Module-based multiscale simulation of angiogenesis in skeletal muscle
2011-01-01
Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529
A unified anatomy ontology of the vertebrate skeletal system.
Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M
2012-01-01
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.
A Unified Anatomy Ontology of the Vertebrate Skeletal System
Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.
2012-01-01
The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424
Health Occupations Module. The Skeletal System--I.
ERIC Educational Resources Information Center
Temple Univ., Philadelphia, PA. Div. of Vocational Education.
This module on the skeletal system is one of eight modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module contains an introduction to the module topic, three objectives (e.g., define the skeletal system and list its functions), and three learning…
Page, Rachel A.; Sukala, William R.; Giri, Mamta; Ghimbovschi, Svetlana D.; Hayat, Irum; Cheema, Birinder S.; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W.; Wakefield, St. John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E.; Devaney, Joseph M.; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G.; Hoffman, Eric P.
2014-01-01
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m2 ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. PMID:25138607
Health Occupations Module. The Skeletal System--II.
ERIC Educational Resources Information Center
Temple Univ., Philadelphia, PA. Div. of Vocational Education.
This module on the skeletal system is one of eight modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module contains an introduction to the module topic, two objectives (e.g., list the types of joints and movements, and give examples), and two learning…
Regulation of skeletal muscle capillary growth in exercise and disease.
Haas, Tara L; Nwadozi, Emmanuel
2015-12-01
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Alexander, Matthew S.; Casar, Juan Carlos; Motohashi, Norio; Vieira, Natássia M.; Eisenberg, Iris; Marshall, Jamie L.; Gasperini, Molly J.; Lek, Angela; Myers, Jennifer A.; Estrella, Elicia A.; Kang, Peter B.; Shapiro, Frederic; Rahimov, Fedik; Kawahara, Genri; Widrick, Jeffrey J.; Kunkel, Louis M.
2014-01-01
Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, which results in dysfunctional signaling pathways within muscle. Previously, we identified microRNA-486 (miR-486) as a muscle-enriched microRNA that is markedly reduced in the muscles of dystrophin-deficient mice (Dmdmdx-5Cv mice) and in DMD patient muscles. Here, we determined that muscle-specific transgenic overexpression of miR-486 in muscle of Dmdmdx-5Cv mice results in reduced serum creatine kinase levels, improved sarcolemmal integrity, fewer centralized myonuclei, increased myofiber size, and improved muscle physiology and performance. Additionally, we identified dedicator of cytokinesis 3 (DOCK3) as a miR-486 target in skeletal muscle and determined that DOCK3 expression is induced in dystrophic muscles. DOCK3 overexpression in human myotubes modulated PTEN/AKT signaling, which regulates muscle hypertrophy and growth, and induced apoptosis. Furthermore, several components of the PTEN/AKT pathway were markedly modulated by miR-486 in dystrophin-deficient muscle. Skeletal muscle–specific miR-486 overexpression in Dmdmdx-5Cv animals decreased levels of DOCK3, reduced PTEN expression, and subsequently increased levels of phosphorylated AKT, which resulted in an overall beneficial effect. Together, these studies demonstrate that stable overexpression of miR-486 ameliorates the disease progression of dystrophin-deficient skeletal muscle. PMID:24789910
Bilingual Skills Training Program. Barbering/Cosmetology. Module 4.0: Skeletal System.
ERIC Educational Resources Information Center
Northern New Mexico Community Coll., El Rito.
This module on the skeletal system is the fourth of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skill training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory experience. Module objectives are for students to develop…
Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide
Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm
2013-01-01
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841
Patel, Rajendra; Albadawi, Hassan; Steudel, Wolfgang; Hashmi, Faraz F.; Kang, Jeanwan; Yoo, Hyung-Jin; Watkins, Michael T.
2011-01-01
Introduction The purpose of this study was to determine if inhaled carbon monoxide (CO) can ameliorate skeletal muscle injury, modulate endogenous heme oxygenase-1 (HO) expression, improve indices of tissue integrity and inflammation following hind limb ischemia reperfusion(IR). Methods C57BL6 mice inhaling CO (250ppm) or room air were subjected to 1.5 hrs of ischemia followed by limb reperfusion for either 3 or 6 hours (total treatment time of 4.5 or 7.5 hrs). After the initial period of reperfusion, all mice breathed only room air until 24 hours after the onset of ischemia. Mice were sacrificed at either the end of CO treatment or at 24 hours reperfusion. Skeletal muscle was subjected to histologic and biochemical analysis. Results CO treatment for 7.5 hours protected skeletal muscle from histologic and structural evidence of skeletal muscle injury. Serum and tissue cytokines were significantly reduced (p<0.05) in mice treated with CO for 7.5 hours. Tubulin, Heme Oxygenase, and ATP levels were higher in CO treated mice. Conclusions Inhaled CO protected muscle from structural injury and energy depletion following IR. PMID:22450026
Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B
1995-01-01
Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.
Gregorich, Zachery R; Peng, Ying; Cai, Wenxuan; Jin, Yutong; Wei, Liming; Chen, Albert J; McKiernan, Susan H; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying
2016-08-05
Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.
Kappen, Claudia
2016-01-01
The process of patterning along the anterior-posterior axis in vertebrates is highly conserved. The function of Hox genes in the axis patterning process is particularly well documented for bone development in the vertebral column and the limbs. We here show that Hoxb6, in skeletal elements at the cervico-thoracic junction, controls multiple independent aspects of skeletal pattern, implicating discrete developmental pathways as substrates for this transcription factor. In addition, we demonstrate that Hoxb6 function is subject to modulation by genetic factors. These results establish Hox-controlled skeletal pattern as a quantitative trait modulated by gene-gene interactions, and provide evidence that distinct modifiers influence the function of conserved developmental genes in fundamental patterning processes. PMID:26800342
Rowlands, David S; Page, Rachel A; Sukala, William R; Giri, Mamta; Ghimbovschi, Svetlana D; Hayat, Irum; Cheema, Birinder S; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W; Wakefield, St John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E; Devaney, Joseph M; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G; Hoffman, Eric P
2014-10-15
Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. Copyright © 2014 the American Physiological Society.
Gavini, Chaitanya K; Jones, William C; Novak, Colleen M
2016-09-15
The ventromedial hypothalamus (VMH) and the central melanocortin system both play vital roles in regulating energy balance by modulating energy intake and utilization. Recent evidence suggests that activation of the VMH alters skeletal muscle metabolism. We show that intra-VMH melanocortin receptor activation increases energy expenditure and physical activity, switches fuel utilization to fats, and lowers work efficiency such that excess calories are dissipated by skeletal muscle as heat. We also show that intra-VMH melanocortin receptor activation increases sympathetic nervous system outflow to skeletal muscle. Intra-VMH melanocortin receptor activation also induced significant changes in the expression of mediators of energy expenditure in muscle. These results support the role of melanocortin receptors in the VMH in the modulation of skeletal muscle metabolism. The ventromedial hypothalamus (VMH) and the brain melanocortin system both play vital roles in increasing energy expenditure (EE) and physical activity, decreasing appetite and modulating sympathetic nervous system (SNS) outflow. Because of recent evidence showing that VMH activation modulates skeletal muscle metabolism, we propose the existence of an axis between the VMH and skeletal muscle, modulated by brain melanocortins, modelled on the brain control of brown adipose tissue. Activation of melanocortin receptors in the VMH of rats using a non-specific agonist melanotan II (MTII), compared to vehicle, increased oxygen consumption and EE and decreased the respiratory exchange ratio. Intra-VMH MTII enhanced activity-related EE even when activity levels were held constant. MTII treatment increased gastrocnemius muscle heat dissipation during controlled activity, as well as in the home cage. Compared to vehicle-treated rats, rats with intra-VMH melanocortin receptor activation had higher skeletal muscle norepinephrine turnover, indicating an increased SNS drive to muscle. Lastly, intra-VMH MTII induced mRNA expression of muscle energetic mediators, whereas short-term changes at the protein level were primarily limited to phosphorylation events. These results support the hypothesis that melanocortin peptides act in the VMH to increase EE by lowering the economy of activity via the enhanced expression of mediators of EE in the periphery including skeletal muscle. The data are consistent with the role of melanocortins in the VMH in the modulation of skeletal muscle metabolism. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Aceto, Serena; Prisco, Marina; Chun, Jong Tai; Penna, Eduardo; Negri, Rossella; Muredda, Laura; Demurtas, Andrea; Banni, Sebastiano; Berni-Canani, Roberto; Mattace Raso, Giuseppina; Calignano, Antonio; Meli, Rosaria; Greco, Luigi; Crispino, Marianna; Mollica, Maria P
2018-01-01
Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle.
Trinchese, Giovanna; Cavaliere, Gina; De Filippo, Chiara; Aceto, Serena; Prisco, Marina; Chun, Jong Tai; Penna, Eduardo; Negri, Rossella; Muredda, Laura; Demurtas, Andrea; Banni, Sebastiano; Berni-Canani, Roberto; Mattace Raso, Giuseppina; Calignano, Antonio; Meli, Rosaria; Greco, Luigi; Crispino, Marianna; Mollica, Maria P.
2018-01-01
Scope: Milk from various species differs in nutrient composition. In particular, human milk (HM) and donkey milk (DM) are characterized by a relative high level of triacylglycerol enriched in palmitic acid in sn-2 position. These dietary fats seem to exert beneficial nutritional properties through N-acylethanolamine tissue modulation. The aim of this study is to compare the effects of cow milk (CM), DM, and HM on inflammation and glucose and lipid metabolism, focusing on mitochondrial function, efficiency, and dynamics in skeletal muscle, which is the major determinant of resting metabolic rate. Moreover, we also evaluated the levels of endocannabinoids and N-acylethanolamines in liver and skeletal muscle, since tissue fatty acid profiles can be modulated by nutrient intervention. Procedures: To this aim, rats were fed with CM, DM, or HM for 4 weeks. Then, glucose tolerance and insulin resistance were analyzed. Pro-inflammatory and anti-inflammatory cytokines were evaluated in serum and skeletal muscle. Skeletal muscle was also processed to estimate mitochondrial function, efficiency, and dynamics, oxidative stress, and antioxidant/detoxifying enzyme activities. Fatty acid profiles, endocannabinoids, and N-acylethanolamine congeners were determined in liver and skeletal muscle tissue. Results: We demonstrated that DM or HM administration reducing inflammation status, improves glucose disposal and insulin resistance and reduces lipid accumulation in skeletal muscle. Moreover, HM or DM administration increases redox status, and mitochondrial uncoupling, affecting mitochondrial dynamics in the skeletal muscle. Interestingly, HM and DM supplementation increase liver and muscle levels of the N-oleoylethanolamine (OEA), a key regulator of lipid metabolism and inflammation. Conclusions: HM and DM have a healthy nutritional effect, acting on inflammatory factors and glucose and lipid metabolism. This beneficial effect is associated to a modulation of mitochondrial function, efficiency, and dynamics and to an increase of OEA levels in skeletal muscle. PMID:29472867
TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation
Rahman, Md Shaifur; Akhtar, Naznin; Jamil, Hossen Mohammad; Banik, Rajat Suvra; Asaduzzaman, Sikder M
2015-01-01
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics. PMID:26273537
2010-01-01
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756
Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N
2018-05-10
Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.
Barrientos, Genaro; Llanos, Paola; Hidalgo, Jorge; Bolaños, Pura; Caputo, Carlo; Riquelme, Alexander; Sánchez, Gina; Quest, Andrew F. G.; Hidalgo, Cecilia
2015-01-01
Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals. PMID:25914646
Six Month Report on Tissue Cultured Avian Skeletal Myofibers in the STL/A Module Aboard STS-77
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1997-01-01
Space travel is know to effect skeletal muscle, causing rapid and pronounced atrophy in humans and animals, even when strenuous exercise is used as a countermeasure. The cellular and molecular bases of this atrophy are unknown. Space travel may cause muscle atrophy by a direct effect on the muscle fibers and/or indirectly by reducing circulating levels of growth factors such as growth hormone. The recent development of a tissue culture incubator system for Shuttle Middeck basic science experiments [Space Tissue Loss (STL) Module] by the Walter Reed Army Institute of Research (WRAIR) allows the study of the effects of space travel directly on isolated skeletal myofibers. Avian bioartificial skeletal muscle 'organoids' containing differentiated skeletal myofibers and connective tissue fibroblasts were flown aboard the Space Shuttle (Space Transportation System, STS) on Flight STS-77, a repeat of a similar experiment flown on STS-66. The results from these two flight experiments show for the first time that space travel has a direct effect on skeletal muscle cells separate from any systemic effects resulting from altered circulating growth factors.
Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.
Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A
2014-11-01
Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.
Maccallini, Cristina; Pietrangelo, Tiziana; Mancinelli, Rosa; Amoroso, Rosa; Bettoni, Giancarlo; Fulle, Stefania
2008-05-01
The excitation-contraction coupling in skeletal muscle is modulated by nitric oxide via redox status modification of ryanodine receptor on sarcoplasmic reticulum during events that lead to muscle contraction. We have synthesized a derivative of antilipidemic drug, gemfibrozil, in which a NO-donor furoxan moiety is joined to the fibrate by an ester linkage. Aim of the present study was to determine if the NO released from the above compound is capable of influencing the NO-sensible E-C coupling steps in skeletal muscle and if this effect could be potentially utilised for physiopathological studies and pharmaceutical applications. To obtain this goal we decided to study some of the excitation-contraction mechanisms in the presence of NO-releasing derivative of gemfibrozil in skeletal muscle C2C12 cell line.
USDA-ARS?s Scientific Manuscript database
Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to ind...
Regenerating skeletal muscle in the face of aging and disease.
Jasuja, Ravi; LeBrasseur, Nathan K
2014-11-01
Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review.
Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A
2010-08-01
Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.
Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle
NASA Technical Reports Server (NTRS)
Adams, Gregory R.
2002-01-01
Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.
Pigna, Eva; Renzini, Alessandra; Greco, Emanuela; Simonazzi, Elena; Fulle, Stefania; Mancinelli, Rosa; Moresi, Viviana; Adamo, Sergio
2018-02-24
Denervation triggers numerous molecular responses in skeletal muscle, including the activation of catabolic pathways and oxidative stress, leading to progressive muscle atrophy. Histone deacetylase 4 (HDAC4) mediates skeletal muscle response to denervation, suggesting the use of HDAC inhibitors as a therapeutic approach to neurogenic muscle atrophy. However, the effects of HDAC4 inhibition in skeletal muscle in response to long-term denervation have not been described yet. To further study HDAC4 functions in response to denervation, we analyzed mutant mice in which HDAC4 is specifically deleted in skeletal muscle. After an initial phase of resistance to neurogenic muscle atrophy, skeletal muscle with a deletion of HDAC4 lost structural integrity after 4 weeks of denervation. Deletion of HDAC4 impaired the activation of the ubiquitin-proteasome system, delayed the autophagic response, and dampened the OS response in skeletal muscle. Inhibition of the ubiquitin-proteasome system or the autophagic response, if on the one hand, conferred resistance to neurogenic muscle atrophy; on the other hand, induced loss of muscle integrity and inflammation in mice lacking HDAC4 in skeletal muscle. Moreover, treatment with the antioxidant drug Trolox prevented loss of muscle integrity and inflammation in in mice lacking HDAC4 in skeletal muscle, despite the resistance to neurogenic muscle atrophy. These results reveal new functions of HDAC4 in mediating skeletal muscle response to denervation and lead us to propose the combined use of HDAC inhibitors and antioxidant drugs to treat neurogenic muscle atrophy.
Weinberg, Marc S; Shachar, Shlomit S; Muss, Hyman B; Deal, Allison M; Popuri, Karteek; Yu, Hyeon; Nyrop, Kirsten A; Alston, Shani M; Williams, Grant R
2018-05-01
Skeletal muscle loss, commonly known as sarcopenia, is highly prevalent and prognostic of adverse outcomes in oncology. However, there is limited information on adults with early breast cancer and examination of other skeletal muscle indices, despite the potential prognostic importance. This study characterizes and examines age-related changes in body composition of adults with early breast cancer and describes the creation of a novel integrated muscle measure. Female patients diagnosed with stage I-III breast cancer with abdominal computerized tomography (CT) scans within 12 weeks from diagnosis were identified from local tumor registry (N = 241). Skeletal muscle index (muscle area per height [cm 2 /m 2 ]), skeletal muscle density, and subcutaneous and visceral adipose tissue areas, were determined from CT L3 lumbar segments. We calculated a novel integrated skeletal measure, skeletal muscle gauge, which combines skeletal muscle index and density (SMI × SMD). 241 patients were identified with available CT imaging. Median age 52 years and range of 23-87. Skeletal muscle index and density significantly decreased with age. Using literature based cut-points, older adults (≥65 years) had significantly higher proportions of sarcopenia (63 vs 28%) and myosteatosis (90 vs 11%) compared to younger adults (<50 years). Body mass index was positively correlated with skeletal muscle index and negatively correlated with muscle density. Skeletal muscle gauge correlated better with increasing age (ρ = 0.52) than with either skeletal muscle index (ρ = 0.20) or density (ρ = 0.46). Wide variations and age-related changes in body composition metrics were found using routinely obtained abdominal CT imaging. Skeletal muscle index and density provide independent, complementary information, and the product of the two metrics, skeletal muscle gauge, requires further research to explore its impact on outcomes in women with curable breast cancer. © 2017 Wiley Periodicals, Inc.
Emerging impact of skeletal muscle in health and disease
USDA-ARS?s Scientific Manuscript database
It has been over 60 years since Huxley first described the essential force transmitting properties of voluntary striated skeletal muscle. At no time since then has the importance of skeletal muscle integrity been more pronounced. Although skeletal muscle comprises 40-50% of total body mass, this tis...
Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A
2010-01-01
Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process. © 2010 American Society for Bone and Mineral Research. PMID:20200992
Hotta, Kazuki; Behnke, Bradley Jon; Masamoto, Kazuto; Shimotsu, Rie; Onodera, Naoya; Yamaguchi, Akihiko; Poole, David C; Kano, Yutaka
2018-05-03
Via modulation of endothelial integrity and vascular permeability in response to damage skeletal muscle microvessels play a crucial permissive role in tissue leukocyte invasion. However, direct visual evidence of altered microvascular permeability of skeletal muscle has not been technically feasible impairing mechanistic understanding of these responses. Two-photon laser scanning microscopy (TPLSM) allows three-dimensional in vivo imaging of skeletal muscle microcirculation. We hypothesized that the regulation of microvessels permeability in vivo is temporally related to acute inflammatory and regenerative processes following muscle injury. To test our hypothesis, tibialis anterior muscle of anesthetized male Wistar rats were subjected to eccentric contractions (ECC) via electrical stimulation. The skeletal muscle microcirculation was imaged by an intravenously infused fluorescent dye (rhodamine b isothiocyanate dextran) to assess microvascular permeability via TPLSM 1, 3 and 7 days after ECC. Immunohistochemistry on muscle sections was performed to determine the proportion of VEGF-A positive fibers in the damaged muscle. Compared with control rats, the volumetrically-determined interstitial leakage of fluorescent dye (5.1 {plus minus} 1.4, 5.3 {plus minus} 1.2 vs. 0.51 {plus minus} 0.14 μm 3 x 10 6 , P < 0.05 respectively days 1 and 3 vs. control) and percentage of VEGF-A positive fibers in the damaged muscle (10 {plus minus} 0.4, 22 {plus minus} 1.1 vs. 0%; days 1 and 3 vs. control) were significantly higher on days 1 and 3 after ECC. The interstitial leakage volume returned to control by day 7. These results suggest that microvascular hyperpermeability assessed by in vivo TPLSM imaging is associated with ECC-induced muscle damage and increased VEGF expression.
NASA Astrophysics Data System (ADS)
Bovyn, Matt; Chen, Wei; Lanes, Olivia; Mast, Jason
2013-03-01
Dr. Chen has developed a technique called synchronization modulation, which uses an oscillating electric field to increase the rate at which the sodium-potassium pumps in the cell membrane work. Because the sodium-potassium pump is integral in the recovery of skeletal muscle fibers after an action potential, we investigated the effects of applying synchronization modulation to muscles which had already undergone fatigue due to repeated action potentials during exercise. Fatigue was induced in human subjects' biceps brachii through isometric contraction. Surface electromyography measurements of fatigue index were used to quantify how the muscle recovered over the minutes following fatigue, both when synchronization modulation was applied and when it was absent. The preliminary results were inconclusive, but it is hoped that in later work it will be shown that applying synchronization modulation is effective in increasing the rate at which the muscle recovers to its initial state. This would demonstrate not only that synchronization modulation can be successfully applied to human muscle, but also that it has many potential applications in sports medicine and novel disease treatments. Work done as part of an REU program at the University of South Florida
Geldermann, Ina; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M; Spreckelsen, Cord
2013-08-01
Usability aspects of different integration concepts for picture archiving and communication systems (PACS) and computer-aided diagnosis (CAD) were inquired on the example of BoneXpert, a program determining the skeletal age from a left hand's radiograph. CAD-PACS integration was assessed according to its levels: data, function, presentation, and context integration focusing on usability aspects. A user-based study design was selected. Statements of seven experienced radiologists using two alternative types of integration provided by BoneXpert were acquired and analyzed using a mixed-methods approach based on think-aloud records and a questionnaire. In both variants, the CAD module (BoneXpert) was easily integrated in the workflow, found comprehensible and fitting in the conceptual framework of the radiologists. Weak points of the software integration referred to data and context integration. Surprisingly, visualization of intermediate image processing states (presentation integration) was found less important as compared to efficient handling and fast computation. Seamlessly integrating CAD into the PACS without additional work steps or unnecessary interrupts and without visualizing intermediate images may considerably improve software performance and user acceptance with efforts in time.
Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C
2012-10-01
Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases.
Lambert, Matthias; Richard, Elodie; Duban-Deweer, Sophie; Krzewinski, Frederic; Deracinois, Barbara; Dupont, Erwan; Bastide, Bruno; Cieniewski-Bernard, Caroline
2016-09-01
The sarcomere structure of skeletal muscle is determined through multiple protein-protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization. C2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level. Our data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin. For the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure. In the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Organelle communication: signaling crossroads between homeostasis and disease.
Bravo-Sagua, Roberto; Torrealba, Natalia; Paredes, Felipe; Morales, Pablo E; Pennanen, Christian; López-Crisosto, Camila; Troncoso, Rodrigo; Criollo, Alfredo; Chiong, Mario; Hill, Joseph A; Simmen, Thomas; Quest, Andrew F; Lavandero, Sergio
2014-05-01
Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Body composition and skeletal health: too heavy? Too thin?
Faje, Alexander; Klibanski, Anne
2012-09-01
The relationship between body composition and skeletal metabolism has received growing recognition. Low body weight is an established risk factor for fracture. The effect of obesity on skeletal health is less well defined. Extensive studies in patients with anorexia nervosa and obesity have illuminated many of the underlying biologic mechanisms by which body composition modulates bone mass. This review examines the relationship between body composition and bone mass through data from recent research studies throughout the weight spectrum ranging from anorexia nervosa to obesity.
Anastasia, Luigi; Papini, Nadia; Colazzo, Francesca; Palazzolo, Giacomo; Tringali, Cristina; Dileo, Loredana; Piccoli, Marco; Conforti, Erika; Sitzia, Clementina; Monti, Eugenio; Sampaolesi, Maurilio; Tettamanti, Guido; Venerando, Bruno
2008-12-26
Membrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3. Induced down-regulation of NEU3 in murine C2C12 myoblasts, even when partial, totally inhibits their capability to differentiate by increasing the GM3 level above a critical point, which causes epidermal growth factor receptor inhibition (and ultimately its down-regulation) and an higher responsiveness of myoblasts to the apoptotic stimuli.
Tishinsky, Justine M; De Boer, Anna A; Dyck, David J; Robinson, Lindsay E
2014-01-01
Given the link between obesity and insulin resistance, the role of adipose-derived factors in communicating with skeletal muscle to affect its function is important. We sought to determine if high fat diets modulate visceral adipose tissue (VAT) adipokines with subsequent effects on skeletal muscle inflammation and insulin sensitivity. Rats were fed (i) low fat (LF), (ii) high saturated fatty acid (SFA), or (iii) high SFA with n-3 polyunsaturated fatty acid (SFA/n-3 PUFA) diets for 4 weeks. VAT-derived adipokines were measured in adipose conditioned medium (ACM) after 72 h. Next, skeletal muscles from LF-fed rats were incubated for 8 h in (i) control buffer (CON), (ii) CON with 2 mmol·L(-1) palmitate (PALM, positive control), (iii) ACM from LF, (iv) ACM from SFA, or (v) ACM from SFA/n-3 PUFA. ACM from rats fed SFA and SFA/n-3 PUFA had increased (P ≤ 0.05) interleukin-6 (IL-6) (+31%) and monocyte chemoattractant protein-1 (MCP-1) (+30%). Adiponectin was decreased (-29%, P ≤ 0.05) in ACM from SFA, and this was prevented in SFA/n-3 PUFA ACM. Toll-like receptor 4 (TLR4) gene expression was increased (P ≤ 0.05) in PALM soleus muscle (+356%) and all ACM groups (+175%-191%). MCP-1 gene expression was elevated (P ≤ 0.05) in PALM soleus muscle (+163%) and soleus muscle incubated in ACM from animals fed SFA (+159%) and SFA/n-3 PUFA (+151%). Glucose transport was impaired (P ≤ 0.05) in PALM muscles but preserved in ACM groups. Acute exposure of muscle to fatty acid modulated adipokines affects skeletal muscle inflammatory gene expression but not insulin sensitivity.
Ex Vivo Assessment of Contractility, Fatigability and Alternans in Isolated Skeletal Muscles
Park, Ki Ho; Brotto, Leticia; Lehoang, Oanh; Brotto, Marco; Ma, Jianjie; Zhao, Xiaoli
2012-01-01
Described here is a method to measure contractility of isolated skeletal muscles. Parameters such as muscle force, muscle power, contractile kinetics, fatigability, and recovery after fatigue can be obtained to assess specific aspects of the excitation-contraction coupling (ECC) process such as excitability, contractile machinery and Ca2+ handling ability. This method removes the nerve and blood supply and focuses on the isolated skeletal muscle itself. We routinely use this method to identify genetic components that alter the contractile property of skeletal muscle though modulating Ca2+ signaling pathways. Here, we describe a newly identified skeletal muscle phenotype, i.e., mechanic alternans, as an example of the various and rich information that can be obtained using the in vitro muscle contractility assay. Combination of this assay with single cell assays, genetic approaches and biochemistry assays can provide important insights into the mechanisms of ECC in skeletal muscle. PMID:23149471
USDA-ARS?s Scientific Manuscript database
In skeletal muscle, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor of AMP: ATP and modulates translation by repressing mammalian target of rapamycin (mTOR) activation. Endotoxin (LPS)-induced sepsis reduces muscle protein synthesis by blunting translation initiation. We hypothe...
Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting.
Heemstra, Karen A; Soeters, Maarten R; Fliers, Eric; Serlie, Mireille J; Burggraaf, Jacobus; van Doorn, Martijn B; van der Klaauw, Agatha A; Romijn, Johannes A; Smit, Johannes W; Corssmit, Eleonora P; Visser, Theo J
2009-06-01
The iodothyronine deiodinases D1, D2, and D3 enable tissue-specific adaptation of thyroid hormone levels in response to various conditions, such as hypothyroidism or fasting. The possible expression of D2 mRNA in skeletal muscle is intriguing because this enzyme could play a role in systemic as well as local T3 production. We determined D2 activity and D2 mRNA expression in human skeletal muscle biopsies under control conditions and during hypothyroidism, fasting, and hyperinsulinemia. This was a prospective study. The study was conducted at a university hospital. We studied 11 thyroidectomized patients with differentiated thyroid carcinoma (DTC) on and after 4 wk off T4( replacement and six healthy lean subjects in the fasting state and during hyperinsulinemia after both 14 and 62 h of fasting. D2 activity and D2 mRNA levels were measured in skeletal muscle samples. No differences were observed in muscle D2 mRNA levels in DTC patients on and off T4 replacement therapy. In healthy subjects, muscle D2 mRNA levels were lower after 62 h compared to 14 h of fasting. Insulin increased mRNA expression after 62 h, but not after 14 h of fasting. Skeletal muscle D2 activities were very low and not influenced by hypothyroidism and fasting. Human skeletal muscle D2 mRNA expression is modulated by fasting and insulin, but not by hypothyroidism. The lack of a clear effect of D2 mRNA modulation on the observed low D2 activities questions the physiological relevance of D2 activity in human skeletal muscle.
Nutritional strategies to modulate the adaptive response to endurance training.
Hawley, John A
2013-01-01
In recent years, advances in molecular biology have allowed scientists to elucidate how endurance exercise training stimulates skeletal muscle remodeling (i.e. promotes mitochondrial biogenesis). A growing field of interest directly arising from our understanding of the molecular bases of training adaptation is how nutrient availability can alter the regulation of many contraction-induced events in muscle in response to endurance exercise. Acutely manipulating substrate availability can exert profound effects on muscle energy stores and patterns of fuel metabolism during exercise, as well as many processes activating gene expression and cell signaling. Accordingly, such interventions when repeated over weeks and months have the potential to modulate numerous adaptive processes in skeletal muscle that ultimately drive the phenotype-specific characteristics observed in highly trained athletes. In this review, the molecular and cellular events that occur in skeletal muscle during and after endurance exercise are discussed and evidence provided to demonstrate that nutrient availability plays an important role in modulating many of the adaptive responses to training. Emphasis is on human studies that have determined the regulatory role of muscle glycogen availability on cell metabolism, endurance training capacity and performance. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Drew, Rachel C
2017-12-01
Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.
McGregor, Robin A; Poppitt, Sally D; Cameron-Smith, David
2014-09-01
Progressive age-related changes in skeletal muscle mass and composition, underpin decreases in muscle function, which can inturn lead to impaired mobility and quality of life in older adults. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in skeletal muscle and are associated with aging. Accumulating evidence suggests that miRNAs play an important role in the age-related changes in skeletal muscle mass, composition and function. At the cellular level, miRNAs have been demonstrated to regulate muscle cell proliferation and differentiation. Furthermore, miRNAs are involved in the transitioning of muscle stem cells from a quiescent, to either an activated or senescence state. Evidence from animal and human studies has shown miRNAs are modulated in muscle atrophy and hypertrophy. In addition, miRNAs have been implicated in changes in muscle fiber composition, fat infiltration and insulin resistance. Both exercise and dietary interventions can combat age-related changes in muscle mass, composition and function, which may be mediated by miRNA modulation in skeletal muscle. Circulating miRNA species derived from myogenic cell populations represent potential biomarkers of aging muscle and the molecular responses to exercise or diet interventions, but larger validation studies are required. In future therapeutic approaches targeting miRNAs, either through exercise, diet or drugs may be able to slow down or prevent the age-related changes in skeletal muscle mass, composition, function, hence help maintain mobility and quality of life in old age. Copyright © 2014 Elsevier B.V. All rights reserved.
Smith, Emma L.; Roberts, Carol A.
2012-01-01
Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases. PMID:22472170
ERIC Educational Resources Information Center
Hilley, Robert
This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…
ERIC Educational Resources Information Center
Ohio State Dept. of Education, Columbus. Div. of Vocational Education.
This student manual, the third in a set of 14 modules, is designed to train emergency medical technicians (EMTs) in Ohio. The module contains one section covering the following topics: general anatomical terms, the body cavities and contents, the integumentary system, the skeletal system, the muscular system, the nervous system, the respiratory…
Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana
2013-01-01
States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957
Role of nitric oxide in skeletal muscle glucose uptake during exercise.
Hong, Yet Hoi; Betik, Andrew C; McConell, Glenn K
2014-12-01
Nitric oxide is produced within skeletal muscle fibres and has various functions in skeletal muscle. There is evidence that NO may be essential for normal increases in skeletal muscle glucose uptake during contraction/exercise. Although there have been some discrepant results, it has been consistently demonstrated that inhibition of NO synthase (NOS) attenuates the increase in skeletal muscle glucose uptake during contraction in mouse and rat muscle ex vivo, during in situ contraction in rats and during exercise in humans. The NO-mediated increase in skeletal muscle glucose uptake during contraction/exercise is probably due to the modulation of intramuscular signalling that ultimately increases glucose transporter 4 (GLUT4) translocation and is, surprisingly, independent of blood flow. In this review, we discuss the evidence for and against a role of NO in regulating skeletal muscle glucose uptake during contraction/exercise and outline the possible mechanism(s) involved. Emerging findings regarding the role of neuronal NOS mu (nNOSμ) in this process are also discussed. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
New continuous-flow total artificial heart and vascular permeability.
Feng, Jun; Cohn, William E; Parnis, Steven M; Sodha, Neel R; Clements, Richard T; Sellke, Nicholas; Frazier, O Howard; Sellke, Frank W
2015-12-01
We tested the short-term effects of completely nonpulsatile versus pulsatile circulation after ventricular excision and replacement with total implantable pumps in an animal model on peripheral vascular permeability. Ten calves underwent cardiac replacement with two HeartMate III continuous-flow rotary pumps. In five calves, the pump speed was rapidly modulated to impart a low-frequency pulse pressure in the physiologic range (10-25 mm Hg) at a rate of 40 pulses per minute (PP). The remaining five calves were supported with a pulseless systemic circulation and no modulation of pump speed (NP). Skeletal muscle biopsies were obtained before cardiac replacement (baseline) and on postoperative days (PODs) 1, 7, and 14. Skeletal muscle-tissue water content was measured, and morphologic alterations of skeletal muscle were assessed. VE-cadherin, phospho-VE-cadherin, and CD31 were analyzed by immunohistochemistry. There were no significant changes in tissue water content and skeletal muscle morphology within group or between groups at baseline, PODs 1, 7, and 14, respectively. There were no significant alterations in the expression and/or distribution of VE-cadherin, phospho-VE-cadherin, and CD31 in skeletal muscle vasculature at baseline, PODs 1, 7, and 14 within each group or between the two groups, respectively. Although continuous-flow total artificial heart (CFTAH) with or without a pulse pressure caused slight increase in tissue water content and histologic damage scores at PODs 7 and 14, it failed to reach statistical significance. There was no significant adherens-junction protein degradation and phosphorylation in calf skeletal muscle microvasculature after CFTAH implantation, suggesting that short term of CFTAH with or without pulse pressure did not cause peripheral endothelial injury and did not increase the peripheral microvascular permeability. Copyright © 2015 Elsevier Inc. All rights reserved.
Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.
2017-01-01
Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893
Skeletal and cardiac muscle pericytes: Functions and therapeutic potential
Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.
2017-01-01
Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928
Ofotokun, Ighovwerha; Weitzmann, M. Neale
2013-01-01
The skeleton is an organ whose integrity is maintained by constant lifelong renewal involving coordinated removal of worn bone by osteoclasts and resynthesis of new bone by osteoblasts. In young adult humans and animals this process is homeostatic with no net gain or loss of bone mass. With natural aging and exacerbated by numerous pathological conditions, bone removal exceeds bone formation, disrupting homeostasis and resulting in bone loss. Over time, skeletal decline reaches clinical significance with development of osteopenia and eventually osteoporosis, conditions that dramatically increase bone fragility and the risk of fracture. Bone fractures can be devastating with significant morbidity and mortality. Over the last decade, it has become clear that skeletal renewal is strongly influenced by the immune system, a consequence of deep integration and centralization of common cell types and cytokine mediators, which we have termed the “immuno-skeletal interface.” Consequently, dysregulated skeletal renewal and bone loss is a common feature of inflammatory conditions associated with immune activation. Interestingly, bone loss is also associated with conditions of immunodeficiency, including infection by the human immunodeficiency virus (HIV) that leads to acquired immunodeficiency syndrome (AIDS). Disruptions to the immuno-skeletal interface drive skeletal deterioration contributing to a high rate of bone fracture in HIV infection. This review examines current knowledge concerning the prevalence and etiology of skeletal complications in HIV infection, the effect of antiretroviral therapies (ART) on the skeleton, and how disruption of the immuno-skeletal interface may underlie bone loss in HIV infection and ART. PMID:21616037
The ocular skeleton through the eye of evo-devo.
Franz-Odendaal, Tamara Anne
2011-09-15
An evolutionary developmental (evo-devo) approach to understanding the evolution, homology, and development of structures has proved important for unraveling complex integrated skeletal systems through the use of modules, or modularity. An ocular skeleton, which consists of cartilage and sometimes bone, is present in many vertebrates; however, the origin of these two components remains elusive. Using both paleontological and developmental data, I propose that the vertebrate ocular skeleton is neural crest derived and that a single cranial neural crest module divided early in vertebrate evolution, possibly during the Ordovician, to give rise to an endoskeletal component and an exoskeletal component within the eye. These two components subsequently became uncoupled with respect to timing, placement within the sclera and inductive epithelia, enabling them to evolve independently and to diversify. In some extant groups, these two modules have become reassociated with one another. Furthermore, the data suggest that the endoskeletal component of the ocular skeleton was likely established and therefore evolved before the exoskeletal component. This study provides important insights into the evolution of the ocular skeleton, a region with a long evolutionary history among vertebrates. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.
Skeletal metastasis: treatments, mouse models, and the Wnt signaling
Valkenburg, Kenneth C.; Steensma, Matthew R.; Williams, Bart O.; Zhong, Zhendong
2013-01-01
Skeletal metastases result in significant morbidity and mortality. This is particularly true of cancers with a strong predilection for the bone, such as breast, prostate, and lung cancers. There is currently no reliable cure for skeletal metastasis, and palliative therapy options are limited. The Wnt signaling pathway has been found to play an integral role in the process of skeletal metastasis and may be an important clinical target. Several experimental models of skeletal metastasis have been used to find new biomarkers and test new treatments. In this review, we discuss pathologic process of bone metastasis, the roles of the Wnt signaling, and the available experimental models and treatments. PMID:23327798
Leucht, P; Minear, S; Ten Berge, D; Nusse, R; Helms, J A
2008-10-01
The Wnt pathway constitutes one of the most attractive candidates for modulating skeletal tissue regeneration based on its functions during skeletal development and homeostasis. Wnts participate in every stage of skeletogenesis, from the self-renewal and proliferation of skeletal stem cells to the specification of osteochondroprogenitor cells and the maturation of chondrocytes and osteoblasts. We propose that the function of Wnts depend upon a skeletogenic cell's state of differentiation. In this review we summarize recent data with a focus on the roles of Wnt signaling in mesenchymal stem cell fate, osteoprogenitor cell differentiation, chondrocyte maturation, bone remodeling, and bone regeneration.
In Vivo Rodent Models of Skeletal Muscle Adaptation to Decreased Use.
Cho, Su Han; Kim, Jang Hoe; Song, Wook
2016-03-01
Skeletal muscle possesses plasticity and adaptability to external and internal physiological changes. Due to these characteristics, skeletal muscle shows dramatic changes depending on its response to stimuli such as physical activity, nutritional changes, disease status, and environmental changes. Modulation of the rate of protein synthesis/degradation plays an important role in atrophic responses. The purpose of this review is to describe different features of skeletal muscle adaptation with various models of deceased use. In this review, four models were addressed: immobilization, spinal cord transection, hindlimb unloading, and aging. Immobilization is a form of decreased use in which skeletal muscle shows electrical activity, tension development, and motion. These results differ by muscle group. Spinal cord transection was selected to simulate spinal cord injury. Similar to the immobilization model, dramatic atrophy occurs in addition to fiber type conversion in this model. Despite the fact that electromyography shows unremarkable changes in muscle after hindlimb unloading, decreased muscle mass and contractile force are observed. Lastly, aging significantly decreases the numbers of muscle fibers and motor units. Skeletal muscle responses to decreased use include decreased strength, decreased fiber numbers, and fiber type transformation. These four models demonstrated different changes in the skeletal muscle. This review elucidates the different skeletal muscle adaptations in these four decreased use animal models and encourages further studies.
NASA Astrophysics Data System (ADS)
Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo
2016-10-01
Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.
Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.
Cabello-Verrugio, Claudio; Rivera, Juan C; Garcia, Dominga
2017-05-01
Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.
Damas, Felipe; Libardi, Cleiton A.; Vechin, Felipe C.; Lixandrão, Manoel E.; Jannig, Paulo R.; Costa, Luiz A. R.; Bacurau, Aline V.; Snijders, Tim; Parise, Gianni; Tricoli, Valmor; Roschel, Hamilton; Ugrinowitsch, Carlos
2016-01-01
Key points Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown.We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post‐RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3.Muscle damage (Z‐band streaming) was the highest during post‐RE recovery at T1, lower at T2 and minimal at T3.When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy.We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Abstract Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day‐to‐day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z‐band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post‐RE) at T1, T2 and T3. Fibre cross‐sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post‐RE at T1, T2 and T3 were greater at T1 (P < 0.03) than at T2 and T3 (similar values between T2 and T3). Muscle damage was the highest during post‐RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post‐RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P < 0.04) with muscle hypertrophy. Initial MyoPS response post‐RE in an RT programme is not directed to support muscle hypertrophy, coinciding with the greatest muscle damage. However, integrated MyoPS is quickly ‘refined’ by 3 weeks of RT, and is related to muscle hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent changes in MyoPS post‐RE in RT, which coincides with progressive attenuation of muscle damage. PMID:27219125
Damas, Felipe; Phillips, Stuart M; Libardi, Cleiton A; Vechin, Felipe C; Lixandrão, Manoel E; Jannig, Paulo R; Costa, Luiz A R; Bacurau, Aline V; Snijders, Tim; Parise, Gianni; Tricoli, Valmor; Roschel, Hamilton; Ugrinowitsch, Carlos
2016-09-15
Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3. When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day-to-day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z-band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post-RE) at T1, T2 and T3. Fibre cross-sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post-RE at T1, T2 and T3 were greater at T1 (P < 0.03) than at T2 and T3 (similar values between T2 and T3). Muscle damage was the highest during post-RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post-RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P < 0.04) with muscle hypertrophy. Initial MyoPS response post-RE in an RT programme is not directed to support muscle hypertrophy, coinciding with the greatest muscle damage. However, integrated MyoPS is quickly 'refined' by 3 weeks of RT, and is related to muscle hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent changes in MyoPS post-RE in RT, which coincides with progressive attenuation of muscle damage. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; MacLeod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S
2006-01-01
Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. Conclusion The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts. PMID:16756651
Tolmachov, Oleg; Ma, Yu-Ling; Themis, Michael; Patel, Pravina; Spohr, Hilmar; Macleod, Kenneth T; Ullrich, Nina D; Kienast, Yvonne; Coutelle, Charles; Peters, Nicholas S
2006-06-06
Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin and the polycation transduction enhancer Transfectam. The EGFP-positive transduced cells were then enriched by flow cytometry. More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.
Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function
Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.
2003-01-01
Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649
FISH SKELETAL ANOMALIES IN THE GULF OF MEXICO
Measurement of skeletal deformities in fish has been proposed as a means of monitoring pollution effects in marine environments. Effects of organic and inorganic contaminants on bone integrity are similar in that vertebral anomalies are produced, although they may develop through...
Duffy, Rebecca M; Feinberg, Adam W
2014-01-01
Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs. © 2013 Wiley Periodicals, Inc.
Treskes, Philipp; Neef, Klaus; Srinivasan, Sureshkumar Perumal; Halbach, Marcel; Stamm, Christof; Cowan, Douglas; Scherner, Maximilian; Madershahian, Navid; Wittwer, Thorsten; Hescheler, Jürgen; Wahlers, Thorsten; Choi, Yeong-Hoon
2015-01-01
Objective Skeletal myoblasts fuse to form functional syncytial myotubes as an integral part of the skeletal muscle. During this differentiation process, expression of proteins for mechanical and electrical integration is seized, which is a major drawback for the application of skeletal myoblasts in cardiac regenerative cell therapy, because global heart function depends on intercellular communication. Methods Mechanically preconditioned engineered tissue constructs containing neonatal mouse skeletal myoblasts were transplanted epicardially. A Y-chromosomal specific polymerase chain reaction (PCR) was undertaken up to 10 weeks after transplantation to confirm the presence of grafted cells. Histologic and electrophysiologic analyses were carried out 1 week after transplantation. Results Cells within the grafted construct expressed connexin 43 at the interface to the host myocardium, indicating electrical coupling, confirmed by sharp electrode recordings. Analyses of the maximum stimulation frequency (5.65 ± 0.37 Hz), conduction velocity (0.087 ± 0.011 m/s) and sensitivity for pharmacologic conduction block (0.736 ± 0.080 mM 1-heptanol) revealed effective electrophysiologic coupling between graft and host cells, although significantly less robust than in native myocardial tissue (maximum stimulation frequency, 11.616 ± 0.238 Hz, P<.001; conduction velocity, 0.300 ± 0.057 m/s, P<.01; conduction block, 1.983 ± 0.077 mM 1-heptanol, P<.001). Conclusions Although untreated skeletal myoblasts cannot couple to cardiomyocytes, we confirm that mechanical preconditioning enables transplanted skeletal myoblasts to functionally interact with cardio-myocytes in vivo and, thus, reinvigorate the concept of skeletal myoblast-based cardiac cell therapy. PMID:25439779
Erxleben, C; Hermann, A
2001-03-16
Invertebrate skeletal muscle contraction is regulated by calcium influx through voltage-dependent calcium channels in the sarcolemmal membrane. In present study we investigated the effects of nitric oxide (NO) donors on calcium currents of single skeletal muscle fibres from the marine isopod, Idotea baltica, using two-electrode voltage clamp recording techniques. The NO donors, S-nitrosocysteine, S-nitroso-N-acetyl-penicillamine or hydroxylamine reversibly increased calcium inward currents in a time dependent manner. The increase of the current was prevented by methylene blue. Our experiments suggest that NO increases calcium inward currents. NO, by acting on calcium ion channels in the sarcolemmal membrane, therefore, may directly be involved in the modulation of muscle contraction.
Ko, Jih-Yang; Chuang, Pei-Chin; Ke, Huei-Jin; Chen, Yu-Shan; Sun, Yi-Chih; Wang, Feng-Sheng
2015-12-01
Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the detrimental effects of glucocorticoid on mineralization and lipogenesis reactions in bone tissue microenvironments. This study highlighted emerging skeletal-anabolic actions of miR-29a signaling in the progression of glucocorticoid-induced bone tissue destruction. Sustaining miR-29a actions is beneficial in protecting against glucocorticoid-mediated osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Goetchius, Elizabeth; Crowell, Brent; Hackney, Kyle; Wickwire, Jason; Ploutz-Snyder, Robert; Snyder, Scott
2012-01-01
Background: Known incompatibilities exist between resistance and aerobic training. Of particular importance are findings that concurrent resistance and aerobic training reduces the effectiveness of the resistance training and limits skeletal muscle adaptations (example: Dudley & Djamil, 1985). Numerous unloading studies have documented the effectiveness of resistance training alone for the maintenance of skeletal muscle size and strength. However the practical applications of those studies are limited because long ]duration crew members perform both aerobic and resistance exercise throughout missions/spaceflight. To date, such integrated training on the International Space Station (ISS) has not been fully effective in the maintenance of skeletal muscle function. Purpose: The purpose of this study was to evaluate the efficacy of high intensity concurrent resistance and aerobic training for the maintenance of cardiovascular fitness and skeletal muscle strength, power and endurance over 14 days of strict bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest with concurrent training. Resistance and aerobic training were integrated as shown in table 1. Days that included 2 exercise sessions had a 4-8 hour rest between exercise bouts. The resistance training consisted of 3 sets of 12 repetitions of squat, heel raise, leg press and hamstring curl exercise. Aerobic exercise consisted of periodized interval training that included 30 sec, 2 min and 4 min intervals alternating by day with continuous aerobic exercise.
Gundry, Stacey R.; Chan, Aye T.; Widrick, Jeffrey; Draper, Isabelle; Chakraborty, Anirban; Zhou, Yi; Zon, Leonard I.; Gleizes, Pierre-Emmanuel
2018-01-01
Gene expression in a tissue-specific context depends on the combined efforts of epigenetic, transcriptional and post-transcriptional processes that lead to the production of specific proteins that are important determinants of cellular identity. Ribosomes are a central component of the protein biosynthesis machinery in cells; however, their regulatory roles in the translational control of gene expression in skeletal muscle remain to be defined. In a genetic screen to identify critical regulators of myogenesis, we identified a DEAD-Box RNA helicase, DDX27, that is required for skeletal muscle growth and regeneration. We demonstrate that DDX27 regulates ribosomal RNA (rRNA) maturation, and thereby the ribosome biogenesis and the translation of specific transcripts during myogenesis. These findings provide insight into the translational regulation of gene expression in myogenesis and suggest novel functions for ribosomes in regulating gene expression in skeletal muscles. PMID:29518074
Skeletal muscle and fetal alcohol spectrum disorder.
Myrie, Semone B; Pinder, Mark A
2018-04-01
Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.
2012-01-01
Background This study examined the effects of bovine colostrum on exercise –induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise. PMID:23173926
2014 Summer Series - Josh Alwood - To the Bone: Spaceflight and the Skeletal System
2014-08-05
During spaceflight, astronauts experience weightlessness and are exposed to novel types of radiation. These environmental conditions may contribute to bone loss and reduction of structural integrity of the skeleton, which have negative implications for long-duration missions. The aim of this talk is to provide an overview of skeletal changes observed both in astronauts and in ground-based models of spaceflight, focusing on the fundamental biology and the prevention of deleterious skeletal changes.
Nutritional management of osteoarthritis.
Richardson, D C; Schoenherr, W D; Zicker, S C
1997-07-01
Nutrition can influence developmental orthopedic diseases and the inflammatory process of arthritis. Developmental skeletal disease is a group of skeletal abnormalities that primarily affect fast-growing, large-breed dogs. Nutrient excesses (calcium and energy) and rapid growth (overfeeding and excess energy) are known risk factors. Inflammation can be directly or indirectly affected by nutritional influences. A direct effect can be achieved by modulating the immune response and inflammatory process with fatty acids. Weight control can indirectly influence the degenerative joint disease process by reducing the stresses on the joint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassoli, Chiara; Nosi, Daniele; Tani, Alessia
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the singlemore » muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.« less
Gehlert, Sebastian; Bloch, Wilhelm; Suhr, Frank
2015-01-01
Calcium (Ca2+) plays a pivotal role in almost all cellular processes and ensures the functionality of an organism. In skeletal muscle fibers, Ca2+ is critically involved in the innervation of skeletal muscle fibers that results in the exertion of an action potential along the muscle fiber membrane, the prerequisite for skeletal muscle contraction. Furthermore and among others, Ca2+ regulates also intracellular processes, such as myosin-actin cross bridging, protein synthesis, protein degradation and fiber type shifting by the control of Ca2+-sensitive proteases and transcription factors, as well as mitochondrial adaptations, plasticity and respiration. These data highlight the overwhelming significance of Ca2+ ions for the integrity of skeletal muscle tissue. In this review, we address the major functions of Ca2+ ions in adult muscle but also highlight recent findings of critical Ca2+-dependent mechanisms essential for skeletal muscle-regulation and maintenance. PMID:25569087
Ochala, Julien
2010-02-01
Ca(2+) ions are key regulators of skeletal muscle contraction. By binding to contractile proteins, they initiate a cascade of molecular events leading to cross-bridge formation and ultimately, muscle shortening and force production. The ability of contractile proteins to respond to Ca(2+) attachment, also known as Ca(2+) sensitivity, is often compromised in acquired and congenital skeletal muscle disorders. It constitutes, undoubtedly, a major physiological cause of weakness for patients. In this review, we discuss recent studies giving strong molecular and cellular evidence that pharmacological modulators of some of the contractile proteins, also termed Ca(2+) sensitizers, are efficient agents to improve Ca(2+) sensitivity and function in diseased skeletal muscle cells. In fact, they compensate for the impaired contractile proteins response to Ca(2+) binding. Currently, such Ca(2+) sensitizing compounds are successfully used for reducing problems in cardiac disorders. Therefore, in the future, under certain conditions, these agents may represent an emerging class of agents to enhance the quality of life of patients suffering from skeletal muscle weakness. Copyright 2009 Elsevier B.V. All rights reserved.
Smith, Emma L; Rashidi, Hassan; Kanczler, Janos M; Shakesheff, Kevin M; Oreffo, Richard O C
2015-01-01
Transforming growth factor-beta3 (TGF-β3) and 1α,25-dihydroxyvitamin D3 (1α,25 (OH) 2D3) are essential factors in chondrogenesis and osteogenesis respectively. These factors also play a fundamental role in the developmental processes and the maintenance of skeletal integrity, but their respective direct effects on these processes are not fully understood. Using an organotypic bone rudiment culture system the current study has examined the direct roles the osteotropic factors 1α,25 (OH)2D3 and TGF-β3 exert on the development and modulation of the three dimensional structure of the embryonic femur. Isolated embryonic chick femurs (E11) were organotypically cultured for 10 days in basal media, or basal media supplemented with either 1α,25 (OH) 2D3 (25 nM) or TGF-β3 (5 ng/mL & 15 ng/mL). Analyses of the femurs were undertaken using micro-computed tomography (μCT), histology and immunohistochemistry. 1α,25 (OH)2D3 supplemented cultures enhanced osteogenesis directly in the developing femurs with elevated levels of osteogenic markers such as type 1 collagen. In marked contrast organotypic femur cultures supplemented with TGF-β3 (5 ng/mL & 15 ng/mL) demonstrated enhanced chondrogenesis with a reduction in osteogenesis. These studies demonstrate the efficacy of the ex vivo organotypic embryonic femur culture employed to elucidate the direct roles of these molecules, 1α,25 (OH) 2D3 and TGF-β3 on the structural development of embryonic bone within a three dimensional framework. We conclude that 1α,25(OH)2D and TGF-β3 modify directly the various cell populations in bone rudiment organotypic cultures effecting tissue metabolism resulting in significant changes in embryonic bone growth and modulation. Understanding the roles of osteotropic agents in the process of skeletal development is integral to developing new strategies for the recapitulation of bone tissue in later life.
Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.
2016-01-01
The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554
Messalli, Enrico M; Scaffa, Cono
2010-01-01
The integrity of bone tissue and its remodeling that occurs throughout life requires a coordinated activity of osteoblasts and osteoclasts. The decreased estrogen circulating level during postmenopausal transition, with a prevalence of osteoclastic activity over osteoblastic activity, represents the main cause of bone loss and osteoporosis. Osteoporosis is a chronic disease requiring long-term therapy and it is important to evaluate the efficacy and safety of treatments over several years, as the fear of health risks is a common reason for discontinuing therapy. Raloxifene is a selective estrogen receptor modulator (SERM) leading to estrogen-agonist effects in some tissues and estrogen-antagonist effects in others. Raloxifene is effective to prevent and treat postmenopausal vertebral osteoporosis, with reduction of spine fractures and, in post-hoc analyses, non-spine fractures in high-risk subjects. Moreover, raloxifene reduces the risk of invasive breast cancer and improves the levels of serum lipoprotein but with an increased risk of venous thromboembolism and fatal stroke, without significant change in the incidence of coronary events. For these reasons the overall risk-benefit profile is favorable. Therefore, when considering the use of raloxifene in a postmenopausal woman, we should take into account the osteoporosis-related individual risk and weigh the potential benefits, skeletal and extra-skeletal, against the health risks. PMID:21072271
MOROSETTI, R.; GLIUBIZZI, C.; BROCCOLINI, A.; SANCRICCA, C.; MIRABELLA, M.
2011-01-01
SUMMARY Mesoangioblasts are a class of adult stem cells of mesoderm origin, potentially useful for the treatment of primitive myopathies of different etiology. Extensive in vitro and in vivo studies in animal models of muscular dystrophy have demonstrated the ability of mesoangioblast to repair skeletal muscle when injected intra-arterially. In a previous work we demonstrated that mesoangioblasts obtained from diagnostic muscle biopsies of IBM patients display a defective differentiation down skeletal muscle and this block can be corrected in vitro by transient MyoD transfection. We are currently investigating different pathways involved in mesoangioblasts skeletal muscle differentiation and exploring alternative stimulatory approaches not requiring extensive cell manipulation. This will allow to obtain safe, easy and efficient molecular or pharmacological modulation of pro-myogenic pathways in IBM mesoangioblasts. It is of crucial importance to identify factors (ie. cytokines, growth factors) produced by muscle or inflammatory cells and released in the surrounding milieu that are able to regulate the differentiation ability of IBM mesoangioblasts. To promote myogenic differentiation of endogenous mesoangioblasts in IBM muscle, the modulation of such target molecules selectively dysregulated would be a more handy approach to enhance muscle regeneration compared to transplantation techniques. Studies on the biological characteristics of IBM mesoangioblasts with their aberrant differentiation behavior, the signaling pathways possibly involved in their differentiation block and the possible strategies to overcome it in vivo, might provide new insights to better understand the etiopathogenesis of this crippling disorder and to identify molecular targets susceptible of therapeutic modulation. PMID:21842589
Madhu, S; Hegde, Amitha M; Munshi, A K
2003-01-01
Assessment of skeletal maturity is an integral part of interceptive diagnosis and treatment planning. The present day methods of skeletal maturity assessment like the hand-wrist radiographs or cervical vertebrae radiographs are expensive, require elaborate equipment and accounts for high radiation exposure, especially for growing children. The present study was thus undertaken to provide a simple and practical method of skeletal maturity assessment using the developmental stages of the middle phalanx of the third finger (MP3) as seen on an IOPA film taken using a standard dental x-ray machine. The results of the study showed that this simple method was highly reliable and could be used as an alternative method to assess the skeletal maturity of growing children.
Havekes, Bas; Sauerwein, Hans P
2010-11-01
To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.
The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.
Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D
2015-01-01
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.
The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record
Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.
2015-01-01
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612
MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis.
Tagawa, Masashi; Ueyama, Tomomi; Ogata, Takehiro; Takehara, Naofumi; Nakajima, Norio; Isodono, Koji; Asada, Satoshi; Takahashi, Tomosaburo; Matsubara, Hiroaki; Oh, Hidemasa
2008-08-01
Skeletal myogenesis is a multistep process by which multinucleated mature muscle fibers are formed from undifferentiated, mononucleated myoblasts. However, the molecular mechanisms of skeletal myogenesis have not been fully elucidated. Here, we identified muscle-restricted coiled-coil (MURC) protein as a positive regulator of myogenesis. In skeletal muscle, MURC was localized to the cytoplasm with accumulation in the Z-disc of the sarcomere. In C2C12 myoblasts, MURC expression occurred coincidentally with myogenin expression and preceded sarcomeric myosin expression during differentiation into myotubes. RNA interference (RNAi)-mediated knockdown of MURC impaired differentiation in C2C12 myoblasts, which was accompanied by impaired myogenin expression and ERK activation. Overexpression of MURC in C2C12 myoblasts resulted in the promotion of differentiation with enhanced myogenin expression and ERK activation during differentiation. During injury-induced muscle regeneration, MURC expression increased, and a higher abundance of MURC was observed in immature myofibers compared with mature myofibers. In addition, ERK was activated in regenerating tissue, and ERK activation was detected in MURC-expressing immature myofibers. These findings suggest that MURC is involved in the skeletal myogenesis that results from modulation of myogenin expression and ERK activation. MURC may play pivotal roles in the molecular mechanisms of skeletal myogenic differentiation.
Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.
Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon
2017-09-01
Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.
78 FR 737 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... Disorders and Clinical Neuroscience Integrated Review Group; Aging Systems and Geriatrics Study Section... Skin Sciences Integrated Review Group; Skeletal Muscle and Exercise Physiology Study Section. Date...
Crystallin-αB Regulates Skeletal Muscle Homeostasis via Modulation of Argonaute2 Activity*
Neppl, Ronald L.; Kataoka, Masaharu; Wang, Da-Zhi
2014-01-01
The core functional machinery of the RNAi pathway is the RNA-induced silencing complex (RISC), wherein Argonaute2 (Ago2) is essential for siRNA-directed endonuclease activity and RNAi/microRNA-mediated gene silencing. Crystallin-αB (CryAB) is a small heat shock protein involved in preventing protein aggregation. We demonstrate that CryAB interacts with the N and C termini of Ago2, not the catalytic site defined by the convergence of the PAZ, MID, and PIWI domains. We further demonstrate significantly reduced Ago2 activity in the absence of CryAB, highlighting a novel role of CryAB in the mammalian RNAi/microRNA pathway. In skeletal muscle of CryAB null mice, we observe a shift in the hypertrophy-atrophy signaling axis toward atrophy under basal conditions. Moreover, loss of CryAB altered the capability of satellite cells to regenerate skeletal muscle. These studies establish that CryAB is necessary for normal Ago2/RISC activity and cellular homeostasis in skeletal muscle. PMID:24782307
Alameddine, Hala S.; Morgan, Jennifer E.
2016-01-01
In skeletal muscles, levels and activity of Matrix MetalloProteinases (MMPs) and Tissue Inhibitors of MetalloProteinases (TIMPs) have been involved in myoblast migration, fusion and various physiological and pathological remodeling situations including neuromuscular diseases. This has opened perspectives for the use of MMPs’ overexpression to improve the efficiency of cell therapy in muscular dystrophies and resolve fibrosis. Alternatively, inhibition of individual MMPs in animal models of muscular dystrophies has provided evidence of beneficial, dual or adverse effects on muscle morphology or function. We review here the role played by MMPs/TIMPs in skeletal muscle inflammation and fibrosis, two major hurdles that limit the success of cell and gene therapy. We report and analyze the consequences of genetic or pharmacological modulation of MMP levels on the inflammation of skeletal muscles and their repair in light of experimental findings. We further discuss how the interplay between MMPs/TIMPs levels, cytokines/chemokines, growth factors and permanent low-grade inflammation favor cellular and molecular modifications resulting in fibrosis. PMID:27911334
Myonuclear domains in muscle adaptation and disease
NASA Technical Reports Server (NTRS)
Allen, D. L.; Roy, R. R.; Edgerton, V. R.
1999-01-01
Adult skeletal muscle fibers are among the few cell types that are truly multinucleated. Recently, evidence has accumulated supporting a role for the modulation of myonuclear number during muscle remodeling in response to injury, adaptation, and disease. These studies have demonstrated that muscle hypertrophy is associated with, and is dependent on, the addition of newly formed myonuclei via the fusion of myogenic cells to the adult myofiber, whereas muscle atrophy and disease appear to be associated with the loss of myonuclei, possibly through apoptotic-like mechanisms. Moreover, these studies also have demonstrated that myonuclear domain size, i. e., the amount of cytoplasm per myonucleus, is unchanged following the acute phase of hypertrophy but is reduced following atrophy. Together these data demonstrate that modulation of myonuclear number or myonuclear domain size (or both) is a mechanism contributing to the remodeling of adult skeletal muscle in response to alterations in the level of normal neuromuscular activity. Copyright 1999 John Wiley & Sons, Inc.
Marie, Pierre J
2015-04-01
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.
Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.
2016-01-01
GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547
MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
Wu, Hai; Naya, Francisco J.; McKinsey, Timothy A.; Mercer, Brian; Shelton, John M.; Chin, Eva R.; Simard, Alain R.; Michel, Robin N.; Bassel-Duby, Rhonda; Olson, Eric N.; Williams, R. Sanders
2000-01-01
Different patterns of motor nerve activity drive distinctive programs of gene transcription in skeletal muscles, thereby establishing a high degree of metabolic and physiological specialization among myofiber subtypes. Recently, we proposed that the influence of motor nerve activity on skeletal muscle fiber type is transduced to the relevant genes by calcineurin, which controls the functional activity of NFAT (nuclear family of activated T cell) proteins. Here we demonstrate that calcineurin-dependent gene regulation in skeletal myocytes is mediated also by MEF2 transcription factors, and is integrated with additional calcium-regulated signaling inputs, specifically calmodulin-dependent protein kinase activity. In skeletal muscles of transgenic mice, both NFAT and MEF2 binding sites are necessary for properly regulated function of a slow fiber-specific enhancer, and either forced expression of activated calcineurin or motor nerve stimulation up-regulates a MEF2-dependent reporter gene. These results provide new insights into the molecular mechanisms by which specialized characteristics of skeletal myofiber subtypes are established and maintained. PMID:10790363
NASA Astrophysics Data System (ADS)
Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.
2017-08-01
The remarkable versatility and adaptability of skeletal muscle that arises from the assembly of its nanoscale cross-bridges into micro-scale assemblies known as sarcomeres provides great inspiration for the development of advanced adaptive structures and material systems. Motivated by the capability of cross-bridges to capture elastic strain energy to improve the energetic efficiency of sudden movements and repeated motions, and by models of cross-bridge power stroke motions and sarcomere contractile behaviors that incorporate asymmetric, bistable potential energy landscapes, this research develops and studies modular mechanical structures that trap and store energy in higher-energy configurations. Modules exhibiting tailorable asymmetric bistability are first designed and fabricated, revealing how geometric parameters influence the asymmetry of the resulting double-well energy landscapes. These experimentally-observed characteristics are then investigated with numerical and analytical methods to characterize the dynamics of asymmetrically bistable modules. The assembly of such modules into greater structures generates complex, multi-well energy landscapes with stable system configurations exhibiting different quantities of stored elastic potential energy. Dynamic analyses illustrate the ability of these structures to capture a portion of the initial kinetic energy due to impulsive excitations as recoverable strain potential energy, and reveal how stiffness parameters, damping, and the presence of thermal noise in micro- and nano-scale applications influence energy capture behaviors. The insights gained could foster the development of advanced structural/material systems inspired by skeletal muscle, including actuators that effectively capture, store, and release energy, as well as adaptive, robust, and reusable armors and protective devices.
NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases.
Lin, T-H; Pajarinen, J; Lu, L; Nabeshima, A; Cordova, L A; Yao, Z; Goodman, S B
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. © 2017 Elsevier Inc. All rights reserved.
NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases
Lin, T.-h.; Pajarinen, J.; Lu, L.; Nabeshima, A.; Cordova, L.A.; Yao, Z.; Goodman, S.B.
2017-01-01
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. PMID:28215222
Morosetti, R; Gliubizzi, C; Broccolini, A; Sancricca, C; Mirabella, M
2011-06-01
Mesoangioblasts are a class of adult stem cells of mesoderm origin, potentially useful for the treatment of primitive myopathies of different etiology. Extensive in vitro and in vivo studies in animal models of muscular dystrophy have demonstrated the ability of mesoangioblast to repair skeletal muscle when injected intra-arterially. In a previous work we demonstrated that mesoangioblasts obtained from diagnostic muscle biopsies of IBM patients display a defective differentiation down skeletal muscle and this block can be corrected in vitro by transient MyoD transfection. We are currently investigating different pathways involved in mesoangioblasts skeletal muscle differentiation and exploring alternative stimulatory approaches not requiring extensive cell manipulation. This will allow to obtain safe, easy and efficient molecular or pharmacological modulation of pro-myogenic pathways in IBM mesoangioblasts. It is of crucial importance to identify factors (ie. cytokines, growth factors) produced by muscle or inflammatory cells and released in the surrounding milieu that are able to regulate the differentiation ability of IBM mesoangioblasts. To promote myogenic differentiation of endogenous mesoangioblasts in IBM muscle, the modulation of such target molecules selectively dysregulated would be a more handy approach to enhance muscle regeneration compared to transplantation techniques. Studies on the biological characteristics of IBM mesoangioblasts with their aberrant differentiation behavior, the signaling pathways possibly involved in their differentiation block and the possible strategies to overcome it in vivo, might provide new insights to better understand the etiopathogenesis of this crippling disorder and to identify molecular targets susceptible of therapeutic modulation.
The muscle protein synthetic response to food ingestion.
Gorissen, Stefan H M; Rémond, Didier; van Loon, Luc J C
2015-11-01
Preservation of skeletal muscle mass is of great importance for maintaining both metabolic health and functional capacity. Muscle mass maintenance is regulated by the balance between muscle protein breakdown and synthesis rates. Both muscle protein breakdown and synthesis rates have been shown to be highly responsive to physical activity and food intake. Food intake, and protein ingestion in particular, directly stimulates muscle protein synthesis rates. The postprandial muscle protein synthetic response to feeding is regulated on a number of levels, including dietary protein digestion and amino acid absorption, splanchnic amino acid retention, postprandial insulin release, skeletal muscle tissue perfusion, amino acid uptake by muscle, and intramyocellular signaling. The postprandial muscle protein synthetic response to feeding is blunted in many conditions characterized by skeletal muscle loss, such as aging and muscle disuse. Therefore, it is important to define food characteristics that modulate postprandial muscle protein synthesis. Previous work has shown that the muscle protein synthetic response to feeding can be modulated by changing the amount of protein ingested, the source of dietary protein, as well as the timing of protein consumption. Most of this work has studied the postprandial response to the ingestion of isolated protein sources. Only few studies have investigated the postprandial muscle protein synthetic response to the ingestion of protein dense foods, such as dairy and meat. The current review will focus on the capacity of proteins and protein dense food products to stimulate postprandial muscle protein synthesis and identifies food characteristics that may modulate the anabolic properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Redox homeostasis and age‐related deficits in neuromuscular integrity and function
Lightfoot, Adam P.; Earl, Kate E.; Stofanko, Martin; McDonagh, Brian
2017-01-01
Abstract Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age‐related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this ‘epidemic’ problem, the primary biochemical and molecular mechanisms underlying age‐related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age‐associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age‐related muscle atrophy and weakness. PMID:28744984
Sheng, Xihui; Wang, Ligang; Ni, Hemin; Wang, Lixian; Qi, Xiaolong; Xing, Shuhan; Guo, Yong
2016-01-01
The molecular mechanism regulated by microRNAs (miRNAs) that underlies postnatal hypertrophy of skeletal muscle is complex and remains unclear. Here, the miRNAomes of longissimus dorsi muscle collected at five postnatal stages (60, 120, 150, 180, and 210 days after birth) from Large White (commercial breed) and Min pigs (indigenous breed of China) were analyzed by Illumina sequencing. We identified 734 miRNAs comprising 308 annotated miRNAs and 426 novel miRNAs, of which 307 could be considered pig-specific. Comparative analysis between two breeds suggested that 60 and 120 days after birth were important stages for skeletal muscle hypertrophy and intramuscular fat accumulation. A total of 263 miRNAs were significantly differentially expressed between two breeds at one or more developmental stages. In addition, the differentially expressed miRNAs between every two adjacent developmental stages in each breed were determined. Notably, ssc-miR-204 was significantly more highly expressed in Min pig skeletal muscle at all postnatal stages compared with its expression in Large White pig skeletal muscle. Based on gene ontology and KEGG pathway analyses of its predicted target genes, we concluded that ssc-miR-204 may exert an impact on postnatal hypertrophy of skeletal muscle by regulating myoblast proliferation. The results of this study will help in elucidating the mechanism underlying postnatal hypertrophy of skeletal muscle modulated by miRNAs, which could provide valuable information for improvement of pork quality and human myopathy.
Assis, Lívia; Manis, Camila; Fernandes, Kelly Rossetti; Cabral, Daniel; Magri, Angela; Veronez, Suellen; Renno, Ana Claudia Muniz
2016-07-01
The aim of this study was to evaluate the in vivo response of 2 different laser wavelengths (red and infrared) on skeletal muscle repair process in diabetic rats. Forty Wistar rats were randomly divided into 4 experimental groups: basal control-nondiabetic and muscle-injured animals without treatment (BC); diabetic muscle-injured without treatment (DC); diabetic muscle-injured, treated with red laser (DCR) and infrared laser (DCIR). The injured region was irradiated daily for 7 consecutive days, starting immediately after the injury using a red (660 nm) and an infrared (808 nm) laser. The histological results demonstrated in both treated groups (red and infrared wavelengths) a modulation of the inflammatory process and a better tissue organization located in the site of the injury. However, only infrared light significantly reduced the injured area and increased MyoD and myogenin protein expression. Moreover, both red and infrared light increased the expression of the proangiogenic vascular endothelial growth factor and reduced the cyclooxygenase 2 protein expression. These results suggest that low-level laser therapy was efficient in promoting skeletal muscle repair in diabetic rats. However, the effect of infrared wavelength was more pronounced by reducing the area of the injury and modulating the expression proteins related to the repair.
Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale
2012-01-01
This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273
NASA Technical Reports Server (NTRS)
Ray, C. A.
2001-01-01
Evidence from animals indicates that skeletal muscle afferents activate the vestibular nuclei and that both vestibular and skeletal muscle afferents have inputs to the ventrolateral medulla. The purpose of the present study was to investigate the interaction between the vestibulosympathetic and skeletal muscle reflexes on muscle sympathetic nerve activity (MSNA) and arterial pressure in humans. MSNA, arterial pressure, and heart rate were measured in 17 healthy subjects in the prone position during three experimental trials. The three trials were 2 min of 1) head-down rotation (HDR) to engage the vestibulosympathetic reflex, 2) isometric handgrip (IHG) at 30% maximal voluntary contraction to activate skeletal muscle afferents, and 3) HDR and IHG performed simultaneously. The order of the three trials was randomized. HDR and IHG performed alone increased total MSNA by 46 +/- 16 and 77 +/- 24 units, respectively (P < 0.01). During the HDR plus IHG trial, MSNA increased 142 +/- 38 units (P < 0.01). This increase was not significantly different from the sum of the individual trials (130 +/- 41 units). This finding was also observed with mean arterial pressure (sum = 21 +/- 2 mmHg and HDR + IHG = 22 +/- 2 mmHg). These findings suggest that there is an additive interaction for MSNA and arterial pressure when the vestibulosympathetic and skeletal muscle reflexes are engaged simultaneously in humans. Therefore, no central modulation exists between these two reflexes with regard to MSNA output in humans.
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases
Sallam, Nada
2016-01-01
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential. PMID:26823952
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases.
Sallam, Nada; Laher, Ismail
2016-01-01
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Chavoshan, Bahman; Sander, Mikael; Sybert, Troy E; Hansen, Jim; Victor, Ronald G; Thomas, Gail D
2002-01-01
Nitric oxide (NO) attenuates α-adrenergic vasoconstriction in contracting rodent skeletal muscle, but it is unclear if NO plays a similar role in human muscle. We therefore hypothesized that in humans, NO produced in exercising skeletal muscle blunts the vasoconstrictor response to sympathetic activation. We assessed vasoconstrictor responses in the microcirculation of human forearm muscle using near-infrared spectroscopy to measure decreases in muscle oxygenation during reflex sympathetic activation evoked by lower body negative pressure (LBNP). Experiments were performed before and after NO synthase inhibition produced by systemic infusion of NG-nitro-l-arginine methyl ester (l-NAME). Before l-NAME, LBNP at −20 mmHg decreased muscle oxygenation by 20 ± 2 % in resting forearm and by 2 ± 3 % in exercising forearm (n = 20), demonstrating metabolic modulation of sympathetic vasoconstriction. As expected, l-NAME increased mean arterial pressure by 17 ± 3 mmHg, leading to baroreflex-mediated supression of baseline muscle sympathetic nerve activity (SNA). The increment in muscle SNA in response to LBNP at −20 mmHg also was attenuated after l-NAME (before, +14 ± 2; after, +8 ± 1 bursts min−1; n = 6), but this effect of l-NAME was counteracted by increasing LBNP to −40 mmHg (+19 ± 2 bursts min−1). After l-NAME, LBNP at −20 mmHg decreased muscle oxygenation similarly in resting (−11 ± 3 %) and exercising (−10 ± 2 %) forearm (n = 12). Likewise, LBNP at −40 mmHg decreased muscle oxygenation both in resting (−19 ± 4 %) and exercising (−21 ± 5 %) forearm (n = 8). These data advance the hypothesis that NO plays an important role in modulating sympathetic vasoconstriction in the microcirculation of exercising muscle, because such modulation is abrogated by NO synthase inhibition with l-NAME. PMID:11927694
Imaging 2D optical diffuse reflectance in skeletal muscle
NASA Astrophysics Data System (ADS)
Ranasinghesagara, Janaka; Yao, Gang
2007-04-01
We discovered a unique pattern of optical reflectance from fresh prerigor skeletal muscles, which can not be described using existing theories. A numerical fitting function was developed to quantify the equiintensity contours of acquired reflectance images. Using this model, we studied the changes of reflectance profile during stretching and rigor process. We found that the prominent anisotropic features diminished after rigor completion. These results suggested that muscle sarcomere structures played important roles in modulating light propagation in whole muscle. When incorporating the sarcomere diffraction in a Monte Carlo model, we showed that the resulting reflectance profiles quantitatively resembled the experimental observation.
Morphological Variation in Anuran Limbs: Constraints and Novelties.
Fabrezi, Marissa; Goldberg, Javier; Chuliver Pereyra, Mariana
2017-09-01
Anurans have three primary types of locomotion: walking, jumping, and swimming. Additionally, they may dig, climb, grasp, etc. All adult anurans have four limbs, with four fingers on the hands and five toes on the feet. We summarized and updated knowledge on the interspecific variation within anuran limbs, then discuss how developmental constraints (e.g., in size) and novelties may have influenced anuran diversification through the locomotion. We analyze morphological variation from limb bud stages up to the final limb form resulting from certain skeletal organization and growth. We find limited morphometric variations in the skeleton of different developmental modules (i.e., skull, trunk, urostyle, limbs) indicate that the anuran body shape is largely constrained. We identify specializations of the stylopodium, zeugopodium, and proximal carpals/tarsals that have evolved to facilitiate saltatorial locomotion. We show that the anuran prepollex and prehallux are not vestigial digits and that they have come to serve specialized function. Medial rotation of the manus in anurans appears to have evolved to help distribute the force of impact upon landing at the end of a jump. Additional skeletal elements in anuran limbs are intercalary elements and sesamoids. The intercalary elements appear within neobatrachians and are integrated with digital pads in lineages capable of locomotion on smooth vertical surfaces. They have allowed arboreal anurans to occupy a wide range of arboreal habitats. © 2017 Wiley Periodicals, Inc.
Guedon, Jean-Marc G; Longo, Geraldine; Majuta, Lisa A; Thomspon, Michelle L; Fealk, Michelle N; Mantyh, Patrick W
2016-06-01
Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question, we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy were then measured on days 21, 28, and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hind paw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors, whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that although bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive end points for clinical trials.
Guedon, Jean-Marc G.; Longo, Geraldine; Majuta, Lisa A.; Thomspon, Michelle L.; Fealk, Michelle N.; Mantyh, Patrick W.
2016-01-01
Recent studies have suggested that in humans and animals with significant skeletal pain, changes in the mechanical hypersensitivity of the skin can be detected. However, whether measuring changes in skin hypersensitivity can be a reliable surrogate for measuring skeletal pain itself remains unclear. To explore this question we generated skeletal pain by injecting and confining GFP-transfected NCTC 2472 osteosarcoma cells unilaterally to the femur of C3H male mice. Beginning at day 7 post-tumor injection, animals were administered vehicle, an antibody to the P2X3 receptor (anti-P2X3) or anti-NGF antibody. Pain and analgesic efficacy was then measured on days 21, 28 and 35 post-tumor injection using a battery of skeletal pain-related behaviors and von Frey assessment of mechanical hypersensitivity on the plantar surface of the hindpaw. Animals with bone cancer pain treated with anti-P2X3 showed a reduction in skin hypersensitivity but no attenuation of skeletal pain behaviors. Whereas animals with bone cancer pain treated with anti-NGF showed a reduction in both skin hypersensitivity and skeletal pain behaviors. These results suggest that while bone cancer can induce significant skeletal pain-related behaviors and hypersensitivity of the skin, relief of hypersensitivity of the skin is not always accompanied by attenuation of skeletal pain. Understanding the relationship between skeletal and skin pain may provide insight into how pain is processed and integrated and help define the preclinical measures of skeletal pain that are predictive endpoints for clinical trials. PMID:27186713
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.
Roh, Eun; Song, Do Kyeong; Kim, Min-Seon
2016-03-11
Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism
Roh, Eun; Song, Do Kyeong; Kim, Min-Seon
2016-01-01
Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832
Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira
2013-11-15
Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.
Huang, Alice H
2017-09-15
Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments. Copyright © 2017 Elsevier Inc. All rights reserved.
Human skeletal muscle drug transporters determine local exposure and toxicity of statins.
Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G
2010-02-05
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.
Protein Availability and Satellite Cell Dynamics in Skeletal Muscle.
Shamim, Baubak; Hawley, John A; Camera, Donny M
2018-06-01
Human skeletal muscle satellite cells are activated in response to both resistance and endurance exercise. It was initially proposed that satellite cell proliferation and differentiation were only required to support resistance exercise-induced hypertrophy. However, satellite cells may also play a role in muscle fibre remodelling after endurance-based exercise and extracellular matrix regulation. Given the importance of dietary protein, particularly branched chain amino acids, in supporting myofibrillar and mitochondrial adaptations to both resistance and endurance-based training, a greater understanding of how protein intake impacts satellite cell activity would provide further insight into the mechanisms governing skeletal muscle remodelling with exercise. While many studies have investigated the capacity for protein ingestion to increase post-exercise rates of muscle protein synthesis, few investigations have examined the role for protein ingestion to modulate satellite cell activity. Here we review the molecular mechanisms controlling the activation of satellite cells in response to mechanical stress and protein intake in both in vitro and in vivo models. We provide a mechanistic framework that describes how protein ingestion may enhance satellite activity and promote exercise adaptations in human skeletal muscle.
Main, Russell P.; Lynch, Maureen E.; van der Meulen, Marjolein C.H.
2010-01-01
Whole bone morphology, cortical geometry, and tissue material properties modulate skeletal stresses and strains that in turn influence skeletal physiology and remodeling. Understanding how bone stiffness, the relationship between applied load and tissue strain, is regulated by developmental changes in bone structure and tissue material properties is important in implementing biophysical strategies for promoting healthy bone growth and preventing bone loss. The goal of this study was to relate developmental patterns of in vivo whole bone stiffness to whole bone morphology, cross-sectional geometry, and tissue properties using a mouse axial loading model. We measured in vivo tibial stiffness in three age groups (6wks, 10wks, 16wks old) of female C57Bl/6 mice during cyclic tibial compression. Tibial stiffness was then related to cortical geometry, longitudinal bone curvature, and tissue mineral density using microcomputed tomography (microCT). Tibial stiffness and the stresses induced by axial compression were generally maintained from 6 to 16wks of age. Growth-related increases in cortical cross-sectional geometry and longitudinal bone curvature had counteracting effects on induced bone stresses and, therefore, maintained tibial stiffness similarly with growth. Tissue mineral density increased slightly from 6 to 16wks of age, and although the effects of this increase on tibial stiffness were not directly measured, its role in the modulation of whole bone stiffness was likely minor over the age range examined. Thus, whole bone morphology, as characterized by longitudinal curvature, along with cortical geometry, plays an important role in modulating bone stiffness during development and should be considered when evaluating and designing in vivo loading studies and biophysical skeletal therapies. PMID:20673665
Sin, Thomas K; Yu, Angus P; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Rudd, John A; Siu, Parco M
2015-12-01
Activation of Foxo1 is known to promote apoptosis and disturbances to insulin signalling. However, their modulating roles in aged skeletal muscle are not clear. The present study tested the hypothesis that long-term (i.e. 8 month) resveratrol supplementation would improve physical traits including exercise capacity and basal voluntary activity of aged mice and modulate insulin/apoptotic signalling in aged skeletal muscle. This study also examined whether these resveratrol-associated alterations would involve orchestration of the SIRT1-Foxo1 signalling axis. Two-month-old SAMP8 mice were randomly assigned to young, aged and aged with resveratrol treatment (AR) groups. The AR mice were supplemented with 4.9 mg(-1) kg(-1) day(-1) resveratrol for 8 months. All animals were subject to endurance capacity test and voluntary motor behaviour assessment. The lateral gastrocnemius muscle tissues were harvested for further analyses. Long-term resveratrol treatment significantly alleviated the age-associated reductions in exercise capacity and voluntary motor behaviour. The protein content, but not the deacetylase activity of SIRT1 was increased with concomitant elevations of p300 acetylase and acetylation of Foxo1 in aged muscle. The aged muscle also manifested signs of impaired insulin signalling including attenuated phosphorylation of Akt, activity of pyruvate dehydrogenase and membrane trafficking of GLUT4 and elevated levels of phosphorylated IRS1 and iNOS and apoptotic activation measured as Bim, p53 and apoptotic DNA fragmentation. Intriguingly, all these age-related adverse changes were mitigated with the activation of SIRT1 deacetylase activity after long-term resveratrol treatment. These data suggest that modulation of the SIRT1-Foxo1 axis by long-term resveratrol treatment enhances physical traits and alleviates the unfavourable changes in insulin and apoptotic signalling in aged muscle.
Lieben, Liesbet; Masuyama, Ritsuko; Torrekens, Sophie; Van Looveren, Riet; Schrooten, Jan; Baatsen, Pieter; Lafage-Proust, Marie-Hélène; Dresselaers, Tom; Feng, Jian Q.; Bonewald, Lynda F.; Meyer, Mark B.; Pike, J. Wesley; Bouillon, Roger; Carmeliet, Geert
2012-01-01
Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)2D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)2D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)2D not only increases calcium release from bone, but also inhibits calcium incorporation in bone. PMID:22523068
Functional classification of skeletal muscle networks. I. Normal physiology
Wang, Yu; Winters, Jack
2012-01-01
Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca2+ fluxes to bind Ca2+ to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling. PMID:23085959
Syed, Farhan A.; Fraser, Daniel G.; Monroe, David G.; Khosla, Sundeep
2011-01-01
Estrogen receptor (ER)α is a major regulator of bone metabolism which can modulate gene expression via a “classical” pathway involving direct DNA binding to estrogen-response elements (EREs) or via “non-classical” pathways involving protein-protein interactions. While the skeletal consequences of loss of ERE binding by ERα have been described, a significant unresolved question is how loss of ERE binding differs from complete loss of ERα. Thus, we compared the skeletal phenotype of wild-type (ERα+/+) and ERα knock out (ERα−/−) mice with that of mice in which the only ERα present had a knock-in mutation abolishing ERE binding (non-classical ERα knock-in [NERKI], ERα−/NERKI). All three groups were in the same genetic background (C57BL/6). As compared to both ERα+/+ and ERα−/− mice, ERα−/NERKI mice had significantly reduced cortical volumetric bone mineral density and thickness at the tibial diaphysis; this was accompanied by significant decreases in periosteal and endocortical mineral apposition rates. Colony forming unit (CFU)-fibroblast, CFU-alkaline phosphatase, and CFU-osteoblast numbers were all increased in ERα−/− compared to ERα+/+ mice, but reduced in ERα−/NERKI mice compared to the two other groups. Thus, using mice in identical genetic backgrounds, our data indicate that the presence of an ERα that cannot bind DNA but can function through protein-protein interactions may have more deleterious skeletal effects than complete loss of ERα. These findings suggest that shifting the balance of classical versus non-classical ERα signaling triggers pathways that impair bone formation. Further studies defining these pathways may lead to novel approaches to selectively modulate ER signaling for beneficial skeletal effects. PMID:21458604
pH-modulation of chloride channels from the sarcoplasmic reticulum of skeletal muscle.
Kourie, J I
1999-01-01
The understanding of the role of cytoplasmic pH in modulating sarcoplasmic reticulum (SR) ion channels involved in Ca2+ regulation is important for the understanding of the function of normal and adversely affected muscles. The dependency of the SR small chloride (SCl) channel from rabbit skeletal muscle on cytoplasmic pH (pHcis) and luminal pH (pHtrans) was investigated using the lipid bilayer-vesicle fusion technique. Low pHcis 6.75-4.28 modifies the operational mode of this multiconductance channel (conductance levels between 5 and 75 pS). At pHcis 7.26-7.37 the channel mode is dominated by the conductance and kinetics of the main conductance state (65-75 pS) whereas at low pHcis 6.75-4.28 the channel mode is dominated by the conductance and kinetics of subconductance states (5-40 pS). Similarly, low pHtrans 4.07, but not pHtrans 6.28, modified the activity of SCl channels. The effects of low pHcis are pronounced at 10(-3) and 10(-4) M [Ca2+]cis but are not apparent at 10(-5) M [Ca2+]cis, where the subconductances of the channel are already prominent. Low pHcis-induced mode shift in the SCl channel activity is due to modification of the channel proteins that cause the uncoupling of the subconductance states. The results in this study suggest that low pHcis can modify the functional properties of the skeletal SR ion channels and hence contribute, at least partly, to the malfunction in the contraction-relaxation mechanism in skeletal muscle under low cytoplasmic pH levels.
Using Networks To Understand Medical Data: The Case of Class III Malocclusions
Scala, Antonio; Auconi, Pietro; Scazzocchio, Marco; Caldarelli, Guido; McNamara, James A.; Franchi, Lorenzo
2012-01-01
A system of elements that interact or regulate each other can be represented by a mathematical object called a network. While network analysis has been successfully applied to high-throughput biological systems, less has been done regarding their application in more applied fields of medicine; here we show an application based on standard medical diagnostic data. We apply network analysis to Class III malocclusion, one of the most difficult to understand and treat orofacial anomaly. We hypothesize that different interactions of the skeletal components can contribute to pathological disequilibrium; in order to test this hypothesis, we apply network analysis to 532 Class III young female patients. The topology of the Class III malocclusion obtained by network analysis shows a strong co-occurrence of abnormal skeletal features. The pattern of these occurrences influences the vertical and horizontal balance of disharmony in skeletal form and position. Patients with more unbalanced orthodontic phenotypes show preponderance of the pathological skeletal nodes and minor relevance of adaptive dentoalveolar equilibrating nodes. Furthermore, by applying Power Graphs analysis we identify some functional modules among orthodontic nodes. These modules correspond to groups of tightly inter-related features and presumably constitute the key regulators of plasticity and the sites of unbalance of the growing dentofacial Class III system. The data of the present study show that, in their most basic abstraction level, the orofacial characteristics can be represented as graphs using nodes to represent orthodontic characteristics, and edges to represent their various types of interactions. The applications of this mathematical model could improve the interpretation of the quantitative, patient-specific information, and help to better targeting therapy. Last but not least, the methodology we have applied in analyzing orthodontic features can be applied easily to other fields of the medical science. PMID:23028552
Barrientos, G.; Sánchez-Aguilera, P.; Jaimovich, E.; Hidalgo, C.
2017-01-01
Membrane cholesterol is critical for signaling processes in a variety of tissues. We will address here current evidence supporting an emerging role of cholesterol on excitation-contraction coupling and glucose transport in skeletal muscle. We have centered our review on the transverse tubule system, a complex network of narrow plasma membrane invaginations that propagate membrane depolarization into the fiber interior and allow nutrient delivery into the fibers. We will discuss current evidence showing that transverse tubule membranes have remarkably high cholesterol levels and we will address how modifications of cholesterol content influence excitation-contraction coupling. In addition, we will discuss how membrane cholesterol levels affect glucose transport by modulating the insertion into the membrane of the main insulin-sensitive glucose transporter GLUT4. Finally, we will address how the increased membrane cholesterol levels displayed by obese animals, which also present insulin resistance, affect these two particular skeletal muscle functions. PMID:28367451
Modulation of the cytosolic androgen receptor in striated muscle by sex steroids
NASA Technical Reports Server (NTRS)
Rance, N. E.; Max, S. E.
1982-01-01
The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.
Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis.
Goldring, Mary B; Goldring, Steven R
2010-03-01
The articular surface plays an essential role in load transfer across the joint, and conditions that produce increased load transfer or altered patterns of load distribution accelerate the development of osteoarthritis (OA). Current knowledge segregates the risk factors into two fundamental mechanisms related to the adverse effects of "abnormal" loading on normal cartilage or "normal" loading on abnormal cartilage. Although chondrocytes can modulate their functional state in response to loading, their capacity to repair and modify the surrounding extracellular matrix is limited in comparison to skeletal cells in bone. This differential adaptive capacity underlies the more rapid appearance of detectable skeletal changes, especially after acute injuries that alter joint mechanics. The imbalance in the adaptation of the cartilage and bone disrupts the physiological relationship between these tissues and further contributes to OA pathology. This review focuses on the specific articular cartilage and skeletal features of OA and the putative mechanisms involved in their pathogenesis.
Hwee, Darren T; Kennedy, Adam R; Hartman, James J; Ryans, Julie; Durham, Nickie; Malik, Fady I; Jasper, Jeffrey R
2015-04-01
Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J
2016-10-14
GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Restoration of regenerative osteoblastogenesis in aged mice: Modulation of TNF
USDA-ARS?s Scientific Manuscript database
Skeletal changes accompanying aging are associated with both increased risk of fractures and impaired fracture healing, which, in turn, is due to compromised bone regeneration potential. These changes are associated with increased serum levels of selected proinflammatory cytokines, e.g., tumor necro...
Vandenheede, J R; Staquet, S; Merlevede, W
1989-05-04
Fractionation of rabbit skeletal muscle cytosol on Aminohexyl-Sepharose has resulted in the identification of a latent ATP, Mg-dependent protein phosphatase whose catalytic subunit is in the active conformation, but is inhibited by the presence of more than one modulator unit. The partially purified enzyme is converted to an inactive, kinase FA-dependent form upon incubation at 30 degrees C unless modulator-specific polyclonal antibodies are added to the preparation. The immunoglobulins also relieve the inhibition which is responsible for the low basal phosphatase activity of the enzyme, and they counteract all of the heat-stable inhibitor activity present in the preparation. Addition of free catalytic subunit abolishes the inhibition of the latent enzyme in a dose-dependent way, but cannot prevent the inactivation process. The inactivated phosphatase and the original latent enzyme exhibit the same apparent Mr in sucrose density-gradient centrifugation (70,000) and in gel filtration (110,000).
REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE
Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.
2014-01-01
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208
Saito, Toshikuni; Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Hayashibe, Mitsuhiro; Otake, Yoshito
2006-01-01
We have been developing a DSVC (Dynamic Spatial Video Camera) system to measure and observe human locomotion quantitatively and freely. A 4D (four-dimensional) human model with detailed skeletal structure, joint, muscle, and motor functionality has been built. The purpose of our research was to estimate skeletal movements from body surface shapes using DSVC and the 4D human model. For this purpose, we constructed a body surface model of a subject and resized the standard 4D human model to match with geometrical features of the subject's body surface model. Software that integrates the DSVC system and the 4D human model, and allows dynamic skeletal state analysis from body surface movement data was also developed. We practically applied the developed system in dynamic skeletal state analysis of a lower limb in motion and were able to visualize the motion using geometrically resized standard 4D human model.
Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.
Jackson, Kathryn C; Wohlers, Lindsay M; Lovering, Richard M; Schuh, Rosemary A; Maher, Amy C; Bonen, Arend; Koves, Timothy R; Ilkayeva, Olga; Thomson, David M; Muoio, Deborah M; Spangenburg, Espen E
2013-02-01
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.
Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice
Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.
2013-01-01
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112
Adaptive Skeletal Muscle Action Requires Anticipation and “Conscious Broadcasting”
Poehlman, T. Andrew; Jantz, Tiffany K.; Morsella, Ezequiel
2012-01-01
Historically, the conscious and anticipatory processes involved in voluntary action have been associated with the loftiest heights of nervous function. Concepts like mental time travel, “theory of mind,” and the formation of “the self” have been at the center of many attempts to determine the purpose of consciousness. Eventually, more reductionistic accounts of consciousness emerged, proposing rather that conscious states play a much more basic role in nervous function. Though the widely held integration consensus proposes that conscious states integrate information-processing structures and events that would otherwise be independent, Supramodular Interaction Theory (SIT) argues that conscious states are necessary for the integration of only certain kinds of information. As revealed in this selective review, this integration is related to what is casually referred to as “voluntary” action, which is intimately related to the skeletal muscle output system. Through a peculiar form of broadcasting, conscious integration often controls and guides action via “ideomotor” mechanisms, where anticipatory processes play a central role. Our selective review covers evidence (including findings from anesthesia research) for the integration consensus, SIT, and ideomotor theory. PMID:23264766
The regulation of skeletal muscle fiber-type composition by betaine is associated with NFATc1/MyoD.
Du, Jingjing; Shen, Linyuan; Zhang, Peiwen; Tan, Zhendong; Cheng, Xiao; Luo, Jia; Zhao, Xue; Yang, Qiong; Gu, Hao; Jiang, An'an; Ma, Jideng; Tang, Qianzi; Jin, Long; Shuai, Surong; Li, Mingzhou; Jiang, Yanzhi; Tang, Guoqing; Bai, Lin; Li, Xuewei; Wang, Jinyong; Zhang, Shunhua; Zhu, Li
2018-06-06
Increasing evidence indicates that muscular dysfunction or alterations in skeletal muscle fiber-type composition not only are involved in muscle metabolism and function but also can limit functional capacity. Therefore, understanding the mechanisms regulating key events during skeletal myogenesis is necessary. Betaine is a naturally occurring component of commonly eaten foods. Here, we showed that 10 mM betaine supplementation in vitro significantly repressed myoblast proliferation and enhanced myoblast differentiation. This effect can be mediated by regulation of miR-29b-3p. Further analysis showed that betaine supplementation in vitro regulated skeletal muscle fiber-type composition through the induction of NFATc1 and the negative regulation of MyoD expression. Furthermore, mice fed with 10 mM betaine in water for 133 days showed no impairment in overall health. Consistently, betaine supplementation increased muscle mass, promoted muscle formation, and modulated the ratio of fiber types in skeletal muscle in vivo. These findings shed light on the diverse biological functions of betaine and indicate that betaine supplementation may lead to new therapies for diseases such as muscular dystrophy or other diseases related to muscle dysfunction. Betaine supplementation inhibits proliferation and promotes differentiation of C2C12 myoblasts. Betaine supplementation regulates fast to slow muscle fiber-type conversion and is associated with NFATc1/MyoD. Betaine supplementation enhances skeletal myogenesis in vivo. Betaine supplementation does not impair health of mice.
Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle
Frisard, Madlyn I.; Wu, Yaru; McMillan, Ryan P.; Voelker, Kevin A.; Wahlberg, Kristin A.; Anderson, Angela S.; Boutagy, Nabil; Resendes, Kyle; Ravussin, Eric; Hulver, Matthew W.
2014-01-01
Objective We have previously demonstrated that activation of toll-like receptor 4 (TLR4) in skeletal muscle results in an increased reliance on glucose as an energy source and a concomitant decrease in fatty acid oxidation under basal conditions. Herein, we examined the effects of lipopolysaccharide (LPS), the primary ligand for TLR4, on mitochondrial oxygen consumption in skeletal muscle cell culture and isolated mitochondria. Materials/ methods Skeletal muscle cell cultures were exposed to LPS and oxygen consumption was assessed using a Seahorse Bioscience extracellular flux analyzer. Mice were also exposed to LPS and oxygen consumption was assessed in mitochondria isolated from skeletal muscle. Results Acute LPS exposure resulted in significant reductions in cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)-stimulated maximal respiration (state 3u) and increased oligomycin induced state 4 (state 4O) respiration in C2C12 and human primary myotubes. These findings were observed in conjunction with increased mRNA of uncoupling protein 3 (UCP3), superoxide dismutase 2 (SOD2), and pyruvate dehydrogenase activity. The LPS-mediated changes in substrate oxidation and maximal mitochondrial respiration were prevented in the presence of the antioxidants N-acetylcysteine and catalase, suggesting a potential role of reactive oxygen species in mediating these effects. Mitochondria isolated from red gastrocnemius and quadriceps femoris muscle from mice injected with LPS also demonstrated reduced respiratory control ratio (RCR), and ADP- and FCCP-stimulated respiration. Conclusion LPS exposure in skeletal muscle alters mitochondrial oxygen consumption and substrate preference, which is absent when antioxidants are present. PMID:25528444
Hu, Shanming; Yao, Jianrong; Howe, Alexander A.; Menke, Brandon M.; Sivitz, William I.; Spector, Arthur A.
2012-01-01
Peroxisome proliferator-activated receptor γ (PPARγ) is expressed at low levels in skeletal muscle, where it protects against adiposity and insulin resistance via unclear mechanisms. To test the hypothesis that PPARγ directly modulates skeletal muscle metabolism, we created two models that isolate direct PPARγ actions on skeletal myocytes. PPARγ was overexpressed in murine myotubes by adenotransfection and in mouse skeletal muscle by plasmid electroporation. In cultured myotubes, PPARγ action increased fatty acid uptake and incorporation into myocellular lipids, dependent upon a 154 ± 20-fold up-regulation of CD36 expression. PPARγ overexpression more than doubled insulin-stimulated thymoma viral proto-oncogene (AKT) phosphorylation during low lipid availability. Furthermore, in myotubes exposed to palmitate levels that inhibit insulin signaling, PPARγ overexpression increased insulin-stimulated AKT phosphorylation and glycogen synthesis over 3-fold despite simultaneously increasing myocellular palmitate uptake. The insulin signaling enhancement was associated with an increase in activating phosphorylation of phosphoinositide-dependent protein kinase 1 and a normalized expression of palmitate-induced genes that antagonize AKT phosphorylation. In vivo, PPARγ overexpression more than doubled insulin-dependent AKT phosphorylation in lipid-treated mice but did not augment insulin-stimulated glucose uptake. We conclude that direct PPARγ action promotes myocellular storage of energy by increasing fatty acid uptake and esterification while simultaneously enhancing insulin signaling and glycogen formation. However, direct PPARγ action in skeletal muscle is not sufficient to account for the hypoglycemic actions of PPARγ agonists during lipotoxicity. PMID:22474127
Regulation of skeletal muscle blood flow during exercise in ageing humans
Hearon, Christopher M.
2015-01-01
Abstract The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium‐derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age‐associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium‐derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin‐1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. ‘functional sympatholysis’), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium‐dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age‐associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium‐dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans. PMID:26332887
Skeletal Mechanism Generation of Surrogate Jet Fuels for Aeropropulsion Modeling
NASA Astrophysics Data System (ADS)
Sung, Chih-Jen; Niemeyer, Kyle E.
2010-05-01
A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with skeletal reductions of two important hydrocarbon components, n-heptane and n-decane, relevant to surrogate jet fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination of the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each previous method, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal.
Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review.
Medeiros, Denis M
2016-06-01
Nutrients have been known to have a significant role in maintaining the health of the skeleton, both bone and cartilage. The nutrients that have received the majority of the attention are Vitamin D and calcium. However, limited attention has been directed toward three trace elements that may have mechanistic impact upon the skeletal tissues and could compromise skeletal health resulting from inadequate intakes of copper, iron, and selenium. The role of copper and selenium has been known, but the role of iron has only received recent attention. Copper deficiency is thought to impact bone health by a decrease in lysyl oxidase, a copper-containing enzyme, which facilitates collagen fibril crosslinking. Iron deficiency impact upon bone has only recently been discovered but the exact mechanism on how the deficient states enhance bone pathology is speculative. Selenium deficiency has an impact on cartilage thereby having an indirect impact on bone. However, several studies suggest that a mycotoxin when consumed by humans is the culprit in some cartilage disorders and the presence of selenium could attenuate the pathology. This review summarizes the current knowledge base with respect to skeletal integrity when each of these three trace elements are inadequate in diets of both animals and humans. © 2016 by the Society for Experimental Biology and Medicine.
Growth Factors and Tension-Induced Skeletal Muscle Growth
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1994-01-01
The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we have performed experiments to determine whether mechanical stimulation of cultured avian muscle cells alters their response to anabolic steroids or glucocorticoids. In static cultures, testosterone had no effect on muscle cell growth, but 5alpha-dihydrotestosterone and the synthetic steroid stanozolol increased cell growth by up to 18% and 30%, respectively, after a three day exposure. We completed development of a new IBM-based mechanical cell stimulator system to provide greater flexibility in operating and monitoring our experiments. Our previous long term studies on myofiber growth were designed around a perfusion system of our own design. We have recently changed to performing these studies using a modified CELLCO cartridge bioreactor system Z since it has been certified as the ground-based model for the Shuttle's Space Tissue Loss (STL) F= Cell Culture Module. The current goals of this aspect of the project are three fold: 1) to design a Z cell culture system for studying avian skeletal myofiber atrophy on the Shuttle and Space Station; 0 2) to expand the use of bioreactors to cells which do not grow in either suspension or attached to the hollow fibers; and 3) to combine the bioreactor system with our computerized mechanical cell stimulator to have a better in vitro model to study tension/gravity/stretch regulation of skeletal muscle size. Preliminary studies also reported on involved : (1) how release of tension can induce rapid atrophy of tissues cultured avian skeletal muscle cells, and (2) a mechanism to transfer and maintain avian skeletal muscle organoids in modified cartridges in the Space Tissue Loss Module.
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network.
Li, Bing; Balasubramanian, Karthika; Krakow, Deborah; Cohn, Daniel H
2017-12-20
Chondrogenesis is the earliest stage of skeletal development and is a highly dynamic process, integrating the activities and functions of transcription factors, cell signaling molecules and extracellular matrix proteins. The molecular mechanisms underlying chondrogenesis have been extensively studied and multiple key regulators of this process have been identified. However, a genome-wide overview of the gene regulatory network in chondrogenesis has not been achieved. In this study, employing RNA sequencing, we identified 332 protein coding genes and 34 long non-coding RNA (lncRNA) genes that are highly selectively expressed in human fetal growth plate chondrocytes. Among the protein coding genes, 32 genes were associated with 62 distinct human skeletal disorders and 153 genes were associated with skeletal defects in knockout mice, confirming their essential roles in skeletal formation. These gene products formed a comprehensive physical interaction network and participated in multiple cellular processes regulating skeletal development. The data also revealed 34 transcription factors and 11,334 distal enhancers that were uniquely active in chondrocytes, functioning as transcriptional regulators for the cartilage-selective genes. Our findings revealed a complex gene regulatory network controlling skeletal development whereby transcription factors, enhancers and lncRNAs participate in chondrogenesis by transcriptional regulation of key genes. Additionally, the cartilage-selective genes represent candidate genes for unsolved human skeletal disorders.
Lenci, Elena; Innocenti, Riccardo; Biagioni, Alessio; Menchi, Gloria; Bianchini, Francesca; Trabocchi, Andrea
2016-10-20
The application of a cell-based growth inhibition on a library of skeletally different glycomimetics allowed for the selection of a hexahydro-2 H -furo[3,2- b ][1,4]oxazine compound as candidate inhibitors of MDA-MB-231 cell growth. Subsequent synthesis of analogue compounds and preliminary biological studies validated the selection of a valuable hit compound with a novel polyhydroxylated structure for the modulation of the breast carcinoma cell cycle mechanism.
Smith, Aaron G; Muscat, George E O
2005-10-01
Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease.
Exercise training increases protein O-GlcNAcylation in rat skeletal muscle.
Hortemo, Kristin Halvorsen; Lunde, Per Kristian; Anonsen, Jan Haug; Kvaløy, Heidi; Munkvik, Morten; Rehn, Tommy Aune; Sjaastad, Ivar; Lunde, Ida Gjervold; Aronsen, Jan Magnus; Sejersted, Ole M
2016-09-01
Protein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O-GlcNAcylation in rat soleus and EDL There was a striking increase in O-GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O-GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O-GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O-GlcNAcylation level, indicating that aberrant O-GlcNAcylation cannot explain the skeletal muscle dysfunction in HF Human skeletal muscle displayed extensive protein O-GlcNAcylation that by large mirrored the fiber-type-related O-GlcNAcylation pattern in rats, suggesting O-GlcNAcylation as an important signaling system also in human skeletal muscle. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Chadwick, Jessica A; Bhattacharya, Sayak; Lowe, Jeovanna; Weisleder, Noah; Rafael-Fortney, Jill A
2017-02-01
Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD. Copyright © 2017 the American Physiological Society.
Nascimento, Alessandro R; Machado, Marcus V; Gomes, Fabiana; Vieira, Aline B; Gonçalves-de-Albuquerque, Cassiano F; Lessa, Marcos A; Bousquet, Pascal; Tibiriçá, Eduardo
2016-05-01
The objective of this study was to investigate the role of the SNS on hemodynamic, metabolic, and microvascular alterations in a rat model of HFD-induced MS with salt supplementation. In total, 40 adult male Wistar rats were fed normal chow (n = 10) or a HFD (n = 30) for 20 weeks. Thereafter, the HFD group received the centrally acting sympatho-modulatory drugs clonidine (0.1 mg/kg) or rilmenidine (1 mg/kg) or vehicle (n = 10/group) orally by gavage. FCD was evaluated using intravital video microscopy, and the SCD was evaluated using histochemical analysis. The pharmacological modulation of the SNS induced concomitant reductions in SBP, HR and plasma catecholamine levels. These effects were accompanied by a reversal of functional and structural capillary rarefaction in the skeletal muscle in both treated groups and an increase in SCD in the left ventricle only in the rilmenidine group. Improvement of the lipid profile and of glucose intolerance was also obtained only with rilmenidine treatment. Modulation of sympathetic overactivity results in the reversal of microvascular rarefaction in the skeletal muscle and left ventricle and improves metabolic parameters in an experimental model of MS in rats. © 2016 John Wiley & Sons Ltd.
Using exercise training to understand control of skeletal muscle metabolism.
Gibala, Martin J
2017-01-01
Bengt Saltin believed that exercise was the unsurpassed tool to study human integrative physiology. He demonstrated this over the course of his career by employing physical training as a model to advance our understanding of skeletal muscle metabolic control and the impact of physical activity on performance and health. Bengt was also a pioneer in advocating the concept of exercise is medicine. His scientific curiosity was perhaps exceeded only by his generosity.
Skeletal muscle performance and ageing
Trouwborst, Inez; Clark, Brian C.
2017-01-01
Abstract The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co‐morbidity, and premature death. An important cause of physical limitations is the age‐related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation–contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. PMID:29151281
Somatotropin enhanced muscle protein synthesis in growing pigs is not modulated by insulin
USDA-ARS?s Scientific Manuscript database
Chronic, 7-day treatment of growing pigs with porcine somatotropin (ST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that enhances translation initiation. This study aimed to determine whether the ST-induced increase in skeletal muscle protein synthesis was media...
Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T
2016-02-26
The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation.
Proserpio, Valentina; Fittipaldi, Raffaella; Ryall, James G.; Sartorelli, Vittorio; Caretti, Giuseppina
2013-01-01
Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein–protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause–release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting. PMID:23752591
Treatment of class ii in adulthood by forsus frd device.
DE Nuccio, F; D'Emidio, M M; DE Nuccio, F
2016-01-01
Scientific research data show that the Forsus FRD seems to have a great potential in the correction of Class II in childhood. The conclusions reached by the various Authors seem to support the hypothesis of an exclusively or mainly dentoalveolar correction, as the skeletal correction seems to have no - or little - appreciable results. In the light of such provided by different Authors, the potential of dentoalveolar compensation in adult patients with mild skeletal class II was investigated. At the UOC (Complex Operative Unit) of Orthodontics at "G. Eastman" Hospital Rome, 3 cases of skeletal class II mild (ANB <5 °) in adult patients were selected. They were treated with fixed multibracket appliance and Forsus EZ2 module. Cephalometric tracings were compared at the beginning and at the end of the treatment in order to assess the skeletal and dentoalveolar changes. The occlusal correction was achieved through a dentoalveolar compensation characterized by the flaring of the lower teeth. Forsus FRD equipment is an excellent compromise for the correction of mild Class II, even during the post development age. The resulting correction is appreciated at dental alveolar level with a mesial movement of the incisors and molars.
Bonilla-Claudio, Margarita; Wang, Jun; Bai, Yan; Klysik, Elzbieta; Selever, Jennifer; Martin, James F
2012-02-01
We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.
Allen, Mark B; Brey, Richard R; Gesell, Thomas; Derryberry, Dewayne; Poudel, Deepesh
2016-01-01
This study had a goal to evaluate the predictive capabilities of the National Council on Radiation Protection and Measurements (NCRP) wound model coupled to the International Commission on Radiological Protection (ICRP) systemic model for 90Sr-contaminated wounds using non-human primate data. Studies were conducted on 13 macaque (Macaca mulatta) monkeys, each receiving one-time intramuscular injections of 90Sr solution. Urine and feces samples were collected up to 28 d post-injection and analyzed for 90Sr activity. Integrated Modules for Bioassay Analysis (IMBA) software was configured with default NCRP and ICRP model transfer coefficients to calculate predicted 90Sr intake via the wound based on the radioactivity measured in bioassay samples. The default parameters of the combined models produced adequate fits of the bioassay data, but maximum likelihood predictions of intake were overestimated by a factor of 1.0 to 2.9 when bioassay data were used as predictors. Skeletal retention was also over-predicted, suggesting an underestimation of the excretion fraction. Bayesian statistics and Monte Carlo sampling were applied using IMBA to vary the default parameters, producing updated transfer coefficients for individual monkeys that improved model fit and predicted intake and skeletal retention. The geometric means of the optimized transfer rates for the 11 cases were computed, and these optimized sample population parameters were tested on two independent monkey cases and on the 11 monkeys from which the optimized parameters were derived. The optimized model parameters did not improve the model fit in most cases, and the predicted skeletal activity produced improvements in three of the 11 cases. The optimized parameters improved the predicted intake in all cases but still over-predicted the intake by an average of 50%. The results suggest that the modified transfer rates were not always an improvement over the default NCRP and ICRP model values.
Miyazaki, Mitsunori; McCarthy, John J; Fedele, Mark J; Esser, Karyn A
2011-01-01
Abstract The mammalian target of rapamycin complex 1 (mTORC1) functions as a central integrator of a wide range of signals that modulate protein metabolism and cell growth. However, the contributions of individual pathways regulating mTORC1 activity in skeletal muscle are poorly defined. The purpose of this study was to determine the regulatory mechanisms that contribute to mTORC1 activation during mechanical overload-induced skeletal muscle hypertrophy. Consistent with previous studies, mechanical overload induced progressive hypertrophy of the plantaris muscle which was associated with significant increases in total RNA content and protein metabolism. mTORC1 was activated after a single day of overload as indicated by a significant increase in S6K1 phosphorylation at T389 and T421/S424. In contrast, Akt activity, as assessed by Akt phosphorylation status (T308 and S473), phosphorylation of direct downstream targets (glycogen synthase kinase 3 β, proline-rich Akt substrate 40 kDa and tuberous sclerosis 2 (TSC2)) and a kinase assay, was not significantly increased until 2–3 days of overload. Inhibition of phosphoinositide 3-kinase (PI3K) activity by wortmannin was sufficient to block insulin-dependent signalling but did not prevent the early activation of mTORC1 in response to overload. We identified that the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)-dependent pathway was activated at day 1 after overload. In addition, a target of MEK/ERK signalling, phosphorylation of TSC2 at S664, was also increased at this early time point. These observations demonstrate that in vivo, mTORC1 activation at the early phase of mechanical overload in skeletal muscle occurs independently of PI3K/Akt signalling and provide evidence that the MEK/ERK pathway may contribute to mTORC1 activation through phosphorylation of TSC2. PMID:21300751
Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen
2018-01-01
Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.
Sun, Li; Zaidi, Mone; Zallone, Alberta
2014-01-01
One of the most meaningful results recently achieved in bone research has been to reveal that the pituitary hormones have profound effect on bone, so that the pituitary-bone axis has become one of the major topics in skeletal physiology. Here, we discuss the relevant evidence about the posterior pituitary hormone oxytocin (OT), previously thought to exclusively regulate parturition and breastfeeding, which has recently been established to directly regulate bone mass. Both osteoblasts and osteoclasts express OT receptors (OTR), whose stimulation enhances bone mass. Consistent with this, mice deficient in OT or OTR display profoundly impaired bone formation. In contrast, bone resorption remains unaffected in OT deficiency because, even while OT stimulates the genesis of osteoclasts, it inhibits their resorptive function. Furthermore, in addition to its origin from the pituitary, OT is also produced by bone marrow osteoblasts acting as paracrine-autocrine regulator of bone formation modulated by estrogens. In turn, the power of estrogen to increase bone mass is OTR-dependent. Therefore, OTR−/− mice injected with 17β-estradiol do not show any effects on bone formation parameters, while the same treatment increases bone mass in wild-type mice. These findings together provide evidence for an anabolic action of OT in regulating bone mass and suggest that bone marrow OT may enhance the bone-forming action of estrogen through an autocrine circuit. This established new physiological role for OT in the maintenance of skeletal integrity further suggests the potential use of this hormone for the treatment of osteoporosis. PMID:25209411
Musculoskeletal phenotype through the life course: the role of nutrition.
Ward, Kate
2012-02-01
This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.
Zadpoor, Amir A; Weinans, Harrie
2015-03-18
Patient-specific analysis of bones is considered an important tool for diagnosis and treatment of skeletal diseases and for clinical research aimed at understanding the etiology of skeletal diseases and the effects of different types of treatment on their progress. In this article, we discuss how integration of several important components enables accurate and cost-effective patient-specific bone analysis, focusing primarily on patient-specific finite element (FE) modeling of bones. First, the different components are briefly reviewed. Then, two important aspects of patient-specific FE modeling, namely integration of modeling components and automation of modeling approaches, are discussed. We conclude with a section on validation of patient-specific modeling results, possible applications of patient-specific modeling procedures, current limitations of the modeling approaches, and possible areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Xuan, Jian Ying; Harper, Mary-Ellen
2012-01-01
Reduced glutathione (GSH) is the major determinant of redox balance in mitochondria and as such is fundamental in the control of cellular bioenergetics. GSH is also the most important nonprotein antioxidant molecule in cells. Surprisingly, the effect of redox environment has never been examined in skeletal muscle and brown adipose tissue (BAT), two tissues that have exceptional dynamic range and that are relevant to the development of obesity and related diseases. Here, we show that the redox environment plays crucial, yet divergent, roles in modulating mitochondrial bioenergetics in skeletal muscle and BAT. Skeletal muscle mitochondria were found to naturally have a highly reduced environment (GSH/GSSG≈46), and this was associated with fairly high (∼40%) rates of state 4 (nonphosphorylating) respiration and decreased reactive oxygen species (ROS) emission. The deglutathionylation of uncoupling protein 3 (UCP3) following an increase in the reductive potential of mitochondria results in a further increase in nonphosphorylating respiration (∼20% in situ). BAT mitochondria were found to have a much more oxidized status (GSH/GSSG≈13) and had basal reactive oxygen species emission that was higher (∼250% increase in ROS generation) than that in skeletal muscle mitochondria. When redox status was subsequently increased (i.e., more reduced), UCP1-mediated uncoupling was more sensitive to GDP inhibition. Surprisingly, BAT was found to be devoid of glutaredoxin-2 (Grx2) expression, while there was abundant expression in skeletal muscle. Taken together, these findings reveal the importance of redox environment in controlling bioenergetic functions in both tissues, and the highly unique characteristics of BAT in this regard.
Jans, Anneke; Konings, Ellen; Goossens, Gijs H; Bouwman, Freek G; Moors, Chantalle C; Boekschoten, Mark V; Afman, Lydia A; Müller, Michael; Mariman, Edwin C; Blaak, Ellen E
2012-04-01
Dietary fat quality may influence skeletal muscle lipid processing and fat accumulation, thereby modulating insulin sensitivity. The objective was to examine the acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA processing and postprandial insulin sensitivity in obese, insulin-resistant men. In a single-blind, randomized, crossover study, 10 insulin-resistant men consumed 3 high-fat mixed meals (2.6 MJ), which were high in SFAs, MUFAs, or PUFAs. Fasting and postprandial skeletal muscle FA processing was examined by measuring differences in arteriovenous concentrations across the forearm muscle. [²H₂]Palmitate was infused intravenously to label endogenous triacylglycerol and FFAs in the circulation, and [U-¹³C]palmitate was added to the meal to label chylomicron-triacylglycerol. Skeletal muscle biopsy samples were taken to assess intramuscular lipid metabolism and gene expression. Insulin and glucose responses (AUC) after the SFA meal were significantly higher than those after the PUFA meal (P = 0.006 and 0.033, respectively). Uptake of triacylglycerol-derived FAs was lower in the postprandial phase after the PUFA meal than after the other meals (AUC₆₀₋₂₄₀; P = 0.02). The fractional synthetic rate of the triacylglycerol, diacylglycerol, and phospholipid pool was higher after the MUFA meal than after the SFA meal. PUFA induced less transcriptional downregulation of oxidative pathways than did the other meals. PUFAs reduced triacylglycerol-derived skeletal muscle FA uptake, which was accompanied by higher postprandial insulin sensitivity, a more transcriptional oxidative phenotype, and altered intramyocellular lipid partitioning and may therefore be protective against the development of insulin resistance.
Effects of prolonged space flight on rat skeletal muscle.
Nesterov, V P; Zheludkova, Z P; Kuznetsova, L A
1979-10-01
The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles.
Conaway, Mark A; Schroeder, Lauren; von Cramon-Taubadel, Noreen
2018-03-22
Integration and modularity reflect the coordinated action of past evolutionary processes and, in turn, constrain or facilitate phenotypic evolvability. Here, we analyze magnitudes of integration in the macaque postcranium to test whether 20 a priori defined modules are (1) more tightly integrated than random sets of postcranial traits, and (2) are differentiated based on mode of definition, with developmental modules expected to be more integrated than functional or anatomical modules. The 3D morphometric data collected for eight limb and girdle bones for 60 macaques were collated into anatomical, developmental, and functional modules. A resampling technique was used to create random samples of integration values for each module for statistical comparison. Our results found that not all a priori defined modules were more strongly integrated than random samples of postcranial traits and that specific types of modules did not present consistent patterns of integration. Rather, girdle and joint modules were consistently less integrated than limb modules, and forelimb elements were less integrated than hindlimbs. The results suggest that morphometrically complex modules tend to be less integrated than simple limb bones, irrespective of the number of available traits. However, differences in integration of the fore- and hindlimb more likely reflects the multitude of locomotory, feeding, and social functions involved. It remains to be tested whether patterns of integration identified here are primate universals, and to what extent they vary depending on phylogenetic or functional factors. © 2018 Wiley Periodicals, Inc.
Role and mechanism of action of Sclerostin in bone
Delgado-Calle, Jesus; Sato, Amy Y.; Bellido, Teresita
2016-01-01
After discovering that lack of Sost/sclerostin expression is the cause of the high bone mass human syndromes Van Buchem disease and sclerosteosis, extensive animal experimentation and clinical studies demonstrated that sclerostin plays a critical role in bone homeostasis and that its deficiency or pharmacological neutralization increases bone formation. Dysregulation of sclerostin expression also underlies the pathophysiology of skeletal disorders characterized by loss of bone mass as well as the damaging effects of some cancers in bone. Thus, sclerostin has quickly become a promising molecular target for the treatment of osteoporosis and other skeletal diseases, and beneficial skeletal outcomes are observed in animal studies and clinical trials using neutralizing antibodies against sclerostin. However, the anabolic effect of blocking sclerostin decreases with time, bone mass accrual is also accompanied by anti-catabolic effects, and there is bone loss over time after therapy discontinuation. Further, the cellular source of sclerostin in the bone/bone marrow microenvironment under physiological and pathological conditions, the pathways that regulate sclerostin expression and the mechanisms by which sclerostin modulates the activity of osteocytes, osteoblasts, and osteoclasts remain unclear. In this review, we highlight the current knowledge on the regulation of Sost/sclerotin expression and its mechanism(s) of action, discuss novel observations regarding its role in signaling pathways activated by hormones and mechanical stimuli in bone, and propose future research needed to understand the full potential of therapeutic interventions that modulate Sost/sclerostin expression. PMID:27742498
Laughlin, M. Harold
2015-01-01
Type 2 diabetes (T2D) alters capillary hemodynamics, causes capillary rarefaction in skeletal muscle, and alters endothelial and vascular smooth muscle cell phenotype, resulting in impaired vasodilatory responses. These changes contribute to altered blood flow responses to physiological stimuli, such as exercise and insulin secretion. T2D-induced microvascular dysfunction impairs glucose and insulin delivery to skeletal muscle (and other tissues such as skin and nervous), thereby reducing glucose uptake and perpetuating hyperglycemia and hyperinsulinemia. In patients with T2D, exercise training (EX) improves microvascular vasodilator and insulin signaling and attenuates capillary rarefaction in skeletal muscle. EX-induced changes subsequently augment glucose and insulin delivery as well as glucose uptake. If these adaptions occur in a sufficient amount of tissue, and skeletal muscle in particular, chronic exposure to hyperglycemia and hyperinsulinemia and the risk of microvascular complications in all vascular beds will decrease. We postulate that EX programs that engage as much skeletal muscle mass as possible and recruit as many muscle fibers within each muscle as possible will generate the greatest improvements in microvascular function, providing that the duration of the stimulus is sufficient. Primary improvements in microvascular function occur in tissues (skeletal muscle primarily) engaged during exercise, and secondary improvements in microvascular function throughout the body may result from improved blood glucose control. We propose that the added benefit of combined resistance and aerobic EX programs and of vigorous intensity EX programs is not simply “more is better.” Rather, we believe the additional benefit is the result of EX-induced adaptations in and around more muscle fibers, resulting in more muscle mass and the associated microvasculature being changed. Thus, to acquire primary and secondary improvements in microvascular function and improved blood glucose control, EX programs should involve upper and lower body exercise and modulate intensity to augment skeletal muscle fiber recruitment. Under conditions of limited mobility, it may be necessary to train skeletal muscle groups separately to maximize whole body skeletal muscle fiber recruitment. PMID:26408541
78 FR 28230 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
..., Metabolism, Nutrition and Reproductive Sciences Integrated Review Group; Integrative Physiology of Obesity...; Skeletal Muscle and Exercise Physiology Study Section. Date: June 13-14, 2013. Time: 8:00 a.m. to 5:00 p.m... Group; Neurological, Aging and Musculoskeletal Epidemiology Study Section. Date: June 13-14, 2013. Time...
Skeletal muscle performance and ageing.
Tieland, Michael; Trouwborst, Inez; Clark, Brian C
2018-02-01
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme
2016-04-15
Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function. Copyright © 2016 the American Physiological Society.
Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell
2016-01-01
Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123
Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle.
Greggio, Chiara; Jha, Pooja; Kulkarni, Sameer S; Lagarrigue, Sylviane; Broskey, Nicholas T; Boutant, Marie; Wang, Xu; Conde Alonso, Sonia; Ofori, Emmanuel; Auwerx, Johan; Cantó, Carles; Amati, Francesca
2017-02-07
Mitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults. Exercise differentially modulated respiratory complexes. Complex I was the most upregulated complex and not stoichiometrically associated to the other complexes. In contrast to the other complexes, complex I was almost exclusively found assembled in supercomplexes in muscle mitochondria. Overall, supercomplex content was increased after exercise. In particular, complexes I, III, and IV were redistributed to supercomplexes in the form of I+III 2 +IV. Taken together, our results provide the first evidence that exercise affects the stoichiometry of supercomplex formation in humans and thus reveal a novel adaptive mechanism for increased energy demand. Copyright © 2017 Elsevier Inc. All rights reserved.
Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats.
Chabowski, A; Zendzian-Piotrowska, M; Mikłosz, A; Łukaszuk, B; Kurek, K; Górski, J
2013-07-01
Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.
Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP.
Serysheva, I I; Schatz, M; van Heel, M; Chiu, W; Hamilton, S L
1999-01-01
The functional state of the skeletal muscle Ca2+ release channel is modulated by a number of endogenous molecules during excitation-contraction. Using electron cryomicroscopy and angular reconstitution techniques, we determined the three-dimensional (3D) structure of the skeletal muscle Ca2+ release channel activated by a nonhydrolyzable analog of ATP in the presence of Ca2+. These ligands together produce almost maximum activation of the channel and drive the channel population toward a predominately open state. The resulting 30-A 3D reconstruction reveals long-range conformational changes in the cytoplasmic region that might affect the interaction of the Ca2+ release channel with the t-tubule voltage sensor. In addition, a central opening and mass movements, detected in the transmembrane domain of both the Ca(2+)- and the Ca2+/nucleotide-activated channels, suggest a mechanism for channel opening similar to opening-closing of the iris in a camera diaphragm. PMID:10512814
Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle
NASA Technical Reports Server (NTRS)
Baldwin, K. M.
1996-01-01
This paper summarizes the effects of spaceflight on the functional, morphological, and biochemical properties of human and rodent skeletal muscle. The findings suggest that following as little as 5-6 in space there are deficits in both human and rodent motor capacity, strength, and endurance properties of skeletal muscle. The reduced strength is associated, in part, with a reduction in muscle mass as reflected in smaller cross-sectional areas of both fast- and slow-twitch fibers. Available evidence in animal models suggests that slow-twitch fibers are more sensitive to the atrophying process. Accompanying the atrophy is a transformation of slow to fast protein phenotype involving myosin heavy chain and sarcoplasmic reticulum protein isoforms. These transformations appear to be regulated, in part, by pretranslational processes. Data on the oxidative capacity of rodent skeletal muscle suggest a bias toward preferential utilization of carbohydrate as the primary substrate. These collective findings suggest that skeletal muscles comprised chiefly of slow fibers are highly dependent on gravity for the normal expression of protein mass and slow phenotype. Future studies need to focus on elucidating the mechanisms associated with the atrophy response, as well as identifying suitable exercise and other countermeasures capable of preserving the structural and functional integrity of skeletal muscle.
Preventive Effects of Poloxamer 188 on Muscle Cell Damage Mechanics Under Oxidative Stress.
Wong, Sing Wan; Yao, Yifei; Hong, Ye; Ma, Zhiyao; Kok, Stanton H L; Sun, Shan; Cho, Michael; Lee, Kenneth K H; Mak, Arthur F T
2017-04-01
High oxidative stress can occur during ischemic reperfusion and chronic inflammation. It has been hypothesized that such oxidative challenges could contribute to clinical risks such as deep tissue pressure ulcers. Skeletal muscles can be challenged by inflammation-induced or reperfusion-induced oxidative stress. Oxidative stress reportedly can lower the compressive damage threshold of skeletal muscles cells, causing actin filament depolymerization, and reduce membrane sealing ability. Skeletal muscles thus become easier to be damaged by mechanical loading under prolonged oxidative exposure. In this study, we investigated the preventive effect of poloxamer 188 (P188) on skeletal muscle cells against extrinsic oxidative challenges (H 2 O 2 ). It was found that with 1 mM P188 pre-treatment for 1 h, skeletal muscle cells could maintain their compressive damage threshold. The actin polymerization dynamics largely remained stable in term of the expression of cofilin, thymosin beta 4 and profilin. Laser photoporation demonstrated that membrane sealing ability was preserved even as the cells were challenged by H 2 O 2 . These findings suggest that P188 pre-treatment can help skeletal muscle cells retain their normal mechanical integrity in oxidative environments, adding a potential clinical use of P188 against the combined challenge of mechanical-oxidative stresses. Such effect may help to prevent deep tissue ulcer development.
Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G
2016-01-01
The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades. PMID:27997359
Miura, Pedro; Chakkalakal, Joe V; Boudreault, Louise; Bélanger, Guy; Hébert, Richard L; Renaud, Jean-Marc; Jasmin, Bernard J
2009-12-01
A therapeutic strategy to treat Duchenne muscular dystrophy (DMD) involves identifying compounds that can elevate utrophin A expression in muscle fibers of affected patients. The dystrophin homologue utrophin A can functionally substitute for dystrophin when its levels are enhanced in the mdx mouse model of DMD. Utrophin A expression in skeletal muscle is regulated by mechanisms that promote the slow myofiber program. Since activation of peroxisome proliferator-activated receptor (PPAR) beta/delta promotes the slow oxidative phenotype in skeletal muscle, we initiated studies to determine whether pharmacological activation of PPARbeta/delta provides functional benefits to the mdx mouse. GW501516, a PPARbeta/delta agonist, was found to stimulate utrophin A mRNA levels in C2C12 muscle cells through an element in the utrophin A promoter. Expression of PPARbeta/delta was greater in skeletal muscles of mdx versus wild-type mice. We treated 5-7-week-old mdx mice with GW501516 for 4 weeks. This treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels leading to its increased expression at the sarcolemma. Expression of alpha1-syntrophin and beta-dystroglycan was restored to the sarcolemma. Improvement of mdx sarcolemmal integrity was evidenced by decreased intracellular IgM staining and decreased in vivo Evans blue dye (EBD) uptake. GW501516 treatment also conferred protection against eccentric contraction (ECC)-induced damage of mdx skeletal muscles, as shown by a decreased contraction-induced force drop and reduction of dye uptake during ECC. These results demonstrate that pharmacological activation of PPARbeta/delta might provide functional benefits to DMD patients through enhancement of utrophin A expression.
Qi, Zhi-Gang; Zhao, Xi; Zhong, Wen; Xie, Mei-Lin
2016-01-01
Osthole may be a dual agonist of peroxisome proliferator-activated receptors (PPAR) α/γ and ameliorate the insulin resistance (IR), but its mechanisms are not yet understood completely. We investigated the effects of osthole on PPARα/γ-mediated target genes involved in glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle in fatty liver and IR rats. The rat model was established by orally feeding high-fat and high-sucrose emulsion for 9 weeks. The experimental rats were treated with osthole 5-10 mg/kg by gavage after feeding the emulsion for 6 weeks, and were sacrificed 4 weeks after administration. After treatment with osthole 5-10 mg/kg for 4 weeks, the lipid levels in serum and liver were decreased by 37.9-67.2% and 31.4-38.5% for triglyceride, 33.1-47.5% and 28.5-31.2% for free fatty acid, respectively, the fasting blood glucose, fasting serum insulin, and homeostasis model assessment of IR were also decreased by 17.2-22.7%, 25.9-26.7%, and 37.5-42.8%, respectively. Osthole treatment might simultaneously decrease the sterol regulatory element binding protein-1c, diacylglycerol acyltransferase, and fatty acid synthase mRNA expressions in liver and adipose tissue, and increase the carnitine palmitoyltransferase-1A mRNA expression in liver and glucose transporter-4 mRNA expression in skeletal muscle, especially in the osthole 10 mg/kg group (p < 0.01). Osthole can improve glucose and lipid metabolism in fatty liver and IR rats, and its mechanisms may be associated with synergic modulation of PPARα/γ-mediated target genes involved in glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle.
Burwell, R Geoffrey; Dangerfield, Peter H; Freeman, Brian J C
2008-01-01
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). Encouraging advances thought to be related to AIS pathogenesis have recently been made in several fields including anthropometry of bone growth, bone mass, spinal growth modulation, extra-spinal left-right skeletal length asymmetries and disproportions, magnetic resonance imaging of vertebral column, spinal cord, brain, skull, and molecular pathogenesis. These advances are leading to the evaluation of new treatments including attempts at minimally invasive surgery on the spine and peri-apical ribs. Several concepts of AIS are outlined indicating their clinical applications but not their research potential. The concepts, by derivation morphological, molecular and mathematical, are addressed in 15 sections: 1) initiating and progressive factors; 2) relative anterior spinal overgrowth; 3) dorsal shear forces that create axial rotational instability; 4) rotational preconstraint; 5) uncoupled, or asynchronous, spinal neuro-osseous growth; 6) brain, nervous system and skull; 7) a novel neuro-osseous escalator concept based on a putative abnormality of two normal polarized processes namely, a) increasing skeletal dimensions, and b) the CNS body schema - both contained within a neuro-osseous timing of maturation (NOTOM) concept; 8) transverse plane pelvic rotation, skeletal asymmetries and developmental theory; 9) thoraco-spinal concept; 10) origin in contracture at the hips; 11) osteopenia; 12) melatonin deficiency; 13) systemic melatonin-signaling pathway dysfunction; 14) platelet calmodulin dysfunction; and 15) biomechanical spinal growth modulation. From these concepts, a collective model for AIS pathogenesis is formulated. The central concept of this model includes the body schema of the neural systems, widely-studied in adults, that control normal posture and coordinated movements with frames of reference in the posterior parietal cortex. The escalator concept has implications for the normal development of upright posture, and the evolution in humans of neural control, the trunk and unique bipedal gait.
Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.
Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F
2006-10-01
The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.
Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.
2016-01-01
The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435
Neumann, Jake T; Diaz-Sylvester, Paula L; Fleischer, Sidney; Copello, Julio A
2011-01-01
7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one [CGP-37157 (CGP)], a benzothiazepine derivative of clonazepam, is commonly used as a blocker of the mitochondrial Na+/Ca²+ exchanger. However, evidence suggests that CGP could also affect other targets, such as L-type Ca²+ channels and plasmalemma Na+/Ca²+ exchanger. Here, we tested the possibility of a direct modulation of ryanodine receptor channels (RyRs) and/or sarco/endoplasmic reticulum Ca²+-stimulated ATPase (SERCA) by CGP. In the presence of ruthenium red (inhibitor of RyRs), CGP decreased SERCA-mediated Ca²+ uptake of cardiac and skeletal sarcoplasmic reticulum (SR) microsomes (IC₅₀ values of 6.6 and 9.9 μM, respectively). The CGP effects on SERCA activity correlated with a decreased V(max) of ATPase activity of SERCA-enriched skeletal SR fractions. CGP (≥ 5 μM) also increased RyR-mediated Ca²+ leak from skeletal SR microsomes. Planar bilayer studies confirmed that both cardiac and skeletal RyRs are directly activated by CGP (EC(50) values of 9.4 and 12.0 μM, respectively). In summary, we found that CGP inhibits SERCA and activates RyR channels. Hence, the action of CGP on cellular Ca²+ homeostasis reported in the literature of cardiac, skeletal muscle, and other nonmuscle systems requires further analysis to take into account the contribution of all CGP-sensitive Ca²+ transporters.
Neumann, Jake T.; Diaz-Sylvester, Paula L.; Fleischer, Sidney
2011-01-01
7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one [CGP-37157 (CGP)], a benzothiazepine derivative of clonazepam, is commonly used as a blocker of the mitochondrial Na+/Ca2+ exchanger. However, evidence suggests that CGP could also affect other targets, such as L-type Ca2+ channels and plasmalemma Na+/Ca2+ exchanger. Here, we tested the possibility of a direct modulation of ryanodine receptor channels (RyRs) and/or sarco/endoplasmic reticulum Ca2+-stimulated ATPase (SERCA) by CGP. In the presence of ruthenium red (inhibitor of RyRs), CGP decreased SERCA-mediated Ca2+ uptake of cardiac and skeletal sarcoplasmic reticulum (SR) microsomes (IC50 values of 6.6 and 9.9 μM, respectively). The CGP effects on SERCA activity correlated with a decreased Vmax of ATPase activity of SERCA-enriched skeletal SR fractions. CGP (≥5 μM) also increased RyR-mediated Ca2+ leak from skeletal SR microsomes. Planar bilayer studies confirmed that both cardiac and skeletal RyRs are directly activated by CGP (EC50 values of 9.4 and 12.0 μM, respectively). In summary, we found that CGP inhibits SERCA and activates RyR channels. Hence, the action of CGP on cellular Ca2+ homeostasis reported in the literature of cardiac, skeletal muscle, and other nonmuscle systems requires further analysis to take into account the contribution of all CGP-sensitive Ca2+ transporters. PMID:20923851
Mandai, Shintaro; Mori, Takayasu; Nomura, Naohiro; Furusho, Taisuke; Arai, Yohei; Kikuchi, Hiroaki; Sasaki, Emi; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi
2018-06-14
With-no-lysine (K) (WNK) kinases, which are mutated in the inherited form of hypertension pseudohypoaldosteronism type II, are essential regulators of membrane ion transporters. Here, we report that WNK1 positively regulates skeletal muscle cell hypertrophy via mediating the function of the pro-longevity transcription factor forkhead box protein O4 (FOXO4) independent of the conventional WNK signaling pathway linking SPS/STE20-related proline-alanine-rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1) to downstream effector ion transporters. Small interfering RNA (siRNA)-mediated silencing of WNK1, but not SPAK/OSR1 kinases, induced myotube atrophy and remarkable increases in the mRNA expression of the muscle atrophy ubiquitin ligases MAFbx and MuRF1 in C2C12 mouse skeletal muscle cells. WNK1 silencing also increased FOXO4 nuclear localization, and co-transfection of Foxo4-targeted siRNA completely reversed the myotube atrophy and upregulation of atrogene transcription induced by WNK1 silencing. We further illustrated that WNK1 protein abundance in skeletal muscle was increased by chronic voluntary wheel running exercise (hypertrophic stimulus) and markedly decreased by adenine-induced chronic kidney disease (atrophic stimulus) in mice. These findings suggest that WNK1 is involved in the physiological regulation of mammalian skeletal muscle hypertrophy and atrophy via interactions with FOXO4. The WNK1-FOXO4 axis may be a potential therapeutic target in human diseases causing sarcopenia.
The Central Nervous System and Bone Metabolism: An Evolving Story.
Dimitri, Paul; Rosen, Cliff
2017-05-01
Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.
Hernández-Santana, Aaron; Pérez-López, Verónica; Zubeldia, Jose María; Jiménez-del-Rio, Miguel
2014-04-01
Rhodiola rosea is a perennial plant in the Crassulaceae family, recently postulated to exert its adaptogenic functions partially by modulating the expression of molecular factors such as heat shock proteins (HSP). The aim of this study was to analyze the efficacy of a Rhodiola rosea extract (Rhodiolife) in protecting murine skeletal muscle cells (C2 C12 myotubes) from chemically induced oxidative stress and to establish whether modulation of HSP70 expression is observed. C2 C12 cells treated with Rhodiolife did not experience any loss of viability (p > 0.05) at concentrations of 1-100 µg/mL for up to 24 h. In control cultures, viability decreased 25% following exposure to 2 mM H2 O2 (1 h). However, no significant decrease in viability in cells pre-treated with extract at concentrations as low as 1 µg/mL was observed. HSP70 mRNA levels were up-regulated two-fold in cell cultures treated with Rhodiolife (10 µg/mL), and expression was further enhanced by exposure to H2 O2 (six-fold, p < 0.05). HSP70 protein levels were maintained in pre-treated cell cultures compared to controls but was significantly lower (-50%) in cells lacking treatment exposed to H2 O2 . The present results indicate that Rhodiolife protects C2 C12 myotubes against peroxide-induced oxidative stress through the modulation of the molecular chaperone HSP70. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.
1995-01-01
Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.
Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle
Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene
2011-01-01
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933
Maarman, Gerald J; Andrew, Brittany M; Blackhurst, Dee M; Ojuka, Edward O
2017-04-01
Excess uric acid has been shown to induce oxidative stress, triglyceride accumulation, and mitochondrial dysfunction in the liver and is an independent predictor of type-2 diabetes. Skeletal muscle plays a dominant role in type 2 diabetes and presents a large surface area to plasma uric acid. However, the effects of uric acid on skeletal muscle are underinvestigated. Our aim was therefore to characterize the effects of excessive uric acid on oxidative stress, triglyceride content, and mitochondrial function in skeletal muscle C 2 C 12 myotubes and assess how these are modulated by the antioxidant molecule melatonin. Differentiated C 2 C 12 myotubes were exposed to 750 µM uric acid or uric acid + 10 nM melatonin for 72 h. Compared with control, uric acid increased triglyceride content by ~237%, oxidative stress by 32%, and antioxidant capacity by 135%. Uric acid also reduced endogenous ROUTINE respiration, complex II-linked oxidative phosphorylation, and electron transfer system capacities. Melatonin counteracted the effects of uric acid without further altering antioxidant capacity. Our data demonstrate that excess uric acid has adverse effects on skeletal muscle similar to those previously reported in hepatocytes and suggest that melatonin at a low physiological concentration of 10 nM may be a possible therapy against some adverse effects of excess uric acid. NEW & NOTEWORTHY Few studies have investigated the effects of uric acid on skeletal muscle. This study shows that hyperuricemia induces mitochondrial dysfunction and triglyceride accumulation in skeletal muscle. The findings may explain why hyperuricemia is an independent predictor of diabetes. Copyright © 2017 the American Physiological Society.
Satellite cells in human skeletal muscle plasticity
Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni
2015-01-01
Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092
Zhang, Yong; Yu, Bing; He, Jun; Chen, Daiwen
2016-01-01
Skeletal muscle is a remarkably complicated organ comprising many different cell types, and it plays an important role in lifelong metabolic health. Nutrients, as an external regulator, potently regulate skeletal muscle development through various internal regulatory factors, such as mammalian target of rapamycin (mTOR) and microRNAs (miRNAs). As a nutrient sensor, mTOR, integrates nutrient availability to regulate myogenesis and directly or indirectly influences microRNA expression. MiRNAs, a class of small non-coding RNAs mediating gene silencing, are implicated in myogenesis and muscle-related diseases. Meanwhile, growing evidence has emerged supporting the notion that the expression of myogenic miRNAs could be regulated by nutrients in an epigenetic mechanism. Therefore, this review presents a novel insight into the cell signaling network underlying nutrient-mTOR-miRNA pathway regulation of skeletal myogenesis and summarizes the epigenetic modifications in myogenic differentiation, which will provide valuable information for potential therapeutic intervention. PMID:27766039
Treatment of class ii in adulthood by forsus frd device
DE NUCCIO, F.; D’EMIDIO, M.M.; DE NUCCIO, F.
2016-01-01
SUMMARY Objectives Scientific research data show that the Forsus FRD seems to have a great potential in the correction of Class II in childhood. The conclusions reached by the various Authors seem to support the hypothesis of an exclusively or mainly dentoalveolar correction, as the skeletal correction seems to have no – or little – appreciable results. In the light of such provided by different Authors, the potential of dentoalveolar compensation in adult patients with mild skeletal class II was investigated. Materials and methods At the UOC (Complex Operative Unit) of Orthodontics at “G. Eastman” Hospital Rome, 3 cases of skeletal class II mild (ANB <5 °) in adult patients were selected. They were treated with fixed multibracket appliance and Forsus EZ2 module. Cephalometric tracings were compared at the beginning and at the end of the treatment in order to assess the skeletal and dentoalveolar changes. Results The occlusal correction was achieved through a dentoalveolar compensation characterized by the flaring of the lower teeth. Conclusions Forsus FRD equipment is an excellent compromise for the correction of mild Class II, even during the post development age. The resulting correction is appreciated at dental alveolar level with a mesial movement of the incisors and molars. PMID:28280539
Dunlop, Kristyn; Cedrone, Megan; Staples, James F; Regnault, Timothy R H
2015-02-12
The importance of the in utero environment as a contributor to later life metabolic disease has been demonstrated in both human and animal studies. In this review, we consider how disruption of normal fetal growth may impact skeletal muscle metabolic development, ultimately leading to insulin resistance and decreased insulin sensitivity, a key precursor to later life metabolic disease. In cases of intrauterine growth restriction (IUGR) associated with hypoxia, where the fetus fails to reach its full growth potential, low birth weight (LBW) is often the outcome, and early in postnatal life, LBW individuals display modifications in the insulin-signaling pathway, a critical precursor to insulin resistance. In this review, we will present literature detailing the classical development of insulin resistance in IUGR, but also discuss how this impaired development, when challenged with a postnatal Western diet, may potentially contribute to the development of later life insulin resistance. Considering the important role of the skeletal muscle in insulin resistance pathogenesis, understanding the in utero programmed origins of skeletal muscle deficiencies in insulin sensitivity and how they may interact with an adverse postnatal environment, is an important step in highlighting potential therapeutic options for LBW offspring born of pregnancies characterized by placental insufficiency.
Tian, Chunyu; Chang, Hong; La, Xiaojin; Li, Ji-An
2017-01-01
Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo , WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro , WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion . These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway.
La, Xiaojin; Li, Ji-an
2017-01-01
Background. Wushenziye formula (WSZYF) is an effective traditional Chinese medicine in the treatment of type 2 diabetes mellitus (T2DM). Aim. This study aimed to identify the effects and underlying mechanisms of WSZYF on improving skeletal muscle insulin resistance in T2DM. Methods. An animal model of T2DM was induced by Goto-Kakizaki diabetes prone rats fed with high fat and sugar for 4 weeks. Insulin resistance model was induced in skeletal muscle cell. Results. In vivo, WSZYF improved general conditions and decreased significantly fasting blood glucose, glycosylated serum protein, glycosylated hemoglobin, insulin concentration, and insulin resistance index of T2DM rats. In vitro, WSZYF enhanced glucose consumption in insulin resistance model of skeletal muscle cell. Furthermore, WSZYF affected the expressions of molecules in regulating T2DM, including increasing the expressions of p-IRS1, p-Akt, and GLUT4, reducing PTP1B expression. Conclusion. These findings displayed the potential of WSZYF as a new drug candidate in the treatment of T2DM and the antidiabetic mechanism of WSZYF is probably mediated through modulating the PTP1B-IRS1-Akt-GLUT4 signaling pathway. PMID:29479370
Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.
2015-01-01
Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778
Hansen, J; Thomas, G D; Harris, S A; Parsons, W J; Victor, R G
1996-01-01
Metabolic products of skeletal muscle contraction activate metaboreceptor muscle afferents that reflexively increase sympathetic nerve activity (SNA) targeted to both resting and exercising skeletal muscle. To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rhythmically contracting human forearm muscles with near infrared spectroscopy while simultaneously measuring muscle SNA with microelectrodes. The major new finding is that the ability of reflex-sympathetic activation to decrease muscle oxygenation is abolished when the muscle is exercised at an intensity > 10% of maximal voluntary contraction (MVC). During high intensity handgrip, (45% MVC), contraction-induced decreases in muscle oxygenation remained stable despite progressive metaboreceptor-mediated reflex increases in SNA. During mild to moderate handgrips (20-33% MVC) that do not evoke reflex-sympathetic activation, experimentally induced increases in muscle SNA had no effect on oxygenation in exercising muscles but produced robust decreases in oxygenation in resting muscles. The latter decreases were evident even during maximal metabolic vasodilation accompanying reactive hyperemia. We conclude that in humans sympathetic neural control of skeletal muscle oxygenation is sensitive to modulation by metabolic events in the contracting muscles. These events are different from those involved in either metaboreceptor muscle afferent activation or reactive hyperemia. PMID:8755671
MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yanli; Zhao, Chaoxian; Sun, Xuewen
MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR ofmore » peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.« less
In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.
Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad
2018-04-25
Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yanjun; Periwal, Vipul
2013-03-05
Due to their role in cellular energetics and metabolism, skeletal muscle mitochondria appear to play a key role in the development of insulin resistance and type II diabetes. High-fat diet can induce higher levels of reactive oxygen species (ROS), evidenced by hydrogen peroxide (H2O2) emission from mitochondria, which may be causal for insulin resistance in skeletal muscle. The underlying mechanisms are unclear. Recent published data on single substrate (pyruvate, succinate, fat) metabolism in both normal diet (CON) and high-fat diet (HFD) states of skeletal muscle allowed us to develop an integrated mathematical model of skeletal muscle mitochondrial metabolism. Model simulations suggested that long-term HFD may affect specific metabolic reaction/pathways by altering enzyme activities. Our model allows us to predict oxygen consumption and ROS generation for any combination of substrates. In particular, we predict a synergy between (iso-membrane potential) combinations of pyruvate and fat in ROS production compared to the sum of ROS production with each substrate singly in both CON and HFD states. This synergy is blunted in the HFD state. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemeyer, Kyle E.; Sung, Chih-Jen; Raju, Mandhapati P.
2010-09-15
A novel implementation for the skeletal reduction of large detailed reaction mechanisms using the directed relation graph with error propagation and sensitivity analysis (DRGEPSA) is developed and presented with examples for three hydrocarbon components, n-heptane, iso-octane, and n-decane, relevant to surrogate fuel development. DRGEPSA integrates two previously developed methods, directed relation graph-aided sensitivity analysis (DRGASA) and directed relation graph with error propagation (DRGEP), by first applying DRGEP to efficiently remove many unimportant species prior to sensitivity analysis to further remove unimportant species, producing an optimally small skeletal mechanism for a given error limit. It is illustrated that the combination ofmore » the DRGEP and DRGASA methods allows the DRGEPSA approach to overcome the weaknesses of each, specifically that DRGEP cannot identify all unimportant species and that DRGASA shields unimportant species from removal. Skeletal mechanisms for n-heptane and iso-octane generated using the DRGEP, DRGASA, and DRGEPSA methods are presented and compared to illustrate the improvement of DRGEPSA. From a detailed reaction mechanism for n-alkanes covering n-octane to n-hexadecane with 2115 species and 8157 reactions, two skeletal mechanisms for n-decane generated using DRGEPSA, one covering a comprehensive range of temperature, pressure, and equivalence ratio conditions for autoignition and the other limited to high temperatures, are presented and validated. The comprehensive skeletal mechanism consists of 202 species and 846 reactions and the high-temperature skeletal mechanism consists of 51 species and 256 reactions. Both mechanisms are further demonstrated to well reproduce the results of the detailed mechanism in perfectly-stirred reactor and laminar flame simulations over a wide range of conditions. The comprehensive and high-temperature n-decane skeletal mechanisms are included as supplementary material with this article. (author)« less
Akiyama, Ryutaro; Kawakami, Hiroko; Wong, Julia; Oishi, Isao; Nishinakamura, Ryuichi; Kawakami, Yasuhiko
2015-04-21
Limb skeletal elements originate from the limb progenitor cells, which undergo expansion and patterning to develop each skeletal element. Posterior-distal skeletal elements, such as the ulna/fibula and posterior digits develop in a Sonic hedgehog (Shh)-dependent manner. However, it is poorly understood how anterior-proximal elements, such as the humerus/femur, the radius/tibia and the anterior digits, are developed. Here we show that the zinc finger factors Sall4 and Gli3 cooperate for proper development of the anterior-proximal skeletal elements and also function upstream of Shh-dependent posterior skeletal element development. Conditional inactivation of Sall4 in the mesoderm before limb outgrowth caused severe defects in the anterior-proximal skeletal elements in the hindlimb. We found that Gli3 expression is reduced in Sall4 mutant hindlimbs, but not in forelimbs. This reduction caused posteriorization of nascent hindlimb buds, which is correlated with a loss of anterior digits. In proximal development, Sall4 integrates Gli3 and the Plzf-Hox system, in addition to proliferative expansion of cells in the mesenchymal core of nascent hindlimb buds. Whereas forelimbs developed normally in Sall4 mutants, further genetic analysis identified that the Sall4-Gli3 system is a common regulator of the early limb progenitor cells in both forelimbs and hindlimbs. The Sall4-Gli3 system also functions upstream of the Shh-expressing ZPA and the Fgf8-expressing AER in fore- and hindlimbs. Therefore, our study identified a critical role of the Sall4-Gli3 system at the early steps of limb development for proper development of the appendicular skeletal elements.
Application of cellular mechanisms to growth and development of food producing animals.
Chung, K Y; Johnson, B J
2008-04-01
Postnatal skeletal muscle growth is a result of hypertrophy of existing skeletal muscle fibers in food producing animals. Accumulation of additional nuclei, as a source of DNA, to the multinucleated skeletal muscle fiber aids in fiber hypertrophy during periods of rapid skeletal muscle growth. Muscle satellite cells are recognized as the source of nuclei to support muscle hypertrophy. Exogenous growth-enhancing compounds have been used to modulate growth rate and efficiency in meat animals for over a half century. In cattle, these compounds enhance efficiency of growth by preferentially stimulating skeletal muscle growth compared with adipose tissue. There are 2 main classes of compounds approved for use in cattle in the United States, anabolic steroids and beta-adrenergic agonists (beta-AA). Administration of both trenbolone acetate and estradiol-17beta, as implants, increased carcass protein accumulation 8 to 10% in yearling steers. Muscle satellite cells isolated from steers implanted with trenbolone acetate/ estradiol-17beta had a shorter lag phase in culture compared with satellite cells isolated from control steers. Collectively, these data indicate that activation, increased proliferation, and subsequent fusion of satellite cells in muscles of implanted cattle may be an important mechanism by which anabolic steroids enhance muscle hypertrophy. Oral administration of beta-AA to ruminants does not alter DNA accumulation in skeletal muscle over a typical feeding period (28 to 42 d). Enhanced muscle hypertrophy observed due to beta-AA feeding occurs by direct, receptor-mediated changes in protein synthesis and degradation rates of skeletal muscle tissue. Proper timing of anabolic steroid administration when coupled with beta-AA feeding could result in a synergistic response in skeletal muscle growth due to the effects of anabolic steroids at increasing satellite cell activity, which then can support the rapid hypertrophic changes of the muscle fiber when exposed to beta-AA. At the same time each of these classes of compounds are stimulating lean tissue deposition, they appear to repress adipogenesis in meat animals. Increased knowledge of the mechanism by which growth promoters regulate lean tissue deposition and adipogenesis in meat animals will allow for effective application of these techniques to optimize lean tissue growth and minimize the negative effects on meat quality.
Zhu, Xiaolin; Xu, Lusheng; Fu, Yuchang; Garvey, W. Timothy
2013-01-01
The purine anti-metabolite 6-mercaptopurine (6-MP) is widely used for the treatment of leukemia and inflammatory diseases. The cellular effects of 6-MP on metabolism remain unknown; however, 6-MP was recently found to activate the orphan nuclear receptor NR4A3 in skeletal muscle cell lines. We have reported previously that NR4A3 (also known as NOR-1, MINOR) is a positive regulator of insulin sensitivity in adipocytes. To further explore the role of NR4A3 activation in insulin action, we explored whether 6-MP activation of NR4A3 could modulate glucose transport system activity in L6 skeletal muscle cells. We found that 6-MP increased both NR4A3 expression and NR4A3 transcriptional activity and enhanced glucose transport activity via increasing GLUT4 translocation in both basal and insulin-stimulated L6 cells in an NR4A3-dependent manner. Furthermore, 6-MP increased levels of phospho-AS160, although this effect was not modulated by NR4A3 overexpression or knockdown. These primary findings provide a novel proof of principle that 6-MP, a small molecule NR4A3 agonist, can augment glucose uptake in insulin target cells, although this occurs via both NR4A3-dependent and -independent actions; the latter is related to an increase in phospho-AS160. These results establish a novel target for development of new treatments for insulin resistance. PMID:24022864
Liu, Qinglan; Zhu, Xiaolin; Xu, Lusheng; Fu, Yuchang; Garvey, W Timothy
2013-11-01
The purine anti-metabolite 6-mercaptopurine (6-MP) is widely used for the treatment of leukemia and inflammatory diseases. The cellular effects of 6-MP on metabolism remain unknown; however, 6-MP was recently found to activate the orphan nuclear receptor NR4A3 in skeletal muscle cell lines. We have reported previously that NR4A3 (also known as NOR-1, MINOR) is a positive regulator of insulin sensitivity in adipocytes. To further explore the role of NR4A3 activation in insulin action, we explored whether 6-MP activation of NR4A3 could modulate glucose transport system activity in L6 skeletal muscle cells. We found that 6-MP increased both NR4A3 expression and NR4A3 transcriptional activity and enhanced glucose transport activity via increasing GLUT4 translocation in both basal and insulin-stimulated L6 cells in an NR4A3-dependent manner. Furthermore, 6-MP increased levels of phospho-AS160, although this effect was not modulated by NR4A3 overexpression or knockdown. These primary findings provide a novel proof of principle that 6-MP, a small molecule NR4A3 agonist, can augment glucose uptake in insulin target cells, although this occurs via both NR4A3-dependent and -independent actions; the latter is related to an increase in phospho-AS160. These results establish a novel target for development of new treatments for insulin resistance.
Peiris, Hassendrini N; Ponnampalam, Anna P; Osepchook, Claire C; Mitchell, Murray D; Green, Mark P
2010-04-01
Maternal undernutrition during gestation is known to be detrimental to fetal development, leading to a propensity for metabolic disorders later in the adult lives of the offspring. Identifying possible mediators and physiological processes involved in modulating nutrient transport within the placenta is essential to prevent and/or develop treatments for the effects of aberrant nutrition, nutrient transfer, and detrimental changes to fetal development. A potential role for myostatin as a mediator of nutrient uptake and transport from the mother to the fetus was shown through the recent finding that myostatin acts within the human placenta to modulate glucose uptake and therefore homeostasis. The mRNA and protein expression of myostatin and its inhibitor, follistatin-like-3 (FSTL3), was studied in the placenta and skeletal muscle of a transgenerational Wistar rat model of gestational maternal undernutrition in which the F2 offspring postweaning consumed a high-fat (HF) diet. Alterations in placental characteristics and offspring phenotype, specifically glucose homeostasis, were evident in the transgenerationally undernourished (UNAD) group. Myostatin and FSTL3 protein expression were also higher (P < 0.05) in the placentae of the UNAD compared with the control group. At maturity, UNAD HF-fed animals had higher (P < 0.05) skeletal muscle expression of FSTL3 than control animals. In summary, maternal undernutrition during gestation results in the aberrant regulation of myostatin and FSTL3 in the placenta and skeletal muscle of subsequent generations. Myostatin, through the disruption of maternal nutrient supply to the fetus, may thus be a potential mediator of offspring phenotype.
Guo, Xiangyu; Yoshitomi, Hisae; Gao, Ming; Qin, Lingling; Duan, Ying; Sun, Wen; Xu, Tunhai; Xie, Peifeng; Zhou, Jingxin; Huang, Liansha; Liu, Tonghua
2013-03-01
Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling.
2013-01-01
Background Metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM) have been associated with insulin-resistance; however, the effective therapies in improving insulin sensitivity are limited. This study is aimed at investigating the effect of Guava Leaf (GL) extracts on glucose tolerance and insulin resistance in SHRSP.Z-Leprfa/Izm rats (SHRSP/ZF), a model of spontaneously metabolic syndrome. Methods Male rats at 7 weeks of age were administered with vehicle water or treated by gavage with 2 g/kg GL extracts daily for six weeks, and their body weights, water and food consumption, glucose tolerance, and insulin resistance were measured. Results Compared with the controls, treatment with GL extracts did not modulate the amounts of water and food consumption, but significantly reduced the body weights at six weeks post treatment. Treatment with GL extracts did not alter the levels of fasting plasma glucose and insulin, but significantly reduced the levels of plasma glucose at 60 and 120 min post glucose challenge, also reduced the values of AUC and quantitative insulin sensitivity check index (QUICKI) at 42 days post treatment. Furthermore, treatment with GL extracts promoted IRS-1, AKT, PI3Kp85 expression, then IRS-1, AMKP, and AKT308, but not AKT473, phosphorylation, accompanied by increasing the ratios of membrane to total Glut 4 expression and adiponectin receptor 1 transcription in the skeletal muscles. Conclusions These data indicated that GL extracts improved glucose metabolism and insulin sensitivity in the skeletal muscles of rats by modulating the insulin-related signaling. PMID:23452929
Circulating protein synthesis rates reveal skeletal muscle proteome dynamics
Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.
2015-01-01
Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858
Teodoro, Bruno G; Sampaio, Igor H; Bomfim, Lucas H M; Queiroz, André L; Silveira, Leonardo R; Souza, Anderson O; Fernandes, Anna M A P; Eberlin, Marcos N; Huang, Tai-Yu; Zheng, Donghai; Neufer, P Darrell; Cortright, Ronald N; Alberici, Luciane C
2017-02-01
Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or β-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Porcino, Antony; MacDougall, Colleen
2009-01-01
Background: Since the late 1980s, several taxonomies have been developed to help map and describe the interrelationships of complementary and alternative medicine (CAM) modalities. In these taxonomies, several issues are often incompletely addressed: A simple categorization process that clearly isolates a modality to a single conceptual categoryClear delineation of verticality—that is, a differentiation of scale being observed from individually applied techniques, through modalities (therapies), to whole medical systemsRecognition of CAM as part of the general field of health care Methods: Development of the Integrated Taxonomy of Health Care (ITHC) involved three stages: Development of a precise, uniform health glossaryAnalysis of the extant taxonomiesUse of an iterative process of classifying modalities and medical systems into categories until a failure to singularly classify a modality occurred, requiring a return to the glossary and adjustment of the classifying protocol Results: A full vertical taxonomy was developed that includes and clearly differentiates between techniques, modalities, domains (clusters of similar modalities), systems of health care (coordinated care system involving multiple modalities), and integrative health care. Domains are the classical primary focus of taxonomies. The ITHC has eleven domains: chemical/substance-based work, device-based work, soft tissue–focused manipulation, skeletal manipulation, fitness/movement instruction, mind–body integration/classical somatics work, mental/emotional–based work, bio-energy work based on physical manipulation, bio-energy modulation, spiritual-based work, unique assessments. Modalities are assigned to the domains based on the primary mode of interaction with the client, according the literature of the practitioners. Conclusions: The ITHC has several strengths: little interpretation is used while successfully assigning modalities to single domains; the issue of taxonomic verticality is fully resolved; and the design fully integrates the complementary health care fields of biomedicine and CAM. PMID:21589735
Integrating Module - NEMS Documentation
2014-01-01
Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.
Genovese, Salvatore; Ashida, Hitoshi; Yamashita, Yoko; Nakgano, Tomoya; Ikeda, Masaki; Daishi, Shirasaya; Epifano, Francesco; Taddeo, Vito Alessandro; Fiorito, Serena
2017-08-15
Glucose transporter 4 (GLUT4) is firmly established to play a pivotal role in glucose metabolism and in particular in modulating the insulin-stimulated glucose transport in several tissues, such as skeletal muscle and adipose tissue. Stimulation of GLUT4 by insulin results in its translocation to the plasma membrane, activation of several kinases, and finally in a large glucose influx into cells. In this study we investigated the modulating properties of four biologically active oxyprenylated ferulic acid and umbelliferone derivatives and of their unprenylated parent compounds on GLUT-4 mediated glucose uptake and translocation. Oxyprenylated phenylpropanoids have been synthesized in high yields and purity by already reported methodologies. All the synthesized chemicals were tested for their capacity to modulate GLUT4 mediated glucose uptake and GLUT4 translocation in L6 rat skeletal myoblasts in the concentration range 0.1 - 10 µM. Insulin (0.1 µM) was used as positive control. Western blot analysis was employed to assess if GLUT4 translocation occurred prior to increase of glucose uptake. Statistical analyses were carried out by the Dunnett multiple comparison test. 4'-Geranyloxyferulic acid (GOFA), 7-isopentenyloxycoumarin, and auraptene (7-geranyloxycoumarin) increased glucose uptake in a concentration-dependent manner, and significant increases were observed at 0.1 µM for GOFA, and 10 µM for 7-isopentenyloxycoumarin, and auraptene. These products also were able to significantly promote the translocation of GLUT4 to the plasma membrane of L6 myotubes. After treatment with compounds for 15 min, the incorporated amounts of GOFA, 7-isopentenyloxucoumarin, and auraptene were 0.15, 0.32, and 1.77 nmols/60-mm culture dish, respectively. A sample of raw Italian propolis, found to be rich in GOFA and auraptene, was also seen to mimic insulin-effect in the concentration range 0.01 - 1.0 mg/ml. Among the compounds assayed, auraptene showed to possess potentialities to be a potent activator of both translocation of GLUT4 and glucose influx into skeletal muscle cells with the highest bioavailability among effective compounds. Its capacity to modulate sugar metabolism, coupled to its presence in edible Citrus fruits, can be regarded as an additional reason to account for the already known stimulating properties of some vegetable (e.g. bitter orange). Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Falkensammer, Peter; Soegner, Peter I.; zur Nedden, Dieter
2002-05-01
The integration of RIS-PACS systems in radiology units are intended to reduce time consumption in radiology workflow and thus to increase radiologist productivity. Along with the RIS-PACS integration at the University Hospital Innsbruck we analyzed workflow from patient admission to release of final reports before implementation. The follow up study after six months of the implementation is currently in work. In this study we compared chest to skeletal x-ray examinations in 969 patients before the implementation. Drawing the admission-to-release-of-final-report period showed a two-peak diagram with the first peak corresponding to a release of final results on the same day and the second peak to a release on the following day. In the chest x-ray group, 57% were released the same day (mean value 4:02 hours) and 43% the next day (mean value 21:47 hours). Looking at the skeletal x-rays 40% were released the same day (mean value 3:58 hours) and 60% were released the next day (mean value 21:05 hours). Summarizing the results we should say, that the average chest x-ray requires less time than an skeletal x-ray, due to the fact that a greater percentage of reports is released the same day. The most important result is, that the most time consuming workstep is the exchange of data media between radiologist and secretary with at least 5 hours.
Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds
Sirivisoot, Sirinrath; Harrison, Benjamin S
2011-01-01
Background This study examined the effects of electrically conductive materials made from electrospun single- or multiwalled carbon nanotubes with polyurethane to promote myoblast differentiation into myotubes in the presence and absence of electrical stimulation. Methods and results After electrical stimulation, the number of multinucleated myotubes on the electrospun polyurethane carbon nanotube scaffolds was significantly larger than that on nonconductive electrospun polyurethane scaffolds (5% and 10% w/v polyurethane). In the absence of electrical stimulation, myoblasts also differentiated on the electrospun polyurethane carbon nanotube scaffolds, as evidenced by expression of Myf-5 and myosin heavy chains. The myotube number and length were significantly greater on the electrospun carbon nanotubes with 10% w/v polyurethane than on those with 5% w/v polyurethane. The results suggest that, in the absence of electrical stimulation, skeletal myotube formation is dependent on the morphology of the electrospun scaffolds, while with electrical stimulation it is dependent on the electrical conductivity of the scaffolds. Conclusion This study indicates that electrospun polyurethane carbon nanotubes can be used to modulate skeletal myotube formation with or without application of electrical stimulation. PMID:22072883
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.; Shansky, Janet; Solerssi, Rosa; Chromiak, Joseph
1992-01-01
Repetitive mechanical stimulation of differentiated skeletal muscle in tissue culture increases the production of prostaglandin F(sub 2(alpha)), an anabolic stimulator of myofiber growth. Within 4 h of initiating mechanical activity, the activity of cyclooxygenase, a regulatory enzyme in prostaglandin synthesis, was increased 82% (P is less than .005), and this increase was maintained for at least 24 h. Kinetic analysis of the stretch-activated cyclooxygenase indicated a two to three-fold decrease in the enzyme's K(sub m) with no change in V(sub max). The stretch-induced increase in enzymatic activity was not inhibited by cycloheximide, was independent of cellular electrical activity (tetrodotoxin-insensitive), but was prevented by the G protein inhibitor pertussis toxin. Pertussis toxin also inhibited the stretch-induced increases in PGF(sub 2(alpha)) production, and cell growth. It is concluded that stretch of skeletal muscle increases the synthesis of the anabolic modulator PGF(sub 2(alpha)) by a G protein-dependent process which involves activation of cyclooxygenase by a posttranslational mechanism.
Schlecht, Stephen H; Jepsen, Karl J
2013-09-01
Understanding the functional integration of skeletal traits and how they naturally vary within and across populations will benefit assessments of functional adaptation directed towards interpreting bone stiffness in contemporary and past humans. Moreover, investigating how these traits intraskeletally vary will guide us closer towards predicting fragility from a single skeletal site. Using an osteological collection of 115 young adult male and female African-Americans, we assessed the functional relationship between bone robustness (i.e. total area/length), cortical tissue mineral density (Ct.TMD), and cortical area (Ct.Ar) for the upper and lower limbs. All long bones demonstrated significant trait covariance (p < 0.005) independent of body size, with slender bones having 25-50% less Ct.Ar and 5-8% higher Ct.TMD compared to robust bones. Robustness statistically explained 10.2-28% of Ct.TMD and 26.6-64.6% of Ct.Ar within male and female skeletal elements. This covariance is systemic throughout the skeleton, with either the slender or robust phenotype consistently represented within all long bones for each individual. These findings suggest that each person attains a unique trait set by adulthood that is both predictable by robustness and partially independent of environmental influences. The variation in these functionally integrated traits allows for the maximization of tissue stiffness and minimization of mass so that regardless of which phenotype is present, a given bone is reasonably stiff and strong, and sufficiently adapted to perform routine, habitual loading activities. Covariation intrinsic to functional adaptation suggests that whole bone stiffness depends upon particular sets of traits acquired during growth, presumably through differing levels of cellular activity, resulting in differing tissue morphology and composition. The outcomes of this intraskeletal examination of robustness and its correlates may have significant value in our progression towards improved clinical assessments of bone strength and fragility. Copyright © 2013 Elsevier Inc. All rights reserved.
Tubbs, Emily; Chanon, Stéphanie; Robert, Maud; Bendridi, Nadia; Bidaux, Gabriel; Chauvin, Marie-Agnès; Ji-Cao, Jingwei; Durand, Christine; Gauvrit-Ramette, Daphné; Vidal, Hubert; Lefai, Etienne; Rieusset, Jennifer
2018-04-01
Modifications of the interactions between endoplasmic reticulum (ER) and mitochondria, defined as mitochondria-associated membranes (MAMs), were recently shown to be involved in the control of hepatic insulin action and glucose homeostasis, but with conflicting results. Whereas skeletal muscle is the primary site of insulin-mediated glucose uptake and the main target for alterations in insulin-resistant states, the relevance of MAM integrity in muscle insulin resistance is unknown. Deciphering the importance of MAMs on muscle insulin signaling could help to clarify this controversy. Here, we show in skeletal muscle of different mice models of obesity and type 2 diabetes (T2D) a marked disruption of ER-mitochondria interactions as an early event preceding mitochondrial dysfunction and insulin resistance. Furthermore, in human myotubes, palmitate-induced insulin resistance is associated with a reduction of structural and functional ER-mitochondria interactions. Importantly, experimental increase of ER-mitochondria contacts in human myotubes prevents palmitate-induced alterations of insulin signaling and action, whereas disruption of MAM integrity alters the action of the hormone. Lastly, we found an association between altered insulin signaling and ER-mitochondria interactions in human myotubes from obese subjects with or without T2D compared with healthy lean subjects. Collectively, our data reveal a new role of MAM integrity in insulin action of skeletal muscle and highlight MAM disruption as an essential subcellular alteration associated with muscle insulin resistance in mice and humans. Therefore, reduced ER-mitochondria coupling could be a common alteration of several insulin-sensitive tissues playing a key role in altered glucose homeostasis in the context of obesity and T2D. © 2018 by the American Diabetes Association.
Hamdi, M M; Mutungi, G
2010-02-01
It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.
Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway
Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O
2007-01-01
Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164
Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.
Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S
2014-04-01
Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. © Georg Thieme Verlag KG Stuttgart · New York.
Gorres, Brittany K; Bomhoff, Gregory L; Morris, Jill K; Geiger, Paige C
2011-01-01
Abstract Previous studies suggest oestrogen receptor α (ERα) is involved in oestrogen-mediated regulation of glucose metabolism and is critical for maintenance of whole body insulin action. Despite this, the effect of direct ERα modulation in insulin-responsive tissues is unknown. The purpose of the current study was to determine the impact of ERα activation, using the ER subtype-selective ligand propylpyrazoletriyl (PPT), on skeletal muscle glucose uptake. Two-month-old female Sprague–Dawley rats, ovariectomized for 1 week, were given subcutaneous injections of PPT (10 mg kg−1), oestradiol benzoate (EB; 20 μg kg−1), the ERβ agonist diarylpropionitrile (DPN, 10 mg kg−1) or vehicle every 24 h for 3 days. On the fourth day, insulin-stimulated skeletal muscle glucose uptake was measured in vitro and insulin signalling intermediates were assessed via Western blotting. Activation of ERα with PPT resulted in increased insulin-stimulated glucose uptake into the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles, activation of insulin signalling intermediates (as measured by phospho-Akt (pAkt) and pAkt substrate (PAS)) and phosphorylation of AMP-activated protein kinase (AMPK). GLUT4 protein was increased only in the EDL muscle. Rats treated with EB or DPN for 3 days did not show an increase in insulin-stimulated skeletal muscle glucose uptake compared to vehicle-treated animals. These new findings reveal that direct activation of ERα positively mediates glucose uptake and insulin action in skeletal muscle. Evidence that oestrogens and ERα stimulate glucose uptake has important implications for understanding mechanisms of glucose homeostasis, particularly in postmenopausal women. PMID:21486807
D'Souza, Randall F; Markworth, James F; Aasen, Kirsten M M; Zeng, Nina; Cameron-Smith, David; Mitchell, Cameron J
2017-01-01
A subset of short non-coding RNAs, microRNAs (miRs), have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR) and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE) on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years) undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR) analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049) and c-miR-149 (~2.4 fold; p = 0.006) were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.
Pinheiro, Carlos Hermano da Justa; de Queiroz, Jean César Farias; Guimarães-Ferreira, Lucas; Vitzel, Kaio Fernando; Nachbar, Renato Tadeu; de Sousa, Luís Gustavo Oliveira; de Souza, Alcione Lescano; Nunes, Maria Tereza; Curi, Rui
2012-06-01
The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-α, IL-6 and oxidative stress measured by Amplex(®) reagent were observed. The level of TGF-β1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.
Leptin rapidly activates PPARs in C2C12 muscle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola
2005-07-08
Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF{sub 3}, a specific inhibitor of cytosolic phospholipase A{sub 2} (cPLA{sub 2}), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA{sub 2} activity, evaluatedmore » as the release of [{sup 3}H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA{sub 2} through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA{sub 2} pathway.« less
Gödecke, Axel; Haendeler, Judith
2017-04-20
Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney. Antioxid. Redox Signal. 26, 613-615.
Aoun, Manar; Michel, Francoise; Fouret, Gilles; Schlernitzauer, Audrey; Ollendorff, Vincent; Wrutniak-Cabello, Chantal; Cristol, Jean-Paul; Carbonneau, Marie-Annette; Coudray, Charles; Feillet-Coudray, Christine
2011-08-01
Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat-high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.
Chapter 2. Calcineurin signaling and the slow oxidative skeletal muscle fiber type.
Mallinson, Joanne; Meissner, Joachim; Chang, Kin-Chow
2009-01-01
Calcineurin, also known as protein phosphatase 2B (PP2B), is a calcium-calmodulin-dependent phosphatase. It couples intracellular calcium to dephosphorylate selected substrates resulting in diverse biological consequences depending on cell type. In mammals, calcineurin's functions include neuronal growth, development of cardiac valves and hypertrophy, activation of lymphocytes, and the regulation of ion channels and enzymes. This chapter focuses on the key roles of calcineurin in skeletal muscle differentiation, regeneration, and fiber type conversion to an oxidative state, all of which are crucial to muscle development, metabolism, and functional adaptations. It seeks to integrate the current knowledge of calcineurin signaling in skeletal muscle and its interactions with other prominent regulatory pathways and their signaling intermediates to form a molecular overview that could provide directions for possible future exploitations in human metabolic health.
Silvestri, Elena; Glinni, Daniela; Cioffi, Federica; Moreno, Maria; Lombardi, Assunta; de Lange, Pieter; Senese, Rosalba; Ceccarelli, Michele; Salzano, Anna Maria; Scaloni, Andrea; Lanni, Antonia; Goglia, Fernando
2012-07-06
A novel functional iodothyronine analogue, TRC150094, which has a much lower potency toward thyroid hormone receptor (α1/β1) activation than triiodothyronine, has been shown to be effective at reducing adiposity in rats simultaneously receiving a high-fat diet (HFD). Here, by combining metabolic, functional and proteomic analysis, we studied how the hepatic and skeletal muscle phenotypes might respond to TRC150094 treatment in HFD-fed overweight rats. Drug treatment increased both the liver and skeletal muscle mitochondrial oxidative capacities without altering mitochondrial efficiency. Coherently, in terms of individual respiratory in-gel activity, blue-native analysis revealed an increased activity of complex V in the liver and of complexes II and V in tibialis muscle in TCR150094-treated animals. Subsequently, the identification of differentially expressed proteins and the analysis of their interrelations gave an integrated view of the phenotypic/metabolic adaptations occurring in the liver and muscle proteomes during drug treatment. TRC150094 significantly altered the expression of several proteins involved in key liver metabolic pathways, including amino acid and nitrogen metabolism, and fructose and mannose metabolism. The canonical pathways most strongly influenced by TRC150094 in tibialis muscle included glycolysis and gluconeogenesis, amino acid, fructose and mannose metabolism, and cell signaling. The phenotypic/metabolic influence of TRC150094 on the liver and skeletal muscle of HFD-fed overweight rats suggests the potential clinical application of this iodothyronine analogue in ameliorating metabolic risk parameters altered by diet regimens.
Pedersen, Bente Klarlund
2011-01-15
In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could be released from skeletal muscle during contraction and mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We have suggested that cytokines or other peptides that are produced, expressed and released by muscle fibres and exert autocrine, paracrine or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases.
González, B; Hernando, R; Manso, R
2000-09-01
Besides their clinical uses, anabolic steroids (AASs) are self-administered by athletes to improve muscle mass and sports performance. The biological basis for their presumed effectiveness at suprapharmacological doses, however, remains uncertain. Since the expression of high levels of some stress proteins (HSPs) has been associated with an increased tolerance to stress and chronic exercise up-regulates HSP72 in skeletal muscle, this investigation was aimed at testing whether the administration of suprapharmacological doses of AASs, either alone or in conjunction with chronic exercise, induced changes in HSP72. Nandrolone decanoate (ND), an estrene derivative, but not stanozolol (ST), a derivative of the androstane series, up-regulated the levels of HSP72 and changed the proportions of various charge variants of the cytosolic HSP70s in sedentary and exercise-trained rats, exclusively in fast-twitch fibres. Since the expression of HSP73-levels in skeletal muscle was dependent on gender but not on muscle type, and that of HSP72-levels was muscle type specific but gender-independent, ND effects on cytosolic HSP70s could not be explained solely by a functional relationship with sex steroids. The reported results indicate that, by up-regulating the expression levels of HSP72 in fast-twitch fibres, nandrolone decanoate could contribute to improving the tolerance of skeletal muscle to high-intensity training.
Bone Cell Bioenergetics and Skeletal Energy Homeostasis
Riddle, Ryan C.; Clemens, Thomas L.
2017-01-01
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease. PMID:28202599
Ieronimakis, Nicholas; Balasundaram, Gayathri; Reyes, Morayma
2008-01-01
Background Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. Methodology By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45− cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. Conclusion This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications. PMID:18335025
Dick, Taylor J M; Wakeling, James M
2017-12-01
When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.
Altamirano, Francisco; López, Jose R.; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D.; Jaimovich, Enrique
2012-01-01
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca2+]rest) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca2+]rest was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca2+ entry (low Ca2+ solution, Ca2+-free solution, and Gd3+) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca2+]rest. Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca2+]rest was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca2+]rest using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca2+]rest, is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells. PMID:22549782
Kolmus, Krzysztof; Van Troys, Marleen; Van Wesemael, Karlien; Ampe, Christophe; Haegeman, Guy; Tavernier, Jan; Gerlo, Sarah
2014-01-01
The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders. PMID:24603712
Lehti, Maarit; Donelan, Elizabeth; Abplanalp, William; Al-Massadi, Omar; Habegger, Kirk; Weber, Jon; Ress, Chandler; Mansfeld, Johannes; Somvanshi, Sonal; Trivedi, Chitrang; Keuper, Michaela; Ograjsek, Teja; Striese, Cynthia; Cucuruz, Sebastian; Pfluger, Paul T.; Krishna, Radhakrishna; Gordon, Scott M.; Silva, R. A. Gangani D.; Luquet, Serge; Castel, Julien; Martinez, Sarah; D'Alessio, David; Davidson, W. Sean; Hofmann, Susanna M.
2014-01-01
Background Abnormal glucose metabolism is a central feature of disorders with increased rates of cardio-vascular disease (CVD). Low levels of high density lipoprotein (HDL) are a key predictor for CVD. We used genetic mouse models with increased HDL levels (apoA-I tg) and reduced HDL levels (apoA-I ko) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. Methods and Results ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test (GTT) compared to wild type (wt) mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity (EC) during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate (OCR) in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved GTT, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of EC compared to wt mice. Circulating levels of fibroblast growth factor 21 (FGF21), a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high fat diet-induced impairment of glucose homeostasis. Conclusions In view of impaired mitochondrial function and decreased HDL levels in T2D, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of T2D beyond CVD. PMID:24170386
Zhou, Liang; Pan, Yongquan; Chonan, Ritsu; Batey, Robert; Rong, Xianglu; Yamahara, Johji; Wang, Jianwei; Li, Yuhao
2016-01-01
Mangiferin is one of the prominent active components responsible for the antidiabetic property of many traditional herbs, but its underlying mechanisms of action remain unclear. CD36 in skeletal muscle is known to contribute to the etiology of insulin resistance by facilitating fatty acid uptake. This study investigated the effect of mangiferin on insulin resistance. The results showed that treatment of Wistar-Kyoto rats with mangiferin (15 mg/kg, once daily, by oral gavage) for 7 weeks inhibited chronic liquid fructose consumption-induced increases in plasma insulin concentrations at the baseline and during oral glucose tolerance test (OGTT), and the homeostasis model assessment of insulin resistance index. It also suppressed the increases in fasted plasma nonesterified fatty acid (NEFA) concentration and the adipose tissue insulin resistance index. Mechanistically, mangiferin neither affected intakes of fructose and chow, and the increase in epididymal and perirenal fat, nor attenuated fructose-induced hypertension. In contrast, mangiferin attenuated fructose-induced acceleration of plasma NEFA clearance during OGTT, and tended to decrease excessive triglyceride accumulation in gastrocnemius. Immunofluorescence staining and subsequent rating of CD36-expressing fibers in gastrocnemius revealed that mangiferin restored fructose-stimulated sarcolemmal CD36 overexpression and decreased intracellular CD36 distribution. In addition, the effects of mangiferin on the parameters associated with insulin resistance and abnormal fatty acid metabolism were absent in the spontaneously hypertensive rats carrying numerous nonfunctional mutations in the CD36 gene. Thus, these results suggest that mangiferin treatment mitigates insulin resistance in a rat model of fructose-induced metabolic syndrome by modulating sarcolemmal and intracellular CD36 redistribution in the skeletal muscle. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Chatzigianni, Athina; Halazonetis, Demetrios J
2009-10-01
Cervical vertebrae shape has been proposed as a diagnostic factor for assessing skeletal maturation in orthodontic patients. However, evaluation of vertebral shape is mainly based on qualitative criteria. Comprehensive quantitative measurements of shape and assessments of its predictive power have not been reported. Our aims were to measure vertebral shape by using the tools of geometric morphometrics and to evaluate the correlation and predictive power of vertebral shape on skeletal maturation. Pretreatment lateral cephalograms and corresponding hand-wrist radiographs of 98 patients (40 boys, 58 girls; ages, 8.1-17.7 years) were used. Skeletal age was estimated from the hand-wrist radiographs. The first 4 vertebrae were traced, and 187 landmarks (34 fixed and 153 sliding semilandmarks) were used. Sliding semilandmarks were adjusted to minimize bending energy against the average of the sample. Principal components analysis in shape and form spaces was used for evaluating shape patterns. Shape measures, alone and combined with centroid size and age, were assessed as predictors of skeletal maturation. Shape alone could not predict skeletal maturation better than chronologic age. The best prediction was achieved with the combination of form space principal components and age, giving 90% prediction intervals of approximately 200 maturation units in the girls and 300 units in the boys. Similar predictive power could be obtained by using centroid size and age. Vertebrae C2, C3, and C4 gave similar results when examined individually or combined. C1 showed lower correlations, signifying lower integration with hand-wrist maturation. Vertebral shape is strongly correlated to skeletal age but does not offer better predictive value than chronologic age.
Sun, Xiaocun; Zemel, Michael B
2009-01-01
Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT-1 mediates leucine induced mitochondrial biogenesis in muscle cells. Conclusion These data suggest that leucine and calcitriol modulation of muscle and adipocyte energy metabolism is mediated, in part, by mitochondrial biogenesis. PMID:19500359
76 FR 57063 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
...; Skeletal Muscle and Exercise Physiology Study Section Date: October 3-4, 2011. Time: 8 a.m. to 5 p.m... Committee: Infectious Diseases and Microbiology Integrated Review Group; Vector Biology Study Section, Date...
USDA-ARS?s Scientific Manuscript database
Previously we demonstrated that the insulin (INS) and amino acid (AA) -induced activation of the mammalian target of rapamycin complex 1 (mTORC1) is developmentally regulated in neonatal pigs. This study aimed to determine the effects of the post-prandial rise in INS and AA on the activation and abu...
USDA-ARS?s Scientific Manuscript database
Mammalian target of rapamycin complex 1 (mTORC1) signaling is crucial for the regulation of protein synthesis. Most of known mTORC1 regulators have been isolated and characterized using cell culture systems, and the physiological roles of these regulators have not been fully tested in vivo. Previous...
V-band integrated quadriphase modulator
NASA Technical Reports Server (NTRS)
Grote, A.; Chang, K.
1983-01-01
A V-band integrated circuit quadriphase shift keyed modulator/exciter for space communications systems was developed. Intersatellite communications systems require direct modulation at 60 GHz to enhance signal processing capability. For most systems, particularly space applications, small and lightweight components are essential to alleviate severe system design constraints. Thus to achieve wideband, high data rate systems, direct modulation techniques at millimeter waves using solid state integrated circuit technology are an integral part of the overall technology developments.
Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun
2015-11-01
Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action of PTHrP to regulate skeletal growth and development. © 2015 American Society for Bone and Mineral Research.
Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.
2010-01-01
Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368
Grim, Jeffrey M; Simonik, Elizabeth A; Semones, Molly C; Kuhn, Donald E; Crockett, Elizabeth L
2013-02-01
Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhang, Ying; Chen, Guangpei; Gu, Zhen; Sun, Haijian; Karaplis, Andrew; Goltzman, David; Miao, Dengshun
2018-01-01
We previously demonstrated that parathyroid hormone-related peptide (PTHrP) 1-84 knockin ( Pthrp KI) mice, which lacked a PTHrP nuclear localization sequence (NLS) and C-terminus, displayed early senescence, defective osteoblastic bone formation, and skeletal growth retardation. However, the mechanism of action of the PTHrP NLS and C-terminus in regulating development of skeleton is still unclear. In this study, we examined alterations of oxidative stress and DNA damage response-related molecules in Pthrp KI skeletal tissue. We found that ROS levels, protein expression levels of γ-H2AX, a DNA damage marker, and the DNA damage response markers p-Chk2 and p53 were up-regulated, whereas gene expression levels of anti-oxidative enzymes were down-regulated significantly. We therefore further disrupted the DNA damage response pathway by deleting the Chk2 in Pthrp KI (Chk2 -/- KI) mice and did comparison with WT, Chk2 -/- and Pthrp KI littermates. The Pthrp KI mice with Chk2 deletion exhibited a longer lifespan, improvement in osteoblastic bone formation and skeletal growth including width of growth plates and length of long bones, trabecular and epiphyseal bone volume, BMD, osteoblast numbers, type I collagen and ALP positive bone areas, the numbers of total colony-forming unit fibroblasts (CFU-f), ALP + CFU-f and the expression levels of osteogenic genes. In addition, the genes associated with anti-oxidative enzymes were up-regulated significantly, whereas the tumor suppressor genes related to senescence were down-regulated in Chk2 -/- KI mice compared to Pthrp KI mice. Our results suggest that Chk2 deletion in Pthrp KI mice can somewhat rescue defects in osteoblastic bone formation and skeletal growth by enhancing endochondral bone formation and osteogenesis. These studies therefore indicate that the DNA damage checkpoint pathway may be a target for the nuclear action of PTHrP to regulate skeletal development and growth.
Cerium oxide nanozyme modulate the ‘exercise’ redox biology of skeletal muscle
NASA Astrophysics Data System (ADS)
Arya, Aditya; Sethy, Niroj Kumar; Gangwar, Anamika; Bhargava, Neelima; Dubey, Amarish; Roy, Manas; Srivastava, Gaurav; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana
2017-05-01
‘Exercise’ is a double-edged sword for the skeletal muscle. Small amount of ROS generated during mild exercise, is essential for normal force generation; whereas large quantity of ROS generated during intense exercise, may cause contractile dysfunction, resulting in muscle weakness and fatigue. One of the key question in skeletal muscle physiology is ‘could antioxidant therapy improve the skeletal muscle endurance? A question, which has resulted in contradictory experimental findings till this date. This work has addressed this ‘very question’ using a synthetic, inorganic, antioxidant nano-material viz., ‘cerium oxide nanozyme’ (CON). It has been introduced in the rat by intramuscular injection, and the skeletal muscle endurance has been evaluated. Intramuscular injections of CON, concurrent with exercise, enhanced muscle mass, glycogen and ATP content, type I fiber ratio, thus resulting in significantly higher muscle endurance. Electron microscope studies confirmed the presence of CON in the vicinity of muscle mitochondria. There was an increase in the number and size of the muscle mitochondria in the CON treated muscle, following exercise, as compared to the untreated group with only exercised muscle. Quantitative proteomics data and subsequent biological network analysis studies, identified higher levels of oxidative phosphorylation, TCA cycle output and glycolysis in CON supplemented exercised muscle over only exercised muscle. This was further associated with significant increase in the mitochondrial respiratory capacity and muscle contraction, primarily due to higher levels of electron transport chain proteins like NDUFA9, SDHA, ATP5B and ATP5D, which were validated by real-time PCR and western blotting. Along with this, persistence of CON in muscle was evaluated with ICP-MS analysis, which revealed clearance of the particles after 90 d, without exhibiting any inflammation or adverse affects on the health of the experimental animals. Thus a higher physiological endurance of the CON supplemented exercised muscle’ opens new avenues in skeletal muscle therapeutic, space and sports medicine.
A Study on Generic Representation of Skeletal Remains Replication of Prehistoric Burial
NASA Astrophysics Data System (ADS)
Shao, C.-W.; Chiu, H.-L.; Chang, S.-K.
2015-08-01
Generic representation of skeletal remains from burials consists of three dimensions which include physical anthropologists, replication technicians, and promotional educators. For the reason that archaeological excavation is irreversible and disruptive, detail documentation and replication technologies are surely needed for many purposes. Unearthed bones during the process of 3D digital scanning need to go through reverse procedure, 3D scanning, digital model superimposition, rapid prototyping, mould making, and the integrated errors generated from the presentation of colours and textures are important issues for the presentation of replicate skeleton remains among professional decisions conducted by physical anthropologists, subjective determination of makers, and the expectations of viewers. This study presents several cases and examines current issues on display and replication technologies for human skeletal remains of prehistoric burials. This study documented detail colour changes of human skeleton over time for the reference of reproduction. The tolerance errors of quantification and required technical qualification is acquired according to the precision of 3D scanning, the specification requirement of rapid prototyping machine, and the mould making process should following the professional requirement for physical anthropological study. Additionally, the colorimeter is adopted to record and analyse the "colour change" of the human skeletal remains from wet to dry condition. Then, the "colure change" is used to evaluate the "real" surface texture and colour presentation of human skeletal remains, and to limit the artistic presentation among the human skeletal remains reproduction. The"Lingdao man No.1", is a well preserved burial of early Neolithic period (8300 B.P.) excavated from Liangdao-Daowei site, Matsu, Taiwan , as the replicating object for this study. In this study, we examined the reproduction procedures step by step for ensuring the surface texture and colour of the replica matches the real human skeletal remains when discovered. The "colour change" of the skeleton documented and quantified in this study could be the reference for the future study and educational exhibition of human skeletal remain reproduction.
Unlocking Resources: Self-Guided Student Explorations of Science Museum and Aquarium Exhibits
NASA Astrophysics Data System (ADS)
Kirkby, K. C.; Phipps, M.; Hamilton, P.
2010-12-01
Remarkably few undergraduate programs take full advantage of the rich resources provided by science museums, aquariums and other informal science education institutions. This is not surprising considering the logistical hurdles of class trips, but an even more fundamental barrier is that these institutions’ exhibit text seldom explicitly convey their information at a level suitable for undergraduate curriculum. Traditionally, this left the burden of interpretation on individual instructors, who rarely have the time to undertake it. To overcome these hurdles, the University of Minnesota has partnered with the Science Museum of Minnesota and Underwater Adventures Aquarium to test the efficacy of self-guided student explorations in revealing the rich data encoded in museum and aquarium exhibits. An initial module at the Science Museum of Minnesota focused on interpreting animal designs, specifically exploring how differences in dinosaur skeletal features reflected variations in the animals’ lifestyles. Students learn to interpret diet and lifestyle not only from characteristics of the skull and teeth, but also from variations in vertebrae and rib design or the relative proportion of limb elements. A follow-up module, based on exhibits at Underwater Adventures Aquarium focuses on interpreting energy flow through ecosystems from the behavior of living organisms. Students explore the information on lifestyle and diet that is encoded in a sturgeon’s ceaseless glide or a muskellunge’s poised stillness. These modules proved to be immensely popular with students. In classes with up to 500 students, half to two-thirds of the students volunteered to complete the modules, despite the additional expense and distances of up to 13 miles between the University and partner institutions. More importantly, quantitative assessment with pre-instruction and post-instruction surveys demonstrate that these ungraded, self-guided explorations match or exceed the efficacy of traditional graded lab instruction and completely eclipse the range of gains normally achieved by traditional lecture instruction. In addition, the modules accomplish the remarkable goal of integrating undergraduate earth science instruction into students’ social life. Over three-fourths of the students complete the explorations with friends or family who were not enrolled in the class, expanding the course to include a broader, more diverse, audience. A third module, currently in development, will use a walking tour of Saint Anthony Falls to highlight the impact of geological processes on human society. Students will explore the waterfalls’ evolution, its early interpretation by 18th and 19th century Dakota and Euro-America societies, as well as its subsequent social and economic impacts on human history. The outdoor nature of this self-guided exploration is a first step towards expanding the modules’ concept to integrate self-guided field trips into undergraduate earth science curriculums.
Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon
2013-02-26
The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.
Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco
Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less
Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.
Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki
2014-01-01
To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.
Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes
Di Pietro, Daniele A.; Droniou, Jérôme; Manzini, Gianmarco
2017-11-21
Here, in this work we develop arbitrary-order Discontinuous Skeletal Gradient Discretisations (DSGD) on general polytopal meshes. Discontinuous Skeletal refers to the fact that the globally coupled unknowns are broken polynomials on the mesh skeleton. The key ingredient is a high-order gradient reconstruction composed of two terms: (i) a consistent contribution obtained mimicking an integration by parts formula inside each element and (ii) a stabilising term for which sufficient design conditions are provided. An example of stabilisation that satisfies the design conditions is proposed based on a local lifting of high-order residuals on a Raviart–Thomas–Nédélec subspace. We prove that the novelmore » DSGDs satisfy coercivity, consistency, limit-conformity, and compactness requirements that ensure convergence for a variety of elliptic and parabolic problems. Lastly, links with Hybrid High-Order, non-conforming Mimetic Finite Difference and non-conforming Virtual Element methods are also studied. Numerical examples complete the exposition.« less
Schaller, Benoit; Clarke, William T; Neubauer, Stefan; Robson, Matthew D; Rodgers, Christopher T
2016-03-01
The translation of sophisticated phosphorus MR spectroscopy ((31)P-MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac (31)P spectra at 7T. We introduce the first surface-spoiling crusher coil for human cardiac (31)P-MRS at 7T. A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac (31)P-MRS at 7T. In a phantom, residual signals were 50 ± 10% with BISTRO (B1 -insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). A crusher coil is an SAR-efficient alternative for selectively suppressing skeletal muscle during cardiac (31)P-MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR-prohibitive, without compromising skeletal muscle suppression. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.
Pearen, Michael A.; Goode, Joel M.; Fitzsimmons, Rebecca L.; Eriksson, Natalie A.; Thomas, Gethin P.; Cowin, Gary J.; Wang, S.-C. Mary; Tuong, Zewen K.
2013-01-01
The mRNA encoding Nor-1/NR4A3 is rapidly and strikingly induced by β2-adrenergic signaling in glycolytic and oxidative skeletal muscle. In skeletal muscle cells, Nor-1 expression is important for the regulation of oxidative metabolism. Transgenic skeletal muscle-specific expression of activated Nor-1 resulted in the acquisition of an endurance phenotype, an increase in type IIA/X oxidative muscle fibers, and increased numbers of mitochondria. In the current study, we used dual-energy x-ray absorptiometry and magnetic resonance imaging analysis to demonstrate decreased adiposity in transgenic (Tg) Nor-1 mice relative to that in wild-type littermates. Furthermore, the Tg-Nor-1 mice were resistant to diet-induced weight gain and maintained fasting glucose at normoglycemic levels. Expression profiling and RT-quantitative PCR analysis revealed significant increases in genes involved in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and glycogen synthesis, in concordance with the lean phenotype. Moreover, expression profiling identified several Z-disc and sarcomeric binding proteins that modulate fiber type phenotype and endurance, eg, α-actinin-3. In addition, we demonstrated that the Tg-Nor-1 mouse line has significantly higher glycogen content in skeletal muscle relative to that in wild-type littermates. Finally, we identified a decreased NAD+/NADH ratio with a concordant increase in peroxisome proliferator-activated receptor γ coactivator-1α1 protein/mRNA expression. Increased NADH was associated with an induction of the genes involved in the malate-aspartate shuttle and a decrease in the glycerol 3-phosphate shuttle, which maximizes aerobic ATP production. In conclusion, skeletal muscle-specific Nor-1 expression regulates genes and pathways that regulate adiposity, muscle fiber type metabolic capacity, and endurance. PMID:24065705
Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique
2009-01-01
ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518
Mai, Knut; Andres, Janin; Bobbert, Thomas; Assmann, Anke; Biedasek, Katrin; Diederich, Sven; Graham, Ian; Larson, Tony R; Pfeiffer, Andreas F H; Spranger, Joachim
2012-01-01
The ratio of unsaturated to saturated long-chain fatty acids (LC-FAs) in skeletal muscle has been associated with insulin resistance. Some animal data suggest a modulatory effect of peroxisome proliferator receptor γ (PPARγ) stimulation on stearoyl-CoA desaturase 1 (SCD1) and LC-FA composition in skeletal muscle, but human data are rare. We here investigate whether treatment with a PPARγ agonist affects myocellular SCD1 expression and modulates the intramyocellular fatty acid profile in individuals with impaired glucose tolerance. Muscle biopsies and hyperinsulinemic-euglycemic clamps were performed in 7 men before and after 8 weeks of rosiglitazone treatment. Intramyocellular saturated, monounsaturated, and polyunsaturated intramuscular fatty acid profiles were measured by gas chromatography. Effects on SCD1 messenger RNA expression were analyzed in C2C12 cells and in human biopsies before and after rosiglitazone treatment. As expected, treatment with the PPARγ activator rosiglitazone improved insulin sensitivity in humans. Myocellular SCD1 messenger RNA expression was increased in human biopsies and C2C12 cells. Although the total content of myocellular LC-FA was unchanged, a relative shift from saturated LC-FAs to unsaturated LC-FAs was observed in human biopsies. Particularly, the amount of stearate was reduced, whereas the amounts of palmitoleate as well as oleate and vaccenate were increased, after rosiglitazone therapy. These changes resulted in an increased fatty acid Δ9-desaturation index (16:1/16:0 and 18:1/18:0) in skeletal muscle and a decreased elongase activity index (18:0/16:0). The PPARγ associated phenotypes may be partially explained by an increased Δ9-desaturation and a decreased elongase activity of skeletal muscle. Copyright © 2012 Elsevier Inc. All rights reserved.
Sánchez-Duarte, E; Trujillo, X; Cortés-Rojo, C; Saavedra-Molina, A; Camargo, G; Hernández, L; Huerta, M; Montoya-Pérez, R
2017-04-01
Fatigue is a phenomenon in which force reduction has been linked to impairment of several biochemical processes. In skeletal muscle, the ATP-sensitive potassium channels (K ATP ) are actively involved in myoprotection against metabolic stress. They are present in sarcolemma and mitochondria (mitoK ATP channels). K + channel openers like nicorandil has been recognized for their ability to protect skeletal muscle from ischemia-reperfusion injury, however, the effects of nicorandil on fatigue in slow skeletal muscle fibers has not been explored, being the aim of this study. Nicorandil (10 μM), improved the muscle function reversing fatigue as increased post-fatigue tension in the peak and total tension significantly with respect to the fatigued condition. However, this beneficial effect was prevented by the mitoK ATP channel blocker 5-hydroxydecanoate (5-HD, 500 μM) and by the free radical scavenger N-2-mercaptopropionyl glycine (MPG, 1 mM), but not by the nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 100 μM). Nicorandil also decreased lipid peroxidation and maintained both reduced glutathione (GSH) levels and an elevated GSH/GSSG ratio, whereas total glutathione (TGSH) remained unaltered during post-fatigue tension. In addition, NO production, measured through nitrite concentrations was significantly increased with nicorandil during post-fatigue tension; this increase remained unaltered in the presence of nicorandil plus L-NAME, nonetheless, this effect was reversed with nicorandil plus MPG. Hence, these results suggest that nicorandil improves the muscle function reversing fatigue in slow skeletal muscle fibers of chicken through its effects not only as a mitoK ATP channel opener but also as NO donor and as an antioxidant.
2012-01-01
Background Beyond the adoption of the principles of horizontal and vertical integration, significant planning and implementation of curriculum reform is needed. This study aimed to assess the effect of the interdisciplinary integrated Cardiovascular System (CVS) module on both student satisfaction and performance and comparing them to those of the temporally coordinated CVS module that was implemented in the previous year at the faculty of Medicine of the King Abdulaziz University, Saudi Arabia. Methods This interventional study used mixed method research design to assess student and faculty satisfaction with the level of integration within the CVS module. A team from the medical education department was assembled in 2010/2011 to design a plan to improve the CVS module integration level. After delivering the developed module, both student and faculty satisfaction as well as students performance were assessed and compared to those of the previous year to provide an idea about module effectiveness. Results Many challenges faced the medical education team during design and implementation of the developed CVS module e.g. resistance of faculty members to change, increasing the percentage of students directed learning hours from the total contact hour allotted to the module and shifting to integrated item writing in students assessment, spite of that the module achieved a significant increase in both teaching faculty and student satisfaction as well as in the module scores. Conclusion The fully integrated CVS has yielded encouraging results that individual teachers or other medical schools who attempt to reformulate their curriculum may find valuable. PMID:22747781
Growth Modulation in Achondroplasia.
McClure, Philip K; Kilinc, Eray; Birch, John G
2017-09-01
Achondroplasia is the most common skeletal dysplasia with a rate of nearly 1/10,000. The development of lower extremity deformity is well documented, and various modes of correction have been reported. There are no reports on the use of growth modulation to correct angular deformity in achondroplasia. Medical Records from 1985 to 2015 were reviewed for the diagnosis of achondroplasia and growth modulation procedures. Patients who had been treated for angular deformity of the legs by growth modulation were identified. A detailed analysis of their medical record and preoperative and final lower extremity radiographs was completed. Four patients underwent growth modulation procedures, all to correct existing varus deformity of the legs. Three of the 4 patients underwent bilateral distal femoral and proximal tibial growth modulation. The remaining patient underwent tibial correction only. Two of the 4 patients had a combined proximal fibular epiphysiodesis. All limbs had some improvement of alignment; however, 1 patient went on to bilateral osteotomies. Only 1 limb corrected to a neutral axis with growth modulation alone at last follow-up, initial implantation was done before 5 years of age. Growth modulation is an effective means for deformity correction in the setting of achondroplasia. However implantation may need to be done earlier than would be typical for patients without achondroplasia. Osteotomy may still be required after growth modulation for incomplete correction.
76 FR 24897 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
..., Genomes, and Genetics Integrated Review Group, Prokaryotic Cell and Molecular Biology Study Section. Date..., Skeletal Biology Structure and Regeneration Study Section. Date: June 9-10, 2011. Time: 8 a.m. to 5:30 p.m...
Crawford, Robert S.; Albadawi, Hassan; Atkins, Marvin D.; Jones, John J.; Conrad, Mark F.; Austen, William G.; Fink, Mitchell P.; Watkins, Michael T.
2011-01-01
Introduction Experiments were designed to investigate the effects of ethyl pyruvate (EP) in a murine model of hind-limb ischemia-reperfusion (IR) injury. Methods C57BL6 mice underwent 90 minutes of unilateral ischemia followed by 24 hours of reperfusion using two treatment protocols. For the preischemic treatment (pre-I) protocol, mice (n = 6) were given 300 mg/kg EP before ischemia, followed by 150 mg/kg of EP just before reperfusion and at 6 hours and 12 hours after reperfusion. In a postischemic treatment (post-I) protocol, mice (n = 7) were treated with 300 mg/kg EP at the end of the ischemic period, then 15 minutes later, and 2 hours after reperfusion and 150 mg/kg of EP at 4 hours, 6 hours, 10 hours, 16 hours, and 22 hours after reperfusion. Controls mice for both protocols were treated with lactated Ringers alone at time intervals identical to EP. Skeletal muscle levels of adenosine triphosphate (ATP), interleukin-1β, keratinocyte chemoattractant protein, and thrombin antithrombin-3 complex were measured. Skeletal muscle architectural integrity was assessed microscopically. Results ATP levels were higher in mice treated with EP compared with controls under the both treatment protocols (p = 0.02). Interleukin-1β, keratinocyte chemoattractant protein, thrombin antithrombin-3 complex (p < 0.05), and the percentage of injured fibers (p < 0.0001) were significantly decreased in treated versus control mice under the both protocols. Conclusion Muscle fiber injury and markers of tissue thrombosis and inflammation were reduced, and ATP was preserved with EP in pre-I and post-I protocols. Further investigation of the efficacy of EP to modulate IR injury in a larger animal model of IR injury is warranted. PMID:21217488
NASA Technical Reports Server (NTRS)
1998-01-01
The primary objective of this research project is to test the hypothesis that corticosteroids contribute to the adverse skeletal effects of space flight. To achieve this objective, serum corticosteroids, which are known to increase during space flight, must be maintained at normal physiologic levels in flight rats by a combination of adrenalectomy and corticosteroid supplementation via implanted hormone pellets. Bone analyses in these animals will then be compared to those of intact flight rats that, based on past experience, will undergo corticosteroid excess and bone loss during space flight. The results will reveal whether maintaining serum corticosteroids at physiologic levels in flight rats affects the skeletal abnormalities that normally develop during space flight. A positive response to this question would indicate that the bone loss and decreased bone formation associated with space flight are mediated, at least in part, by corticosteroid excess.
The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis
Clegg, Deborah J.; Hevener, Andrea L.
2013-01-01
Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders. PMID:23460719
Skeletal dysplasia in ancient Egypt.
Kozma, Chahira
2008-12-01
The ancient Egyptian civilization lasted for over 3000 years and ended in 30 BCE. Many aspects of ancient Egyptian culture, including the existence of skeletal dysplasias, and in particular achondroplasia, are well known through the monuments and records that survived until modern times. The hot and dry climate in Egypt allowed for the preservation of bodies and skeletal anomalies. The oldest dwarf skeleton, the Badarian skeleton (4500 BCE), possibly represents an epiphyseal disorder. Among the remains of dwarfs with achondroplasia from ancient Egypt (2686-2190 BCE), exists a skeleton of a pregnant female, believed to have died during delivery with a baby's remains in situ. British museums have partial skeletons of dwarfs with achondroplasia, humeri probably affected with mucopolysaccharidoses, and a skeleton of a child with osteogenesis imperfecta. Skeletal dysplasia is also found among royal remains. The mummy of the pharaoh Siptah (1342-1197 BCE) shows a deformity of the left leg and foot. A mummified fetus, believed to be the daughter of king Tutankhamun, has scoliosis, spina bifida, and Sprengel deformity. In 2006 I reviewed the previously existing knowledge of dwarfism in ancient Egypt. The purpose of this second historical review is to add to that knowledge with an expanded contribution. The artistic documentation of people with skeletal dysplasia from ancient Egypt is plentiful including hundreds of amulets, statues, and drawing on tomb and temple walls. Examination of artistic reliefs provides a glance of the role of people with skeletal dysplasia and the societal attitudes toward them. Both artistic evidence and moral teachings in ancient Egypt reveal wide integration of individuals with disabilities into the society. Copyright (c) 2008 Wiley-Liss, Inc.
Altered stored calcium release in skeletal myotubes deficient of triadin and junctin
Wang, Ying; Li, Xinghai; Duan, Hongzhe; Fulton, Timothy R.; Eu, Jerry P.; Meissner, Gerhard
2008-01-01
Summary Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10 mM KCl) by 20–25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 μM 4-chloro-m-cresol, 10 mM caffeine, 400 μM UTP, or 1 μM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins’ mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes. PMID:18620751
Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development
Qin, Lijun; Chen, Yaosheng; Liu, Xiaohong; Ye, Sanxing; Yu, Kaifan; Huang, Zheng; Yu, Jingwei; Zhou, Xingyu; Chen, Hu; Mo, Delin
2013-01-01
Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development. PMID:24039761
PKCε as a novel promoter of skeletal muscle differentiation and regeneration.
Di Marcantonio, D; Galli, D; Carubbi, C; Gobbi, G; Queirolo, V; Martini, S; Merighi, S; Vaccarezza, M; Maffulli, N; Sykes, S M; Vitale, M; Mirandola, P
2015-11-15
Satellite cells are muscle resident stem cells and are responsible for muscle regeneration. In this study we investigate the involvement of PKCε during muscle stem cell differentiation in vitro and in vivo. Here, we describe the identification of a previously unrecognized role for the PKCε-HMGA1 signaling axis in myoblast differentiation and regeneration processes. PKCε expression was modulated in the C2C12 cell line and primary murine satellite cells in vitro, as well as in an in vivo model of muscle regeneration. Immunohistochemistry and immunofluorescence, RT-PCR and shRNA silencing techniques were used to determine the role of PKCε and HMGA1 in myogenic differentiation. PKCε expression increases and subsequently re-localizes to the nucleus during skeletal muscle cell differentiation. In the nucleus, PKCε blocks Hmga1 expression to promote Myogenin and Mrf4 accumulation and myoblast formation. Following in vivo muscle injury, PKCε accumulates in regenerating, centrally-nucleated myofibers. Pharmacological inhibition of PKCε impairs the expression of two crucial markers of muscle differentiation, namely MyoD and Myogenin, during injury induced muscle regeneration. This work identifies the PKCε-HMGA1 signaling axis as a positive regulator of skeletal muscle differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Pollard, Amelia; Shephard, Freya; Freed, James; Liddell, Susan; Chakrabarti, Lisa
2016-10-10
Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondrial fractions from young adult and middle aged mouse brain and skeletal muscle. We find an increase of tissue specific carbonic anhydrases in mitochondria from middle-aged brain and skeletal muscle. Mitochondrial carbonic anhydrase II was measured in the Purkinje cell degeneration ( pcd 5J ) mouse model. In pcd 5J we find mitochondrial carbonic anhydrase II is also elevated in brain from young adults undergoing a process of neurodegeneration. We show C.elegans exposed to carbonic anhydrase II have a dose related shorter lifespan suggesting that high CAII levels are in themselves life limiting. We show for the first time that the mitochondrial content of brain and skeletal tissue are exposed to significantly higher levels of active carbonic anhydrases as early as in middle-age. Carbonic anhydrases associated with mitochondria could be targeted to specifically modulate age related impairments and disease.
NASA Astrophysics Data System (ADS)
Paiva-Oliveira, E. L.; Lima, N. C.; Silva, P. H.; Sousa, N. T. A.; Barbosa, F. S.; Orsini, M.; Silva, J. G.
2012-09-01
Low level laser therapy (LLLT) has been suggested as an effective therapeutics in inflammatory processes modulation and tissue repairing. However, there is a lack of studies that analyze the anti-inflammatory effects of the infrared lasers in muscular skeletal injury. The aim of this study was to investigate the effects of low-level laser therapy 904 nm in the repair process of skeletal muscle tissue. Swiss mice were submitted to cryoinjury and divided in test (LLLT-treated) and control groups. Histological sections were stained with hematoxylin-eosin to assess general morphology and inflammatory influx, and Picrossirus to quantify collagen fibers deposition. Our results showed significant reduction in inflammatory infiltrated in irradiated mice after 4 days of treatment compared to control ( p = 0.01). After 8 days, the irradiated group showed high levels at regenerating myofibers with significant statistically differences in relation at control group ( p < 0.01). Collagen deposition was significantly increased in the final stages of regeneration at test group, when compared with control group ( p = 0.05). Our data suggests that LLLT reduces the inflammatory response in the initial stages of injury and accelerates the process of muscular tissue repair.
A genetic modifier suggests that endurance exercise exacerbates Huntington's disease
Corrochano, Silvia; Blanco, Gonzalo; Williams, Debbie; Wettstein, Jessica; Simon, Michelle; Kumar, Saumya; Moir, Lee; Agnew, Thomas; Stewart, Michelle; Landman, Allison; Kotiadis, Vassilios N; Duchen, Michael R; Wackerhage, Henning; Rubinsztein, David C; Brown, Steve D M
2018-01-01
Abstract Polyglutamine expansions in the huntingtin gene cause Huntington’s disease (HD). Huntingtin is ubiquitously expressed, leading to pathological alterations also in peripheral organs. Variations in the length of the polyglutamine tract explain up to 70% of the age-at-onset variance, with the rest of the variance attributed to genetic and environmental modifiers. To identify novel disease modifiers, we performed an unbiased mutagenesis screen on an HD mouse model, identifying a mutation in the skeletal muscle voltage-gated sodium channel (Scn4a, termed ‘draggen’ mutation) as a novel disease enhancer. Double mutant mice (HD; Scn4aDgn/+) had decreased survival, weight loss and muscle atrophy. Expression patterns show that the main tissue affected is skeletal muscle. Intriguingly, muscles from HD; Scn4aDgn/+ mice showed adaptive changes similar to those found in endurance exercise, including AMPK activation, fibre type switching and upregulation of mitochondrial biogenesis. Therefore, we evaluated the effects of endurance training on HD mice. Crucially, this training regime also led to detrimental effects on HD mice. Overall, these results reveal a novel role for skeletal muscle in modulating systemic HD pathogenesis, suggesting that some forms of physical exercise could be deleterious in neurodegeneration. PMID:29509900
Myostatin inhibition prevents skeletal muscle pathophysiology in Huntington's disease mice.
Bondulich, Marie K; Jolinon, Nelly; Osborne, Georgina F; Smith, Edward J; Rattray, Ivan; Neueder, Andreas; Sathasivam, Kirupa; Ahmed, Mhoriam; Ali, Nadira; Benjamin, Agnesska C; Chang, Xiaoli; Dick, James R T; Ellis, Matthew; Franklin, Sophie A; Goodwin, Daniel; Inuabasi, Linda; Lazell, Hayley; Lehar, Adam; Richard-Londt, Angela; Rosinski, Jim; Smith, Donna L; Wood, Tobias; Tabrizi, Sarah J; Brandner, Sebastian; Greensmith, Linda; Howland, David; Munoz-Sanjuan, Ignacio; Lee, Se-Jin; Bates, Gillian P
2017-10-27
Huntington's disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Weekly administration from 5 to 11 weeks of age prevented body weight loss, skeletal muscle atrophy, muscle weakness, contractile abnormalities, the loss of functional motor units in EDL muscles and delayed end-stage disease. Inhibition of myostatin/activin A signaling activated transcriptional profiles to increase muscle mass in wild type and R6/2 mice but did little to modulate the extensive Huntington's disease-associated transcriptional dysregulation, consistent with treatment having little impact on HTT aggregation levels. Modalities that inhibit myostatin signaling are currently in clinical trials for a variety of indications, the outcomes of which will present the opportunity to assess the potential benefits of targeting this pathway in HD patients.
Integrated residential photovoltaic array development
NASA Astrophysics Data System (ADS)
Shepard, N. F., Jr.
1981-02-01
An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.
Integrated residential photovoltaic array development
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1981-01-01
An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.
Chemical Modeling for Large-Eddy Simulation of Turbulent Combustion
2009-03-31
formation or NOx chemistry . The surrogate composition and its future use dictate the choice of modules that have to be included in the combined skeletal ...Stanford University Mechanical Engineering Department Stanford, CA 94305-3030 Submitted to: Dr. Julian M. Tishkoff Air Force Office of Scientific... engines , such as particulate matter, carbon monoxide CO, and oxides of nitrogen NOx , all contributing at different levels to the greenhouse effect and
Brook, Matthew S; Wilkinson, Daniel J; Atherton, Philip J
2017-11-01
In addition to being essential for movement, skeletal muscles act as both a store and source of key macronutrients. As such, muscle is an important tissue for whole body homeostasis, undergoing muscle wasting in times of starvation, disease, and stress, for example, to provide energy substrates for other tissues. Yet, muscle wasting is also associated with disability, comorbidities, and mortality. As nutrition is so crucial to maintaining muscle homeostasis 'in health', it has been postulated that muscle wasting in cachexia syndromes may be alleviated by nutritional interventions. This review will highlight recent work in this area in relation to muscle kinetics, the acute metabolic (e.g. dietary protein), and longer-term effects of dietary interventions. Whole body and skeletal muscle protein synthesis invariably exhibit deranged kinetics (favouring catabolism) in wasting states; further, many of these conditions harbour blunted anabolic responses to protein nutrition compared with healthy controls. These derangements underlie muscle wasting. Recent trials of essential amino acid and protein-based nutrition have shown some potential for therapeutic benefit. Nutritional modulation, particularly of dietary amino acids, may have benefits to prevent or attenuate disease-induced muscle wasting. Nonetheless, there remains a lack of recent studies exploring these key concepts to make conclusive recommendations.
Integration of hybrid silicon lasers and electroabsorption modulators.
Sysak, Matthew N; Anthes, Joel O; Bowers, John E; Raday, Omri; Jones, Richard
2008-08-18
We present an integration platform based on quantum well intermixing for multi-section hybrid silicon lasers and electroabsorption modulators. As a demonstration of the technology, we have fabricated discrete sampled grating DBR lasers and sampled grating DBR lasers integrated with InGaAsP/InP electroabsorption modulators. The integrated sampled grating DBR laser-modulators use the as-grown III-V bandgap for optical gain, a 50 nm blue shifted bandgap for the electrabosprtion modulators, and an 80 nm blue shifted bandgap for low loss mirrors. Laser continuous wave operation up to 45 ?C is achieved with output power >1.0 mW and threshold current of <50 mA. The modulator bandwidth is >2GHz with 5 dB DC extinction.
MISPS: Module integrated solar position sensor for concentration photovoltaics
NASA Astrophysics Data System (ADS)
Pardell, Ricard
2012-10-01
This paper describes a new device, the MISPS (Module Integrated. Solar Position Sensor) for CPV systems. Its main innovation lies in it being module integrated, so that the sensor is a constituent part of the module and uses its optics. The MISPS has been designed within the scope of the CPVRS project, but it can be used in any refractive optics CPV system.
Farber, Charles R; van Nas, Atila; Ghazalpour, Anatole; Aten, Jason E; Doss, Sudheer; Sos, Brandon; Schadt, Eric E; Ingram-Drake, Leslie; Davis, Richard C; Horvath, Steve; Smith, Desmond J; Drake, Thomas A; Lusis, Aldons J
2009-01-01
Numerous quantitative trait loci (QTLs) affecting bone traits have been identified in the mouse; however, few of the underlying genes have been discovered. To improve the process of transitioning from QTL to gene, we describe an integrative genetics approach, which combines linkage analysis, expression QTL (eQTL) mapping, causality modeling, and genetic association in outbred mice. In C57BL/6J × C3H/HeJ (BXH) F2 mice, nine QTLs regulating femoral BMD were identified. To select candidate genes from within each QTL region, microarray gene expression profiles from individual F2 mice were used to identify 148 genes whose expression was correlated with BMD and regulated by local eQTLs. Many of the genes that were the most highly correlated with BMD have been previously shown to modulate bone mass or skeletal development. Candidates were further prioritized by determining whether their expression was predicted to underlie variation in BMD. Using network edge orienting (NEO), a causality modeling algorithm, 18 of the 148 candidates were predicted to be causally related to differences in BMD. To fine-map QTLs, markers in outbred MF1 mice were tested for association with BMD. Three chromosome 11 SNPs were identified that were associated with BMD within the Bmd11 QTL. Finally, our approach provides strong support for Wnt9a, Rasd1, or both underlying Bmd11. Integration of multiple genetic and genomic data sets can substantially improve the efficiency of QTL fine-mapping and candidate gene identification. PMID:18767929
Childhood trauma and adulthood physical health in Mexico.
Baker, Charlene K; Norris, Fran H; Jones, Eric C; Murphy, Arthur D
2009-06-01
The present study examined the effect of childhood trauma on adulthood physical health among a randomly selected sample of adults (N = 2,177) in urban Mexico. Adults were interviewed about their experiences of trauma, post-traumatic stress disorder, depression, and physical health symptoms using Module K of the Composite International Diagnostic Interview, the Center for Epidemiologic Studies Depression Scale, and the Physical Symptoms Checklist. Trauma was prevalent, with 35% reporting a traumatic event in childhood. In general, men reported more childhood trauma than women, with the exception of childhood sexual violence where women reported more exposure. For men, childhood sexual violence was related to total and all physical health symptom subscales. For women, childhood sexual violence was related to total, muscular-skeletal, and gastrointestinal-urinary symptoms; hazards/accidents in childhood were related to total, muscular-skeletal, cardio-pulmonary, and nose-throat symptom subscales. Depression mediated the relationship between childhood sexual violence and physical health symptoms for men and women. Among women only, PTSD mediated the relationship between childhood sexual violence and total, muscular-skeletal, and gastrointestinal-urinary symptoms. PTSD also mediated the relationship between hazards/accidents in childhood and total, muscular-skeletal, cardio-pulmonary, and nose-throat symptoms. These findings can be used to increase awareness among general practitioners, as well as community stakeholders, about the prevalence of childhood trauma in Mexican communities and its impact on subsequent physical health outcomes. With this awareness, screening practices could be developed to identify those with trauma histories in order to increase positive health outcomes among trauma survivors.
Farshidfar, Farnaz; Pinder, Mark A; Myrie, Semone B
2017-01-01
Creatine, a very popular supplement among athletic populations, is of growing interest for clinical applications. Since over 90% of creatine is stored in skeletal muscle, the effect of creatine supplementation on muscle metabolism is a widely studied area. While numerous studies over the past few decades have shown that creatine supplementation has many favorable effects on skeletal muscle physiology and metabolism, including enhancing muscle mass (growth/hypertrophy); the underlying mechanisms are poorly understood. This report reviews studies addressing the mechanisms of action of creatine supplementation on skeletal muscle growth/hypertrophy. Early research proposed that the osmotic effect of creatine supplementation serves as a cellular stressor (osmosensing) that acts as an anabolic stimulus for protein synthesis signal pathways. Other reports indicated that creatine directly affects muscle protein synthesis via modulations of components in the mammalian target of rapamycin (mTOR) pathway. Creatine may also directly affect the myogenic process (formation of muscle tissue), by altering secretions of myokines, such as myostatin and insulin-like growth factor-1, and expressions of myogenic regulatory factors, resulting in enhanced satellite cells mitotic activities and differentiation into myofiber. Overall, there is still no clear understanding of the mechanisms of action regarding how creatine affects muscle mass/growth, but current evidence suggests it may exert its effects through multiple approaches, with converging impacts on protein synthesis and myogenesis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Gordon, S. E.; Fluck, M.; Booth, F. W.
2001-01-01
This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.
Effects of systemic hypoxia on human muscular adaptations to resistance exercise training
Kon, Michihiro; Ohiwa, Nao; Honda, Akiko; Matsubayashi, Takeo; Ikeda, Tatsuaki; Akimoto, Takayuki; Suzuki, Yasuhiro; Hirano, Yuichi; Russell, Aaron P.
2014-01-01
Abstract Hypoxia is an important modulator of endurance exercise‐induced oxidative adaptations in skeletal muscle. However, whether hypoxia affects resistance exercise‐induced muscle adaptations remains unknown. Here, we determined the effect of resistance exercise training under systemic hypoxia on muscular adaptations known to occur following both resistance and endurance exercise training, including muscle cross‐sectional area (CSA), one‐repetition maximum (1RM), muscular endurance, and makers of mitochondrial biogenesis and angiogenesis, such as peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α), citrate synthase (CS) activity, nitric oxide synthase (NOS), vascular endothelial growth factor (VEGF), hypoxia‐inducible factor‐1 (HIF‐1), and capillary‐to‐fiber ratio. Sixteen healthy male subjects were randomly assigned to either a normoxic resistance training group (NRT, n =7) or a hypoxic (14.4% oxygen) resistance training group (HRT, n =9) and performed 8 weeks of resistance training. Blood and muscle biopsy samples were obtained before and after training. After training muscle CSA of the femoral region, 1RM for bench‐press and leg‐press, muscular endurance, and skeletal muscle VEGF protein levels significantly increased in both groups. The increase in muscular endurance was significantly higher in the HRT group. Plasma VEGF concentration and skeletal muscle capillary‐to‐fiber ratio were significantly higher in the HRT group than the NRT group following training. Our results suggest that, in addition to increases in muscle size and strength, HRT may also lead to increased muscular endurance and the promotion of angiogenesis in skeletal muscle. PMID:24907297
Nuclear envelope: positioning nuclei and organizing synapses
Razafsky, David; Hodzic, Didier
2015-01-01
The nuclear envelope plays an essential role in nuclear positioning within cells and tissues. This review highlights advances in understanding the mechanisms of nuclear positioning during skeletal muscle and central nervous system development. New findings, particularly about Atype lamins and Nesprin1, may link nuclear envelope integrity to synaptic integrity. Thus synaptic defects, rather than nuclear mispositioning, may underlie human pathologies associated with mutations of nuclear envelope proteins. PMID:26079712
A peripheral governor regulates muscle contraction.
MacIntosh, Brian R; Shahi, M Reza S
2011-02-01
Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca2+ release through ryanodine receptors, and decreasing the availability of Ca2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.
The reliability of forensic osteology--a case in point. Case study.
Kemkes-Grottenthaler, A
2001-03-01
The medico-legal investigation of skeletons is a trans-disciplinary effort by forensic scientists as well as physical anthropologists. The advent of DNA extraction and amplification from bones and teeth has led to the assumption that morphological assessment of skeletal remains might soon become obsolete. But despite the introduction and success of molecular biology, the analysis of skeletal biology will remain an integral part of the identification process. This is due to the fact, that the skeletal record allows relatively fast and accurate inferences about the identity of the victim. Moreover, a standard biological profile may be established to effectively narrow the police investigator's search parameters. The following study demonstrates how skeletal biology may collaborate in the forensic investigation and support DNA fingerprinting evidence. In this case, the information gained from standard morphological methods about the unknown person's sex, age and heritage immediately led the police to suspect, that the remains were that of a young man from Vietnam, who had been missing for 2.5 years. The investigation then quickly shifted to prove the victim's identity via DNA extraction and mtDNA sequence analysis and biostatistical calculations involving questions of kinship [4].
Sex hormones, their receptors and bone health.
Venken, K; Callewaert, F; Boonen, S; Vanderschueren, D
2008-11-01
Sex steroids regulate skeletal maturation and preservation in both men and women, as already recognized in the 1940s by Albright and Reifenstein. The impact of gonadal insufficiency on skeletal integrity has been widely recognized in adult men and women ever since. In the context of their skeletal actions, androgens and estrogens are no longer considered as just male and female hormones, respectively. Androgens can be converted into estrogens within the gonads and peripheral tissues and both are present in men and women, albeit in different concentrations. In the late 1980s, sex steroid receptors were discovered in bone cells. However, the understanding of sex steroid receptor activation and translation into biological skeletal actions is still incomplete. Due to the complex metabolism, sex steroids may have not only endocrine but also paracrine and/or autocrine actions. Also, circulating sex steroid concentrations do not necessarily reflect their biological activity due to strong binding to sex hormone binding globulin (SHBG). Finally, sex steroid signaling may include genomic and non-genomic effects in bone and non-bone cells. This review will focus on our current understanding of gonadal steroid metabolism, receptor activation, and their most relevant cellular and biological actions on bone.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui
2014-01-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.
Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert; Liu, Xuhui
2014-07-01
extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.
Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis
Yang, Fang; Wang, Yumei
2018-01-01
Sepsis is a type of systemic inflammatory response syndrome with high morbidity and mortality. Skeletal muscle dysfunction is one of the major complications of sepsis that may also influence the outcome of sepsis. The aim of the present study was to explore and identify potential mechanisms and therapeutic targets of sepsis. Systemic bioinformatics analysis of skeletal muscle gene expression profiles from the Gene Expression Omnibus was performed. Differentially expressed genes (DEGs) in samples from patients with sepsis and control samples were screened out using the limma package. Differential co-expression and coregulation (DCE and DCR, respectively) analysis was performed based on the Differential Co-expression Analysis package to identify differences in gene co-expression and coregulation patterns between the control and sepsis groups. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of DEGs were identified using the Database for Annotation, Visualization and Integrated Discovery, and inflammatory, cancer and skeletal muscle development-associated biological processes and pathways were identified. DCE and DCR analysis revealed several potential therapeutic targets for sepsis, including genes and transcription factors. The results of the present study may provide a basis for the development of novel therapeutic targets and treatment methods for sepsis. PMID:29805480
Padilla-Gamiño, Jacqueline L.; Kelly, Morgan W.; Evans, Tyler G.; Hofmann, Gretchen E.
2013-01-01
Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species. PMID:23536595
Mice lacking MKP-1 and MKP-5 Reveal Hierarchical Regulation of Regenerative Myogenesis.
Shi, Hao; Gatzke, Florian; Molle, Julia M; Lee, Han Bin; Helm, Emma T; Oldham, Jessie J; Zhang, Lei; Gerrard, David E; Bennett, Anton M
2015-11-12
The relative contribution of the MAP kinase phosphatases (MKPs) in the integration of MAP kinase-dependent signaling during regenerative myogenesis has yet to be fully investigated. MKP-1 and MKP-5 maintain skeletal muscle homeostasis by providing positive and negative effects on regenerative myogenesis, respectively. In order to define the hierarchical contributions of MKP-1 and MKP-5 in the regulation of regenerative myogenesis we genetically ablated both MKPs in mice. MKP-1/MKP 5-deficient double-knockout (MKP1/5- DKO) mice were viable, and upon skeletal muscle injury, were severely impaired in their capacity to regenerate skeletal muscle. Satellite cells were fewer in number in MKP1/5-DKO mice and displayed a reduced proliferative capacity as compared with those derived from wild-type mice. MKP1/5-DKO mice exhibited increased inflammation and the macrophage M1 to M2 transition during the resolution of inflammation was impaired following injury. These results demonstrate that the actions of MKP-1 to positively regulate myogenesis predominate over those of MKP-5, which negatively regulates myogenesis. Hence, MKP-1 and MKP-5 function to maintain skeletal muscle homeostasis through non-overlapping and opposing signaling pathways.
Mice lacking MKP-1 and MKP-5 Reveal Hierarchical Regulation of Regenerative Myogenesis
Shi, Hao; Gatzke, Florian; Molle, Julia M.; Lee, Han Bin; Helm, Emma T.; Oldham, Jessie J.; Zhang, Lei; Gerrard, David E.; Bennett, Anton M.
2015-01-01
The relative contribution of the MAP kinase phosphatases (MKPs) in the integration of MAP kinase-dependent signaling during regenerative myogenesis has yet to be fully investigated. MKP-1 and MKP-5 maintain skeletal muscle homeostasis by providing positive and negative effects on regenerative myogenesis, respectively. In order to define the hierarchical contributions of MKP-1 and MKP-5 in the regulation of regenerative myogenesis we genetically ablated both MKPs in mice. MKP-1/MKP 5-deficient double-knockout (MKP1/5- DKO) mice were viable, and upon skeletal muscle injury, were severely impaired in their capacity to regenerate skeletal muscle. Satellite cells were fewer in number in MKP1/5-DKO mice and displayed a reduced proliferative capacity as compared with those derived from wild-type mice. MKP1/5-DKO mice exhibited increased inflammation and the macrophage M1 to M2 transition during the resolution of inflammation was impaired following injury. These results demonstrate that the actions of MKP-1 to positively regulate myogenesis predominate over those of MKP-5, which negatively regulates myogenesis. Hence, MKP-1 and MKP-5 function to maintain skeletal muscle homeostasis through non-overlapping and opposing signaling pathways. PMID:27064463
The Skeletal Biology of Hibernating Woodchucks (Marmota monax)
NASA Astrophysics Data System (ADS)
Doherty, Alison H.
Long periods of inactivity in most mammals lead to significant bone loss that may not be completely recovered during an individual's lifetime regardless of future activity. Extended bouts of inactivity are the norm for hibernating mammals. It remains largely unknown, however, how these animals avoid adversely affecting bone, their quality, and ultimately survival given the challenges posed to their skeletons by inactivity and nutritional deprivation during hibernation. The primary goal of this project was to identify the physiological mechanisms regulating bone density, area and strength during extended periods of annual inactivity in hibernating woodchucks (Marmota monax). The overall hypothesis that bone integrity is unaffected by several months of inactivity during hibernation in woodchucks was tested across multiple levels of biological function. To gain a holistic assessment of seasonal bone integrity, the locomotor behavior and estimated stresses acting on woodchuck bones were investigated in conjunction with computed tomography scans and three-point bending tests to determine bone density, geometry, and mechanical properties of the long bones throughout the year. In addition, serum protein expression was examined to ascertain bone resorption and formation processes indicative of overall annual skeletal health. It was determined that woodchucks avoid significant changes in gait preference, but experience a decrease in bending stresses acting on distal limb bones following hibernation. Computed tomography scans indicated that bone mass, distribution, and trabecular structure are maintained in these animals throughout the year. Surprisingly, cortical density increased significantly posthibernation. Furthermore, three-point bending tests revealed that although less stiff, woodchuck femora were just as tough during the hibernation season, unlike brittle bones associated with osteoporosis. Finally, bone serum markers suggested a net maintenance of bone resorption and formation processes throughout the year. Taken together, these findings strongly suggest that woodchucks do not lose bone to the extent that would be expected from a non-hibernating animal during four months of inactivity. It is concluded that bone integrity is not adversely affected by hibernation in woodchucks. The results of this work have several broader implications toward skeletal biology research, the evolution of skeletal plasticity, and biomedical applications to osteoporosis prevention and treatment.
1α,25 dihydroxi-vitamin D{sub 3} modulates CDK4 and CDK6 expression and localization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irazoqui, Ana P.; Heim, Nadia B.; Boland, Ricardo L.
We recently reported that the vitamin D receptor (VDR) and p38 MAPK participate in pro-differentiation events triggered by 1α,25(OH){sub 2}-vitamin D{sub 3} [1,25D] in skeletal muscle cells. Specifically, our studies demonstrated that 1,25D promotes G0/G1 arrest of cells inducing cyclin D3 and cyclin dependent kinases inhibitors (CKIs) p21{sup Waf1/Cip1} and p27{sup Kip1} expression in a VDR and p38 MAPK dependent manner. In this work we present data indicating that cyclin-dependent kinases (CDKs) 4 and 6 also play a role in the mechanism by which 1,25D stimulates myogenesis. To investigate VDR involvement in hormone regulation of CDKs 4 and 6, wemore » significantly reduced its expression by the use of a shRNA against mouse VDR, generating the skeletal muscle cell line C2C12-VDR. Investigation of changes in cellular cycle regulating proteins by immunoblotting showed that the VDR is involved in the 1,25D –induced CDKs 4 and 6 protein levels at 6 h of hormone treatment. CDK4 levels remains high during S phase peak and G0/G1 arrest while CDK6 expression decreases at 12 h and increases again al 24 h. The up-regulation of CDKs 4 and 6 by 1,25D (6 h) was abolished in C2C12 cells pre-treated with the ERK1/2 inhibitor, UO126. Moreover, CDKs 4 and 6 expression induced by the hormone nor was detected when α and β isoforms of p38 MAPK were inhibited by compound SB203580. Confocal images show that there is not co-localization between VDR and CDKs at 6 h of hormone treatment, however CDK4 and VDR co-localizates in nucleus after 12 h of 1,25D exposure. Of relevance, at this time 1,25D promotes CDK6 localization in a peri-nuclear ring. Our data demonstrate that the VDR, ERK1/2 and p38 MAPK are involved in the control of CDKs 4 and 6 by 1,25D in skeletal muscle cells sustaining the operation of a VDR and MAPKs –dependent mechanism in hormone modulation of myogenesis. - Highlights: • 1,25D modulates CDKs 4 and 6 expression in skeletal muscle cells. • CDK4 co-localizates with VDR after 1,25D treatment. • CDK6 change its intracellular localization by 1,25D stimulation.« less
Telmisartan as metabolic modulator: a new perspective in sports doping?
Sanchis-Gomar, Fabian; Lippi, Giuseppe
2012-03-01
The World Antidoping Agency (WADA) has introduced some changes in the 2012 prohibited list. Among the leading innovations to the rules are that both 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (peroxisome proliferator-activated receptor-δ [PPAR-δ]-5' adenosine monophosphate-activated protein kinase [AMPK] agonist) and GW1516 (PPAR-δ-agonist) are no longer categorized as gene doping substances in the new 2012 prohibited list but as metabolic modulators in the class "Hormone and metabolic modulators." This may also be valid for the angotensin II receptor blocker telmisartan. It has recently been shown that telmisartan might induce similar biochemical, biological, and metabolic changes (e.g., mitochondrial biogenesis and changes in skeletal muscle fiber type) as those reported for the former call of substances. We suspect that metabolic modulators abuse such as telmisartan might become a tangible threat in sports and should be thereby targeted as an important antidoping issue. The 2012 WADA prohibited list does not provide telmisartan for a potential doping drug, but arguments supporting the consideration to include them among "metabolic modulators" are at hand.
Optical integration of SPO mirror modules in the ATHENA telescope
NASA Astrophysics Data System (ADS)
Valsecchi, G.; Marioni, F.; Bianucci, G.; Zocchi, F. E.; Gallieni, D.; Parodi, G.; Ottolini, M.; Collon, M.; Civitani, M.; Pareschi, G.; Spiga, D.; Bavdaz, M.; Wille, E.
2017-08-01
ATHENA (Advanced Telescope for High-ENergy Astrophysics) is the next high-energy astrophysical mission selected by the European Space Agency for launch in 2028. The X-ray telescope consists of 1062 silicon pore optics mirror modules with a target angular resolution of 5 arcsec. Each module must be integrated on a 3 m structure with an accuracy of 1.5 arcsec for alignment and assembly. This industrial and scientific team is developing the alignment and integration process of the SPO mirror modules based on ultra-violet imaging at the 12 m focal plane. This technique promises to meet the accuracy requirement while, at the same time, allowing arbitrary integration sequence and mirror module exchangeability. Moreover, it enables monitoring the telescope point spread function during the planned 3-year integration phase.
A W-band integrated power module using MMIC MESFET power amplifiers and varactor doublers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, T.C.; Chen, Seng Woon; Pande, K.
1993-12-01
A high-performance integrated power module using U-band MMIC MESFET power amplifiers in conjunction with W-band MMIC high efficiency varactor doublers has been developed for millimeter-wave system applications. This paper presents the design, fabrication, and performance of this W-band integrated power module. Measured results of the complete integrated power module show an output power of 90 mW with an overall associated gain of 29.5 dB at 94 GHz. A saturated power of over 95 mW was also achieved. These results represent the highest reported power and gain at W-band using MESFET and varactor frequency doubling technologies. This integrated power module ismore » suitable for the future 94 GHz missile seeker applications.« less
76 FR 2914 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
... Scientific Review Special Emphasis Panel; Collaborative: Cardiovascular Disease and Epidemiology. Date... Review Group; Skeletal Biology Development and Disease Study Section. Date: February 9-10, 2011. Time: 8....nih.gov . Name of Committee: Infectious Diseases and Microbiology Integrated Review Group; Host...
Automated bone age assessment of older children using the radius
NASA Astrophysics Data System (ADS)
Tsao, Sinchai; Gertych, Arkadiusz; Zhang, Aifeng; Liu, Brent J.; Huang, Han K.
2008-03-01
The Digital Hand Atlas in Assessment of Skeletal Development is a large-scale Computer Aided Diagnosis (CAD) project for automating the process of grading Skeletal Development of children from 0-18 years of age. It includes a complete collection of 1,400 normal hand X-rays of children between the ages of 0-18 years of age. Bone Age Assessment is used as an index of skeletal development for detection of growth pathologies that can be related to endocrine, malnutrition and other disease types. Previous work at the Image Processing and Informatics Lab (IPILab) allowed the bone age CAD algorithm to accurately assess bone age of children from 1 to 16 (male) or 14 (female) years of age using the Phalanges as well as the Carpal Bones. At the older ages (16(male) or 14(female) -19 years of age) the Phalanges as well as the Carpal Bones are fully developed and do not provide well-defined features for accurate bone age assessment. Therefore integration of the Radius Bone as a region of interest (ROI) is greatly needed and will significantly improve the ability to accurately assess the bone age of older children. Preliminary studies show that an integrated Bone Age CAD that utilizes the Phalanges, Carpal Bones and Radius forms a robust method for automatic bone age assessment throughout the entire age range (1-19 years of age).
Integrated modular teaching in dermatology for undergraduate students: A novel approach
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-01-01
Context: Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. Aims: The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. Settings and Design: This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. Materials and Methods: A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. Results: It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Conclusions: Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation. PMID:25165641
Integrated modular teaching in dermatology for undergraduate students: A novel approach.
Karthikeyan, Kaliaperumal; Kumar, Annapurna
2014-07-01
Undergraduate teaching in dermatology comprises didactic lectures and clinical classes. Integrated modular teaching is a novel approach, which integrates basic sciences with dermatology in the form of a module. Further the module also incorporates various teaching modalities, which facilitate active participation from students and promotes learning. The pre- and post-test values showed the effectiveness of the integrated module. The students feedback was encouraging. The aim of this study was to determine the acceptance and opinion of undergraduate students regarding integrated modular teaching as a new teaching aid in dermatology. This was a descriptive study. Varied teaching methodologies involving multiple disciplines were undertaken in six major undergraduate topics in dermatology for seventh and eighth semester students. A total of six modules were conducted over a period of 12 months for students of seventh and eighth semesters. The topics for the various modules were sexually transmitted diseases, acquired immunodeficiency syndrome, oral ulcers, leprosy, connective tissue disorders and psoriasis. Faculty members from different disciplines participated. Pre- and post-test were conducted before and after the modules respectively to gauge the effectiveness of the modules. It was found that almost every student had a better score on the posttest as compared to the pretest. General feedback obtained from the students showed that all of them felt that modular teaching was a more interesting and useful teaching learning experience than conventional teaching. Integrated modular teaching can be an effective adjunct in imparting theoretical and practical knowledge to the students. Further, various teaching methodologies can be used in integrated modules effectively with active student participation. Thus integrated modular teaching addresses two important issues in medical education, namely integration and active student participation.
Transceivers and receivers for quantum key distribution and methods pertaining thereto
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRose, Christopher; Sarovar, Mohan; Soh, Daniel B.S.
Various technologies for performing continuous-variable (CV) and discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. An integrated CV-QKD system uses wavelength division multiplexing to send and receive amplitude-modulated and phase-modulated optical signals with a local oscillator signal while maintaining phase coherence between the modulated signals and the local oscillator signal.
Huerta, Miguel; Ortiz-Mesina, Mónica; Trujillo, Xóchitl; Sánchez-Pastor, Enrique; Vásquez, Clemente; Castro, Elena; Velasco, Raymundo; Montoya-Pérez, Rocío; Onetti, Carlos
2009-05-01
The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 microM) caused a decrease in tension. These doses reduced maximum tension to 67.43 +/- 8.07% (P = 0.02, n = 5) and 79.4 +/- 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 +/- 7.17% and 75.10 +/- 3.60% (P = 0.002, n = 5), respectively. Using the CB(1) cannabinoid receptor agonist ACPA (1 microM) reduced the maximum tension of caffeine contractures by 68.70 +/- 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 +/- 6.89% (P = 0.02, n = 5) compared to controls. When the CB(1) receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 microM) also decreased tension; the maximum tension was reduced by 56.48 +/- 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 +/- 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB(1) receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism.
Engaging Undergraduates in Soil Sustainability Decision-Making through an InTeGrate Module
ERIC Educational Resources Information Center
Fortner, Sarah K.; Scherer, Hannah H.; Murphy, Martha A.
2016-01-01
Continued agricultural productivity hinges on understanding how to manage soil resources. A 2-week undergraduate introductory-level module: "A Growing Concern: Sustaining Soil Resources Through Local Decision Making" was collaboratively developed through the InTeGrate Project. InTeGrate modules and courses engage students in grand…
Dodson, Shontelle; Baracos, Vickie E; Jatoi, Aminah; Evans, William J; Cella, David; Dalton, James T; Steiner, Mitchell S
2011-01-01
Cancer cachexia is a complex metabolic condition characterized by loss of skeletal muscle. Common clinical manifestations include muscle wasting, anemia, reduced caloric intake, and altered immune function, which contribute to increased disability, fatigue, diminished quality of life, and reduced survival. The prevalence of cachexia and the impact of this disorder on the patient and family underscore the need for effective management strategies. Dietary supplementation and appetite stimulation alone are inadequate to reverse the underlying metabolic abnormalities of cancer cachexia and have limited long-term impact on patient quality of life and survival. Therapies that can increase muscle mass and physical performance may be a promising option; however, there are currently no drugs approved for the prevention or treatment of cancer cachexia. Several agents are in clinical development, including anabolic agents, such as selective androgen receptor modulators and drugs targeting inflammatory cytokines that promote skeletal muscle catabolism.
Imaging skeletal muscle with linearly polarized light
NASA Astrophysics Data System (ADS)
Li, X.; Ranasinghesagara, J.; Yao, G.
2008-04-01
We developed a polarization sensitive imaging system that can acquire reflectance images in turbid samples using incident light of different polarization states. Using this system, we studied polarization imaging on bovine sternomandibularis muscle strips using light of two orthogonal linearly polarized states. We found the obtained polarization sensitive reflectance images had interesting patterns depending on the polarization states. In addition, we computed four elements of the Mueller matrix from the acquired images. As a comparison, we also obtained polarization images of a 20% Intralipid"R" solution and compared the results with those from muscle samples. We found that the polarization imaging patterns from Intralipid solution can be described with a model based on single-scattering approximation. However, the polarization images in muscle had distinct patterns and can not be explained by this simple model. These results implied that the unique structural properties of skeletal muscle play important roles in modulating the propagation of polarized light.
Molecular mechanism of sarcopenia and cachexia: recent research advances.
Sakuma, Kunihiro; Aoi, Wataru; Yamaguchi, Akihiko
2017-06-01
Skeletal muscle provides a fundamental basis for human function, enabling locomotion and respiration. Muscle loss occurs as a consequence of several chronic diseases (cachexia) and normal aging (sarcopenia). Although many negative regulators (atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.) have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of these mediators markedly differs within both conditions. Sarcopenia and cachectic muscles have been demonstrated to be abundant in myostatin-linked molecules. The ubiquitin-proteasome system (UPS) is activated during rapid atrophy model (cancer cachexia), but few mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Recent studies have indicated the age-related defect of autophagy signaling in skeletal muscle, whereas autophagic activation occurs in cachectic muscle. This review provides recent research advances dealing with molecular mediators modulating muscle mass in both sarcopenia and cachexia.
Emerging Therapeutic Opportunities for Skeletal Restoration
Kawai, Masanobu; Mödder, Ulrike I.; Khosla, Sundeep; Rosen, Clifford J
2011-01-01
Preface Osteoporosis, a syndrome characterized by thin bones and fractures, has become more prevalent in both women and men. Established therapies for this disorder consist primarily of drugs that prevent bone loss, such as the bisphosphonates and selective estrogen receptor modulators. Although these drugs have been shown to reduce fractures in randomized trials, there is an urgent need for treatments that could lower fracture risk further without additional adverse effects. The introduction of parathyroid hormone (teriparatide), which significantly increases bone mineral density, albeit for a relatively short duration, raised expectations that drugs which stimulate bone formation might cure osteoporosis. After outlining current approaches to treating osteoporosis, this review focuses on emerging therapeutic opportunities for osteoporosis that are based on recent insights into skeletal physiology. Such novel strategies offer promise for not only reducing age-related bone loss and the associated risk of fractures, but restoring bone mineral density to healthy levels. PMID:21283108
Androgens: basic biology and clinical implication.
Orwoll, E S
2001-10-01
Although androgens have been considered essential modulators of bone biology in men, recent studies have indicated that estrogen may have an important, if not dominant, role. Nevertheless, there is strong evidence that androgens have independent skeletal actions. Nonaromatizable androgens influence a variety of aspects of bone cell biology and are capable of modulating bone remodeling and bone mass. It appears that androgens are particularly important in the control of periosteal bone formation, an effect that might underlie the gender difference in bone size. Alterations in androgen receptor function affect bone metabolism, and new information suggests that androgens modulate receptor homeostasis. The clinical implications of androgen effects, and how they interact with those of estrogens, are somewhat unclear. It is likely that overall bone homeostasis and gender differences depend on a combination of androgenic and estrogenic actions. Androgens may well provide advantages in the prevention and therapy of metabolic bone disorders in both men and women.
Wang, Xun; Feng, Zhihui; Wang, Xueqiang; Yang, Liang; Han, Shujun; Cao, Ke; Xu, Jie; Zhao, Lin; Zhang, Yong; Liu, Jiankang
2016-06-01
O-GlcNAcylation is implicated in modulating mitochondrial function, which is closely involved in regulating muscle metabolism. The presence of O-GlcNAcase (OGA), the enzyme involved in the removal of O-GlcNAc, in mitochondria was recently confirmed in rats. In the present study, we investigated the regulation of myogenesis and muscle insulin sensitivity to OGA in mice, with a focus on mitochondria. C57BL/6J mice fed a high-fat diet for 4 months were used to observe mitochondrial density, activity and O-GlcNAcylation in muscle. Small interfering RNA and overexpression vectors were used to modulate protein content in vitro. High-fat feeding decreased the OGA level and largely increased mitochondrial O-GlcNAcylation in mouse skeletal muscle that was accompanied by decreased levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), decreased mitochondrial density and disrupted mitochondrial complex activities. Knockdown of OGA in C2C12 myoblasts promoted PGC-1α degradation, resulting in the suppression of mitochondrial biogenesis and myogenesis, whereas neither knockdown of O-GlcNAc transferase nor overexpression of OGA had significant effects on myogenesis. Mitochondrial dysfunction as evidenced by decreased ATP content and increased reactive oxygen species production, and increased lipid and protein oxidation was observed in both myoblasts and myotubes after OGA knockdown. Meanwhile, elevated O-GlcNAcylation through either OGA knockdown or treatment with the OGA inhibitor PUGNAc and the O-GlcNAc transferase substrate D-GlcNAc suppressed myotube insulin signalling transduction and glucose uptake. OGA overexpression had no significant effect on insulin sensitivity but sufficiently improved the insulin resistance induced by D-GlcNAc treatment. These data suggest that OGA can modulate mitochondrial density via PGC-1α and mitochondrial function via protein O-GlcNAcylation. In this manner, OGA appears to play a key role in myogenesis and the development of muscle insulin resistance.
Juhas, Mark; Engelmayr, George C.; Fontanella, Andrew N.; Palmer, Gregory M.; Bursac, Nenad
2014-01-01
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration. PMID:24706792
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin-Hua; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Bauman, William A.
2015-08-14
Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 inmore » NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop on NF-κB in response to inflammation.« less
Pichai, Saravanan; Rajesh, M; Reddy, Naveen; Adusumilli, Gopinath; Reddy, Jayaprakash; Joshi, Bhavana
2014-09-01
Skeletal maturation is an integral part of individual pattern of growth and development and is a continuous process. Peak growth velocity in standing height is the most valid representation of the rate of overall skeletal growth. Ossification changes of hand wrist and cervical vertebrae are the reliable indicators of growth status of individual. The objective of this study was to compare skeletal maturation as measured by hand wrist bone analysis and cervical vertebral analysis. Hand wrist radiographs and lateral cephalograms of 72 subjects aged between 7 and 16 years both male and female from the patients visiting Department of Orthodontics and Dentofacial Orthopedics, R.V. Dental College and Hospital. The 9 stages were reduced to 5 stages to compare with cervical vertebral maturation stage by Baccetti et al. The Bjork, Grave and Brown stages were reduced to six intervals to compare with cervical vertebral maturational index (CVMI) staging by Hassel and Farman. These measurements were then compared with the hand wrist bone analysis, and the results were statistically analyzed using the Mann-Whitney test. There was no significant difference between the hand wrist analysis and the two different cervical vertebral analyses for assessing skeletal maturation. There was no significant difference between the two cervical vertebral analyses, but the CVMI method, which is visual method is less time consuming. Vertebral analysis on a lateral cephalogram is as valid as the hand wrist bone analysis with the advantage of reducing the radiation exposure of growing subjects.
Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf
2008-01-01
Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988
Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course
ERIC Educational Resources Information Center
Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.
2006-01-01
A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.
Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of themore » interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.« less
Ljubicic, Vladimir; Jasmin, Bernard J
2013-10-01
Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Slemenda, C; Longcope, C; Peacock, M; Hui, S; Johnston, C C
1996-01-01
Although bone loss around the time of menopause is driven by estrogen deficiency, the roles of estrogens and androgens in the preservation of skeletal mass at other stages of life are less well understood. To address this issue we studied 231 women between the ages of 32 and 77 with multiple measurements of sex steroids and bone mass over a period of 2-8 yr. In all women bone mass was negatively associated with concentrations of sex-hormone binding globulin, and positively associated with weight. Bone loss occurred from all skeletal sites in peri- and postmenopausal women, but premenopausal women lost bone only from the hip (-0.3%/yr) and had positive rates of change in the radius and spine. Bone loss was significantly associated with lower androgen concentrations in premenopausal women, and with lower estrogens and androgens in peri- and postmenopausal women. Sex steroids are important for the maintenance of skeletal integrity before menopause, and for as long as 20-25 yr afterwards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.
2016-10-28
Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of themore » interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.« less
Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; ...
2016-10-28
Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. Here, the chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side ofmore » the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO 3 biomineralization.« less
Muscle Research and Human Space Exploration: Current Progress and Future Challenges
NASA Technical Reports Server (NTRS)
Feedback, Daniel L.
2004-01-01
Since the beginning of human space flight, there has been serious concern over the exposure of human crewmembers to the microgravity of space due to the systemic effects on terrestrially-evolved creatures that are adapted to Earth gravity. Humans in the microgravity environment of space, within our currently developed space vehicles, are exposed to various periods of skeletal muscle unloading (unweighting). Unloading of skeletal muscle both on Earth and during spaceflight results in remodeling of muscle (atrophic response) as an adaptation to the reduced loads placed upon it. As a result, there are decrements in skeletal muscle strength, fatigue resistance, motor performance, and connective tissue integrity. This normal adaptive response to the microgravity environment is for the most part of little consequence within the space vehicle per se but may become a liability resulting in an increased risk of crewmember physical failure during extravehicular activities or abrupt transitions to environments of increased gravity (such as return to Earth or landing on another planetary body).
NASA Astrophysics Data System (ADS)
Zolotov, Evgenii M.; Pelekhatyĭ, V. M.; Tavlykaev, R. F.
1990-05-01
A simultaneous increase in the frequency bandwidth and a reduction in the control (drive) power of integrated optical traveling-wave modulators can be achieved as a result of the electrooptic interaction in accordance with a linear frequency-modulated oscillatory law derived by inverse Fourier transformation of a rectangular amplitude-frequency characteristic and a quadratic phase-frequency characteristic of a modulator. This oscillatory law is realized using planar electrode structures with triangular or trapezoidal toothed edges. The tooth repetition frequency is governed by the linearly frequency-modulated oscillations and it rises on increase in the light modulation frequency.
78 FR 12072 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... unwarranted invasion of personal privacy. Name of Committee: AIDS and Related Research Integrated Review Group... Emphasis Panel; PAR Panel: Cancer Health Disparities/Diversity in Basic Cancer Research. Date: March 18-19... for Scientific Review Special Emphasis Panel; Small Business: Orthopedic and Skeletal Biology. Date...
Vertical electro-absorption modulator design and its integration in a VCSEL
NASA Astrophysics Data System (ADS)
Marigo-Lombart, L.; Calvez, S.; Arnoult, A.; Thienpont, H.; Almuneau, G.; Panajotov, K.
2018-04-01
Electro-absorption modulators, either embedded in CMOS technology or integrated with a semiconductor laser, are of high interest for many applications such as optical communications, signal processing and 3D imaging. Recently, the integration of a surface-normal electro-absorption modulator into a vertical-cavity surface-emitting laser has been considered. In this paper we implement a simple quantum well electro-absorption model and design and optimize an asymmetric Fabry-Pérot semiconductor modulator while considering all physical properties within figures of merit. We also extend this model to account for the impact of temperature on the different parameters involved in the calculation of the absorption, such as refractive indices and exciton transition broadening. Two types of vertical modulator structures have been fabricated and experimentally characterized by reflectivity and photocurrent measurements demonstrating a very good agreement with our model. Finally, preliminary results of an electro-absorption modulator vertically integrated with a vertical-cavity surface-emitting laser device are presented, showing good modulation performances required for high speed communications.
NASA Astrophysics Data System (ADS)
Hidayati, A.; Rahmi, A.; Yohandri; Ratnawulan
2018-04-01
The importance of teaching materials in accordance with the characteristics of students became the main reason for the development of basic electronics I module integrated character values based on conceptual change teaching model. The module development in this research follows the development procedure of Plomp which includes preliminary research, prototyping phase and assessment phase. In the first year of this research, the module is validated. Content validity is seen from the conformity of the module with the development theory in accordance with the demands of learning model characteristics. The validity of the construct is seen from the linkage and consistency of each module component developed with the characteristic of the integrated learning model of character values obtained through validator assessment. The average validation value assessed by the validator belongs to a very valid category. Based on the validator assessment then revised the basic electronics I module integrated character values based on conceptual change teaching model.
Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S
2014-06-15
Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.
Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.
Mercken, Evi M; Capri, Miriam; Carboneau, Bethany A; Conte, Maria; Heidler, Juliana; Santoro, Aurelia; Martin-Montalvo, Alejandro; Gonzalez-Freire, Marta; Khraiwesh, Husam; González-Reyes, José A; Moaddel, Ruin; Zhang, Yongqing; Becker, Kevin G; Villalba, José M; Mattison, Julie A; Wittig, Ilka; Franceschi, Claudio; de Cabo, Rafael
2017-01-01
Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.
Jiang, J G; Shen, G F; Li, J; Qiao, C; Xiao, B; Yan, H; Wang, D W; Xiao, X
2017-03-01
Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.
Fujimaki, Shin; Hidaka, Ryo; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko
2014-01-01
Muscle represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle-derived stem cells, called satellite cells, play essential roles in regeneration after muscle injury in adult skeletal muscle. Although the molecular mechanism of muscle regeneration process after an injury has been extensively investigated, the regulation of satellite cells under steady state during the adult stage, including the reaction to exercise stimuli, is relatively unknown. Here, we show that voluntary wheel running exercise, which is a low stress exercise, converts satellite cells to the activated state due to accelerated Wnt signaling. Our analysis showed that up-regulated canonical Wnt/β-catenin signaling directly modulated chromatin structures of both MyoD and Myf5 genes, resulting in increases in the mRNA expression of Myf5 and MyoD and the number of proliferative Pax7+Myf5+ and Pax7+ MyoD+ cells in skeletal muscle. The effect of Wnt signaling on the activation of satellite cells, rather than Wnt-mediated fibrosis, was observed in both adult and aged mice. The association of β-catenin, T-cell factor, and lymphoid enhancer transcription factors of multiple T-cell factor/lymphoid enhancer factor regulatory elements, conserved in mouse, rat, and human species, with the promoters of both the Myf5 and MyoD genes drives the de novo myogenesis in satellite cells even in aged muscle. These results indicate that exercise-stimulated extracellular Wnts play a critical role in the regulation of satellite cells in adult and aged skeletal muscle. PMID:24482229
Wang, Lin; Shansky, Janet; Vandenburgh, Herman
2013-12-01
Dysfunction of the neuromuscular junction is involved in a wide range of muscular diseases. The development of neuromuscular junction through which skeletal muscle is innervated requires the functional modulation of acetylcholine receptor (AchR) clustering on myofibers. However, studies on AchR clustering in vitro are mostly done on monolayer muscle cell culture, which lacks a three-dimensional (3D) structure, a prominent limitation of the two-dimensional (2D) system. To enable a better understanding on the structure-function correlation underlying skeletal muscle innervation, a muscle system with a well-defined geometry mimicking the in vivo muscular setting is needed. Here, we report a 3D bio-artificial muscle (BAM) bioengineered from green fluorescent protein-transduced C3H murine myoblasts as a novel in vitro tissue-based model for muscle innervation studies. Our cell biological and molecular analysis showed that this BAM is structurally similar to in vivo muscle tissue and can reach the perinatal differentiation stage, higher than does 2D culture. Effective clustering and morphological maturation of AchRs on BAMs induced by agrin and laminin indicate the functional activity and plasticity of this BAM system toward innervation. Taken together, our results show that the BAM provides a favorable 3D environment that at least partially recapitulates real physiological skeletal muscle with regard to innervation. With a convenience of fabrication and manipulation, this 3D in vitro system offers a novel model for studying mechanisms underlying skeletal muscle innervation and testing therapeutic strategies for relevant nervous and muscular diseases.
The impact of skeletal unloading on bone formation
NASA Technical Reports Server (NTRS)
Bikle, Daniel D.; Sakata, Takeshi; Halloran, Bernard P.
2003-01-01
Skeletal unloading leads to decreased bone formation and decreased bone mass. Bone resorption is uncoupled from bone formation, contributing to the bone loss. During space flight bone is lost principally from the bones most loaded in the 1 g environment. Determining the mechanism(s) by which loading of bone is sensed and translated into a signal(s) controlling bone formation remains the holy grail in this field. It seems likely that matrix/cell interactions will underlie much of the mechanocoupling. Integrins are a prime mediator of such interactions. The role for systemic hormones such as PTH, GH and 1,25(OH)2D compared to locally produced factors such as IGF-I, PTHrP, BMPs and TGF beta in modulating the cellular response to load remains unclear. Our studies demonstrate that skeletal unloading leads to resistance to the anabolic actions of IGF-I on bone as a result of failure of IGF-I to activate its own signaling pathways. This is associated with a reduction in integrin expression, suggesting crosstalk between these two pathways. As the mechanism(s) by which bone responds to changes in mechanical load with changes in bone formation is further elucidated, applications of this knowledge to other etiologies of osteoporosis are likely to develop. Skeletal unloading provides a perturbation in bone mineral homeostasis that can be used to understand the mechanisms by which bone mineral homeostasis is maintained, and that such understanding will lead to effective treatment for disuse osteoporosis in addition to preventive measures for the bone loss that accompanies space travel.
Anabolic effects of IGF-1 signaling on the skeleton
Tahimic, Candice G. T.; Wang, Yongmei; Bikle, Daniel D.
2013-01-01
This review focuses on the anabolic effects of IGF-1 signaling on the skeleton, emphasizing the requirement for IGF-1 signaling in normal bone formation and remodeling. We first discuss the genomic context, splicing variants, and species conservation of the IGF-1 locus. The modulation of IGF-1 action by growth hormone (GH) is then reviewed while also discussing the current model which takes into account the GH-independent actions of IGF-1. Next, the skeletal phenotypes of IGF-1-deficient animals are described in both embryonic and postnatal stages of development, which include severe dwarfism and an undermineralized skeleton. We then highlight two mechanisms by which IGF-1 exerts its anabolic action on the skeleton. Firstly, the role of IGF-1 signaling in the modulation of anabolic effects of parathyroid hormone (PTH) on bone will be discussed, presenting in vitro and in vivo studies that establish this concept and the proposed underlying molecular mechanisms involving Indian hedgehog (Ihh) and the ephrins. Secondly, the crosstalk of IGF-1 signaling with mechanosensing pathways will be discussed, beginning with the observation that animals subjected to skeletal unloading by hindlimb elevation are unable to mitigate cessation of bone growth despite infusion with IGF-1 and the failure of IGF-1 to activate its receptor in bone marrow stromal cell cultures from unloaded bone. Disrupted crosstalk between IGF-1 signaling and the integrin mechanotransduction pathways is discussed as one of the potential mechanisms for this IGF-1 resistance. Next, emerging paradigms on bone-muscle crosstalk are examined, focusing on the potential role of IGF-1 signaling in modulating such interactions. Finally, we present a future outlook on IGF research. PMID:23382729
Molinari, Francesca; Pin, Fabrizio; Gorini, Stefania; Chiandotto, Sergio; Pontecorvo, Laura; Penna, Fabio; Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Costelli, Paola
2017-01-01
Abstract Background Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure optimal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency. Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract skeletal muscle dysfunctions and wasting occurring in cancer cachexia. Methods For this purpose, we used mice bearing the C26 colon carcinoma as a model of cancer cachexia. Mice received 5 mg/kg TMZ (i.p.) once a day for 12 consecutive days. A forelimb grip strength test was performed and tibialis anterior, and gastrocnemius muscles were excised for analysis. Ex vivo measurement of skeletal muscle contractile properties was also performed. Results Our data showed that TMZ induces some effects typically achieved through exercise, among which is grip strength increase, an enhanced fast‐to slow myofibre phenotype shift, reduced glycaemia, PGC1α up‐regulation, oxidative metabolism, and mitochondrial biogenesis. TMZ also partially restores the myofibre cross‐sectional area in C26‐bearing mice, while modulation of autophagy and apoptosis were excluded as mediators of TMZ effects. Conclusions In conclusion, our data show that TMZ acts like an ‘exercise mimetic’ and is able to enhance some mechanisms of adaptation to stress in cancer cachexia. This makes the modulation of the metabolism, and in particular TMZ, a suitable candidate for a therapeutic rehabilitative protocol design, particularly considering that TMZ has already been approved for clinical use. PMID:29130633
Model-based segmentation of hand radiographs
NASA Astrophysics Data System (ADS)
Weiler, Frank; Vogelsang, Frank
1998-06-01
An important procedure in pediatrics is to determine the skeletal maturity of a patient from radiographs of the hand. There is great interest in the automation of this tedious and time-consuming task. We present a new method for the segmentation of the bones of the hand, which allows the assessment of the skeletal maturity with an appropriate database of reference bones, similar to the atlas based methods. The proposed algorithm uses an extended active contour model for the segmentation of the hand bones, which incorporates a-priori knowledge of shape and topology of the bones in an additional energy term. This `scene knowledge' is integrated in a complex hierarchical image model, that is used for the image analysis task.
Bhattacharya, Arunabh; Lustgarten, Michael; Shi, Yun; Liu, Yuhong; Jang, Youngmok C; Pulliam, Daniel; Jernigan, Amanda L; Van Remmen, Holly
2013-01-01
Previous studies have shown that muscle atrophy is associated with mitochondrial dysfunction and an increased rate of mitochondrial reactive oxygen species production. We recently demonstrated that fatty acid hydroperoxides (FA-OOH) are significantly elevated in mitochondria isolated from atrophied muscles. The purpose of the current study is to determine whether FA-OOH can alter skeletal muscle mitochondrial function. We found that FA-OOH (at low micromolar concentrations) induces mitochondrial dysfunction assessed by decrease in the rate of ATP production, oxygen consumption and activity of respiratory chain complexes I and III. Using methods to distinguish superoxide release towards the matrix and inter-membrane space, we demonstrate that FA-OOH significantly elevates oxidative stress in the mitochondrial matrix (and not the inter-membrane space) with complex I as the major site of superoxide production (most likely from a site upstream of the ubiquinone binding site but downstream from the flavin binding site-the iron sulfur clusters). Our results are the first to indicate that FA-OOH’s are important modulators of mitochondrial function and oxidative stress in skeletal muscle mitochondria and may play an important role in muscle atrophies that are associated with increased generation of FA-OOH’s, e.g., denervation-induced muscle atrophy. PMID:21172427
Thyroid hormones regulate skeletal muscle regeneration after acute injury.
Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa
2015-02-01
We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.
Control of skeletal muscle perfusion at the onset of dynamic exercise
NASA Technical Reports Server (NTRS)
Delp, M. D.
1999-01-01
At the onset of exercise there is a rapid increase in skeletal muscle vascular conductance and blood flow. Several mechanisms involved in the regulation of muscle perfusion have been proposed to initiate this hyperemic response, including neural, metabolic, endothelial, myogenic, and muscle pump mechanisms. Investigators utilizing pharmacological blockade of cholinergic muscarinic receptors and sympathectomy have concluded that neither sympathetic cholinergic nor adrenergic neural mechanisms are involved in the initial hyperemia. Studies have also shown that the time course for vasoactive metabolite release, diffusion, accumulation, and action is too long to account for the rapid increase in vascular conductance at the initiation of exercise. Furthermore, there is little or no evidence to support an endothelium or myogenic mechanism as the initiating factor in the muscle hyperemia. Thus, the rise in muscle blood flow does not appear to be explained by known neural, metabolic, endothelial, or myogenic influences. However, the initial hyperemia is consistent with the mechanical effects of the muscle pump to increase the arteriovenous pressure gradient across muscle. Because skeletal muscle blood flow is regulated by multiple and redundant mechanisms, it is likely that neural, metabolic, and possibly endothelial factors become important modulators of mechanically induced exercise hyperemia following the first 5-10 s of exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw
2014-09-26
Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladinmore » in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.« less
Nie, M; Liu, J; Yang, Q; Seok, H Y; Hu, X; Deng, Z-L; Wang, D-Z
2016-01-01
Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases. PMID:27277683
Cho, Ok Hyun; Mallappa, Chandrashekara; Hernández-Hernández, J Manuel; Rivera-Pérez, Jaime A; Imbalzano, Anthony N
2015-01-01
Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage-specific genes. The lineage-determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation-specific genes is established remains unclear. Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co-activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification before myogenic regulatory factor binding. At the same time, the MCK promoter was bound by HDAC2 and MyoD, and activating histone marks were largely absent. The association of HDAC2 and MyoD was confirmed by co-immunoprecipitation, proximity ligation assay (PLA), and sequential ChIP. MyoD differentially promotes activated and repressed chromatin structures at myogenic genes early after the onset of skeletal muscle differentiation in the developing mouse embryo. © 2014 Wiley Periodicals, Inc.
Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms.
Herroon, Mackenzie K; Rajagurubandara, Erandi; Hardaway, Aimalie L; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela
2013-11-01
Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease.
Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms
Herroon, Mackenzie K.; Rajagurubandara, Erandi; Hardaway, Aimalie L.; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela
2013-01-01
Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease. PMID:24240026
Ameye, L; De Becker, G; Killian, C; Wilt, F; Kemps, R; Kuypers, S; Dubois, P
2001-04-01
Properties of the echinoderm skeleton are under biological control, which is exerted in part by the organic matrix embedded in the mineralized part of the skeleton. This organic matrix consists of proteins and glycoproteins whose carbohydrate component is specifically involved in the control mechanisms. The saccharide moiety of the organic matrix of the spines of the echinoid Paracentrotus lividus was characterized using enzyme-linked lectin assays (ELLAs). O-glycoproteins, different types of complex N-glycoproteins, and terminal sialic acids were detected. Sialic acids are known to interact with Ca ions and could play an important role in the mineralization process. Some of the carbohydrate components detected by ELLAs as well as two organic matrix proteins (SM30 and SM50) were localized within different subregions of the spine skeleton using field-emission scanning electron microscopy. The mappings show that some of these components are not homogeneously distributed in the different skeletal subregions. For example, some N-glycoproteins were preferentially located in the putative amorphous subregion of the skeleton, whereas some O-glycoproteins were localized in the subregion where skeletal growth is inhibited. These results suggest that the biological control exerted on the skeletal properties can be partly modulated by local differences in the organic matrix composition. Copyright 2001 Academic Press.
Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G
2010-06-01
As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.
Favero, Gaia; Trapletti, Valentina; Bonomini, Francesca; Stacchiotti, Alessandra; Lavazza, Antonio; Rodella, Luigi Fabrizio; Rezzani, Rita
2017-06-29
Fibromyalgia is a chronic syndrome characterized by widespread musculoskeletal pain and an extensive array of other symptoms including disordered sleep, fatigue, depression and anxiety. Important factors involved in the pathogenic process of fibromyalgia are inflammation and oxidative stress, suggesting that ant-inflammatory and/or antioxidant supplementation might be effective in the management and modulation of this syndrome. Recent evidence suggests that melatonin may be suitable for this purpose due to its well known ant-inflammatory, antioxidant and analgesic effects. Thus, in the current study, the effects of the oral supplementation of melatonin against fibromyalgia-related skeletal muscle alterations were evaluated. In detail, 90 Sprague Dawley rats were randomly treated with reserpine, to reproduce the pathogenic process of fibromyalgia and thereafter they received melatonin. The animals treated with reserpine showed moderate alterations at hind limb skeletal muscles level and had difficulty in moving, together with significant morphological and ultrastructural alterations and expression of inflammatory and oxidative stress markers in the gastrocnemius muscle. Interestingly, melatonin, dose and/or time dependently, reduced the difficulties in spontaneous motor activity and the musculoskeletal morphostructural, inflammatory, and oxidative stress alterations. This study suggests that melatonin in vivo may be an effective tool in the management of fibromyalgia-related musculoskeletal morphofunctional damage.
Cholewa, Jason; Guimarães-Ferreira, Lucas; da Silva Teixeira, Tamiris; Naimo, Marshall Alan; Zhi, Xia; de Sá, Rafaele Bis Dal Ponte; Lodetti, Alice; Cardozo, Mayara Quadros; Zanchi, Nelo Eidy
2014-09-01
Human muscle hypertrophy brought about by voluntary exercise in laboratorial conditions is the most common way to study resistance exercise training, especially because of its reliability, stimulus control and easy application to resistance training exercise sessions at fitness centers. However, because of the complexity of blood factors and organs involved, invasive data is difficult to obtain in human exercise training studies due to the integration of several organs, including adipose tissue, liver, brain and skeletal muscle. In contrast, studying skeletal muscle remodeling in animal models are easier to perform as the organs can be easily obtained after euthanasia; however, not all models of resistance training in animals displays a robust capacity to hypertrophy the desired muscle. Moreover, some models of resistance training rely on voluntary effort, which complicates the results observed when animal models are employed since voluntary capacity is something theoretically impossible to measure in rodents. With this information in mind, we will review the modalities used to simulate resistance training in animals in order to present to investigators the benefits and risks of different animal models capable to provoke skeletal muscle hypertrophy. Our second objective is to help investigators analyze and select the experimental resistance training model that best promotes the research question and desired endpoints. © 2013 Wiley Periodicals, Inc.
Tsui, Jonathan H; Janebodin, Kajohnkiart; Ieronimakis, Nicholas; Yama, David M P; Yang, Hee Seok; Chavanachat, Rakchanok; Hays, Aislinn L; Lee, Haeshin; Reyes, Morayma; Kim, Deok-Ho
2017-12-26
Despite possessing substantial regenerative capacity, skeletal muscle can suffer from loss of function due to catastrophic traumatic injury or degenerative disease. In such cases, engineered tissue grafts hold the potential to restore function and improve patient quality of life. Requirements for successful integration of engineered tissue grafts with the host musculature include cell alignment that mimics host tissue architecture and directional functionality, as well as vascularization to ensure tissue survival. Here, we have developed biomimetic nanopatterned poly(lactic-co-glycolic acid) substrates conjugated with sphingosine-1-phosphate (S1P), a potent angiogenic and myogenic factor, to enhance myoblast and endothelial maturation. Primary muscle cells cultured on these functionalized S1P nanopatterned substrates developed a highly aligned and elongated morphology and exhibited higher expression levels of myosin heavy chain, in addition to genes characteristic of mature skeletal muscle. We also found that S1P enhanced angiogenic potential in these cultures, as evidenced by elevated expression of endothelial-related genes. Computational analyses of live-cell videos showed a significantly improved functionality of tissues cultured on S1P-functionalized nanopatterns as indicated by greater myotube contraction displacements and velocities. In summary, our study demonstrates that biomimetic nanotopography and S1P can be combined to synergistically regulate the maturation and vascularization of engineered skeletal muscles.
Liu, Zhongbo; Kennedy, Oran D; Cardoso, Luis; Basta-Pljakic, Jelena; Partridge, Nicola C; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana
2016-02-01
Bone minerals are acquired during growth and are key determinants of adult skeletal health. During puberty, the serum levels of growth hormone (GH) and its downstream effector IGF-1 increase and play critical roles in bone acquisition. The goal of the current study was to determine how bone cells integrate signals from the GH/IGF-1 to enhance skeletal mineralization and strength during pubertal growth. Osteocytes, the most abundant bone cells, were shown to orchestrate bone modeling during growth. We used dentin matrix protein (Dmp)-1-mediated Ghr knockout (DMP-GHRKO) mice to address the role of the GH/IGF axis in osteocytes. We found that DMP-GHRKO did not affect linear growth but compromised overall bone accrual. DMP-GHRKO mice exhibited reduced serum inorganic phosphate and parathyroid hormone (PTH) levels and decreased bone formation indices and were associated with an impaired response to intermittent PTH treatment. Using an osteocyte-like cell line along with in vivo studies, we found that PTH sensitized the response of bone to GH by increasing Janus kinase-2 and IGF-1R protein levels. We concluded that endogenously secreted PTH and GHR signaling in bone are necessary to establish radial bone growth and optimize mineral acquisition during growth. © FASEB.
Selective androgen receptor modulators in preclinical and clinical development.
Narayanan, Ramesh; Mohler, Michael L; Bohl, Casey E; Miller, Duane D; Dalton, James T
2008-01-01
Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs.
Integrative modules for efficient genome engineering in yeast
Amen, Triana; Kaganovich, Daniel
2017-01-01
We present a set of vectors containing integrative modules for efficient genome integration into the commonly used selection marker loci of the yeast Saccharomyces cerevisiae. A fragment for genome integration is generated via PCR with a unique set of short primers and integrated into HIS3, URA3, ADE2, and TRP1 loci. The desired level of expression can be achieved by using constitutive (TEF1p, GPD1p), inducible (CUP1p, GAL1/10p), and daughter-specific (DSE4p) promoters available in the modules. The reduced size of the integrative module compared to conventional integrative plasmids allows efficient integration of multiple fragments. We demonstrate the efficiency of this tool by simultaneously tagging markers of the nucleus, vacuole, actin, and peroxisomes with genomically integrated fluorophores. Improved integration of our new pDK plasmid series allows stable introduction of several genes and can be used for multi-color imaging. New bidirectional promoters (TEF1p-GPD1p, TEF1p-CUP1p, and TEF1p-DSE4p) allow tractable metabolic engineering. PMID:28660202
Proteoliposomes as matrix vesicles’ biomimetics to study the initiation of skeletal mineralization
Simão, A.M.S.; Yadav, M.C.; Ciancaglini, P.; Millán, J.L.
2017-01-01
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants. PMID:20401430
Proteoliposomes as matrix vesicles' biomimetics to study the initiation of skeletal mineralization.
Simão, A M S; Yadav, M C; Ciancaglini, P; Millán, J L
2010-03-01
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.
Retinaldehyde Dehydrogenase 1 Deficiency Inhibits PPARγ-Mediated Bone Loss and Marrow Adiposity
Nallamshetty, Shriram; Le, Phuong T.; Wang, Hong; Issacsohn, Maya J.; Reeder, David J.; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Rosen, Clifford J.; Plutzky, Jorge
2014-01-01
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1−/−) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1−/− mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1−/− HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche. PMID:25064526
Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity.
Nallamshetty, Shriram; Le, Phuong T; Wang, Hong; Issacsohn, Maya J; Reeder, David J; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Rosen, Clifford J; Plutzky, Jorge
2014-10-01
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche. Copyright © 2014 Elsevier Inc. All rights reserved.
Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.
Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme
2017-02-01
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
Chang, Shuo-Hsiu; Tseng, Shih-Chiao; McHenry, Colleen L.; Littmann, Andrew E.; Suneja, Manish; Shields, Richard K.
2012-01-01
Objective We investigated the effect of various doses of vertical oscillation (vibration) on soleus H-reflex amplitude and post-activation depression in individuals with and without SCI. We also explored the acute effect of short-term limb vibration on skeletal muscle mRNA expression of genes associated with spinal plasticity. Methods Six healthy adults and five chronic complete SCI subjects received vibratory stimulation of their tibia over three different gravitational accelerations (0.3g, 0.6g, and 1.2g) at a fixed frequency (30 Hz). Soleus H-reflexes were measured before, during, and after vibration. Two additional chronic complete SCI subjects had soleus muscle biopsies 3 h following a single bout of vibration. Results H-reflex amplitude was depressed over 83% in both groups during vibration. This vibratory-induced inhibition lasted over 2 min in the control group, but not in the SCI group. Post-activation depression was modulated during the long-lasting vibratory inhibition. A single bout of mechanical oscillation altered mRNA expression from selected genes associated with synaptic plasticity. Conclusions Vibration of the lower leg inhibits the H-reflex amplitude, influences post-activation depression, and alters skeletal muscle mRNA expression of genes associated with synaptic plasticity. Significance Limb segment vibration may offer a long term method to reduce spinal reflex excitability after SCI. PMID:21963319
Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling
Joo, Adriane; Long, Roger; Cheng, Zhiqiang; Alexander, Courtney; Chang, Wenhan; Klein, Ophir D.
2016-01-01
Skeletal development is regulated by the coordinated activity of signaling molecules that are both produced locally by cartilage and bone cells and also circulate systemically. During embryonic development and postnatal bone remodeling, receptor tyrosine kinase (RTK) superfamily members play critical roles in the proliferation, survival, and differentiation of chondrocytes, osteoblasts, osteoclasts, and other bone cells. Recently, several molecules that regulate RTK signaling have been identified, including the four members of the Sprouty (Spry) family (Spry1–4). We report that Spry2 plays an important role in regulation of endochondral bone formation. Mice in which the Spry2 gene has been deleted have defective chondrogenesis and endochondral bone formation, with a postnatal decrease in skeletal size and trabecular bone mass. In these constitutive Spry2 mutants, both chondrocytes and osteoblasts undergo increased cell proliferation and impaired terminal differentiation. Tissue-specific Spry2 deletion by either osteoblast- (Col1-Cre) or chondrocyte- (Col2-Cre) specific drivers led to decreased relative bone mass, demonstrating the critical role of Spry2 in both cell types. Molecular analyses of signaling pathways in Spry2−/− mice revealed an unexpected upregulation of BMP signaling and decrease in RTK signaling. These results identify Spry2 as a critical regulator of endochondral bone formation that modulates signaling in both osteoblast and chondrocyte lineages. PMID:27130872
Clarke, William T.; Neubauer, Stefan; Robson, Matthew D.; Rodgers, Christopher T.
2015-01-01
Purpose The translation of sophisticated phosphorus MR spectroscopy (31P‐MRS) protocols to 7 Tesla (T) is particularly challenged by the issue of radiofrequency (RF) heating. Legal limits on RF heating make it hard to reliably suppress signals from skeletal muscle that can contaminate human cardiac 31P spectra at 7T. We introduce the first surface‐spoiling crusher coil for human cardiac 31P‐MRS at 7T. Methods A planar crusher coil design was optimized with simulations and its performance was validated in phantoms. Crusher gradient pulses (100 μs) were then applied during human cardiac 31P‐MRS at 7T. Results In a phantom, residual signals were 50 ± 10% with BISTRO (B1‐insensitive train to obliterate signal), and 34 ± 8% with the crusher coil. In vivo, residual signals in skeletal muscle were 49 ± 4% using BISTRO, and 24 ± 5% using the crusher coil. Meanwhile, in the interventricular septum, spectral quality and metabolite quantification did not differ significantly between BISTRO (phosphocreatine/adenosine triphosphate [PCr/ATP] = 2.1 ± 0.4) and the crusher coil (PCr/ATP = 1.8 ± 0.4). However, the specific absorption rate (SAR) decreased from 96 ± 1% of the limit (BISTRO) to 16 ± 1% (crusher coil). Conclusion A crusher coil is an SAR‐efficient alternative for selectively suppressing skeletal muscle during cardiac 31P‐MRS at 7T. A crusher coil allows the use of sequence modules that would have been SAR‐prohibitive, without compromising skeletal muscle suppression. Magn Reson Med 75:962–972, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:25924813
Willkomm, Lena; Gehlert, Sebastian; Jacko, Daniel; Schiffer, Thorsten; Bloch, Wilhelm
2017-01-01
Exercise induces adaptation of skeletal muscle by acutely modulating intracellular signaling, gene expression, protein turnover and myogenic activation of skeletal muscle stem cells (Satellite cells, SCs). Lactate (La)-induced metabolic stimulation alone has been shown to modify SC proliferation and differentiation. Although the mechanistic basis remains elusive, it was demonstrated that La affects signaling via p38 mitogen activated protein kinase (p38 MAPK) which might contribute to trimethylation of histone 3 lysine 4 (H3K4me3) known to regulate satellite cell proliferation and differentiation. We investigated the effects of La on p38 MAPK and H3K4me3 in a model of activated SCs. Differentiating C2C12 myoblasts were treated with La (20 mM) and samples analysed using qRT-PCR, immunofluorescence, and western blotting. We determined a reduction of p38 MAPK phosphorylation, decreased H3K4me3 and reduced expression of Myf5, myogenin, and myosin heavy chain (MHC) leading to decreased differentiation of La-treated C2C12 cells after 5 days of repeated La treatment. We further investigated whether this regulatory pathway would be affected in human skeletal muscle by the application of two different resistance exercise regimes (RE) associated with distinct metabolic demands and blood La accumulation. Muscle biopsies were obtained 15, 30 min, 1, 4, and 24 h post exercise after moderate intensity RE (STD) vs. high intensity RE (HIT). Consistent with in vitro results, reduced p38 phosphorylation and blunted H3K4me3 were also observed upon metabolically demanding HIT RE in human skeletal muscle. Our data provide evidence that La-accumulation acutely affects p38 MAPK signaling, gene expression and thereby cell differentiation and adaptation in vitro, and likely in vivo.
NASA Astrophysics Data System (ADS)
Bosch, Henry
2016-03-01
A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.
Coordination in Large Scale Software Development
1990-01-01
toward achieving common and explicitly recognized goals" (Blau and Scott, 1962) and "the integration or linking together of different parts of an...require a strong degree of integration of its components. Much software is built of thousands of modules that must mesh with each other perfectly for the...coordination between subgroups producing software modules could lead to failure in integrating the modules themselves. Informal communication. Both
Smith, Mark A.; Katsouri, Loukia; Irvine, Elaine E.; Hankir, Mohammed K.; Pedroni, Silvia M.A.; Voshol, Peter J.; Gordon, Matthew W.; Choudhury, Agharul I.; Woods, Angela; Vidal-Puig, Antonio; Carling, David; Withers, Dominic J.
2015-01-01
Summary Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons. PMID:25865886
Ray, Poulomi; Chapman, Susan C
2015-01-01
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.
Ray, Poulomi; Chapman, Susan C.
2015-01-01
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312
Smith, Mark A; Katsouri, Loukia; Irvine, Elaine E; Hankir, Mohammed K; Pedroni, Silvia M A; Voshol, Peter J; Gordon, Matthew W; Choudhury, Agharul I; Woods, Angela; Vidal-Puig, Antonio; Carling, David; Withers, Dominic J
2015-04-21
Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype
Tsuda, Takeshi; Fitzgerald, Kristi K.
2017-01-01
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts. PMID:29367543
Yu, Tianzheng; Deuster, Patricia; Chen, Yifan
2016-12-15
Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury. Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress. Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non-acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin-related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1-dependent mitochondrial fission may regulate susceptibility to heat-induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat-related injury. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Yu, Tianzheng; Deuster, Patricia
2016-01-01
Key points Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury.Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress.Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. Abstract The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non‐acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin‐related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1‐dependent mitochondrial fission may regulate susceptibility to heat‐induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat‐related injury. PMID:27730652
Thyroid Hormone Regulation of Metabolism
Mullur, Rashmi; Liu, Yan-Yun
2014-01-01
Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351
Nutritional modulation of immune function in broilers.
Kidd, M T
2004-04-01
Collaborative research efforts across disciplines typically result in more insight toward the hypothesis being tested due to the omnibus nature of the projects. For example, nutritional experiments evaluating a nutrient response will benefit greatly by incorporating biochemical, physiological, and immunological endpoints for measurement. Clearly, commercial poultry producers do not have the luxury of focusing on specific disciplines when field problems occur. Hence, in practice interplay exists among nutrition, genetics, management, and diseases. Dietary composition impacts immune function of the chicken. As research in the area of nutritional immunology has increased, it is becoming apparent that nutrient needs for immunity do not coincide with those for growth or skeletal tissue accretion. This review is not a comprehensive assessment of nutrient needs for immunity in the chicken. Rather, this review is concerned with nutritional modulation of immunity in broilers that offers insight for nutritionists and researchers to implement nutritional regimens to reduce the severity of disease and to test or validate nutritional regimens that heighten immunity. Nutritional modulation of the hen diet and in ovo nutrient modulation to improve chick immunity and disease resistance are discussed.
Pichai, Saravanan; Rajesh, M; Reddy, Naveen; Adusumilli, Gopinath; Reddy, Jayaprakash; Joshi, Bhavana
2014-01-01
Background: Skeletal maturation is an integral part of individual pattern of growth and development and is a continuous process. Peak growth velocity in standing height is the most valid representation of the rate of overall skeletal growth. Ossification changes of hand wrist and cervical vertebrae are the reliable indicators of growth status of individual. The objective of this study was to compare skeletal maturation as measured by hand wrist bone analysis and cervical vertebral analysis. Materials and Methods: Hand wrist radiographs and lateral cephalograms of 72 subjects aged between 7 and 16 years both male and female from the patients visiting Department of Orthodontics and Dentofacial Orthopedics, R.V. Dental College and Hospital. The 9 stages were reduced to 5 stages to compare with cervical vertebral maturation stage by Baccetti et al. The Bjork, Grave and Brown stages were reduced to six intervals to compare with cervical vertebral maturational index (CVMI) staging by Hassel and Farman. These measurements were then compared with the hand wrist bone analysis, and the results were statistically analyzed using the Mann–Whitney test. Results: There was no significant difference between the hand wrist analysis and the two different cervical vertebral analyses for assessing skeletal maturation. There was no significant difference between the two cervical vertebral analyses, but the CVMI method, which is visual method is less time consuming. Conclusion: Vertebral analysis on a lateral cephalogram is as valid as the hand wrist bone analysis with the advantage of reducing the radiation exposure of growing subjects. PMID:25395791
Liu, Zhongbo; Han, Tianzhen; Fishman, Shannon; Butler, James; Zimmermann, Tracy; Tremblay, Frederic; Harbison, Carole; Agrawal, Nidhi; Kopchick, John J; Schaffler, Mitchell B; Yakar, Shoshana
2017-08-01
Growth hormone (GH) and insulinlike growth factor 1 (IGF-1) are anabolic hormones that facilitate somatic and skeletal growth and regulate metabolism via endocrine and autocrine/paracrine mechanisms. We hypothesized that excess tissue production of GH would protect skeletal growth and integrity in states of reduction in serum IGF-1 levels. To test our hypothesis, we used bovine GH (bGH) transgenic mice as a model of GH hypersecretion and ablated the liver-derived acid-labile subunit, which stabilizes IGF-1 complexes with IGF-binding protein-3 and -5 in circulation. We used a genetic approach to create bGH/als gene knockout (ALSKO) mice and small interfering RNA (siRNA) gene-silencing approach to reduce als or igf-1 gene expression. We found that in both models, decreased IGF-1 levels in serum were associated with decreased body and skeletal size of the bGH mice. Excess GH produced more robust bones but compromised mechanical properties in male mice. Excess GH production in tissues did not protect from trabecular bone loss in response to reductions in serum IGF-1 (in bGH/ALSKO or bGH mice treated with siRNAs). Reduced serum IGF-1 levels in the bGH mice did not alleviate the hyperinsulinemia and did not resolve liver or kidney pathologies that resulted from GH hypersecretion. We concluded that reduced serum IGF-1 levels decrease somatic and skeletal growth even in states of excess GH. Copyright © 2017 Endocrine Society.
Carlier, Pierre G.; Marty, Benjamin; Scheidegger, Olivier; Loureiro de Sousa, Paulo; Baudin, Pierre-Yves; Snezhko, Eduard; Vlodavets, Dmitry
2016-01-01
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials. PMID:27854210
[Mechanobiology and bone metabolism: Clinical relevance for fracture treatment].
Haffner-Luntzer, M; Liedert, A; Ignatius, A
2015-12-01
Mechanical stimuli are known to significantly influence bone metabolism and fracture healing. Various studies have demonstrated the involvement of complex molecular mechanotransduction pathways, such as the Wnt/beta-catenin, bone morphogenetic protein (BMP) and estrogen receptor signaling pathways in mechanotransduction. Mechanotransduction is influenced by aging and the comorbidities of the patient. Pharmacological modulation of signal transduction influences bone formation and the mechanosensitivity of skeletal tissue. The combination of pharmacological and biomechanical therapies may be useful for the treatment of fractures with impaired healing.
NASA Astrophysics Data System (ADS)
Wu, Chi; Keo, Sam A.; Yao, X. S.; Turner, Tasha E.; Davis, Lawrence J.; Young, Martin G.; Maleki, Lute; Forouhar, Siamak
1998-08-01
The microwave optoelectronic oscillator (OEO) has been demonstrated on a breadboard. The future trend is to integrate the whole OEO on a chip, which requires the development of high power and high efficiency integrated photonic components. In this paper, we will present the design and fabrication of an integrated semiconductor laser/modulator using the identical active layer approach on InGaAsP/InP material. The best devices have threshold currents of 50-mA at room temperature for CW operation. The device length is approximately 3-mm, resulting in a mode spacing of 14 GHz. For only 5-dBm microwave power applied to the modulator section, modulation response with 30 dB resonate enhancement has been observed. This work shows the promise for an on-chip integrated OEO.
An Integrated Teaching Module.
ERIC Educational Resources Information Center
Samuel, Marie R.; Seiferth, Berniece B.
This integrated teaching module provides elementary and junior high school teachers with a "hands-on" approach to studying the Anasazi Indian. Emphasis is on creative exploration that focuses on integrating art, music, poetry, writing, geography, dance, history, anthropology, sociology, and archaeology. Replicas of artifacts,…
Wide-band analog frequency modulation of optic signals using indirect techniques
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.
1991-01-01
The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.
Cranial airways and the integration between the inner and outer facial skeleton in humans.
Bastir, Markus; Rosas, Antonio
2013-10-01
The cranial airways are in the center of the human face. Therefore variation in the size and shape of these central craniofacial structures could have important consequences for the surrounding midfacial morphology during development and evolution. Yet such interactions are unclear because one school of thought, based on experimental and developmental evidence, suggests a relative independence (modularity) of these two facial compartments, whereas another one assumes tight morphological integration. This study uses geometric morphometrics of modern humans (N = 263) and 40 three-dimensional-landmarks of the skeletal nasopharynx and nasal cavity and outer midfacial skeleton to analyze these questions in terms of modularity. The sizes of all facial compartments were all strongly correlated. Shape integration was high between the cranial airways and the outer midfacial skeleton and between the latter and the anterior airway openings (skeletal regions close to and including piriform aperture). However, no shape integration was detected between outer midface and posterior airway openings (nasopharynx and choanae). Similarly, no integration was detected between posterior and anterior airway openings. This may reflect functional modularization of nasal cavity compartments related to respiratory physiology and differential developmental interactions with the face. Airway size likely relates to the energetics of the organism, whereas airways shape might be more indicative of respiratory physiology and climate. Although this hypothesis should be addressed in future steps, here we suggest that selection on morphofunctional characteristics of the cranial airways could have cascading effects for the variation, development, and evolution of the human face. Copyright © 2013 Wiley Periodicals, Inc.
Wicher, D; Walther, C; Wicher, C
2001-08-01
Insects are favoured objects for studying information processing in restricted neuronal networks, e.g. motor pattern generation or sensory perception. The analysis of the underlying processes requires knowledge of the electrical properties of the cells involved. These properties are determined by the expression pattern of ionic channels and by the regulation of their function, e.g. by neuromodulators. We here review the presently available knowledge on insect non-synaptic ion channels and ionic currents in neurons and skeletal muscles. The first part of this article covers genetic and structural informations, the localization of channels, their electrophysiological and pharmacological properties, and known effects of second messengers and modulators such as neuropeptides or biogenic amines. In a second part we describe in detail modulation of ionic currents in three particularly well investigated preparations, i.e. Drosophila photoreceptor, cockroach DUM (dorsal unpaired median) neuron and locust jumping muscle. Ion channel structures are almost exclusively known for the fruitfly Drosophila, and most of the information on their function has also been obtained in this animal, mainly based on mutational analysis and investigation of heterologously expressed channels. Now the entire genome of Drosophila has been sequenced, it seems almost completely known which types of channel genes--and how many of them--exist in this animal. There is much knowledge of the various types of channels formed by 6-transmembrane--spanning segments (6TM channels) including those where four 6TM domains are joined within one large protein (e.g. classical Na+ channel). In comparison, two TM channels and 4TM (or tandem) channels so far have hardly been explored. There are, however, various well characterized ionic conductances, e.g. for Ca2+, Cl- or K+, in other insect preparations for which the channels are not yet known. In some of the larger insects, i.e. bee, cockroach, locust and moth, rather detailed information has been established on the role of ionic currents in certain physiological or behavioural contexts. On the whole, however, knowledge of non-synaptic ion channels in such insects is still fragmentary. Modulation of ion currents usually involves activation of more or less elaborate signal transduction cascades. The three detailed examples for modulation presented in the second part indicate, amongst other things, that one type of modulator usually leads to concerted changes of several ion currents and that the effects of different modulators in one type of cell may overlap. Modulators participate in the adaptive changes of the various cells responsible for different physiological or behavioural states. Further study of their effects on the single cell level should help to understand how small sets of cells cooperate in order to produce the appropriate output.
Fundamental concepts of integrated and fiber optic sensors
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.
1995-01-01
This chapter discusses fiber optic and integrated optic sensor concepts. Unfortunately, there is no standard method to categorize these sensor concepts. Here, fiber optic and integrated optic sensor concepts will be categorized by the primary modulation technique. These modulation techniques have been classified as: intensity, phase, wavelength, polarization, and time/frequency modulation. All modulate the output light with respect to changes in the physical or chemical property to be measured. Each primary modulation technique is then divided into fiber optic and integrated optic sections which are treated independently. For each sensor concept, possible sensor applications are discussed. The sensors and references discussed are not exhaustive, but sufficient to give the reader an overview of sensor concepts developed to date. Sensor multiplexing techniques such as wavelength division, time division, and frequency division will not be discussed as they are beyond the scope of this report.
ERIC Educational Resources Information Center
Navarro Coll., Corsicana, TX.
This module is the first in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself, to be integrated with the other ten modules into a program on energy conservation, or to be integrated into conventional vocational courses as a unit of instruction. The…
76 FR 6803 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
....gov . Name of Committee: AIDS and Related Research Integrated Review Group; Behavioral and Social... Panel; Small Business: Orthopedic and Skeletal Biology. Date: March 21, 2011. Time: 8 a.m. to 5 p.m... Domestic Assistance Program Nos. 93.306, Comparative Medicine; 93.333, Clinical Research, 93.306, 93.333...
76 FR 1442 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... Group; Macromolecular Structure and Function D Study Section. Date: February 8-9, 2011. Time: 8 a.m. to...; Biomedical Computing and Health Informatics Study Section. Date: February 8, 2011. Time: 8 a.m. to 5 p.m... Skin Sciences Integrated Review Group; Skeletal Muscle and Exercise Physiology Study Section. Date...
Wang, Cuicui; Shen, Jie; Yukata, Kiminori; Inzana, Jason A.; O'Keefe, Regis J.; Awad, Hani A.; Hilton, Matthew J.
2014-01-01
Approximately 10% of skeletal fractures result in healing complications and non-union, while most fractures repair with appropriate stabilization and without pharmacologic intervention. It is the latter injuries that cannot be underestimated as the expenses associated with their treatment and subsequent lost productivity are predicted to increase to over $74 billion by 2015. During fracture repair, local mesenchymal stem/progenitor cells (MSCs) differentiate to form new cartilage and bone, reminiscent of events during skeletal development. We previously demonstrated that permanent loss of gamma-secretase activity and Notch signaling accelerates bone and cartilage formation from MSC progenitors during skeletal development, leading to pathologic acquisition of bone and depletion of bone marrow derived MSCs. Here, we investigated whether transient and systemic gamma-secretase and Notch inhibition is capable of accelerating and enhancing fracture repair by promoting controlled MSC differentiation near the fracture site. Our radiographic, microCT, histological, cell and molecular analyses reveal that single and intermittent gamma-secretase inhibitor (GSI) treatments significantly enhance cartilage and bone callus formation via the promotion of MSC differentiation, resulting in only a moderate reduction of local MSCs. Biomechanical testing further demonstrates that GSI treated fractures exhibit superior strength earlier in the healing process, with single dose GSI treated fractures exhibiting bone strength approaching that of un-fractured tibiae. These data further establish that transient inhibition of gamma-secretase activity and Notch signaling temporarily increases osteoclastogenesis and accelerates bone remodeling, which coupled with the effects on MSCs likely explains the accelerated and enhanced fracture repair. Therefore, we propose that the Notch pathway serves as an important therapeutic target during skeletal fracture repair. PMID:25527421
Crawford, Robert S.; Albadawi, Hassan; Robaldo, Alessandro; Peck, Michael A.; Abularrage, Christopher J.; Yoo, Hyung-Jin; LaMuraglia, Glenn M.; Watkins, Michael T.
2013-01-01
Introduction Studies were designed to determine whether the ApoE−/− phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE−/− phenotype is an experimental model for atherosclerosis in humans. Methods Aged female ApoE −/− and C57BL6 mice underwent femoral artery ligation, then divided into sedentary and demand ischemia (exercise) groups on day 14. Baseline and post exercise limb perfusion and hind limb function were assessed. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, plasma and skeletal muscle from ischemic limbs were harvested from sedentary and exercised mice. Muscle was assayed for angiogenic and pro-inflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. Results Hind limb ischemia was similar in ApoE −/− and C57 mice prior to the onset of exercise. Under sedentary conditions, plasma VEGF, IL-6, but not KC or MIP-2 were higher in ApoE (P<0.0001). Following exercise, plasma levels of VEGF, KC and MIP-2, but not IL-6 were lower in ApoE (P<0.004). The cytokines KC and MIP-2 in muscle was greater in exercised ApoE−/− mice as compared to C57BL6 mice (p=0.01). Increased PAR activity, and mature muscle regeneration was associated with demand ischemia in the C57BL6 mice as compared to the ApoE −/− mice (p=0.01). Conclusion Demand limb ischemia in the ApoE−/− phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration. PMID:23528286
Altamirano, Francisco; Perez, Claudio F; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R; Allen, Paul D; Adams, Jose A; Lopez, Jose R
2014-01-01
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca(2+) and Na(+) overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca(2+) and Na(+) overload, diminished abnormal sarcolemmal Ca(2+) entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway.
Dimauro, Ivan; Pearson, Timothy; Caporossi, Daniela; Jackson, Malcolm J.
2012-01-01
Thioredoxins (Trx's) regulate redox signaling and are localized to various cellular compartments. Specific redox-regulated pathways for adaptation of skeletal muscle to contractions are attenuated during aging, but little is known about the roles of Trx's in regulating these pathways. This study investigated the susceptibility of Trx1 and Trx2 in skeletal muscle to oxidation and reduction in vitro and the effects of aging and contractions on Trx1, Trx2, and thioredoxin reductase (TrxR) 1 and 2 contents and nuclear and cytosolic Trx1 and mitochondrial Trx2 redox potentials in vivo. The proportions of cytosolic and nuclear Trx1 and mitochondrial Trx2 in the oxidized or reduced forms were analyzed using redox Western blotting. In myotubes, the mean redox potentials were nuclear Trx1, −251 mV; cytosolic Trx1, −242 mV; mitochondrial Trx2, −346 mV, data supporting the occurrence of differing redox potentials between cell compartments. Exogenous treatment of myoblasts and myotubes with hydrogen peroxide or dithiothreitol modified glutathione redox status and nuclear and cytosolic Trx1, but mitochondrial Trx2 was unchanged. Tibialis anterior muscles from young and old mice were exposed to isometric muscle contractions in vivo. Aging increased muscle contents of Trx1, Trx2, and TrxR2, but neither aging nor endogenous ROS generated during contractions modified Trx redox potentials, although oxidation of glutathione and other thiols occurred. We conclude that glutathione redox couples in skeletal muscle are more susceptible to oxidation than Trx and that Trx proteins are upregulated during aging, but do not appear to modulate redox-regulated adaptations to contractions that fail during aging. PMID:23022873
p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content.
Park, Joon-Young; Wang, Ping-Yuan; Matsumoto, Takumi; Sung, Ho Joong; Ma, Wenzhe; Choi, Jeong W; Anderson, Stasia A; Leary, Scot C; Balaban, Robert S; Kang, Ju-Gyeong; Hwang, Paul M
2009-09-25
Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.
Henagan, Tara M; Stefanska, Barbara; Fang, Zhide; Navard, Alexandra M; Ye, Jianping; Lenard, Natalie R; Devarshi, Prasad P
2015-01-01
Background and Purpose Sodium butyrate (NaB), an epigenetic modifier, is effective in promoting insulin sensitivity. The specific genomic loci and mechanisms underlying epigenetically induced obesity and insulin resistance and the targets of NaB are not fully understood. Experimental Approach The anti-diabetic and anti-obesity effects of NaB treatment were measured by comparing phenotypes and physiologies of C57BL/6J mice fed a low-fat diet (LF), high-fat diet (HF) or high-fat diet plus NaB (HF + NaB) for 10 weeks. We determined a possible mechanism of NaB action through induction of beneficial skeletal muscle mitochondrial adaptations and applied microccocal nuclease digestion with sequencing (MNase-seq) to assess whole genome differences in nucleosome occupancy or positioning and to identify associated epigenetic targets of NaB. Key Results NaB prevented HF diet-induced increases in body weight and adiposity without altering food intake or energy expenditure, improved insulin sensitivity as measured by glucose and insulin tolerance tests, and decreased respiratory exchange ratio. In skeletal muscle, NaB increased the percentage of type 1 fibres, improved acylcarnitine profiles as measured by metabolomics and produced a chromatin structure, determined by MNase-seq, similar to that seen in LF. Targeted analysis of representative nuclear-encoded mitochondrial genes showed specific repositioning of the −1 nucleosome in association with altered gene expression. Conclusions and Implications NaB treatment may be an effective pharmacological approach for type 2 diabetes and obesity by inducing −1 nucleosome repositioning within nuclear-encoded mitochondrial genes, causing skeletal muscle mitochondrial adaptations that result in more complete β-oxidation and a lean, insulin sensitive phenotype. PMID:25559882
Thaveau, Fabien; Zoll, Joffrey; Bouitbir, Jamal; N'guessan, Benoît; Plobner, Philippe; Chakfe, Nabil; Kretz, Jean-Georges; Richard, Ruddy; Piquard, François; Geny, Bernard
2010-06-01
Impaired skeletal muscle energetic participates in peripheral arterial disease (PAD) patient's morbidity and mortality. Angiotensin converting enzyme inhibition (ACEi), cornerstone for pharmacologic risk factor management in PAD patients, might also be interesting by protecting skeletal muscle energetic. We therefore determined whether chronic ACEi might reduce ischemia-induced mitochondrial respiratory chain dysfunction in the frequent setting of hindlimb ischemia-reperfusion. Ischemic legs of rats submitted to 5 h ischemia induced by a rubber band tourniquet applied on the root of the hindlimb followed by reperfusion without (IR, n = 11) or after ACEi (n = 14; captopril 40 mg/kg per day during 28 days before surgery) were studied and compared to that of sham-operated animals (n = 11). The effect of ACEi on the non-ischemic contralateral leg was also determined in the ACEi group. Maximal oxidative capacities (V(max)) and complexes I, II and IV activities of the mitochondrial respiratory chain of the gastrocnemius muscle were determined using glutamate-malate, succinate and TMPD-ascorbate substrates. Arterial blood pressure was significantly decreased after ACEi (124 +/- 2.8 vs. 108 +/- 4.19 mmHg; P = 0.01). Ischemia-reperfusion reduced V(max) (4.4 +/- 0.4 vs. 8.7 +/- 0.5 micromol O2/min/g dry weight, -49%, P < 0.001), affecting mitochondrial complexes I, II and IV activities. ACEi failed to modulate ischemia-induced dysfunction (V(max) 5.1 +/- 0.7 micromol O2/min/g dry weight) or the non-ischemic contralateral muscle respiratory rate. Ischemia-reperfusion significantly impaired the mitochondrial respiratory chain I, II and IV complexes of skeletal muscle. Pharmacologic pre-treatment with ACEi did not prevent or increase such alterations. Further studies might be useful to improve the pharmacologic conditioning of PAD patients needing arterial revascularization.
Effects of age and sedentary lifestyle on skeletal muscle NF-kappaB signaling in men.
Buford, Thomas W; Cooke, Matthew B; Manini, Todd M; Leeuwenburgh, Christiaan; Willoughby, Darryn S
2010-05-01
Nuclear factor kappa B (NF-kappaB) is a critical signaling molecule of disuse-induced skeletal muscle atrophy. However, few studies have carefully investigated whether similar pathways are modulated with physical activity and age. The present study examined lean mass, maximal force production, and skeletal muscle NF-kappaB signaling in 41 men categorized as sedentary (OS, N = 13, 63.85 +/- 6.59 year), physically active (OA, N = 14, 60.71 +/- 5.54 year), or young and sedentary (YS, N = 14, 21.35 +/- 3.84 year). Muscle tissue from the vastus lateralis was assayed for messenger RNA (mRNA) expression of the beta subunit of IkB kinase (IKKbeta), cytosolic protein content of phosphorylated inhibitor of kappa B alpha (pIKBalpha), and nuclear content of NF-kappaB subunits p50 and p65. When compared with YS, OS demonstrated age-related muscle atrophy and reduced isokinetic knee extension torque. Physical activity in older individuals preserved maximal isokinetic knee extension torque. OS muscle contained 50% more pIKBalpha than OA and 61% more pIKBalpha than YS. Furthermore, nuclear p65 was significantly elevated in OS compared with YS. OS muscle did not differ from either of the other two groups for nuclear p50 or for mRNA expression of IKKbeta. These results indicate that skeletal muscle content of nuclear-bound p65 is elevated by age in humans. The elevation in nuclear-bound p65 appears to be at least partially due to significant increases in pIKBalpha. A sedentary lifestyle appears to play some role in increased IKBalpha; however, further research is needed to identify downstream effects of this increase.
Effects of Age and Sedentary Lifestyle on Skeletal Muscle NF-κB Signaling in Men
Buford, Thomas W.; Cooke, Matthew B.; Manini, Todd M.; Leeuwenburgh, Christiaan
2010-01-01
Background. Nuclear factor kappa B (NF-κB) is a critical signaling molecule of disuse-induced skeletal muscle atrophy. However, few studies have carefully investigated whether similar pathways are modulated with physical activity and age. Methods. The present study examined lean mass, maximal force production, and skeletal muscle NF-κB signaling in 41 men categorized as sedentary (OS, N = 13, 63.85 ± 6.59 year), physically active (OA, N = 14, 60.71 ± 5.54 year), or young and sedentary (YS, N = 14, 21.35 ± 3.84 year). Muscle tissue from the vastus lateralis was assayed for messenger RNA (mRNA) expression of the β subunit of IkB kinase (IKKβ), cytosolic protein content of phosphorylated inhibitor of kappa B alpha (pIKBα), and nuclear content of NF-κB subunits p50 and p65. Results. When compared with YS, OS demonstrated age-related muscle atrophy and reduced isokinetic knee extension torque. Physical activity in older individuals preserved maximal isokinetic knee extension torque. OS muscle contained 50% more pIKBα than OA and 61% more pIKBα than YS. Furthermore, nuclear p65 was significantly elevated in OS compared with YS. OS muscle did not differ from either of the other two groups for nuclear p50 or for mRNA expression of IKKβ. Conclusions. These results indicate that skeletal muscle content of nuclear-bound p65 is elevated by age in humans. The elevation in nuclear-bound p65 appears to be at least partially due to significant increases in pIKBα. A sedentary lifestyle appears to play some role in increased IKBα; however, further research is needed to identify downstream effects of this increase. PMID:20045871
Exercise training prevents skeletal muscle damage in an experimental sepsis model
Coelho, Carla Werlang; Jannig, Paulo R; de Souza, Arlete B; Fronza, Hercilio; Westphal, Glauco A; Petronilho, Fabricia; Constantino, Larissa; Dal-Pizzol, Felipe; Ferreira, Gabriela K; Streck, Emilio E; Silva, Eliezer
2013-01-01
OBJECTIVE: Oxidative stress plays an important role in skeletal muscle damage in sepsis. Aerobic exercise can decrease oxidative stress and enhance antioxidant defenses. Therefore, it was hypothesized that aerobic exercise training before a sepsis stimulus could attenuate skeletal muscle damage by modulating oxidative stress. Thus, the aim of this study was to evaluate the effects of aerobic physical preconditioning on the different mechanisms that are involved in sepsis-induced myopathy. METHODS: Male Wistar rats were randomly assigned to either the untrained or trained group. The exercise training protocol consisted of an eight-week treadmill program. After the training protocol, the animals from both groups were randomly assigned to either a sham group or a cecal ligation and perforation surgery group. Thus, the groups were as follows: sham, cecal ligation and perforation, sham trained, and cecal ligation and perforation trained. Five days after surgery, the animals were euthanized and their soleus and plantaris muscles were harvested. Fiber cross-sectional area, creatine kinase, thiobarbituric acid reactive species, carbonyl, catalase and superoxide dismutase activities were measured. RESULTS: The fiber cross-sectional area was smaller, and the creatine kinase, thiobarbituric acid reactive species and carbonyl levels were higher in both muscles in the cecal ligation and perforation group than in the sham and cecal ligation and perforation trained groups. The muscle superoxide dismutase activity was higher in the cecal ligation and perforation trained group than in the sham and cecal ligation and perforation groups. The muscle catalase activity was lower in the cecal ligation and perforation group than in the sham group. CONCLUSION: In summary, aerobic physical preconditioning prevents atrophy, lipid peroxidation and protein oxidation and improves superoxide dismutase activity in the skeletal muscles of septic rats. PMID:23420166
Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M
2017-06-10
Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.
Stancic, Ana; Filipovic, Milos; Ivanovic-Burmazovic, Ivana; Masovic, Sava; Jankovic, Aleksandra; Otasevic, Vesna; Korac, Aleksandra; Buzadzic, Biljana; Korac, Bato
2017-06-25
Considering the vital role of skeletal muscle in control of whole-body metabolism and the severity of long-term diabetic complications, we aimed to reveal the molecular pattern of early diabetes-related skeletal muscle phenotype in terms of energy metabolism, focusing on regulatory mechanisms, and the possibility to improve it using two redox modulators, l-arginine and superoxide dismutase (SOD) mimic. Alloxan-induced diabetic rats (120 mg/kg) were treated with l-arginine or the highly specific SOD mimic, M40403, for 7 days. As appropriate controls, non-diabetic rats received the same treatments. We found that l-arginine and M40403 restored diabetes-induced impairment of phospho-5'-AMP-activated protein kinase α (AMPKα) signaling by upregulating AMPKα protein itself and its downstream effectors, peroxisome proliferator-activated receptor-γ coactivator-1α and nuclear respiratory factor 1. Also, there was a restitution of the protein levels of oxidative phosphorylation components (complex I, complex II and complex IV) and mitofusin 2. Furthermore, l-arginine and M40403 induced translocation of glucose transporter 4 to the membrane and upregulation of protein of phosphofructokinase and acyl coenzyme A dehydrogenase, diminishing negative diabetic effects on limiting factors of glucose and lipid metabolism. Both treatments abolished diabetes-induced downregulation of sarcoplasmic reticulum calcium-ATPase proteins (SERCA 1 and 2). Similar effects of l-arginine and SOD mimic treatments suggest that disturbances in the superoxide/nitric oxide ratio may be responsible for skeletal muscle mitochondrial and metabolic impairment in early diabetes. Our results provide evidence that l-arginine and SOD mimics have potential in preventing and treating metabolic disturbances accompanying this widespread metabolic disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running
NASA Technical Reports Server (NTRS)
Fluck, M.; Waxham, M. N.; Hamilton, M. T.; Booth, F. W.
2000-01-01
Spikes in free Ca(2+) initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca(2+)/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca(2+), we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca(2+)-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca(2+)/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca(2+)-independent and Ca(2+)/CaM-dependent forms of Ca(2+)/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca(2+)-independent form of CaMKII was increased, like the Ca(2+)-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca(2+)-independent SRF kinase was increased, no alteration occurred in Ca(2+)/CaM-dependent SRF kinase activity. Thus any role of Ca(2+)-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.
Wang, Huating; Hertlein, Erin; Bakkar, Nadine; Sun, Hao; Acharyya, Swarnali; Wang, Jingxin; Carathers, Micheal; Davuluri, Ramana; Guttridge, Denis C.
2007-01-01
NF-κB signaling is implicated as an important regulator of skeletal muscle homeostasis, but the mechanisms by which this transcription factor contributes to muscle maturation and turnover remain unclear. To gain insight into these mechanisms, gene expression profiling was examined in C2C12 myoblasts devoid of NF-κB activity. Interestingly, even in proliferating myoblasts, the absence of NF-κB caused the pronounced induction of several myofibrillar genes, suggesting that NF-κB functions as a negative regulator of late-stage muscle differentiation. Although several myofibrillar promoters contain predicted NF-κB binding sites, functional analysis using the troponin-I2 gene as a model revealed that NF-κB-mediated repression does not occur through direct DNA binding. In the search for an indirect mediator, the transcriptional repressor YinYang1 (YY1) was identified. While inducers of NF-κB stimulated YY1 expression in multiple cell types, genetic ablation of the RelA/p65 subunit of NF-κB in both cultured cells and adult skeletal muscle correlated with reduced YY1 transcripts and protein. NF-κB regulation of YY1 occurred at the transcriptional level, mediated by direct binding of the p50/p65 heterodimer complex to the YY1 promoter. Furthermore, YY1 was found associated with multiple myofibrillar promoters in C2C12 myoblasts containing NF-κB activity. Based on these results, we propose that NF-κB regulation of YY1 and transcriptional silencing of myofibrillar genes represent a new mechanism by which NF-κB functions in myoblasts to modulate skeletal muscle differentiation. PMID:17438126
Selective androgen receptor modulators in preclinical and clinical development
Narayanan, Ramesh; Mohler, Michael L.; Bohl, Casey E.; Miller, Duane D.; Dalton, James T.
2008-01-01
Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs. PMID:19079612
Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding
ERIC Educational Resources Information Center
Florida, Jennifer
2012-01-01
The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…
This proposal pertains to the on-going development of the Data Collection Manager (DCM) module, which is one of three modules that compose MIRA, Multi-criteria Integrated Resource Assessment. MIRA is Region III's newly conceived and continually developing decision support approac...
Detrimental effects of carotenoid pigments: the dark side of bright coloration
NASA Astrophysics Data System (ADS)
Huggins, Kristal A.; Navara, Kristen J.; Mendonça, Mary T.; Hill, Geoffrey E.
2010-07-01
Carotenoid pigments produce yellow, orange, and red integumentary color displays that can serve as reliable signals of health and condition. In many birds and fish, individuals gain competitive or mating advantages by ingesting and utilizing large quantities of carotenoid pigments. Carotenoid pigments serve as antioxidants, performing important functions as free-radical scavengers. The beneficial effects of carotenoid pigments are well documented, but rarely have researchers considered potential detrimental effects of high-level accumulation of carotenoids. We maintained American goldfinches ( Carduelis tristis) on high- or low-carotenoid diets through molt and tested for damage to the liver and skeletal muscle. High intake of carotenoids had no measurable effect on liver enzymes but caused an increase in creatine kinase, an indicator of skeletal muscle breakdown, and a reduction in vertical flight performance, a measure of skeletal muscle integrity. The detrimental effects of high-level carotenoid accumulation were approximately equivalent to the negative effects of removing carotenoids from the diet. The adverse effects observed in this study have important implications for theories of the function and evolution of colorful plumage.
Zordan, P; Rigamonti, E; Freudenberg, K; Conti, V; Azzoni, E; Rovere-Querini, P; Brunelli, S
2014-01-30
The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.
Role of Oxidative Damage in Radiation-Induced Bone Loss
NASA Technical Reports Server (NTRS)
Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.
2014-01-01
During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.
Brooks, Naomi E.; Myburgh, Kathryn H.
2014-01-01
Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy. PMID:24672488
Sjøblom, Bjørg; Grønberg, Bjørn H; Wentzel-Larsen, Tore; Baracos, Vickie E; Hjermstad, Marianne J; Aass, Nina; Bremnes, Roy M; Fløtten, Øystein; Bye, Asta; Jordhøy, Marit
2016-12-01
Recent research indicates that severe muscular depletion (sarcopenia) is frequent in cancer patients and linked to cachexia and poor survival. Our aim was to investigate if measures of skeletal muscle hold prognostic information in advanced non-small cell lung cancer (NSCLC). We included NSCLC patients with disease stage IIIB/IV, performance status 0-2, enrolled in three randomised trials of first-line chemotherapy (n = 1305). Computed tomography (CT) images obtained before start of treatment were used for body composition analyses at the level of the third lumbar vertebra (L3). Skeletal muscle mass was assessed by measures of the cross sectional muscle area, from which the skeletal muscle index (SMI) was obtained. Skeletal muscle radiodensity (SMD) was measured as the mean Hounsfield unit (HU) of the measured muscle area. A high level of mean HU indicates a high SMD. Complete data were available for 734 patients, mean age 65 years. Both skeletal muscle index (SMI) and muscle radiodensity (SMD) varied largely. Mean SMI and SMD were 47.7 cm 2 /m 2 and 37.4 HU in men (n = 420), 39.6 cm 2 /m 2 and 37.0 HU in women (n = 314). Multivariable Cox regression analyses, adjusted for established prognostic factors, showed that SMD was independently prognostic for survival (Hazard ratio (HR) 0.98, 95% CI 0.97-0.99, p = 0.001), whereas SMI was not (HR 0.99, 95% CI 0.98-1.01, p = 0.329). Low SMD is associated with poorer survival in advanced NSCLC. Further research is warranted to establish whether muscle measures should be integrated into routine practice to improve prognostic accuracy. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Trujillo, Xóchitl; Sánchez-Pastor, Enrique; Andrade, Felipa; Huerta, Miguel
2014-01-01
We investigated the effects of cannabinoids on acetylcholine (ACh) or choline contractures in slow skeletal muscle fibers from Rana pipiens. Bundles of cruralis muscle fibers were incubated with the cannabinoid receptor 1 (CB1) agonist, arachidonylcyclopropylamide (ACPA), which diminished the maximum isometric tension by 10 % and the total tension by 5 % of the ACh contracture, and 40 and 22 % of the choline contracture, respectively. Preincubation with the CB1 antagonist, AM281, or with pertussis toxin (PTX) completely blocked the effect of ACPA on the ACh contracture. On the other hand, the decrease in choline contracture by ACPA was only partially blocked by AM281 (~16 % decrease), PTX (20 %), or by dantrolene (~46 %). Our results show that ACPA modulates ACh and choline contractures, and suggest that this effect involves the participation of CB1, the ACh receptor, and -RyR in ACh contractures. For choline contractures, ACPA may also be acting through cannabinoid receptor-independent mechanisms.
Complex networks for data-driven medicine: the case of Class III dentoskeletal disharmony
NASA Astrophysics Data System (ADS)
Scala, A.; Auconi, P.; Scazzocchio, M.; Caldarelli, G.; McNamara, JA; Franchi, L.
2014-11-01
In the last decade, the availability of innovative algorithms derived from complexity theory has inspired the development of highly detailed models in various fields, including physics, biology, ecology, economy, and medicine. Due to the availability of novel and ever more sophisticated diagnostic procedures, all biomedical disciplines face the problem of using the increasing amount of information concerning each patient to improve diagnosis and prevention. In particular, in the discipline of orthodontics the current diagnostic approach based on clinical and radiographic data is problematic due to the complexity of craniofacial features and to the numerous interacting co-dependent skeletal and dentoalveolar components. In this study, we demonstrate the capability of computational methods such as network analysis and module detection to extract organizing principles in 70 patients with excessive mandibular skeletal protrusion with underbite, a condition known in orthodontics as Class III malocclusion. Our results could possibly constitute a template framework for organising the increasing amount of medical data available for patients’ diagnosis.
Walker, Ryan G; Poggioli, Tommaso; Katsimpardi, Lida; Buchanan, Sean M; Oh, Juhyun; Wattrus, Sam; Heidecker, Bettina; Fong, Yick W; Rubin, Lee L; Ganz, Peter; Thompson, Thomas B; Wagers, Amy J; Lee, Richard T
2016-04-01
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging. © 2016 American Heart Association, Inc.
Bruscoli, Stefano; Donato, Valerio; Velardi, Enrico; Di Sante, Moises; Migliorati, Graziella; Donato, Rosario; Riccardi, Carlo
2010-01-01
Myogenesis is a process whereby myoblasts differentiate and fuse into multinucleated myotubes, the precursors of myofibers. Various signals and factors modulate this process, and glucocorticoids (GCs) are important regulators of skeletal muscle metabolism. We show that glucocorticoid-induced leucine zipper (GILZ), a GC-induced gene, and the newly identified isoform long GILZ (L-GILZ) are expressed in skeletal muscle tissue and in C2C12 myoblasts where GILZ/L-GILZ maximum expression occurs during the first few days in differentiation medium. Moreover, we observed that GC treatment of myoblasts, which increased GILZ/L-GILZ expression, resulted in reduced myotube formation, whereas GILZ and L-GILZ silencing dampened GC effects. Inhibition of differentiation caused by GILZ/L-GILZ overexpression correlated with inhibition of MyoD function and reduced expression of myogenin. Notably, results indicate that GILZ and L-GILZ bind and regulate MyoD/HDAC1 transcriptional activity, thus mediating the anti-myogenic effect of GCs. PMID:20124407
TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair
Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok
2015-01-01
Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529
Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J.; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego
2015-01-01
The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5+ satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine. PMID:26055324
Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon
2015-08-10
Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.
The fin-to-limb transition as the re-organization of a Turing pattern
Onimaru, Koh; Marcon, Luciano; Musy, Marco; Tanaka, Mikiko; Sharpe, James
2016-01-01
A Turing mechanism implemented by BMP, SOX9 and WNT has been proposed to control mouse digit patterning. However, its generality and contribution to the morphological diversity of fins and limbs has not been explored. Here we provide evidence that the skeletal patterning of the catshark Scyliorhinus canicula pectoral fin is likely driven by a deeply conserved Bmp–Sox9–Wnt Turing network. In catshark fins, the distal nodular elements arise from a periodic spot pattern of Sox9 expression, in contrast to the stripe pattern in mouse digit patterning. However, our computer model shows that the Bmp–Sox9–Wnt network with altered spatial modulation can explain the Sox9 expression in catshark fins. Finally, experimental perturbation of Bmp or Wnt signalling in catshark embryos produces skeletal alterations which match in silico predictions. Together, our results suggest that the broad morphological diversity of the distal fin and limb elements arose from the spatial re-organization of a deeply conserved Turing mechanism. PMID:27211489
Stage-specific effects of Notch activation during skeletal myogenesis
Bi, Pengpeng; Yue, Feng; Sato, Yusuke; Wirbisky, Sara; Liu, Weiyi; Shan, Tizhong; Wen, Yefei; Zhou, Daoguo; Freeman, Jennifer; Kuang, Shihuan
2016-01-01
Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7 quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality. By contrast, myotube-specific Notch1 activation improves the regeneration and exercise performance of aged and dystrophic muscles. Mechanistically, Notch1 activation in myotubes upregulates the expression of Notch ligands, which modulate Notch signaling in the adjacent satellite cells to enhance their regenerative capacity. These results highlight context-dependent effects of Notch activation during myogenesis, and demonstrate that Notch1 activity improves myotube’s function as a stem cell niche. DOI: http://dx.doi.org/10.7554/eLife.17355.001 PMID:27644105
Carnagarin, Revathy; Dharmarajan, Arun M; Dass, Crispin R
2015-12-05
Among all the varied actions of insulin, regulation of glucose homeostasis is the most critical and intensively studied. With the availability of glucose from nutrient metabolism, insulin action in muscle results in increased glucose disposal via uptake from the circulation and storage of excess, thereby maintaining euglycemia. This major action of insulin is executed by redistribution of the glucose transporter protein, GLUT4 from intracellular storage sites to the plasma membrane and storage of glucose in the form of glycogen which also involves modulation of actin dynamics that govern trafficking of all the signal proteins of insulin signal transduction. The cellular mechanisms responsible for these trafficking events and the defects associated with insulin resistance are largely enigmatic, and this review provides a consolidated overview of the various molecular mechanisms involved in insulin-dependent glucose homeostasis in skeletal muscle, as insulin resistance at this major peripheral site impacts whole body glucose homeostasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Inhibition of myostatin reverses muscle fibrosis through apoptosis.
Bo Li, Zhao; Zhang, Jiangyang; Wagner, Kathryn R
2012-09-01
Skeletal muscle fibrosis is a defining feature of the muscular dystrophies in which contractile myofibers are replaced by fibroblasts, adipocytes and extracellular matrix. This maladaptive response of muscle to repetitive injury is progressive, self-perpetuating and thus far, has been considered irreversible. We have previously shown that myostatin, a known endogenous modulator of muscle growth, stimulates normal muscle fibroblasts to proliferate. Here, we demonstrate that myostatin also regulates the proliferation of dystrophic muscle fibroblasts, and increases resistance of fibroblasts to apoptosis through Smad and MAPK signaling. Inhibition of myostatin signaling pathways with a soluble activin IIB receptor (ActRIIB.Fc) reduces resistance of muscle fibroblasts to apoptosis in vitro. Systemic administration of ActRIIB.Fc in senescent mdx mice, a model of muscular dystrophy, significantly increases the number of muscle fibroblasts undergoing apoptosis. This leads to the reversal of pre-existing muscle fibrosis as determined by histological, biochemical and radiographical criteria. These results demonstrate that skeletal muscle fibrosis can be pharmacologically reversed through induction of fibroblast apoptosis.
Multistability inspired by the oblique, pennate architectures of skeletal muscle
NASA Astrophysics Data System (ADS)
Kidambi, Narayanan; Harne, Ryan L.; Wang, K. W.
2017-04-01
Skeletal muscle mechanics exhibit a range of noteworthy characteristics, providing great inspiration for the development of advanced structural and material systems. These characteristics arise from the synergies demonstrated between muscle's constituents across the various length scales. From the macroscale oblique orientation of muscle fibers to the microscale lattice spacing of sarcomeres, muscle takes advantage of geometries and multidimensionality for force generation or length change along a desired axis. Inspired by these behaviors, this research investigates how the incorporation of multidimensionality afforded by oblique, pennate architectures can uncover novel mechanics in structures exhibiting multistability. Experimental investigation of these mechanics is undertaken using specimens of molded silicone rubber with patterned voids, and results reveal tailorable mono-, bi-, and multi-stability under axial displacements by modulation of transverse confinement. If the specimen is considered as an architected material, these results show its ability to generate intriguing, non-monotonic shear stresses. The outcomes would foster the development of novel, advanced mechanical metamaterials that exploit pennation and multidimensionality.
Li, Yiming; Tran, Van H; Koolaji, Nooshin; Duke, Colin; Roufogalis, Basil D
2013-01-01
The aim of this study was to investigate the mechanism of (S)-[6]-gingerol in promoting glucose uptake in L6 skeletal muscle cells. The effect of (S)-[6]-gingerol on glucose uptake in L6 myotubes was examined using 2-[1,2-3H]-deoxy-D-glucose. Intracellular Ca2+ concentration was measured using Fluo-4. Phosphorylation of AMPKα was determined by Western blotting analysis. (S)-[6]-Gingerol time-dependently enhanced glucose uptake in L6 myotubes. (S)-[6]-Gingerol elevated intracellular Ca2+ concentration and subsequently induced a dose- and time-dependent enhancement of threonine172 phosphorylated AMPKα in L6 myotubes via modulation by Ca2+/calmodulin-dependent protein kinase kinase. The results indicated that (S)-[6]-gingerol increased glucose uptake in L6 skeletal muscle cells by activating AMPK. (S)-[6]-gingerol, a major component of Zingiber officinale, may have potential for development as an antidiabetic agent.
High extinction ratio integrated optical modulator for quantum telecommunication systems
NASA Astrophysics Data System (ADS)
Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.
2018-01-01
A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.
Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI.
Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José
2013-09-23
We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.
Bardella, Paolo; Chow, Weng; Montrosset, Ivo
2016-01-08
In the last decades, various solutions have been proposed to increase the modulation bandwidth and consequently the transmission bit rate of integrated semiconductor lasers. In this manuscript we discuss a design procedure for a recently proposed laser structure realized with the integration of two DBR lasers. Design guidelines will be proposed and dynamic small and large signal simulations, calculated using a Finite Difference Traveling Wave numerical simulator, will be performed to confirm the design results and the effectiveness of the analyzed integrated configuration to achieve a direct modulation bandwidth up to 80 GHz
Ground Operations Autonomous Control and Integrated Health Management
NASA Technical Reports Server (NTRS)
Daniels, James
2014-01-01
The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.
Basal p53 expression is indispensable for mesenchymal stem cell integrity.
Boregowda, Siddaraju V; Krishnappa, Veena; Strivelli, Jacqueline; Haga, Christopher L; Booker, Cori N; Phinney, Donald G
2018-03-01
Marrow-resident mesenchymal stem cells (MSCs) serve as a functional component of the perivascular niche that regulates hematopoiesis. They also represent the main source of bone formed in adult bone marrow, and their bifurcation to osteoblast and adipocyte lineages plays a key role in skeletal homeostasis and aging. Although the tumor suppressor p53 also functions in bone organogenesis, homeostasis, and neoplasia, its role in MSCs remains poorly described. Herein, we examined the normal physiological role of p53 in primary MSCs cultured under physiologic oxygen levels. Using knockout mice and gene silencing we show that p53 inactivation downregulates expression of TWIST2, which normally restrains cellular differentiation to maintain wild-type MSCs in a multipotent state, depletes mitochondrial reactive oxygen species (ROS) levels, and suppresses ROS generation and PPARG gene and protein induction in response to adipogenic stimuli. Mechanistically, this loss of adipogenic potential skews MSCs toward an osteogenic fate, which is further potentiated by TWIST2 downregulation, resulting in highly augmented osteogenic differentiation. We also show that p53 - /- MSCs are defective in supporting hematopoiesis as measured in standard colony assays because of decreased secretion of various cytokines including CXCL12 and CSF1. Lastly, we show that transient exposure of wild-type MSCs to 21% oxygen upregulates p53 protein expression, resulting in increased mitochondrial ROS production and enhanced adipogenic differentiation at the expense of osteogenesis, and that treatment of cells with FGF2 mitigates these effects by inducing TWIST2. Together, these findings indicate that basal p53 levels are necessary to maintain MSC bi-potency, and oxygen-induced increases in p53 expression modulate cell fate and survival decisions. Because of the critical function of basal p53 in MSCs, our findings question the use of p53 null cell lines as MSC surrogates, and also implicate dysfunctional MSC responses in the pathophysiology of p53-related skeletal disorders.
Structural dynamics of the skeletal muscle fiber by second harmonic generation
NASA Astrophysics Data System (ADS)
Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.
2008-02-01
The high degree of structural order in skeletal muscle allows imaging of this tissue by Second Harmonic Generation (SHG). As previously found (Vanzi et al., J. Muscle Cell Res. Motil. 2006) by fractional extraction of proteins, myosin is the source of SHG signal. A full characterization of the polarization-dependence of the SHG signal can provide very selective information on the orientation of the emitting proteins and their dynamics during contraction. We developed a line scan polarization method, allowing measurements of a full polarization curve in intact muscle fibers from skeletal muscle of the frog to characterize the SHG polarization dependence on different physiological states (resting, rigor and isometric tetanic contraction). The polarization data have been interpreted by means of a model in terms of the average orientation of SHG emitters.The different physiological states are characterized by distinct patterns of SHG polarization. The variation of the orientation of emitting molecules in relation to the physiological state of the muscle demonstrates that one part of SHG signal arises from the globular head of the myosin molecule that cross-links actin and myosin filaments. The dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction, provides the constraints to estimate the fraction of myosin heads generating the isometric force in the active muscle fiber.
Kovacheva, Marineta; Zepp, Michael; Berger, Stefan M; Berger, Martin R
2014-07-30
Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-reg-ulated miRNA providing knockdown of BSP production. These clones were used to assess the effect of BSP on morphology, proliferation, migration, colony formation and gene expression in vitro, and on soft tissue and osteolytic le-sions in a xenograft model by three imaging methods. BSP knockdown caused significant anti-proliferative, anti-migratory and anti-clonogenic effects in vitro (p<0.001). In vivo, significant de-creases of soft tissue and osteolytic lesions (p<0.03) were recorded after 3 weeks of miRNA treatment, leading to complete remission within 6 weeks. Microarray data revealed that 0.3% of genes were modulated in response to BSP knockdown. Upregulated genes included the endoplasmic reticulum stress genes ATF3 and DDIT3, the tumor suppressor gene EGR1, ID2 (related to breast epithelial differentiation), c-FOS and SERPINB2, whereas the metastasis associated genes CD44 and IL11 were downregulated. Also, activation of apoptotic pathways was demonstrated. These results implicate that intracellular BSP is essential for breast cancer skeletal metastasis and a target for treating these lesions.
Kovacheva, Marineta; Zepp, Michael; Berger, Stefan M.; Berger, Martin R.
2014-01-01
Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-regulated miRNA providing knockdown of BSP production. These clones were used to assess the effect of BSP on morphology, proliferation, migration, colony formation and gene expression in vitro, and on soft tissue and osteolytic lesions in a xenograft model by three imaging methods. BSP knockdown caused significant anti-proliferative, anti-migratory and anti-clonogenic effects in vitro (p<0.001). In vivo, significant decreases of soft tissue and osteolytic lesions (p<0.03) were recorded after 3 weeks of miRNA treatment, leading to complete remission within 6 weeks. Microarray data revealed that 0.3% of genes were modulated in response to BSP knockdown. Upregulated genes included the endoplasmic reticulum stress genes ATF3 and DDIT3, the tumor suppressor gene EGR1, ID2 (related to breast epithelial differentiation), c-FOS and SERPINB2, whereas the metastasis associated genes CD44 and IL11 were downregulated. Also, activation of apoptotic pathways was demonstrated. These results implicate that intracellular BSP is essential for breast cancer skeletal metastasis and a target for treating these lesions. PMID:24980816
Laser therapy of muscle injuries.
Dawood, Munqith S; Al-Salihi, Anam Rasheed; Qasim, Amenah Wala'a
2013-05-01
Low-level lasers are used in general therapy and healing process due to their good photo-bio-stimulation effects. In this paper, the effects of diode laser and Nd:YAG laser on the healing process of practically managed skeletal muscle trauma has been successfully studied. Standard impact trauma was induced by using a specially designed mechanical device. The impacted muscle was left for 3 days for complete development of blunt trauma. After that it was irradiated by five laser sessions for 5 days. Two types of lasers were used; 785-nm diode laser and 1.064-nm Nd:YAG laser, both in continuous and pulsed modes. A special electronic circuit was designed and implemented to modulate the diode laser for this purpose. Tissue samples of crushed skeletal muscle have been dissected from the injured irradiated muscle then bio-chemically analyzed for the regeneration of contractile and collagenous proteins using Lowry assay for protein determination and Reddy and Enwemeka assay for hydroxyproline determination. The results showed that both lasers stimulate the regeneration capability of traumatized skeletal muscle. The diode laser in CW and pulsed modes showed better results than the Nd:YAG in accelerating the preservation of the normal tissue content of collagenous and contractile proteins beside controlling the regeneration of non-functional fibrous tissue. This study proved that the healing achieved by the laser treatment was faster than the control group by 15-20 days.
Yang, Jiameng; Dong, Dong; Huang, Yongzhen; Lan, Xianyong; Plath, Martin; Lei, Chuzhao; Qi, Xinglei; Bai, Yueyu; Chen, Hong
2017-01-01
The formation of bovine skeletal muscle involves complex developmental and physiological processes that play a vital role in determining the quality of beef; however, the regulatory mechanisms underlying differences in meat quality are largely unknown. We conducted transcriptome analysis of bovine muscle tissues to compare gene expression profiles between embryonic and adult stages. Total RNAs from skeletal muscle of Qinchuan cattle at fetal and adult stages were used to construct libraries for Illumina next-generation sequencing using the Ribo-Zero RNA sequencing (RNA-Seq) method. We found a total of 19,695 genes to be expressed in fetal and adult stages, whereby 3,299 were expressed only in fetal, and 433 only in adult tissues. We characterized the role of a candidate gene (GosB), which was highly (but differentially) expressed in embryonic and adult skeletal muscle tissue. GosB increased the number of myoblasts in the S-phase of the cell cycle, and decreased the proportion of cells in the G0/G1 phase. GosB promoted the proliferation of myoblasts and protected them from apoptosis via regulating Bcl-2 expression and controlling the intracellular calcium concentration. Modulation of GosB expression in muscle tissue may emerge as a potential target in breeding strategies attempting to alter myoblast numbers in cattle. PMID:28404879
Vitamin D, a modulator of musculoskeletal health in chronic kidney disease.
Molina, Pablo; Carrero, Juan J; Bover, Jordi; Chauveau, Philippe; Mazzaferro, Sandro; Torres, Pablo Ureña
2017-10-01
The spectrum of activity of vitamin D goes beyond calcium and bone homeostasis, and growing evidence suggests that vitamin D contributes to maintain musculoskeletal health in healthy subjects as well as in patients with chronic kidney disease (CKD), who display the combination of bone metabolism disorder, muscle wasting, and weakness. Here, we review how vitamin D represents a pathway in which bone and muscle may interact. In vitro studies have confirmed that the vitamin D receptor is present on muscle, describing the mechanisms whereby vitamin D directly affects skeletal muscle. These include genomic and non-genomic (rapid) effects, regulating cellular differentiation and proliferation. Observational studies have shown that circulating 25-hydroxyvitamin D levels correlate with the clinical symptoms and muscle morphological changes observed in CKD patients. Vitamin D deficiency has been linked to low bone formation rate and bone mineral density, with an increased risk of skeletal fractures. The impact of low vitamin D status on skeletal muscle may also affect muscle metabolic pathways, including its sensitivity to insulin. Although some interventional studies have shown that vitamin D may improve physical performance and protect against the development of histological and radiological signs of hyperparathyroidism, evidence is still insufficient to draw definitive conclusions. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary
NASA Technical Reports Server (NTRS)
Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.
1998-01-01
There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.
Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction
NASA Astrophysics Data System (ADS)
Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.
2017-02-01
Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.
Moghei, Mahshid; Tavajohi-Fini, Pegah; Beatty, Brendan
2016-01-01
Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P < 0.05). Importantly, we also showed that α-ketoisocaproic acid (KIC), an obligatory metabolite of leucine, stimulated mTORC1 signaling but suppressed insulin-stimulated glucose transport (−34%, P < 0.05) in an mTORC1-dependent manner. The effect of KIC on insulin-stimulated glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae. PMID:27488662
Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M
2014-05-01
Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.
Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation.
Morano, Michela; Ronchi, Giulia; Nicolò, Valentina; Fornasari, Benedetta Elena; Crosio, Alessandro; Perroteau, Isabelle; Geuna, Stefano; Gambarotta, Giovanna; Raimondo, Stefania
2018-03-22
Neuregulin 1 (NRG1) is a growth factor produced by both peripheral nerves and skeletal muscle. In muscle, it regulates neuromuscular junction gene expression, acetylcholine receptor number, muscle homeostasis and satellite cell survival. NRG1 signalling is mediated by the tyrosine kinase receptors ErbB3 and ErbB4 and their co-receptors ErbB1 and ErbB2. The NRG1/ErbB system is well studied in nerve tissue after injury, but little is known about this system in skeletal muscle after denervation/reinnervation processes. Here, we performed a detailed time-course expression analysis of several NRG1 isoforms and ErbB receptors in the rat superficial digitorum flexor muscle after three types of median nerve injuries of different severities. We found that ErbB receptor expression was correlated with the innervated state of the muscle, with upregulation of ErbB2 clearly associated with the denervation state. Interestingly, the NRG1 isoforms were differently regulated depending on the nerve injury type, leading to the hypothesis that both the NRG1α and NRG1β isoforms play a key role in the muscle reaction to injury. Indeed, in vitro experiments with C2C12 atrophic myotubes revealed that both NRG1α and NRG1β treatment influences the best-known atrophic pathways, suggesting that NRG1 might play an anti-atrophic role.
NASA Technical Reports Server (NTRS)
Gaucher, Brian P. (Inventor); Grzyb, Janusz (Inventor); Liu, Duixian (Inventor); Pfeiffer, Ullrich R. (Inventor)
2008-01-01
Apparatus and methods are provided for packaging IC chips together with integrated antenna modules designed to provide a closed EM (electromagnetic) environment for antenna radiators, thereby allowing antennas to be designed independent from the packaging technology.
NASA Astrophysics Data System (ADS)
Cho, Chun-Hyung; Kim, Jongseong; Sung, Hyuk-Kee
2016-09-01
We report on the enhancement of the static extinction ratio by using a dual-section distributed feedback laser diode integrated with an electro-absorption modulator. A directly- modulated dual-section laser can provide improved modulation performance under a low bias level ( i.e., below the threshold level) compared with a standard directly-modulated laser. By combining the extinction ratio from a dual-section laser with that from an electro-absorption modulator section, a total extinction ratio of 49.6. dB are successfully achieved.
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
2011-01-01
Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ. PMID:21798097
Integral bypass diodes in an amorphous silicon alloy photovoltaic module
NASA Technical Reports Server (NTRS)
Hanak, J. J.; Flaisher, H.
1991-01-01
Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.
Integrating Oracle Human Resources with Other Modules
NASA Technical Reports Server (NTRS)
Sparks, Karl; Shope, Shawn
1998-01-01
One of the most challenging aspects of implementing an enterprise-wide business system is achieving integration of the different modules to the satisfaction of diverse customers. The Jet Propulsion Laboratory's (JPL) implementation of the Oracle application suite demonstrates the need to coordinate Oracle Human Resources Management System (HRMS) decision across the Oracle modules.
A technique for sequential segmental neuromuscular stimulation with closed loop feedback control.
Zonnevijlle, Erik D H; Abadia, Gustavo Perez; Somia, Naveen N; Kon, Moshe; Barker, John H; Koenig, Steven; Ewert, D L; Stremel, Richard W
2002-01-01
In dynamic myoplasty, dysfunctional muscle is assisted or replaced with skeletal muscle from a donor site. Electrical stimulation is commonly used to train and animate the skeletal muscle to perform its new task. Due to simultaneous tetanic contractions of the entire myoplasty, muscles are deprived of perfusion and fatigue rapidly, causing long-term problems such as excessive scarring and muscle ischemia. Sequential stimulation contracts part of the muscle while other parts rest, thus significantly improving blood perfusion. However, the muscle still fatigues. In this article, we report a test of the feasibility of using closed-loop control to economize the contractions of the sequentially stimulated myoplasty. A simple stimulation algorithm was developed and tested on a sequentially stimulated neo-sphincter designed from a canine gracilis muscle. Pressure generated in the lumen of the myoplasty neo-sphincter was used as feedback to regulate the stimulation signal via three control parameters, thereby optimizing the performance of the myoplasty. Additionally, we investigated and compared the efficiency of amplitude and frequency modulation techniques. Closed-loop feedback enabled us to maintain target pressures within 10% deviation using amplitude modulation and optimized control parameters (correction frequency = 4 Hz, correction threshold = 4%, and transition time = 0.3 s). The large-scale stimulation/feedback setup was unfit for chronic experimentation, but can be used as a blueprint for a small-scale version to unveil the theoretical benefits of closed-loop control in chronic experimentation.
Romberg, Christin F; Beqollari, Donald; Meza, Ulises; Bannister, Roger A
2014-01-01
Three physiological functions have been described for the skeletal muscle 1,4-dihydropyridine receptor (CaV1.1): (1) voltage-sensor for excitation-contraction (EC) coupling, (2) L-type Ca2+ channel, and (3) voltage-sensor for slow depolarization-dependent Ca2+ entry. Members of the RGK (Rad, Rem, Rem2, Gem/Kir) family of monomeric GTP-binding proteins are potent inhibitors of the former two functions of CaV1.1. However, it is not known whether the latter function that has been attributed to CaV1.1 is subject to modulation by RGK proteins. Thus, the purpose of this study was to determine whether Rad, Gem and/or Rem inhibit the slowly developing, persistent Ca2+ entry that is dependent on the voltage-sensing capability of CaV1.1. As a means to investigate this question, Venus fluorescent protein-fused RGK proteins (V-Rad, V-Rem and V-Gem) were overexpressed in “normal” mouse myotubes. We observed that such overexpression of V-Rad, V-Rem or V-Gem in myotubes caused marked changes in morphology of the cells. As shown previously for YFP-Rem, both L-type current and EC coupling were also impaired greatly in myotubes expressing either V-Rad or V-Gem. The reductions in L-type current and EC coupling were paralleled by reductions in depolarization-induced Ca2+ entry. Our observations provide the first evidence of modulation of this enigmatic Ca2+ entry pathway peculiar to skeletal muscle. PMID:24476902
ERIC Educational Resources Information Center
Hoffman, Kathleen; Leupen, Sarah; Dowell, Kathy; Kephart, Kerrie; Leips, Jeff
2016-01-01
Redesigning undergraduate biology courses to integrate quantitative reasoning and skill development is critical to prepare students for careers in modern medicine and scientific research. In this paper, we report on the development, implementation, and assessment of stand-alone modules that integrate quantitative reasoning into introductory…
NASA Astrophysics Data System (ADS)
Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.
2017-02-01
We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.
NASA Astrophysics Data System (ADS)
Ng, Chee Hoe; Adnan, M.
2018-01-01
This research aims to investigate the effect of integrating STEM education through Project-based Inquiry Learning (PIL) and the users of the STEM modules which consists of five projects on topic Space in Year One Mathematics Syllabus in Kurikulum Standard Sekolah Rendah (KSSR) of Malaysia. STEM education in primary school focuses on the introduces and awareness of students about the importance of STEM education. The projects in STEM modules are covering the different ethnic cultures in Malaysia. The modules are designed using the four phases in PIL. Concepts and the explanation of STEM education on each project are emphasized and provided in the modules so the teachers able to carry out the projects by using the modules. By using the modules in primary Mathematics, the students and teachers will be more understanding on how to integrate the Mathematics’ concepts in STEM education.
Tuchman, Ellen; Hanley, Kathleen; Naegle, Madeline; More, Frederick; Bereket, Sewit; Gourevitch, Marc N
2017-01-01
The Substance Abuse Research and Education Training (SARET) program is funded by the National Institutes of Drug Abuse in 2006 as a novel approach to spark interest in substance abuse research among medical, dental, nursing, and social work graduate students through a Web-based curriculum and research mentorships. This report presents the initial integration of the intervention in a Master of Social Work (MSW) program, the components of the program, and the mixed-methods evaluation of its effect on students' attitudes towards substance abuse research and treatment. SARET comprises 2 main components: stipend-supported research mentorships and a Web-based module series, consisting of 6 interactive, multimedia modules addressing core SA research topics, delivered via course curricula and in the research mentorships. An initial evaluation was designed to assess SARET's acceptability and short-term impact on participants' interest in SA research. The components of this Web-based curriculum evaluation include focus group feedback on the relevance of the modules to SW students, number of courses into which the modules were integrated with number of module completions, changes in interest in SA research associated with module completion. The full series of Web-based modules has been integrated across several courses in the social work curriculum, and social work students have become integral participants in the summer mentored research experience. One hundred eighteen students completed at least 1 module and 42 students completed all 6 modules. Neurobiology, Screening, and Epidemiology were the most widely viewed modules. Students reported positive impact on their vision of SA-related clinical care, more positive attitudes about conducting research, and in some cases, change in career. The SARET program's modules and summer mentored research increased clinical and research interest related to SUDs, as well as interprofessional attitudes among social work students. Participants have shown some early research success. Longer-term follow-up will enable us to continue to assess the effectiveness of the program.
NASA Astrophysics Data System (ADS)
Hanasaki, N.; Kanae, S.; Oki, T.; Shirakawa, N.
2007-10-01
To assess global water resources from the perspective of subannual variation in water resources and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and two natural hydrological cycle modules, namely, the land surface hydrology module and the river routing module. Here, we present the remaining four modules, which represent anthropogenic activities: a crop growth module, a reservoir operation module, an environmental flow requirement module, and an anthropogenic withdrawal module. In addition, we discuss the results of a global water resources assessment using the integrated model. The crop growth module is a relatively simple model based on heat unit theory and potential biomass and harvest index concepts. The performance of the crop growth module was examined extensively because agricultural water comprises approximately 70% of total water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to underestimate countries in the Asian monsoon region. In the reservoir operation module, 452 major reservoirs with more than 1 km³ each of storage capacity store and release water according to their own rules of operation. Operating rules were determined for each reservoir using an algorithm that used currently available global data such as reservoir storage capacity, intended purposes, simulated inflow, and water demand in the lower reaches. The environmental flow requirement module was newly developed based on case studies from around the world. The integrated model closes both energy and water balances on land surfaces. Global water resources were assessed on a subannual basis using a newly devised index that locates water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water resources and water use, include the Sahel, the Asian monsoon region, and southern Africa. The integrated model is applicable to assess various global environmental projections such as climate change.
Evaluating Bone Loss in ISS Astronauts.
Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J
2015-12-01
The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.
Further considerations on in vitro skeletal muscle cell death
Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta
2013-01-01
Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.
1995-09-26
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.
1995-01-01
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.
Integrated optical modulator for signal up-conversion over radio-on-fiber link.
Kim, Woo-Kyung; Kwon, Soon-Woo; Jeong, Woo-Jin; Son, Geun-Sik; Lee, Kwang-Hyun; Choi, Woo-Young; Yang, Woo-Seok; Lee, Hyung-Man; Lee, Han-Young
2009-02-16
An integrated optical modulator, which consists of a dual-sideband suppressed carrier (DSB-SC) modulator cascaded with a single-sideband (SSB) modulator, is proposed for signal up-conversion over Radio-on-Fiber. Utilizing a single-drive domain inverted structure in both modulators, balanced modulations were obtained without complicated radio frequency (RF) driving circuits and delicate RF phase adjustments. Intermediate frequency (IF) band signal was up-conversed to 60GHz band by using the fabricated device and was transmitted over optical fiber. Experiment results show that the proposed device enables millimeter wave generation and signal transmission without any power penalty caused by chromatic dispersion.
Murphy, Caoileann H; Shankaran, Mahalakshmi; Churchward-Venne, Tyler A; Mitchell, Cameron J; Kolar, Nathan M; Burke, Louise M; Hawley, John A; Kassis, Amira; Karagounis, Leonidas G; Li, Kelvin; King, Chelsea; Hellerstein, Marc; Phillips, Stuart M
2018-06-01
Strategies to enhance the loss of fat while preserving muscle mass during energy restriction are of great importance to prevent sarcopenia in overweight older adults. We show for the first time that the integrated rate of synthesis of numerous individual contractile, cytosolic and mitochondrial skeletal muscle proteins was increased by resistance training (RT) and unaffected by dietary protein intake pattern during energy restriction in free-living, obese older men. We observed a correlation between the synthetic rates of skeletal muscle-derived proteins obtained in serum (creatine kinase M-type, carbonic anhydrase 3) and the synthetic rates of proteins obtained via muscle sampling; and that the synthesis rates of these proteins in serum revealed the stimulatory effects of RT. These results have ramifications for understanding the influence of RT on skeletal muscle and are consistent with the role of RT in maintaining muscle protein synthesis and potentially supporting muscle mass preservation during weight loss. We determined how the pattern of protein intake and resistance training (RT) influenced longer-term (2 weeks) integrated myofibrillar protein synthesis (MyoPS) during energy restriction (ER). MyoPS and proteome kinetics were measured during 2 weeks of ER alone and 2 weeks of ER plus RT (ER + RT) in overweight/obese older men. Participants were randomized to consume dietary protein in a balanced (BAL: 25% daily protein per meal × 4 meals) or skewed (SKEW: 7:17:72:4% daily protein per meal) pattern (n = 10 per group). Participants ingested deuterated water during the consecutive 2-week periods, and skeletal muscle biopsies and serum were obtained at the beginning and conclusion of ER and ER + RT. Bulk MyoPS (i.e. synthesis of the myofibrillar protein sub-fraction) and the synthetic rates of numerous individual skeletal muscle proteins were quantified. Bulk MyoPS was not affected by protein distribution during ER or ER + RT (ER: BAL = 1.24 ± 0.31%/day, SKEW = 1.26 ± 0.37%/day; ER + RT: BAL = 1.64 ± 0.48%/day, SKEW = 1.52 ± 0.66%/day) but was ∼26% higher during ER + RT than during ER (P = 0.023). The synthetic rates of 175 of 190 contractile, cytosolic and mitochondrial skeletal muscle proteins, as well as synthesis of muscle-derived proteins measured in serum, creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3), were higher during ER + RT than during ER (P < 0.05). In addition, the synthetic rates of CK-M and CA-3 measured in serum correlated with the synthetic rates of proteins obtained via muscle sampling (P < 0.05). This study provides novel data on the skeletal muscle adaptations to RT and dietary protein distribution. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Benson, Roger B J; Butler, Richard J; Carrano, Matthew T; O'Connor, Patrick M
2012-02-01
Pneumatic (air-filled) postcranial bones are unique to birds among extant tetrapods. Unambiguous skeletal correlates of postcranial pneumaticity first appeared in the Late Triassic (approximately 210 million years ago), when they evolved independently in several groups of bird-line archosaurs (ornithodirans). These include the theropod dinosaurs (of which birds are extant representatives), the pterosaurs, and sauropodomorph dinosaurs. Postulated functions of skeletal pneumatisation include weight reduction in large-bodied or flying taxa, and density reduction resulting in energetic savings during foraging and locomotion. However, the influence of these hypotheses on the early evolution of pneumaticity has not been studied in detail previously. We review recent work on the significance of pneumaticity for understanding the biology of extinct ornithodirans, and present detailed new data on the proportion of the skeleton that was pneumatised in 131 non-avian theropods and Archaeopteryx. This includes all taxa known from significant postcranial remains. Pneumaticity of the cervical and anterior dorsal vertebrae occurred early in theropod evolution. This 'common pattern' was conserved on the line leading to birds, and is likely present in Archaeopteryx. Increases in skeletal pneumaticity occurred independently in as many as 12 lineages, highlighting a remarkably high number of parallel acquisitions of a bird-like feature among non-avian theropods. Using a quantitative comparative framework, we show that evolutionary increases in skeletal pneumaticity are significantly concentrated in lineages with large body size, suggesting that mass reduction in response to gravitational constraints at large body sizes influenced the early evolution of pneumaticity. However, the body size threshold for extensive pneumatisation is lower in theropod lineages more closely related to birds (maniraptorans). Thus, relaxation of the relationship between body size and pneumatisation preceded the origin of birds and cannot be explained as an adaptation for flight. We hypothesise that skeletal density modulation in small, non-volant, maniraptorans resulted in energetic savings as part of a multi-system response to increased metabolic demands. Acquisition of extensive postcranial pneumaticity in small-bodied maniraptorans may indicate avian-like high-performance endothermy. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
Cesar, Aline S M; Regitano, Luciana C A; Poleti, Mirele D; Andrade, Sónia C S; Tizioto, Polyana C; Oliveira, Priscila S N; Felício, Andrezza M; do Nascimento, Michele L; Chaves, Amália S; Lanna, Dante P D; Tullio, Rymer R; Nassu, Renata T; Koltes, James E; Fritz-Waters, Eric; Mourão, Gerson B; Zerlotini-Neto, Adhemar; Reecy, James M; Coutinho, Luiz L
2016-11-22
Lipids are a class of molecules that play an important role in cellular structure and metabolism in all cell types. In the last few decades, it has been reported that long-chain fatty acids (FAs) are involved in several biological functions from transcriptional regulation to physiological processes. Several fatty acids have been both positively and negatively implicated in different biological processes in skeletal muscle and other tissues. To gain insight into biological processes associated with fatty acid content in skeletal muscle, the aim of the present study was to identify differentially expressed genes (DEGs) and functional pathways related to gene expression regulation associated with FA content in cattle. Skeletal muscle transcriptome analysis of 164 Nellore steers revealed no differentially expressed genes (DEGs, FDR 10%) for samples with extreme values for linoleic acid (LA) or stearic acid (SA), and only a few DEGs for eicosapentaenoic acid (EPA, 5 DEGs), docosahexaenoic acid (DHA, 4 DEGs) and palmitic acid (PA, 123 DEGs), while large numbers of DEGs were associated with oleic acid (OA, 1134 DEGs) and conjugated linoleic acid cis9 trans11 (CLA-c9t11, 872 DEGs). Functional annotation and functional enrichment from OA DEGs identified important genes, canonical pathways and upstream regulators such as SCD, PLIN5, UCP3, CPT1, CPT1B, oxidative phosphorylation mitochondrial dysfunction, PPARGC1A, and FOXO1. Two important genes associated with lipid metabolism, gene expression and cancer were identified as DEGs between animals with high and low CLA-c9t11, specifically, epidermal growth factor receptor (EGFR) and RNPS. Only two out of seven classes of molecules of FA studied were associated with large changes in the expression profile of skeletal muscle. OA and CLA-c9t11 content had significant effects on the expression level of genes related to important biological processes associated with oxidative phosphorylation, and cell growth, survival, and migration. These results contribute to our understanding of how some FAs modulate metabolism and may have protective health function.
2011-01-01
Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products. PMID:21385442
Schilder, Rudolf J; Kimball, Scot R; Marden, James H; Jefferson, Leonard S
2011-05-01
Do animals know at a physiological level how much they weigh, and, if so, do they make homeostatic adjustments in response to changes in body weight? Skeletal muscle is a likely tissue for such plasticity, as weight-bearing muscles receive mechanical feedback regarding body weight and consume ATP in order to generate forces sufficient to counteract gravity. Using rats, we examined how variation in body weight affected alternative splicing of fast skeletal muscle troponin T (Tnnt3), a component of the thin filament that regulates the actin-myosin interaction during contraction and modulates force output. In response to normal growth and experimental body weight increases, alternative splicing of Tnnt3 in rat gastrocnemius muscle was adjusted in a quantitative fashion. The response depended on weight per se, as externally attached loads had the same effect as an equal change in actual body weight. Examining the association between Tnnt3 alternative splicing and ATP consumption rate, we found that the Tnnt3 splice form profile had a significant association with nocturnal energy expenditure, independently of effects of weight. For a subset of the Tnnt3 splice forms, obese Zucker rats failed to make the same adjustments; that is, they did not show the same relationship between body weight and the relative abundance of five Tnnt3 β splice forms (i.e. Tnnt3 β2-β5 and β8), four of which showed significant effects on nocturnal energy expenditure in Sprague-Dawley rats. Heavier obese Zucker rats displayed certain splice form relative abundances (e.g. Tnnt3 β3) characteristic of much lighter, lean animals, resulting in a mismatch between body weight and muscle molecular composition. Consequently, we suggest that body weight-inappropriate skeletal muscle Tnnt3 expression in obesity is a candidate mechanism for muscle weakness and reduced mobility. Weight-dependent quantitative variation in Tnnt3 alternative splicing appears to be an evolutionarily conserved feature of skeletal muscle and provides a quantitative molecular marker to track how an animal perceives and responds to body weight.
Li, Yinghui; Li, Fengna; Wu, Li; Wei, Hongkui; Liu, Yingying; Li, Tiejun; Tan, Bie; Kong, Xiangfeng; Yao, Kang; Chen, Shuai; Wu, Fei; Duan, Yehui; Yin, Yulong
2016-01-01
To investigate the effects of dietary crude protein (CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing pigs (62.30 ± 0.88 kg) were allotted to 3 groups and fed with the recommended adequate protein (AP, 16 % CP) diet, moderately restricted protein (MP, 13 % CP) diet and low protein (LP, 10 % CP) diet, respectively. The skeletal muscle of different locations in pigs, including longissimus dorsi muscle (LDM), psoas major muscle (PMM) and biceps femoris muscle (BFM) were collected and analyzed. Results showed that growing-finishing pigs fed the MP or AP diet improved (P < 0.01) the average daily gain and feed: gain ratio compared with those fed the LP diet, and the MP diet tended to increase (P = 0.09) the weight of LDM. Moreover, the ATP content and energy charge value were varied among muscle samples from different locations of pigs fed the reduced protein diets. We also observed that pigs fed the MP diet up-regulated (P < 0.05) muscular mRNA expression of all the selected key genes, except that myosin heavy chain (MyHC) IIb, MyHC IIx, while mRNA expression of ubiquitin ligases genes was not affected by dietary CP level. Additionally, the activation of mammalian target of rapamycin complex 1 (mTORC1) pathway was stimulated (P < 0.05) in skeletal muscle of the pigs fed the MP or AP diet compared with those fed the LP diet. The results suggest that the pigs fed the MP diet could catch up to the growth performance and the LDM weight of the pigs fed the AP diet, and the underlying mechanism may be partly due to the alteration in energy status, modulation of muscle fiber characteristics and mTORC1 activation as well as its downstream effectors in skeletal muscle of different locations in growing-finishing pigs.
[Development of a French-language online health policy course: an international collaboration].
Hébert, Réjean; Coppieters, Yves; Pradier, Christian; Williams-Jones, Bryn; Brahimi, Cora; Farley, Céline
2017-01-01
To present the process and challenges of developing an online competency-based course on public health policy using a collaborative international approach. Five public health experts, supported by an expert in educational technology, adopted a rigorous approach to the development of the course: a needs analysis, identification of objectives and competencies, development of a pedagogical scenario for each module and target, choice of teaching methods and learning activities, material to be identified or developed, and the responsibilities and tasks involved. The 2-credit (90-hour) graduate course consists of six modules including an integration module. The modules start with a variety of case studies: tobacco law (neutral packaging), supervised injection sites, housing, integrated services for the frail elderly, a prevention programme for mothers from disadvantaged backgrounds, and the obligatory use of bicycle helmets. In modules 1, 3, 4 and 5, students learn about different stages of the public policy development process: emergence, formulation and adoption, implementation and evaluation. Module 2 focuses on the importance of values and ideologies in public policy. The integration module allows the students to apply the knowledge learned and addresses the role of experts in public policy and ethical considerations. The course has been integrated into the graduate programmes of the participating universities and allows students to follow, at a distance, an innovative training programme.
Hearon, Christopher M.; Kirby, Brett S.; Luckasen, Gary J.; Larson, Dennis G.
2016-01-01
Key points ‘Functional sympatholysis’ describes the ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction, and is critical to ensure proper blood flow and oxygen delivery to metabolically active skeletal muscle. The signalling mechanism responsible for sympatholysis in healthy humans is unknown.Evidence from animal models has identified endothelium‐derived hyperpolarization (EDH) as a potential mechanism capable of attenuating sympathetic vasoconstriction.In this study, increasing endothelium‐dependent signalling during exercise significantly enhanced the ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction in humans.This is the first study in humans to identify endothelium‐dependent regulation of sympathetic vasoconstriction in contracting skeletal muscle, and specifically supports a role for EDH‐like vasodilatory signalling.Impaired functional sympatholysis is a common feature of cardiovascular ageing, hypertension and heart failure, and thus identifying fundamental mechanisms responsible for sympatholysis is clinically relevant. Abstract Stimulation of α‐adrenoceptors elicits vasoconstriction in resting skeletal muscle that is blunted during exercise in an intensity‐dependent manner. In humans, the underlying mechanisms remain unclear. We tested the hypothesis that stimulating endothelium‐dependent vasodilatory signalling will enhance the ability of contracting skeletal muscle to blunt α1‐adrenergic vasoconstriction. Changes in forearm vascular conductance (FVC; Doppler ultrasound, brachial intra‐arterial pressure via catheter) to local intra‐arterial infusion of phenylephrine (PE; α1‐adrenoceptor agonist) were calculated during (1) infusion of the endothelium‐dependent vasodilators acetylcholine (ACh) and adenosine triphosphate (ATP), the endothelium‐independent vasodilator (sodium nitroprusside, SNP), or potassium chloride (KCl) at rest; (2) mild or moderate intensity handgrip exercise; and (3) combined mild exercise + ACh, ATP, SNP, or KCl infusions in healthy adults. Robust vasoconstriction to PE was observed during vasodilator infusion alone and mild exercise, and this was blunted during moderate intensity exercise (ΔFVC: −34 ± 4 and −34 ± 3 vs. −13 ± 2%, respectively, P < 0.05). Infusion of ACh or ATP during mild exercise significantly attenuated PE vasoconstriction similar to levels observed during moderate exercise (ACh: −3 ± 4; ATP: −18 ± 4%). In contrast, infusion of SNP or KCl during mild exercise did not attenuate PE‐mediated vasoconstriction (−32 ± 5 and −46 ± 3%). To further study the role of endothelium‐dependent hyperpolarization (EDH), ACh trials were repeated with combined nitric oxide synthase and cyclooxygenase inhibition. Here, PE‐mediated vasoconstriction was blunted at rest (blockade: −20 ± 5 vs. control: −31 ± 3% vs.; P < 0.05) and remained blunted during exercise (blockade: −15 ± 5 vs. control: −14 ± 5%). We conclude that stimulation of EDH‐like vasodilatation can blunt α1‐adrenergic vasoconstriction in contracting skeletal muscle of humans. PMID:27561916
Hearon, Christopher M; Kirby, Brett S; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A
2016-12-15
'Functional sympatholysis' describes the ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction, and is critical to ensure proper blood flow and oxygen delivery to metabolically active skeletal muscle. The signalling mechanism responsible for sympatholysis in healthy humans is unknown. Evidence from animal models has identified endothelium-derived hyperpolarization (EDH) as a potential mechanism capable of attenuating sympathetic vasoconstriction. In this study, increasing endothelium-dependent signalling during exercise significantly enhanced the ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction in humans. This is the first study in humans to identify endothelium-dependent regulation of sympathetic vasoconstriction in contracting skeletal muscle, and specifically supports a role for EDH-like vasodilatory signalling. Impaired functional sympatholysis is a common feature of cardiovascular ageing, hypertension and heart failure, and thus identifying fundamental mechanisms responsible for sympatholysis is clinically relevant. Stimulation of α-adrenoceptors elicits vasoconstriction in resting skeletal muscle that is blunted during exercise in an intensity-dependent manner. In humans, the underlying mechanisms remain unclear. We tested the hypothesis that stimulating endothelium-dependent vasodilatory signalling will enhance the ability of contracting skeletal muscle to blunt α 1 -adrenergic vasoconstriction. Changes in forearm vascular conductance (FVC; Doppler ultrasound, brachial intra-arterial pressure via catheter) to local intra-arterial infusion of phenylephrine (PE; α 1 -adrenoceptor agonist) were calculated during (1) infusion of the endothelium-dependent vasodilators acetylcholine (ACh) and adenosine triphosphate (ATP), the endothelium-independent vasodilator (sodium nitroprusside, SNP), or potassium chloride (KCl) at rest; (2) mild or moderate intensity handgrip exercise; and (3) combined mild exercise + ACh, ATP, SNP, or KCl infusions in healthy adults. Robust vasoconstriction to PE was observed during vasodilator infusion alone and mild exercise, and this was blunted during moderate intensity exercise (ΔFVC: -34 ± 4 and -34 ± 3 vs. -13 ± 2%, respectively, P < 0.05). Infusion of ACh or ATP during mild exercise significantly attenuated PE vasoconstriction similar to levels observed during moderate exercise (ACh: -3 ± 4; ATP: -18 ± 4%). In contrast, infusion of SNP or KCl during mild exercise did not attenuate PE-mediated vasoconstriction (-32 ± 5 and -46 ± 3%). To further study the role of endothelium-dependent hyperpolarization (EDH), ACh trials were repeated with combined nitric oxide synthase and cyclooxygenase inhibition. Here, PE-mediated vasoconstriction was blunted at rest (blockade: -20 ± 5 vs. -31 ± 3% vs.; P < 0.05) and remained blunted during exercise (blockade: -15 ± 5 vs. -14 ± 5%). We conclude that stimulation of EDH-like vasodilatation can blunt α 1 -adrenergic vasoconstriction in contracting skeletal muscle of humans. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Prinz, P; Ronacher, B
2002-08-01
The temporal resolution of auditory receptors of locusts was investigated by applying noise stimuli with sinusoidal amplitude modulations and by computing temporal modulation transfer functions. These transfer functions showed mostly bandpass characteristics, which are rarely found in other species at the level of receptors. From the upper cut-off frequencies of the modulation transfer functions the minimum integration times were calculated. Minimum integration times showed no significant correlation to the receptor spike rates but depended strongly on the body temperature. At 20 degrees C the average minimum integration time was 1.7 ms, dropping to 0.95 ms at 30 degrees C. The values found in this study correspond well to the range of minimum integration times found in birds and mammals. Gap detection is another standard paradigm to investigate temporal resolution. In locusts and other grasshoppers application of this paradigm yielded values of the minimum detectable gap widths that are approximately twice as large than the minimum integration times reported here.
Human nutrigenomics of gene regulation by dietary fatty acids.
Afman, Lydia A; Müller, Michael
2012-01-01
Nutrigenomics employs high-throughput genomics technologies to unravel how nutrients modulate gene and protein expression and ultimately influence cellular and organism metabolism. The most often-applied genomics technique so far is transcriptomics, which allows quantifying genome-wide changes in gene expression of thousands of genes at the same time in one sample. The performance of gene expression quantification requires sufficient high-quality homogenous cellular material, therefore research in healthy volunteers is restricted to biopsies from easy accessible tissues such as subcutaneous adipose tissue, skeletal muscle and intestinal biopsies or even more easily accessible cells such as peripheral blood mononuclear cells from blood. There is now significant evidence that fatty acids, in particular unsaturated fatty acids, exert many of their effects through modulation of gene transcription by regulating the activity of numerous transcription factors, including nuclear receptors such as peroxisome proliferator activated receptors, liver X receptor and sterol regulatory binding proteins. This review evaluates the human nutrigenomics studies performed on dietary fat since the initiation of nutrigenomics research around 10 years ago. Although the number of studies is still limited, all studies clearly suggest that changes in dietary fatty acids intake and composition can have a significant impact on cellular adaptive response capacity by gene transcription changes in humans. This adds important knowledge to our understanding of the strong effects that various fatty acids can have on numerous metabolic and inflammatory pathways, signaling routes and homeostatic control in the cell and ultimately on whole body health. It is important to use and integrate nutrigenomics in all future nutrition studies to build up the necessary framework for evidence-based nutrition in near future. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hwang, Paul; Willoughby, Darryn S
2018-05-01
There is clear evidence that endurance exercise training elicits intramuscular adaptations that can lead to elevations in mitochondrial biogenesis, oxidative capacity, mitochondrial density, and mitochondrial function. Mitochondrial biogenesis is regulated by the activation of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha. This master regulator of mitochondrial biogenesis activates nuclear respiratory factors (NRF-1, NRF-2) and mitochondrial transcription factor A, which enables the expansion of mitochondrial size and transcription of mitochondrial DNA. Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in various physiological processes such as redox modulation, cellular energy metabolism, and mitochondrial biogenesis and is a potent antioxidant. Since both exercise and supplemental PQQ have mechanisms associated with mitochondrial biogenesis, it is plausible that a differential additive ergogenic benefit with PQQ can ensue. However, there is a major paucity of research exploring the role of PQQ in conjunction with exercise. In this respect, the purpose of the critical literature review will be to present a comprehensive overview of PQQ and the proposed mechanisms underlying mitochondrial biogenesis. Because exercise can instigate the molecular responses indicative of mitochondrial biogenesis, it is plausible that PQQ and exercise may instigate a synergistic response. Key teaching points • Endurance exercise training enables skeletal muscle adaptations that can induce increases in mitochondrial biogenesis, improve oxidative capacity, mitochondrial density, and mitochondrial function. • Pyrroloquinoline quinone (PQQ) has been identified as a novel supplement that is involved in physiological processes including redox modulation, cellular energy metabolism, mitochondrial biogenesis, and antioxidant potential. • There is emerging evidence to support that PQQ supplementation can upregulate the molecular signaling responses indicative of mitochondrial biogenesis within skeletal muscle. • If both endurance exercise and PQQ supplementation can elicit increases in the molecular responses indicative of mitochondrial biogenesis, it is possible that both PQQ and exercise may instigate a synergistic ergogenic response. • There is a scarcity of research exploring the possible role of PQQ supplementation with concomitant endurance exercise. Therefore, future research is necessary to investigate the ergogenic potential behind PQQ supplementation in conjunction with endurance exercise.
Chisamore, Michael J; Gentile, Michael A; Dillon, Gregory Michael; Baran, Matthew; Gambone, Carlo; Riley, Sean; Schmidt, Azriel; Flores, Osvaldo; Wilkinson, Hilary; Alves, Stephen E
2016-10-01
The androgen receptor (AR) is a member of the nuclear hormone receptor super family of transcription factors. Androgens play an essential role in the development, growth, and maintenance of male sex organs, as well as the musculoskeletal and central nervous systems. Yet with advancing age, androgens can drive the onset of prostate cancer, the second leading cause of cancer death in males within the United States. Androgen deprivation therapy (ADT) by pharmacologic and/or surgical castration induces apoptosis of prostate cells and subsequent shrinkage of the prostate and prostate tumors. However, ADT is associated with significant musculoskeletal and behavioral adverse effects. The unique pharmacological activity of selective androgen receptor modulator (SARM) MK-4541 recently has been reported as an AR antagonist with 5α-reductase inhibitor function. The molecule inhibits proliferation and induces apoptosis in AR positive, androgen dependent prostate cancer cells. Importantly, MK-4541 inhibited androgen-dependent prostate growth in male rats yet maintained lean body mass and bone formation following ovariectomy in female rats. In the present study, we evaluated the effects of SARM MK-4541 in the androgen-dependent Dunning R3327-G prostate carcinoma xenograft mouse model as well as on skeletal muscle mass and function, and AR-regulated behavior in mice. MK-4541 significantly inhibited the growth of R3327-G prostate tumors, exhibited anti-androgen effects on the seminal vesicles, reduced plasma testosterone concentrations in intact males, and inhibited Ki67 expression. MK-4541 treated xenografts appeared similar to xenografts in castrated mice. Importantly, we demonstrate that MK-4541 exhibited anabolic activity in androgen deficient conditions, increasing lean body mass and muscle function in adult castrated mice. Moreover, MK-4541 treatment restored general activity levels in castrated mice. Thus, MK-4541 exhibits an optimum profile as an adjuvant therapy to ADT which may provide potent anti-androgenic activity at the prostate yet protective activity on skeletal muscle and behavior in patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes.
Andriani, Yosephine; Chua, Jason Min-Wen; Chua, Benjamin Yan-Jiang; Phang, In Yee; Shyh-Chang, Ng; Tan, Wui Siew
2017-07-15
Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hirai, Daniel M; Copp, Steven W; Schwagerl, Peter J; Haub, Mark D; Poole, David C; Musch, Timothy I
2011-04-01
Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ↔17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.
Washington, Tyrone A; Healey, Julie M; Thompson, Raymond W; Lowe, Larry L; Carson, James A
2014-09-01
Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (p<0.05). Aging also reduced LDH-A mRNA abundance, however there was no age effect on LDH-B mRNA abundance. In 5-month muscle, both ND and OV decreased LDH-A and LDH-B activity. However, there was no synergistic or additive effect. In 5-month muscle, ND and OV decreased LDH-A mRNA expression with no change in LDH-B expression. In 25-month muscle, ND and OV increased LDH-A and LDH-B activity. LDH-A mRNA expression was not altered by ND or OV in aged muscle. However, there was a main effect of OV to decrease LDH-B mRNA expression. There was also an age-induced LDH isoform shift. ND and OV treatment increased the "fast" LDH isoforms in aged muscle, whereas ND and OV increased the "slow" isoforms in young muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Williams, Elmer; Dalton, Don
This 12-hour module of instruction is designed to help undergraduates in social studies methods courses integrate economics education into the elementary school social studies curriculum. The major purposes of the module are to (1) demonstrate how economics concepts can be integrated into social studies instruction, (2) reinforce or extend teacher…
Technical Reliability Studies. EOS/ESD Technology Abstracts
1982-01-01
RESISTANT BIPOLAR TRANSISTOR DESIGN AND ITS APPLICATIONS TO LINEAR INTEGRATED CIRCUITS 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR 15786 SOME...T.M. 16476 STATIC DISCHARGE MODELING TECHNIQUES FOR EVALUATION OF INTEGRATED (FET) CIRCUIT DESTRUCTION 16145 MODULE ELECTAOSTATIC DISCHARGE SIMULATOR...PLASTIC LSI CIRCUITS PRklE, L.A., II 16145 MODULE ELECTROSTATIC DISCHARGE SIMULATOR PRICE, R.D. 13455 EVALUATION OF PLASTIC LSI CIRCUITS PSHAENICH, A
Electron tunneling infrared sensor module with integrated control circuitry
NASA Technical Reports Server (NTRS)
Boyadzhyan-Sevak, Vardkes V. (Inventor)
2001-01-01
In an integrated electron tunneling sensor, an automatic tunneling control circuit varies a high voltage bias applied to the sensor deflection electrode in response to changes in sensor output to maintain the proper gap between the sensor tip and membrane. The control circuit ensures stable tunneling activity in the presence of large signals and other disturbances to the sensor. Output signals from the module may be derived from the amplified sensor output. The integrated sensor module is particularly well adapted for use in blood glucose measurement and monitoring system.
NASA Astrophysics Data System (ADS)
Fu, Enjin
Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier injection modulators and light-emitting diodes (LED) with drive voltage requirements below 1.5V. Measurement results show an optical link based on a 70MHz red LED work well at 300Mbps by using the pre-emphasis driver module. A traveling wave electrode (TWE) modulator structure is presented, including a novel design methodology to address process limitations imposed by a commercial silicon fabrication technology. Results from 3D full wave EM simulation demonstrate the application of the design methodology to achieve specifications, including phase velocity matching, insertion loss, and impedance matching. Results show the HBT-based TWE-EAM system has the bandwidth higher than 60GHz.
Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H
2015-12-23
Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Luo, Wen; Lin, Shumao; Li, Guihuan; Nie, Qinghua; Zhang, Xiquan
2016-01-01
The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development. PMID:26927061
Liu, Jianming; Burkin, Dean J.; Kaufman, Stephen J.
2008-01-01
The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The α7β1-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of α7-integrin levels alleviates pathology in mdx/utrn−/− mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally compensate for the absence of dystrophin. To test whether increasing α7-integrin levels affects transcription and cellular functions, we generated α7-integrin-inducible C2C12 cells and transgenic mice that overexpress the integrin in skeletal muscle. C2C12 myoblasts with elevated levels of integrin exhibited increased adhesion to laminin, faster proliferation when serum was limited, resistance to staurosporine-induced apoptosis, and normal differentiation. Transgenic expression of eightfold more integrin in skeletal muscle did not result in notable toxic effects in vivo. Moreover, high levels of α7-integrin in both myoblasts and in skeletal muscle did not disrupt global gene expression profiles. Thus increasing integrin levels can compensate for defects in the extracellular matrix and cytoskeleton linkage caused by compromises in the dystrophin-glycoprotein complex without triggering apparent overt negative side effects. These results support the use of integrin enhancement as a therapy for muscular dystrophy. PMID:18045857
Integrating Software Modules For Robot Control
NASA Technical Reports Server (NTRS)
Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.
1993-01-01
Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.
West, T G; Donohoe, P H; Staples, J F; Askew, G N
2006-04-01
Much of Bob Boutilier's research characterised the subcellular, organ-level and in vivo behavioural responses of frogs to environmental hypoxia. His entirely integrative approach helped to reveal the diversity of tissue-level responses to O(2) lack and to advance our understanding of the ecological relevance of hypoxia tolerance in frogs. Work from Bob's lab mainly focused on the role for skeletal muscle in the hypoxic energetics of overwintering frogs. Muscle energy demand affects whole-body metabolism, not only because of its capacity for rapid increases in ATP usage, but also because hypometabolism of the large skeletal muscle mass in inactive animals impacts so greatly on in vivo energetics. The oxyconformance and typical hypoxia-tolerance characteristics (e.g. suppressed heat flux and preserved membrane ion gradients during O(2) lack) of skeletal muscle in vitro suggest that muscle hypoperfusion in vivo is possibly a key mechanism for (i) downregulating muscle and whole-body metabolic rates and (ii) redistributing O(2) supply to hypoxia-sensitive tissues. The gradual onset of a low-level aerobic metabolic state in the muscle of hypoxic, cold-submerged frogs is indeed important for slowing depletion of on-board fuels and extending overwintering survival time. However, it has long been known that overwintering frogs cannot survive anoxia or even severe hypoxia. Recent work shows that they remain sensitive to ambient O(2) and that they emerge rapidly from quiescence in order to actively avoid environmental hypoxia. Hence, overwintering frogs experience periods of hypometabolic quiescence interspersed with episodes of costly hypoxia avoidance behaviour and exercise recovery. In keeping with this flexible physiology and behaviour, muscle mechanical properties in frogs do not deteriorate during periods of overwintering quiescence. On-going studies inspired by Bob Boutilier's integrative mindset continue to illuminate the cost-benefit(s) of intermittent locomotion in overwintering frogs, the constraints on muscle function during hypoxia, the mechanisms of tissue-level hypometabolism, and the details of possible muscle atrophy resistance in quiescent frogs.
Kharlamova, Anastasia V.; Trut, Lyudmila N.; Carrier, David R.; Chase, Kevin; Lark, Karl G.
2008-01-01
Synopsis Genetic variation in functionally integrated skeletal traits can be maintained over 10 million years despite bottlenecks and stringent selection. Here, we describe an analysis of the genetic architecture of the canid axial skeleton using populations of the Portuguese Water Dog Canis familiaris) and silver fox (Vulpes vulpes). Twenty-one skeletal metrics taken from radiographs of the forelimbs and hind limbs of the fox and dog were used to construct separate anatomical principal component (PC) matrices of the two species. In both species, 15 of the 21 PCs exhibited significant heritability, ranging from 25% to 70%. The second PC, in both species, represents a trade-off in which limb-bone width is inversely correlated with limb-bone length. PC2 accounts for approximately 15% of the observed skeletal variation, ~30% of the variation in shape. Many of the other significant PCs affect very small amounts of variation (e.g., 0.2–2%) along trade-off axes that partition function between the forelimbs and hind limbs. These PCs represent shape axes in which an increase in size of an element of the forelimb is associated with a decrease in size of an element of the hind limb and vice versa. In most cases, these trade-offs are heritable in both species and genetic loci have been identified in the Portuguese Water Dog for many of these. These PCs, present in both the dog and the fox, include ones that affect lengths of the forelimb versus the hind limb, length of the forefoot versus that of the hind foot, muscle moment (i.e., lever) arms of the forelimb versus hind limb, and cortical thickness of the bones of the forelimb versus hind limb. These inverse relationships suggest that genetic regulation of the axial skeleton results, in part, from the action of genes that influence suites of functionally integrated traits. Their presence in both dogs and foxes suggests that the genes controlling the regulation of these PCs of the forelimb versus hind limb may be found in other tetrapod taxa. PMID:18458753
An Integrated Simulation Module for Cyber-Physical Automation Systems †
Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario
2016-01-01
The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called “GILOO” (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new “Advanced Sky GUI” have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home mock-up where a networked control has been developed for the LED lighting system. PMID:27164109
An Integrated Simulation Module for Cyber-Physical Automation Systems.
Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario
2016-05-05
The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called "GILOO" (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new "Advanced Sky GUI" have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home mock-up where a networked control has been developed for the LED lighting system.
Negative Emotion Does Not Modulate Rapid Feature Integration Effects
Trübutschek, Darinka; Egner, Tobias
2012-01-01
Emotional arousal at encoding is known to facilitate later memory recall. In the present study, we asked whether this emotion-modulation of episodic memory is also evident at very short time scales, as measured by “feature integration effects,” the moment-by-moment binding of relevant stimulus and response features in episodic memory. This question was motivated by recent findings that negative emotion appears to potentiate first-order trial sequence effects in classic conflict tasks, which has been attributed to emotion-modulation of conflict-driven cognitive control processes. However, these effects could equally well have been carried by emotion-modulation of mnemonic feature binding processes, which were perfectly confounded with putative control processes in these studies. In the present experiments, we tried to shed light on this question by testing explicitly whether feature integration processes, assessed in isolation of conflict–control, are in fact susceptible to negative emotion-modulation. For this purpose, we adopted a standard protocol for assessing the rapid binding of stimulus and response features in episodic memory (Experiment 1) and paired it with the presentation of either neutral or fearful background face stimuli, shown either at encoding only (Experiment 2), or at both encoding and retrieval (Experiment 3). Whereas reliable feature integration effects were observed in all three experiments, no evidence for emotion-modulation of these effects was detected, in spite of significant effects of emotion on response times. These findings suggest that rapid feature integration of foreground stimulus and response features is not subject to modulation by negative emotional background stimuli and further suggest that previous reports of emotion-modulated trial–transition effects are likely attributable to the effects of emotion on cognitive control processes. PMID:22509172
Modulation of C. elegans Touch Sensitivity Is Integrated at Multiple Levels
Chen, Xiaoyin
2014-01-01
Sensory systems can adapt to different environmental signals. Here we identify four conditions that modulate anterior touch sensitivity in Caenorhabditis elegans after several hours and demonstrate that such sensory modulation is integrated at multiple levels to produce a single output. Prolonged vibration involving integrin signaling directly sensitizes the touch receptor neurons (TRNs). In contrast, hypoxia, the dauer state, and high salt reduce touch sensitivity by preventing the release of long-range neuroregulators, including two insulin-like proteins. Integration of these latter inputs occurs at upstream neurohormonal cells and at the insulin signaling cascade within the TRNs. These signals and those from integrin signaling converge to modulate touch sensitivity by regulating AKT kinases and DAF-16/FOXO. Thus, activation of either the integrin or insulin pathways can compensate for defects in the other pathway. This modulatory system integrates conflicting signals from different modalities, and adapts touch sensitivity to both mechanical and non-mechanical conditions. PMID:24806678
Directed Research in Bone Discipline: Refining Previous Research Observations for Space Medicine
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.
2015-01-01
Dual-energy X-ray absorptiometry bone mass density, as a sole index, is an insufficient surrogate for fracture; Clinical Practice Guidelines using bone mass density (both World Health Organization and FRAX) are not specific for complicated subjects such as young, healthy persons following prolonged exposure to skeletal unloading (i.e. an attribute of spaceflight); Research data suggest that spaceflight induces changes to astronaut bones that could be profound, possibly irreversible and unlike age-related bone loss on Earth.; There is a need to objectively assess factors across human physiology that are also influenced by spaceflight (e.g., muscle) that contribute to fracture risk. Some of these objective assessments may require innovative technologies, analyses and modeling.; Astronauts are also exposed to novel situations that may overload their bones highlighting a need integrate biomechanics of physical activities into risk assessments.; As we accumulate data, which reflects the biomechanical competence of bone under specific mechanically-loaded scenarios (even activities of daily living), BONE expects Bone Fracture Module to be more sensitive and/or have less uncertainty in its assessments of fracture probability.; Fracture probability drives the requirement for countermeasures. Level of evidence will unlikely be obtained; hence, the Bone Research and Clinical Advisory Panel (like a Data Safety Monitoring Board) will provide the recommendations.
Zhu, Ning Hua; Zhang, Hong Guang; Man, Jiang Wei; Zhu, Hong Liang; Ke, Jian Hong; Liu, Yu; Wang, Xin; Yuan, Hai Qing; Xie, Liang; Wang, Wei
2009-11-23
This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.
Development of Sensory Receptors in Skeletal Muscle
NASA Technical Reports Server (NTRS)
DeSantis, Mark
2000-01-01
There were two major goals for my project. One was to examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter. This initial goal was subsequently modified so that additional developmental measures were taken (e.g. body weight, eye opening) as the progeny developed, and the study period was lengthened to eighty days. Also videotapes taken shortly after the pregnant Flight dams returned to Earth were scored for locomotor activity and compared to those for the Synchronous control dams at the same stage of pregnancy. The second goal was to examine skeletal muscle. Selected hindlimb skeletal muscles were to be identified, weighed, and examined for the presence and integrity of muscle receptors, (both muscle spindles and tendon organs), at the level of the light and electron microscope. Muscles were examined from rats that were at fetal (G20), newborn (postnatal day 1 or P1, where P1 = day of birth), and young adult (approx. P100) stages. At the present time data from only the last group of rats (i.e. P100) has been completely examined.
Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers
Liao, I-Chien; Liu, Jason B.; Bursac, Nenad; Leong, Kam W.
2009-01-01
Tissue engineering may provide an alternative to cell injection as a therapeutic solution for myocardial infarction. A tissue-engineered muscle patch may offer better host integration and higher functional performance. This study examined the differentiation of skeletal myoblasts on aligned electrospun polyurethane (PU) fibers and in the presence of electromechanical stimulation. Skeletal myoblasts cultured on aligned PU fibers showed more pronounced elongation, better alignment, higher level of transient receptor potential cation channel-1 (TRPC-1) expression, upregulation of contractile proteins and higher percentage of striated myotubes compared to those cultured on random PU fibers and film. The resulting tissue constructs generated tetanus forces of 1.1 mN with a 10-ms time to tetanus. Additional mechanical, electrical, or synchronized electromechanical stimuli applied to myoblasts cultured on PU fibers increased the percentage of striated myotubes from 70 to 85% under optimal stimulation conditions, which was accompanied by an upregulation of contractile proteins such as α-actinin and myosin heavy chain. In describing how electromechanical cues can be combined with topographical cue, this study helped move towards the goal of generating a biomimetic microenvironment for engineering of functional skeletal muscle. PMID:19774099
Mitochondria and heart failure.
Murray, Andrew J; Edwards, Lindsay M; Clarke, Kieran
2007-11-01
Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.
Time-dependent behavior of passive skeletal muscle
NASA Astrophysics Data System (ADS)
Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.
2016-03-01
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.
Specification to biomineralization: following a single cell type as it constructs a skeleton.
Lyons, Deirdre C; Martik, Megan L; Saunders, Lindsay R; McClay, David R
2014-10-01
The sea urchin larva is shaped by a calcite endoskeleton. That skeleton is built by 64 primary mesenchyme cells (PMCs) in Lytechinus variegatus. The PMCs originate as micromeres due to an unequal fourth cleavage in the embryo. Micromeres are specified in a well-described molecular sequence and enter the blastocoel at a precise time using a classic epithelial-mesenchymal transition. To make the skeleton, the PMCs receive signaling inputs from the overlying ectoderm, which provides positional information as well as control of the growth of initial skeletal tri-radiates. The patterning of the skeleton is the result both of autonomous inputs from PMCs, including production of proteins that are included in the skeletal matrix, and of non-autonomous dynamic information from the ectoderm. Here, we summarize the wealth of information known about how a PMC contributes to the skeletal structure. The larval skeleton is a model for understanding how information encoded in DNA is translated into a three-dimensional crystalline structure. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.