants detected target sounds faster and more accurately when embedded in rhythmic streams. The fMRI response in the auditory cortex was stronger during random compared to random tone sequence processing. Simultaneously recorded N1 responses showed larger peak amplitudes and longer latencies for tones in the random (vs. the rhythmic) streams. These results reveal complementary evidence for more efficient neural and perceptual processing during temporally predictable sensory contexts. PMID:26579044

  8. Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine.

    PubMed

    Ryckebusch, S; Laurent, G

    1993-05-01

    1. When an isolated metathoracic ganglion of the locust was superfused with the muscarinic cholinergic agonist pilocarpine, rhythmic activity was induced in leg motor neurons. The frequency of this induced rhythm increased approximately linearly from 0 to 0.2 Hz with concentrations of pilocarpine from 10(-5) to 10(-4) M. Rhythmic activity evoked by pilocarpine could be completely and reversibly blocked by 3 x 10(-5) M atropine, but was unaffected by 10(-4) M d-tubocurarine. 2. For each hemiganglion, the observed rhythm was characterized by two main phases: a levator phase, during which the anterior coxal rotator, levators of the trochanter, flexors of the tibia, and common inhibitory motor neurons were active; and a depressor phase, during which depressors of the trochanter, extensors of the tibia, and depressors of the tarsus were active. Activity in depressors of the trochanter followed the activity of the levators of the trochanter with a short, constant interburst latency. Activity in the levator of the tarsus spanned both phases. 3. The levator phase was short compared with the period (0.5-2 s, or 10-20% of the period) and did not depend on the period. The interval between the end of a levator burst and the beginning of the following one thus increased with cycle period. The depressor phase was more variable, and was usually shorter than the interval between successive levator bursts. 4. Motor neurons in a same pool often received common discrete synaptic potentials (e.g., levators of trochanter or extensors of tibia), suggesting common drive during the rhythm. Coactive motor neurons on opposite sides (such as left trochanteral depressors and right trochanteral levators), however, did not share obvious common postsynaptic potentials. Depolarization of a pool of motor neurons during its phase of activity was generally accompanied by hyperpolarization of its antagonist(s) on the same side. 5. Rhythmic activity was generally evoked in both hemiganglia of the

  9. Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine

    PubMed

    BÜSchges; Schmitz; BÄSsler

    1995-01-01

    Bath application of the muscarinic agonist pilocarpine onto the deafferented stick insect thoracic nerve cord induced long-lasting rhythmic activity in leg motoneurones. Rhythmicity was induced at concentrations as low as 1x10(-4) mol l-1 pilocarpine. The most stable rhythms were reliably elicited at concentrations from 2x10(-3) mol l-1 to 5x10(-3) mol l-1. Rhythmicity could be completely abolished by application of atropine. The rhythm in antagonistic motoneurone pools of the three proximal leg joints, the subcoxal, the coxo-trochanteral (CT) and the femoro-tibial (FT), was strictly alternating. In the subcoxal motoneurones, the rhythm was characterised by the retractor burst duration being correlated with cycle period, whereas the protractor burst duration was almost independent of it. The cycle periods of the rhythms in the subcoxal and CT motoneurone pools were in a similar range for a given preparation. In contrast, the rhythm exhibited by motoneurones supplying the FT joint often had about half the duration. The pilocarpine-induced rhythm was generated independently in each hemiganglion. There was no strict intersegmental coupling, although the protractor motoneurone pools of the three thoracic ganglia tended to be active in phase. There was no stereotyped cycle-to-cycle coupling in the activities of the motoneurone pools of the subcoxal joint, the CT joint and the FT joint in an isolated mesothoracic ganglion. However, three distinct 'spontaneous, recurrent patterns' (SRPs) of motoneuronal activity were reliably generated. Within each pattern, there was strong coupling of the activity of the motoneurone pools. The SRPs resembled the motor output during step-phase transitions in walking: for example, the most often generated SRP (SRP1) was exclusively exhibited coincident with a burst of the fast depressor trochanteris motoneurone. During this burst, there was a switch from subcoxal protractor to retractor activity after a constant latency. The activity of

  10. Rhythmic variation in heart rate and respiration rate during space flight - Apollo 15

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.

    1974-01-01

    As part of the operational biomedical monitoring for Apollo manned missions, ECG and respiration rate are telemetered at selected intervals to mission control. The data were collected as part of this monitoring program. These data were evaluated for circadian and ultradian rhythmicity because of their uniqueness. The ability to detect and quantitate biorhythms in living systems during space flight is an important aspect of evaluating hypotheses concerning the underlying mechanisms of these phenomena. Circadian variation in heart rate during space flight is demonstrated here. In analyzing generated time series data it has been found that period discrimination is much better than the theoretical limit.

  11. Differences in force gradation between tug-of-war athletes and non-athletes during rhythmic force tracking at high exertion levels.

    PubMed

    Lin, Yen-Ting; Kuo, Chia-Hua; Chen, Yi-Ching

    2016-10-31

    There is little knowledge regarding the force production capacities of tug-of-war athletes, who undergo years of high-load strength training on handgrip muscles. The purpose of this investigation was to determine the force-grading strategies of tug-of-war athletes by examining force fluctuation properties at high exertion levels. Sixteen tug-of-war athletes and sixteen sedentary non-athletes performed sinusoidal handgrip grip at 50%-100% of maximal effort at 0.5 Hz under visual guidance. Force outputs of the designate task were recorded with a strain gauge. Force fluctuations were separated from the rhythmic output of the target rate in the handgrip force. In addition to a comparable normalized tracking error, the tug-of-war athletes exhibited a greater mean force level and a higher ratio of mean force level to body mass than the non-athletes. The athletes also had lower approximate entropy (ApEn) and a lower mean frequency of force fluctuations than the non-athletes, despite a similar relative size of force fluctuations for the two groups. The scaling of the fundamental element (force pulses) of force fluctuations was also group-dependent, with a greater pulse gain (duration-amplitude regression slope) than the non-athletes. The tug-of-war athletes exhibited superior force-generating capacity and more economic force-grading as compared with the non-athletes, without additional costs to task accuracy and force steadiness, during a highly-demanding rhythmic force task.

  12. Characterization of ultradian and circadian rhythms of core body temperature based on wavelet analysis.

    PubMed

    Ming Huang; Tamura, Toshiyo; Wenxi Chen; Kitamura, Kei-Ichiro; Nemoto, Tetsu; Kanaya, Shigehiko

    2014-01-01

    This study was motivated by the needs of precise characterization for the ultradian and circadian rhythmicity of human core body temperature (CBT). The CBT data, two-whole-days' data of two female bed-ridden old aged suffering from cerebral infarction sequelae, was detrended to eliminate the long-term components with periods longer than two days and normalized at first. It was then analyzed by the stationary wavelets transform (SWT) to get the time-frequency information. In the step of SWT, symlet 6 was used, and the approximation waveforms in the 5th, 6th and 7th levels were used to reveal the targeted rhythmicity. The results of the SWT show that SWT can faithfully reveal the time-frequency information of feature elements (peaks and troughs) of waveforms and rhythmicity can be characterized by analyzing temporal information of feature elements.

  13. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans

    PubMed Central

    Maqueda, Ana Elda; Valle, Marta; Addy, Peter H.; Antonijoan, Rosa Maria; Puntes, Montserrat; Coimbra, Jimena; Ballester, Maria Rosa; Garrido, Maite; González, Mireia; Claramunt, Judit; Barker, Steven; Johnson, Matthew W.; Griffiths, Roland R.

    2015-01-01

    Background: Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. Methods: A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. Results: Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. Conclusions: Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans. PMID:26047623

  14. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus).

    PubMed

    Lazado, Carlo C; Skov, Peter Vilhelm; Pedersen, Per Bovbjerg

    2016-08-01

    The present study investigated the daily dynamics of humoral immune defenses and the temporal influence in the sensitivity of these responses to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus). The first experiment subjected the fish to two photoperiod conditions, 12L:12D (LD) and 0L:24D (DD), for 20 days to characterize the rhythms of humoral immunity. Serum alkaline phosphatase (ALP), lysozyme (LYZ), peroxidase (PER) and protease (PRO) exhibited significant rhythmicity under LD but not in DD. No significant rhythms were observed in esterase (ESA) and anti-protease (ANTI) in both photoperiod conditions. Fish reared under LD were subsequently subjected to DD while the group previously under DD was exposed to LD, and this carried on for 3 days before another set of samples was collected. Results revealed that the rhythms of LYZ, PER and PRO but not ALP persisted when photoperiod was changed from LD to DD. Nonetheless, immune parameters remained arrhythmic in the group subjected from DD to LD. Cluster analysis of the humoral immune responses under various light conditions revealed that each photic environment had distinct daily immunological profile. In the second experiment, fish were injected with bacterial endotoxin lipopolysaccharide (LPS) either at ZT3 (day) or at ZT15 (night) to evaluate the temporal sensitivity of humoral immunity to a pathogen-associated molecular pattern. The results demonstrated that responses to LPS were gated by the time of day. LPS significantly modulated serum ALP and ANTI activities but only when the endotoxin was administered at ZT3. Serum LYZ and PER were stimulated at both injection times but with differing response profiles. Modulated LYZ activity was persistent when injected at ZT3 but transient when LPS was applied at ZT15. The magnitude of LPS-induced PER activity was higher when the endotoxin was delivered at ZT3 versus ZT15. It was further shown that plasma cortisol was significantly elevated but only when LPS

  15. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus).

    PubMed

    Lazado, Carlo C; Skov, Peter Vilhelm; Pedersen, Per Bovbjerg

    2016-08-01