Sample records for modulate soil resources

  1. Engaging Undergraduates in Soil Sustainability Decision-Making through an InTeGrate Module

    ERIC Educational Resources Information Center

    Fortner, Sarah K.; Scherer, Hannah H.; Murphy, Martha A.

    2016-01-01

    Continued agricultural productivity hinges on understanding how to manage soil resources. A 2-week undergraduate introductory-level module: "A Growing Concern: Sustaining Soil Resources Through Local Decision Making" was collaboratively developed through the InTeGrate Project. InTeGrate modules and courses engage students in grand…

  2. 30 CFR 783.21 - Soil resources information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Soil resources information. 783.21 Section 783... RESOURCES § 783.21 Soil resources information. (a) The applicant shall provide adequate soil survey... of the following: (1) A map delineating different soils; (2) Soil identification; (3) Soil...

  3. 30 CFR 783.21 - Soil resources information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Soil resources information. 783.21 Section 783... RESOURCES § 783.21 Soil resources information. (a) The applicant shall provide adequate soil survey... of the following: (1) A map delineating different soils; (2) Soil identification; (3) Soil...

  4. 30 CFR 783.21 - Soil resources information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil resources information. 783.21 Section 783... RESOURCES § 783.21 Soil resources information. (a) The applicant shall provide adequate soil survey... of the following: (1) A map delineating different soils; (2) Soil identification; (3) Soil...

  5. 30 CFR 783.21 - Soil resources information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Soil resources information. 783.21 Section 783... RESOURCES § 783.21 Soil resources information. (a) The applicant shall provide adequate soil survey... of the following: (1) A map delineating different soils; (2) Soil identification; (3) Soil...

  6. 30 CFR 783.21 - Soil resources information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Soil resources information. 783.21 Section 783... RESOURCES § 783.21 Soil resources information. (a) The applicant shall provide adequate soil survey... of the following: (1) A map delineating different soils; (2) Soil identification; (3) Soil...

  7. 30 CFR 779.21 - Soil resources information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Soil resources information. 779.21 Section 779... § 779.21 Soil resources information. (a) The applicant shall provide adequate soil survey information of the permit area consisting of the following: (1) A map delineating different soils; (2) Soil...

  8. 30 CFR 779.21 - Soil resources information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Soil resources information. 779.21 Section 779... § 779.21 Soil resources information. (a) The applicant shall provide adequate soil survey information of the permit area consisting of the following: (1) A map delineating different soils; (2) Soil...

  9. 30 CFR 779.21 - Soil resources information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Soil resources information. 779.21 Section 779... § 779.21 Soil resources information. (a) The applicant shall provide adequate soil survey information of the permit area consisting of the following: (1) A map delineating different soils; (2) Soil...

  10. 30 CFR 779.21 - Soil resources information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil resources information. 779.21 Section 779... § 779.21 Soil resources information. (a) The applicant shall provide adequate soil survey information of the permit area consisting of the following: (1) A map delineating different soils; (2) Soil...

  11. 30 CFR 779.21 - Soil resources information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Soil resources information. 779.21 Section 779... § 779.21 Soil resources information. (a) The applicant shall provide adequate soil survey information of the permit area consisting of the following: (1) A map delineating different soils; (2) Soil...

  12. Soil Health Educational Resources

    ERIC Educational Resources Information Center

    Hoorman, James J.

    2015-01-01

    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  13. Protecting global soil resources for future generations

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca

    2017-04-01

    The latest Status of World's Soil Resources report has highlighted that soils are increasingly under pressure by numerous human induced degradation processes in most parts of the world. The limits of our planetary boundaries concerning vital soil resources have been reached and without reversing this negative trend there will be a serious lack of necessary soil resources for future generations. It has been therefore of the highest importance to include soils within some of the Sustainable Development Goals (SDG) recently approved by the United Nations. Sustainable development can not be achieved without protecting the limited, non-renewable, soil resources of our planet. There is the need to limit on-going soil degradation processes and to implement extensive soil restoration activities in order to strive towards a land degradation neutral (LDN) world, as called upon by SDG 15. Sustainable soil management needs to be placed at the core of any LDN strategy and therefore it is of highest importance that the recently approved Voluntary Guidelines for Sustainable Soil Management (VGSSM) of FAO get fully implemented at National and local scale.Sustainable soil management is not only relevant for the protection of fertile soils for food production, but also to mitigate and adopt to climate change at to preserve the large soil biodiversity pool. Therefore the VGSSM are not only relevant to FAO, but also the the climate change convention (UNFCCC) and the biodiversity convention (CBD). An integrated assessment of the current land degradation processes and the available land restoration practices is needed in order to fully evaluate the potential for effectively achieving LDN by 2030. The on-going Land Degradation and Restoration Assessment (LDRA) of the Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES) will provide the necessary scientific basis for the full implementation of the necessary measures for achieving the planned SGS's relevant to land

  14. Conservation and maintenance of soil and water resources

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Titus S. Seilheimer; Dale D. Gormanson; Charles H. (Hobie) Perry; Peter V. Caldwell; Ge. Sun

    2016-01-01

    Forest ecosystem productivity and functioning depend on soil and water resources. But the reverse is also true—forest and land-use management activities can significantly alter forest soils, water quality, and associated aquatic habitats (Ice and Stednick 2004, Reid 1993, Wigmosta and Burges 2001). Soil and water resources are protected through the allocation of land...

  15. 7 CFR 600.9 - Major land resource area soil survey offices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...

  16. 7 CFR 600.9 - Major land resource area soil survey offices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...

  17. 7 CFR 600.9 - Major land resource area soil survey offices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...

  18. 7 CFR 600.9 - Major land resource area soil survey offices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...

  19. 7 CFR 600.9 - Major land resource area soil survey offices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Major land resource area soil survey offices. 600.9... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE GENERAL ORGANIZATION § 600.9 Major land resource area soil... soil survey production. Major land resource area soil survey offices (MO) provide the technical...

  20. Maximizing the Use of a Web-Based Soils Module: Targeting Diverse Populations

    ERIC Educational Resources Information Center

    Lippert, Robert

    2006-01-01

    This article deals with an on-line soils module project. The two goals for this part of the project were to determine if an on-line soils module could be successfully used for asynchronous instruction of two diverse populations and to determine which demographic factors are related to test performance. The module was presented to an eighth-grade…

  1. Mars Soil-Based Resource Processing and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Mueller, R. P.

    2015-01-01

    The ability to extract and process resources at the site of exploration into products and services, commonly referred to as In Situ Resource Utilization (ISRU), can have significant benefits for robotic and human exploration missions. In particular, the ability to use in situ resources to make propellants, fuel cell reactants, and life support consumables has been shown in studies to significantly reduce mission mass, cost, and risk, while enhancing or enabling missions not possible without the incorporation of ISRU. In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study. For the first time in a large scale Mars architecture study, water from Mars soil was considered as a potential resource. At the time of the study, knowledge of water resources (their form, concentration, and distribution) was extremely limited. Also, due to lack of understanding of how to apply planetary protection rules and requirements to ISRU soil-based excavation and processing, an extremely conservative approach was incorporated where only the top several centimeters of ultraviolet (UV) radiated soil could be processed (assumed to be 3% water by mass). While results of the Mars DRA 5.0 study showed that combining atmosphere processing to make oxygen and methane with soil processing to extract water provided the lowest mission mass, atmosphere processing to convert carbon dioxide (CO2) into oxygen was baselined for the mission since it was the lowest power and risk option. With increased knowledge and further clarification of Mars planetary protection rules, and the recent release of the Mars Exploration Program Analysis Group (MEPAG) report on "Special Regions and the Human Exploration of Mars", it is time to reexamine potential water resources on Mars, options for soil processing to extract water, and the implications with respect to planetary protection and Special Regions on Mars.

  2. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    PubMed

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance

  3. Career Education for Adults: Community Resources Module.

    ERIC Educational Resources Information Center

    Auburn Univ., AL. Dept. of Vocational and Adult Education.

    An outgrowth of State-sponsored institutes conducted by Auburn University, Alabama, to produce career education teaching modules for adults, the community resources module is one of five field-tested curriculum guides adopted from findings of the nationally oriented Adult Performance Level Study conducted at the University of Texas. (Basic to the…

  4. Modules in Agricultural Education for Agricultural Resources.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    Each of the 31 curriculum modules in this packet for agricultural resources instruction contains a brief description of the module content, a list of the major division or units, the overall objective, objectives by units, content outline and suggested teaching methods, student application activities, and evaluation procedures. A list of resource…

  5. Integrating Oracle Human Resources with Other Modules

    NASA Technical Reports Server (NTRS)

    Sparks, Karl; Shope, Shawn

    1998-01-01

    One of the most challenging aspects of implementing an enterprise-wide business system is achieving integration of the different modules to the satisfaction of diverse customers. The Jet Propulsion Laboratory's (JPL) implementation of the Oracle application suite demonstrates the need to coordinate Oracle Human Resources Management System (HRMS) decision across the Oracle modules.

  6. Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use

    PubMed Central

    Arcand, Melissa M.; Levy-Booth, David J.; Helgason, Bobbi L.

    2017-01-01

    Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to

  7. What did we do and what can we do with our global soil resources?

    NASA Astrophysics Data System (ADS)

    Stoorvogel, Jetse

    2017-04-01

    Our global soil resources increasingly meet the headlines: soil degradation leads to irreversible changes and a loss of the global production potential, soil resources play a key role to reach the sustainable development goals, and soils are seen as a potential solution to some of the climate change mitigation through carbon sequestration. However, global assessments of soil degradation, soil resources, and the potential of soils to provide ecosystem services are not very consistent. This study aims to contribute to the discussion by providing a realistic opportunity space on the options for our soil resources. First, the natural and current soil conditions are estimated using the S-World methodology. S-World has been developed to provide global maps of soil properties at a 30 arc-second resolution for environmental modelling. By running the S-world methodology for current but also for natural land cover, natural and current soil conditions are estimated. This analysis tells us what we did to our global soil resources. Subsequently, the same methodology is used to analyse a range of different scenarios for the future to explore the potential for soil restoration and carbon sequestration. Although the actual management interventions required are not analysed, the analysis does provide the opportunity space and thus what we can do with our soil resources in terms of realistic ranges. The results are interpreted in the context of the Sustainable Development Goals and the recent 4‰-initiative for climate change mitigation.

  8. Translating an academic module into an online resource.

    PubMed

    Howatson-Jones, I L

    Blended learning, which combines face-to-face sessions with online work, is used to provide flexible learning and courses for students who are geographically dispersed. Canterbury Christ Church University recognised the importance of developing an academic module for dispensing opticians across the UK and the requirement to address the needs of an increasingly diverse population of students. Following interest in the module from the Association of British Dispensing Opticians, a decision was made to reformat the module into an online resource. This article describes some of the pedagogical processes involved in developing the online resource. Quantitative and qualitative data are analysed to identify challenges and successes. The importance of developing an educational biography to achieve depth of understanding and thought is acknowledged. The article concludes that some face-to-face interaction is still necessary, not least for helping to reduce students' anxiety.

  9. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Soil as a Sustainable Resource for the Bioeconomy - BonaRes

    NASA Astrophysics Data System (ADS)

    Wollschläger, Ute; Amelung, Wulf; Brüggemann, Nicolas; Brunotte, Joachim; Gebbers, Robin; Grosch, Rita; Heinrich, Uwe; Helming, Katharina; Kiese, Ralf; Leinweber, Peter; Reinhold-Hurek, Barbara; Veldkamp, Edzo; Vogel, Hans-Jörg; Winkelmann, Traud

    2017-04-01

    Fertile soils are a fundamental resource for the production of biomass and provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for bio-based products which require preserving and - ideally - improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes which are insufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing, including SDGs. However, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management. To make soil management sustainable, we need to establish a scientific knowledge base of complex soil system processes that allows for developing models and tools to quantitatively predict the impact of a multitude of management measures on soil functions. This will finally allow for the provision of options for a site-specific, sustainable soil management. To face this challenge, the German Federal Ministry of Education and Research (BMBF) recently launched the funding program "Soil as a Sustainable Resource for the Bioeconomy - BonaRes". In a joint effort, ten collaborative projects and the coordinating BonaRes Centre are engaged to close existing knowledge gaps for a profound and systemic assessment and understanding of soil functions and their sensitivity to soil management. In BonaRes, the complete process chain of sustainable soil use in the context of a sustainable bio-economy is being addressed: from understanding of soil processes using state-of the art and

  11. Environmental Controls of Microbial Resource Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Kandeler, Ellen; Poll, Christian; Kramer, Susanne; Mueller, Karolin; Marhan, Sven

    2015-04-01

    The mineralization and flow of plant-derived carbon in soils is relevant to global carbon cycling. Current models of organismic carbon fluxes in soil assume that separate bacterial and fungal energy channels exist in soil. Recent studies disentangle the herbivore and detritivore pathways of microbial resource use, identify the key players contributing to these two different pathways, and determine to what extent microbial substrate use is affected by environmental controls. To follow the kinetics of litter and root decomposition and to quantify the contribution of key players, it is necessary to use isotopic approaches like PLFA-SIP and ergosterol-SIP. It was shown that bacteria and sugar consuming fungi initiated litter decomposition in an incubation experiment during the first two weeks, whereas higher fungi started to grow after the depletion of low molecular weight substrates. Analyses of PLFA-SIP revealed, for example, that fungi assimilated C directly from the litter, whereas bacteria took up substrates in the soil and therefore depended more on external transport processes than fungi. In addition, we will present data from a field experiment showing the incorporation of root and shoot litter C into organic and microbial C pools under field conditions over a period of two years. Similar amounts of C derived from the two resources differing in substrate quality and amount were incorporated into microbial C and ergosterol pools over time, indicating the importance of root-derived C for the soil food web. High incorporation of maize C (up to 76%) into ergosterol suggests fast and high assimilation of maize C into fungal biomass. Nevertheless, there is still a debate whether bacteria, archaea and fungi start feeding on new substrates at the same time or if their activity occurs at different successional stages. This presentation gives a summery of current knowledge on microbial resource partitioning under lab and field conditions.

  12. Criterion 4: Conservation and maintenance of soil and water resources

    Treesearch

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Soils are the fundamental resource enabling land to provide a wide array of benefits. Both humans and wildlife rely on soils for the production of life-sustaining nourishment and shelter. Soil is important to society because it supports plants that supply food, fibers, drugs, and other essentials and because it filters water and recycles wastes.The factors that affect...

  13. Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling

    NASA Astrophysics Data System (ADS)

    Schulz, William H.; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-02-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in Northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement five to six months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  14. Clayey landslide initiation and acceleration strongly modulated by soil swelling

    USGS Publications Warehouse

    Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-01-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  15. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin

    USGS Publications Warehouse

    Luo, Y.; He, C.; Sophocleous, M.; Yin, Z.; Hongrui, R.; Ouyang, Z.

    2008-01-01

    SWAT, a physically-based, hydrological model simulates crop growth, soil water and groundwater movement, and transport of sediment and nutrients at both the process and watershed scales. While the different versions of SWAT have been widely used throughout the world for agricultural and water resources applications, little has been done to test the performance, variability, and transferability of the parameters in the crop growth, soil water, and groundwater modules in an integrated way with multiple sets of field experimental data at the process scale. Using an multiple years of field experimental data of winter wheat (Triticum aestivum L.) in the irrigation district of the Yellow River Basin, this paper assesses the performance of the plant-soil-groundwater modules and the variability and transferability of SWAT2000. Comparison of the simulated results by SWAT to the observations showed that SWAT performed quite unsatisfactorily in LAI predictions during the senescence stage, in yield predictions, and in soil-water estimation under dry soil-profile conditions. The unsatisfactory performance in LAI prediction might be attributed to over-simplified senescence modeling; in yield prediction to the improper computation of the harvest index; and in soil water under dry conditions to the exclusion of groundwater evaporation from the soil water balance in SWAT. In this paper, improvements in crop growth, soil water, and groundwater modules in SWAT were implemented. The saturated soil profile was coupled to the oscillating groundwater table. A variable evaporation coefficient taking into account soil water deficit index, groundwater depth, and crop root depth was used to replace the fixed coefficient in computing groundwater evaporation. The soil water balance included the groundwater evaporation. The modifications improved simulations of crop evapotranspiration and biomass as well as soil water dynamics under dry soil-profile conditions. The evaluation shows that the

  16. Seedling growth responses to soil resources in the understory of a wet tropical forest.

    PubMed

    Holste, Ellen K; Kobe, Richard K; Vriesendorp, Corine F

    2011-09-01

    Plant growth responses to resources may be an important mechanism that influences species' distributions, coexistence, and community structure. Irradiance is considered the most important resource for seedling growth in the understory of wet tropical forests, but multiple soil nutrients and species have yet to be examined simultaneously with irradiance under field conditions. To identify potentially limiting resources, we modeled tree seedling growth as a function of irradiance and soil nutrients across five sites, spanning a soil fertility gradient in old-growth, wet tropical forests at La Selva Biological Station, Costa Rica. We measured an array of soil nutrients including total nitrogen (total N), inorganic N (nitrate [NO3-] and ammonium [NH4+]), phosphate (PO4-), and sum of base cations (SBC; potassium, magnesium, and calcium). Shade in the forest understory did not preclude seedling growth correlations with soil nutrients. Irradiance was a significant predictor of growth in 52% of the species, inorganic N in 54% (NO3- in 32%; NH4+ in 34%), total N in 47%, SBC in 39%, and PO4- in 29%. Overall, growth was correlated with both irradiance and soil nutrients in 45% of species and with soil nutrients only in an additional 48%; rarely was irradiance alone correlated with growth. Contrary to expectations, the magnitudes of growth effects, assessed as the maximum growth response to significant resources for each species, were similar for irradiance and most soil nutrients. Among species whose growth correlated with soil nutrients, the rank importance of nutrient effects was SBC, followed by N (total N, NO3-, and/or NH4+) and PO4-. Species' growth responsiveness (i.e., magnitudes of effect) to irradiance and soil nutrients was negatively correlated with species' shade tolerance (survival under 1% full sun). In this broad survey of species and resources, the nearly ubiquitous effects of soil nutrients on seedling growth challenge the idea that soil nutrients are less

  17. Groundwater protection vs. extractable soil resource usage - approaching the problem with GPR-survey

    NASA Astrophysics Data System (ADS)

    Kupila, J.

    2012-04-01

    Finland is fully self-sufficient in clean groundwater and even has a capacity of exportation: there are more than 6000 groundwater areas, a total yield of those is 5.4 million m3/day and only 10% of this is in use. Even so, nowadays the protection of groundwater has come more and more important. One of the reasons is effects of extractable soil resource usage, because the most valuable and remarkable resources of groundwater as well as sand and gravel aggregates appear in the same areas. Also in densely populated areas there is lack of aggregate products. Using the best available techniques and methods which take into account sustainable development, the outcomes of this protection vs. usage -dilemma will be beneficent. Ground penetrating radar (GPR) -survey is an efficient tool for examination of areas of groundwater and soil resources. Briefly, GPR is a geophysical method that uses radar pulses to image the subsurface. It uses electromagnetic radiation in the microwave band (UHF/VHF frequencies) of the radio spectrum and detects the reflected signals from subsurface structures. Usually groundwater and soil aggregates appear in areas where the structure of soil layers improves the efficiency of GPR , so an exact image of subsurface layers can be outlined. Also the conditions of groundwater can be interpreted from GPR-data. Results from GPR-survey can be effective in making guidelines for extractable soil resource usage to avoid risks and to address secured sites for both groundwater and soil usage. Geological Survey of Finland has executed many co-operated projects related to these kind of problems, for example in Kainuu area, eastern Finland, 20 areas were studied with over 30 kilometers of GPR-profile. Detailed information from these researches support local authorities and actors in land use planning in future and furthermore assure safe balance in groundwater and soil resource usage.

  18. Biotic context and soil properties modulate native plant responses to enhanced rainfall.

    PubMed

    Eskelinen, Anu; Harrison, Susan

    2015-11-01

    The environmental and biotic context within which plants grow have a great potential to modify responses to climatic changes, yet few studies have addressed both the direct effects of climate and the modulating roles played by variation in the biotic (e.g. competitors) and abiotic (e.g. soils) environment. In a grassland with highly heterogeneous soils and community composition, small seedlings of two native plants, Lasthenia californica and Calycadenia pauciflora, were transplanted into factorially watered and fertilized plots. Measurements were made to test how the effect of climatic variability (mimicked by the watering treatment) on the survival, growth and seed production of these species was modulated by above-ground competition and by edaphic variables. Increased competition outweighed the direct positive impacts of enhanced rainfall on most fitness measures for both species, resulting in no net effect of enhanced rainfall. Both species benefitted from enhanced rainfall when the absence of competitors was accompanied by high soil water retention capacity. Fertilization did not amplify the watering effects; rather, plants benefitted from enhanced rainfall or competitor removal only in ambient nutrient conditions with high soil water retention capacity. The findings show that the direct effects of climatic variability on plant fitness may be reversed or neutralized by competition and, in addition, may be strongly modulated by soil variation. Specifically, coarse soil texture was identified as a factor that may limit plant responsiveness to altered water availability. These results highlight the importance of considering the abiotic as well as biotic context when making future climate change forecasts. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Soil resources and topography shape local tree community structure in tropical forests

    PubMed Central

    Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.

    2013-01-01

    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196

  20. Cyber Shovels in High School: An Online Soil Science Resource for Educators

    NASA Astrophysics Data System (ADS)

    Krzic, M.; Basiliko, N.; Bedard-Haughn, A.; Humphreys, E.; Price, G.; Dampier, L.; Grand, S.; Dynatkar, S.; Crowley, C.

    2012-04-01

    Declining enrolment in soil science courses at post-secondary institutions in Canada and around the world tells us that fewer high school students are considering a career in this discipline than ever before. This may be due to soil science programs losing visibility as they are incorporated into other, larger programs; a lack of awareness of what opportunities exist for soil science professionals; or a disinclination of high school educators to use soil science scenarios as examples in their science curriculum. In 2010, we initiated a three-year, multi-institutional project aimed at introducing soil science concepts into high school curricula across Canada. The goals of this project are to promote learning about the importance of soil as a natural resource, provide useful tools that high school educators can incorporate into their lesson plans, and encourage students to pursue soil science in their higher education. The tool (http://soilweb.landfood.ubc.ca/youth/) features five main themes: (1) descriptions of soil research projects currently undertaken by faculty at five universities across Canada; (2) links to age-appropriate soil related resources that provide exercises and examples teachers can easily use; (3) profiles of soil scientists "at work" in a diverse range of careers to motivate future soil scientists; (4) examples of recent news stories about soil to highlight its relevance in our day to day lives; and (5) a soil forum for students and teachers to ask questions. This tool will be further refined by incorporating feedback obtained from high school teachers and students.

  1. Physical and chemical properties of the Martian soil: Review of resources

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Gooding, James L.; Banin, A.; Clark, Benton C.; Roush, Ted

    1991-01-01

    The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.

  2. Uncertainty indication in soil function maps - transparent and easy-to-use information to support sustainable use of soil resources

    NASA Astrophysics Data System (ADS)

    Greiner, Lucie; Nussbaum, Madlene; Papritz, Andreas; Zimmermann, Stephan; Gubler, Andreas; Grêt-Regamey, Adrienne; Keller, Armin

    2018-05-01

    Spatial information on soil function fulfillment (SFF) is increasingly being used to inform decision-making in spatial planning programs to support sustainable use of soil resources. Soil function maps visualize soils abilities to fulfill their functions, e.g., regulating water and nutrient flows, providing habitats, and supporting biomass production based on soil properties. Such information must be reliable for informed and transparent decision-making in spatial planning programs. In this study, we add to the transparency of soil function maps by (1) indicating uncertainties arising from the prediction of soil properties generated by digital soil mapping (DSM) that are used for soil function assessment (SFA) and (2) showing the response of different SFA methods to the propagation of uncertainties through the assessment. For a study area of 170 km2 in the Swiss Plateau, we map 10 static soil sub-functions for agricultural soils for a spatial resolution of 20 × 20 m together with their uncertainties. Mapping the 10 soil sub-functions using simple ordinal assessment scales reveals pronounced spatial patterns with a high variability of SFF scores across the region, linked to the inherent properties of the soils and terrain attributes and climate conditions. Uncertainties in soil properties propagated through SFA methods generally lead to substantial uncertainty in the mapped soil sub-functions. We propose two types of uncertainty maps that can be readily understood by stakeholders. Cumulative distribution functions of SFF scores indicate that SFA methods respond differently to the propagated uncertainty of soil properties. Even where methods are comparable on the level of complexity and assessment scale, their comparability in view of uncertainty propagation might be different. We conclude that comparable uncertainty indications in soil function maps are relevant to enable informed and transparent decisions on the sustainable use of soil resources.

  3. Characterization of the Resource Potential of Martian Soil using the Integrated Dust/Soil Experiment Package (IDEP)

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Mckay, David S.; Allen, Carlton C.; Hoffman, John H.; Gittleman, Mark E.

    1997-01-01

    The Integrated Dust/Soil Experiment Package (IDEP) is a suite of instruments that can detect and quantify the abundances of useful raw materials on Mars. We focus here on its capability for resource characterization in the martian soil; however, it is also capable of detecting and quantifying gases in the atmosphere. This paper describes the scientific rationale and the engineering design behind the IDEP.

  4. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition.

    PubMed

    Potapov, Anton M; Tiunov, Alexei V; Scheu, Stefan

    2018-06-19

    Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13 C as compared to plant litter. This 'detrital shift' likely reflects preferential uptake of 13 C-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15 N and 13 C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15 N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13 C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non

  5. Moessbauer Spectroscopy for Lunar Resource Assessment: Measurement of Mineralogy and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Agresti, D. G.; Shelfer, T. D.; Pimperl, M. M.; Shen, M.-H.; Gibson, M. A.; Wills, E. L.

    1992-01-01

    First-order assessment of lunar soil as a resource includes measurement of its mineralogy and maturity. Soils in which the mineral ilmenite is present in high concentrations are desirable feedstock for the production of oxygen at a lunar base. The maturity of lunar soils is a measure of their relative residence time in the upper 1 mm of the lunar surface. Increasing maturity implies increasing load of solar wind species (e.g., N, H, and He-3), decreasing mean grain size, and increasing glass content. All these physicochemical properties that vary in a regular way with maturity are important parameters for assessing lunar soil as a resource. For example, He-3 can be extracted and potentially used for nuclear fusion. A commonly used index for lunar soil maturity is I(sub s)/FeO, which is the concentration of fine-grained metal determined by ferromagnetic resonance (I(sub s)) normalized to the total iron content (as FeO). I(sub s)/FeO has been measured for virtually every soil returned by the Apollo and Luna missions to the Moon. Because the technique is sensitive to both oxidation state and mineralogy, iron Moessbauer spectroscopy (FeMS) is a viable technique for in situ lunar resource assessment. Its utility for mineralogy is apparent from examination of published FeMS data for lunar samples. From the data published, it can be inferred that FeMS data can also be used to determine soil maturity. The use of FeMS to determine mineralogy and maturity and progress on development of a FeMS instrument for lunar surface use are discussed.

  6. Geothermal Energy: Resource and Utilization. A Teaching Module.

    ERIC Educational Resources Information Center

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  7. Soil aggregation as mechanism for understanding the roles of soil biota in the sustainable usage of natural resources

    USDA-ARS?s Scientific Manuscript database

    Global food insecurity and rapidly diminishing water, soil, and energy resources resulting from increases in population numbers and wealth are putting pressure on agroecosystems to efficiently produce the most nutrient dense food while maintaining or enhancing natural resources. To address these ne...

  8. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    NASA Technical Reports Server (NTRS)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  9. An applied hydropedological perspective on the rendering of ecosystem services from urban soils

    EPA Science Inventory

    Ecosystem services are benefits to human populations derived from natural capitals like soil. When a soil is urbanized during infrastructure and superstructure development, the related processes modulate the state and quality of natural resources, along with the form and function...

  10. Impact of heavy soiling on the power output of PV modules

    NASA Astrophysics Data System (ADS)

    Schill, Christian; Brachmann, Stefan; Heck, Markus; Weiss, Karl-Anders; Koehl, Michael

    2011-09-01

    Fraunhofer ISE is running a PV-module outdoor testing set-up on the Gran Canaria island, one of the Canary Island located west of Morroco in the Atlantic Ocean. The performance of the modules is assessed by IV-curve monitoring every 10 minutes. The electronic set-up of the monitoring system - consisting of individual electronic loads for each module which go into an MPP-tracking mode between the IV-measurements - will be described in detail. Soiling of the exposed modules happened because of building constructions nearby. We decided not to clean the modules, but the radiation sensors and recorded the decrease of the power output and the efficiency over time. The efficiency dropped to 20 % within 5 months before a heavy rain and subsequently the service personnel on site cleaned the modules. A smaller rain-fall in between washed the dust partly away and accumulated it at the lower part of the module, what could be concluded from the shape of the IV-curves, which were similar to partial shading by hot-spot-tests and by partial snow cover.

  11. Analyses of exobiological and potential resource materials in the Martian soil.

    PubMed

    Mancinelli, R L; Marshall, J R; White, M R

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end we are investigating methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology. Differential thermal analysis coupled with gas chromatography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  12. Analyses of exobiological and potential resource materials in the Martian soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Marshall, John R.; White, Melisa R.

    1992-01-01

    Potential Martian soil components relevant to exobiology include water, organic matter, evaporites, clays, and oxides. These materials are also resources for human expeditions to Mars. When found in particular combinations, some of these materials constitute diagnostic paleobiomarker suites, allowing insight to be gained into the probability of life originating on Mars. Critically important to exobiology is the method of data analysis and data interpretation. To that end, methods of analysis of potential biomarker and paleobiomarker compounds and resource materials in soils and rocks pertinent to Martian geology are investigated. Differential thermal analysis coupled with gas chromotography is shown to be a highly useful analytical technique for detecting this wide and complex variety of materials.

  13. Soil resources influence vegetation and response to fire and fire-surrogate treatments in sagebrush-steppe ecosystems

    USGS Publications Warehouse

    Rau, Benjamin M.; Chambers, Jeanne C.; Pyke, David A.; Roundy, Bruce A.; Schupp, Eugene W.; Doescher, Paul; Caldwell, Todd G.

    2014-01-01

    Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody fuels and increase resistance to exotic annuals, but may alter resource availability and inadvertently favor invasive species. We used four study sites within the Sagebrush Steppe Treatment Evaluation Project (SageSTEP) to evaluate 1) how vegetation and soil resources were affected by treatment, and 2) how soil resources influenced native herbaceous perennial and exotic annual grass cover before and following treatment. Treatments increased resin exchangeable NH4+, NO3−, H2PO4−, and K+, with the largest increases caused by prescribed fire and prolonged by application of imazapic. Burning with imazapic application also increased the number of wet growing degree days. Tebuthiuron and imazapic reduced exotic annual grass cover, but imazapic also reduced herbaceous perennial cover when used with prescribed fire. Native perennial herbaceous species cover was higher where mean annual precipitation and soil water resources were relatively high. Exotic annual grass cover was higher where resin exchangeable H2PO4− was high and gaps between perennial plants were large. Prescribed fire, mowing, and tebuthiuron were successful at increasing perennial herbaceous cover, but the results were often ephemeral and inconsistent among sites. Locations with sandy soil, low mean annual precipitation, or low soil water holding capacity were more likely to experience increased exotic annual grass cover after treatment, and treatments that result in slow release of resources are needed on these sites. This is one of few studies that correlate abiotic variables to native and exotic species cover across a broad geographic setting, and that

  14. An integrated model for the assessment of global water resources - Part 2: Anthropogenic activities modules and assessments

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Kanae, S.; Oki, T.; Shirakawa, N.

    2007-10-01

    To assess global water resources from the perspective of subannual variation in water resources and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and two natural hydrological cycle modules, namely, the land surface hydrology module and the river routing module. Here, we present the remaining four modules, which represent anthropogenic activities: a crop growth module, a reservoir operation module, an environmental flow requirement module, and an anthropogenic withdrawal module. In addition, we discuss the results of a global water resources assessment using the integrated model. The crop growth module is a relatively simple model based on heat unit theory and potential biomass and harvest index concepts. The performance of the crop growth module was examined extensively because agricultural water comprises approximately 70% of total water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to underestimate countries in the Asian monsoon region. In the reservoir operation module, 452 major reservoirs with more than 1 km³ each of storage capacity store and release water according to their own rules of operation. Operating rules were determined for each reservoir using an algorithm that used currently available global data such as reservoir storage capacity, intended purposes, simulated inflow, and water demand in the lower reaches. The environmental flow requirement module was newly developed based on case studies from around the world. The integrated model closes both energy and water balances on land surfaces. Global water resources were assessed on a subannual basis using a newly devised index that locates water-stressed regions that were

  15. Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils

    Treesearch

    Ching-Yu Huang; Grizelle Gonzalez; Paul F. Hendrix

    2016-01-01

    Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (...

  16. Soil fertility shapes belowground food webs across a regional climate gradient.

    PubMed

    Laliberté, Etienne; Kardol, Paul; Didham, Raphael K; Teste, François P; Turner, Benjamin L; Wardle, David A

    2017-10-01

    Changes in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump-shaped responses to soil ageing, which were propagated to higher-order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate-aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change. © 2017 John Wiley & Sons Ltd/CNRS.

  17. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    PubMed

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  18. Impact of environmental hazards on internal soiling within concentrator photovoltaic (CPV) modules

    NASA Astrophysics Data System (ADS)

    Ellis, Sara

    2014-09-01

    Environmental conditions have a significant impact on internal soiling of a CPV system, which affects overall system performance and efficiency. The International Electrotechnical Commission (IEC) 62108, Section 10, standard includes accelerated testing such as temperature cycling, damp heat, and humidity freeze to assess a CPV module's ability to withstand environmental hazards that can compromise the typical 25-year lifetime. This paper discusses the IEC 60529 ingress protection (IP) test protocols and how they can be used to evaluate the performance of CPV modules to block water and particulate contaminants. Studies with GORE® Protective Vents installed in a CPV module and subjected to environmental hazard testing have shown increased reliability of the module over the lifetime of the system by protecting the seals from pressure differentials and keeping out contaminants.

  19. Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation

    NASA Technical Reports Server (NTRS)

    Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.

    1994-01-01

    The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.

  20. Land Application of Wastes: An Educational Program. Soil as a Treatment Medium - Module 3, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module examines the basic properties of soil which have an influence on the success of land treatment of wastes. These relevant properties include soil texture, soil structure, permeability, infiltration, available water capacity, and cation exchange capacity. Biological, chemical and physical mechanisms work to remove and renovate wastes…

  1. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  2. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stilianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-05-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  3. Live lectures or online videos: students' resource choices in a first-year university mathematics module

    NASA Astrophysics Data System (ADS)

    Howard, Emma; Meehan, Maria; Parnell, Andrew

    2018-05-01

    In Maths for Business, a mathematics module for non-mathematics specialists, students are given the choice of completing the module content via short online videos, live lectures or a combination of both. In this study, we identify students' specific usage patterns with both of these resources and discuss their reasons for the preferences they exhibit. In 2015-2016, we collected quantitative data on each student's resource usage (attendance at live lectures and access of online videos) for the entire class of 522 students and employed model-based clustering which identified four distinct resource usage patterns with lectures and/or videos. We also collected qualitative data on students' perceptions of resource usage through a survey administered at the end of the semester, to which 161 students responded. The 161 survey responses were linked to each cluster and analysed using thematic analysis. Perceived benefits of videos include flexibility of scheduling and pace, and avoidance of large, long lectures. In contrast, the main perceived advantages of lectures are the ability to engage in group tasks, to ask questions, and to learn 'gradually'. Students in the two clusters with high lecture attendance achieved, on average, higher marks in the module.

  4. Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources

    NASA Astrophysics Data System (ADS)

    Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.

    2011-12-01

    The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science

  5. A review of the methods available for estimating soil moisture and its implications for water resource management

    NASA Astrophysics Data System (ADS)

    Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul

    2012-08-01

    SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and

  6. Standard Chinese: A Modular Approach. Resource Modules: Pronunciation and Romanization, Numbers, Classroom Expressions, Time and Dates.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    Texts in spoken Standard Chinese were developed to improve and update Chinese materials to reflect current usage in Beijing and Taipei. The focus is on communicating in Chinese in practical situations. The overall course is organized into 10 situational modules, student workbooks for each module, and resource modules. This text contains resource…

  7. Studied the geomorphogy, soil and water resources in south Egypt using geoinformation technology

    NASA Astrophysics Data System (ADS)

    Fayed, Abdalla; Abdel Aziz, Belal

    2010-05-01

    The mean objective of this study was to study the geomorphology, soil and water resources in the studied area using remote sensing techniques and GIS. The studied located in between latitudes 24o 20' and 24o 40' N and longitudes 32o 45' and 33o 40' E in Kom Ombo , Aswan governorate. The climatic situation of the studied area is characterized by a long hot dry summer, a short mild winter with little rainfall, high evaporation and low relative humidity. Based on the interpretation of ETM remote data, GIS and 3Dview the following natural resources were detected. The geomorpholical unites in the studied were Nile valley and Kom Ombo plain. Soil types were clay soil is occurred in the old cultivated land. But it is medium to coarse grained fluvial sand with gravel in the reclaimed areas. The land use and land cover for the studied area were old cultivated land, urban area and channels. Three main groundwater aquifers were confirmed, these are the Nubian sandstones aquifer, the Eocene fissured limestone aquifer and the Quaternary alluvial aquifer. Kom Ombo is the ancient site of Ombos, which is from the ancient Egyptian word ‘nubt', or ‘City of Gold'. In ancient Egypt, the city was important to the caravan routes from Nubia and various gold mines. Keywords: Remote sensing, GIS, 3D model, Natural Resources Kom Ombo

  8. The influence of soil resources and plant traits on invasion and restoration in a subtropical woodland

    USGS Publications Warehouse

    Yelenik, Stephanie G.; D'Antonio, Carla M.; August-Schmidt, Elizabeth

    2017-01-01

    It has been shown in some cases that nitrogen (N) addition to soil will increase abundance of plant invaders because many invaders have traits that promote rapid growth in response to high resource supply. Similarly, it has been suggested, and sometimes shown, that decreasing soil N via carbon (C) additions can facilitate native species recovery. Yet all species are unlikely to respond to resource supply in the same way. We asked how soil nutrients and competition affect native and exotic woody species in a restoration experiment where we added N or C, and crossed soil manipulation with the manipulation of dominant exotic grass abundance in a Hawaiian subtropical woodland. We related changes in survival and growth of outplanted individuals to native/exotic status and plant traits. As a group, N-fixers showed reduced survival compared to non-fixers in response to added N, with Morella faya (exotic) and Acacia koa (native) having dramatic negative responses. Among non-fixers, species with greater foliar %N had more positive survival responses to increasing soil N. Specific leaf area was not predictive of responses to nutrients or competition. In general, responses to carbon addition were weak, although reducing competition from existing exotic grasses was beneficial for all outplanted species, with N-fixers showing the most positive response. We conclude that commonly used restoration strategies to clear exotic species or lower soil resources with C addition will most greatly benefit N-fixing species, which themselves may be unwanted invaders. Thus statements about the influence of increased soil N on invasions should be carefully dissected by considering the traits (such as N-fixation status) of the regional species pool.

  9. SPECIES-SPECIFIC PARTITIONING OF SOIL WATER RESOURCES IN AN OLD-GROWTH DOUGLAS-FIR/WESTERN HEMLOCK FOREST

    EPA Science Inventory

    Although tree- and stand-level estimates of forest water use are increasingly common, relatively little is known about partitioning of soil water resources among co-occurring tree species. We studied seasonal courses of soil water utilization in a 450-year-old Pseudotsuga menzies...

  10. Soil Fungal Resources in Annual Cropping Systems and Their Potential for Management

    PubMed Central

    Esmaeili Taheri, Ahmad; Bainard, Luke D.; Yang, Chao; Navarro-Borrell, Adriana; Hamel, Chantal

    2014-01-01

    Soil fungi are a critical component of agroecosystems and provide ecological services that impact the production of food and bioproducts. Effective management of fungal resources is essential to optimize the productivity and sustainability of agricultural ecosystems. In this review, we (i) highlight the functional groups of fungi that play key roles in agricultural ecosystems, (ii) examine the influence of agronomic practices on these fungi, and (iii) propose ways to improve the management and contribution of soil fungi to annual cropping systems. Many of these key soil fungal organisms (i.e., arbuscular mycorrhizal fungi and fungal root endophytes) interact directly with plants and are determinants of the efficiency of agroecosystems. In turn, plants largely control rhizosphere fungi through the production of carbon and energy rich compounds and of bioactive phytochemicals, making them a powerful tool for the management of soil fungal diversity in agriculture. The use of crop rotations and selection of optimal plant genotypes can be used to improve soil biodiversity and promote beneficial soil fungi. In addition, other agronomic practices (e.g., no-till, microbial inoculants, and biochemical amendments) can be used to enhance the effect of beneficial fungi and increase the health and productivity of cultivated soils. PMID:25247177

  11. Soil Water Availability Modulation Over Estimated Relative Yield Losses in Wheat (Triticum aestivum L.) Due to Ozone Exposure

    PubMed Central

    De la Torre, Daniel; Sierra, Maria Jose

    2007-01-01

    The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high. PMID:17619747

  12. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium. [Preliminary mining; data on soils, meteorology, water resources, and biological resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)

  13. Black walnut suitability index: a Natural Resources Conservation Service national soil information system based interpretive model

    Treesearch

    Douglas c. Wallace; Fred J. Young

    2008-01-01

    Suitable site conditions are essential for productive growth of black walnut (Juglans nigra L.). Field officers at the Natural Resources Conservation Service (NRCS) in the Midwest are often asked, "What is a good walnut soil?" Current NRCS information available to most field offices rates soils only as "suitable" or "...

  14. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  15. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  16. DATA COLLECTION MANAGER MODULE OF REGION III'S MULTI-CRITERIA INTEGRATED RESOURCE ASSESSMENT (MIRA) ENVIRONMENTAL DECISION MAKING APPROACH

    EPA Science Inventory

    This proposal pertains to the on-going development of the Data Collection Manager (DCM) module, which is one of three modules that compose MIRA, Multi-criteria Integrated Resource Assessment. MIRA is Region III's newly conceived and continually developing decision support approac...

  17. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland

    PubMed Central

    Escolar, Cristina; Maestre, Fernando T.; Rey, Ana

    2015-01-01

    Soil surface communities composed of cyanobacteria, algae, mosses, liverworts, fungi, bacteria and lichens (biocrusts) largely affect soil respiration in dryland ecosystems. Climate change is expected to have large effects on biocrusts and associated ecosystem processes. However, few studies so far have experimentally assessed how expected changes in temperature and rainfall will affect soil respiration in biocrust-dominated ecosystems. We evaluated the impacts of biocrust development, increased air temperature and decreased precipitation on soil respiration dynamics during dry (2009) and wet (2010) years, and investigated the relative importance of soil temperature and moisture as environmental drivers of soil respiration, in a semiarid grassland from central Spain. Soil respiration rates were significantly lower in the dry than during the wet year, regardless of biocrust cover. Warming increased soil respiration rates, but this response was only significant in biocrust-dominated areas (> 50% biocrust cover). Warming also increased the temperature sensitivity (Q10 values) of soil respiration in biocrust-dominated areas, particularly during the wet year. The combination of warming and rainfall exclusion had similar effects in low biocrust cover areas. Our results highlight the importance of biocrusts as a modulator of soil respiration responses to both warming and rainfall exclusion, and indicate that they must be explicitly considered when evaluating soil respiration responses to climate change in drylands. PMID:25914428

  18. Live Lectures or Online Videos: Students' Resource Choices in a First-Year University Mathematics Module

    ERIC Educational Resources Information Center

    Howard, Emma; Meehan, Maria; Parnell, Andrew

    2018-01-01

    In "Maths for Business", a mathematics module for non-mathematics specialists, students are given the choice of completing the module content via short online videos, live lectures or a combination of both. In this study, we identify students' specific usage patterns with both of these resources and discuss their reasons for the…

  19. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest

    PubMed Central

    Rasche, Frank; Knapp, Daniela; Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Sessitsch, Angela

    2011-01-01

    It was hypothesized that seasonality and resource availability altered through tree girdling were major determinants of the phylogenetic composition of the archaeal and bacterial community in a temperate beech forest soil. During a 2-year field experiment, involving girdling of beech trees to intercept the transfer of easily available carbon (C) from the canopy to roots, members of the dominant phylogenetic microbial phyla residing in top soils under girdled versus untreated control trees were monitored at bimonthly intervals through 16S rRNA gene-based terminal restriction fragment length polymorphism profiling and quantitative PCR analysis. Effects on nitrifying and denitrifying groups were assessed by measuring the abundances of nirS and nosZ genes as well as bacterial and archaeal amoA genes. Seasonal dynamics displayed by key phylogenetic and nitrogen (N) cycling functional groups were found to be tightly coupled with seasonal alterations in labile C and N pools as well as with variation in soil temperature and soil moisture. In particular, archaea and acidobacteria were highly responsive to soil nutritional and soil climatic changes associated with seasonality, indicating their high metabolic versatility and capability to adapt to environmental changes. For these phyla, significant interrelations with soil chemical and microbial process data were found suggesting their potential, but poorly described contribution to nitrification or denitrification in temperate forest soils. In conclusion, our extensive approach allowed us to get novel insights into effects of seasonality and resource availability on the microbial community, in particular on hitherto poorly studied bacterial phyla and functional groups. PMID:20882059

  1. Characterising soil surface roughness with a frequency modulated polarimetric radar

    NASA Astrophysics Data System (ADS)

    Seeger, Manuel; Gronz, Oliver; Beiske, Joshua; Klein, Tobias

    2014-05-01

    Soil surface roughness is considered crucial for soil erosion as it determines the effective surface exposed to the raindrop impact. It regulates surface runoff velocity and it causes runoff concentration. But a comprehensive characterisation of the shape of the soils' surface is still difficult to achieve. Photographic systems and terrestrial laser-scanning are nowadays able to generate high resolution DEMs, but the derivation of roughness parameters is still not clear. Spaceborne radar systems are used for about 3 decades for earth survey. Spatial soil moisture distribution, ice sheet monitoring and earth-wide topographic survey are the main objectives of these radar systems, working generally with frequencies <10 GHz. Contrasting with this, technologies emitting frequencies up to 77 GHz are generally used for object tracking purposes. But it is known, that the reflection characteristics, such as intensity and polarisation, strongly depend on the properties of the target object. A new design of a frequency modulated continuous wave radar, emitting a right hand shaped circular polarization and receiving both polarization directions, right and left-hand shaped, is tested here for its ability to detect and quantify different surface roughness. The reflection characteristics of 4 different materials 1) steel, 2) sand (0,5-1 mm), 3) fine (2-4 mm) and 4) coarse (15-30 mm) rock-fragments and different roughness as well as moisture content are analysed. In addition, the signals are taken at 2 different angles to the soil's surface (90° and 70°). For quantification of the roughness, a photographic method (Structure-from-Motion) is applied to generate a detailed DEM and random roughness (RR) is calculated. To characterise the radar signal, different ratios of the reflected channels and polarisations are calculated. The signals show differences for all substrates, also clearly visible between sand and fine rock fragments, despite a wavelength of 1 cm of the

  2. Impact of Hydrologic Variability on Ecosystem Dynamics and the Sustainable Use of Soil and Water Resources

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.

    2013-05-01

    We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.

  3. Plant responses to soil heterogeneity and global environmental change

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Bardgett, Richard D.; de Kroon, Hans

    2015-01-01

    Summary Recent evidence suggests that soil nutrient heterogeneity, a ubiquitous feature of terrestrial ecosystems, modulates plant responses to ongoing global change (GC). However, we know little about the overall trends of such responses, the GC drivers involved, and the plant attributes affected. We synthesized literature to answer the question: Does soil heterogeneity significantly affect plant responses to main GC drivers, such as elevated atmospheric carbon dioxide concentration (CO2), nitrogen (N) enrichment and changes in rainfall regime? Overall, most studies have addressed short-term effects of N enrichment on the performance of model plant communities using experiments conducted under controlled conditions. The role of soil heterogeneity as a modulator of plant responses to elevated CO2 may depend on the plasticity in nutrient uptake patterns. Soil heterogeneity does interact with N enrichment to determine plant growth and nutrient status, but the outcome of this interaction has been found to be both synergistic and inhibitory. The very few studies published on interactive effects of soil heterogeneity and changes in rainfall regime prevented us from identifying any general pattern. We identify the long-term consequences of soil heterogeneity on plant community dynamics in the field, and the ecosystem level responses of the soil heterogeneity × GC driver interaction, as the main knowledge gaps in this area of research. In order to fill these gaps and take soil heterogeneity and GC research a step forward, we propose the following research guidelines: 1) combining morphological and physiological plant responses to soil heterogeneity with field observations of community composition and predictions from simulation models; and 2) incorporating soil heterogeneity into a trait-based response-effect framework, where plant resource-use traits are used as both response variables to this heterogeneity and GC, and predictors of ecosystem functioning. Synthesis

  4. Pedoinformatics Approach to Soil Text Analytics

    NASA Astrophysics Data System (ADS)

    Furey, J.; Seiter, J.; Davis, A.

    2017-12-01

    The several extant schema for the classification of soils rely on differing criteria, but the major soil science taxonomies, including the United States Department of Agriculture (USDA) and the international harmonized World Reference Base for Soil Resources systems, are based principally on inferred pedogenic properties. These taxonomies largely result from compiled individual observations of soil morphologies within soil profiles, and the vast majority of this pedologic information is contained in qualitative text descriptions. We present text mining analyses of hundreds of gigabytes of parsed text and other data in the digitally available USDA soil taxonomy documentation, the Soil Survey Geographic (SSURGO) database, and the National Cooperative Soil Survey (NCSS) soil characterization database. These analyses implemented iPython calls to Gensim modules for topic modelling, with latent semantic indexing completed down to the lowest taxon level (soil series) paragraphs. Via a custom extension of the Natural Language Toolkit (NLTK), approximately one percent of the USDA soil series descriptions were used to train a classifier for the remainder of the documents, essentially by treating soil science words as comprising a novel language. While location-specific descriptors at the soil series level are amenable to geomatics methods, unsupervised clustering of the occurrence of other soil science words did not closely follow the usual hierarchy of soil taxa. We present preliminary phrasal analyses that may account for some of these effects.

  5. Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?

    PubMed

    Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia

    2016-05-01

    Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Stem growth and respiration in loblolly pine plantations differing in soil resource availability

    Treesearch

    Chris A. Maier

    2001-01-01

    Stem respiration and growth in 10-year-old loblolly pine (Pinus taeda L.) plantations were measured monthly during the third year of fertilization and irrigation treatments to determine whether soil resource availability differentially altered growth and respiration in stem tissue. Fertilized trees had significantly greater stem biomass, stem...

  7. Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils.

    PubMed

    Hopkins, D W; Sparrow, A D; Novis, P M; Gregorich, E G; Elberling, B; Greenfield, L G

    2006-11-07

    The Antarctic Dry Valleys are regarded as one of the harshest terrestrial habitats on Earth because of the extremely cold and dry conditions. Despite the extreme environment and scarcity of conspicuous primary producers, the soils contain organic carbon and heterotrophic micro-organisms and invertebrates. Potential sources of organic compounds to sustain soil organisms include in situ primary production by micro-organisms and mosses, spatial subsidies from lacustrine and marine-derived detritus, and temporal subsidies ('legacies') from ancient lake deposits. The contributions from these sources at different sites are likely to be influenced by local environmental conditions, especially soil moisture content, position in the landscape in relation to lake level oscillations and legacies from previous geomorphic processes. Here we review the abiotic factors that influence biological activity in Dry Valley soils and present a conceptual model that summarizes mechanisms leading to organic resources therein.

  8. A Soil Service Index: a method for quantifying the value, vulnerability, and status of soil resources

    NASA Astrophysics Data System (ADS)

    Harden, J. W.; Loisel, J.; Hugelius, G.; Sulman, B. N.; Bond-Lamberty, B. P.; Abramoff, R. Z.; Malhotra, A.; Gill, A. L.

    2017-12-01

    Soils support ecological and human systems by providing a physical and biogeochemical basis for plant growth, ecological functions, water quality, and water storage, and by providing services and functions needed for economic development, human well-being, and conservation of natural resources. Quantitative evaluation of soil services, however, is inconsistent and poorly communicated, in part because we lack a scientific, unified basis for evaluating soils and their potential for serving our needs. We introduce an index of soil service (SSI) in which multiple services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability, and evaluated for a given site or region. Services include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The status of SSI can be evaluated by individual services or by a composite index that combines multiple services. The status can be monitored over time; and key services that are more highly valued for a given soil can be weighted accordingly in comparison to other services. As a first step, existing data for each service are captured from a literature and data review in order to establish the full range of values. A site value establishes the ranking relative to the full range. Key services are weighted according to local values. A final index is the sum of the normalized, weighted products. Metrics can be updated and adapted as new data or services are discovered or recognized. Metrics can be used to compare among sites, regions, or time periods.

  9. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    NASA Astrophysics Data System (ADS)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  10. Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution.

    PubMed

    Cui, Er-Ping; Gao, Feng; Liu, Yuan; Fan, Xiang-Yang; Li, Zhong-Yang; Du, Zhen-Jie; Hu, Chao; Neal, Andrew L

    2018-05-10

    The spread of antibiotic resistance genes (ARGs) has become a cause for serious concern because of its potential risk to public health. The use of unconventional water resources (e.g., reclaimed water or piggery wastewater) in agriculture to relieve groundwater shortages may result in an accumulation of ARGs in soil. Biochar addition has been proven to be a beneficial method to alleviate the pollution of ARGs in manure-amended soil. However, the role of biochar on ARGs in soil-plant systems repeatedly irrigated with unconventional water resources is unknown. Under reclaimed water or piggery wastewater irrigation, rhizobox experiments using maize plants in soil amended with biochar were conducted to investigate the variation of typical ARGs (tet and sul genes) in soil-plant systems during a 60-day cultivation, and ARGs was characterized by high-throughput qPCR with a 48 (assays) × 108 (samples) array. Only piggery wastewater irrigation significantly increased the abundance of ARGs in rhizosphere and bulk soils and root endophytes. Following 30-day cultivation, the abundance of ARGs in soil was significantly lower due to biochar addition. However, by day 60, the abundance of ARGs in soil supplemented with biochar was significantly higher than in the control soils. Antibiotics, bio-available heavy metals, nutrients, bacterial community, and mobile gene elements (MGEs) were detected and analyzed to find factors shaping ARGs dynamics. The behavior of ARGs were associated with antibiotics but not with bio-available heavy metals. The correlation between ARGs and available phosphorus was stronger than that of ARGs with total phosphorus. MGEs had good relationship with ARGs, and MGEs shifts contributed most to ARGs variation in soil and root samples. In summary, this study provides insights into potential options for biochar use in agricultural activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    DOE PAGES

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; ...

    2015-07-23

    In this study, accurately estimating methane (CH 4) flux is critically important for investigating and predicting the biogeochemistry-climate feedback. Better simulating CH 4 flux requires explicit representations of microbial processes on CH 4 dynamics because all processes for CH 4 production and consumption are actually carried out by microbes. A microbial functional group based module was developed and tested against an incubation experiment. The module considers four key mechanisms for CH 4 production and consumption: methanogenesis from acetate or single-carbon compounds and CH 4 oxidation using molecular oxygen or other inorganic electron acceptors. These four processes were carried out bymore » four microbial functional groups: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was then linked with the decomposition subroutine of the Community Land Model, and was further used to simulate dynamics of carbon dioxide (CO 2) and CH 4 concentrations from an incubation experiment with permafrost soils. The results show that the model could capture the dynamics of CO 2 and CH 4 concentrations in microcosms with top soils, mineral layer soils and permafrost soils under natural and saturated moisture conditions and a temperature gradient of -2°C, 3°C, and 5°C. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO 2 and CH 4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH 4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting the behavior of the climate system.« less

  12. Soil Transport Implement

    NASA Technical Reports Server (NTRS)

    Dixon, William; Fan, William; Lloyd, Joey; Pham, Nam-Anh; Stevens, Michael

    1988-01-01

    The design of the Soil Transport Implement (STI) for SKITTER is presented. The purpose of STI is to provide a protective layer of lunar soil for the lunar modules. The objective is to cover the lunar module with a layer of soil approximately two meters thick within a two week period. The amount of soil required to cover the module is roughly 77 dump truck loads or three million earth pounds. A spinning disk is employed to accomplish its task. STI is an autonomous, teleoperated system. The design incorporates the latest advances in composite materials and high strength, light weight alloys to achieve a high strength to weight ratio. The preliminary design should only be used to assess the feasibility of employing a spinning wheel as a soil transport implement. A mathematical model of the spinning wheel was used to evaluate the performance of this design.

  13. Impacts of Urban Sprawl on Soil Resources in the Changchun⁻Jilin Economic Zone, China, 2000⁻2015.

    PubMed

    Li, Xiaoyan; Yang, Limin; Ren, Yongxing; Li, Huiying; Wang, Zongming

    2018-06-06

    The Changchun⁻Jilin Economic Zone (CJEZ) is one of the most rapidly developing areas in Northeast China, as well as one of the famous golden maize belts in the world. This is a case study to assess the impacts of urban sprawl on soil resources using remote sensing imagery and geographic spatial analysis methods. The common urbanization intensity index (CUII), soil quality index, and soil landscape metrics were calculated to reflect urbanization and the response of soil resource. Results showed that the area of soil sealing changed from 112,460 ha in 2000 to 139,233 ha in 2015, and in the rural region, the area occupied by urbanization nearly kept balance with the area of rural residential expansion. Urban land increased by 26,767 ha at an annual rate of 3.23% from 2000 to 2015. All seven soil types were occupied during the urbanization process, among which black soil ranked the highest (18,560 ha) and accounted for 69.34% of the total occupied area. Soils of Grades I (3927 ha) and II (15,016 ha) were 64.75% of the total occupied soil areas. Urban land expanded in an irregular shape and a disordered way, which led to an increasing large patch index (LPI) and aggregation index (AI), and a decreasing edge density (ED) and Shannon’s diversity index (SHDI) of the soil landscape in the study area during 2000⁻2015. According to the geographically weighted regression (GWR) model analysis, the R ² between the CUII and soil landscape metrics decreased from the LPI and ED to SHDI and in turn to AI. The local R ² between SHDI, ED, and CUII showed a gradient structure from the inner city to peri-urban areas, in which larger values appeared with strongly intensive urbanization in urban fringes. Soil sealing induced by urbanization has become a significant factor threatening soil, the environment, and food security. How to coordinate regional development and ensure the sustainability of the multiple functions of soil is a problem that needs to be taken into account in

  14. Resource seeking strategies of zoosporic true fungi in heterogeneous soil habitats at the microscale level

    PubMed Central

    Gleason, Frank H.; Crawford, John W.; Neuhauser, Sigrid; Henderson, Linda E.; Lilje, Osu

    2012-01-01

    Zoosporic true fungi have frequently been identified in samples from soil and freshwater ecosystems using baiting and molecular techniques. In fact some species can be components of the dominant groups of microorganisms in particular soil habitats. Yet these microorganisms have not yet been directly observed growing in soil ecosystems. Significant physical characteristics and features of the three-dimensional structures of soils which impact microorganisms at the microscale level are discussed. A thorough knowledge of soil structures is important for studying the distribution of assemblages of these fungi and understanding their ecological roles along spatial and temporal gradients. A number of specific adaptations and resource seeking strategies possibly give these fungi advantages over other groups of microorganisms in soil ecosystems. These include chemotactic zoospores, mechanisms for adhesion to substrates, rhizoids which can penetrate substrates in small spaces, structures which are resistant to environmental extremes, rapid growth rates and simple nutritional requirements. These adaptations are discussed in the context of the characteristics of soils ecosystems. Recent advances in instrumentation have led to the development of new and more precise methods for studying microorganisms in three-dimensional space. New molecular techniques have made identification of microbes possible in environmental samples. PMID:22308003

  15. Promoting Educational Equity through School Libraries. Module 4: Sex-Fair Resources for School Libraries.

    ERIC Educational Resources Information Center

    Nilsen, Alleen Pace; Tyler, Karen Beyard

    The school librarian or media specialist who wishes to promote educational equity through the selection of sex-fair materials is offered guidance in determining the suitability of reference sources in this fourth learning module of a continuing education program. The inadequacies of traditional resources are examined in three categories--omissions…

  16. Lunar Resources Using Moderate Spectral Resolution Visible and Near-infrared Spectroscopy: Al/si and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Fischer, Erich M.; Pieters, Carle M.; Head, James W.

    1992-01-01

    Modern visible and near-infrared detectors are critically important for the accurate identification and relative abundance measurement of lunar minerals; however, even a very small number of well-placed visible and near-infrared bandpass channels provide a significant amount of general information about crucial lunar resources. The Galileo Solid State Imaging system (SSI) multispectral data are an important example of this. Al/Si and soil maturity will be discussed as examples of significant general lunar resource information that can be gleaned from moderate spectral resolution visible and near-infrared data with relative ease. Because quantitative-albedo data are necessary for these kinds of analyses, data such as those obtained by Galileo SSI are critical. SSI obtained synoptic digital multispectral image data for both the nearside and farside of the Moon during the first Galileo Earth-Moon encounter in December 1990. The data consist of images through seven filters with bandpasses ranging from 0.40 microns in the ultraviolet to 0.99 microns in the near-infrared. Although these data are of moderate spectral resolution, they still provide information for the following lunar resources: (1) titanium content of mature mare soils based upon the 0.40/0.56-micron (UV/VIS) ratio; (2) mafic mineral abundance based upon the 0.76/0.99-micron ratio; and (3) the maturity or exposure age of the soils based upon the 0.56-0.76-micron continuum and the 0.76/0.99-micron ratio. Within constraints, these moderate spectral resolution visible and near-infrared reflectance data can also provide elemental information such as Al/Si for mature highland soils.

  17. Geoinformation evaluation of soil resource potential for horticulture in Krasnodar region and the Republic of Adygea

    NASA Astrophysics Data System (ADS)

    Savin, I. Yu.; Dragavtseva, I. A.; Mironenko, N. Ya.; Sergeeva, N. N.; Domozhirova, V. V.; Morenets, A. S.; Ovechkin, S. V.

    2016-04-01

    A geoinformation database for assessing soil resource potential for horticulture in Krasnodar region and Adygea has been developed. The results of geoinformation analysis indicate that only 55-60% of soils in these regions are suitable for growing horticultural crops without limitations; about 35-40% of the total soil area is unsuitable for horticultural purposes. For plum trees, the area of unsuitable soils is somewhat lower than for other horticultural crops. Geographically, the areas of soils suitable and unsuitable for horticulture are close to one another. The thickness of the loose earthy soil material, the gravel content, the degree of salinization, the soil texture, and the degree of soil hydromorphism are the major soil properties imposing considerable limitations for the development of fruit-growing industry in the studied regions. The highest portions of soils suitable for horticulture are found in Eiskii, Kushchevskii, Krylovskii, Shcherbinovskii, and Novokubanskii districts of Krasnodar region. The development of horticulture in Tuapsinskii, Slavyanskii, and Primorsko-Akhtarskii districts is limited because of the unsuitability of soils for this purpose. About 8% of the existing orchards are found on soils recognized as unsuitable for horticulture, and only about 20% of the existing orchards are found on soils suitable for fruit growing without limitations. About 70% of the existing fruit orchards are located on degraded soils or on soils with certain limitations for horticulture. The profitability of fruit orchards on such soils is lower than that of the orchards planted on soils without limitations for horticulture. This information is necessary for the adequate economic evaluation of the degree of soil degradation.

  18. Evaluation of lunar rocks and soils for resource utilization: Detailed image analysis of raw materials and beneficiated products

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Chambers, John G.; Patchen, Allan; Jerde, Eric A.; Mckay, David S.; Graf, John; Oder, Robin R.

    1993-01-01

    The rocks and soils of the Moon will be the raw materials for fuels and construction needs at a lunar base. This includes sources of materials for the generation of hydrogen, oxygen, metals, and other potential construction materials. For most of the bulk material needs, the regolith, and its less than 1 cm fraction, the soil, will suffice. But for specific mineral resources, it may be necessary to concentrate minerals from rocks or soils, and it is not always obvious which is the more appropriate feedstock. Besides an appreciation of site geology, the mineralogy and petrography of local rocks and soils is important for consideration of the resources which can provide feedstocks of ilmenite, glass, agglutinates, anorthite, etc. In such studies, it is very time-consuming and practically impossible to correlate particle counts (the traditional method of characterizing lunar soil petrography) with accurate modal analyses and with mineral associations in multi-mineralic grains. But x ray digital imaging, using x rays characteristic of each element, makes all this possible and much more (e.g., size and shape analysis). An application of beneficiation image analysis, in use in our lab (Oxford Instr. EDS and Cameca SX-50 EMP), was demonstrated to study mineral liberation from lunar rocks and soils. Results of x ray image analysis are presented.

  19. Seeing about soil — management lessons from a simple model for renewable resources

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Klaus; Schappacher, Wilhelm

    2014-02-01

    Employing an effective cellular automata model, we investigate and analyze the build-up and erosion of soil. Depending on the strategy employed for handling agricultural production, in many cases we find a critical dependence on the prescribed production target, with a sharp transition between stable production and complete breakdown of the system. Strategies which are particularly well-suited for mimicking real-world management approaches can produce almost cyclic behavior, which can also either lead to sustainable production or to breakdown. While designed to describe the dynamics of soil evolution, this model is quite general and may also be useful as a model for other renewable resources and may even be employed in other disciplines like psychology.

  20. Cloning, purification, crystallization and preliminary X-ray studies of a carbohydrate-binding module (CBM_E1) derived from sugarcane soil metagenome.

    PubMed

    Campos, Bruna Medeia; Alvarez, Thabata Maria; Liberato, Marcelo Vizona; Polikarpov, Igor; Gilbert, Harry J; Zeri, Ana Carolina de Mattos; Squina, Fabio Marcio

    2014-09-01

    In recent years, owing to the growing global demand for energy, dependence on fossil fuels, limited natural resources and environmental pollution, biofuels have attracted great interest as a source of renewable energy. However, the production of biofuels from plant biomass is still considered to be an expensive technology. In this context, the study of carbohydrate-binding modules (CBMs), which are involved in guiding the catalytic domains of glycoside hydrolases for polysaccharide degradation, is attracting growing attention. Aiming at the identification of new CBMs, a sugarcane soil metagenomic library was analyzed and an uncharacterized CBM (CBM_E1) was identified. In this study, CBM_E1 was expressed, purified and crystallized. X-ray diffraction data were collected to 1.95 Å resolution. The crystals, which were obtained by the sitting-drop vapour-diffusion method, belonged to space group I23, with unit-cell parameters a = b = c = 88.07 Å.

  1. Assessment and management of soil microbial community structure for disease suppression.

    PubMed

    Mazzola, Mark

    2004-01-01

    Identification of the biological properties contributing to the function of suppressive soils is a necessary first step to the management of such systems for use in the control of soilborne diseases. The development and application of molecular methods for the characterization and monitoring of soil microbial properties will enable a more rapid and detailed assessment of the biological nature of soil suppressiveness. Although suppressive soils have provided a wealth of microbial resources that have subsequently been applied for the biological control of soilborne plant pathogens, the full functional capabilities of the phenomena have not been realized in production agricultural ecosystems. Cultural practices, such as the application of soil amendments, have the capacity to enhance disease suppression, though the biological modes of action may vary from that initially resident to the soil. Plants have a distinct impact on characteristics and activity of resident soil microbial communities, and therefore play an important role in determining the development of the disease-suppressive state. Likewise, plant genotype will modulate these same biological communities, and should be considered when developing strategies to exploit the potential of such a natural disease control system. Implementation of consistently effective practices to manage this resource in an economically and environmentally feasible manner will require more detailed investigation of these biologically complex systems and refinement of currently available methodologies.

  2. Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes.

    PubMed

    Farrer, Emily C; Suding, Katharine N

    2016-10-01

    Although ecologists have documented the effects of nitrogen enrichment on productivity, diversity and species composition, we know little about the relative importance of the mechanisms driving these effects. We propose that distinct aspects of environmental change associated with N enrichment (resource limitation, asymmetric competition, and interactions with soil microbes) drive different aspects of plant response. We test this in greenhouse mesocosms, experimentally manipulating each factor across three ecosystems: tallgrass prairie, alpine tundra and desert grassland. We found that resource limitation controlled productivity responses to N enrichment in all systems. Asymmetric competition was responsible for diversity declines in two systems. Plant community composition was impacted by both asymmetric competition and altered soil microbes, with some contributions from resource limitation. Results suggest there may be generality in the mechanisms of plant community change with N enrichment. Understanding these links can help us better predict N response across a wide range of ecosystems. © 2016 John Wiley & Sons Ltd/CNRS.

  3. Technology and research needs to support soil change studies in reserach and soil survey

    USDA-ARS?s Scientific Manuscript database

    Soil survey products must evolve to address the effects of management practices on the soil resource. There is a rising demand by soil survey customers interested in sustainable use of natural resources for information about land-use impacts on soil quality, ecological processes, and soil function. ...

  4. Development of web-based GIS services for sustainable soil resource management at farm level

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Antonis; Kolovos, Chronis; Troyanos, Yerasimos; Doula, Maria

    2017-09-01

    Modern farms situated in urban or suburban areas, include various and in most cases diverse land covers. Land uses in such farms may serve residential, structured, aesthetic and agricultural purposes, usually delimited inside the boundaries of a single property. The environmental conditions across a farm, especially if it is situated on an irregular terrain, can be highly differentiated. Managing soil resources in a small scale diverse farm environment in a holistic and sustainable way should have spatial and temporal reference and take advantage of cut-edge geospatial technologies. In present study, an 8 hectare farm with various land uses in the southern suburbs of Attica Prefecture, Greece was systematically monitored regarding its soil, water and plant resources. Almost 80% of the farm's area is covered with trees, shrubs and low vegetation planted in a mosaic of parterres. Farm data collected concerned soil and water physicochemical characteristics, plant species, topographical features, irrigation network, valves and infrastructure. All data were imported and developed in a GIS geodatabase. Furthermore, web GIS services and a mobile GIS app were developed in order to monitor, update and synchronize present status and future changes performed in the farm. Through the web services and using the mobile GIS app, the user has access to all data stored in the geodatabase and according to access rights he can view or edit the spatial entities. The user can easily make query to specific features, combine their properties with other overlaying spatial data and reach accurate decisions. The app can be downloaded and implemented in mobile devices like smartphones and tablets for extending its functionality. As proven in this study, web GIS services and mobile GIS apps constitute an attractive suite of methodologies for effective and user friendly management of natural resources at farm level.

  5. Enhancing soil begins with soil biology and a stable soil microclimate

    USDA-ARS?s Scientific Manuscript database

    Protection of the soil resource from erosion requires reducing the surface impact from raindrop energy and maintaining soil structure and stability to allow more efficient infiltration of water into the soil column. These two processes are linked with practices associated with enhancing and maintain...

  6. Comprehensive assessment of regional selenium resources in soils based on the analytic hierarchy process: Assessment system construction and case demonstration.

    PubMed

    Liang, Ruoyu; Song, Shuai; Shi, Yajing; Shi, Yajuan; Lu, Yonglong; Zheng, Xiaoqi; Xu, Xiangbo; Wang, Yurong; Han, Xuesong

    2017-12-15

    The redundancy or deficiency of selenium in soils can cause adverse effects on crops and even threaten human health. It was necessary to assess selenium resources with a rigorous scientific appraisal. Previous studies of selenium resource assessment were usually carried out using a single index evaluation. A multi-index evaluation method (analytic hierarchy process) was used in this study to establish a comprehensive assessment system based on consideration of selenium content, soil nutrients and soil environmental quality. The criteria for the comprehensive assessment system were classified by summing critical values in the standards with weights and a Geographical Information System was used to reflect the regional distribution of the assessment results. Boshan, a representative region for developing selenium-rich agriculture, was taken as a case area and classified into Zone I-V, which suggested priority areas for developing selenium-rich agriculture. Most parts of the North and Midlands of Boshan were relatively suitable for development of selenium-rich agriculture. Soils in south fractions were contaminated by Cd, PAHs, HCHs and DDTs, in which it was forbidden to farm. This study was expected to provide the basis for developing selenium-rich agriculture and an example for comprehensive evaluation of relevant resources in a region. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2016-12-01

    The study of observational science crosses all other subject areas and requires a new innovative paradigm: a collaboration of experts to create high quality, content-rich learning modules that will elevate the scientific literacy and technical competency of undergraduate and graduate students. This collaborative project will design, develop, and openly distribute a series of interactive, multimedia, online modules that can be effectively integrated into meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. The modules will address topics such as principles of instrumentation and measurement to the theory and practice of measuring a host of meteorological variables. The impact will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience. This project brings together the intellectual capital of the scientists and engineers of National Center for Atmospheric Research Earth Observing Laboratory as subject matter experts, the artistic talents and instructional design acumen of the COMET program, and the project leadership, vision, teaching expertise in instruments and observational science at Millersville University.

  8. What Is Soil? Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the first of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil management. Upon completing the two day lesson, the student will be able to define "soil", list the soil forming agencies, define and use soil terminology, and discuss soil formation and…

  9. Locating Health Resources. Teenage Health Teaching Modules.

    ERIC Educational Resources Information Center

    Education Development Center, Inc., Newton, MA.

    The Teenage Health Teaching Modules (THTM) program is a health education curriculum for adolescents. Each THTM module frames an adolescent health task emphasizing development of self-assessment, communication, decision making, health advocacy, and self-management. This module offers information on how young people may avail themselves of community…

  10. Sonication standard laboratory module

    DOEpatents

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  11. Understanding plant-to-plant interactions for soil resources in multilayered Iberian dehesas

    NASA Astrophysics Data System (ADS)

    Moreno, G.; Rolo, V.; Cubera, E.; López-Díaz, L.

    2009-04-01

    environment much more than understorey usually can, but tree characteristics often confer them a clear competitive advantage and they can strongly out-compete understorey. The net balance of positive-negative interactions varies with the age of trees: while the balance can favor grasses face to seedlings, the contrary can be expected when tree grows. Similarly, while shrubs could favor seedling recruitment, shrubs could affect negatively tree growth and productivity. These changes should be taken into account for defining dehesa structure and determining management practices in order to optimize the use of physical and chemical resources that are spatially and temporally patchy. From our results, it is described how generally holm-oak trees favor understorey forage production through a direct positive effect of shade and improved soil fertility (facilitation). The rooting system together the slow-growing attitude of many oak species could determine a low competitive potential of oaks with herbaceous layer. Its low competitiveness together with its capacity to thrive in poor soils make oaks genre very suitable for long-term agroforestry systems in Iberian Peninsula. However, although a certain complementary uses of soil resources seems occur for trees and native grasses (very distinct root system profile), the potential benefit of trees has a small actual facilitative effect because the competitive use of soil water by trees overrides its positive effects, especially under semi-arid conditions. As consequence, the net balance of trees on pasture yield is very variably with situations where pasture yield is widely increased in the vicinity of the trees and others where the contrary is found. Tree clearance practiced in dehesas affects positively the development of the understory pasture, but also the single tree functions which take advantage of the low tree density characteristic of dehesas. Tree roots access water through a large volume of soil resources (especially water

  12. ESA's Soil Moisture dnd Ocean Salinity Mission - Contributing to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Kerr, Y. H.

    2015-12-01

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. The focus of this paper will be on SMOS's contribution to support water resource management: SMOS surface soil moisture provides the input to derive root-zone soil moisture, which in turn provides the input for the drought index, an important monitoring prediction tool for plant available water. In addition to surface soil moisture, SMOS also provides observations on vegetation optical depth. Both parameters aid agricultural applications such as crop growth, yield forecasting and drought monitoring, and provide input for carbon and land surface modelling. SMOS data products are used in data assimilation and forecasting systems. Over land, assimilating SMOS derived information has shown to have a positive impact on applications such as NWP, stream flow forecasting and the analysis of net ecosystem exchange. Over ocean, both sea surface salinity and severe wind speed have the potential to increase the predictive skill on the seasonal and short- to medium-range forecast range. Operational users in particular in Numerical Weather Prediction and operational hydrology have put forward a requirement for soil moisture data to be available in near-real time (NRT). This has been addressed by developing a fast retrieval for a NRT level 2 soil moisture product based on Neural Networks, which will be available by autumn 2015. This paper will focus on presenting the

  13. Helium in soil gases of the Roosevelt Hot Springs Known Geothermal Resource Ares, Beaver County, Utah

    USGS Publications Warehouse

    Hinkle, M.E.; Denton, E.H.; Bigelow, R.C.; Turner, R.L.

    1978-01-01

    Soil samples were collected in two parallel traverses across the Dome fault zone of the Roosevelt Hot Springs Known Geothermal Resource Area. The samples were sealed in air-tight aluminum cans, and the soil gas was allowed to equilibrate with the atmospheric air in the cans. Gas from the cans was analyzed by mass spectrometry. Samples collected over faults contained anomalously high concentrations of helium. Samples collected close to a geothermal well 884 m deep contained more helium than samples collected near another geothermal well 1370 m deep.

  14. Soil biological indicators of soil health for a national soil health assessment

    USDA-ARS?s Scientific Manuscript database

    Soil is one of our nation's most valuable resources that provides life-sustaining functions. Billions of organisms live belowground and perform critical soil processes to support plant, animal, and human health aboveground. By shifting our view of soils from an inert growing material to a biological...

  15. Evaluation of ERTS-1 imagery in mapping and managing soil and range resources in the Sand Hills region of Nebraska

    NASA Technical Reports Server (NTRS)

    Drew, J. V. (Principal Investigator); Seevers, P. M.

    1974-01-01

    The author has identified the following significant results. Interpretations of imagery from the Earth Resources Technology Satellite (ERTS-1) indicate that soil associations and attendant range sites can be identified on the basis of vegetation and topography using multitemporal imagery. Optical density measurements of imagery from the visible red band of the multispectral scanner(MSS band 5) obtained during the growing season were related to field measurements of vegetative biomass, a factor that closely parallels range condition class on specific range sites. ERTS-1 imagery also permitted inventory and assessment of center-pivot irrigation systems in the Sand Hills region in relation to soil and topographic conditions and energy requirements. Four resource maps of the Upper Loup Natural Resource District located entirely within the Sand Hills region were prepared from ERTS-1 imagery.

  16. Taxonomic classification of world map units in crop producing areas of Argentina and Brazil with representative US soil series and major land resource areas in which they occur

    NASA Technical Reports Server (NTRS)

    Huckle, H. F. (Principal Investigator)

    1980-01-01

    The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.

  17. Trends in free WWW-based E-learning Modules seen from the Learning Resource Server Medicine (LRSMed).

    PubMed

    Stausberg, Jürgen; Geueke, Martin; Bludßat, Kevin

    2005-01-01

    Despite the lost enthusiasm concerning E-learning a lot of material is available on the World Wide Web (WWW) free of charge. This material is collected and systematically described by services like the Learning Resource Server Medicine (LRSMed) at http://mmedia.medizin.uni-essen.de/portal/. With the LRSMed E-learning modules are made available for medical students by means of a metadata description that can be used for a catalogue search. The number of resources included has risen enormously from 100 in 1999 up to 805 today. Especially in 2004 there was an exponential increase in the LRSMed's content. Anatomy is still the field with the highest amount of available material, but general medicine has improved its position over the years and is now the second one. Technically and didactically simple material as scripts, textbooks, and link lists (called info services) is still dominating. Similar to 1999, there is not one module which could be truly referred to as tutorial dialogue. Simple material can not replace face-to-face-teaching. But it could be combined with conventional courses to establish some kind of blending learning. The scene of free E-learning modules on the WWW is ready to meet current challenges for efficient training of students and continuing education in medicine.

  18. Application of Remote Sensing Data to Improve the Water and Soil Resource Management of Rwanda

    NASA Astrophysics Data System (ADS)

    Csorba, Ádám; Bukombe, Benjamin; Naramabuye, Francois Xavier; Szegi, Tamás; Vekerdy, Zoltán; Michéli, Erika

    2017-04-01

    The Rwandan agriculture strongly relies in the dry seasons on the water stored in artificial reservoirs of various sizes for irrigation purposes. Furthermore, the success of irrigation depends on a wide range of soil properties which directly affect the moisture regime of the growing medium. By integrating remote sensing and auxiliary data the objectives of our study are to monitor the water level fluctuation in the reservoirs, estimate the volume of water available for irrigation and to combine this information with soil property maps to support the decision making for sustainable irrigation water management in a study area in Southern Rwanda. For water level and volume estimation a series of Sentinel-1 (product type: GRD, acquisition mode: IW, polarizations HH and VH) data were obtained covering the study area and spanning over a period of two years. To map the extent of water bodies the Radar-Based Water Body Mapping module of the Water Observation and Information System (WOIS) was used. High-resolution optical data (Sentinel-2) were used for validation in cloud-free periods. To estimate the volume changes in the reservoirs, we combined the information derived from the water body mapping procedure and digital elevation models. For sustainable irrigation water management, digital soil property maps were developed by the application of wide range of environmental covariates related to soil forming factors. To develop covariates which represent the land use a time series analysis of the 2 years of Sentinel-1 data was performed. As auxiliary soil data, the ISRIC-WISE harmonized soil profile database was used. The developed digital soil mapping approach is integrated into a new WOIS workflow.

  19. Spatial Patterns and Risk Assessment of Heavy Metals in Soils in a Resource-Exhausted City, Northeast China

    PubMed Central

    Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian

    2015-01-01

    Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1

    soils were reached 57.33%, while 42.65% topsoil samples are moderate polluted (2soil environmental function areas were classified and proper soil environmental management policy was proposed to decrease the environmental risks in the process of industrial city transformation. PMID:26413806

  20. July: "Soils are living: Overview of soil biodiversity, global issues, and new resources"

    USDA-ARS?s Scientific Manuscript database

    The July poster will provide an overview of soil biology and the many ecosystem functions that soil organisms drive including their impact on global biodiversity, climate regulation, soil health/stability, and plant growth. Five main global issues related to soil biodiversity will be presented such ...

  1. Mangroves Build Land. "Mangroves are a Valuable Resource." Grades 7 and 8. A Two Lesson Unit. Student Learning Activity Module.

    ERIC Educational Resources Information Center

    Frank, James

    This module is an activity and film-oriented unit focusing on the importance of mangroves in the South Florida ecosystem. The module is part of a series designed to be used by teachers, students, and community members to help them utilize community resources in developing and teaching environmental concepts and responsibility, and in seeking ways…

  2. The application of LANDSAT remote sensing technology to natural resources management. Section 1: Introduction to VICAR - Image classification module. Section 2: Forest resource assessment of Humboldt County.

    NASA Technical Reports Server (NTRS)

    Fox, L., III (Principal Investigator); Mayer, K. E.

    1980-01-01

    A teaching module on image classification procedures using the VICAR computer software package was developed to optimize the training benefits for users of the VICAR programs. The field test of the module is discussed. An intensive forest land inventory strategy was developed for Humboldt County. The results indicate that LANDSAT data can be computer classified to yield site specific forest resource information with high accuracy (82%). The "Douglas-fir 80%" category was found to cover approximately 21% of the county and "Mixed Conifer 80%" covering about 13%. The "Redwood 80%" resource category, which represented dense old growth trees as well as large second growth, comprised 4.0% of the total vegetation mosaic. Furthermore, the "Brush" and "Brush-Regeneration" categories were found to be a significant part of the vegetative community, with area estimates of 9.4 and 10.0%.

  3. Spending our soil resources

    USDA-ARS?s Scientific Manuscript database

    A third of the world's population suffers from food insecurity. With an expected 2 billion population increase in the next few decades, that number is expected to rise significantly, leading to more people that are insecure and starving unless our soils can produce more food. Added to the problem ar...

  4. Eawag-Soil in enviPath: a new resource for exploring regulatory pesticide soil biodegradation pathways and half-life data.

    PubMed

    Latino, Diogo A R S; Wicker, Jörg; Gütlein, Martin; Schmid, Emanuel; Kramer, Stefan; Fenner, Kathrin

    2017-03-22

    Developing models for the prediction of microbial biotransformation pathways and half-lives of trace organic contaminants in different environments requires as training data easily accessible and sufficiently large collections of respective biotransformation data that are annotated with metadata on study conditions. Here, we present the Eawag-Soil package, a public database that has been developed to contain all freely accessible regulatory data on pesticide degradation in laboratory soil simulation studies for pesticides registered in the EU (282 degradation pathways, 1535 reactions, 1619 compounds and 4716 biotransformation half-life values with corresponding metadata on study conditions). We provide a thorough description of this novel data resource, and discuss important features of the pesticide soil degradation data that are relevant for model development. Most notably, the variability of half-life values for individual compounds is large and only about one order of magnitude lower than the entire range of median half-life values spanned by all compounds, demonstrating the need to consider study conditions in the development of more accurate models for biotransformation prediction. We further show how the data can be used to find missing rules relevant for predicting soil biotransformation pathways. From this analysis, eight examples of reaction types were presented that should trigger the formulation of new biotransformation rules, e.g., Ar-OH methylation, or the extension of existing rules, e.g., hydroxylation in aliphatic rings. The data were also used to exemplarily explore the dependence of half-lives of different amide pesticides on chemical class and experimental parameters. This analysis highlighted the value of considering initial transformation reactions for the development of meaningful quantitative-structure biotransformation relationships (QSBR), which is a novel opportunity offered by the simultaneous encoding of transformation reactions and

  5. Soil Microbial Responses to Increased Moisture and Organic Resources along a Salinity Gradient in a Polar Desert

    PubMed Central

    Van Horn, David J.; Okie, Jordan G.; Buelow, Heather N.; Gooseff, Michael N.; Barrett, John E.

    2014-01-01

    Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region. PMID:24610850

  6. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert.

    PubMed

    Van Horn, David J; Okie, Jordan G; Buelow, Heather N; Gooseff, Michael N; Barrett, John E; Takacs-Vesbach, Cristina D

    2014-05-01

    Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.

  7. Introductory Soil Science Exercises Using USDA Web Soil Survey

    ERIC Educational Resources Information Center

    Post, Christopher J.; Mikhailova, Elena; McWhorter, Christopher M.

    2007-01-01

    The USDA, Natural Resource Conservation Service (NRCS) Web Soil Survey is a valuable teaching tool for soil science education. By incorporating the Web Soil Survey into an undergraduate-level course, students are able to use the most detailed digital soil survey information without the steep learning curve associated with geographic information…

  8. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    PubMed Central

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  9. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex

    2015-12-03

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea saltmore » on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.« less

  10. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite.

    PubMed

    Antoniadis, Vasileios; Zanni, Anna A; Levizou, Efi; Shaheen, Sabry M; Dimirkou, Anthoula; Bolan, Nanthi; Rinklebe, Jörg

    2018-03-01

    Dynamics of chromate (Cr(VI)) in contaminated soils may be modulated by decreasing its phytoavailability via the addition of organic matter-rich amendments, which might accelerate Cr(VI) reduction to inert chromite (Cr(III)) or high-cation exchange capacity amendments. We studied Cr(VI) phytoavailability of oregano in a Cr(VI)-spiked acidic soil non-treated (S) and treated with peat (SP), lime (SL), and zeolite (SZ). The addition of Cr(VI) increased the concentrations of Cr(VI) and Cr(III) in soils and plants, especially in the lime-amended soil. The plant biomass decreased in the lime-amended soil compared to the un-spiked soil (control) due to decreased plant phosphorus concentrations and high Cr(VI) concentrations in root at that treatment. Oregano in the peat-amended soil exhibited significantly less toxic effects, due to the role of organic matter in reducing toxic Cr(VI) to Cr(III) and boosted plant vigour in this treatment. In the lime-amended soil, the parameters of soil Cr(VI), soil Cr(III), and root Cr(III) increased significantly compared to the non-amended soil, indicating that Cr(VI) reduction to Cr(III) was accelerated at high pH. Added zeolite failed to decreased Cr(VI) level to soil and plant. Oregano achieved a total uptake of Cr(III) and Cr(VI) of 0.275 mg in plant kg -1 soil in a pot in the non-amended soil. We conclude that peat as soil amendment might be considered as a suitable option for decreasing Cr(VI) toxicity in soil and plant, and that oregano as tolerant plant species has a certain potential to be used as a Cr accumulator. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    PubMed

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  12. Research and management of soil, plant, animal, and human resources in the Middle Rio Grande Basin

    Treesearch

    Deborah M. Finch

    1996-01-01

    The Rocky Mountain Forest and Range Experiment Station initiated a research program in 1994 called. "Ecology, diversity, and sustainability of soil, plant, animal, and human resources of the Rio Grande Basin". This program is funded by an Ecosystem Management grant from Forest Service Research. Its mission focuses on the development and application of new...

  13. Space resources. Overview

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and in the exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. This overview describes the findings of a study on the use of space resources in the development of future space activities and defines the necessary research and development that must precede the practical utilization of these resources. Space resources considered included lunar soil, oxygen derived from lunar soil, material retrieved from near-Earth asteroids, abundant sunlight, low gravity, and high vacuum. The study participants analyzed the direct use of these resources, the potential demand for products from them, the techniques for retrieving and processing space resources, the necessary infrastructure, and the economic tradeoffs.

  14. Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis

    PubMed Central

    Zavišić, Aljosa; Yang, Nan; Marhan, Sven; Kandeler, Ellen; Polle, Andrea

    2018-01-01

    Phosphorus (P) is an important nutrient, whose plant-available form phosphate is often low in natural forest ecosystems. Mycorrhizal fungi mine the soil for P and supply their host with this resource. It is unknown how ectomycorrhizal communities respond to changes in P availability. Here, we used young beech (Fagus sylvatica L.) trees in natural forest soil from a P-rich and P-poor site to investigate the impact of P amendment on soil microbes, mycorrhizas, beech P nutrition, and photosynthesis. We hypothesized that addition of P to forest soil increased P availability, thereby, leading to enhanced microbial biomass and mycorrhizal diversity in P-poor but not in P-rich soil. We expected that P amendment resulted in increased plant P uptake and enhanced photosynthesis in both soil types. Young beech trees with intact soil cores from a P-rich and a P-poor forest were kept in a common garden experiment and supplied once in fall with triple superphosphate. In the following summer, labile P in the organic layer, but not in the mineral top soil, was significantly increased in response to fertilizer treatment. P-rich soil contained higher microbial biomass than P-poor soil. P treatment had no effect on microbial biomass but influenced the mycorrhizal communities in P-poor soil and shifted their composition toward higher similarities to those in P-rich soil. Plant uptake efficiency was negatively correlated with the diversity of mycorrhizal communities and highest for trees in P-poor soil and lowest for fertilized trees. In both soil types, radioactive P tracing (H333PO4) revealed preferential aboveground allocation of new P in fertilized trees, resulting in increased bound P in xylem tissue and enhanced soluble P in bark, indicating increased storage and transport. Fertilized beeches from P-poor soil showed a strong increase in leaf P concentrations from deficient to luxurious conditions along with increased photosynthesis. Based on the divergent behavior of beech in P

  15. Field Identification of Andic Soil Properties for Soils of North-central Idaho

    Treesearch

    Brian Gardner

    2007-01-01

    Currently, laboratory measurements are definitive for identifying andic soil properties in both the USDA Soil Taxonomy (Soil Survey Staff 1999) and the World Reference Base for Soil Resources (FAO/ISRIC/ISSS 1998). Andic soil properties, as described in Soil Taxonomy, result mainly from the presence of significant amounts of allophone, imogolite, ferrihydrite or...

  16. Soil science. Soil and human security in the 21st century.

    PubMed

    Amundson, Ronald; Berhe, Asmeret Asefaw; Hopmans, Jan W; Olson, Carolyn; Sztein, A Ester; Sparks, Donald L

    2015-05-08

    Human security has and will continue to rely on Earth's diverse soil resources. Yet we have now exploited the planet's most productive soils. Soil erosion greatly exceeds rates of production in many agricultural regions. Nitrogen produced by fossil fuel and geological reservoirs of other fertilizers are headed toward possible scarcity, increased cost, and/or geopolitical conflict. Climate change is accelerating the microbial release of greenhouse gases from soil organic matter and will likely play a large role in our near-term climate future. In this Review, we highlight challenges facing Earth's soil resources in the coming century. The direct and indirect response of soils to past and future human activities will play a major role in human prosperity and survival. Copyright © 2015, American Association for the Advancement of Science.

  17. Soil in the City: Sustainably Improving Urban Soils.

    PubMed

    Kumar, Kuldip; Hundal, Lakhwinder S

    2016-01-01

    Large tracts of abandoned urban land, resulting from the deindustrialization of metropolitan areas, are generating a renewed interest among city planners and community organizations envisioning the productive use of this land not only to produce fresh food but to effectively manage stormwater and mitigate the impact of urban heat islands. Healthy and productive soils are paramount to meet these objectives. However, these urban lands are often severely degraded due to anthropogenic activities and are generally contaminated with priority pollutants, especially heavy metals and polycyclic aromatic hydrocarbons. Characterizing these degraded and contaminated soils and making them productive again to restore the required ecosystem services was the theme of the "Soil in the City- 2014" conference organized by W-2170 Committee (USDA's Sponsored Multi-State Research Project: Soil-Based Use of Residuals, Wastewater, & Reclaimed Water). This special section of comprises 12 targeted papers authored by conference participants to make available much needed information about the characteristics of urban soils. Innovative ways to mitigate the risks from pollutants and to improve the soil quality using local resources are discussed. Such practices include the use of composts and biosolids to grow healthy foods, reclaim brownfields, manage stormwater, and improve the overall ecosystem functioning of urban soils. These papers provide a needed resource for educating policymakers, practitioners, and the general public about using locally available resources to restore fertility, productivity, and ecosystem functioning of degraded urban land to revitalize metropolitan areas for improving the overall quality of life for a large segment of a rapidly growing urban population. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    NASA Astrophysics Data System (ADS)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the

  19. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    NASA Astrophysics Data System (ADS)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but

  20. Photovoltaic Module Soiling Map | Photovoltaic Research | NREL

    Science.gov Websites

    proposed in: M. Deceglie, L. Micheli, and M. Muller, "Quantifying soiling loss directly from PV yield described in: L. Micheli and M. Muller, "An investigation of the key parameters for predicting PV : M. Muller, L. Micheli, and A.A. Martinez-Morales, "A Method to Extract Soiling Loss Data from

  1. An overview of forestry in the Farm Bill and Natural Resources Conservation Service forestry resources

    Treesearch

    Andy Henriksen

    2010-01-01

    Since 1935, the Natural Resources Conservation Service (NRCS) (originally the Soil Conservation Service) has provided leadership in a partnership effort to help America's private landowners and managers conserve their soil, water, and other natural resources. NRCS employees provide technical assistance based on sound science and suited to a customer's...

  2. [MATCHE: Management Approach to Teaching Consumer and Homemaking Education.] Economically Depressed Areas Strand: Human Development: Module III-E-3: Resources for the Economically Depressed Family.

    ERIC Educational Resources Information Center

    Boogaert, John

    This competency-based preservice home economics teacher education module on resources for the economically depressed area family is the third in a set of three modules on human development in economically depressed areas. (This set is part of a larger set of sixty-seven modules on the Management Approach to Teaching Consumer and Homemaking…

  3. Status of the World's Soil Resources Report, Intergovernmental Technical Panel on Soils

    EPA Science Inventory

    The scope of main objectives of the report are: (a) to provide a global scientific assessment of current and projected soil conditions built on regional data analysis and expertise (b) to explore the implications of these soil conditions for food security, climate change, water q...

  4. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    PubMed

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  5. The Natural Resources Conservation Service land resource hierarchy and ecological sites

    USDA-ARS?s Scientific Manuscript database

    Resource areas of the NRCS have long been important to soil geography. At both regional and landscape scales, resource areas are used to stratify programs and practices based on geographical areas where resource concerns, problems, or treatment needs are similar. However, the inability to quantifiab...

  6. Biological Features of the Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the third of six modules in advanced crop and soil science and introduces the agriculture student to biological features of soil. Upon completing the two day lesson, the student will: (1) realize the vast amount of life present in the soil, (2) be able to list representative animal and plant life in the soil by size,…

  7. Modulation of SSM/I microwave soil radiances by rainfall

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Fulton, Richard

    1992-01-01

    The feasibility of using SSM/I satellite data for estimating the soil moisture content was investigated by correlating the rainfall and soil moisture data with values of the SSM/I microwave brightness temperature obtained for the lower Great Plains in the United States during 1987. It was found that the areas of lowest brightness temperatures coincided with regions of bare soil which had received significant rainfall. The time-history plots of the brightness temperature and the antecedent precipitation index during an extremely large rain event indicated a slow recovery period (about 15 days) back to the dry soil state. However, regions covered with vegetation showed smaller temperature drops and much weaker correlation with rain events, questioning the feasibility of using SSM/I measurements for estimations of soil moisture in regions containing vegetation-covered soil.

  8. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes.

    PubMed

    Ni, Xiangyin; Yang, Wanqin; Qi, Zemin; Liao, Shu; Xu, Zhenfeng; Tan, Bo; Wang, Bin; Wu, Qinggui; Fu, Changkun; You, Chengming; Wu, Fuzhong

    2017-08-01

    Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems. © 2016 John Wiley & Sons Ltd.

  9. Improving soil moisture simulation to support Agricultural Water Resource Management using Satellite-based water cycle observations

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2016-04-01

    Efficient and sustainable irrigation systems require optimization of operational parameters such as irrigation amount which are dependent on the soil hydraulic parameters that affect the model's accuracy in simulating soil water content. However, it is a scientific challenge to provide reliable estimates of soil hydraulic parameters and irrigation estimates, given the absence of continuously operating soil moisture and rain gauge network. For agricultural water resource management, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally (Wang and Qu 2009). In the current study, flood irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches below a threshold of 25%, 50% and 75% with respect to the maximum available water capacity (difference between field capacity and wilting point) and applied until the top layer is saturated. An additional important criterion needed to activate the irrigation scheme is to ensure that it is irrigation season by assuming that the greenness vegetation fraction (GVF) of the pixel exceed 0.40 of the climatological annual range of GVF (Ozdogan et al. 2010). The main hypothesis used in this study is that near-surface remote sensing soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately inverted, it would provide field capacity and wilting point soil moisture, which may be representative of that basin. Thus, genetic algorithm inverse method is employed to derive the effective parameters and derive the soil moisture deficit for the root zone by coupling of AMSR-E soil moisture with the physically based hydrological model. Model performance is evaluated using MODIS

  10. Soil conservation service landscape resource management

    Treesearch

    Sally Schauman; Carolyn Adams

    1979-01-01

    SCS Landscape Resource Management (LRM) is the application of landscape architecture to SCS conservation activities. LRM includes but is not limited to visual resource management. LRM can be summarized in three principles: (1) SCS landscape architecture considers the landscape as a composite of ecological, social and visual resources; (2) SCS landscapes exist in the...

  11. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    NASA Astrophysics Data System (ADS)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  12. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be

  13. Space Resources Roundtable VI

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The topics addressed in the conference paper abstracts contained in this document include: extracting resources from the Moon and Mars, equipment for in situ resource utilization, mission planning for resource extraction, drilling on Mars, and simulants for lunar soil and minerals.

  14. A multimedia and interactive approach to teach soil science

    NASA Astrophysics Data System (ADS)

    Badía-Villas, D.; Martí-Dalmau, C.; Iñiguez-Remón, E.

    2012-04-01

    Soil Science is a discipline concerned with a material that has unique features and behaviours (Churchman, 2010). Thus, teachers of Soil Science need to be experienced with Soil Science practices and must appreciate the complexities and relationships inherent within the discipline (Field et al, 2011). But when soil science had to be taught not by specialists, for instance in the introductory courses of earth and environmental sciences Degrees or in Secondary School, adequate material cannot be found. For this reason, multimedia and interactive programmes have been developed and showed here. EDAFOS is an e-learning resource that provides a comprehensive review of the fundamental concepts on soil science and reveals it as the living skin of planet Earth (European Commission, 2006). This programme is available via website (www.cienciadelsuelo.es) both in Spanish and, more recently, also in English. Edafos is a programme with different modules, which after outlining the study of soil components goes on to examine the main factors and processes of soil genesis explaining the mechanisms of soil processes. By the use of animations, the vital functions of soil are explained. The program ends with a section of multiple-choice exercises with self-assessment. To complement this program, virtual visits to the field are showed in the program iARASOL (www.suelosdearagon.es), in a time when field trips are gradually diminishing due to insufficiency in time and budget, as well as safety concerns (Çaliskan, 2011). In this case, the objective of iARASOL is to set out that soil vary from place to place not randomly, but in a systematic way, according to landscape units; therefore, graduates can classify the soils using the WRB system (IUSS, 2007). It presents diverse types of data and images instantly, from a variety of viewpoints, at many different scales and display non-visual information in the field. Both programs provide an additional source of information to supplement

  15. PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils

    NASA Technical Reports Server (NTRS)

    Johnson, Scott; Walton, Otis; Settgast, Randolph

    2013-01-01

    PowderSim is a calculation tool that combines a discrete-element method (DEM) module, including calibrated interparticle-interaction relationships, with a mesh-free, continuum, SPH (smoothed-particle hydrodynamics) based module that utilizes enhanced, calibrated, constitutive models capable of mimicking both large deformations and the flow behavior of regolith simulants and lunar regolith under conditions anticipated during in situ resource utilization (ISRU) operations. The major innovation introduced in PowderSim is to use a mesh-free method (SPH-based) with a calibrated and slightly modified critical-state soil mechanics constitutive model to extend the ability of the simulation tool to also address full-scale engineering systems in the continuum sense. The PowderSim software maintains the ability to address particle-scale problems, like size segregation, in selected regions with a traditional DEM module, which has improved contact physics and electrostatic interaction models.

  16. Chemical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the fifth of six modules in advanced crop and soil science and introduces the agriculture student to chemical features of the soil. Upon completing the four day lesson, the student will be able to: (1) list macro- and micro-nutrients, (2) define pH and its effect on plants, (3) outline Cation Exchange of the soil,…

  17. Resource recovery from urban stock, the example of cadmium and tellurium from thin film module recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, F.-G., E-mail: franz-georg.simon@bam.de; Holm, O.; Berger, W.

    2013-04-15

    Highlights: ► The semiconductor layer on thin-film photovoltaic modules can be removed from the glass-plate by vacuum blast cleaning. ► The separation of blasting agent and semiconductor can be performed using flotation with a valuable yield of 55%. ► PV modules are a promising source for the recovery of tellurium in the future. - Abstract: Raw material supply is essential for all industrial activities. The use of secondary raw material gains more importance since ore grade in primary production is decreasing. Meanwhile urban stock contains considerable amounts of various elements. Photovoltaic (PV) generating systems are part of the urban stockmore » and recycling technologies for PV thin film modules with CdTe as semiconductor are needed because cadmium could cause hazardous environmental impact and tellurium is a scarce element where future supply might be constrained. The paper describes a sequence of mechanical processing techniques for end-of-life PV thin film modules consisting of sandblasting and flotation. Separation of the semiconductor material from the glass surface was possible, however, enrichment and yield of valuables in the flotation step were non-satisfying. Nevertheless, recovery of valuable metals from urban stock is a viable method for the extension of the availability of limited natural resources.« less

  18. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador.

    PubMed

    Tischer, Alexander; Potthast, Karin; Hamer, Ute

    2014-05-01

    Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.

  19. Soil Security Assessment of Tasmania

    NASA Astrophysics Data System (ADS)

    Field, Damien; Kidd, Darren; McBratney, Alex

    2017-04-01

    The concept of soil security aligns well with the aspirational and marketing policies of the Tasmanian Government, where increased agricultural expansion through new irrigation schemes and multiple-use State managed production forests co-exists beside pristine World Heritage conservation land, a major drawcard of the economically important tourism industry . Regarding the Sustainable Development Gaols (SDG's) this could be seen as a exemplar of the emerging tool for quantification of spatial soil security to effectively protect our soil resource in terms of food (SDG 2.4, 3.9) and water security (SDG 6.4, 6.6), biodiversity maintenance and safeguarding fragile ecosystems (SDG 15.3, 15.9). The recent development and application of Digital Soil Mapping and Assessment capacities in Tasmania to stimulate agricultural production and better target appropriate soil resources has formed the foundational systems that can enable the first efforts in quantifying and mapping Tasmanian Soil Security, in particular the five Soil Security dimensions (Capability, Condition, Capital, Codification and Connectivity). However, to provide a measure of overall soil security, it was necessary to separately assess the State's three major soil uses; Agriculture, Conservation and Forestry. These products will provide an indication of where different activities are sustainable or at risk, where more soil data is needed, and provide a tool to better plan for a State requiring optimal food and fibre production, without depleting its natural soil resources and impacting on the fragile ecosystems supporting environmental benefits and the tourism industry.

  20. Shaping an Optimal Soil by Root-Soil Interaction.

    PubMed

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A method for testing land resource area concepts

    USDA-ARS?s Scientific Manuscript database

    Land Resource Units (LRUs) are defined by the National Soil Survey Handbook as aggregations of soil map units and subunits of Major Land Resource Areas (MLRAs). In the USDA NRCS Land Resource Hierarchy, LRUs are defined as the level between MLRAs and STATSGO and are mapped at 1:1 million scale. They...

  2. Study on the Strategies for the Soil and Water Resource Con-servation of Slopeland in Taiwan in Response to the Extreme Climate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Cheng

    2014-05-01

    Global climate change results in extreme weather, especially ex-treme precipitation in Taiwan. Though the total amount of precipi-tation remains unchanged, the frequency of rainfall return period increases which affects slopeland and causes sediment disaster. In Taiwan, slopeland occupies about 73% of national territory. Under harsh environmental stress, soil and water conservation of slope-land becomes more important. In response to the trends of global-ization impacts of climate change, long term strategic planning be-comes more necessary. This study reviewed international practices and decision making process about soil and water conservation of slopeland; and conducted the compilation and analysis of water and soil conservation related research projects in Taiwan within the past five years. It is necessary for Taiwan to design timely adaptive strategies about conducting the all-inclusive conservation of na-tional territory, management and business operation of watershed based on the existing regulation with the effects of extreme weather induced by climate change and the changes of social-economic en-vironments. In order to realize the policy vision of "Under the premise of multiple uses, operating the sustainable business and management of the water and soil resources in the watershed through territorial planning in response to the climate and so-cial-economic environment change". This study concluded the future tasks for soil and water con-servation: 1.Design and timely amend strategies for soil and wand water conservation in response to extreme weather. 2. Strengthen the planning and operating of the land management and integrated conservation of the water and soil resources of key watershed. 3. Manage and operate the prevention of debris flow disaster and large-scale landslide. 4. Formulate polices, related regulations and assessment indicators of soil and water conservation. 5. Maintain the biodiversity of the slopeland and reduce the ecological footprint

  3. A new hammer to crack an old nut: interspecific competitive resource capture by plants is regulated by nutrient supply, not climate.

    PubMed

    Trinder, Clare J; Brooker, Rob W; Davidson, Hazel; Robinson, David

    2012-01-01

    Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of ¹⁵N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO₃⁻ or NH₄⁺). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.

  4. A New Hammer to Crack an Old Nut: Interspecific Competitive Resource Capture by Plants Is Regulated by Nutrient Supply, Not Climate

    PubMed Central

    Trinder, Clare J.; Brooker, Rob W.; Davidson, Hazel; Robinson, David

    2012-01-01

    Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of 15N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO3 − or NH4 +). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition. PMID:22247775

  5. Lunar Soil Particle Separator

    NASA Technical Reports Server (NTRS)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  6. Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants

    NASA Astrophysics Data System (ADS)

    Rajasekar, Vidyashree

    This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly

  7. Soil 4 Youth: Charting New Territory in Canadian High School Soil Science Education

    ERIC Educational Resources Information Center

    Krzic, Maja; Wilson, Julie; Basiliko, Nathan; Bedard-Haughn, Angela; Humphreys, Elyn; Dyanatkar, Saeed; Hazlett, Paul; Strivelli, Rachel; Crowley, Chris; Dampier, Lesley

    2014-01-01

    As global issues continue to place increasing demands on soil resources, the need to provide soil science education to the next generation of soil scientists and the general public is becoming more imminent. In many countries around the world, including Canada, soil is either not included in the high school curriculum or it is not covered in…

  8. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  9. Soil and land management in a circular economy.

    PubMed

    Breure, A M; Lijzen, J P A; Maring, L

    2018-05-15

    This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Soil Erosion: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the last of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil erosion. Upon completion of the two day lesson, the student will be able to: (1) define conservation, (2) understand how erosion takes place, and (3) list ways of controlling wind and water erosion.…

  11. Space Resources

    NASA Technical Reports Server (NTRS)

    McKay, Mary Fae (Editor); McKay, David S. (Editor); Duke, Michael S. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. The pioneers refilled their water barrels at each river they forded; moonbase inhabitants may use chemical reactors to combine hydrogen brought from Earth with oxygen found in lunar soil to make their water. The pioneers sought temporary shelter under trees or in the lee of a cliff and built sod houses as their first homes on the new land; settlers of the Moon may seek out lava tubes for their shelter or cover space station modules with lunar regolith for radiation protection. The pioneers moved further west from their first settlements, using wagons they had built from local wood and pack animals they had raised; space explorers may use propellant made at a lunar base to take them on to Mars. The concept for this report was developed at a NASA-sponsored summer study in 1984. The program was held on the Scripps campus of the University of California at San Diego (UCSD), under the auspices of the American Society for Engineering Education (ASEE). It was jointly managed under the California Space Inst. and the NASA Johnson Space Center, under the direction of the Office of Aeronautics and Space Technology (OAST) at NASA Headquarters. The study participants (listed in the addendum) included a group of 18 university teachers and researchers (faculty fellows) who were present for the entire 10-week period and a larger group of attendees from universities, Government, and industry who came for a series of four 1-week workshops. The organization of this report follows that of the summer study. Space Resources consists of a brief overview and four detailed technical volumes: (1) Scenarios; (2) Energy, Power, and Transport; (3) Materials; (4

  12. Chemical properties of forest soils

    Treesearch

    Charles H. Perry; Michael C. Amacher

    2007-01-01

    Why Is Soil Chemistry Important? The soil quality indicator was initially developed as a tool for assessing the current status of forest soil resources and predicting potential changes in soil properties. Soil chemistry data can be used to diagnose tree vigor and document the deposition of atmospheric pollutants (e.g., acid rain). This chapter focuses on two chemical...

  13. Completing the land resource hierarchy

    USDA-ARS?s Scientific Manuscript database

    The Land Resource Hierarchy of the NRCS is a hierarchal landscape classification consisting of resource areas which represent both conceptual and spatially discrete landscape units stratifying agency programs and practices. The Land Resource Hierarchy (LRH) scales from discrete points (soil pedon an...

  14. Forest, Land, and Water: Understanding Our Natural Resources. Natural Resources Education Series.

    ERIC Educational Resources Information Center

    Sunal, Dennis; And Others

    This curriculum consists of a Teacher's Guide and a series of 12 instructional modules, that are centered around concepts important in the study of national resource science. The modules are designed to supplement textbooks with activities for students in primary and middle grades (K-8). The titles of the modules are: (1) Natural History of a…

  15. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  16. Application of ERTS-1 imagery in mapping and managing soil and range resources in the Sand Hills region of Nebraska

    NASA Technical Reports Server (NTRS)

    Seevers, P. M.; Lewis, D. T.; Drew, J. V.

    1974-01-01

    Interpretations of imagery from the Earth Resources Technology Satellite (ERTS-1) indicate that soil associations and attendant range sites can be identified on the basis of vegetation and topography using multi-temporal imagery. Optical density measurements of imagery from the visible red band of the multispectral scanner (MSS band 5) obtained during the growing season were related to field measurements of vegetative biomass, a factor that closely parallels range condition class on specific range sites. ERTS-1 imagery also permitted inventory and assessment of center-pivot irrigation systems in the Sand Hills region in relation to soil and topographic conditions and energy requirements.

  17. Education on sustainable soil management for the masses? The Soil4Life MOOC

    NASA Astrophysics Data System (ADS)

    Maroulis, Jerry; Demie, Moore; Riksen, Michel; Ritsema, Coen

    2017-04-01

    Although soil is one of our most important natural resources and the foundation for all life on Earth it remains one of the most neglected of our resources. We, in soil science know this, but what do we do to reach more people more quickly? MOOCs, 'Massive Open Online Courses', are a vehicle for offering learning to virtually unlimited audiences at little cost to the student. Could MOOCs be the format for introducing more people worldwide to the importance of soil and sustainable soil management? MOOCs have their limitations and critics. However, depending on your goals, expectations and resources, they are a means for getting information to a much broader population than is possible through conventional educational formats. Wageningen University (WU) agreed and approved the development of a MOOC on sustainable soil management entitled Soil4Life. This presentation reviews the format and results of Soil4Life, concluding with some observations and reflections about this approach to soil science education. The Soil4Life MOOC introduces the role of soil in life on earth, soil degradation, and socio-economic issues related to generating action for long-term sustainability of the many soil-related ecosystem services. The objectives of Soil4Life are to raise awareness about the many important aspects of soil and sustainable soil management, and to allow the educational materials we produced to be available for use by others. The process of creating the Soil4Life MOOC involved 18 academic staff across all WU soil-related groups plus a vital team of education and technical staff. This number of people posed various challenges. However, with clear guidelines, lots of encouragement and technical support, Soil4Life was started in late 2015 and launched on the edx platform in May 2016. Just over 5000 students from 161 countries enrolled in the first offer of the Soil4Life MOOC - a modest number for MOOCs, but not bad for soil science. The targeted audience was initially high

  18. Soil treatment engineering

    NASA Astrophysics Data System (ADS)

    Ivica, Kisic; Zeljka, Zgorelec; Aleksandra, Percin

    2017-10-01

    Soil is loose skin of the Earth, located between the lithosphere and atmosphere, which originated from parent material under the influence of pedogenetic processes. As a conditionally renewable natural resource, soil has a decisive influence on sustainable development of global economy, especially on sustainable agriculture and environmental protection. In recent decades, a growing interest prevails for non-production soil functions, primarily those relating to environmental protection. It especially refers to protection of natural resources whose quality depends directly on soil and soil management. Soil contamination is one of the most dangerous forms of soil degradation with the consequences that are reflected in virtually the entire biosphere, primarily at heterotrophic organisms, and also at mankind as a food consumer. Contamination is correlated with the degree of industrialization and intensity of agrochemical usage. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The negative effects caused by pollution are undeniable: reduced agricultural productivity, polluted water sources and raw materials for food are only a few of the effects of soil degradation, while almost all human diseases (excluding AIDS) may be partly related to the transport of contaminants, in the food chain or the air, to the final recipients - people, plants and animals. The remediation of contaminated soil is a relatively new scientific field which is strongly developing in the last 30 years and becoming a more important subject. In order to achieve quality remediation of contaminated soil it is very important to conduct an inventory as accurately as possible, that is, to determine the current state of soil contamination.

  19. Drivers of Phosphorus Uptake by Barley Following Secondary Resource Application

    PubMed Central

    Brod, Eva; Øgaard, Anne Falk; Krogstad, Tore; Haraldsen, Trond Knapp; Frossard, Emmanuel; Oberson, Astrid

    2016-01-01

    Minable rock phosphate is a finite resource. Replacing mineral phosphorus (P) fertilizer with P-rich secondary resources is one way to manage P more efficiently, but the importance of physicochemical and microbial soil processes induced by secondary resources for plant P uptake is still poorly understood. Using radioactive-labeling techniques, the fertilization effects of dairy manure, fish sludge, meat bone meal, and wood ash were studied as P uptake by barley after 44 days and compared with those of water-soluble mineral P (MinP) and an unfertilized control (NoP) in a pot experiment with an agricultural soil containing little available P at two soil pH levels, approximately pH 5.3 (unlimed soil) and pH 6.2 (limed soil). In a parallel incubation experiment, the effects of the secondary resources on physicochemical and microbial soil processes were studied. The results showed that the relative agronomic efficiency compared with MinP decreased in the order: manure ≥fish sludge ≥wood ash ≥meat bone meal. The solubility of inorganic P in secondary resources was the main driver for P uptake by barley (Hordeum vulgare). The effects of secondary resources on physicochemical and microbial soil processes were of little overall importance. Application of organic carbon with manure resulted in microbial P immobilization and decreased uptake by barley of P derived from the soil. On both soils, P uptake by barley was best explained by a positive linear relationship with the H2O + NaHCO3-soluble inorganic P fraction in fertilizers or by a linear negative relationship with the HCl-soluble inorganic P fraction in fertilizers. PMID:27243015

  20. A study of the utilization of ERTS-1 data from the Wabash River Basin. [soil mapping, crop identification, water resources

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. In soil association mapping, computerized analysis of ERTS-1 MSS data has yielded images which will prove useful in the ongoing Cooperative Soil Survey program, involving the Soil Conservation Service of USDA and other state and local agencies. In the present mode of operation, a soil survey for a county may take up to 5 years to be completed. Results indicate that a great deal of soils information can be extracted from ERTS-1 data by computer analysis. This information is expected to be very valuable in the premapping conference phase of a soil survey, resulting in more efficient field operations during the actual mapping. In the earth surface features mapping effort it was found that temporal data improved the classification accuracy of forest classification in Tippecanoe County, Indiana. In water resources study a severe scanner look angle effect was observed in the aircraft scanner data of a test lake which was not present in ERTS-1 data of the same site. This effect was greatly accentuated by surface roughness caused by strong winds. Quantitative evaluation of urban features classification in ERTS-1 data was obtained. An 87.1% test accuracy was obtained for eight categories in Marion County, Indiana.

  1. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...

  2. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...

  3. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...

  4. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...

  5. 30 CFR 823.14 - Soil replacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Soil replacement. 823.14 Section 823.14 Mineral... Soil replacement. (a) Soil reconstruction specifications established by the U.S. Soil Conservation Service shall be based upon the standards of the National Cooperative Soil Survey and shall include, as a...

  6. Helping People Understand Soils - Perspectives from the US National Cooperative Soil Survey

    NASA Astrophysics Data System (ADS)

    Reich, Paul; Cheever, Tammy; Greene, Linda; Southard, Susan; Levin, Maxine; Lindbo, David L.; Monger, Curtis

    2017-04-01

    Throughout the history of the US National Cooperative Soil Survey (NCSS), soil science education has been a part of the mission to better understand one of our most precious natural resources: the Soil. The poster will highlight the many products and programs related to soils that USDA NRCS (soils.usda.gov) has developed over the years for K-12 and college/professional education. NRCS scientific publications covering topics on soil properties, soil classification, soil health and soil quality have become an important part of the university soil science curriculum. Classroom lesson plans and grade appropriate materials help K-12 teachers introduce soil concepts to students and include detailed instructions and materials for classroom demonstrations of soil properties. A Handbook for Collegiate Soils Contests support universities that conduct Collegiate Soil Judging contests.

  7. Rethinking Soils: an under-investigated commons?

    NASA Astrophysics Data System (ADS)

    Short, Chrisopher; Mills, Jane; Ingram, Julie

    2015-04-01

    In a number of global contexts there is a re-awakening of interest in soils in both increasing the resilience of complex social-ecological systems (SES) and as a result of the threats to them, as shown by the UN International Year of Soils in 2015. Consequently the management of soils and their wider role within property regimes and natural resource management might need to be reassessed. At the heart of this is the rise in awareness regarding the connectedness of SES, and in frameworks such as the Ecosystem Approach and the identification and analysis of Ecosystem Services. Whilst not new to some, it has widened the understanding among many, that soils have a valuable role to play in complex SES because they are a slow variable crucial to underlying structure of the SES. The conventional approach that soils are linked to the ecosystem services category of provisioning services (production of food, timber and fibre) remains valid. Not surprisingly this link is strong within natural resource management and property rights regimes but soils remain at risk for a range of threats, for example soil erosion and compaction, salinization, sealing, desertification, loss of organic matter and biodiversity and contamination. However, soils are increasingly seen as a slow variable that can lead to increased resilience within a SES and have a profound importance to human life through a range of regulating services including water quality and purification, water flow and attenuation and , pest and disease control. Given the long-standing importance of soil as a natural resource there are also accompanying legal systems, property regimes, societal values, knowledge, custom and traditions. However, in the light of the wider understanding soil functions are these social frameworks appropriate and fit for purpose or would a shared resource of commons approach be more appropriate. To some extent this examination would also extend to the presence of soils within the cultural services

  8. Soil phosphorus - new insights into a critical cycle across many soil functions

    NASA Astrophysics Data System (ADS)

    Leinweber, Peter; Zimmer, Dana

    2017-04-01

    The fate of phosphorus (P-) compounds in the soil - plant - water - system is linked with most soil functions such as productivity for agricultural crops, reactor for nutrient cycling, filter and buffer for water, and biodiversity. The P-compounds, mostly phosphates in a multitude of chemical bonds, may have contradicting influences on soil functions. For instance, P-concentrations may be suboptimal for crop yields but at the same time exceeding the soil filter/buffer capacity for water resources. Modern agriculture has increased this misbalance. Therefore, a better soil P management that balances all soil functions requires a deeper understanding of the P-cycling in the environment. The collaborative project "InnoSoilPhos" in the frame of the BonaRes-program of the German Federal Ministry of Education and Research (BMBF) aims at disclosing the chemical composition, biogeochemical transformations and microbiological fundamentals of P-cycling and P-transport processes across all relevant scales from atomic to catchment and landscapes. The contribution will give an overview on the project and some examples for the latest findings on P-reactions at mineral surfaces (experimental and theoretical), microorganism diversity involved in soil P-transformations, crop yield responses to P-fertilizer regimes (including new P-recycling products) and, finally, hot spots and hot moments of P-release from soils into adjoining freshwater systems. These findings allow some preliminary demands and frame conditions for an improved soil P management to better balance the soil functions and safe the global mineable P resources.

  9. Understanding and enhancing soil health: the solution for reversing soil degradation

    USDA-ARS?s Scientific Manuscript database

    This special issue of Sustainability documents both the magnitude and global prevalence of soil degradation and helps illustrate (1) various factors contributing to the problem, (2) its past and current impacts, and (3) projected consequences to humankind if degradation of our fragile soil resource...

  10. Linking soil bacterial biodiversity and soil carbon stability.

    PubMed

    Mau, Rebecca L; Liu, Cindy M; Aziz, Maliha; Schwartz, Egbert; Dijkstra, Paul; Marks, Jane C; Price, Lance B; Keim, Paul; Hungate, Bruce A

    2015-06-01

    Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity. Increased diversity after repeated C amendments contrasts with resource competition theory, and may be explained by increased predation as evidenced by a decrease in bacterial 16S rRNA gene copies. Our results suggest that biodiversity and composition of the soil microbial community change in concert with its functioning, with consequences for native soil C stability.

  11. Linking soil systems to societal value systems

    NASA Astrophysics Data System (ADS)

    Helming, Katharina; Daedlow, Katrin; Techen, Anja; Kaiser, David Brian

    2017-04-01

    Sustainable management of soils is needed to avoid soil degradation and to maintain soil functions. This requires the assessment of how human activities drive soil management, how soil management affect soil functions and soil degradation, which trade-offs occur and how they compromise sustainable development targets. In the frame of the German research programme "Soils as a sustainable resource for the bio-economy - BonaRes", we developed an enhanced approach of the DPSIR (driver-pressure-state-impact-response) cycle which helps to assess these interrelations. Because not all soil functions can be maximized simultaneously in space and time and trade-offs are inevitable, it depends on the societal value system to decide which management practices and respective soil functional performances are valued sustainably. We analysed the applicability of three valuation concepts being prominent in research about social-ecological systems, namely resource efficiency, ecosystem services, and ethics and equity. The concept of resource efficiency is based in the life-cycle thinking and is often applied at the level of the farming systems and in the context of bio-economy strategies. It covers the use of natural (water, energy, nutrients, land) and economic resources. At the landscape level, the concept of ecosystem services is prominent. Here, the contribution of soils to the provisioning, regulating and cultural services of the natural ecosystems is considered. Ethical considerations include the intrinsic values of nature as well as issues of local and global equity between different societal groups, generations, and localities. The three concepts cover different problem dimensions and complexity levels of soil management and decision making. Alone, none of them are capable to discover complex questions of sustainable soil management and development. Rather, the exact spatial and temporal framing of the sustainability problem at stake determines which combination of the value

  12. Resource recovery from urban stock, the example of cadmium and tellurium from thin film module recycling.

    PubMed

    Simon, F-G; Holm, O; Berger, W

    2013-04-01

    Raw material supply is essential for all industrial activities. The use of secondary raw material gains more importance since ore grade in primary production is decreasing. Meanwhile urban stock contains considerable amounts of various elements. Photovoltaic (PV) generating systems are part of the urban stock and recycling technologies for PV thin film modules with CdTe as semiconductor are needed because cadmium could cause hazardous environmental impact and tellurium is a scarce element where future supply might be constrained. The paper describes a sequence of mechanical processing techniques for end-of-life PV thin film modules consisting of sandblasting and flotation. Separation of the semiconductor material from the glass surface was possible, however, enrichment and yield of valuables in the flotation step were non-satisfying. Nevertheless, recovery of valuable metals from urban stock is a viable method for the extension of the availability of limited natural resources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Soils [Chapter 4.2

    Treesearch

    Daniel G. Neary; Johannes W. A. Langeveld

    2015-01-01

    Soils are crucial for profitable and sustainable biomass feedstock production. They provide nutrients and water, give support for plants, and provide habitat for enormous numbers of biota. There are several systems for soil classification. FAO has provided a generic classification system that was used for a global soil map (Bot et al., 2000). The USDA Natural Resources...

  14. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  15. Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil

    PubMed Central

    Zhao, Jun; Wang, Baozhan

    2015-01-01

    Paddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaeal amoA gene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance of Nitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), and Nitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of 13C-labeled DNA further revealed that 13CO2 was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA and Nitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated with Nitrosospira sp. strain L115 and the Nitrosospira multiformis lineage and that the 13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “Candidatus Nitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “Candidatus Nitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields. PMID:25724959

  16. Modulation of Soil Initial State on WRF Model Performance Over China

    NASA Astrophysics Data System (ADS)

    Xue, Haile; Jin, Qinjian; Yi, Bingqi; Mullendore, Gretchen L.; Zheng, Xiaohui; Jin, Hongchun

    2017-11-01

    The soil state (e.g., temperature and moisture) in a mesoscale numerical prediction model is typically initialized by reanalysis or analysis data that may be subject to large bias. Such bias may lead to unrealistic land-atmosphere interactions. This study shows that the Climate Forecast System Reanalysis (CFSR) dramatically underestimates soil temperature and overestimates soil moisture over most parts of China in the first (0-10 cm) and second (10-25 cm) soil layers compared to in situ observations in July 2013. A correction based on the global optimal dual kriging is employed to correct CFSR bias in soil temperature and moisture using in situ observations. To investigate the impacts of the corrected soil state on model forecasts, two numerical model simulations—a control run with CFSR soil state and a disturbed run with the corrected soil state—were conducted using the Weather Research and Forecasting model. All the simulations are initiated 4 times per day and run 48 h. Model results show that the corrected soil state, for example, warmer and drier surface over the most parts of China, can enhance evaporation over wet regions, which changes the overlying atmospheric temperature and moisture. The changes of the lifting condensation level, level of free convection, and water transport due to corrected soil state favor precipitation over wet regions, while prohibiting precipitation over dry regions. Moreover, diagnoses indicate that the remote moisture flux convergence plays a dominant role in the precipitation changes over the wet regions.

  17. Soil aggregation and glomalin in a soil quality management study in a cold, semi-arid region

    USDA-ARS?s Scientific Manuscript database

    Global food insecurity and rapidly diminishing water, soil, and energy resources are putting pressure on agroecosystems to efficiently produce more food while maintaining or enhancing soil quality, particularly soil aggregation. A field study established in 1993 near Mandan, ND sought to evaluate im...

  18. Physical root-soil interactions

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  19. Physical root-soil interactions.

    PubMed

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-11-16

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  20. Seasonal and geothermal production variations in concentrations of He and CO2 in soil gases, Roosevelt Hot Springs Known Geothermal Resource Area, Utah, U.S.A.

    USGS Publications Warehouse

    Hinkle, M.E.

    1991-01-01

    To increase understanding of natural variations in soil gas concentrations, CO2, He, O2 and N2 were measured in soil gases collected regularly for several months from four sites at the Roosevelt Hot Springs Known Geothermal Resource Area, Utah. Soil temperature, air temperature, per cent relative humidity, barometric pressure and amounts of rain and snowfall were also monitored to determine the effect of meteorological parameters on concentrations of the measured gases. Considerable seasonal variation existed in concentrations of CO2 and He. The parameters that most affected the soil-gas concentrations were soil and air temperatures. Moisture from rain and snow probably affected the soil-gas concentrations also. However, annual variations in meteorological parameters did not appear to affect measurements of anomalous concentrations in samples collected within a time period of a few days. Production from some of the geothermal wells probably affected the soil-gas concentrations. ?? 1990.

  1. Resources in Technology 7.

    ERIC Educational Resources Information Center

    International Technology Education Association, Reston, VA.

    This volume of Resources in Technology contains the following eight instructional modules: (1) "Processing Technology"; (2) "Water--A Magic Resource"; (3) "Hazardous Waste Disposal--The NIMBY (Not in My Backyard) Syndrome"; (4) "Processing Fibers and Fabrics"; (5) "Robotics--An Emerging…

  2. Soil management: The key to soil quality and sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Basch, Gottlieb; Barão, Lúcia; Soares, Miguel

    2017-04-01

    Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as

  3. How People Have Used Soils, How Soils Have Affected U.S. History.

    ERIC Educational Resources Information Center

    Polak, Julia

    1996-01-01

    Presents a lesson plan that investigates social aspects of the land and soil and how people use these resources. Following an introduction by the teacher on land and soil use, students answer related questions on handouts. Later handouts direct the students to group research projects and class presentations. (MJP)

  4. Feedbacks Between Soil Structure and Microbial Activities in Soil

    NASA Astrophysics Data System (ADS)

    Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.

    2017-12-01

    Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate

  5. Temporal and Spatial Separation of Water Use Averts Competition for Soil Water Resources in a Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Dick, R.; Ghezzehei, T. A.

    2016-12-01

    water balance, transfer of hydraulic lift water between crops and shrubs, and the alteration of soil physical properties by shrubs. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  6. A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

  7. Medical Terminology: Suffixes. Health Occupations Education Module.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on medical terminology (suffixes) is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module consists of an introduction to the module topic, a list of resources needed, and three learning experiences. The first two learning…

  8. The Soil Atlas of Africa: raising awareness and educate to the importance of soil

    NASA Astrophysics Data System (ADS)

    Dewitte, Olivier; Jones, Arwyn; Bosco, Claudio; Spaargaren, Otto; Montanarella, Luca

    2010-05-01

    The richness of African soil resources need to be protected for future generations. A number of threats are affecting the functioning of African soils, not only for the purpose of agricultural production, but also for other important environmental services that soil delivers to all of us. This is of particular importance once we know that many health-related problems in Africa are indirectly related to the services of soils. To raise the awareness of the general public, policy makers and other scientists to the importance of soil in Africa, the Joint Research Centre of the European Commission is to produce the first ever Soil Atlas of Africa. This is in collaboration with the African Union Commission, the Food and Agriculture Organization of the United Nations (FAO), the Africa Soil Science Society, ISRIC - World Soil Information and scientists from both Europe and Africa. The Atlas compiles existing information on different soil types as easily understandable maps (both at regional and continental scale) covering the African continent. The Soil Atlas of Africa intends to produce derived maps at continental scale with descriptive text (e.g. vulnerability to desertification, soil nutrient status, carbon stocks and sequestration potential, irrigable areas and water resources) as well as specific maps to illustrate threats such as soil erosion for instance. For each regional overview, large scale examples of soil maps and derived products are presented too. The Atlas will be published as a hardcover book containing 174 A3 pages, which will allow soils maps to be displayed at the A2 scale. Both French and English versions of the Atlas will be edited. The Atlas will be sold at a low cost and will be for free for educational purpose (Schools and Universities). A digital version on CD and eventually freely downloadable on internet will also be available. Together with the publication of the Atlas, associated datasets on soil characteristics for Africa will be made

  9. Agriculture: Soils

    EPA Pesticide Factsheets

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  10. Biogeochemistry: The soil carbon erosion paradox

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Berhe, Asmeret Asefaw

    2017-04-01

    Erosion is typically thought to degrade soil resources. However, the redistribution of soil carbon across the landscape, caused by erosion, can actually lead to a substantial sink for atmospheric CO2.

  11. Standard Chinese: A Modular Approach. Student Workbook. Module 3: Money; Module 4: Directions.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    Texts in spoken Standard Chinese were developed to improve and update Chinese materials and to reflect current usage in Beijing and Taipei. The focus is on communicating in Chinese in practical situations. The overall course is organized into 10 situational modules, student workbooks, and resource modules. This workbook covers the money and…

  12. Standard Chinese: A Modular Approach. Student Text. Module 3: Money; Module 4: Directions.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    Texts in spoken Standard Chinese were developed to improve and update Chinese materials to reflect current usage in Beijing and Taipei. The focus is on communicating in practical situations, and the texts summarize and supplement tapes. The overall course is organized into 10 situational modules, student workbooks, and resource modules. This text…

  13. The Italian contribution to the World Soils Book Series: The Soils of Italy

    NASA Astrophysics Data System (ADS)

    Costantini, Edoardo; Dazzi, Carmelo

    2015-04-01

    Passing to the age of "Anthropocene", man has forgotten the ancient bond that ties him to the soil, and turning from "homo sapiens" to "homo technologicus" he has stopped considering how much his well-being and the quality of life on Earth are fundamentally linked to the quality of soils. Yet today, as never before, maintaining the quality of soils is of paramount relevance for the sustainable development of humanity. Unfortunately, as soils are a crypto-resource, not many lay-people recognize its importance in the biosphere equilibrium and, unfortunately, seldom consider it among the environmental resources that must be protected! To fill such a gap in knowledge, the Springer editor, under the leading of professor Alfred Hartemink, has published the World Soils Book Series, whose aim is to spread the knowledge on the soils in a particular country in a concise and highly reader-friendly way. The volume "The Soils of Italy" belongs to this international series of books. Its ambitious goals are to establish a broad base for the knowledge of the soils of Italy, and to give useful information on i) their characteristics, diffusion and fertility, ii) the main threats they are subjected, and iii) the future scenarios of relationships between soil sciences and the disciplines, which are not traditionally linked to the world of agriculture, such as urban development, medicine, economics, sociology, archaeology. In Italy there is about 75% of the global pedodiversity. A vast majority of the WRB reference soil groups (25 out of 32), as well as soil orders of Soil Taxonomy (10 out of 12) are represented in the main Italian soil typological units (STUs). More than a fourth of STUs belongs to Cambisols, more than a half to only four reference soil groups (Cambisols, Luvisols, Regosols, Phaeozems), and 88% to nine RSGs (the former plus Calcisols, Vertisols, Fluvisols, Leptosols, and Andosols), while the remaining 16 RSGs are represented in 12% of STUs. The clear skewness and

  14. Plan of research for integrated soil moisture studies. Recommendations of the Soil Moisture Working Group

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Soil moisture information is a potentially powerful tool for applications in agriculture, water resources, and climate. At present, it is difficult for users of this information to clearly define their needs in terms of accuracy, resolution and frequency because of the current sparsity of data. A plan is described for defining and conducting an integrated and coordinated research effort to develop and refine remote sensing techniques which will determine spatial and temporal variations of soil moisture and to utilize soil moisture information in support of agricultural, water resources, and climate applications. The soil moisture requirements of these three different application areas were reviewed in relation to each other so that one plan covering the three areas could be formulated. Four subgroups were established to write and compile the plan, namely models, ground-based studies, aircraft experiments, and spacecraft missions.

  15. Mars resources

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1986-01-01

    The most important resources of Mars for the early exploration phase will be oxygen and water, derived from the Martian atmosphere and regolith, which will be used for propellant and life support. Rocks and soils may be used in unprocessed form as shielding materials for habitats, or in minimally processed form to expand habitable living and work space. Resources necessary to conduct manufacturing and agricultural projects are potentially available, but will await advanced stages of Mars habitation before they are utilized.

  16. Impacts of land use and Ugandan farmer's cultural and economic status on soil organic matter and soil fertility

    NASA Astrophysics Data System (ADS)

    Tiemann, Lisa; Grandy, Stuart; Hartter, Joel

    2014-05-01

    Soil is the keystone in building sustainable agricultural systems, but increased demand for these soil services has led to soil degradation, particularly in sub-Saharan Africa. In Uganda, where population growth rates are 9th highest in the world, increasing pressure on soil resources and potential losses of SOM are particularly concerning because there is virtually no use of fertilizers or other inputs on farms. In addition, smallholder farmers in Uganda are placing greater emphasis on resource-intensive cash crops like maize, and thereby straining soil resources. In this study we investigate the relationships between land use decisions and soil fertility to better understand declines in soil fertility and how they might be slowed near Kibale National Park (KNP), Uganda, a global biodiversity hotspot. Within 2.5 km of the KNP border, we conducted household surveys and collected soil samples in 160 farms along a 20 km north-south transect. We also collected soils from inside KNP, adjacent to farms we visited, to serve as controls. Cultural differences in land use, such as greater residue removal and a lower likelihood of legumes in rotation with the Bakiga, likely led to the greater declines in SOM and soil fertility we observed in Bakiga compared to Batooro maize fields. We also found that households in areas of high soil fertility are more reliant on maize sales. Surprisingly, these same areas have also seen relatively smaller declines in total SOM, but do show larger relative declines in nutrients (e.g. N, P and K) when compared to the adjacent KNP soils. We found lower depletion of nutrients and overall higher soil fertility measures and more stability of SOM in banana fields compared to maize fields, which is due to transferring maize crop residues to banana plantations as well as no-till practices in banana fields. Our work reveals that complex interactions between edaphic soil properties, land use management, cultural background, perceptions of soil

  17. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    NASA Astrophysics Data System (ADS)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an

  18. Soil biodiversity and human health

    NASA Astrophysics Data System (ADS)

    Wall, Diana H.; Nielsen, Uffe N.; Six, Johan

    2015-12-01

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  19. NASA Earth Resources Survey Symposium. Volume 1-D: Water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Conference papers on water resources and management are summarized. Summaries cover land use, flood control and prediction, watersheds and the effects of snow melt, soil moisture content, and the usefulness of satellite remote sensors in detecting ground and surface water.

  20. Soil and ecological sites of the Santa Rita Experimental Range

    Treesearch

    Donald J. Breckenfeld; Daniel Robinett

    2003-01-01

    A soil survey and rangeland resource inventory of the Santa Rita Experimental Range (SRER) was conducted by staff from the Tucson office of the Natural Resources Conservation Service (NRCS) during April and May of 1997. Thirty-two soils series and taxadjuncts were mapped on the SRER and delineated in 24 different mapping units. These soils all occur in an Aridic and...

  1. Standard Chinese: A Modular Approach. Student Workbook. Module 1: Orientation; Module 2: Biographic Information.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    Texts in spoken Standard Chinese were developed to improve and update Chinese materials to reflect current usage in Beijing and Taipei. The focus is on communicating in Chinese in practical situations. The overall course is organized into 10 modules, student workbooks, and resource modules. This workbook covers the orientation and biographic…

  2. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  3. Soil functional types: surveying the biophysical dimensions of soil security

    NASA Astrophysics Data System (ADS)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  4. Soil - A necessary resource for our future

    USDA-ARS?s Scientific Manuscript database

    Fertile or degraded soils have been the basis of the rise or fall of civilizations throughout history. They have been the engine that powered the rise of many countries including our own and the fall of those who were not good stewards of their environment or suffered insurmountable setbacks, such a...

  5. Effect of soiling in CPV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivar, M.; Herrero, R.; Anton, I.

    2010-07-15

    The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?'more » The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of I{sub SC}. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in I{sub SC} of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure. (author)« less

  6. Autophagic compound database: A resource connecting autophagy-modulating compounds, their potential targets and relevant diseases.

    PubMed

    Deng, Yiqi; Zhu, Lingjuan; Cai, Haoyang; Wang, Guan; Liu, Bo

    2018-06-01

    Autophagy, a highly conserved lysosomal degradation process in eukaryotic cells, can digest long-lived proteins and damaged organelles through vesicular trafficking pathways. Nowadays, mechanisms of autophagy have been gradually elucidated and thus the discovery of small-molecule drugs targeting autophagy has always been drawing much attention. So far, some autophagy-related web servers have been available online to facilitate scientists to obtain the information relevant to autophagy conveniently, such as HADb, CTLPScanner, iLIR server and ncRDeathDB. However, to the best of our knowledge, there is not any web server available about the autophagy-modulating compounds. According to published articles, all the compounds and their relations with autophagy were anatomized. Subsequently, an online Autophagic Compound Database (ACDB) (http://www.acdbliulab.com/) was constructed, which contained information of 357 compounds with 164 corresponding signalling pathways and potential targets in different diseases. We achieved a great deal of information of autophagy-modulating compounds, including compounds, targets/pathways and diseases. ACDB is a valuable resource for users to access to more than 300 curated small-molecule compounds correlated with autophagy. Autophagic compound database will facilitate to the discovery of more novel therapeutic drugs in the near future. © 2017 John Wiley & Sons Ltd.

  7. Caring for soil improves human health

    USDA-ARS?s Scientific Manuscript database

    Soils have been our precious natural resources that are critical to our public health because of their impact on human and animal food, nutrition, water and air. Naturally, we strongly tied with our soils that are part of us and play major roles in our routine daily life. We rely on soils every day,...

  8. Standard Chinese: A Modular Approach. Student Text. Module 1: Orientation; Module 2: Biographic Information.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    Texts in spoken Standard Chinese were developed to improve and update Chinese materials to reflect current usage in Beijing and Taipei. The focus is on communicating in Chinese in practical situations, and the texts summarize and supplement tapes. The overall course is organized into 10 situational modules, student workbooks, and resource modules.…

  9. Medical Terminology: Prefixes. Health Occupations Education Module.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on medical terminology (prefixes) is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module consists of an introduction to prefixes, a list of resources needed, and three learning experiences. Each learning experience contains an…

  10. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil.

    PubMed

    Xu, Yilu; Seshadri, Balaji; Sarkar, Binoy; Wang, Hailong; Rumpel, Cornelia; Sparks, Donald; Farrell, Mark; Hall, Tony; Yang, Xiaodong; Bolan, Nanthi

    2018-04-15

    Soil organic carbon is essential to improve soil fertility and ecosystem functioning. Soil microorganisms contribute significantly to the carbon transformation and immobilisation processes. However, microorganisms are sensitive to environmental stresses such as heavy metals. Applying amendments, such as biochar, to contaminated soils can alleviate the metal toxicity and add carbon inputs. In this study, Cd and Pb spiked soils treated with macadamia nutshell biochar (5% w/w) were monitored during a 49days incubation period. Microbial phospholipid fatty acids (PLFAs) were extracted and analysed as biomarkers in order to identify the microbial community composition. Soil properties, metal bioavailability, microbial respiration, and microbial biomass carbon were measured after the incubation period. Microbial carbon use efficiency (CUE) was calculated from the ratio of carbon incorporated into microbial biomass to the carbon mineralised. Total PLFA concentration decreased to a greater extent in metal contaminated soils than uncontaminated soils. Microbial CUE also decreased due to metal toxicity. However, biochar addition alleviated the metal toxicity, and increased total PLFA concentration. Both microbial respiration and biomass carbon increased due to biochar application, and CUE was significantly (p<0.01) higher in biochar treated soils than untreated soils. Heavy metals reduced the microbial carbon sequestration in contaminated soils by negatively influencing the CUE. The improvement of CUE through biochar addition in the contaminated soils could be attributed to the decrease in metal bioavailability, thereby mitigating the biotoxicity to soil microorganisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Soil erosion and sediment production on watershed landscapes: Processes and control

    Treesearch

    Peter F. Ffolliott; Kenneth N. Brooks; Daniel G. Neary; Roberto Pizarro Tapia; Pablo Garcia-Chevesich

    2013-01-01

    Losses of the soil resources from otherwise productive and well functioning watersheds is often a recurring problem confronting hydrologists and watershed managers. These losses of soil have both on-site and off-site effects on the watershed impacted. In addition to the loss of inherent soil resources through erosion processes, on-site effects can include the breakdown...

  12. Single Plant Root System Modeling under Soil Moisture Variation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  13. Regional Soiling Stations for PV: Soling Loss Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TamizhMani, G.; King, B.; Venkatesan, A.

    The soiling loss factor (SLF) of photovoltaic (PV) modules/system is an interplay between the dust frequency and intensity of the site, rain frequency and intensity of the site, tilt angle and height of the module installation, and wind speed and humidity of the site. The integrated area of the downward peaks of the SLF time series plots for a year provides the annual soiling loss for the system at each tilt angle. Sandia National Laboratories, in collaboration with Arizona State University, installed five regional soiling stations around the country and collected soiling loss data over a year. Four of thesemore » soiling stations are located at the U.S. Department of Energy Regional Test Centers (Florida, Albuquerque, Colorado and Vermont), while the fifth station is located at the Arizona State University Photovoltaic Reliability Lab (Arizona). This paper presents an analysis on the SLF for each test site at ten different tilt angles. Based on the analysis of a yearlong data obtained in 2015, it appears to indicate that the Arizona site experienced the highest annual soiling loss with a significant dependence on the tilt angle while the other four sites experienced a negligibly small annual soiling loss with practically no dependence on the tilt angle.« less

  14. The Microscope: I--Structure. Health Occupations Education Module.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on the structure of the microscope is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module consists of an introduction to the module topic, a list of resources needed, and two learning experiences. Each learning experience contains…

  15. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization.

    PubMed

    Fuess, Lucas T; Rodrigues, Isabella J; Garcia, Marcelo L

    2017-09-19

    This paper reports the characterization of the polluting potential of sugarcane vinasse, the main wastewater from ethanol production. Compositional data from vinasse samples collected from sugarcane biorefineries were used to predict negative effects on the soil, water resources and crops potentially associated with fertirrigation, the primary final destination of vinasse in Brazil. High risks of soil salinization were associated with the land disposal of vinasse, as evidenced by the high levels of total dissolved solids (TDS; >4,000 mg L -1 ) and electrical conductivity (>6.7 dS m -1 ). The high TDS levels coupled with the high biodegradable organic content of vinasse (>14 g L -1 ) also favor organic overloading events, leading to local anaerobiosis conditions. Conversely, soil sodification should not be observed in areas fertirrigated with sugarcane vinasse, given the low Na concentrations (<66 mg L -1 ) relative to Mg (>145.1 mg L -1 ) and Ca (>458.4 mg L -1 ) levels. Priority pollutants (Cu, Cr, Ni, Pb and Zn) and phytotoxic elements (Al and Fe) were also found in the analyzed samples; however, relevant environmental impacts should not be associated with these particular constituents. Overall, the relatively simple methodology used herein could efficiently replace massive field data collection to provide a basic understanding of the fate of vinasse in the environment in order to highlight the priority points to be considered in the management of this effluent. In summary, the prompt implementation of treatment plants in distilleries, in addition to a continuous and broad compositional characterization of vinasse, is essential to guarantee its adequate reuse.

  16. 7 CFR 1469.4 - Significant resource concerns.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Significant resource concerns. 1469.4 Section 1469.4... Provisions § 1469.4 Significant resource concerns. (a) Soil quality and water quality are nationally significant resource concerns for all land uses. (b) For each sign-up, the Chief may determine additional...

  17. Resource-use efficiencies of three indigenous tree species planted in resource islands created by shrubs: implications for reforestation of subtropical degraded shrublands

    Treesearch

    Nan Liu; Qinfeng Guo

    2012-01-01

    Shrub resource islands are characterized by resources accumulated shrubby areas surrounded by relative barren soils. This research aims to determine resource-use efficiency of native trees species planted on shrub resource islands, and to determine how the planted trees may influence the resource islands in degraded shrublands in South China. Shrub (Rhodomyrtus...

  18. 30 CFR 823.12 - Soil removal and stockpiling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Soil removal and stockpiling. 823.12 Section... ON PRIME FARMLAND § 823.12 Soil removal and stockpiling. (a) Prime farmland soils shall be removed from the areas to be disturbed before drilling, blasting, or mining. (b) The minimum depth of soil and...

  19. 30 CFR 823.12 - Soil removal and stockpiling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Soil removal and stockpiling. 823.12 Section... ON PRIME FARMLAND § 823.12 Soil removal and stockpiling. (a) Prime farmland soils shall be removed from the areas to be disturbed before drilling, blasting, or mining. (b) The minimum depth of soil and...

  20. 30 CFR 823.12 - Soil removal and stockpiling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Soil removal and stockpiling. 823.12 Section... ON PRIME FARMLAND § 823.12 Soil removal and stockpiling. (a) Prime farmland soils shall be removed from the areas to be disturbed before drilling, blasting, or mining. (b) The minimum depth of soil and...

  1. 30 CFR 823.12 - Soil removal and stockpiling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Soil removal and stockpiling. 823.12 Section... ON PRIME FARMLAND § 823.12 Soil removal and stockpiling. (a) Prime farmland soils shall be removed from the areas to be disturbed before drilling, blasting, or mining. (b) The minimum depth of soil and...

  2. 30 CFR 823.12 - Soil removal and stockpiling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Soil removal and stockpiling. 823.12 Section... ON PRIME FARMLAND § 823.12 Soil removal and stockpiling. (a) Prime farmland soils shall be removed from the areas to be disturbed before drilling, blasting, or mining. (b) The minimum depth of soil and...

  3. Medical Terminology: Root Words. Health Occupations Education Module.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on medical terminology (root words) is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module consists of an introduction to root words, a list of resources needed, procedures for using the module, a list of terminology used in the…

  4. Meteorological Satellite Education Resources: Web-based Learning Modules, Initiatives, and the Environmental Satellite Resource Center (ESRC)

    NASA Astrophysics Data System (ADS)

    Schreiber-Abshire, W.; Dills, P.

    2008-12-01

    The COMET® Program (www.comet.ucar.edu) receives funding from NOAA NESDIS and the NPOESS Integrated Program Office (IPO), with additional contributions from the GOES-R Program Office and EUMETSAT, to directly support education and training efforts in the area of satellite meteorology. This partnership enables COMET to create educational materials of global interest on geostationary and polar- orbiting remote sensing platforms and their instruments, data, products, and operational applications. Over the last several years, COMET's satellite education programs have focused on the capabilities and applications of the upcoming next generation operational polar-orbiting NPP/NPOESS system and its relevance to operational forecasters and other user communities. COMET's activities have recently expanded to include education on the future Geostationary Operational Environmental Satellites (GOES-R). By partnering with experts from the Naval Research Laboratory, NOAA-NESDIS and various user communities, COMET stimulates greater utilization of both current and future satellite observations and products. In addition, COMET has broadened the scope of its online training to include materials on the EUMETSAT Polar-orbiting System (EPS) and Meteosat geostationary satellites. EPS represents an important contribution to the Initial Joint Polar System (IJPS) between NOAA and EUMETSAT, while Meteosat imaging capabilities provide an early look for the next generation GOES-R satellites. Also in collaboration with EUMETSAT, COMET is developing future modules on the joint NASA-CNES Jason altimetry mission and on satellite capabilities for monitoring the global climate. COMET also provides Spanish translations of relevant GOES materials in order to support the GEOSS (Global Earth Observation System of Systems) Americas effort, which is associated with the move of GOES-10 to provide routine satellite coverage over South America. This poster presentation provides an overview of COMET

  5. Soil Degradation: A North American perspective

    USDA-ARS?s Scientific Manuscript database

    Soil can be degraded through erosion and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices that supersede natural regeneration. Soil degradation reflects unsustainable resource management that is global in scope a...

  6. Soil resources, land cover changes and rural areas: towards a spatial mismatch?

    PubMed

    Ferrara, Agostino; Salvati, Luca; Sabbi, Alberto; Colantoni, Andrea

    2014-04-15

    The present study analyzes the impact of long-term urban expansion on soil depletion in Emilia-Romagna, an agricultural-specialized region of northern Italy. Using settlement density maps at three points in time (1945, 1971 and 2001) dense and diffused urbanization trends were assessed and correlated with soil quality. Non-urbanized land decreased from 11.8% in 1945 to 6.3% in 2001. Urbanization dynamics between 1945 and 1971 reflect the increase of dense settlements around pre-existing urban centers. To the contrary, a discontinuous, low- and medium-density urban expansion along the road network and in the most fertile lowland areas was observed between 1971 and 2001. Overall, urbanization consumed soils with progressively higher quality. However, a diverging trend was observed in the two investigated time intervals: soil with high quality was occupied by compact and dense settlements during 1945-1971 and by discontinuous, medium- and low-density settlements during 1971-2001. These findings document the polarization in areas with low and high soil capital and may reflect disparities in agricultural production and increasing environmental degradation. Moreover, the analysis shows a diverging trend between land and soil consumption patterns suggesting that the edification of pervious land is an unreliable indicator of soil quality depletion. Taken together, the results of this study illustrate the (increasing) spatial mismatch between agricultural land and high-quality soils as a consequence of urbanization-driven landscape transformations and may inform measures to contain soil depletion driven by economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    PubMed

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required. © 2014 John Wiley & Sons Ltd.

  8. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing

  9. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  10. Soil Science and Global Issues

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  11. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    PubMed

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, Mª Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A General Water Resources Regulation Software System in China

    NASA Astrophysics Data System (ADS)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  13. Soil physics: a Moroccan perspective

    NASA Astrophysics Data System (ADS)

    Lahlou, Sabah; Mrabet, Rachid; Ouadia, Mohamed

    2004-06-01

    Research on environmental pollution and degradation of soil and water resources is now of highest priority worldwide. To address these problems, soil physics should be conceived as a central core to this research. This paper objectives are to: (1) address the role and importance of soil physics, (2) demonstrate progress in this discipline, and (3) present various uses of soil physics in research, environment and industry. The study of dynamic processes at and within the soil vadose zone (flow, dispersion, transport, sedimentation, etc.), and ephemeral phenomena (deformation, compaction, etc.), form an area of particular interest in soil physics. Soil physics has changed considerably over time. These changes are due to needed precision in data collection for accurate interpretation of space and time variation of soil properties. Soil physics interacts with other disciplines and sciences such as hydro(geo)logy, agronomy, environment, micro-meteorology, pedology, mathematics, physics, water sciences, etc. These interactions prompted the emergence of advanced theories and comprehensive mechanisms of most natural processes, development of new mathematical tools (modeling and computer simulation, fractals, geostatistics, transformations), creation of high precision instrumentation (computer assisted, less time constraint, increased number of measured parameters) and the scale sharpening of physical measurements which ranges from micro to watershed. The environment industry has contributed to an enlargement of many facets of soil physics. In other words, research demand in soil physics has increased considerably to satisfy specific and environmental problems (contamination of water resources, global warming, etc.). Soil physics research is still at an embryonic stage in Morocco. Consequently, soil physicists can take advantage of developments occurring overseas, and need to build up a database of soil static and dynamic properties and to revise developed models to meet

  14. Soil management challenges in response to climatic change

    USDA-ARS?s Scientific Manuscript database

    Agriculture has tremendous potential to help solve global food, feed, fiber, and bioenergy challenges and respond to changing climatic conditions provided we do not compromise our soil, water and air resources. This presentation will examine soil management, defined by the Soil Science Society of Am...

  15. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils.

    PubMed

    Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H

    2010-08-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Contaminant Removal From Natural Resources

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A. (Inventor); Quinn, Jacqueline W. (Inventor); Geiger, Cheri L. (Inventor); Reinhart, Debra (Inventor); Fillpek, Laura B. (Inventor); Coon, Christina (Inventor); Devor, Robert (Inventor)

    2006-01-01

    A zero-valent metal emulsion containing zero-valent metal particles is used to remediate contaminated natural resources, such as groundwater and soil. In a preferred embodiment, the zero-valent metal emulsion removes heavy metals, such as lead (pb), from contaminated natural resources. In another preferred embodiment, the zero-valent metal emulsion is a bimetallic emulsion containing zero-valent metal particles doped with a catalytic metal to remediate halogenated aromatic compounds, such as polychlorinated biphenyls (PCBs), from natural resources.

  17. Soils and water [Chapter 18

    Treesearch

    Goran Berndes; Heather Youngs; Maria Victoria Ramos Ballester; Heitor Cantarella; Annette L. Cowie; Graham Jewitt; Luiz Antonio Martinelli; Dan Neary

    2015-01-01

    Bioenergy production can have positive or negative impacts on soil and water. To best understand these impacts, the effects of bioenergy systems on water and soil resources should be assessed as part of an integrated analysis considering environmental, social and economic dimensions. Bioenergy production systems that are strategically integrated in the landscape to...

  18. Planning and programing in the soil conservation service

    NASA Technical Reports Server (NTRS)

    Gray, R. M.

    1972-01-01

    The historical base is presented for the framework plan for soil conservation. Conservation effects, resource management systems, and accomplishments, activities, and costs of the Soil Conservation Service are discussed.

  19. Study of sandy soil grain-size distribution on its deformation properties

    NASA Astrophysics Data System (ADS)

    Antropova, L. B.; Gruzin, A. V.; Gildebrandt, M. I.; Malaya, L. D.; Nikulina, V. B.

    2018-04-01

    As a rule, new oil and gas fields' development faces the challenges of providing construction objects with material and mineral resources, for example, medium sand soil for buildings and facilities footings of the technological infrastructure under construction. This problem solution seems to lie in a rational usage of the existing environmental resources, soils included. The study was made of a medium sand soil grain-size distribution impact on its deformation properties. Based on the performed investigations, a technique for controlling sandy soil deformation properties was developed.

  20. Teacher Aide Individually Prescribed Instructional Modules.

    ERIC Educational Resources Information Center

    Livingston Univ., AL. Coll. of Education.

    This document contains 59 individually prescribed instructional modules for use in teacher aide education programs. Each module has six sections: 1) Behavioral objectives, 2) purpose, 3) performance criteria, 4) experiences, 5) resources, and 6) taxonomy. The subjects covered include the use of instructional equipment such as language master,…

  1. Modeling soil organic matter reallocation in soil enhanced by fungal growth

    NASA Astrophysics Data System (ADS)

    Battaïa, G.; Falconer, R. E.; Otten, W.

    2012-04-01

    Soil, as a huge carbon reservoir having a large interface with the atmosphere, has a major role in understanding global carbon cycle. Yet, its structure gives rise to an extremely complex ecosystem in which chemical fluxes are difficult to describe. Amongst microbial organisms that inhabit soil, fungi represent an entire kingdom of life that has developed its own strategy to adapt its environment. They are thus known to have a particular importance for the reallocation of carbon (and other elements) as they are able to build a mycelium structure that can spread over several meters and through which nutrients can be translocated. This study, based on simulations, is dedicated to enlighten the role of fungal colonization to generate an ecosystem in which coexists disperse biological hotspots. The simulation environment is reconstructed from thresholded computed tomography images of soil samples. Soil organic matter acting as a resource for fungi is assumed to occur first in a particulate solid state (POM). It is degraded into dissolved organic carbon (DOC) through enzymatic activity of fungi. Fungal uptake converts DOC into an internal resource that diffuses through the mycelium and helps it for further colonization. The fungal model is an adaptation of a previously developed model. In addition to internal resource, it accounts for two states of biomass: non-insulated and insulated. One is converted into the other by insulation which is the analog of an ageing process. Being insulated, the interaction rates of the biomass with the environment (degradation and uptake) become slower and the ability to diffuse in the pore space is lost. This aims at producing a more stable state of the mycelium when all resource has been consumed. Spatially simulations reveal a transient state in POM-fungi interaction characterized by a large spread of DOC in the pore space. It is then followed by an enhanced fungal growth toward these areas. Finally a steady state occurs in which DOC

  2. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF

  3. Do current European policies support soil multifunctionality?

    NASA Astrophysics Data System (ADS)

    Helming, Katharina; Glaesner, Nadia; de Vries, Wim

    2017-04-01

    Soils are multifunctional. Maximising one function, e.g. production of biomass, is often at the costs of the other functions, e.g. water purification, carbon sequestration, nutrient recycling, habitat provision. Sustainable soil management actually means the minimization of trade-offs between multiple soil functions. While Europe does not have a policy that explicitly focuses on soil functions, a number of policies exist in the agricultural, environmental and climate domains that may affect soil functions, in particular food production, water purification, climate change mitigation, biodiversity conservation. The objective of this study was to identify gaps and overlaps in existing EU legislation that is related to soil functions. We conducted a cross-policy analysis of 19 legislative policies at European level. Results revealed two key findings: (i) soil functions are addressed in existing legislation but with the approach to their conservation rather than their improvement. (ii) Different legislations addressed isolated soil functions but there is no policy in place that actually addressed the soil multifunctionality, which is the integrated balancing of the multitude of functions. Because soil degradation is ongoing in Europe, it raises the question whether existing legislation is sufficient for maintaining soil resources and achieving sustainable soil management. Addressing soil functions individually in various directives fails to account for the multifunctionality of soil. Here, research has a role to play to better reveal the interacting processes between soil functions and their sensitivity to soil management decisions and to translate such understanding into policy recommendation. We conclude the presentation with some insights into a research approach that integrates the soil systems into the socio-economic systems to improve the understanding of soil management pressures, soil functional reactions and their impacts on societal value systems, including

  4. Scaled Lunar Module Jet Erosion Experiments

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Scholl, Harland F.

    1966-01-01

    An experimental research program was conducted on the erosion of particulate surfaces by a jet exhaust. These experiments were scaled to represent the lunar module (LM) during landing. A conical cold-gas nozzle simulating the lunar module nozzle was utilized. The investigation was conducted within a large vacuum chamber by using gravel or glass beads as a simulated soil. The effects of thrust, descent speed, nozzle terminal height, particle size on crater size, and visibility during jet erosion were determined.

  5. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere.

    PubMed

    Delgado-Baquerizo, Manuel; Reith, Frank; Dennis, Paul G; Hamonts, Kelly; Powell, Jeff R; Young, Andrew; Singh, Brajesh K; Bissett, Andrew

    2018-03-01

    The ecological drivers of soil biodiversity in the Southern Hemisphere remain underexplored. Here, in a continental survey comprising 647 sites, across 58 degrees of latitude between tropical Australia and Antarctica, we evaluated the major ecological patterns in soil biodiversity and relative abundance of ecological clusters within a co-occurrence network of soil bacteria, archaea and eukaryotes. Six major ecological clusters (modules) of co-occurring soil taxa were identified. These clusters exhibited strong shifts in their relative abundances with increasing distance from the equator. Temperature was the major environmental driver of the relative abundance of ecological clusters when Australia and Antarctica are analyzed together. Temperature, aridity, soil properties and vegetation types were the major drivers of the relative abundance of different ecological clusters within Australia. Our data supports significant reductions in the diversity of bacteria, archaea and eukaryotes in Antarctica vs. Australia linked to strong reductions in temperature. However, we only detected small latitudinal variations in soil biodiversity within Australia. Different environmental drivers regulate the diversity of soil archaea (temperature and soil carbon), bacteria (aridity, vegetation attributes and pH) and eukaryotes (vegetation type and soil carbon) across Australia. Together, our findings provide new insights into the mechanisms driving soil biodiversity in the Southern Hemisphere. © 2018 by the Ecological Society of America.

  6. Remote Sensing of Soils for Environmental Assessment and Management.

    NASA Technical Reports Server (NTRS)

    DeGloria, Stephen D.; Irons, James R.; West, Larry T.

    2014-01-01

    The next generation of imaging systems integrated with complex analytical methods will revolutionize the way we inventory and manage soil resources across a wide range of scientific disciplines and application domains. This special issue highlights those systems and methods for the direct benefit of environmental professionals and students who employ imaging and geospatial information for improved understanding, management, and monitoring of soil resources.

  7. Preliminary studies of the dynamic stiffness modules of soil samples from the Solvay Sodium Plant waste landfill in Krakow

    NASA Astrophysics Data System (ADS)

    Pilecka, Elżbieta; Zięba, Jakub

    2017-11-01

    The article presents the results of laboratory tests for determining the dynamic modules of the elasticity M and the shear G, for soil samples from the landfill of the closed Solvay Sodium Plant in Krakow. The tests were performed using a triaxial apparatus equipped with "bender" piezoelements. The samples subjected to these tests were taken from two boreholes, located in the area known as the "white seas", whose formation is the result of Solvay Plant activity throughout the 20th century. The location of the test holes was planned at the place in which a road known as the "Łagiewnicka route" was planned. Studies on soil stiffness were also conducted as part of the one of the dissertation from 2008 to 2010 in the Cracow University of Technology. The results of these tests and the results of the laboratory tests that are presented in the article will be used in the designing of a computer model. This model is intended to help in assessing the dynamic impact of motor vehicle traffic on the planned Łagiewnicka route on the structure of the existing buildings located in the former Solvay Plant.

  8. Evaluating measures to assess soil health in long-term agroecosystem trials

    USDA-ARS?s Scientific Manuscript database

    Monitoring and assessing soil health is an important component of any land management system with a vision of sustaining soil resources. Soil organic matter(SOM)characteristics are key to soil health and responsive to tillage regime and crop management. As metrics of soil health, we evaluated surfac...

  9. Using soil water sensors to improve irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and som...

  10. 30 CFR 823.15 - Revegetation and restoration of soil productivity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Revegetation and restoration of soil... STANDARDS-OPERATIONS ON PRIME FARMLAND § 823.15 Revegetation and restoration of soil productivity. (a) Following prime farmland soil replacement, the soil surface shall be stabilized with a vegetative cover or...

  11. 30 CFR 823.15 - Revegetation and restoration of soil productivity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Revegetation and restoration of soil... STANDARDS-OPERATIONS ON PRIME FARMLAND § 823.15 Revegetation and restoration of soil productivity. (a) Following prime farmland soil replacement, the soil surface shall be stabilized with a vegetative cover or...

  12. 30 CFR 823.15 - Revegetation and restoration of soil productivity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation and restoration of soil... STANDARDS-OPERATIONS ON PRIME FARMLAND § 823.15 Revegetation and restoration of soil productivity. (a) Following prime farmland soil replacement, the soil surface shall be stabilized with a vegetative cover or...

  13. 30 CFR 823.15 - Revegetation and restoration of soil productivity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Revegetation and restoration of soil... STANDARDS-OPERATIONS ON PRIME FARMLAND § 823.15 Revegetation and restoration of soil productivity. (a) Following prime farmland soil replacement, the soil surface shall be stabilized with a vegetative cover or...

  14. 30 CFR 823.15 - Revegetation and restoration of soil productivity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Revegetation and restoration of soil... STANDARDS-OPERATIONS ON PRIME FARMLAND § 823.15 Revegetation and restoration of soil productivity. (a) Following prime farmland soil replacement, the soil surface shall be stabilized with a vegetative cover or...

  15. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert

    PubMed Central

    Montiel-González, Cristina; Tapia-Torres, Yunuen; Souza, Valeria

    2017-01-01

    Background Soil microbial communities (SMC) play a central role in the structure and function of desert ecosystems. However, the high variability of annual precipitation could results in the alteration of SMC and related biological processes depending on soil water potential. The nature of the physiological adjustments made by SMC in order to obtain energy and nutrients remains unclear under different soil resource availabilities in desert ecosystems. In order to examine this dynamic, the present study examined the effects of variation in annual precipitation on physiological adjustments by the SMC across two vegetation-soil systems of different soil organic matter input in an oligotrophic desert ecosystem. Methods We collected soil samples in the Cuatro Ciénegas Basin (Mexico) under two vegetation covers: rosetophylous scrub (RS) and grassland (G), that differ in terms of quantity and quality of organic matter. Collections were conducted during the years 2011, 2012, 2013 and 2014, over which a noticeable variation in the annual precipitation occurred. The ecoenzymatic activity involved in the decomposition of organic matter, and the concentration of dissolved, available and microbial biomass nutrients, were determined and compared between sites and years. Results In 2011, we observed differences in bacterial taxonomic composition between the two vegetation covers. The lowest values of dissolved, available and microbial nutrients in both cover types were found in 2012. The G soil showed higher values of dissolved and available nutrients in the wet years. Significant positive correlations were detected between precipitation and the ratios Cmic:Nmic and Cmic:Pmic in the RS soil and Cmic:Pmic and Nmic:Pmic in the G soil. The slopes of the regression with Cmic and Nmic were higher in the G soil and lower in the RS soil. Moreover, the SMC under each vegetation cover were co-limited by different nutrients and responded to the sum of water stress and nutrient limitation

  16. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert.

    PubMed

    Montiel-González, Cristina; Tapia-Torres, Yunuen; Souza, Valeria; García-Oliva, Felipe

    2017-01-01

    Soil microbial communities (SMC) play a central role in the structure and function of desert ecosystems. However, the high variability of annual precipitation could results in the alteration of SMC and related biological processes depending on soil water potential. The nature of the physiological adjustments made by SMC in order to obtain energy and nutrients remains unclear under different soil resource availabilities in desert ecosystems. In order to examine this dynamic, the present study examined the effects of variation in annual precipitation on physiological adjustments by the SMC across two vegetation-soil systems of different soil organic matter input in an oligotrophic desert ecosystem. We collected soil samples in the Cuatro Ciénegas Basin (Mexico) under two vegetation covers: rosetophylous scrub (RS) and grassland (G), that differ in terms of quantity and quality of organic matter. Collections were conducted during the years 2011, 2012, 2013 and 2014, over which a noticeable variation in the annual precipitation occurred. The ecoenzymatic activity involved in the decomposition of organic matter, and the concentration of dissolved, available and microbial biomass nutrients, were determined and compared between sites and years. In 2011, we observed differences in bacterial taxonomic composition between the two vegetation covers. The lowest values of dissolved, available and microbial nutrients in both cover types were found in 2012. The G soil showed higher values of dissolved and available nutrients in the wet years. Significant positive correlations were detected between precipitation and the ratios Cmic:Nmic and Cmic:Pmic in the RS soil and Cmic:Pmic and Nmic:Pmic in the G soil. The slopes of the regression with Cmic and Nmic were higher in the G soil and lower in the RS soil. Moreover, the SMC under each vegetation cover were co-limited by different nutrients and responded to the sum of water stress and nutrient limitation. Soil community within both

  17. GeoSciML and EarthResourceML Update, 2012

    NASA Astrophysics Data System (ADS)

    Richard, S. M.; Commissionthe Management; Application Inte, I.

    2012-12-01

    CGI Interoperability Working Group activities during 2012 include deployment of services using the GeoSciML-Portrayal schema, addition of new vocabularies to support properties added in version 3.0, improvements to server software for deploying services, introduction of EarthResourceML v.2 for mineral resources, and collaboration with the IUSS on a markup language for soils information. GeoSciML and EarthResourceML have been used as the basis for the INSPIRE Geology and Mineral Resources specifications respectively. GeoSciML-Portrayal is an OGC GML simple-feature application schema for presentation of geologic map unit, contact, and shear displacement structure (fault and ductile shear zone) descriptions in web map services. Use of standard vocabularies for geologic age and lithology enables map services using shared legends to achieve visual harmonization of maps provided by different services. New vocabularies have been added to the collection of CGI vocabularies provided to support interoperable GeoSciML services, and can be accessed through http://resource.geosciml.org. Concept URIs can be dereferenced to obtain SKOS rdf or html representations using the SISSVoc vocabulary service. New releases of the FOSS GeoServer application greatly improve support for complex XML feature schemas like GeoSciML, and the ArcGIS for INSPIRE extension implements similar complex feature support for ArcGIS Server. These improved server implementations greatly facilitate deploying GeoSciML services. EarthResourceML v2 adds features for information related to mining activities. SoilML provides an interchange format for soil material, soil profile, and terrain information. Work is underway to add GeoSciML to the portfolio of Open Geospatial Consortium (OGC) specifications.

  18. Resources for a lunar base: Rocks, minerals, and soil of the Moon

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.

    1992-01-01

    The rocks and minerals of the Moon will be included among the raw materials used to construct a lunar base. The lunar regolith, the fragmental material present on the surface of the Moon, is composed mostly of disaggregated rocks and minerals, but also includes glassy fragments fused together by meteorite impacts. The finer fraction of the regolith (i.e., less than 1 cm) is informally referred to as soil. The soil is probably the most important portion of the regolith for use at a lunar base. For example, soil can be used as insulation against cosmic rays, for lunar ceramics and abodes, or for growing plants. The soil contains abundant solar-wind-implanted elements as well as various minerals, particularly oxide phases, that are of potential economic importance. For example, these components of the soil are sources of oxygen and hydrogen for rocket fuel, helium for nuclear energy, and metals such as Fe, Al, Si, and Ti.

  19. Polycyclic aromatic hydrocarbon (PAH)-containing soils from coal gangue stacking areas contribute to epithelial to mesenchymal transition (EMT) modulation on cancer cell metastasis.

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Liu, Xiaofang; Li, Guangke; Sang, Nan

    2017-02-15

    The total accumulative stockpiles of gangue in China comprise 4.5billion metric tons, and approximately 659million tons of additional gangue are generated per year. Considering the stacking characteristics are highly heterogeneous, the potential cancer risks from the presence of polycyclic aromatic hydrocarbons (PAHs) remain elusive. This study aimed to determine whether PAH-containing soil around coal gangue stacking areas poses a potential cancer risk and contributes to cancer cell metastasis. The results indicate that eighteen PAHs, primarily originated from coal gangue, exhibited distance variations from the coal gangues to the downstream villages, and the abandoned colliery posed increased potential carcinogenic risks for humans as a result of long-term stacking of coal gangue. Furthermore, soil samples stimulated HepG2 cell migration and invasion in a PAH-dependent manner, and the action was involved in PPARγ-mediated epithelial to mesenchymal transition (EMT) modulation. These findings highlight the potential cancer risk of PAH-containing soil samples around coal gangue stacking areas, and identify important biomarkers underlying the risk and targets preventing the outcomes in polluted areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A Soil Service Index: Potential Soil Services to Society under Scenarios of Human Land Use and Population Growth

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Ahlström, A.; Loisel, J.; Harden, J. W.

    2017-12-01

    Soils provide numerous and indispensable services to ecological systems and human societies. As human populations and human land use changes, the capacity of soils to maintain these services may also change. To investigate this we provide the first global scale study based on the soil service index (SSI; see presentations by Harden et al. and Loisel et al. in this session for more details). In this index multiple soil services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability. Soil services assessed under the SSI include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The SSI may be applied at any scale. Here we present a first global application of the SSI and provide broad-scale analyses of soil service spatial distributions. We assess how the SSI will change under projected changes in human societies populations and human land use (following representative concentration pathway scenarios). Present and future potential utilization and vulnerability of soil resources are analyzed in the context of human population distributions and its projected changes. The SSI is designed to be broadly useful across scientific, governance and resource management organizations. To exemplify this, the parameterization of this is global soil service estimate is based on only open source input data.

  1. An analysis of Ohio's forest resources

    Treesearch

    Donald F. Dennis; Donald F. Dennis

    1983-01-01

    A comprehensive analysis of the current status and trends of the forest resources of Ohio. Topics include forest area, timber volume, biomass, timber products, and growth and removals. Forest area, volume, and growth and removals are projected through 2009. Discusses water, soil, minerals, fish, wildlife, and recreation as they relate to forest resources. Also...

  2. Effects of soil water holding capacity on evapotranspiration and irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    The USDA Natural Resources Conservation Service (NRCS), through the National Cooperative Soil Survey, developed three soil geographic databases that are appropriate for acquiring soil information at the national, regional, and local scales. These relational databases include the National Soil Geogra...

  3. The hidden ecological resource of andic soils in mountain ecosystems: evidence from Italy

    NASA Astrophysics Data System (ADS)

    Terribile, Fabio; Iamarino, Michela; Langella, Giuliano; Manna, Piero; Mileti, Florindo Antonio; Vingiani, Simona; Basile, Angelo

    2018-01-01

    Andic soils have unique morphological, physical, and chemical properties that induce both considerable soil fertility and great vulnerability to land degradation. Moreover, they are the most striking mineral soils in terms of large organic C storage and long C residence time. This is especially related to the presence of poorly crystalline clay minerals and metal-humus complexes. Recognition of andic soils is then very important.Here we attempt to show, through a combined analysis of 35 sampling points chosen in accordance to specific physical and vegetation rules, that some andic soils have an utmost ecological importance.More specifically, in Italian non-volcanic mountain ecosystems ( > 600 m a.s.l.) combining low slope (< 21 %) and highly active green biomass (high NDVI values) and in agreement to recent findings, we found the widespread occurrence of andic soils having distinctive physical and hydrological properties including low bulk density and remarkably high water retention. Most importantly, we report a demonstration of the ability of these soils to affect ecosystem functions by analysing their influence on the timescale acceleration of photosynthesis estimated by NDVI measurements.Our results are hoped to be a starting point for better understanding of the ecological importance of andic soils and also possibly to better consider pedological information in C balance calculations.

  4. The Global Soil Partnership

    NASA Astrophysics Data System (ADS)

    Montanarella, Luca

    2015-07-01

    The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.

  5. Plant-soil feedbacks from 30-year family-specific soil cultures: phylogeny, soil chemistry and plant life stage.

    PubMed

    Mehrabi, Zia; Bell, Thomas; Lewis, Owen T

    2015-06-01

    Intraspecific negative feedback effects, where performance is reduced on soils conditioned by conspecifics, are widely documented in plant communities. However, interspecific feedbacks are less well studied, and their direction, strength, causes, and consequences are poorly understood. If more closely related species share pathogens, or have similar soil resource requirements, plants may perform better on soils conditioned by more distant phylogenetic relatives. There have been few empirical tests of this prediction across plant life stages, and none of which attempt to account for soil chemistry. Here, we test the utility of phylogeny for predicting soil feedback effects on plant survival and performance (germination, seedling survival, growth rate, biomass). We implement a full factorial experiment growing species representing five families on five plant family-specific soil sources. Our experiments exploit soils that have been cultured for over 30 years in plant family-specific beds at Oxford University Botanic Gardens. Plant responses to soil source were idiosyncratic, and species did not perform better on soils cultured by phylogenetically more distant relatives. The magnitude and sign of feedback effects could, however, be explained by differences in the chemical properties of "home" and "away" soils. Furthermore, the direction of soil chemistry-related plant-soil feedbacks was dependent on plant life stage, with the effects of soil chemistry on germination success and accumulation of biomass inversely related. Our results (1) suggest that the phylogenetic distance between plant families cannot predict plant-soil feedbacks across multiple life stages, and (2) highlight the need to consider changes in soil chemistry as an important driver of population responses. The contrasting responses at plant life stages suggest that studies focusing on brief phases in plant demography (e.g., germination success) may not give a full picture of plant-soil feedback effects.

  6. Establishing an International Soil Modelling Consortium

    NASA Astrophysics Data System (ADS)

    Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan

    2015-04-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Soil is not only essential for establishing a sustainable bio-economy, but also plays a key role also in a broad range of societal challenges including 1) climate change mitigation and adaptation, 2) land use change 3) water resource protection, 4) biotechnology for human health, 5) biodiversity and ecological sustainability, and 6) combating desertification. Soils regulate and support water, mass and energy fluxes between the land surface, the vegetation, the atmosphere and the deep subsurface and control storage and release of organic matter affecting climate regulation and biogeochemical cycles. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate

  7. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    NASA Astrophysics Data System (ADS)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  8. Development and assessment of an efficient vadose zone module solving the 1D Richards' equation and including root extraction by plants

    NASA Astrophysics Data System (ADS)

    Varado, N.; Braud, I.; Ross, P. J.

    2006-05-01

    From the non iterative numerical method proposed by [Ross, P.J., 2003. Modeling soil water and solute transport—fast, simplified numerical solutions. Agronomy Journal 95, 1352-1361] for solving the 1D Richards' equation, an unsaturated zone module for large scale hydrological model is developed by the inclusion of a root extraction module and a formulation of interception. Two root water uptake modules, first proposed by [Lai, C.-T. and Katul, G., 2000. The dynamic role of rott-water uptake in coupling potential to actual transpiration. Adv. Water Res. 23: 427-439; Li, K.Y., De Jong, R. and Boisvert, J.B., 2001. An exponential root-water-uptake model with water stress compensation. J. Hydrol. 252: 189-204], were included as the sink term in the Richards' equation. They express root extraction as a linear function of potential transpiration and take into account water stress and compensation mechanism allowing water to be extracted in wetter layers. The vadose zone module is tested in a systematic way with synthetic data sets covering a wide range of soil characteristics, climate forcing, and vegetation cover. A detailed SVAT model providing an accurate solution of the coupled heat and water transfer in the soil and the surface energy balance is used as a reference. The accuracy of the numerical solution using only the SVAT soil module, and the loss of accuracy when using a potential evapotranspiration instead of solving the energy budget are both investigated. The vadose zone module is very accurate with errors of less than a few percent for cumulative transpiration. Soil evaporation is less accurately simulated as it leads to a systematic underestimation of soil evaporation amounts. The [Lai, C.-T. and Katul, G., 2000. The dynamic role of rott-water uptake in coupling potential to actual transpiration. Adv. Water Res. 23: 427-439] module is not adapted for sandy soils, due to a weakness in the compensation term formulation. When using a potential

  9. Modelling the Impact of Soil Management on Soil Functions

    NASA Astrophysics Data System (ADS)

    Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.

    2017-12-01

    Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological

  10. Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion

    USDA-ARS?s Scientific Manuscript database

    Conservation of soil and water resources in rangelands is a crucial step in stopping desertification processes. The formation of water-stable soil aggregates reduces soil erodibility and can increase infiltration capacity in many soils. Soil aggregate stability is highly variable at scales ranging f...

  11. Assessing quality of citizen scientists’ soil texture estimates to evaluate land potential

    USDA-ARS?s Scientific Manuscript database

    Texture influences nearly all soil processes and is often the most measured parameter in soil science. Estimating soil texture is a universal and fundamental practice applied by resource scientists to classify and understand the behavior and management of soil systems. While trained soil scientist c...

  12. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    NASA Astrophysics Data System (ADS)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  13. The Modeling of the Effects of Soiling, Its Mechanisms, and the Corresponding Abrasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lin; Muller, Matthew; Deceglie, Michael

    2016-02-24

    Decreasing LCOE with predictive soiling loss models (using site data to predict annualized energy loss), quantification of different soiling mechanisms (using AFM-based characterization), and developing standards for PV module coatings.

  14. Perspectives for studying glyphosate and AMPA impact on soil ecosystem engineering in farming soils from Argentina.

    NASA Astrophysics Data System (ADS)

    Domínguez, Anahí; Pía Rodríguez, María; Ortiz, Carolina Elizabeth; Camilo Bedano, José

    2017-04-01

    Ecosystem engineers are organisms that modulate the availability of resources to other species by causing physical state changes in biotic or abiotic materials. In the agricultural soils of the Pampa region of Argentina, earthworms are undoubtedly the key soil ecosystem engineers. Indeed, earthworms are involved in building and maintenance of porosity through bioturbation and burrowing; comminution, selection and or activation of microflora activities and in soil formation, by bioturbation, cast deposition and particle selection. Attending to the importance of such processes to preserve the soil capacity to sustain crop productivity, the promotion of suitable habitats for earthworm communities, has become a main goal for sustainable agriculture. However, in Argentine Pampas, the impact of the huge amount of pesticides currently spread on farming soils, on the earthworm biology and ecology, is scarcely considered when agricultural managements practices are selected. In fact, more than 250 million liters of glyphosate-based herbicides are spread by year in the farming soils of Argentina. Glyphosate has a relative short half-life, but one of the major breakdown products, the aminomethylphosphonic acid (AMPA), is persistent in soils. We tested its toxicity1 on the earthworm Eisenia andrei, and we found no mortality but growth and reproductive disorders. However, E. andrei is seldom found in agricultural lands. Indeed, for the last 8 years, we have sampled an important variety of agricultural soils, representing the most important farming systems used in Argentina, and we never found Eisenia spp. but 13 earthworm species: 8 exotic from Lumbricidae and 5 natives from Acanthodrilidae, Glossoscolecidae and Ocnerodrilidae families. However, the ecotoxicological effect of glyphosate has been detailed studied only in three of the mentioned exotic species, and only in four studies2,3,4,5. Such a few studies and a few species indicates a real lack of accurate knowledge about

  15. Close-up view of astronauts footprint in lunar soil

    NASA Image and Video Library

    1969-07-20

    AS11-40-5878 (20 July 1969) --- A close-up view of an astronaut's bootprint in the lunar soil, photographed with a 70mm lunar surface camera during the Apollo 11 extravehicular activity (EVA) on the moon. While astronauts Neil A. Armstrong, commander, and Edwin E. Aldrin Jr., lunar module pilot, descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit.

  16. Teaching About the Links Between Soils and Climate: An International Year of Soil Outreach by the Soil Science Society of America

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2015-04-01

    Soil scientists are well aware of the intimate links that exist between soils and climate, but the same is not always true of the broader population. In an attempt to help address this, the Soil Science Society of America (SSSA) has designated the theme "Soils and Climate" for the month of November, 2015 as part of the SSSA International Year of Soil (IYS) celebration. The topic has been further subdivided into three subthemes: 1) carbon sequestration and greenhouse gases, 2) Soils and past environments, and 3) Desertification and drought. Each subtheme outreach has two parts 1) lesson plans that K-12 educators can use in their classrooms, and 2) materials that a trained soil scientist can present to the general public. Activities developed for the theme include classroom activities to accompany an online game that students can play to see how farm management choices influence greenhouse gas emissions, questions to go with a vermicomposting activity, and discussion session questions to go with a movie on the USA Dust Bowl. All materials are available online free of charge. The Soils and Climate materials can be found at https://www.soils.org/iys/12-month-resources/november; all of the SSSA IYS materials can be found at https://www.soils.org/iys.

  17. Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use

    PubMed Central

    Falco, Liliana B.; Sandler, Rosana V.; Coviella, Carlos E.

    2015-01-01

    Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes for the selective exclusion of soil fauna by size (macro, meso, and microfauna) were filled with standardized dried leaves and placed on the same soil under different use intensities: naturalized grasslands, recent agriculture, and intensive agriculture fields. During five months, litterbags of each mesh size were collected once a month per system with five replicates. The remaining mass was measured and decomposition rates calculated. Differences were found for the different biota groups, and they were dependant on soil use. Within systems, the results show that in the naturalized grasslands, the macrofauna had the highest contribution to decomposition. In the recent agricultural system it was the combined activity of the macro- and mesofauna, and in the intensive agricultural use it was the mesofauna activity. These results underscore the relative importance and activity of the different groups of the edaphic biota and the effects of different soil uses on soil biota activity. PMID:25780777

  18. On the role of soil fauna in providing soil functions - a meta study

    NASA Astrophysics Data System (ADS)

    Lang, Birgit; Russell, David J.; Vogel, Hans-Jörg; Wollschläger, Ute

    2017-04-01

    Fertile soils are fundamental for the production of biomass and therefore for the provision of goods such as food or fuel. However, soils are threatened by e.g. land degradation, but once lost their functionality cannot simply be replaced as soils are complex systems developed over long time periods. Thus, to develop strategies for sustainable soil use and management, we need a comprehensive functional understanding of soil systems. To this end, the interdisciplinary research program "Soil as a Natural Resource for the Bio-Economy - BonaRes" was launched by the German Federal Government in 2015. One part of this program is the development of a Knowledge Centre for soil functions and services. As part of the Knowledge Centre, we focus on the identification and quantification of biological drivers of soil functions. Based on a systematic review of existing literature, we assess the importance of different soil faunal groups for the soil functions and processes most relevant to agricultural production (i.e. decomposition, mineralization, soil structuring. Additionally, we investigate direct impacts of soil fauna on soil properties (e.g. aggregation, pore volume). As site specific conditions such as climate, soil type or management practices affect soil fauna and their performance, these responses must also be taken into account. In the end, our findings will be used in the development of modeling tools aiming to predict the impacts of different management measures on soil ecosystem services and functions.

  19. Disentangling the drivers of soil organic matter decay as temperature changes by integrating reductionist systems with soil data

    NASA Astrophysics Data System (ADS)

    Billings, Sharon; Ballantyne, Ford, IV; Min, Kyungjin; Lehmeier, Christoph; Ziegler, Susan

    2014-05-01

    Accurately predicting decomposition rates of soil organic matter (SOM) as temperature increases is critical for projecting future atmospheric [CO2]. SOM decay is catalyzed by exo-enzymes (EEs) produced by microorganisms and secreted into the soil. Microbes take up liberated resources for metabolic processes and release diverse compounds, including CO2. Historically, investigations of the influence of temperature on heterotrophic CO2 release have focused on CO2 response, including its isotopic composition; recent studies also assess EE activity and microbial community composition. However, it is difficult to generalize from such studies how temperature will influence SOM decay and CO2 release because the responses of EEs, microbial resource demand, biomass production rates, and respiration rates are not parsed. Quantifying the individual temperature responses of all of these processes in unaltered soil is not tractable. However, we can use experimentally simplified systems to quantify fundamental biochemical and physiological responses to temperature and compare these results to those from environmental samples. For example, we can quantify the degree to which EE kinetics in isolation induce changes in availability of microbially assimilable resources as temperature changes and calculate associated changes in relative availability of assimilable carbon and nitrogen (C:N flow ratio), in isolation from altered microbial resource demand or uptake. We also can assess EE activity and CO2 release at different temperatures in diverse soils, integrating temperature responses of EE kinetics and microbial communities. Discrepancies in the temperature responses between real soils and isolated enzyme-substrate reactions can reveal how adaptive responses of microbial communities influence the temperature responses of soil heterotrophic CO2 release. We have shown in purified reactions that C:N flow ratios increase with temperature at pH 4.5, but decline between pH 6.5 and 8.5. If

  20. Health Effects of Energy Resources

    USGS Publications Warehouse

    Orem, William; Tatu, Calin; Pavlovic, Nikola; Bunnell, Joseph; Kolker, Allan; Engle, Mark; Stout, Ben

    2010-01-01

    Energy resources (coal, oil, and natural gas) are among the cornerstones of modern industrial society. The exploitation of these resources, however, is not without costs. Energy materials may contain harmful chemical substances that, if mobilized into air, water, or soil, can adversely impact human health and environmental quality. In order to address the issue of human exposure to toxic substances derived from energy resources, the U.S. Geological Survey (USGS) Energy Resources Program developed a project entitled 'Impacts of Energy Resources on Human Health and Environmental Quality.' The project is intended to provide policymakers and the public with the scientific information needed to weigh the human health and environmental consequences of meeting our energy needs. This fact sheet discusses several areas where the USGS Energy Resources Program is making scientific advances in this endeavor.

  1. Resources for States and Tribes about Soil Fumigant Training

    EPA Pesticide Factsheets

    State and tribal agencies may seek EPA approval to provide pesticide applicators with an alternative to registrant-sponsored training. Find guidance on seeking approval, check lists for training options, and the NASDARF soil fumigation manual.

  2. Soil Productive Lifespans: Rethinking Soil Sustainability for the 21st Century

    NASA Astrophysics Data System (ADS)

    Evans, Daniel

    2017-04-01

    The ability for humans to sustainably manage the natural resources on which they depend has been one of the existential challenges facing mankind since the dawn of civilisation. Given the demands from this century's unprecedented global population and the unremitting course of climatic change, that challenge has soared in intensity. Sustainability, in this context, refers to agricultural practices which meet the needs of the present without compromising the ability of future generations to meet their own needs. Ensuring sustainability is arguably of greatest importance when resources, such as soil, are non-renewable. However, there is as yet no tool to evaluate how sustainable conservation strategies are in the long-term. Up to now, many pedologists have assessed sustainability in binary terms, questioning whether management is sustainable or not. In truth, one can never determine whether a practice is ultimately sustainable because of the indefinite nature implied by "future generations". We suggest that a more useful assessment of sustainability for the 21st century should avoid binary questions and instead ask: how sustainable are soils? Indeed, how many future generations can soils provide for? Although the use of modelling is by no means a novelty for the discipline, there are very few holistic models that encompass the fluxes and dynamic relationships between both mass and quality concomitantly. We therefore propose a new conceptual framework - the Soil Productive Lifespan (SPL) - that employs empirically derived residence times of both soil mass and quality, together with pathways of environmental change, to forecast the length of time a soil profile can provide the critical functions. Although mass and quality are considered synergistically, the SPL model allows one to assess whether mass or quality alone presents the greatest limiting factor in the productive lifespans of soils. As a result, more targeted conservation strategies can be designed. Ultimately

  3. Performance of Emcore Third Generation CPV Modules in the Low Latitude Marine Environment of Hawaii

    NASA Astrophysics Data System (ADS)

    Hoffman, Richard; Buie, Damien; King, David; Glesne, Thomas

    2011-12-01

    Emcore third generation concentrating photovoltaic (CPV) modules were evaluated in the low latitude location of Kihei, Hawaii. For comparison, the best available monocrystalline silicon flat panel modules were included in both dual-axis tracked and fixed mount configurations. The daily DC uncorrected efficiency value for the CPV modules averaged over the six-month performance period was 25.9% compared to 16% to 17% for the flat panels. Higher daily energy was obtained from CPV modules than tracked flat panels when daily direct solar insolation was greater than 5 kWh/m2 and more than fixed mount flat panel when direct insolation was greater than 3 kWh/m2. The module energy conversion performance was demonstrated to be predictable using a parametric model developed by Sandia National Laboratory. Soiling accumulation on module entrance surface was surprisingly rapid in the local environment. Measured energy loss rate due to soiling were two to six times larger for CPV compared to flat panel losses.

  4. Soil organic matter content: a non-liner control on microbial respiration in soils

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Grandy, Stuart

    2016-04-01

    It is widely assumed that microbial activity and respiration rates respond linearly to substrate concentrations, irrespective of substrate chemical characteristics, but this assumption remains largely untested. We know that microbial decomposition of soil organic matter (SOM) and the amount of CO2 respired from soil depends on substrate availability. While soils with high SOM concentrations will have higher respiration rates than soils with low SOM concentrations, the specific relationship between substrate quantity and CO2 respired and its underlying mechanisms has robust theoretical, modeling, and management implications. In a lab incubation experiment, we amended a mixture of agricultural soil and sand with increasing amounts of one of three plant residues differing in their C/N ratio (clover C/N 14; rye C/N 23 and wheat straw C/N 110). Keeping the soil/sand mixture at a constant ratio, we obtained 9 levels of organic carbon (OC) content ranging from 0.25% to 5.7%. The sand-soil-residue mixtures were then incubated at constant temperature and water contents for a total of 63 days. Our results show that across substrates CO2 production increased with increasing OC content following a sigmoidal curve function instead of the expected linear one. A breakpoint analysis for the respiration curve of rye revealed two significant break points at 1.3 and 3.8 % OC. The three individual linear relations might be shaped by spatial separation of substrate and microbes and the interaction of the microbes themselves. In the first "survival" phase up to 1.3 % OC, more substrate leads to the survival of more microbes. However, microbial growth does not result in the discovery of new resources. In the "expansion" phase (1.3 % OC to 3.8 % OC), microbial growth is successful and microbes can exploit new resources. Finally, in the "competition" phase microbes start to compete for space and resources, which leads to a decrease in decomposition and respiration. While the results for

  5. Energy value of soil organic matter and costs of its restoration

    NASA Astrophysics Data System (ADS)

    Kuczuk, Anna

    2017-10-01

    From the point of view of the sustainable soil management, the most important characteristic of soil organic matter (SOM) is associated with the energy content in it. This paper reports the results of an estimation of SOM resources and its energy value for the arable land in a selected farm. For this purpose, soil samples were taken in two fields from a soil depth profile of 30 cm. The testing regarding humus content were conducted at District Chemical and Agricultural Station in Opole. The study involved the assessment of organic matter content at a depth of 30 cm converted per 1 ha, energy value of the SOM resources and the theoretical energy potential was determined. In addition, an example of crop rotation was provided for the analyzed soils, which could be applicable in the process of restoring SOM resources. The cost of restoring the SOM resource was estimated and this value was compared with the energy value of fuel. The total cost of SOM restoration over the period of five years was equal to 3122.26-7845.86 PLN·ha-1 depending on the value of the lost revenue of commercial production, and simultaneously equal to the value of 6.2-16 Mg thermal coal.

  6. Prioritization of catchments based on soil erosion using remote sensing and GIS.

    PubMed

    Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K

    2015-06-01

    Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.

  7. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  8. Changes in soil physical and chemical properties following organic matter removal and compaction: 20-year response of the aspen Lake-States Long Term Soil Productivity installations

    Treesearch

    Robert A. Slesak; Brian J. Palik; Anthony W. D' Amato; Valerie J. Kurth

    2017-01-01

    Soil functions that control plant resource availability can be altered by management activities such as increased organic matter (OM) removal and soil compaction during forest harvesting. The Long Term Soil Productivity study was established to evaluate how these practices influence soil and site productivity using experimental treatments that span a range of forest...

  9. Modular 3D-Printed Soil Gas Probes

    NASA Astrophysics Data System (ADS)

    Good, S. P.; Selker, J. S.; Al-Qqaili, F.; Lopez, M.; Kahel, L.

    2016-12-01

    ABSTRACT: Extraction of soil gas is required for a variety of applications in earth sciences and environmental engineering. However, commercially available probes can be costly and are typically limited to a single depth. Here, we present the open-source design and lab testing of a soil gas probe with modular capabilities that allow for the vertical stacking of gas extraction points at different depths in the soil column. The probe modules consist of a 3D printed spacer unit and hydrophobic gas permeable membrane made of high density Polyethylene with pore sizes 20-40 microns. Each of the modular spacer units contain both a gas extraction line and gas input line for the dilution of soil gases if needed. These 2-inch diameter probes can be installed in the field quickly with a hand auger and returned to at any frequency to extract soil gas from desired soil depths. The probes are tested through extraction of soil pore water vapors with distinct stable isotope ratios.

  10. Don’t bust the biological soil crust: Preserving and restoring an important desert resource

    Treesearch

    Sue Miller; Steve Warren; Larry St. Clair

    2017-01-01

    Biological soil crusts are a complex of microscopic organisms growing on the soil surface in many arid and semi-arid ecosystems. These crusts perform the important role of stabilizing soil and reducing or eliminating water and wind erosion. One of the largest threats to biological soil crusts in the arid and semi-arid areas of the western United States is mechanical...

  11. 43 CFR 8365.1-5 - Property and resources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... destroy plants or their parts, soil, rocks or minerals, or cave resources, except as permitted under... and leaves; (2) Nonrenewable resources such as rock and mineral specimens, common invertebrate and... this title; (4) Mineral materials as provided under subpart 3604; and (5) Forest products for use in...

  12. 43 CFR 8365.1-5 - Property and resources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... destroy plants or their parts, soil, rocks or minerals, or cave resources, except as permitted under... and leaves; (2) Nonrenewable resources such as rock and mineral specimens, common invertebrate and... this title; (4) Mineral materials as provided under subpart 3604; and (5) Forest products for use in...

  13. 43 CFR 8365.1-5 - Property and resources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... destroy plants or their parts, soil, rocks or minerals, or cave resources, except as permitted under... and leaves; (2) Nonrenewable resources such as rock and mineral specimens, common invertebrate and... this title; (4) Mineral materials as provided under subpart 3604; and (5) Forest products for use in...

  14. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the

  15. CPV performance versus soiling effects: Cleaning policies

    NASA Astrophysics Data System (ADS)

    Sanchez, D.; Trujillo, P.; Martinez, M.; Ferrer, J. P.; Rubio, F.

    2012-10-01

    In order to improve the performance of the CPV Plants in a cost effective way it is important to define the best cleaning policies, analyzing the effect of soiling in the surface of CPV modules. The energy generation of a CPV technology based in Fresnel Lens improves up to 7% when the surface of the module is cleaned. Some experimental measurements have been carried out over CPV modules and a model has been defined to analyze what is the best cleaning policy for that Technology in Puertollano. The power losses because of soiling and the critical time until the power losses stabilizes are obtained from the measurements; they are used as an input for the simulation. Using an established cleaning cost and the feeding tariff from Spain in 2007 it has been obtained that cleaning only reports a profit during the summer. The conclusion of the work is that the cleaning tasks have to be carefully planned together with the meteorological forecast in order to maximize the investment made in the cleaning.

  16. Indoor Unmanned Airship System Airborne Control Module Design

    NASA Astrophysics Data System (ADS)

    YongXia, Gao; YiBo, Li

    By adopting STC12C5A60S2 SCM as a system control unit, assisted by appropriate software and hardware resources, we complete the airborne control module's design of unmanned airship system. This paper introduces hardware control module's structure, airship-driven composition and software realization. Verified by the China Science and Technology Museum special-shaped airship,this control module can work well.

  17. An overview of soil water sensors for salinity & irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  18. Corn stover for advanced biofuels – Soil “Lorax” perspectives

    USDA-ARS?s Scientific Manuscript database

    Crop residues serve numerous agroecosystem function. Harvesting these materials must be done in a manner that protects the soil. Soil is the thin layer that stand be us and starvation. Strategies to protect the soil resource to balance current and future societal needs will be discussed....

  19. Advanced in-situ measurement of soil carbon content using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    Measurement and mapping of natural and anthropogenic variations in soil carbon stores is a critical component of any soil resource evaluation process. Emerging modalities for soil carbon analysis in the field is the registration of gamma rays from soil under neutron irradiation. The inelastic neutro...

  20. Soil and Water Indicators of the Sustainable Rangelands Roundtable

    Treesearch

    M.G. Sherm Karl; D.A. Pyke; P.T. Tueller; G.E. Schuman; R.W. Shafer; S.J. Borchard; D.T. Booth; W.G. Ypsilantis; R.H. Jr. Barrett

    2006-01-01

    The Sustainable Rangelands Roundtable (SRR) has explicitly included conservation and maintenance of soil and water resources as a criterion, a category of conditions or processes that can be assessed nationally to determine if the current level of rangeland management will ensure sustainability. Within the soil/water criterion, 10 indicators, 5 soil-based and 5 water-...

  1. An Interprofessional Web-Based Resource for Health Professions Preceptors

    PubMed Central

    McLeod, Elizabeth; Kwong, Mona; Tidball, Glynnis; Collins, John; Neufeld, Lois; Drynan, Donna

    2012-01-01

    Objective. To develop a Web-based preceptor education resource for healthcare professionals and evaluate its usefulness. Methods. Using an open source platform, 8 online modules called “E-tips for Practice Education” (E-tips) were developed that focused on topics identified relevant across healthcare disciplines. A cross-sectional survey design was used to evaluate the online resource. Ninety preceptors from 10 health disciplines affiliated with the University of British Columbia evaluated the E-tips. Results. The modules were well received by preceptors, with all participants indicating that they would recommend these modules to their colleagues, over 80% indicating the modules were very to extremely applicable, and over 60% indicating that E-tips had increased their confidence in their ability to teach. Conclusion. Participants reported E-tips to be highly applicable to their teaching role as preceptors. Given their multidisciplinary focus, these modules address a shared language and ideas about clinical teaching among those working in multi-disciplinary settings. PMID:23193332

  2. Gap assessment in current soil monitoring networks across Europe for measuring soil functions

    NASA Astrophysics Data System (ADS)

    van Leeuwen, J. P.; Saby, N. P. A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R. P. O.; Spiegel, H.; Toth, G.; Creamer, R. E.

    2017-12-01

    Soil is the most important natural resource for life on Earth after water. Given its fundamental role in sustaining the human population, both the availability and quality of soil must be managed sustainably and protected. To ensure sustainable management we need to understand the intrinsic functional capacity of different soils across Europe and how it changes over time. Soil monitoring is needed to support evidence-based policies to incentivise sustainable soil management. To this aim, we assessed which soil attributes can be used as potential indicators of five soil functions; (1) primary production, (2) water purification and regulation, (3) carbon sequestration and climate regulation, (4) soil biodiversity and habitat provisioning and (5) recycling of nutrients. We compared this list of attributes to existing national (regional) and EU-wide soil monitoring networks. The overall picture highlighted a clearly unbalanced dataset, in which predominantly chemical soil parameters were included, and soil biological and physical attributes were severely under represented. Methods applied across countries for indicators also varied. At a European scale, the LUCAS-soil survey was evaluated and again confirmed a lack of important soil biological parameters, such as C mineralisation rate, microbial biomass and earthworm community, and soil physical measures such as bulk density. In summary, no current national or European monitoring system exists which has the capacity to quantify the five soil functions and therefore evaluate multi-functional capacity of a soil and in many countries no data exists at all. This paper calls for the addition of soil biological and some physical parameters within the LUCAS-soil survey at European scale and for further development of national soil monitoring schemes.

  3. Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.

    PubMed

    Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I

    2017-12-19

    Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.

  4. Secrets of the Soil (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodie, Eoin; Northen, Trent; Jansson, Janet

    2011-11-07

    Four Berkeley Lab scientists unveil the "Secrets of the Soil"at this Nov. 7, 2011 Science at the Theater event. Eoin Brodie, Janet Jansson, Margaret Torn and Trent Northen talk about their research and how soil could hold the key to our climate and energy future.The discussion was moderated by John Harte, who holds a joint professorship in the Energy and Resources Group and the Ecosystem Sciences Division of UC Berkeley's College of Natural Resources

  5. An integrated GIS/remote sensing data base in North Cache soil conservation district, Utah: A pilot project for the Utah Department of Agriculture's RIMS (Resource Inventory and Monitoring System)

    NASA Technical Reports Server (NTRS)

    Wheeler, D. J.; Ridd, M. K.; Merola, J. A.

    1984-01-01

    A basic geographic information system (GIS) for the North Cache Soil Conservation District (SCD) was sought for selected resource problems. Since the resource management issues in the North Cache SCD are very complex, it is not feasible in the initial phase to generate all the physical, socioeconomic, and political baseline data needed for resolving all management issues. A selection of critical varables becomes essential. Thus, there are foud specific objectives: (1) assess resource management needs and determine which resource factors ae most fundamental for building a beginning data base; (2) evaluate the variety of data gathering and analysis techniques for the resource factors selected; (3) incorporate the resulting data into a useful and efficient digital data base; and (4) demonstrate the application of the data base to selected real world resoource management issues.

  6. Modules in Agricultural Education for Agricultural Production.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    Each of the 61 modules in this packet contains a brief description of the module contents, a list of the major division of units, the overall objectives, objectives by units, content outline, and suggested teaching method, student application activities, and evaluation procedures. A list of resource materials is also included for each. Some of the…

  7. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils.

    PubMed

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-02-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated (13)C from labeled hemicellulose, analyzing (13)C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  8. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils

    PubMed Central

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-01-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated 13C from labeled hemicellulose, analyzing 13C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  9. Application of spatial pedotransfer functions to understand soil modulation of vegetation response to climate

    USDA-ARS?s Scientific Manuscript database

    A fundamental knowledge gap in understanding land-atmosphere interactions is accurate, high resolution spatial representation of soil physical and hydraulic properties. We present a novel approach to predict hydraulic soil parameters by combining digital soil mapping techniques with pedotransfer fun...

  10. Cultural Patterns of Soil Understanding

    NASA Astrophysics Data System (ADS)

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  11. Investigation of Soil Biodiversity in South East China

    NASA Astrophysics Data System (ADS)

    Gao, R.; Li, M.; Li, Z.; Chen, Y.; Liang, Y.; Ye, J.

    2017-12-01

    The United Nations had declared 2015 to be the International Year of Soil to bring to mind the significance of this natural resource. We will describe our initial collaborative effort to investigate soil biodiversity at an organic farm located in South East China. In this session, we will share our early experiences exploring conventional soil biodiversity methods, as well as offer suggestions for future research.

  12. The Spanish Society of Soil Science: history and future perspectives

    NASA Astrophysics Data System (ADS)

    Bellinfante, Nicolás; Arbelo, Dolores; Rodríguez, Antonio

    2013-04-01

    The Spanish Society of Soil Science (SECS; http://www.secs.com.es) has reached sixty years of existence, after being established in 1947 at the Spanish Council for Scientific Research (CSIC) as an initiative of renowned scientists including José María Albareda, Salvador Rivas Goday, Fernando Burriel, Tomás Alvira and others. However, soil studies in Spain began in the first third of XX century, coordinated by Emilio Huguet del Villar, internationally outstanding researcher who was the President of the Subcommittee for the Mediterranean Region of the International Society Soil Science, with the activities of the Forest Research Institute and the Institute of Mediterranean Soils of the Regional Catalonian Government. With the creation of the CSIC and the Spanish Institute of Soil Science and Agrobiology, directed by José M. Albareda, Soil Science research was promoted in all scientific fields and through the Spanish geography. The SECS is considered equally heiress of previously existing organizations, in particular the Spanish Commission of Soil Science and Phytogeography, created in 1925, which was the Spanish voice in various international organizations and meetings related with Soil Science. After these years, Soil Science has developed considerably, showing a great diversification of fields of study and research and its applications, as well as a growing social awareness of the soil degradation processes and the need to implement measures to protect natural resources nonrenewable on a human scale, and an increasing role of universities and CSIC in Soil Science research. Currently, the SECS is a scientific organization dedicated to promoting the study, knowledge, research and protection of soil resources; spread the scientific importance of soil functions as nonrenewable natural resource in society and promote the interest in its protection; and preserve the knowledge about soils, their management and use, both from productive and environmental perspectives

  13. Habitat and Biodiversity: One out of five essential soil functions for agricultural soils

    NASA Astrophysics Data System (ADS)

    Trinsoutrot Gattin, Isabelle; Creamer, Rachel; van Leeuwen, Jeroen; Vrebos, Dirk; Gatti, Fabio; Bampa, Francesca; Schulte, Rogier; Rutgers, Michiel

    2017-04-01

    Current agricultural challenges require developing new agricultural systems that can optimize the ecological functioning of soils in order to limit the use of chemical inputs (i.e. disease suppression) and maintain a high organic matter content. This implies our ability to evaluate the effects of management practices on immediate performance objectives (i.e. fertility linked to nutrient cycling) but also in longer-term objective (i.e. C cycling and storage) in a variety of agro-climatic conditions. These issues demand the development of systemic approaches for understanding the determinants of soil functioning. In ecology, it is generally accepted that there are many positive relationships between soil biodiversity indicators and the functioning of ecosystems. Indeed, soil organisms and their interactions are essential drivers of ecosystem processes and impact the response, resilience and adaptability of ecosystems to environmental pressures. Thus, maintaining soil biodiversity is a condition for the sustainability of cropping systems. In this new context, the European project Landmark considers soil functions as a key to the improvement of agricultural land management towards sustainable development goals, amongst the five functions is soil biodiversity and habitat provisioning. We propose to present how we manage within this project to deal with this challenging objective at three spatial scales : field, landscape (regional) and European (policy). We aim to define a link between the physical, chemical and biological soil properties and "habitat & biodiversity" soil function in order to identify key indicators which modulate biodiversity. This will allow us to quantify and assess this soil function, in order to provide insight in win wins and tradeoffs in soil functions to enhance management practices which optimise the biodiversity in European agricultural systems.

  14. Soil nutrients influence spatial distributions of tropical tree species.

    PubMed

    John, Robert; Dalling, James W; Harms, Kyle E; Yavitt, Joseph B; Stallard, Robert F; Mirabello, Matthew; Hubbell, Stephen P; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B

    2007-01-16

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<10(4) km(2)) and regional scales. At local scales (<1 km(2)), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.

  15. Soil nutrients influence spatial distributions of tropical tree species

    PubMed Central

    John, Robert; Dalling, James W.; Harms, Kyle E.; Yavitt, Joseph B.; Stallard, Robert F.; Mirabello, Matthew; Hubbell, Stephen P.; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757–1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<104 km2) and regional scales. At local scales (<1 km2), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant–soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36–51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant–soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. PMID:17215353

  16. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    PubMed

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  17. Soil water sensors:Problems, advances and potential for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands, while protecting the soil and water resources from degradation. In this regard, sensors can be used to monitor the soil water status; and so...

  18. Network analysis: a new tool for resource managers

    Treesearch

    Ruth H. Allen

    1980-01-01

    Resource managers manipulate ecosystems for direct or indirect human uses. Examples of relatively well studied resource management issues include familiar biological products such as: forests, ranges, fish and wildlife; or physical products such as air, water and soil. Until very recently, urban environments received much less scholarly attention. However, as Spurr (...

  19. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    NASA Technical Reports Server (NTRS)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  20. Medical resource preparation and allocation for humanitarian assistance based on module organization.

    PubMed

    Zhu, Min; Chen, Ruxue; Zhong, Shaobo; Qian, Yangming; Huang, Quanyi

    2017-02-01

    This research aims to associate the allocation of medical resources with the function of the modular organization and the possible needs for humanitarian assistance missions. The overseas humanitarian medical assistance mission, which was sent after a disaster on the hospital ship Peace Ark, part of China's People's Liberation Army (PLA) Navy, was considered as study model. The cases used for clustering and matching sample formation were randomly selected from the existing information related to Peace Ark's mission. Categories of the reusable resources clustered by this research met the requirement of the actual consumption almost completely (more than 95%) and the categories of non-reusable resources met the requirement by more than 80%. In the mission's original resource preparing plan, more than 30% of the non-reusable resource categories remained unused during the mission. In the original resource preparing plan, some key non-reusable resources inventories were completely exhausted at the end of the mission, while 5% to 30% of non-reusable resources remained in the resource allocation plan generated by this research at the end of the mission. The medical resource allocation plan generated here can enhance the supporting level for the humanitarian assistance mission. This research could lay the foundation for an assistant decision-making system for humanitarian assistance mission.

  1. Long-term application of winery wastewater - Effect on soil microbial populations and soil chemistry

    NASA Astrophysics Data System (ADS)

    Mosse, Kim; Patti, Antonio; Smernik, Ron; Cavagnaro, Timothy

    2010-05-01

    The ability to reuse winery wastewater (WWW) has potential benefits both with respect to treatment of a waste stream, as well as providing a beneficial water resource in water limited regions such as south-eastern Australia, California and South Africa. Over an extended time period, this practice leads to changes in soil chemistry, and potentially, also to soil microbial populations. In this study, we compared the short term effects of WWW (both treated and untreated) application on soil biology and chemistry in two adjacent paired sites with the same soil type, one of which had received WWW for approximately 30 years, and the other which had not. The paired sites were treated with an industrially relevant quantity of WWW, and the soil microbial activity (measured as soil CO2 efflux) and common soil physicochemical properties were monitored over a 16-day period. In addition, Solid State 13C NMR was employed on whole soil samples from the two sites, to measure and compare the chemical nature of the soil organic matter at the paired sites. The acclimatised soil showed a high level of organic matter and a greater spike in microbial activity following WWW addition, in comparison with the non-acclimatised soil, suggesting differences in soil chemistry and soil microbial communities between the two sites. Soil nitrate and phosphorus levels showed significant differences between WWW treatments; these differences likely to be microbially mediated.

  2. History of Soil Survey and Evolution of the Brazilian Soil Classification System - SiBCS

    NASA Astrophysics Data System (ADS)

    Cunha dos Anjos, Lúcia Helena; Csekö Nolasco de Carvalho, Claudia; Homem Antunes, Mauro Antonio; Muggler, Cristine Carole

    2014-05-01

    In Brazil soil surveys started around 1940 and the first map with soil information of São Paulo State was published in 1943. The Committee of Soils of the National Service for Agronomic Research was created in 1947 by the Agriculture Ministry and became an historical landmark for soil survey in Brazil. In 1953, the National Program of soil survey was approved and the first soil map and report of Rio de Janeiro State was released in 1958, followed by São Paulo State in 1960. This is also the origin of Embrapa Soil Research institution. Other milestones were the soil surveys published by the Agronomic Institute of Campinas (IAC) and the natural resources studies published within the RADAMBRASIL Project, initially planned for the Amazon region and later covering the whole country. Many soil studies followed and a comprehensive knowledge of tropical soils was achieved resulting in successful technologies for agriculture production, in lands considered by many as of "low fertility and acid soils with limited or no agricultural potential". However, detailed soil surveys are still lacking; only 5% of the country soils are mapped in 1:25.000 scales, and 15-20% in 1:100.000. In the first soil survey reports of Rio de Janeiro (1958) and São Paulo (1960), soil classes were defined according to Baldwin, Kellog & Thorp (Yearbook of Agriculture for 1938), and Thorp & Smith (Soil Science, 67, 1949) publications. It was already clear that the existing classification systems were not adequate to represent the highly weathered tropical soils of the large old landscapes in the cerrado (savanna like) region, or the soils formed on recent hydromorphic conditions at the Amazon Basin and Pantanal region. A national classification system to embody the country's large territory and environmental variation from tropical to subtropical and semiarid conditions, as well as the diversity of soil forming processes in old and new landscapes had to be developed. In 1964, the first attempt of a

  3. Soils in art as a teaching tool in soil science

    NASA Astrophysics Data System (ADS)

    Poch, Rosa M.

    2017-04-01

    , 2014), among others, are excellent examples that can be used to comment on soil fertility and land use conflicts. Even some music works (e.g. Stravinsky's "The rite of spring") could give rise to discussions about the value of soils as an essential natural resource.

  4. Soil erosion and sediment control laws. A review of state laws and their natural resource data requirements

    NASA Technical Reports Server (NTRS)

    Klein, S. B.

    1980-01-01

    Twenty states, the District of Columbia, and the Virgin Islands enacted erosion and sediment control legislation during the past decade to provide for the implementation or the strengthening of statewide erosion and sediment control plans for rural and/or urban lands. That legislation and the state programs developed to implement these laws are quoted and reviewed. The natural resource data requirements of each program are also extracted. The legislation includes amendments to conservation district laws, water quality laws, and erosion and sediment control laws. Laws which provides for legislative review of administrative regulations and LANDSAT applications and/or information systems that were involved in implementing or gathering data for a specific soil erosion and sediment control program are summarized as well as principal concerns affecting erosion and sediment control laws.

  5. Effects of heavy metals on soil microbial community

    NASA Astrophysics Data System (ADS)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  6. Identifying synergies between water resource protection and farm business objectives: the role of soil management

    NASA Astrophysics Data System (ADS)

    Stoate, Chris

    2017-04-01

    We use a 3,000 ha BACI experiment on clay soils in central England as a focus for exploring synergies between Water Framework Directive targets for water quality (sediment, nutrients and pesticides) and crop production objectives of farm businesses. Based on base of catchment annual sediment loads, we estimate annual soil loss from farmland to be in the order of 0.3 - 0.6 tonnes per hectare. This has impacts on aquatic ecology, reservoir storage capacity and downstream flood risk through sedimentation of drainage channels. Soil loss is relatively low in a European context but reflects poorly functioning soils with high runoff risk, and poor crop performance due to compaction, low organic matter, waterlogging, and competition from the grass weed, blackgrass (Alopecuris alopoides). We use a range of mechanisms to increase farmers' awareness, understanding and motivation for improving soil management to meet multiple public and private benefits of soil function and present results for soil organic matter testing, earthworm surveying, and horizontal and vertical soil compaction mapping.

  7. Criterion I: Soil and water conservation on rangelands [Chapter 2

    Treesearch

    Michael G. (Sherm) Karl; Paul T. Tueller; Gerald E. Schuman; Mark R. Vinson; James L. Fogg; Ronald W. Shafer; David A. Pyke; D. Terrance Booth; Steven J. Borchard; William G. Ypsilantis; Richard H. Barrett

    2010-01-01

    The Sustainable Rangelands Roundtable (SRR) has explicitly included conservation and maintenance of soil and water resources as a criterion of rangeland sustainability. Within the soil/water criterion, 10 indicators ­ five soil-based and five water-based - were developed through the expert opinions of rangeland scientists, rangeland management agency personnel, non-...

  8. Environmental scan and evaluation of best practices for online systematic review resources

    PubMed Central

    Parker, Robin M. N.; Boulos, Leah M.; Visintini, Sarah; Ritchie, Krista; Hayden, Jill

    2018-01-01

    Objective Online training for systematic review methodology is an attractive option due to flexibility and limited availability of in-person instruction. Librarians often direct new reviewers to these online resources, so they should be knowledgeable about the variety of available resources. The objective for this project was to conduct an environmental scan of online systematic review training resources and evaluate those identified resources. Methods The authors systematically searched for electronic learning resources pertaining to systematic review methods. After screening for inclusion, we collected data about characteristics of training resources and assigned scores in the domains of (1) content, (2) design, (3) interactivity, and (4) usability by applying a previously published evaluation rubric for online instruction modules. We described the characteristics and scores for each training resource and compared performance across the domains. Results Twenty training resources were evaluated. Average overall score of online instructional resources was 61%. Online courses (n=7) averaged 73%, web modules (n=5) 64%, and videos (n=8) 48%. The top 5 highest scoring resources were in course or web module format, featured high interactivity, and required a longer (>5hrs) time commitment from users. Conclusion This study revealed that resources include appropriate content but are less likely to adhere to principles of online training design and interactivity. Awareness of these resources will allow librarians to make informed recommendations for training based on patrons’ needs. Future online systematic review training resources should use established best practices for e-learning to provide high-quality resources, regardless of format or user time commitment. PMID:29632443

  9. Environmental scan and evaluation of best practices for online systematic review resources.

    PubMed

    Parker, Robin M N; Boulos, Leah M; Visintini, Sarah; Ritchie, Krista; Hayden, Jill

    2018-04-01

    Online training for systematic review methodology is an attractive option due to flexibility and limited availability of in-person instruction. Librarians often direct new reviewers to these online resources, so they should be knowledgeable about the variety of available resources. The objective for this project was to conduct an environmental scan of online systematic review training resources and evaluate those identified resources. The authors systematically searched for electronic learning resources pertaining to systematic review methods. After screening for inclusion, we collected data about characteristics of training resources and assigned scores in the domains of (1) content, (2) design, (3) interactivity, and (4) usability by applying a previously published evaluation rubric for online instruction modules. We described the characteristics and scores for each training resource and compared performance across the domains. Twenty training resources were evaluated. Average overall score of online instructional resources was 61%. Online courses (n=7) averaged 73%, web modules (n=5) 64%, and videos (n=8) 48%. The top 5 highest scoring resources were in course or web module format, featured high interactivity, and required a longer (>5hrs) time commitment from users. This study revealed that resources include appropriate content but are less likely to adhere to principles of online training design and interactivity. Awareness of these resources will allow librarians to make informed recommendations for training based on patrons' needs. Future online systematic review training resources should use established best practices for e-learning to provide high-quality resources, regardless of format or user time commitment.

  10. Resource homogenization in degraded arid landscapes induced by fire - erosion interactions

    NASA Astrophysics Data System (ADS)

    Ravi, S.; D'Odorico, P.; Wang, L.; Collins, S. L.; White, C. S.; Okin, G. S.

    2007-12-01

    Hydrological and aeolian processes are major drivers in the dynamics of arid landscapes in that they redistribute soil resources with important implications on the composition and spatial patterns of dryland vegetation. These processes are thought to play a major role in the conversion of disturbed desert grasslands into shrublands, with possible impacts on regional climate and desertification. At its early stages the grassland-to-shrubland transition can be still reversible and fires have been shown to contribute to the reversibility of the system. Even though fires are know to interact both with wind and water erosion, an understanding of these interactions and of their effect on aridland degradation is still missing. Here we use field manipulation experiments in a grass-shrub transition zone in the Chihuahuan desert to show how the interaction of fires with erosion processes may affect the distribution of soil resources with consequent effects on the pace of land degradation processes. Using microtopography measurements and isotopic analyses, we provide experimental evidence for the occurrence of post-fire enhancement of soil erosion, and relate this effect to the weakening of interparticle bonding forces associated with the emergence of fire-induced soil hydrophobicity. We also show how this effect favors the reversibility of the early stages of shrub-to-grass transition through the redistribution of soil resources from the fertile shrub-dominated areas (or "fertility islands") to the bare soil interspaces.

  11. Performance Evaluation of Resource Management in Cloud Computing Environments.

    PubMed

    Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci

    2015-01-01

    Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price.

  12. Performance Evaluation of Resource Management in Cloud Computing Environments

    PubMed Central

    Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci

    2015-01-01

    Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price. PMID:26555730

  13. Technology for the Organic Chemist: Three Exploratory Modules

    ERIC Educational Resources Information Center

    Esteb, John J.; McNulty, LuAnne M.; Magers, John; Morgan, Paul; Wilson, Anne M.

    2010-01-01

    The ability to use computer-based technology is an essential skill set for students majoring in chemistry. This exercise details the introduction of appropriate uses for this technology in the organic chemistry series. The incorporation of chemically appropriate online resources (module 1), scientific databases (module 2), and the use of a…

  14. Management and Family Economics Student Modules. Instructor's Guide.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Home Economics Education Section.

    This instructor's guide was designed to help teachers present a performance-based course in family management and economics to high school students. The guide contains a listing of the modules contained in the student modules with suggested levels and courses for teaching; additional learning experiences; lists of supplemental resources and…

  15. Programming mRNA decay to modulate synthetic circuit resource allocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venturelli, Ophelia S.; Tei, Mika; Bauer, Stefan

    Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstratesmore » that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design.« less

  16. Programming mRNA decay to modulate synthetic circuit resource allocation

    DOE PAGES

    Venturelli, Ophelia S.; Tei, Mika; Bauer, Stefan; ...

    2017-04-26

    Synthetic circuits embedded in host cells compete with cellular processes for limited intracellular resources. Here we show how funnelling of cellular resources, after global transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a synthetic circuit can increase production. Target genes are protected from MazF activity by recoding the gene sequence to eliminate recognition sites, while preserving the amino acid sequence. The expression of a protected fluorescent reporter and flux of a high-value metabolite are significantly enhanced using this genome-scale control strategy. Proteomics measurements discover a host factor in need of protection to improve resource redistribution activity. A computational model demonstratesmore » that the MazF mRNA-decay feedback loop enables proportional control of MazF in an optimal operating regime. Transcriptional profiling of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers regulatory design elements. Altogether, our results suggest that manipulation of cellular resource allocation is a key control parameter for synthetic circuit design.« less

  17. Introductory Soils Online: An Effective Way to Get Online Students in the Field

    ERIC Educational Resources Information Center

    Reuter, Ron

    2007-01-01

    Traditional soil science courses, especially with a hands-on lab component, have been face-to-face events. Several universities in the United States now offer a distance natural resources related degree, yet few have developed distance soils courses, arguably an essential part of a complete natural resource education. This article discusses the…

  18. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  19. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  20. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  1. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  2. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  3. Alternate data sources for soil surveys on rangeland

    USGS Publications Warehouse

    Horvath, Emil H.; Klingebiel, A.A.; Moore, D.G.; Fosnight, E.A.

    1983-01-01

    the feasibility of using this approach for producing physiographic maps as an aid for mapping soils and range sites. The project is a cooperative investigation of the Earth Resources Observation Systems Data Center of the U.S. Geological Survey, the Soil Conservation Service, and the Bureau of Land Management.

  4. Comparison of different models for predicting soil bulk density. Case study - Slovakian agricultural soils

    NASA Astrophysics Data System (ADS)

    Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn

    2017-10-01

    Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.

  5. Aspect has a greater impact on alpine soil bacterial community structure than elevation.

    PubMed

    Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin

    2017-03-01

    Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. America's Soil and Water: Condition and Trends.

    ERIC Educational Resources Information Center

    1981

    A review of conditions and trends regarding soil and water resources of rural nonfederal lands of the United States is presented in this publication. Maps, charts, and graphs illustrate the data collected on various aspects of soil and water use and practice. Topic areas considered include: (1) land use patterns; (2) classes of land; (3)…

  7. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  8. Ranch business planning and resource monitoring for rangeland sustainability

    Treesearch

    Kristie A. Maczko; John A. Tanaka; Michael Smith; Cindy Garretson-Weibel; Stanley F. Hamilton; John E. Mitchell; Gene Fults; Charles Stanley; Dick Loper; Larry D. Bryant; J. K. (Rooter) Brite

    2012-01-01

    Aligning a rancher's business plan goals with the capability of the ranch's rangeland resources improves the viability and sustainability of family ranches. Strategically monitoring the condition of soil, water, vegetation, wildlife, livestock production, and economics helps inform business plan goals. Business planning and resource monitoring help keep...

  9. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    USGS Publications Warehouse

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  10. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.

  11. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548

  12. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  13. Pinon-juniper reduction increases soil water availability of the resource growth pool

    Treesearch

    Bruce A. Roundy; Kert Young; Nathan Cline; April Hulet; Richard F. Miller; Robin J. Tausch; Jeanne C. Chambers; Ben Rau

    2014-01-01

    Managers reduce piñon (Pinus spp.) and juniper (Juniperus spp.) trees that are encroaching on sagebrush (Artemisia spp.) communities to lower fuel loads and increase cover of desirable understory species. All plant species in these communities depend on soil water held at > −1.5 MPa matric potential in the upper 0.3 m of soil for nutrient...

  14. Microbial limitation in a changing world: A stoichiometric approach for predicting microbial resource limitation and fluxes

    NASA Astrophysics Data System (ADS)

    Midgley, M.; Phillips, R.

    2014-12-01

    Microbes mediate fluxes of carbon (C), nitrogen (N), and phosphorus (P) in soils depending on ratios of available C, N, and P relative to microbial demand. Hence, characterizing microbial C and nutrient limitation in soils is critical for predicting how ecosystems will respond to human alterations of climate and nutrient availability. Here, we take a stoichiometric approach to assessing microbial C, N, and P limitation by using threshold element ratios (TERs). TERs enable shifting resource limitation to be assessed by matching C, N and P ratios from microbial biomass, extracellular enzyme activities, and soil nutrient concentrations. We assessed microbial nutrient limitation in temperate forests dominated by trees that associate with one of two mycorrhizal symbionts: arbsucular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. We found that both ECM and AM microbial communities were co-limited by C and N, supporting conventional wisdom that microbes are C-limited and temperate forests are N-limited. However, AM microbial communities were relatively more C-limited than ECM communities (P=0.001). In response to chronic field N fertilization, both AM and ECM communities became relatively more P-limited (P=0.011), but they remained N- and C-limited overall. Thus, realistic levels of N deposition may not dampen microbial N limitation. Reflecting differences in relative limitation, N mineralization rates were higher in AM soils than in ECM soils (P=0.004) while C mineralization rates were higher in ECM soils than in AM soils (P=0.023). There were no significant differences in P flux between AM and ECM soils or detectable mineralization responses to N addition, indicating that mineralization rates are closely tied to C and nutrient limitation. Overall, we found that 1) microbial resource limitation can be detected without resource addition; and 2) TERs and ratios of labile resources are viable tools for predicting mineralization responses to resource additions.

  15. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  16. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  17. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  18. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  19. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  20. Close-up view of astronauts foot and footprint in lunar soil

    NASA Image and Video Library

    1969-07-20

    AS11-40-5880 (20 July 1969) --- A close-up view of an astronaut's boot and bootprint in the lunar soil, photographed with a 70mm lunar surface camera during the Apollo 11 lunar surface extravehicular activity (EVA). While astronauts Neil A. Armstrong, commander, and Edwin A. Aldrin Jr., lunar module pilot, descended in the Lunar Module (LM) "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM)" Columbia" in lunar orbit.

  1. Octopamine modulates honey bee dance behavior.

    PubMed

    Barron, Andrew B; Maleszka, Ryszard; Vander Meer, Robert K; Robinson, Gene E

    2007-01-30

    Honey bees communicate the location and desirability of valuable forage sites to their nestmates through an elaborate, symbolic "dance language." The dance language is a uniquely complex communication system in invertebrates, and the neural mechanisms that generate dances are largely unknown. Here we show that treatments with controlled doses of the biogenic amine neuromodulator octopamine selectively increased the reporting of resource value in dances by forager bees. Oral and topical octopamine treatments modulated aspects of dances related to resource profitability in a dose-dependent manner. Dances for pollen and sucrose responded similarly to octopamine treatment, and these effects were eliminated by treatment with the octopamine antagonist mianserin. We propose that octopamine modulates the representation of floral rewards in dances by changing the processing of reward in the honey bee brain. Octopamine is known to modulate appetitive behavior in a range of solitary insects; the role of octopamine in dance provides an example of how neural substrates can be adapted for new behavioral innovations in the process of social evolution.

  2. Octopamine modulates honey bee dance behavior

    PubMed Central

    Barron, Andrew B.; Maleszka, Ryszard; Vander Meer, Robert K.; Robinson, Gene E.

    2007-01-01

    Honey bees communicate the location and desirability of valuable forage sites to their nestmates through an elaborate, symbolic “dance language.” The dance language is a uniquely complex communication system in invertebrates, and the neural mechanisms that generate dances are largely unknown. Here we show that treatments with controlled doses of the biogenic amine neuromodulator octopamine selectively increased the reporting of resource value in dances by forager bees. Oral and topical octopamine treatments modulated aspects of dances related to resource profitability in a dose-dependent manner. Dances for pollen and sucrose responded similarly to octopamine treatment, and these effects were eliminated by treatment with the octopamine antagonist mianserin. We propose that octopamine modulates the representation of floral rewards in dances by changing the processing of reward in the honey bee brain. Octopamine is known to modulate appetitive behavior in a range of solitary insects; the role of octopamine in dance provides an example of how neural substrates can be adapted for new behavioral innovations in the process of social evolution. PMID:17237217

  3. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  4. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources materials. Supplement 31, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected…

  5. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  6. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  7. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 30, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected materials related…

  8. Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III

    NASA Astrophysics Data System (ADS)

    Immer, Christopher; Metzger, Philip; Hintze, Paul E.; Nick, Andrew; Horan, Ryan

    2011-02-01

    Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA's planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module's close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm 2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.

  9. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    USDA-ARS?s Scientific Manuscript database

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  10. Using Microwaves to Heat Lunar Soil

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.

    2011-01-01

    This slide presentation reviews the use of microwaves to heat lunar soil in order to obtain water. There appears to be large amounts of water in the lunar poles, in Martian areas in lower latitudes and some of the Moons of Jupiter. The presence of water in the south lunar polar region was demonstrated by the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. Microwaves can be used to extract water from lunar soil without excavation. Using microwaves on a lunar soil simulant at least 95% of the water from the regolith permafrost simulant was extracted (2 minutes). The process is modeled using COMSOL Multiphysics Finite Element analysis microwave physics module and demonstrated usingan experiment of an microwave apparatus on a rover.

  11. Development of Fuel Shuffling Module for PHISICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allan Mabe; Andrea Alfonsi; Cristian Rabiti

    2013-06-01

    PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completelymore » modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.« less

  12. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradford, M A; Melillo, J M; Reynolds, J F

    2010-06-10

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere asmore » climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog

  13. In situ modeling of PAH dynamics in agricultural soils amended with composts using the "VSOIL" platform

    NASA Astrophysics Data System (ADS)

    Brimo, Khaled; Ouvrard, Stéphanie; Houot, Sabine; Lafolie, François; Deschamps, Marjolaine; Benoit, Pierre; Garnier, Patricia

    2017-04-01

    Numerous studies have shown the presence of organic pollutants (OPs) in composts. Compost application in agricultural soil generates flux of OPs and among them polycyclic aromatic hydrocarbons (PAHs). A potential accumulation of PAHs in soils from successive compost applications could imply risks to environment. To explore and design scenarios that help land managers in their impact evaluations when composts are added in soils, there is a need to a new generation of models built from multi-modules that mimic the whole interactions between the different processes describing OP dynamic in soil. Our work is based on the implementation of an interdisciplinary global model for PAHs in soil by coupling modules describing the major physical, biochemical and biological processes influencing the fate of PAHs in soil, with modules that simulate water transfer, heat transfer, solute transport, and organic matter transformation under climatic conditions. The coupling is being facilitated by the «VSOIL» modeling platform. The steps of our modelling study are the following: 1) calibrate the field model using parameters previously estimated in laboratory completed with field data on a short period, 2) test the simulations using field experimental data, 3) build scenarios to explore the impact of PAHs accumulation in a long term (40 years). Our results show that the model can adequately predict the fate of PAHs in soil and can contribute to clarify some of unexplored aspects regarding the behavior of PAHs in soil like their mineralization and stabilization. Scenarios that predict the dynamic of PAHs in soil at long terms show a low PAH accumulation in soil after 40 years due to a high sequestration of the PAH in soils that is slightly higher for municipal solid waste composts than for green waste sludge composts.

  14. Review article: Critical Care Airway Management eLearning modules.

    PubMed

    Doshi, Deepak; McCarthy, Sally; Mowatt, Elizabeth; Cahill, Angela; Peirce, Bronwyn; Hawking, Geoff; Osborne, Ruth; Hibble, Belinda; Ebbs, Katharine

    2017-11-16

    The Australasian College for Emergency Medicine (ACEM) has recently launched the Critical Care Airway Management eLearning modules to support emergency medicine trainees in developing their airway management skills in the ED. A team of emergency physicians and trainees worked collaboratively to develop the eLearning resources ensuring extensive stakeholder consultation. A comprehensive resource manual was written to provide learners with knowledge that underpins the modules. ACEM provided project coordination as well as administrative and technical team support to the production. Although specifically developed with early ACEM trainees in mind, it is envisaged the resources will be useful for all emergency clinicians. The project was funded by the Australian Commonwealth Department of Health. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  15. Post-fire interactions between soil water repellency, soil fertility and plant growth in soil collected from a burned piñon-juniper woodland

    USGS Publications Warehouse

    Fernelius, Kaitlynn J.; Madsen, Matthew D.; Hopkins, Bryan G.; Bansal, Sheel; Anderson, Val J.; Eggett, Dennis L.; Roundy, Bruce A.

    2017-01-01

    Woody plant encroachment can increase nutrient resources in the plant-mound zone. After a fire, this zone is often found to be water repellent. This study aimed to understand the effects of post-fire water repellency on soil water and inorganic nitrogen and their effects on plant growth of the introduced annual Bromus tectorum and native bunchgrass Pseudoroegneria spicata. Plots centered on burned Juniperus osteosperma trees were either left untreated or treated with surfactant to ameliorate water repellency. After two years, we excavated soil from the untreated and treated plots and placed it in zerotension lysimeter pots. In the greenhouse, half of the pots received an additional surfactant treatment. Pots were seeded separately with B. tectorum or P. spicata. Untreated soils had high runoff, decreased soilwater content, and elevated NO3eN in comparison to surfactant treated soils. The two plant species typically responded similar to the treatments. Above-ground biomass and microbial activity (estimated through soil CO2 gas emissions) was 16.8-fold and 9.5-fold higher in the surfactant-treated soils than repellent soils, respectably. This study demonstrates that water repellency can influence site recovery by decreasing soil water content, promoting inorganic N retention, and impairing plant growth and microbial activity.

  16. Soil property effects on wind erosion of organic soils

    NASA Astrophysics Data System (ADS)

    Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica

    2013-09-01

    Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 μm) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod

  17. International Soil Carbon Network (ISCN) Database v3-1

    DOE Data Explorer

    Nave, Luke [University of Michigan] (ORCID:0000000182588335); Johnson, Kris [USDA-Forest Service; van Ingen, Catharine [Microsoft Research; Agarwal, Deborah [Lawrence Berkeley National Laboratory] (ORCID:0000000150452396); Humphrey, Marty [University of Virginia; Beekwilder, Norman [University of Virginia

    2016-01-01

    The ISCN is an international scientific community devoted to the advancement of soil carbon research. The ISCN manages an open-access, community-driven soil carbon database. This is version 3-1 of the ISCN Database, released in December 2015. It gathers 38 separate dataset contributions, totalling 67,112 sites with data from 71,198 soil profiles and 431,324 soil layers. For more information about the ISCN, its scientific community and resources, data policies and partner networks visit: http://iscn.fluxdata.org/.

  18. Exploring Agribusiness and Natural Resources. Competency Based Education Curriculum. Student Material.

    ERIC Educational Resources Information Center

    Lawrence, Layle D.

    This competency-based prevocational exploration curriculum in agribusiness and natural resources is divided into the following eight areas: agricultural business (sales); animal science (health and grooming); horticulture (grafting and budding); agricultural products (grading eggs); plant science (germination); soil science (soil acidity and…

  19. Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmerski, Lawrence L.; Diniz, Antonia Sonia A. C.; Maia, Cristiana Brasil

    Photovoltaic (PV) module soiling is a growing area of concern for performance and reliability. This paper provides evaluations of the fundamental interactions of dust/soiling particles with several PV module surfaces. The purpose is to investigate the basic mechanisms involving the chemistry, morphology, and resulting particle adhesion to the first photon-incident surface. The evaluation and mapping of the chemistry and composition of single dust particles collected from operating PV module surfaces are presented. The first correlated direct measurements of the adhesive force of individual grains from field-operating collectors on identical PV module glass are reported, including correlations with specific compositions. Specialmore » microscale atomic force microscopy techniques are adapted to determine the force between the particle and the module glass surface. Results are presented for samples under dry and moisture-exposed conditions, confirming the effects of cementation for surfaces having soluble mineral and/or organic concentrations. Additionally, the effects of hydrocarbon fuels on the enhanced bonding of soiling particles to surfaces are determined for samples from urban and highly trafficked regions. Comparisons between glass and dust-mitigating superhydrophobic and superhydrophilic coatings are presented. Potential limitations of this proximal probe technique are discussed in terms of results and initial proof-of-concept experiments.« less

  20. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.

    PubMed

    Schwinning, Susanne; Sala, Osvaldo E

    2004-10-01

    In arid/semi-arid ecosystems, biological resources, such as water, soil nutrients, and plant biomass, typically go through periods of high and low abundance. Short periods of high resource abundance are usually triggered by rainfall events, which, despite of the overall scarcity of rain, can saturate the resource demand of some biological processes for a time. This review develops the idea that there exists a hierarchy of soil moisture pulse events with a corresponding hierarchy of ecological responses, such that small pulses only trigger a small number of relatively minor ecological events, and larger pulses trigger a more inclusive set and some larger ecological events. This framework hinges on the observation that many biological state changes, where organisms transition from a state of lower to higher physiological activity, require a minimal triggering event size. Response thresholds are often determined by the ability of organisms to utilize soil moisture pulses of different infiltration depth or duration. For example, brief, shallow pulses can only affect surface dwelling organisms with fast response times and high tolerance for low resource levels, such as some species of the soil micro-fauna and -flora, while it takes more water and deeper infiltration to affect the physiology, growth or reproduction of higher plants. This review first discusses how precipitation, climate and site factors translate into soil moisture pulses of varying magnitude and duration. Next, the idea of the response hierarchy for ecosystem processes is developed, followed by an exploration of the possible evolutionary background for the existence of response thresholds to resource pulses. The review concludes with an outlook on global change: does the hierarchical view of precipitation effects in ecosystems provide new perspectives on the future of arid/semiarid lands?

  1. The harm of petroleum-polluted soil and its remediation research

    NASA Astrophysics Data System (ADS)

    Wang, Shuguang; Xu, Yan; Lin, Zhaofeng; Zhang, Jishi; Norbu, Namkha; Liu, Wei

    2017-08-01

    Land resources are the foundation of human's survival and development, and it's one of the most valuable natural resources of each country. In view of the serious problems of petroleum pollution to soil caused during the exploration and development processes, this article based on a large number of literature researches, firstly discussed the compositions and properties of petroleum contaminants, secondly investigated some restoration methods for the current situation of petroleum polluted soil, compared and analyzed the advantages and disadvantages of three kinds of bioremediation technologies. Finally, according to the deficiencies of previous research and existing problems, made an outlook of the physical and chemical remediation, bioremediation, and microbe-plant remediation, to provide some enlightenments for petroleum-contaminated soil remediation.

  2. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 33, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to hazardous materials,…

  3. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    NASA Astrophysics Data System (ADS)

    Clegg, Ryan; Metzger, Philip; Roberson, Luke; Stephen, Huff

    2010-03-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor III spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon. The low ejection angle and high velocity are concerns for the lunar outpost. As a first step in investigating this concern, we have performed a series of low-velocity impact experiments in a modified sandblasting hood using lunar soil simulant impacted upon various materials that are commonly used in spaceflight hardware. It was seen that considerable damage is inevitable and protective barriers need to be designed.

  4. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  5. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  6. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  7. High-resolution stable isotope monitoring reveals differential vegetation-soil water feedbacks among plant functional types

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Haberer, K.; Troch, P. A. A.; Gessler, A.; Weiler, M.

    2016-12-01

    Understanding the linked dynamics of rain water recharge to soils and its utilization by plants is critical for predicting the impact of climate and land use changes on the productivity of ecosystems and the hydrologic cycle. While plants require vast quantities of water from the soil to sustain growth and function, they exert important direct and indirect controls on the movement of water through the rooted soil horizons, thereby potentially affecting their own resource availability. However, the specific ecohydrological belowground processes associated with different plant types and their rooting systems have been difficult to quantify with traditional methods. Here, we report on the use of techniques for monitoring stable isotopes in soil and plant water pools that allow us to track water infiltration and root uptake dynamics non-destructively and in high resolution. The techniques were applied in controlled rain pulse experiments with distinct plant types (grass, deciduous trees, grapevine) that we let develop on an initially uniform soil for two years. Our results show that plant species and types differed widely in their plasticity and pattern of root uptake under variable water availability. Thereby, and through notably co-acting indirect effects related to differential root system traits and co-evolution of soil properties, the different plants induced contrasting hydrological dynamics in the soil they had inhabited for only a short period of time. Taken together, our data suggest that the studied soil-vegetation systems evolved a positive infiltration-uptake feedback in which hydrological flow pathways underlying different species diverged in a way that complemented their specific water utilization strategy. Such a feedback could present an indirect competitive mechanism by which plants improve their own water supply and modulate hydrological cycling at the land surface. The ability to directly measure this feedback using in situ isotope methodology

  8. Medical Terminology: Using Some Common Prefixes, Suffixes, and Roots. Health Occupations Education Module.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on medical terminology (using common prefixes, suffixes, and root words) is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module consists of an introduction to the module topic, a list of resources needed, and three learning…

  9. Medical Terminology: Latin Words/Abbreviations; Special Signs and Symbols. Health Occupations Education Module.

    ERIC Educational Resources Information Center

    Temple Univ., Philadelphia, PA. Div. of Vocational Education.

    This module on medical terminology (using Latin words/abbreviations; special signs and symbols) is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. This module consists of an introduction to the module topic, a list of resources needed, and three…

  10. The Interaction between Sytactic and Semantic Modules in Chinese Learners' English Spotaneous Speech

    ERIC Educational Resources Information Center

    Gang, Xu

    2014-01-01

    According to modular theory, there are interactive effects between the central modules and language modules. The central cognition may deploy and redeploy resources from language modules. Moreover, the language modules can activate the cognitive ability. So this paper studies the spontaneous speech of students who learn English as a foreign…

  11. Digital spatial soil and land information for agriculture development

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath

    2006-12-01

    Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.

  12. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  13. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    PubMed

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  14. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over themore » influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.« less

  15. A New "Moodle" Module Supporting Automatic Verification of VHDL-Based Assignments

    ERIC Educational Resources Information Center

    Gutierrez, Eladio; Trenas, Maria A.; Ramos, Julian; Corbera, Francisco; Romero, Sergio

    2010-01-01

    This work describes a new "Moodle" module developed to give support to the practical content of a basic computer organization course. This module goes beyond the mere hosting of resources and assignments. It makes use of an automatic checking and verification engine that works on the VHDL designs submitted by the students. The module automatically…

  16. Space Resources Roundtable 2

    NASA Technical Reports Server (NTRS)

    Ignatiev, A.

    2000-01-01

    Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.

  17. Anaerobic soil disinfestation for controlling Fusarium wilt in strawberies

    USDA-ARS?s Scientific Manuscript database

    A strategy to apply a high rate of carbon resource in the conduct of a fall bed anaerobic soil disinfestation (ASD) treatment did not provide effective control of Fusarium wilt in California strawberries. The lack of disease control efficacy resulted from an increase in soil populations of the caus...

  18. Effects of crop rotations and intercropping on soil health

    USDA-ARS?s Scientific Manuscript database

    Interest in evaluating the health of soil resources has been motivated by growing cognizance that soil is a critically important component of the earth’s biosphere, functioning not only in the production of food and fiber, but also in ecosystems services and global environmental quality. There was a...

  19. Intelligent systems for human resources.

    PubMed

    Kline, K B

    1988-11-01

    An intelligent system contains knowledge about some domain; it has sophisticated decision-making processes and the ability to explain its actions. The most important aspect of an intelligent system is its ability to effectively interact with humans to teach or assist complex information processing. Two intelligent systems are Intelligent Tutoring Systems (ITs) and Expert Systems. The ITSs provide instruction to a student similar to a human tutor. The ITSs capture individual performance and tutor deficiencies. These systems consist of an expert module, which contains the knowledge or material to be taught; the student module, which contains a representation of the knowledge the student knows and does not know about the domain; and the instructional or teaching module, which selects specific knowledge to teach, the instructional strategy, and provides assistance to the student to tutor deficiencies. Expert systems contain an expert's knowledge about some domain and perform specialized tasks or aid a novice in the performance of certain tasks. The most important part of an expert system is the knowledge base. This knowledge base contains all the specialized and technical knowledge an expert possesses. For an expert system to interact effectively with humans, it must have the ability to explain its actions. Use of intelligent systems can have a profound effect on human resources. The ITSs can provide better training by tutoring on an individual basis, and the expert systems can make better use of human resources through job aiding and performing complex tasks. With increasing training requirements and "doing more with less," intelligent systems can have a positive effect on human resources.

  20. Resource Tracking Model Updates and Trade Studies

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Stambaugh, Imelda; Moore, Michael

    2016-01-01

    The Resource tracking model has been updated to capture system manager and project manager inputs. Both the Trick/GUNNS RTM simulator and the RTM mass balance spreadsheet have been revised to address inputs from system managers and to refine the way mass balance is illustrated. The revisions to the RTM included addition of a Plasma Pyrolysis Assembly (PPA) to recover hydrogen from Sabatier reactor methane which was vented in the prior version of the RTM. The effect of the PPA on the overall balance of resources in an exploration vehicle is illustrated in the increased recycle of vehicle oxygen. Additionally simulation of EVAs conducted from the exploration module was added. Since the focus of the exploration module is to provide a habitat during deep space operations the EVA simulation approach to EVA is based on ISS EVA protocol and processes. Case studies have been run to show the relative effect of performance changes on vehicle resources.

  1. Independent learning modules enhance student performance and understanding of anatomy.

    PubMed

    Serrat, Maria A; Dom, Aaron M; Buchanan, James T; Williams, Alison R; Efaw, Morgan L; Richardson, Laura L

    2014-01-01

    Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self-study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three-dimensional constructs to help students understand complex anatomical regions. Resources are self-contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self-study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre- and post-examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module-related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. © 2014 American Association of Anatomists.

  2. A Sushi Science Module in Food Production Systems and Aquatic Resource Education

    ERIC Educational Resources Information Center

    Livengood, Elisa J.; Chapman, Frank A.

    2009-01-01

    No other food industry depends so heavily on a wild caught resource than those associated with aquatic food products. Domestication of fish, shellfish, and other aquatic resources production has lagged behind other terrestrial livestock products; however, demand for these aquatic natural resources has continued to increase dramatically. Teaching…

  3. Won’t soil be damaged if cattle graze cover crops?

    USDA-ARS?s Scientific Manuscript database

    Integration of crops and livestock could provide economic benefits to producers by intensifying land use and improving resource efficiency, but how this management might affect soil compaction, water infiltration, and soil strength has not been well documented. Key factors in balancing cattle produ...

  4. Permeability of soils in Mississippi

    USGS Publications Warehouse

    O'Hara, Charles G.

    1994-01-01

    The permeability of soils in Mississippi was determined and mapped using a geographic information system (GIS). Soil permeabilities in Mississippi were determined to range in value from nearly 0.0 to values exceeding 5.0 inches per hour. The U.S. Soil Conservation Service's State Soil Geographic Data Base (STATSGO) was used as the primary source of data for the determination of area-weighted soil permeability. STATSGO provides soil layer properties that are spatially referenced to mapped areas. These mapped areas are referred to as polygons in the GIS. The polygons arc boundaries of soils mapped as a group and are given unique Map Unit Identifiers (MUIDs). The data describing the physical characteristics of the soils within each polygon are stored in a tabular data base format and are referred to as attributes. The U.S. Soil Conservation Service developed STATSGO to be primarily used as a guide for regional resource planning, management, and monitoring. STATSGO was designed so that soil information could be extracted from properties tables at the layer level, combined by component, and statistically expanded to cover the entire map unit. The results of this study provide a mapped value for permeability which is representative of the vertical permeability of soils in that area. The resultant permeability map provides a representative vertical soil permeability for a given area sufficient for county, multi- county, and area planning, and will be used as the soil permeability data component in the evaluation of the susceptibility of major aquifers to contami- nation in Mississippi.

  5. AQUATOOL, a generalized decision-support system for water-resources planning and operational management

    NASA Astrophysics Data System (ADS)

    Andreu, J.; Capilla, J.; Sanchís, E.

    1996-04-01

    This paper describes a generic decision-support system (DSS) which was originally designed for the planning stage of dicision-making associated with complex river basins. Subsequently, it was expanded to incorporate modules relating to the operational stage of decision-making. Computer-assisted design modules allow any complex water-resource system to be represented in graphical form, giving access to geographically referenced databases and knowledge bases. The modelling capability includes basin simulation and optimization modules, an aquifer flow modelling module and two modules for risk assessment. The Segura and Tagus river basins have been used as case studies in the development and validation phases. The value of this DSS is demonstrated by the fact that both River Basin Agencies currently use a version for the efficient management of their water resources.

  6. Emergent Imaging and Geospatial Technologies for Soil Investigations

    NASA Technical Reports Server (NTRS)

    DeGloria, Stephen D.; Beaudette, Dylan E.; Irons, James R.; Libohova, Zamir; O'Neill, Peggy E.; Owens, Phillip R.; Schoeneberger, Philip J.; West, Larry T.; Wysocki, Douglas A.

    2014-01-01

    Soil survey investigations and inventories form the scientific basis for a wide spectrum of agronomic and environmental management programs. Soil data and information help formulate resource conservation policies of federal, state, and local governments that seek to sustain our agricultural production system while enhancing environmental quality on both public and private lands. The dual challenges of increasing agricultural production and ensuring environmental integrity require electronically available soil inventory data with both spatial and attribute quality. Meeting this societal need in part depends on development and evaluation of new methods for updating and maintaining soil inventories for sophisticated applications, and implementing an effective framework to conceptualize and communicate tacit knowledge from soil scientists to numerous stakeholders.

  7. Post-fire redistribution of soil carbon and nitrogen at a grassland-shrubland ecotone

    USGS Publications Warehouse

    Wang, Guan; Li, Junran; Ravi, Sujith; Dukes, David; Gonzales, Howell B.; Sankey, Joel B.

    2018-01-01

    The rapid conversion of grasslands into shrublands has been observed in many arid and semiarid regions worldwide. Studies have shown that fire can provide certain forms of reversibility for shrub-grass transition due to resource homogenization and shrub mortality, especially in the early stages of shrub encroachment. Field-level post-fire soil resource redistribution has rarely been tested. Here we used prescribed fire in a shrubland-grassland transition zone in the northern Chihuahuan Desert to test the hypothesis that fire facilitates the remobilization of nutrient-enriched soil from shrub microsites to grass and bare microsites and thereby reduces the spatial heterogeneity of soil resources. Results show that the shrub microsites had the lowest water content compared to grass and bare microsites after fire, even when rain events occurred. Significant differences of total soil carbon (TC) and total soil nitrogen (TN) among the three microsites disappeared one year after the fire. The spatial autocorrelation distance increased from 1~2 m, approximately the mean size of an individual shrub canopy, to over 5 m one year after the fire for TC and TN. Patches of high soil C and N decomposed one year after the prescribed fire. Overall, fire stimulates the transfer of soil C and N from shrub microsites to nutrient-depleted grass and bare microsites. Such a redistribution of soil C and N, coupled with the reduced soil water content under the shrub canopies, suggests that fire might influence the competition between shrubs and grasses, leading to a higher grass, compared to shrub, coverage in this ecotone.

  8. Adaptive management for soil ecosystem services.

    PubMed

    Birgé, Hannah E; Bevans, Rebecca A; Allen, Craig R; Angeler, David G; Baer, Sara G; Wall, Diana H

    2016-12-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services. Copyright © 2016. Published by Elsevier Ltd.

  9. Adaptive management for soil ecosystem services

    USGS Publications Warehouse

    Birge, Hannah E.; Bevans, Rebecca A.; Allen, Craig R.; Angeler, David G.; Baer, Sara G.; Wall, Diana H.

    2016-01-01

    Ecosystem services provided by soil include regulation of the atmosphere and climate, primary (including agricultural) production, waste processing, decomposition, nutrient conservation, water purification, erosion control, medical resources, pest control, and disease mitigation. The simultaneous production of these multiple services arises from complex interactions among diverse aboveground and belowground communities across multiple scales. When a system is mismanaged, non-linear and persistent losses in ecosystem services can arise. Adaptive management is an approach to management designed to reduce uncertainty as management proceeds. By developing alternative hypotheses, testing these hypotheses and adjusting management in response to outcomes, managers can probe dynamic mechanistic relationships among aboveground and belowground soil system components. In doing so, soil ecosystem services can be preserved and critical ecological thresholds avoided. Here, we present an adaptive management framework designed to reduce uncertainty surrounding the soil system, even when soil ecosystem services production is not the explicit management objective, so that managers can reach their management goals without undermining soil multifunctionality or contributing to an irreversible loss of soil ecosystem services.

  10. Wildland fire in ecosystems: effects of fire on soils and water

    Treesearch

    Daniel G. Neary; Kevin C. Ryan; Leonard F. DeBano

    2005-01-01

    This state-of-knowledge review about the effects of fire on soils and water can assist land and fire managers with information on the physical, chemical, and biological effects of fire needed to successfully conduct ecosystem management, and effectively inform others about the role and impacts of wildland fire. Chapter topics include the soil resource, soil physical...

  11. Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal

    PubMed Central

    Glavatska, Olena; Müller, Karolin; Butenschoen, Olaf; Schmalwasser, Andreas; Kandeler, Ellen; Scheu, Stefan; Totsche, Kai Uwe

    2017-01-01

    Soil food web structure and function is primarily determined by the major basal resources, which are living plant tissue, root exudates and dead organic matter. A field experiment was performed to disentangle the interlinkage of the root-and detritus-based soil food chains. An arable site was cropped either with maize, amended with maize shoot litter or remained bare soil, representing food webs depending on roots, aboveground litter and soil organic matter as predominant resource, respectively. The soil micro-food web, i.e. microorganisms and nematodes, was investigated in two successive years along a depth transect. The community composition of nematodes was used as model to determine the changes in the rhizosphere, detritusphere and bulk soil food web. In the first growing season the impact of treatments on the soil micro-food web was minor. In the second year plant-feeding nematodes increased under maize, whereas after harvest the Channel Index assigned promotion of the detritivore food chain, reflecting decomposition of root residues. The amendment with litter did not foster microorganisms, instead biomass of Gram-positive and Gram-negative bacteria as well as that of fungi declined in the rooted zone. Likely higher grazing pressure by nematodes reduced microbial standing crop as bacterial and fungal feeders increased. However, populations at higher trophic levels were not promoted, indicating limited flux of litter resources along the food chain. After two years of bare soil microbial biomass and nematode density remained stable, pointing to soil organic matter-based resources that allow bridging periods with deprivation. Nematode communities were dominated by opportunistic taxa that are competitive at moderate resource supply. In sum, removal of plants from the system had less severe effects than expected, suggesting considerable food web resilience to the disruption of both the root and detrital carbon channel, pointing to a legacy of organic matter

  12. Disentangling the root- and detritus-based food chain in the micro-food web of an arable soil by plant removal.

    PubMed

    Glavatska, Olena; Müller, Karolin; Butenschoen, Olaf; Schmalwasser, Andreas; Kandeler, Ellen; Scheu, Stefan; Totsche, Kai Uwe; Ruess, Liliane

    2017-01-01

    Soil food web structure and function is primarily determined by the major basal resources, which are living plant tissue, root exudates and dead organic matter. A field experiment was performed to disentangle the interlinkage of the root-and detritus-based soil food chains. An arable site was cropped either with maize, amended with maize shoot litter or remained bare soil, representing food webs depending on roots, aboveground litter and soil organic matter as predominant resource, respectively. The soil micro-food web, i.e. microorganisms and nematodes, was investigated in two successive years along a depth transect. The community composition of nematodes was used as model to determine the changes in the rhizosphere, detritusphere and bulk soil food web. In the first growing season the impact of treatments on the soil micro-food web was minor. In the second year plant-feeding nematodes increased under maize, whereas after harvest the Channel Index assigned promotion of the detritivore food chain, reflecting decomposition of root residues. The amendment with litter did not foster microorganisms, instead biomass of Gram-positive and Gram-negative bacteria as well as that of fungi declined in the rooted zone. Likely higher grazing pressure by nematodes reduced microbial standing crop as bacterial and fungal feeders increased. However, populations at higher trophic levels were not promoted, indicating limited flux of litter resources along the food chain. After two years of bare soil microbial biomass and nematode density remained stable, pointing to soil organic matter-based resources that allow bridging periods with deprivation. Nematode communities were dominated by opportunistic taxa that are competitive at moderate resource supply. In sum, removal of plants from the system had less severe effects than expected, suggesting considerable food web resilience to the disruption of both the root and detrital carbon channel, pointing to a legacy of organic matter

  13. Cosmic ray soil moisture observing systems comos in cap fields at El Reno Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Soil water content (SWC) partitions rainfall into runoff and infiltration, modulates surface and atmospheric exchanges of water and energy, affects plant growth and crop yields, and impacts chemical and biological activities of soil, among other things. Thus, SWC, especially over large scales, is a...

  14. Soil-Water Balance (SWB) model estimates of soil-moisture variability and groundwater recharge in the South Platte watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Anderson, A. M.; Walker, E. L.; Hogue, T. S.; Ruybal, C. J.

    2015-12-01

    Unconventional energy production in semi-arid regions places additional stress on already over-allocated water systems. Production of shale gas and oil resources in northern Colorado has rapidly increased since 2010, and is expected to continue growing due to advances in horizontal drilling and hydraulic fracturing. This unconventional energy production has implications for the availability of water in the South Platte watershed, where water demand for hydraulic fracturing of unconventional shale resources reached ~16,000 acre-feet in 2014. Groundwater resources are often exploited to meet water demands for unconventional energy production in regions like the South Platte basin, where surface water supply is limited and allocated across multiple uses. Since groundwater is often a supplement to surface water in times of drought and peak demand, variability in modeled recharge estimates can significantly impact projected availability. In the current work we used the Soil-Water Balance Model (SWB) to assess the variability in model estimates of actual evapotranspiration (ET) and soil-moisture conditions utilized to derive estimates of groundwater recharge. Using both point source and spatially distributed data, we compared modeled actual ET and soil-moisture derived from several potential ET methods, such as Thornthwaite-Mather, Jense-Haise, Turc, and Hargreaves-Samani, to historic soil moisture conditions obtained through sources including the Gravity Recovery and Climate Experiment (GRACE). In addition to a basin-scale analysis, we divided the South Platte watershed into sub-basins according to land cover to evaluate model capabilities of estimating soil-moisture parameters with variations in land cover and topography. Results ultimately allow improved prediction of groundwater recharge under future scenarios of climate and land cover change. This work also contributes to complementary subsurface groundwater modeling and decision support modeling in the South Platte.

  15. Integrated assessment of the direct and indirect effects of resource gradients on tree species recruitment.

    PubMed

    Ibáñez, Inés; McCarthy-Neumann, Sarah

    2014-02-01

    Understanding the dynamics of tree establishment is critical to assess forests' composition, management practices, and current responses to global change. We carried out a field seedling transplant experiment to assess not only the direct effects of resources influencing recruitment of four tree species, but also their indirect and combined effects. Our analysis integrated first growing season demographic data together with estimates of mycorrhizal fungal colonization and resource availability (light, soil moisture, and soil nitrogen). Only by considering both the direct and indirect effects of resources we were able to account for most of the variability observed during seedling recruitment. Contrary to expectations, increasing light levels were not always beneficial for recruitment even in low light habitats, and soil moisture availability benefited seedling growth but not survival. In addition, mycorrhizal fungal colonization was not always favored by high light levels or by increasing soil moisture. Seedling survival for all species was lower in plots with higher arbuscular mycorrhizal fungi, while the association with ectomycorrhizal fungi varied from beneficial to detrimental. When integrating the direct, indirect, and interactive effects of resource availability and mycorrhizal fungal colonization on tree recruitment dynamics we found that species responded in a nonlinear fashion to increasing resource levels, and we also identified thresholds, i.e., shifts in the direction of the response, along the resource gradient. Our integrated assessment considerably outperformed a null model where only direct effects of resources were accounted for. These results illustrate how the combination of direct, indirect, and combined effects of driving variables better represents the complexity of the processes determining tree species recruitment than simple resource availability mechanisms.

  16. Alpine Soils as long-term Bioindicators

    NASA Astrophysics Data System (ADS)

    Nestroy, O.

    2009-04-01

    Alpine soils as long-term bioindicators The introductory words concern the definitions and peculiarities of alpine soils and their position in the Austrian Soil Classification 2000 in comparison with the World Reference Base for Soil Resources 2006. The important parameters for genesis and threats for these soils in steep and high positions are discussed. It must be emphasized that the main threats are the very different kinds of erosion e.g. by water, wind and snow, and also by skiing (end of season) as well as and mountain-biking (mainly summer-sport). Due the very slow regeneration and - in this connection - due to the very slow changes of the soil entities, these soils give an utmost importance as a long-time bioindicator. With regard to the climate change one can assume an increase in the content of organic matter on site, but also an increase of erosion and mass movement on the other site, e. g. in kind of "plaiken" (soil slide) as result of an increasing intensity of rainfall. It lies partly in our hands to diminish the number and the intensity of the threats, we can influence the soil development, but the result to reach a new ecological equilibrium is very long - in case of alpine soil more than two generations.

  17. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    NASA Astrophysics Data System (ADS)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  18. Use of commercial soil amendments in initial soils (II) - Impact on soil respiratory and carbon isotopic characteristics

    NASA Astrophysics Data System (ADS)

    Nii-Annang, S.; Rodionov, A.; Dilly, O.; Bens, O.; Raab, T.; Hüttl, R. F.

    2009-04-01

    The search for viable re-cultivation techniques for the reclamation of large scale soil disturbances induced by mining of mineral resources has increasingly received attention in recent times. These techniques should favour plant growth under dry conditions and under nutrient-poor substrates; a problem in the lignite mining district in Lusatia, Germany. Substrates with basal respiration around 0.04 µg CO2 g-1 h-1, which is relatively low compared to mature soils, were amended with two nutrient rich commercial soil additives (CSA 1 and CSA 2). The CSA 1 is a synthetic-mineral mixture and CSA 2 an organo-mineral mixture. The amendment stimulated basal respiration based on both carbon dioxide evolution and oxygen uptake by 150 and 125 % for SCA 1 and CSA 2, respectively when 1 % of each additive was thoroughly mixed with substrate in a laboratory study. The stimulating effect was evident after glucose addition to CSA 2. The CSA 1 application in the field at lower rates still showed apparent stimulation of soil respiratory activities after one year. Similarly, the organo-mineral-mixture has prominent effects on basal respiration and substrate-induced respiration when glucose was added. We concluded that the commercial additives used as long-term amelioration techniques increased both nutrient preservation and, to some extent, soil microbial activity.

  19. Module Ten: Transformers; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module introduces a very important electrical device, the transformer. The module is divided into six lessons: transformer construction, transformer theory and operation, turns and voltage ratios, power and current, transformer efficiency, and semiconductor rectifiers. Each lesson consists of an overview, a list of study resources, lesson…

  20. Undergraduate teaching modules featuring geodesy data applied to critical social topics (GETSI: GEodetic Tools for Societal Issues)

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Charlevoix, D. J.; Miller, M. M.

    2015-12-01

    The GETSI project, funded by NSF TUES, is developing and disseminating teaching and learning materials that feature geodesy data applied to critical societal issues such as climate change, water resource management, and natural hazards (serc.carleton.edu/getsi). It is collaborative between UNAVCO (NSF's geodetic facility), Mt San Antonio College, and Indiana University. GETSI was initiated after requests by geoscience faculty for geodetic teaching resources for introductory and majors-level students. Full modules take two weeks but module subsets can also be used. Modules are developed and tested by two co-authors and also tested in a third classroom. GETSI is working in partnership with the Science Education Resource Center's (SERC) InTeGrate project on the development, assessment, and dissemination to ensure compatibility with the growing number of resources for geoscience education. Two GETSI modules are being published in October 2015. "Ice mass and sea level changes" includes geodetic data from GRACE, satellite altimetry, and GPS time series. "Imaging Active Tectonics" has students analyzing InSAR and LiDAR data to assess infrastructure earthquake vulnerability. Another three modules are in testing during fall 2015 and will be published in 2016. "Surface process hazards" investigates mass wasting hazard and risk using LiDAR data. "Water resources and geodesy" uses GRACE, vertical GPS, and reflection GPS data to have students investigating droughts in California and the High Great Plains. "GPS, strain, and earthquakes" helps students learn about infinitesimal and coseismic strain through analysis of horizontal GPS data and includes an extension module on the Napa 2014 earthquake. In addition to teaching resources, the GETSI project is compiling recommendations on successful development of geodesy curricula. The chief recommendations so far are the critical importance of including scientific experts in the authorship team and investing significant resources in

  1. State resource management and role of remote sensing. [California

    NASA Technical Reports Server (NTRS)

    Johnson, H. D.

    1981-01-01

    Remote sensing by satellite can provide valuable information to state officials when making decisions regarding resources management. Portions of California's investment for Prosperity program which seem likely candidates for remote sensing include: (1) surveying vegetation type, age, and density in forests and wildlife habitats; (2) controlling fires through chaparal management; (3) monitoring wetlands and measuring ocean biomass; (4) eliminating ground water overdraught; (5) locating crops in overdraught areas, assessing soil erosion and the areas of poorly drained soils and those affected by salt; (6) monitoring coastal lands and resources; (7) changes in landscapes for recreational purposes; (8) inventorying irrigated lands; (9) classifying ground cover; (10) monitoring farmland conversion; and (11) supplying data for a statewide computerized farmlands data base.

  2. Mars in Situ Resource Utilization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santago-Maldonado, Edgardo

    2012-01-01

    We have examined the technologies required to enable Mars In-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil processing technology to extract water from Martian soil.

  3. Mars In-Situ Resource Utilization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Muscatello, Anthony

    2011-01-01

    We have examined the technologies required to enable Mars Tn-Situ Resource Utilization (ISRU) because our understanding of Mars resources has changed significantly in the last five years as a result of recent robotic missions to the red planet [1-4]. Two major developments, (1) confirmation of the presence of near-surface water in the form of ice in very large amounts at high latitudes by the Phoenix Lander and (2) the likely existence of water at lower latitudes in the form of hydrates or ice in the top one meter of the regolith, have the potential to change ISRU technology selection. A brief technology assessment was performed for the most promising Mars atmospheric gas processing techniques: Reverse Water Gas Shift (RWGS) and Methanation (aka Sabatier), as well as an overview of soil.processing technology to extract water from Martian soil.

  4. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  5. Landmarks of History of Soil Science in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Mapa, R.

    2012-04-01

    Sri Lanka is a tropical Island in the Southern tip of Indian subcontinent positioned at 50 55' to 90 50' N latitude and 790 42' to 810 53' E longitude surrounded by the Indian Ocean. It is an island 435 km in length and 224 km width consisting of a land are of 6.56 million ha with a population of 20 million. In area wise it is ranked as 118th in the world, where at present ranked as 47 in population wise and ranked 19th in population density. The country was under colonial rule under Portuguese, Dutch and British from 1505 to 1948. The majority of the people in the past and present earn their living from activities based on land, which indicates the important of the soil resource. The objective of this paper is to describe the landmarks of the history of Soil Science to highlight the achievements and failures, which is useful to enrich our present understanding of Sri Lankan soils. The landmarks of the history of Soil Science in Sri Lanka can be divided to three phases namely, the early period (prior to 1956), the middle period (1956 to 1972) and the present period (from 1972 onwards). During the early period, detailed analytical studies of coffee and tea soils were compiled, and these gave mainly information on up-country soils which led to fertilizer recommendations based on field trials. In addition, rice and forest soils were also studied in less detail. The first classification of Sri Lankan soils and a provisional soil map based on parent material was published by Joachim in 1945 which is a major landmark of history of Soil Science in Sri Lanka. In 1959 Ponnamperuma proposed a soil classification system for wetland rice soils. From 1963 to 1968 valuable information on the land resource was collected and documented by aerial resource surveys funded by Canada-Ceylon Colombo plan aid project. This covered 18 major river basins and about 1/4th of Sri Lanka, which resulted in producing excellent soil maps and information of the areas called the Kelani Aruvi Ara

  6. Do plants modulate biomass allocation in response to petroleum pollution?

    PubMed Central

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-01-01

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231

  7. Students' and Lecturers' Views on Mathematics Resources

    ERIC Educational Resources Information Center

    Ní Shé, Caitríona; Mac an Bhaird, Ciarán; Ní Fhloinn, Eabhnat; O'Shea, Ann

    2017-01-01

    There is a general agreement that many students struggle with the transition from secondary to higher education, particularly in the context of mathematics modules. Lecturers often suggest or supply supplemental resources to give students the opportunity to overcome their difficulties. In addition, students often seek out resources independently,…

  8. Description of the Fork Mountain long-term soil productivity study: site characterization

    Treesearch

    Mary Beth Adams; James Burger; Lucian Zelazny; John Baumgras

    2004-01-01

    The effects of air pollution and timber harvesting on soil resources continue to be an important issue in eastern hardwood forests. This publication describes the Fork Mountain Long-term Soil Productivity Study (LTSP), located on the Fernow Experimental Forest, WV, and the pretreatment stand, soil and climatic conditions. Extensive vegetation surveys, biomass...

  9. Recovering valuable metals from recycled photovoltaic modules.

    PubMed

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  10. Module 3: Workplace Policy, Practice and Culture--Employer and Employee Perspectives. Work-Family Curriculum Guide

    ERIC Educational Resources Information Center

    Kossek, Ellen Ernst; Leana, Carrie; MacDermid, Shelley; Pitt-Catsouphes, Marcie; Raskin, Patricia; Secret, Mary; Sweet, Stephen

    2006-01-01

    The contents of this module have been prepared to address some of challenges associated with teaching about work-family issues from a human resource management and employment perspective. The goals of this module are: (1) To develop an understanding that work-family policies are part of a human resource management system and the employment…

  11. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  12. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  13. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  14. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  15. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The...

  16. On the Need to Establish an International Soil Modeling Consortium

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Vanderborght, J.; Schnepf, A.

    2014-12-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key

  17. Beech cupules as keystone structures for soil fauna.

    PubMed

    Melguizo-Ruiz, Nereida; Jiménez-Navarro, Gerardo; Moya-Laraño, Jordi

    2016-01-01

    Facilitative or positive interactions are ubiquitous in nature and play a fundamental role in the configuration of ecological communities. In particular, habitat modification and niche construction, in which one organism locally modifies abiotic conditions and favours other organisms by buffering the effects of adverse environmental factors, are among the most relevant facilitative interactions. In line with this, 'keystone structures', which provide resources, refuge, or advantageous services decisive for other species, may allow the coexistence of various species and thus considerably contribute to diversity maintenance. Beech cupules are woody husks harbouring beech fruits that remain in the forest soil for relatively long periods of time. In this study, we explored the potential role of these cupules in the distribution and maintenance of the soil fauna inhabiting the leaf litter layer. We experimentally manipulated cupule availability and soil moisture in the field to determine if such structures are limiting and can provide moist shelter to soil animals during drought periods, contributing to minimize desiccation risks. We measured invertebrate abundances inside relative to outside the cupules, total abundances in the leaf litter and animal body sizes, in both dry and wet experimental plots. We found that these structures are preferentially used by the most abundant groups of smaller soil animals-springtails, mites and enchytraeids-during droughts. Moreover, beech cupules can be limiting, as an increase in use was found with higher cupule densities, and are important resources for many small soil invertebrates, driving the spatial structure of the soil community and promoting higher densities in the leaf litter, probably through an increase in habitat heterogeneity. We propose that fruit woody structures should be considered 'keystone structures' that contribute to soil community maintenance. Therefore, beech trees may indirectly facilitate soil fauna

  18. Orion Landing Simulation Eight Soil Model Comparison

    NASA Technical Reports Server (NTRS)

    Mark, Stephen D.

    2009-01-01

    LS-DYNA finite element simulations of a rigid Orion Crew Module (CM) were used to investigate the CM impact behavior on eight different soil models. Ten different landing conditions, characterized by the combination of CM vertical and horizontal velocity, hang angle, and roll angle were simulated on the eight different soils. The CM center of gravity accelerations, pitch angle, kinetic energy, and soil contact forces were the outputs of interest. The simulation results are presented, with comparisons of the CM behavior on the different soils. The soils analyzed in this study can be roughly categorized as soft, medium, or hard, according to the CM accelerations that occur when landing on them. The soft group is comprised of the Carson Sink Wet soil and the Kennedy Space Center (KSC) Low Density Dry Sand. The medium group includes Carson Sink Dry, the KSC High Density In-Situ Moisture Sand and High Density Flooded Sand, and Cuddeback B. The hard soils are Cuddeback A and the Gantry Unwashed Sand. The softer soils were found to produce lower peak accelerations, have more stable pitch behavior, and to be less sensitive to the landing conditions. This investigation found that the Cuddeback A soil produced the highest peak accelerations and worst stability conditions, and that the best landing performance was achieved on the KSC Low Density Dry Sand.

  19. Modeling flow pathways through pores and cracks in aerated soils

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2011-08-01

    Knowledge of how chemical contaminants spread through soil is of vital importance to those who manage groundwater and agricultural resources, superfund sites, landfills, and mines. Of particular interest to contaminant transport studies is crop management—though crops can be victims of pollution from elsewhere, fertilizers and other agricultural chemicals can leach through the soil and infiltrate groundwater. The spread of such contaminants from farmland not only is influenced by the amount of chemicals used for farming but also depends on how agriculture affects soil—activities such as mechanized farming, irrigation scheduling, swelling and shrinking properties, crop-rooting characteristics, and earthworm or other biological activity can influence the amount and size of air pockets in the soil. These “macropores”—so named because they are typically about 1 millimeter or larger in diameter—can allow agricultural contaminants to move through the soil more rapidly, along preferential flow paths. (Water Resources Research, doi:10.1029/2010WR009451, 2011)

  20. Land Application of Wastes: An Educational Program. Nitrogen Considerations - Module 15, Objectives, Script and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module expands on the introductory discussion of nitrogen in other modules. The various chemical forms of nitrogen found in land treatment systems are defined. Inputs from waste application as well as natural sources are quantified for typical situations. A discussion of nitrogen transformations in the soil includes mineralization and…

  1. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  2. Exploring the potential offered by legacy soil databases for ecosystem services mapping of Central African soils

    NASA Astrophysics Data System (ADS)

    Verdoodt, Ann; Baert, Geert; Van Ranst, Eric

    2014-05-01

    Central African soil resources are characterised by a large variability, ranging from stony, shallow or sandy soils with poor life-sustaining capabilities to highly weathered soils that recycle and support large amounts of biomass. Socio-economic drivers within this largely rural region foster inappropriate land use and management, threaten soil quality and finally culminate into a declining soil productivity and increasing food insecurity. For the development of sustainable land use strategies targeting development planning and natural hazard mitigation, decision makers often rely on legacy soil maps and soil profile databases. Recent development cooperation financed projects led to the design of soil information systems for Rwanda, D.R. Congo, and (ongoing) Burundi. A major challenge is to exploit these existing soil databases and convert them into soil inference systems through an optimal combination of digital soil mapping techniques, land evaluation tools, and biogeochemical models. This presentation aims at (1) highlighting some key characteristics of typical Central African soils, (2) assessing the positional, geographic and semantic quality of the soil information systems, and (3) revealing its potential impacts on the use of these datasets for thematic mapping of soil ecosystem services (e.g. organic carbon storage, pH buffering capacity). Soil map quality is assessed considering positional and semantic quality, as well as geographic completeness. Descriptive statistics, decision tree classification and linear regression techniques are used to mine the soil profile databases. Geo-matching as well as class-matching approaches are considered when developing thematic maps. Variability in inherent as well as dynamic soil properties within the soil taxonomic units is highlighted. It is hypothesized that within-unit variation in soil properties highly affects the use and interpretation of thematic maps for ecosystem services mapping. Results will mainly be based

  3. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-02-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global

  4. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-06-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global

  5. View of the orange soil which Apollo 17 crewmen found at Station 4 during EVA

    NASA Image and Video Library

    1972-12-12

    AS17-137-20989 (12 Dec. 1972) --- A close-up view of the much-publicized orange soil which the Apollo 17 crewmen found at Station 4 (Shorty Crater) during the second Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. The orange soil was first spotted by scientist-astronaut Harrison H. Schmitt. While astronauts Schmitt and Eugene A. Cernan descended in the Lunar Module (LM) "Challenger" to explore the lunar surface, astronaut Ronald E. Evans remained with the Apollo 17 Command and Service Modules (CSM) in lunar orbit. The orange soil was never seen by the crewmen of the other lunar landing missions - Apollo 11 (Sea of Tranquility); Apollo 12 (Ocean of Storms); Apollo 14 (Fra Mauro); Apollo 15 (Hadley-Apennines); and Apollo 16 (Descartes).

  6. Resources for Performance-Based Education.

    ERIC Educational Resources Information Center

    Houston, W. Robert; And Others

    This volume presents annotations of resources on performance-based teacher education. The materials, produced after 1967, include films, slide/tapes, modules, programmed texts, and multimedia kits for training pre- and in-service educational personnel. The materials are indexed according to both competency categories and key words, descriptions,…

  7. Sample introducing apparatus and sample modules for mass spectrometer

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  8. Inspiring Climate Education Excellence (ICEE): Developing self-directed professional development modules for secondary science teachers

    NASA Astrophysics Data System (ADS)

    Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Morton, E.

    2010-12-01

    Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop online course modules and self-directed learning resources aligned with the Essential Principles of Climate Science. Following a national needs assessment survey and a face to face workshop to pilot test topics, a suite of online modules is being developed suitable for self-directed learning by secondary science teachers. Modules are designed around concepts and topics in which teachers express the most interest and need for instruction. Module design also includes attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and is informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign. Modules and self-directed learning resources will be developed and disseminated in partnership with the National Science Digital Library (NSDL). This presentation introduces the needs assessment and pilot workshop data upon which the modules are based, and describes the modules that are available and in development.

  9. Soil Conservation. A Guide to Classroom and Field Activities for Middle Secondary Students. Teacher Manual and Student Manual.

    ERIC Educational Resources Information Center

    Tivendale, Bruce D.

    Soil is a natural resource of inestimable value. It is classified as a renewable resource, but because it may take from a few hundred years to a few thousand years to be renewed, it is more accurately termed an exhaustible resource. The emphasis of this teaching unit is the importance of soil and the need and means to conserve it. The constraining…

  10. The use of pruned chipped branches to increase the soil infiltration capacity and reduce the soil losses on citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    González-Pelayo, Óscar; Llovet, Joan; Giménez-Morera, Antonio; Jordán, Antonio; Pereira, Paulo; Novara, Agata; García-Orenes, Fuensanta; Cerdà, Artemi

    2015-04-01

    Soil water erosion is causing problems on the agriculture land of the world. The high erosion rates registered in the agriculture land are due to the lack of a vegetation cover that protects the soil. High erosion rates in agriculture lands are found in Africa, Europe, Asia, and any other continent. Soil erosion on citrus orchards has been researched recently and shown huge erosion rates in the Mediterranean and in China. All this research findings allow us to confirm that the soil erosion rates on citrus orchards are not sustainable and strategies to control the soil erosion should be applied. The increasing erosion rates are due to the bare soils, but also are due to the soil structure degradation and soil organic matter exhaustion. Some authors applied cover on crops to avoid the raindrop impact and the surfaces wash but there is a need to develop new strategies to reduce soil losses and keep sustainable the citrus productions. The agriculture production also results in a large amount of residues than can be a resource to improve the soil cover. This has been done in road embankments, in forest land affected by wildfires and on afforestation. As a consequence of the mechanization of the agriculture, and the reduction of the draft animals (mainly horses, mules, donkeys and oxen), the straw and the pruned branches are being a residue instead of a resource in many developed countries. Straw was used as a forage and the pruned branches as a source of heat and energy but both can be used as a mulch to control the soil erosion. The pruned branches can contribute with a valuable source of nutrients and a good soil protection. The leaves of the trees, and some parts of the plants, once harvest can contribute to reduce the soil losses. Our goal is to test if a residue such as the chipped pruned branches can be transformed as a resource that will help to control the soil erosion rates. Straw has been seen as a very efficient to reduce the water losses in agriculture land

  11. Development of a land surface model with coupled snow and frozen soil physics

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhou, Jing; Qi, Jia; Sun, Litao; Yang, Kun; Tian, Lide; Lin, Yanluan; Liu, Wenbin; Shrestha, Maheswor; Xue, Yongkang; Koike, Toshio; Ma, Yaoming; Li, Xiuping; Chen, Yingying; Chen, Deliang; Piao, Shilong; Lu, Hui

    2017-06-01

    Snow and frozen soil are important factors that influence terrestrial water and energy balances through snowpack accumulation and melt and soil freeze-thaw. In this study, a new land surface model (LSM) with coupled snow and frozen soil physics was developed based on a hydrologically improved LSM (HydroSiB2). First, an energy-balance-based three-layer snow model was incorporated into HydroSiB2 (hereafter HydroSiB2-S) to provide an improved description of the internal processes of the snow pack. Second, a universal and simplified soil model was coupled with HydroSiB2-S to depict soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy was adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then carefully evaluated at two typical sites of the Tibetan Plateau (TP) (one snow covered and the other snow free, both with underlying frozen soil). At the snow-covered site in northeastern TP (DY), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes in three-layer snow parameterization. At the snow-free site in southwestern TP (Ngari), HydroSiB2-SF reasonably simulated soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil parameterization in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF proved to be capable of simulating upward moisture fluxes toward the freezing front from the underlying soil layers in winter.

  12. Resource impacts caused by recreation

    Treesearch

    David N. Cole

    1986-01-01

    The pursuit of recreational activities inevitably has an effect on the resource--vegetation, soil, wildlife, and water. Whether these impacts are considered to be positive or negative depends on the management objectives of the area affected. The severity of the positive or negative response, which dictates the acuteness of the need for mitigation measures, is also...

  13. The status of soil mapping for the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, G.L.; Lee, R.D.; Jeppesen, D.J.

    This report discusses the production of a revised version of the general soil map of the 2304-km{sup 2} (890-mi{sup 2}) Idaho National Engineering Laboratory (INEL) site in southeastern Idaho and the production of a geographic information system (GIS) soil map and supporting database. The revised general soil map replaces an INEL soil map produced in 1978 and incorporates the most current information on INEL soils. The general soil map delineates large soil associations based on National Resources Conservation Services [formerly the Soil Conservation Service (SCS)] principles of soil mapping. The GIS map incorporates detailed information that could not be presentedmore » on the general soil map and is linked to a database that contains the soil map unit descriptions, surficial geology codes, and other pertinent information.« less

  14. Climate change impacts on soil erosion in the Great Lakes Region

    USDA-ARS?s Scientific Manuscript database

    Quantifying changes in potential soil erosion under projections of changing climate is important for the sustainable management of land resources, especially for regions dominated by agricultural land use, as soil loss estimates will be helpful in identifying areas susceptible to erosion, targeting ...

  15. Moving forward on remote sensing of soil salinity at regional scale

    USDA-ARS?s Scientific Manuscript database

    Soil salinity undermines global agriculture by reducing crop yield and soil quality. Irrigation management can help control salinity levels within the root-zone. To best allocate water resources, accurate regional-scale inventories are needed. Two remote sensing approaches are currently used to moni...

  16. View of the orange soil which Apollo 17 crewmen found at Station 4 during EVA

    NASA Image and Video Library

    1972-12-12

    AS17-137-20990 (12 Dec. 1972) --- A view of the area at Station 4 (Shorty Crater) showing the now highly-publicized orange soil which the Apollo 17 crew members found on the moon during the second Apollo 17 extravehicular activity (EVA) at the Taurus-Littrow landing site. The tripod-like object is the gnomon and photometric chart assembly which is used as a photographic reference to establish local vertical sun angle, scale and lunar color. The gnomon is one of the Apollo lunar geology hand tools. While astronauts Eugene A. Cernan, commander, and Harrison H. Schmitt, lunar module pilot, descended in the Lunar Module (LM) "Challenger" to explore the Taurus-Littrow region of the moon, astronaut Ronald E. Evans, command module pilot, remained with the Command and Service Modules (CSM) "America" in lunar orbit. Schmitt was the crew man who first spotted the orange soil.

  17. Evaluating Soil Health Using Remotely Sensed Evapotranspiration on the Benchmark Barnes Soils of North Dakota

    NASA Astrophysics Data System (ADS)

    Bohn, Meyer; Hopkins, David; Steele, Dean; Tuscherer, Sheldon

    2017-04-01

    The benchmark Barnes soil series is an extensive upland Hapludoll of the northern Great Plains that is both economically and ecologically vital to the region. Effects of tillage erosion coupled with wind and water erosion have degraded Barnes soil quality, but with unknown extent, distribution, or severity. Evidence of soil degradation documented for a half century warrants that the assumption of productivity be tested. Soil resilience is linked to several dynamic soil properties and National Cooperative Soil Survey initiatives are now focused on identifying those properties for benchmark soils. Quantification of soil degradation is dependent on a reliable method for broad-scale evaluation. The soil survey community is currently developing rapid and widespread soil property assessment technologies. Improvements in satellite based remote-sensing and image analysis software have stimulated the application of broad-scale resource assessment. Furthermore, these technologies have fostered refinement of land-based surface energy balance algorithms, i.e. Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) algorithm for evapotranspiration (ET) mapping. The hypothesis of this study is that ET mapping technology can differentiate soil function on extensive landscapes and identify degraded areas. A recent soil change study in eastern North Dakota resampled legacy Barnes pedons sampled prior to 1960 and found significant decreases in organic carbon. An ancillary study showed that evapotranspiration (ET) estimates from METRIC decreased with Barnes erosion class severity. An ET raster map has been developed for three eastern North Dakota counties using METRIC and Landsat 5 imagery. ET pixel candidates on major Barnes soil map units were stratified into tertiles and classified as ranked ET subdivisions. A sampling population of randomly selected points stratified by ET class and county proportion was established. Morphologic and chemical data will

  18. Species identities, not functional groups, explain the effects of earthworms on litter carbon-derived soil respiration

    USDA-ARS?s Scientific Manuscript database

    Soil respiration is frequently measured as a surrogate for biological activities and is important in soil carbon cycling. The heterotrophic component of soil respiration is primarily driven by microbial decomposition of leaf litter and soil organic matter, and is partially controlled by resource ava...

  19. Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected

  20. A review of the impacts of degradation threats on soil properties in the UK.

    PubMed

    Gregory, A S; Ritz, K; McGrath, S P; Quinton, J N; Goulding, K W T; Jones, R J A; Harris, J A; Bol, R; Wallace, P; Pilgrim, E S; Whitmore, A P

    2015-10-01

    National governments are becoming increasingly aware of the importance of their soil resources and are shaping strategies accordingly. Implicit in any such strategy is that degradation threats and their potential effect on important soil properties and functions are defined and understood. In this paper, we aimed to review the principal degradation threats on important soil properties in the UK, seeking quantitative data where possible. Soil erosion results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in soil organic matter principally affects soil biological and microbiological properties, but also impacts on soil physical properties because of the link with soil structure. Soil contamination affects soil chemical properties, affecting nutrient availability and degrading microbial properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the link between the soil and most of the 'spheres', significantly affecting hydrological and microbial functions, and soils on re-developed brownfield sites are typically degraded in most soil properties. Having synthesized the literature on the impact on soil properties, we discuss potential subsequent impacts on the important soil functions, including food and fibre production, storage of water and C, support for biodiversity, and protection of cultural and archaeological heritage. Looking forward, we suggest a twin approach of field-based monitoring supported by controlled laboratory experimentation to improve our mechanistic understanding of soils. This would enable us to better predict future impacts of degradation processes, including climate change, on soil properties and functions so that we may manage soil resources sustainably.

  1. Policy Sciences in Water Resources Research

    NASA Astrophysics Data System (ADS)

    Cummings, Ronald G.

    1984-07-01

    As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.

  2. A genomic perspective on stoichiometric regulation of soil carbon cycling.

    PubMed

    Hartman, Wyatt H; Ye, Rongzhong; Horwath, William R; Tringe, Susannah G

    2017-12-01

    Similar to plant growth, soil carbon (C) cycling is constrained by the availability of nitrogen (N) and phosphorus (P). We hypothesized that stoichiometric control over soil microbial C cycling may be shaped by functional guilds with distinct nutrient substrate preferences. Across a series of rice fields spanning 5-25% soil C (N:P from 1:12 to 1:70), C turnover was best correlated with P availability and increased with experimental N addition only in lower C (mineral) soils with N:P⩽16. Microbial community membership also varied with soil stoichiometry but not with N addition. Shotgun metagenome data revealed changes in community functions with increasing C turnover, including a shift from aromatic C to carbohydrate utilization accompanied by lower N uptake and P scavenging. Similar patterns of C, N and P acquisition, along with higher ribosomal RNA operon copy numbers, distinguished that microbial taxa positively correlated with C turnover. Considering such tradeoffs in genomic resource allocation patterns among taxa strengthened correlations between microbial community composition and C cycling, suggesting simplified guilds amenable to ecosystem modeling. Our results suggest that patterns of soil C turnover may reflect community-dependent metabolic shifts driven by resource allocation strategies, analogous to growth rate-stoichiometry coupling in animal and plant communities.

  3. Societal challenges-oriented data-rich undergraduate teaching resources for geoscience classrooms and field courses

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Crosby, B. T.; Charlevoix, D. J.; Crosby, C. J.; Shervais, K.

    2016-12-01

    The NSF-funded GEodesy Tools for Societal Issues (GETSI) project is developing modules for use in introductory and majors-level courses that emphasize a broad range of geodetic data and quantitative skills applied to societally important issues of climate change, natural hazards, and water resources (serc.carleton.edu/getsi). The modules fill gaps in existing undergraduate curricula, which seldom include geodetic methods. Published modules are "Ice mass and sea level changes", "Imaging active tectonics with LiDAR and InSAR", "Measuring water resources with GPS, gravity, and traditional methods", "Surface process hazards", and "GPS, strain, and earthquakes". The GETSI Field Collection features geodetic field techniques. The field-oriented module "Analyzing high resolution topography with terrestrial laser scanning (TLS) and structure from motion (SfM)" is already published and "High precision positioning with static and kinematic GPS" will be published in 2017. Modules are 1-3 weeks long and include student exercises, data analysis, and extensive supporting materials. For field modules, prepared data sets are provided for courses that cannot collect field data directly. All modules were designed and developed by teams of faculty and content experts and underwent rigorous review and classroom testing. Collaborating institutions are UNAVCO (which runs NSF's Geodetic Facility), Indiana University, Mt San Antonio College, and Idaho State University. Science Education Resource Center (SERC) is providing assessment and evaluation expertise. If future funding is successful, the topic range will be expanded (e.g., volcanic hazards, more water resources, and ecological applications of geodesy). Funding to date has been provided by NSF's TUES (Transforming Undergraduate Education in STEM) and IUSE (Improving Undergraduate STEM Education).

  4. Characterization of pyrolysis products derived from three biological wastes and their effect on plant growth and soil water retention

    NASA Astrophysics Data System (ADS)

    Bouqbis, Laila; Werner Koyro, Hans; Kammann, Claudia; Zohra Ainlhout, Lalla Fatima; Boukhalef, Laila; Cherif Harrouni, Moulay

    2018-05-01

    Over two-thirds of Morocco can be classified as semiarid, arid and desert with low and variable rainfalls. While the country is subject to frequent drought, groundwater resources are predominantly consume by irrigated agriculture leading to the depletion of water resources and degradation of soil quality. Application of bio-resources wastes to soils after pyrolysis process is well documented to help retain water and nutrients in soils. In this study, three bio-resources wastes derived from argan shells, wood chip, a blend of paper sludge and wheat husks are characterized for physical and chemical properties. To determine the potential impact of salt stress and toxic substances the second part of this study focused on the effect these bio-resources wastes have on germination of salad and barley respectively. The three bio-resources obtained from different biomass showed some unique properties compared to the soil, such as high electrical conductivity (EC), high content of K, Na and Mg, low content of heavy metals. Moreover, the water holding capacities increased with increasing application of bio-resources wastes. Concerning the phytotoxic tests, no negative effect was observed neither for salad (Lactuca sativa L.) nor for barley (Hordeum vulgare) indicating that the three bio-resources could be safely used for agriculture. Collectively, the use of these bio-resources wastes as a soil amendment is anticipated to increase both water and nutrient and could provide the potential for a better plant growth mainly in semiarid, arid and desert climatic conditions like the case of Morocco in which the agricultural practices reserve a majority of the water resources to be used for irrigation.

  5. Real-Time Photovoltaic and Solar Resource Testing | Photovoltaic Research |

    Science.gov Websites

    community toward developing comprehensive PV standards. Each year, NCPV researchers, along with solar performance Bill Marion: Solar radiation resource information, and PV module and system performance modeling NREL Real-Time Photovoltaic and Solar Resource Testing Real-Time Photovoltaic and Solar

  6. Soil respiration and bacterial structure and function after 17 years of a reciprocal soil transplant experiment

    DOE PAGES

    Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; ...

    2016-03-02

    The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even

  7. Soil Respiration and Bacterial Structure and Function after 17 Years of a Reciprocal Soil Transplant Experiment.

    PubMed

    Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa

    2016-01-01

    The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and

  8. Soil conservation applications with C-band SAR

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.

    1992-01-01

    Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.

  9. Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: implications for soil acidification

    USGS Publications Warehouse

    McGee, K.A.; Gerlach, T.M.

    1998-01-01

    Time-series sensor data reveal significant short-term and seasonal variations of magmatic CO2 in soil over a 12 month period in 1995-1996 at the largest tree-kill site on Mammoth Mountain, central-eastern California. Short-term variations leading to ground-level soil CO2 concentrations hazardous and lethal to humans were triggered by shallow faulting in the absence of increased seismicity or intrusion, consistent with tapping a reservoir of accumulated CO2, rather than direct magma degassing. Hydrologic processes closely modulated seasonal variations in CO2 concentrations, which rose to 65%-100% in soil gas under winter snowpack and plunged more than 25% in just days as the CO2 dissolved in spring snowmelt. The high efflux of CO2 through the tree-kill soils acts as an open-system CO2 buffer causing infiltration of waters with pH values commonly of < 4.2, acid loading of up to 7 keqH+.ha-1.yr-1, mobilization of toxic Al3+, and long-term decline of soil fertility.

  10. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  11. Student-Centered Modules to Support Active Learning in Hydrology: Development Experiences and Users' Perspectives

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Habib, E. H.; Deshotel, M.; Merck, M. F.; Lall, U.; Farnham, D. J.

    2016-12-01

    Traditional approaches to undergraduate hydrology and water resource education are textbook based, adopt unit processes and rely on idealized examples of specific applications, rather than examining the contextual relations in the processes and the dynamics connecting climate and ecosystems. The overarching goal of this project is to address the needed paradigm shift in undergraduate education of engineering hydrology and water resources education to reflect parallel advances in hydrologic research and technology, mainly in the areas of new observational settings, data and modeling resources and web-based technologies. This study presents efforts to develop a set of learning modules that are case-based, data and simulation driven and delivered via a web user interface. The modules are based on real-world case studies from three regional hydrologic settings: Coastal Louisiana, Utah Rocky Mountains and Florida Everglades. These three systems provide unique learning opportunities on topics such as: regional-scale budget analysis, hydrologic effects of human and natural changes, flashflood protection, climate-hydrology teleconnections and water resource management scenarios. The technical design and contents of the modules aim to support students' ability for transforming their learning outcomes and skills to hydrologic systems other than those used by the specific activity. To promote active learning, the modules take students through a set of highly engaging learning activities that are based on analysis of hydrologic data and model simulations. The modules include user support in the form of feedback and self-assessment mechanisms that are integrated within the online modules. Module effectiveness is assessed through an improvement-focused evaluation model using a mixed-method research approach guiding collection and analysis of evaluation data. Both qualitative and quantitative data are collected through student learning data, product analysis, and staff interviews

  12. Research in remote sensing of agriculture, earth resources, and man's environment

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1975-01-01

    Progress is reported for several projects involving the utilization of LANDSAT remote sensing capabilities. Areas under study include crop inventory, crop identification, crop yield prediction, forest resources evaluation, land resources evaluation and soil classification. Numerical methods for image processing are discussed, particularly those for image enhancement and analysis.

  13. Using a spatial and tabular database to generate statistics from terrain and spectral data for soil surveys

    USGS Publications Warehouse

    Horvath , E.A.; Fosnight, E.A.; Klingebiel, A.A.; Moore, D.G.; Stone, J.E.; Reybold, W.U.; Petersen, G.W.

    1987-01-01

    A methodology has been developed to create a spatial database by referencing digital elevation, Landsat multispectral scanner data, and digitized soil premap delineations of a number of adjacent 7.5-min quadrangle areas to a 30-m Universal Transverse Mercator projection. Slope and aspect transformations are calculated from elevation data and grouped according to field office specifications. An unsupervised classification is performed on a brightness and greenness transformation of the spectral data. The resulting spectral, slope, and aspect maps of each of the 7.5-min quadrangle areas are then plotted and submitted to the field office to be incorporated into the soil premapping stages of a soil survey. A tabular database is created from spatial data by generating descriptive statistics for each data layer within each soil premap delineation. The tabular data base is then entered into a data base management system to be accessed by the field office personnel during the soil survey and to be used for subsequent resource management decisions.Large amounts of data are collected and archived during resource inventories for public land management. Often these data are stored as stacks of maps or folders in a file system in someone's office, with the maps in a variety of formats, scales, and with various standards of accuracy depending on their purpose. This system of information storage and retrieval is cumbersome at best when several categories of information are needed simultaneously for analysis or as input to resource management models. Computers now provide the resource scientist with the opportunity to design increasingly complex models that require even more categories of resource-related information, thus compounding the problem.Recently there has been much emphasis on the use of geographic information systems (GIS) as an alternative method for map data archives and as a resource management tool. Considerable effort has been devoted to the generation of tabular

  14. Saving the soil: lessons from the long-term soil productivity experiment

    Treesearch

    Mark T. Sampson; Robert F. Featured: Powers

    2007-01-01

    Soil nourishes and sustains the forest, yet it’s also one of the least understood ecosystem components. In a landmark experiment involving the Forest Services of both the United States and Canada, scientist Robert F.Powers leads the world’s largest effort at understanding how to best manage this resource to improve the health and productivity of the forest.

  15. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    NASA Astrophysics Data System (ADS)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    statement, the main goal of this work consists in establishing the vertical distribution in the profile of SOC and N concentrations and to quantify the SOC and N stocks affected by different soil types in a natural Mediterranean area, under the same land use (agroforestry system) and management (conventional tillage). This will allow to evaluate the soil quality. It was verified that SOC concentrations significantly decreased with depth in the majority of soil profiles for all soil groups under consideration. Leptosols are characterized by the highest concentration of soil organic carbon in the subsurface horizons as opposed to Cambisols which are defined by the lowest SOC concentration in depth. The SOC stock determined in the studied soil groups are 110. Mg. ha-1 for Fluvisols and 78.35 Mg.ha-1 for Regosols that can be caused by soil thickness. According to McLauchlan (2006), it cannot be found a strong relationship between clay content and organic carbon in the soil groups under study. REFERENCES IPPC: Climate Change 2007: the physical science basis, Cambridge University Press: Cambridge/New York, NY, 2007. IUSS Working Group WRB, 2006. World Reference base for soil resources 2006. World Soil Resources Report N° 103. FAO, Rome. Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., Aitkenhead-Peterson, J., 2016. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. Doi: http:// dx.doi.org/10.1002/ldr.2541. Lozano-García, B., Parras-Alcántara, L., Cantudo-Pérez, M., 2016. Land use change effects on stratification and storage of soil carbon and nitrogen: Application to a Mediterranean nature reserve. Agriculture, Ecosystems and Environment, 231, 105-113. McLauchlan, K.K., 2006. Effect of soil texture on soil carbon and nitrogen dynamic after cessation of agriculture. Geoderma 136, 289-299. Parras-Alcántara, L., Martín-Carrillo, M. and Lozano-García, B. Impacts of land use change in soil carbon and nitrogen

  16. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    DTIC Science & Technology

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using

  17. Presentations on Soil Fumigation Requirements - PDF Format

    EPA Pesticide Factsheets

    These provide training, outreach, and other resource materials for applicators and handlers, communities, state and local agencies, and others interested in understanding and implementing the current requirements for safe use of soil fumigant pesticides.

  18. Using Vegetation Maps to Provide Information on Soil Distribution

    NASA Astrophysics Data System (ADS)

    José Ibáñez, Juan; Pérez-Gómez, Rufino; Brevik, Eric C.; Cerdà, Artemi

    2016-04-01

    Many different types of maps (geology, hydrology, soil, vegetation, etc.) are created to inventory natural resources. Each of these resources is mapped using a unique set of criteria, including scales and taxonomies. Past research has indicated that comparing the results of different but related maps (e.g., soil and geology maps) may aid in identifying deficiencies in those maps. Therefore, this study was undertaken in the Almería Province (Andalusia, Spain) to (i) compare the underlying map structures of soil and vegetation maps and (ii) to investigate if a vegetation map can provide useful soil information that was not shown on a soil map. To accomplish this soil and vegetation maps were imported into ArcGIS 10.1 for spatial analysis. Results of the spatial analysis were exported to Microsoft Excel worksheets for statistical analyses to evaluate fits to linear and power law regression models. Vegetative units were grouped according to the driving forces that determined their presence or absence (P/A): (i) climatophilous (climate is the only determinant of P/A) (ii); lithologic-climate (climate and parent material determine PNV P/A); and (iii) edaphophylous (soil features determine PNV P/A). The rank abundance plots for both the soil and vegetation maps conformed to Willis or Hollow Curves, meaning the underlying structures of both maps were the same. Edaphophylous map units, which represent 58.5% of the vegetation units in the study area, did not show a good correlation with the soil map. Further investigation revealed that 87% of the edaphohygrophylous units (which demand more soil water than is supplied by other soil types in the surrounding landscape) were found in ramblas, ephemeral riverbeds that are not typically classified and mapped as soils in modern systems, even though they meet the definition of soil given by the most commonly used and most modern soil taxonomic systems. Furthermore, these edaphophylous map units tend to be islands of biodiversity

  19. Fire effects on temperate forest soil C and N storage

    Treesearch

    Lucas E. Nave; Eric D. Vance; Christopher W. Swanston; Peter S. Curtis

    2011-01-01

    Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting...

  20. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These